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This dissertation deals with the problem of manipulating and storing an image 

using quadtrees. A quadtree is a tree in which each node has four ordered children 

or is a leaf. It can be used to represent an image via hierarchical decomposition. 

The image is broken into four regions. A region can be a solid color (homogeneous) 

or a mixture of colors (heterogeneous). If a region is heterogeneous it is broken into 

four subregions, and the process continues recursively until all subregions are 

homogeneous. 

The traditional quadtree suffers from dependence on the underlying grid. The 

grid coordinate system is implicit, and therefore fixed. The fixed coordinate system 

implies a rigid tree. A rigid tree cannot be translated, scaled, or rotated. Instead, 

a new tree must be built which is the result of one of these transformations. 

This dissertation introduces the independent quadtree. The independent 

quadtree is free of any underlying coordinate system. The tree is no longer rigid 

and can be easily translated, scaled, or rotated. Algorithms to perform these opera-

tions axe presented. The translation and rotation algorithms take constant time. 

The scaling algorithm has linear time in the number nodes in the tree. The disad-

vantage of independent quadtrees is the longer generation and display time. 

This dissertation also introduces an alternate method of hierarchical decompo-

sition. This new method finds the largest homogeneous block with respect to the 

corners of the image. This block defines the division point for the decomposition. 

If the size of the block is below some cutoff point, it is deemed to be to small to 

make the overhead worthwhile and the traditional method is used instead. This 



new method is compared to the traditional method on randomly generated rectan-

gles, triangles, and circles. The new method is shown to use significantly less space 

for all three test sets. The generation and display times are ambiguous. More time 

is taken for each node, but there axe, on average, fewer nodes. The worst case is 

significantly worse. 
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CHAPTER I 

INTRODUCTION 

This dissertation will deal with the problem of storing and manipulating an 

image using quadtrees. An image is a matrix of colors. The matrix can be of any 

size and the colors are black and white. 

Storing an N x M image would require NM bits if stored naively. There have 

been several attempts to reduce the amount of storage needed below NM. 

Run Length Encoding (2, pp. 498-499) was one of the first attempts at storage 

reduction. Run Length Encoding considers the matrix row by row. Each row is 

broken into a series of ordered pairs. The elements of an ordered pair indicate the 

color and how many times that color repeats before the color changes in that row. 

Run Length Encoding can achieve large storage savings, however, the image is diffi-

cult to manipulate. 

Another early attempt at storage reduction was the medial axis transform 

(10). The medial axis transform finds the set of points within a region that is 

equidistant from the boundary. This set of points form a skeleton (or medial axis) 

of the region. The medial axis transform requires extensive calculation. It is not 

widely used. 

Quadtrees 

A quadtree is a generalization of a binary tree. Each node of a quadtree has 

four children. The children are ordered, (see Figure 1.) A quadtree is used to 

represent an image. An image is either homogeneous (solid black or solid white) or 



Fig. 1 A quadtree 

heterogeneous (a mixture of of black and white). If the image is homogeneous then 

mark (B or W) the root of the quadtree as such and stop. If the image is hetero-

geneous then maxk the root of the quadtree as such, divide the image into four 

subimages, and create four children of the root, corresponding to the subimages. If 

any of the subimages are homogeneous then mark that node as such and stop. If 

any of the subimages are heterogeneous then mark that node as such, divide the 

subimage into four subimages, and create four children of that node. Recursively 

continue to break up the image and create the quadtree until all nodes axe homo-

geneous or until a desired resolution is reached, (see Figure 2.) 

Extensive research has been done on the quadtree representation of an image 

over the last fifteen years. Samet (11) gives an excellent overview of this work and 

other hierarchical data structures. This work has concentrated on representations 

of quadtrees (3,14,6), translating other representations (e.g. polygons and binary 

arrays) to and from quadtrees (12,13,1,5,7), and manipulating quadtrees through 

some form of transformation (9,4,8,15). 

Problems with Quadtrees 

There are two traditional methods of representing quadtrees; a pointer 

representation and a linear representation. These methods, while superficially dif-



(note: interior of solid is 'Black'] 

The image 

The image divided into four equal subregions 

The heterogeneous subregions divided into equal four subregions 

The corresponding quadtree (note that B is black and W is white) 

Fig. 2 A quadtree representing an image 



ferent, have several assumptions in common. 

First, the image is square. The quadtree is always built on a square image. 

Second, the length of the sides of the square is always a power of two. The square 

can be as large or as small as desired, as long as it is a power of two. Common 

values are 256, 512, and 1024. 

The subregions are always of equal size. Thus we see the reason for the power 

of two size. Successive divisions by two will always produce equal subregions when 

the original size is a power of two. 

The underlying grid is fixed. The lines of division that create the quadtree are 

fixed on the grid. The quadtree is thus dependent on the grid, and is itself fixed, 

(see Figure 3.) 

root and first level nodes shown 

all nodes of a quadtree are fixed 

quadtree from 'above' the grid 

Fig. 3 A quadtree is dependent on the underlying grid 

Intuitively, the quadtree is a rigid structure attached to a grid. The quadtree 

cannot move. Thus the three standard transformations in computer graphics, 

translation, scaling, and rotation, are difficult, if not impossible to implement. 



Previous Attempts at Solving Problems 

It is well known that the special cases of scaling by powers of two and rota-

tions by 90 or 180 degrees is easy. The quadtree's dependence on the underlying 

grid makes general translation, scaling, and rotation extremely difficult. The grid's 

square size and limitation to powers of two make the use of quadtrees on any rec-

tangular image impractical. All previous attempts at solving these problems have 

stayed within the conceptual framework of the dependent quadtree. Below is a 

summary of the most important work in this area. 

Oliver and Wiseman (9) use a linear (non-pointer) representation of a quad-

tree. They develop several algorithms capable of manipulating their representation; 

including translation and rotation. Their translation algorithm is only briefly 

described and they admit another type of representation is probably better. Their 

rotation algorithms are limited to 90 and 180 degrees. They don't mention scaling. 

Hunter and Steiglitz (4) describe a complicated algorithm for building a 

transformed quadtree after a general linear operator has been applied to the origi-

nal quadtree. They show that the algorithm has time complexity 0(n+sp+mq) 

where n is the number of nodes in the original tree, s is a scale factor, p is the per-

imeter of the original image, m is the number of regions, and q is a resolution 

parameter. This algorithm requires a special quadtree representation in which the 

leaves are directly joined to their neighbor. This representation is called a netted 

quadtree. 

Li, Grosky, and Jain (8) recognize the rigid nature of the quadtree. They 

describe a method to build a normalized quadtree. Normalized here means a 

minimum representation, in terms of space. They find the minimum tree by mov-

ing the image on the grid. Their algorithm takes 0(s~2*log(s)) where s is the 
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length of the grid. 

van Lierop (15) describes an algorithm for applying general geometric transfor-

mations to a lineax representation of a quadtree. He does this by applying the 

transformation to the leaves of the quadtree and generating the leaves of the 

transformed quadtree. The algorithm takes 0(M*(n+log(N))) time, where M is the 

number of nodes in the output tree, N is the number of leaves input, and n is the 

resolution of the grid. 

Chapter Summary 

The quadtree is introduced. It suffers from dependence on the underlying 

grid. Previous attempts at manipulating the quadtree do not fully recognize this 

dependence, and axe thus complex and time consuming. 
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CHAPTER II 

INDEPENDENT QUADTREES 

This dissertation proposes a new type of quadtree, the independent quadtree. 

An independent quadtree is a quadtree whose position and orientation is indepen-

dent of the implicit coordinate system of the represented image. The independent 

quadtree is free of any underlying grid and can represent ail image of any size, not 

just a square power of two. Later we shall see that the independent quadtree 

makes geometric transformations (translation, scaling, and rotation) quite easy. 

The Idea 

In order to make a quadtree independent, it has to be "freed" from depen-

dence on the underlying grid. The dependence manifests itself in the implicit coor-

dinate system of the grid. Traditionally, this coordinate system has been used in 

the quadtree. The implicit coordinate system has the advantage of not having to 

explicitly store any coordinates, and the disadvantage of "binding" the quadtree to 

the grid. This dissertation proposes that the coordinate system used by the quad-

tree be made explicit. The independent quadtree has coordinate information as 

paxt of it's data structure. The coordinate information will consist of the location 

and size of the image. Supplying location and size information removes the 

"square" and "powers of two" limitations. 

The independent quadtree is constructed in a manner quite similar to the 

dependent quadtree (2). (see Figure 4.) 
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The Image b 

The Extent about the Image 

The Extent divided into not necessarily equal subregions 

(some subregions have an area of zero) 

The corresponding Quadtree (nodes representing a size zero area not shown) 

Fig. 4 Constructing an independent quadtree 

First, the location and size of the image is found. This is done by constructing a 

bounding box axound the image. Note that this is already implicitly present for the 

dependent quadtree. Next, the homogeneity test is applied. If the image (within 

the bounding box) is homogeneous then the algorithm terminates. If the image is 

heterogeneous the image is decomposed into four regions and continues the process 

recursively. For the dependent quadtree these regions would always be equal. 

However, for the independent quadtree the regions will be chosen according to a 
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different criteria. 

Decomposing a region into four subregions is a difficult problem in both the 

dependent and independent cases. Equal size regions is the easiest to do, but this 

dissertation will propose something different. The largest homogeneous block with 

respect to the four corners will be found. This block will form the basis for the 

decomposition. The information about each decomposition will have to stored • 

since it is no longer implicit. 

Converting the tree back into a binary grid is done in a manner quite similar 

to the dependent case. A Depth First Search (1; pp. 268-269) is done until a 

homogeneous block is found. At each node in the tree the appropriate offsets axe 

added to the location. For dependent quadtrees it is always known exactly what 

those offsets would be; for independent quadtrees the information will have been 

stored when the tree was constructed. 

If the image lacks coherence, (e.g. a matrix of randomly distributed points) 

then storing these offsets can take an excessive amount of storage. The storage of 

specific offsets can be suspended when the size of a region falls below a certain cut-

off point. The tree below that cutoff point returns to an equal division, which is 

implicit, and does not have to store offsets. This cutoff point can be selected from 

within the program by setting the variables RowCutoff and ColCutoff. 

A Rigorous Explanation 

A lineax representation known as a treecode will be used for demonstration 

purposes. This is for convenience only, all results will also apply to pointer 

representations. A treecode uses three symbols to form a sequence that will 

represent the tree. The three symbols axe; 'B' to indicate a Black node, 'W' to 
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indicate a White node, and '(' to indicate that the node is heterogeneous and will 

be decomposed, (see Figure 5.) 

would become: ((WWBBW(WBWBB 

Fig. 5 A Treecode representation of a quadtree 

An independent quadtree is a quadtree whose position and orientation is 

independent of the implicit coordinate system of the represented image. 

Assume that the image is represented by a binary array of arbitrary size. 

Later we will make comparison to the dependent tree, so the image used here will 

be 256 x 256. This square power of two is used ONLY because the dependent tree 

requires it. It will become clear that the independent tree can be built out of arbi-

trary size arrays. 

The following data structures will describe the independent quadtree. 

treetype = packed array [ CLtreemax ] of char; 

offsettype = packed array [ l..nodemax, 0..1 ] of range; 

extenttype = record 
Row, RowSize, 
Col, ColSize : integer; 
DX, DY : real; 

end; 
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The type treetype is of chax for purposes of clarity only. The only values that this 

array can take on are 'B', 'W', and In a real application 2 bits would be suffi-

cient. Since Pascal axrays are static the constant treemax is some large number. 

The type offsettype will contain an (X,Y) value for each node in the tree. The con-

stant nodemax is some large number. The subrange range is 0..255, therefore 16 

bits per node will be used beyond what the dependent tree uses. The type extent-

type defines the location (Row, Col), the size (RowSize, ColSize), and the orienta-

tion (DX, DY) of the quadtree initially. It is extenttype that achieves the indepen-

dence from the underlying image grid. Offsets will be computed with respect to 

the Extent as defined in extenttype. Note that the orientation will always be per-

pendicular to the sides of the image initially. 

There axe two operations of interest. The first is constructing the quadtree 

from a binary array. The second is displaying the image represented in the quad-

tree, i.e. reconstructing the binary array. The first operation is implemented in a 

Pascal procedure called GeneratelndependentTree. The second operation is imple-

mented in a Pascal procedure called Display Independent Tree. These procedures 

will be explained in detail here. Complete listings of both procedures can be found 

in the Appendix. 

GeneratelndependentTree begins by determining the extent of the image. 

This is done by a call to the procedure Bound. Bound determines the upper, 

lower, left, and right bounds of the image in it's grid. Bound first determines the 

lower and upper bounds. Then it uses these new bounds to determine the left and 

right bounds. These bounds are then used to determine the location and size of 

the image. Location will be assumed to be the upper left corner, and size will be a 

pair of numbers; row size and column size. GeneratelndependentTree then calls 
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BuildTree, which is the heart of GeneratelndependentTree. 

BuildTree is the recursive part of GeneratelndependentTree. BuildTree is 

invoked four times at each heterogeneous region, i.e. once for each subregion. 

BuildTree begins by checking the size of the region that it is checking for homo-

geneity. It is possible that the region is nonexistent (size zero). If the region is 

nonexistent then no recursion occurs and BuildTree is done. 

BuildTree then checks if the region size is below the cutoff point. If it is, then 

the subdivision will be based on equal size subregions. However, the region size at 

this point is not necessarily a power of two, so the size of a region will not always 

be divisible by two. There will be a remainder of one at times. BuildTree arbi-

trarily chooses to add the one, if it exists, to the upper left subregion. The recur-

sive decomposition continues on this basis. 

If the region size is greater than the cutoff point the subdivision will be done 

on the basis of the largest homogeneous block with respect to a corner, (see Figure 

6.) The size of that block is used to compute the subdivision for this region. The 

subdivision is stored as offsets. The color of the homogeneous block with respect to 

each corner is stored in an array called BlackOrWhite. BuildTree finds the homo-

geneous blocks by calling the procedure HomogeneousBlock four times, once for 

each corner of the region. 

HomogeneousBlock has seven parameters. The first two indicate which corner 

of the region is to be operated on. The third and fourth parameters indicate which 

direction from the corner is to be considered. The fifth parameter is the size of the 

block for that corner as found by the procedure. The last two parameters are the 

length of the sides of the block. HomogeneousBlock tries to construct, a row at a 

time, a block which is the same color as the corner value. The axea represented by 
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the addition of a new row is compared to the previous largest value. If the new 

area is laxger, it becomes the axea value. This is done for all rows in the region, so 

we are guaranteed that the area returned will be the laxgest possible, with respect 

to that corner. 

The Extent 

Fig. 6 The homogeneous blocks with respect to the corners of the image 

After obtaining the size of the four homogeneous blocks BuildTree finds the 

largest one, which will be the laxgest in that region with respect to any corner. 

BuildTree also finds the color of the block. 

BuildTree will then set the offsets for this node to the row size and column 

size for the laxgest block. 

Next, BuildTree invokes itself three times, once for each of the smaller blocks. 

The largest block is homogeneous, by definition, and does not require further pro-

cessing. 
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After the last quadrant has been processed for this region BuildTree adds the 

temporary element ')' to the tree. This is used by the later condensation procedure 

and is NOT a permanent part of the tree. After the last quadrant has been pro-

cessed it may be possible to condense the block to a smaller block. BuildTree 

invokes the procedure Condense to perform the condense operation. Condensation 

is possible in the following cases: 

(B) or (W) will condense to B or W respectively 

(BB) or (WW) will condense to B or W respectively 

(BBBB) or (WWWW) will condense to B or W respectively 

Condense is implemented as a Finite State Automata. 

After BuildTree returns from it's recursive decomposition of the image, control 

returns to GeneratelndependentTree. GeneratelndependentTree removes the ')' 

from the tree, collects some statistics and ends. Figure 7 gives the pseudo code for 

the BuildTree. 

DisplaylndependentTree begins by setting maximum bounds for the image. 

These will later be used for any necessary clipping. DisplaylndependentTree then 

invokes DrawTree, the heart of the algorithm. 

DrawTree first checks the size of the region it is to display. If the region is 

nonexistent (size zero) then no recursion occurs and DrawTree is done. DrawTree 

then checks to see if the region is less than the cutoff point. 

If the region size is less or equal to the cutoff then the display of the tree will 

proceed in the traditional manner. The region will either be colored if it is homo-

geneous, or it will be divided into equal parts along both axes. Since the region is 

not necessarily a square power of two in size, the division by two will not always be 
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begin Build Tree 

if region_size = 0 then stop 

if regionalize < cutoff then 

output ( >(>) 

divide region into equal size subregions 

if pixel then output ( colorjofjpixel) 

else 
BuildTree ( upperJeftjcorner ) 
BuildTree ( upperjrightjcorner ) 
BuildTree (lowerJeft^corner ) 
Buildtree (lowerjrightjcorner ) 

else 

output ( >(>) 

find largest homogeneous blocks w.r.t. the four corners 

if largest is upperJeft then output (upper Jeftjcolor) 

else 
BuildTree ( upperJeftJblock ) 

if largest is upperjright then output ( upper Jieftjcolor ) 
else 

BuildTree ( upperjrightjblock ) 
if largest is lower Jeft then output (lowerJeftjcolor ) 
else 

BuildTree (lowerjieftjblock ) 
if largest is lower jright then output (lowerjrightjcolor ) 
else 

Buildtree (lower jrightjblock ) 
CondenseTree 

end BuildTree 
Fig. 7 Pseudocode for BuildTree 

exact. There may be a remainder of one. The remainder of one will be added to 

the upper left region to correspond to what was done in the construction of the 

tree. 

If the region size is greater than the cutoff then the region will either be 

colored if it is homogeneous, or the location and size of the four subregions must be 

computed on the basis of the offsets for the current node. Once the location and 

size are determined DrawTree can invoke itself recursively. Figure 8 gives the 
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pseudo code for DrawTree. 

begin DrawTree 
if regionalize = 0 then stop 

if region_size < cutoff then 

else 

if next ( Tree ) in [ }B', 'W'] then DrawBlock 
else 

DrawTree ( upperjleft) 
DrawTree ( upperjright) 
DrawTree (lowerJeft) 
DrawTree (lowerjright) 

if next ( Tree ) in [ 'B', 'W'] then DrawBlock 
else 

compute size and location of the four subregions 

end DrawTree 

DrawTree ( upperJeft) 
DrawTree ( upperjright) 
DrawTree (lower J e f t ) 
DrawTree (lowerjright) 

Fig. 7 Pseudocode for DrawTree 

The procedure that actually draws a homogeneous block into the binary array 

is called DrawBlock. DrawBlock computes the four corners of the homogeneous 

block. If the four corners represent a region whose sides are parallel to the implicit 

axes of the grid, then a simple row by row fill is performed. If the four corners form 

a rectangle that is not parallel to the implicit axes then a simplified version of the 

standard polygon fill algorithm is performed. It is a simplified fill algorithm 

because it is known that there will always be exactly four vertices. The simplified 

polygon fill algorithm determines the upper and lower bounds of the polygon. 

Then for each row in the range between upper and lower a left and right bound is 

found. The binary array is filled between left and right inclusive. Clipping will be 

performed when necessary. 
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Chapter Summary 

The independent quadtree is introduced. It is independent of the underlying 

grid. This independence is achieved by making the coordinate system of the quad-

tree explicit. Algorithms for constructing and displaying the independent quadtree 

are presented. 

Within the construction algorithm a new method of decomposition is 

presented. This method divides the image by finding the largest homogeneous 

block with respect to a corner and using that block to indicate the division points 

of the image. 
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CHAPTER i n 

GEOMETRIC TRANSFORMATIONS OF INDEPENDENT QUADTREES 

The data structures that form the independent quadtree make geometric 

transformations simple and elegant. Freeing the quadtree from the image grid 

makes the tree itself coordinate free. All of the location, size, and orientation infor-

mation are contained in the record variables Extent and Offset. 

Translation 

Translation is the movement of an object. If the object is represented by 

polygons then the movement is accomplished by adding the desired offset to the 

vertices of the polygons (1; pp. 245-246). Translation of a dependent quadtree is 

far more complex. An entirely new tree has to be constructed since the old quad-

tree is fixed with respect to the underlying grid. 

However, translation of the independent quadtree is easy. Location informa-

tion for the whole image is stored in Extent. To translate an independent quadtree 

requires only adding the desired offset to the location of the tree. The tree struc-

ture itself, being independent of any coordinate system, is untouched. 

Here is the entire Translate procedure: 

procedure Translate ( vax Extent : extenttype: 
DeltaX, 
DeltaY : integer ); 

21 
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begin { Translate } 

Extent.Row := Extent.Row + DeltaY; 
Extent.Col := Extent.Col + DeltaX; 

end; { Translate } 

This is, obviously, a constant time algorithm. In fact, there are only two integer 

additions to the whole operation. Figure 9 shows an example of a circle translated 

by (100,100). The image printing software does not correct for distortion caused by 

the aspect ratio of the printer, so the circle looks flattened. The origin is the upper 

left corner. 

Scaling 

Scaling is the enlargement or reduction of an object. If the object is 

represented by polygons then the scaling is accomplished by multiplying the ver-

tices by the desired scaling factors in X and Y (1; p. 247). 

Scaling by a power of two is well known (2). This is done by increasing (or 

reducing) the size of the tree by one level. If the scaling is up by a factor of two 

then one of the four child nodes of the root is chosen as the new root. The display 

size is the same so the image of the chosen node is scaled up by a factor of two in X 

and Y. If the scaling is down by a factor of two then three blank nodes are added 

to the current root and a new root is created above them. The display size is the 

same so the old image is scaled down by a factor of two. 

Scaling by an arbitrary integer, or even continuous scaling using reals is unk-

nown in the literature. 

Scaling an independent quadtree is not only easy but it can be done using 

arbitrary real numbers. Scaling is performed by multiplying the size of the Extent 
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Fig. 9 Example of Translation 
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by the desired values, and multiplying all of the offsets by the desired values. The 

tree structure itself, being independent of any coordinate system, is untouched. 

Here is the entire scaling procedure: 

procedure Scale ( vax Extent : extenttype; 
vax Offset : offsettype; 

SX, 
SY : real ); 

var 

i : integer; 

begin { Scale } 

Extent.RowSize := round (Extent.RowSize * SY); 
Extent.ColSize := round (Extent.ColSize * SX); 

i := 1; 
while Offset [i,0] < > -1 do begin 

Offset 
Offset 

i,0 := round f Offset 
:= round ( Offset 

i,0 
ijl 

* SY 
* SX 

i := i + 1; 

end; 

end; { Scale } 

This algorithm is obviously linear in the number of nodes in the tree. Figure 10 

shows an example of a triangle scaled by a factor 3.0 in X and 5.0 in Y. The scal-

ing is done with respect to the upper left corner of the Extent. The origin is the 

upper left corner. 

In this implementation scaling only works if the cutoff values are set to zero. 

This is a software problem, not a theoretical problem. It has no bearing on the 

validity of independent quadtrees. 
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Fig. 10 Example of Scaling 
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Rotation 

Rotation is the movement through an angle about a point. If an object is 

represented as polygons then the operation is performed by applying the following 

trigonometric transformations to each vertex: 

X := X * cos(theta) - Y * sin(theta) 
Y := Y * sin(theta) + Y * cos(theta) 

where theta is the angle of rotation (1; p. 248). 

Rotation of a dependent quadtree is unknown in the literature. As discussed 

in chapter II there are some general linear transformation algorithms. These algo-

rithms construct the new tree that results from a transformation. 

Rotation of an independent quadtree is quite easy. It is only necessary to 

apply the transformations mentioned above to the orientation parameters (DX & 

DY) in Extent. The tree structure itself, being independent of any coordinate sys-

tem, is untouched. 

Here is the entire rotation procedure: 

procedure Rotate ( vax Extent : extenttype; 

Angle : real ); 

{ Angle should be in radians } 

var 
Tl , T2, 

CosA, SinA : real; 

begin { Rotate } 

CosA := cos(Angle); 
SinA := sin(Angle); 
T l := Extent.DX * CosA - Extent.DY * SinA; 
T2 := Extent.DX * SinA + Extent.DY * CosA; 
Extent.DX := Tl; 
Extent.DY := T2; 
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end; { Rotate } 

This algorithm is obviously a constant time algorithm. Figure 11 shows an example 

of a rectangle being rotated by approximately 45 degrees. The image printing 

software does not correct distortion caused by the aspect ratio of the printer, so the 

rectangle looks flattened. The origin is the upper left corner. 

Translation, Scaling, and Rotation can be combined to achieve any linear 

transformation of an independent quadtree. The transformations axe, in general, 

not commutative. Foley and Van Dam (1; pp. 253-254) show that translation can 

be commuted with translation, scaling can be commuted with scaling, rotation can 

be commuted with rotation, and scaling can be commuted with the other two when 

the X and Y scale factors axe equal. 

Chapter Summary 

Algorithms for the translation, scaling, and rotation, of independent quadtrees 

are presented. Independent quadtrees can be translated by any real number offset 

(subject to roundoff). The translation algorithm is constant in time and space. 

Independent quadtrees can be scaled by any real number (subject to roundoff). A 

current software limitation is that the cutoff point must be set to zero. The scaling 

algorithm is linear in the number of nodes of the tree. Independent quadtrees can 

be rotated by any real angle (subject to roundoff). The rotation algorithm is con-

stant in time and space. 
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Fig. 11 Example of Rotation 
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CHAPTER IV 

COMPARISON OF DEPENDENT QUADTREES AND 

INDEPENDENT QUADTREES 

Independent quadtrees have a major advantage over dependent quadtrees in 

their ability to manipulate the image. The comparison of the generation and 

display of independent quadtrees with the generation and display of dependent 

quadtrees is the subject of this chapter. For comparison purposes two procedures 

called GenerateDependentTree and DisplayDependentTree were constructed. 

These procedures were constructed in a manner analogous to that suggested by 

Samet (3). Listings of GenerateDependentTree and DisplayDependentTree can be 

found in the Appendix. 

Theoretical Comparison 

First we consider the time requirements for the generation of the quadtree. 

GenerateDependentTree visits every element in the image array exactly once. So 

GenerateDependentTree is O(e) where e is the number of elements in the image. 

GeneratelndependentTree may visit an element more than once, but never more 

than the number of levels in the tree (as it searches for the homogeneous blocks). 

Let 1 be the number of levels in the tree. Then, GeneratelndependentTree is 

0(l*e) where e is the number of elements in the image. 

Next, we consider the time requirements for the display of the quadtree. 

DisplayDependentTree visits each node in it's quadtree exactly once. 

30 
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DisplayIndependentTree visits each node in it's quadtree exactly once. Both algo-

rithms axe therefore, O(n) where n is the number of the nodes in the tree. The 

algorithms are equivalent up to a constant term; however, the number of nodes in 

each tree may not be the same. 

Next, we consider the space requirements for the quadtree. Both dependent 

and independent quadtrees require two bits per node (storing 'B', 'W', or '(' ). In 

addition, the independent quadtree has the overhead of the extent which is four 

integers and two reals. The independent quadtree may also store offset information 

at each node. The independent quadtree has, therefore some overhead and larger 

nodes than the dependent quadtree. However, the approach that the independent 

quadtree takes to region decomposition (largest homogeneous block) may lead to 

fewer nodes. The actual space determinations axe data dependent. 

Statistical Comparison 

The theoretical comparisons axe not very enlightening. To obtain a better 

understanding of how independent and dependent quadtrees compare with each 

other we need to run them and test for significant differences. The four procedures 

GenerateDependentTree, GeneratelndependentTree, DisplayDependentTree, and 

Display Independent were implemented in Pascal running on a VAX 11/780 under 

Unix* 4.2BSD. Pascal was chosen for its algorithmic claxity. C would be a better 

choice for efficiency. 

Three sets of test data were used, rectangles, triangles, and circles. These 

objects represent the three types of boundaxies between object and background; 

horizontal and vertical, sloping, and curved. Each element in a test set was of 

*Unix is a registered trademark of Bell Labs 
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random size and position. One object was generated per image. There were 500 

random objects in each set. All of the object will be contained within the grid, i.e. 

no need for clipping. The average time and space usage of dependent and indepen-

dent quadtrees is shown in Table I. 

TABLE I 
DEPENDENT VS. INDEPENDENT QUADTREES 

Test Set Dependent Independent 
Space* Usage 

Rectangles 1815 130 
Triangles 2629 2241 
Circles 1345 1186 

Generation Time* 
Rectangles 7050 1759 
Triangles 7392 3675 
Circles 6975 1983 

Display Time* 
Rectangles 184 96 
Triangles 195 484 
Circles 116 228 

*space is in bits, time is in milliseconds 

The table shows that space usage was less for independent quadtrees over all three 

test sets. Independent quadtrees also took less time to generate over all three test 

sets. The results for display were less straightforward. The independent quadtrees 

for rectangles took less time to display, but they took more time for triangles and 

circles. 

In order to test the statistical significance of these results, 95% confidence 

intervals for the difference in means were computed. Since the population variance 

is not known the Student's t distribution was assumed (1; pp. 262-264). The null 

hypothesis is that the there is no significant difference between independent and 

dependent quadtrees for space, generation time or display time, over any of the test 

sets. This can be accepted or rejected by the presence or absence of zero in confi-



33 

dence intervals for the difference of the means. 

The confidence intervals for space were: 

Rectangles 1592 < D < 1778 
Triangles 281 < D < 494 
Circles 70 < D < 247 

where D is the difference, dependent minus independent. The numbers represent 

bits. Zero is not present in any of these intervals so the null hypothesis of no 

difference is rejected. Independent quadtrees use less space. This is easily 

accounted for by the adaptive nature of the independent quadtree. It tries to find 

large homogeneous blocks, implying less storage if the image has any coherence to 

it. 

The confidence intervals for generation time were: 

Rectangles 5199 < D < 5389 
Triangles 3564 < D < 3870 
Circles 4907 < D < 5077 

where D is the difference, dependent minus independent. The numbers are in mil-

liseconds. Zero is not present in any of these intervals so the null hypothesis of no 

difference is rejected. Independent quadtrees take less time to generate. This is a 

somewhat surprising result. The theoretical analysis seemed to indicate that the 

independent quadtrees should take more time. But again, the adaptive nature of 

the algorithm means fewer blocks, even though each block takes longer to generate. 

However, the difference is probably not as pronounced as it might seem from the 

confidence intervals. GenerateDependentTree is highly recursive. A nonrecursive 

version of the algorithm would probably show gains relative to Generatelndepen-

dentTree. The amount of gain is hinted at by the results for display time. 

The confidence intervals for display time were: 



34 

Rectangles 71 < D < 104 
Triangles -311 < D < -267 
Circles -126 < D < -98 

where D is the difference, dependent minus independent. The numbers represent 

milliseconds. Zero is not present in any of the intervals so the null hypothesis of no 

difference is rejected. The display of an independent quadtree representing a rec-

tangle takes less time, while triangles and circles take more. The adaptive algo-

rithm is displaying it's bias for objects that have boundaries perpendicular to the 

axes of the image. The trees generated for triangles and circles were not small 

enough to overcome the inherently longer time per block taken by the independent 

tree. 

Worst Case Comparison 

The worst kind of image for a dependent quadtree is a checkerboard at lowest 

resolution (2; p. 217). A checkerboard is even worse for an independent quadtree. 

A test was run on a 128 x 128 checkerboard. The independent quadtree used 4.6 

times more memory. The independent quadtree took 17 times longer to generate. 

The independent quadtree took 7 times longer to display. Clearly, in the worst 

case, the independent quadtree is inferior to the dependent quadtree. 

Chapter Summary 

Dependent and independent quadtrees are compared theoretically and empiri-

cally. Theoretically independent quadtrees should take longer to generate and 

display. The space requirements of quadtrees are data dependent. 

Empirically, the independent quadtree takes less space. The empirical results 

indicate that the independent quadtree take less time to generate, but this may be 
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due to the intensely recursive nature of the dependent algorithm. The indepen-

dent quadtree takes longer to display. 

Overall, these results suggest a space-time trade-off. The independent quad-

tree will take less space, but may take longer to generate and will take longer to 

display, for a generalized object. 
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CHAPTER V 

CONCLUSION 

A quadtree is a tree in which each node has four ordered children or is a leaf. 

It can be used to represent an image via hieraxchical decomposition. The image is 

broken into four regions. A region can be a solid color (homogeneous) or a mixture 

of colors (heterogeneous). If a regions is heterogeneous it is broken into four 

regions, and the process continues recursively until all regions are homogeneous (or 

until a specified limit is reached). 

The traditional quadtree suffers from dependence on the underlying grid. The 

grid coordinate system is implicit, and therefore fixed. The fixed coordinate system 

implies a rigid tree. A rigid tree cannot be translated, scaled, or rotated. Instead, 

a new tree must be built which is the result of one of these transformations. 

This dissertation has introduced the independent quadtree. The independent 

quadtree is free of any underlying coordinate system. The tree is no longer rigid 

and can be easily translated, scaled, or rotated. Algorithms to perform these opera-

tions have been presented. The translation and rotation algorithms take constant 

time. The scaling algorithm has linear time in the number nodes in the tree. The 

disadvantage of independent quadtrees is the longer display time. However, the 

ease with which an image may be transformed should more than compensate for 

the longer display time. 

This dissertation has also introduced an alternate method of hieraxchical 

decomposition. This new method finds the largest homogeneous block with respect 

37 
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to the corners of the image. This block defines the division point for the decompo-

sition. If the size of the block is below some cutoff point, it is deemed to be to 

small to make the overhead worthwhile and the traditional method is used instead. 

This new method is compared to the traditional method on randomly generated 

rectangles, triangles, and circles. The new method has been shown to use signifi-

cantly less space for all three test sets. The generation and display times axe ambi-

guous. More time is taken for each node, but there are, on average, fewer nodes. 

The worst case is significantly worse. 

Future Work 

The scaling algorithm should be made to work for any value of the cutoff 

point. It can almost certainly be improved to constant time. This will require 

changes to GeneratelndependentTree and DisplaylndependentTree, which may 

make them run even slower. Constant time algorithms for all three transformations 

should make the slower time worthwhile. 

Obviously, the worst case performance needs to be improved. This can be 

accomplished by making the algorithm even more adaptive. It should be possible 

to dynamically determine when the algorithm should switch from a irregular 

decomposition (homogeneous blocks) to a regular decomposition (equal sizes). In 

fact, it should be possible to switch back and forth between the two types of 

decomposition. 

There is still at least one major obstacle to quadtrees becoming an important 

modeling tool. Quadtrees axe hard to encode. This dissertation assumed that the 

image was already in binary form. But the major representation in use today in 

computer graphics is the polygon, i.e. a set of vertices. It is easy to describe a 
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polygon, it is not easy to describe a quadtree. An interactive solution may be feasi-

ble. 

The 3D case 

This work should easily generalize to three dimensions. In three dimensions 

the quadtree is known as an octtree. Each dimension is divided along it's axis. 

This implies eight regions, thus an octtree. The traditional method, as for the 

quadtree, is to divide the space into equal parts. The disadvantages of this 

approach have been well documented by this dissertation (see chapter I) and 

should hold for the three dimensional case as well as the two dimensional case. 

The movement of objects through space, once a major challenge, should be signifi-

cantly simplified by using independent octtrees. The major advantages of octtrees 

is the simple solution they offer to the hidden surface problem. Independent 

octtrees should still have that advantage and offer fast transformations as well. 

Generalizing to four dimensions may be useful as well. Four dimensions would 

introduce a time element. The possibility of animation is intriguing. Beyond four 

dimensions is not interesting to the field of computer graphics. 



APPENDIX 

This appendix contains listings of the procedures described in this 

dissertation. Those procedures axe GenerateDependentTree, 

DisplayDependentTree, GeneratelndependentTree, and DisplayIndependentTree. It 

also contains a listing of the global variables used by those procedures. 

40 
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const 
min = 0; 
max = 255; 

treemax = 60000; 
nodemax = 60000; 
resolution = 8; 

elementmax = 30; 

type 
range = min..max; 

imagetype - packed axray [ range, range ] 
of boolean; 

treetype = packed array [ 0..treemax ] 
of char; 

offsettype = packed array [ 1..nodemax, 0..1 
of range; 

extenttype = record 
Row, RowSize, 
Col, ColSize : integer; 
DX, DY : real; 

end; 

var 
Image, 
OutDImage, 
Outllmage : imagetype; 

DTree, 

ITree : treetype; 

Extent : extenttype; 

Offset : offsettype; 

report : text; 

RowCutoff, 
ColCutoff : integer; 
obsd, obtgd, 
obtdd, obsi, 

obtgi, obtdi : array[1..500] of integer; 

z : integer; 
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procedure 

GenerateDependentTree ( vax image : imagetype; 
vax Tree : treetype ); 

var 
twos : array[l..resolution] of range; 
i, 
treecount, 
starttime : integer; 

procedure BuildTree (level, 
quadrant, 
row, 

col : integer ); 

procedure Condense; 

vax i : integer; 

begin { Condense } 

i := treecount - 5; 
if( Tree 

Tree 
Tree 
Tree 
Tree 

i ] = '(') a nd 
i+1 
i+2 
i+3 
i+4 

= 'W') and 
= 'W' and 
= 'W' and 
= 'W') ) 

then begin 
Tree[i] := 'W'; 
treecount := treecount-4; 

end 

else 

if ( Tree 
Tree 
Tree 
Tree 
Tree 

i+1 
i+2 
i+3 
i+4 

= '(' ) and 
= 'B' ) and 
= 'B') and 
= 'B') and 
= 'B') ) 

then begin 
Tree[i] := 'B'; 
treecount := treecount-4; 

end; 

end; { Condense } 
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begin { BuildTree } 

if quadrant = 0 then begin 
Tree[treecount] := 
treecount := treecount + 1; 
end; 

if level < resolution then begin 

BuildTree ( level+1, 0, 
row , col ); 

BuildTree ( level+1,1, 
row , col+twos[level+l] ); 

BuildTree ( level+1, 2, 
row+twos [level+1 j, col ); 

BuildTree ( level+1, 3, 
row+twos[level+lj, col+twos[level+l] ); 

end; {if} 

if level = resolution then begin 

if image[row,col] then begin 
Treeftreecount] := 'B'; 
treecount := treecount+1; 
end 

else begin 
Tree[treecount] := 'W'; 
treecount := treecount+1; 
end; 

end; {if} 

if quadrant = 3 then Condense; 

end; { BuildTree } 

begin { GenerateDependentTree } 

treecount := 0; 

twos [resolution] := 1; 
for i := resolution-1 downto 1 do 

twos[i] := twos[i+l] * 2; 

starttime := clock; 

BuildTree ( 0, 0, 0, 0 ); 
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Tree[treecount] := chr(3); {ETX} 

obtgdfzj := clock - starttime; 
obsd [z] := 2*(treecount - 1); 

end; { GenerateDependentTree } 
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procedure 

DisplayDependentTree ( vax Tree : treetype; 
vax outimage : imagetype); 

var 
twos : array [ 0..resolution ] of integer; 
i> 
treecount, 
starttime : integer; 

procedure DrawBlock ( row, 
col, 
size : integer ); 

vax 
i, j : integer; 

begin { DrawBlock } 

for i := row to row+size-1 do 
for j := col to col+size-1 do 

outimage [ i j ] := true; 

end; { DrawBlock } 

procedure DrawTree ( level, 
row, 
col : integer ); 

begin { DrawTree } 

if Tree [treecount] in ['B','WV('] then 

case Tree [treecount] of 

'B ' : begin 
DrawBlock ( row, col, twos [level] ); 
treecount := treecount+ 1; 
end; 

' W ' : treecount := treecount + 1; 

: begin 
treecount := treecount + 1; 
DrawTree ( level+1, row, 
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col ); 
DrawTree ( level+1, row, 

col+twos[level+l]); 
DrawTree ( level+1, 

row+twos[level+1], 
col ); 

DrawTree ( level+1, 
row+twos[level+l], 
col+twos [level+1] ); 

end; 

end; {case} 

end; { DrawTree } 

begin { DisplayDependentTree } 

twos [resolution] := 1; 
for i := resolution-1 downto 0 do 

twosfi] := twos[i+l]*2; 

starttime := clock; 

treecount := 1; 

DrawTree ( 0, 0, 0 ); 

obtdd[z] := clock - starttime; 

end; { DisplayDependentTree } 
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procedure 

GeneratelndependentTree ( vax Image : imagetype; 
vax Tree : treetype; 
vax Extent : extent type; 
var Offset: offsettype ); 

var 
treecount, 
offsetcount, 
staxttime : integer; 

procedure RemoveRP ( var Tree : treetype ); 

vax 
T : treetype; 

i j : integer; 

begin { RemoveRP } 

j : = i; 

for i := 1 to treecount do 

if Tree[i] < > ')' then begin 
T[j] := Tree[i]; 
j j + l; 
end; 

Tree := T; 
treecount := j-1; 

end; { RemoveRP } 

procedure Bound ( vax Extent : extenttype ); 

label 100, 200, 300, 400; 

vax 
i.j» 
Upper, Lower, Left, Right : range; 
Flag : boolean; 

begin { Bound } 

Flag := false; 
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Lower := 0; 
Upper := max; 
Left := 0; 
Right := max; 

for i := 0 to max do 
for j := 0 to max do 

if Image [ij] then begin 
Lower := i; 
Flag := true; 
goto 100; 

end; 

100 : if Flag then begin 

for i := max downto 0 do 
for j := 0 to max do 

if Image[ij] then begin 
Upper := i+1; 
goto 200; 

end; 

200 : for j := 0 to max do 
for i := Lower to Upper do 

if Image[ij] then begin 
Left := j; 
goto 300; 
end; 

300 : for j := max downto 0 do 
for i := Lower to Upper do 

if Image[ij] then begin 
Right := j+1; 
goto 400; 
end; 

end; 
400 : Extent.Row := Lower; 

Extent.Col := Left; 
Extent.RowSize := Upper - Lower; 
Extent.ColSize := Right - Left; 
Extent. DX := 1.0; 
Extent.DY := 0.0; 

end; { Bound } 
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procedure BuildTree ( Level, 
Quadrant, 
Row, 
Col, 
RowSize, 
ColSize : integer; 
Adapt : boolean ); 

type 
SizeType = axray [ 0..3, 0..1 ] of range; 
AreaType = array f 0..3 1 of integer; 
ValueType = array [ 0..3 ] of boolean; 
QuadrantType = 0..3; 

vax 

Size : SizeType; 
Area : AreaType; 
Largest : QuadrantType; 
BlackOrWhite : ValueType; 
i,t : integer; 
Indicator : char; 
Rowlnc, 
Collnc : integer; 

procedure HomogeneousBlock ( Row, 
Col, 
RowChange, 
ColChange : integer; 

var Area : integer; 
vax AreaRow, 

AreaCol : range ); 

vax 
New Area, 
CurrentRow, 
CurrentCol, 
RowLimit, 
ColLimit : integer; 

Value : boolean; 

begin { HomogeneousBlock } 

Area := 0; 
RowLimit := Row + (RowChange * RowSize); 
ColLimit := Col + (ColChange * ColSize); 
Value := Image [Row,Col]; 
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CurrentRow := Row; 
while (CurrentRow < > RowLimit) do begin 

CurrentCol := Col; 
while (CurrentCol < > ColLimit) and 

(Value = Image[CurrentRow, CurrentCol]) 
do 

CurrentCol := CurrentCol + ColChange; 

if CurrentCol < > ColLimit then 
ColLimit := CurrentCol; 

New Area := (abs(CurrentRow-Row)+l) 
* (abs(ColLimit-Col)); 

if New Area > Area then 
begin 
Area := New Area; 
AreaRow := abs( Current Row-Row)+1; 
AreaCol := abs(ColLimit-Col); 

end; 

CurrentRow := CurrentRow + RowChange; 

end; { while } 

end; { HomogeneousBlock } 

procedure Condense; 

var 

State, i : integer; 

begin { Condense } 

i := treecount - 2; 

State := 0; 
repeat 

case State of 

0 : begin 
if Tree 
if Tree 
end; 

= 'W' then State := 1; 
= 'B' then State := 2; 

1 : if Tree[i] = '(' then begin 
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Tree[i] := 'W]; 
treecount := i + 1; 
if Adapt then 

offsetcount := offsetcount - 1; 
State := 7; 
end 

else 
if Tree[i] = 'W' then State := 3 

else State := 7; 

2 : if Treefil = '(' then begin 
Tree[i] := 'B'; 
treecount := i + 1; 
if Adapt then 

offsetcount := offsetcount - 1; 
State := 7; 
end 

else 
if Tree[i] = 'B' then State := 4 

else State := 7; 

3 : if Tree[i] = '(' then begin 
Tree[i] := 'W'; 
treecount := i + 1; 
State := 7; 
end 

else 
if Tree[i] = 'W' then State := 5 

else State := 7; 

4 : if Treefil = '(' then begin 
Tree[i] := 'B'; 
treecount := i + 1; 
State := 7; 
end 

else 
if Tree[i] = 'B' then State := 6 

else State := 7; 

5 : if Tree[i] = 'W' then begin 
Tree[i-1] := 'W'; 
treecount := i; 
State := 7; 
end 

else 
State := 7; 

6 : if Tree[i] = 'B' then begin 
Tree[i-1] := 'B'; 
treecount := i; 
State := 7; 
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end 
else 

State := 7; 

7 : null; 

end; {case} 

i := i - 1; 

until State = 7; 

end; { Condense } 

begin { BuildTree } 

if (RowSize < > 0) and (ColSize < > 0) then 

if (RowSize < = RowCutoff) and 
(ColSize < = ColCutoff) then begin 

Adapt := false; 

if (RowSize = 1) and (ColSize = 1) then 

if Image[Row,Col] then begin 
Treejtreecount] := 'B'; 
treecount := treecount + 1; 
end 

else begin 
Tree[treecount] := 'W'; 
treecount := treecount + 1; 

end 

else begin 

Tree[treecount] := '('; 
treecount := treecount + 1; 

if odd(RowSize) then Rowlnc := 1 
else Rowlnc := 0; 

if odd(ColSize) then Collnc := 1 
else Collnc := 0; 

BuildTree ( Level-fl, 0, 
Row, 
Col, 
RowSize div 2 + Rowlnc, 
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ColSize div 2 + Collnc, 
Adapt ); 

BuildTree ( Level+1,1, 
Row, 
Col + ColSize div 2 + Collnc, 
RowSize div 2 + Rowlnc, 
ColSize div 2, 
Adapt ); 

BuildTree ( Level+1, 2, 
Row + RowSize div 2 + Rowlnc, 
Col, 
RowSize div 2, 
ColSize div 2 + Collnc, 
Adapt ); 

BuildTree ( Level+1, 3, 
Row + RowSize div 2 + Rowlnc, 
Col + ColSize div 2 + Collnc, 
RowSize div 2, 
ColSize div 2, 
Adapt ); 

end; 

end 

else begin 

Tree[treecount] := 
treecount := treecount + 1; 

BlackOrWhitefO] := 
Image[ Row, Col ]; 

BlackOrWhite[l] := 
Image[ Row, Col+ColSize-1 ]; 

BlackOrWhite[2] := 
Image[ Row+RowSize-1, Col ]; 

BlackOrWhite[3] := 
Image[ Row+RowSize-1, Col+ColSize-1 ]; 

HomogeneousBlock ( Row, Col, 
1, 1, Area[0j, Size[0,0], Size[0,l] ); 

HomogeneousBlock ( Row, Col+ColSize-1, 
1, -1, Area[l], Size[l,0], Size[l,l] ); 

HomogeneousBlock ( Row+RowSize-1, Col, 
-1, 1, Area[2j, Size[2,0], Size[2,l] ); 
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HomogeneousBlock ( Row+RowSize-1, Col+ColSize-1, 
-1, -1, Area[3j, Size[3,0], Size[3,l] ); 

Largest := 0; 
for i := 1 to 3 do 

if Area[Laxgest] < Area[i] then Largest := i; 

if BlackOrWhite[Largest] then Indicator := 'B' 
else Indicator := 'W'; 

case Largest of 

0 : begin Offset[offsetcount ,0] := Size[0,0]; 
Offset[oifsetcount,l] := Size[0,l]; 

end; 
1 : begin Offset[offsetcount,0] := Size[l,0]; 

Offset[oifsetcount,l] := 
ColSize - Size[l,l]; 

end; 
2 : begin Offset [offsetcount,0] := 

RowSize - Size[2,0]; 
Offset[offsetcount,l] := Size[2,l]; 

end; 
3 : begin Offset [offsetcount,0] := 

RowSize - Size(3,0]; 
Offset [offsetcount,!.] := 

ColSize - Size[3,l]; 
end; 

end; {case} 

offsetcount := offsetcount + 1; 

t := offsetcount - 1; 

if Largest = 0 then begin 
Tree[treecount] := Indicator; 
treecount := treecount + 1; 
end 

else 
BuildTree ( Level+1, 0, 

Row, 
Col, 
Offset [t,0], 
Offset t , l , 
Adapt ); 

if Largest = 1 then begin 
Tree[treecount] := Indicator; 
treecount := treecount + 1; 
end 
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else 
BuildTree ( Level+1,1, 

Row, 
Col + Offset[t,l], 
Offset [t,0], 
ColSize - 0ffset[t,l], 
Adapt ); 

if Largest = 2 then begin 
Tree[treecount] := Indicator; 
treecount := treecount + 1; 
end 

else 
BuildTree ( Level+1, 2, 

Row + Offset [t ,0], 
Col, 
RowSize - Offset [t ,0], 
Offset[t,l], 
Adapt ); 

if Largest = 3 then begin 
Tree [treecount] := Indicator; 
treecount := treecount + 1; 
end 

else 
BuildTree ( Level+1, 3, 

Row + Offset [t ,0], 
Col + Offset[t,l], 
RowSize - Offset[t,0], 
ColSize - Offset[t,l], 
Adapt ); 

end; {if size not 0} 

if Quadrant=3 then begin 
Tree[treecount] := ')'; 
treecount := treecount + 1; 
Condense; 
end; 

end; { BuildTree } 

begin { GeneratelndependentTree } 

treecount := 1; 
offsetcount := 1; 

starttime := clock; 
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Bound ( Extent ); 

BuildTree ( 0, 0, Extent.Row, 
Extent.Col, 
Extent.RowSize, 
Extent.ColSize, 
true ); 

Tree[treecount] := chr(3); {ETX} 
Offset[offsetcount,0] := -1; 

RemoveRP ( Tree ); 

obtgifzj := clock - starttime; 
obsi [z] := (2*(treecount - 1)) 

+ (16*(offsetcount-l]J + 128; 

end; { GeneratelndependentTree } 
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procedure 

DisplayIndependentTree ( var Tree : treetype; 
vax Extent : extenttype; 
vax Offset : offsettype; 
vax Outlmage : imagetype ); 

vax 

XLeft, XRight, YBottom, YTop : integer; 

staxttime : integer; 

treecount, 
offsetcount : integer; 

procedure DrawBlock ( Row, Col, 
RowSize, ColSize : integer; 
DX, DY : real); 

type 
numtype = array [ 0..3 ] of integer; 

var 
X, Y : numtype; 

i, j, 
Lower, Upper, 
Left, Right, 
Temp, ScanLine : integer; 

PerDX, PerDY : real; 

procedure DetermineBounds ( Y : numtype; 
vax Lower, 

Upper : integer ); 

begin { DetermineBounds } 

if Y[0] < YBottom then Lower := YBottom 
else Lower := Y[0]; 

if Y[3] > YTop then Upper := YTop 
else Upper := Y[3]; 

end; { DetermineBounds } 

procedure Validate ( vax Left, Right : integer ); 
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var 
Temp : integer; 

begin { Validate } 

if Left > Right then begin 
Temp := Left; 
Left := Right; 
Right := Temp; 
end; 

if Left < XLeft then Left := XLeft; 
if Left > XRight then Left := XRight+1; 

if Right < XLeft then Left := XLeft-1; 
if Right > XRight then Right := XRight; 

end; { Validate } 

procedure WhichTwoLines ( X, Y : numtype; 
ScanLine : integer; 

var Left, 
Right : integer ); 

var 
Ml , M2 : real; 

begin { WhichTwoLines } 

Ml := (Y 
M2 := Y 

0]-Y[ll)/(X[0]-X 
;o]-Y[2|)/(x[o]-x 

then if ((ScanLine>=Y[0]) and (ScanLine<=Y[2]) 
Left := round ( ((ScanLine-Y[0])/M2)+X 0] ) 

else 
Left := round ( ((ScanLine-Y[2])/Ml)+X[2] ); 

if ((ScanLine>=Y[0]) and (ScanLine<=Y[l])) then 
Right := round ( ((ScanLine-Y[0])/Ml)+X[0] ) 

else 

Right := round ( ((ScanLine-Y[3])/M2)+X[3] ); 

end; { WhichTwoLines } 

procedure Fill Square; 

var 
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i j , 
ColLeft, ColRight, 
RowLower, RowUpper : integer; 

begin { FillSquare } 

if X[0] > X[l] then begin 
ColLeft := X[ll; 
ColRight := X[0]; 
end 

else begin 
ColLeft := X[0]; 
ColRight := X[l]; 
end; 

if ColLeft < XLeft then ColLeft := XLeft; 
if ColRight > XRight then ColRight := XRight+1; 

if Y[0] < YBottom then RowLower := YBottom 
else RowLower := Y[0]; 

if Y[2] > YTop then RowUpper := YTop+1 
else RowUpper := Y[2]; 

for i := RowLower to RowUpper-1 do 
for j := ColLeft to ColRight-1 do 

OutImage[i j] := true; 

end; { FillSquare } 

function SignedUnit (Indicator : real) : real; 

begin { SignedUnit } 

if (Indicator < 0.0) and 
(Indicator > -1.0) then SignedUnit := -1 

else 
if (Indicator > 0.0) and 

(Indicator < 1.0) then SignedUnit := 1 

else 
{ Indicator = 0.0 or -1.0 or 1.0 } 

SignedUnit := 0; 

end; { SignedUnit } 

begin { DrawBlock } 
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X 
Y 

:= Col; 
:= Row; 

X[l] := X[0] 
+ roundfColSize * DX + SignedUnit(DX) ); 

Y[l] := Y[0] 
+ round(ColSize * DY + SignedUnit(DY) ); 

PerDX := -DY; 
PerDY := DX; 

X[2] := X[0] + 
round(RowSize * PerDX + SignedUnit(PerDX) ); 
Y[2] := Y[0] + 

round(RowSize * PerDY + SignedUnit (PerDY) ); 

X[3] := X[2] + 
round(ColSize * DX + SignedUnit (DX) ); 
Y[3] := Y[2] + 
round(ColSize * DY + SignedUnit (DY) ); 
for i := 0 to 2 do 
for j := i+1 to 3 do 

if Y[j] < Y[i] then begin 

Temp := X[j]; 
X[j] := X[i]; 
X[i| := Temp; 
Temp := Y[j]; 

:= Y|i]l 
:= Temp; 

Y[j 
Y i 
end 

if ((X[0]=X[2l) and (X[ll=X[3l)) or 
((Xp]=X[3]) and (X[1]=X[2J)) then 
FillSquare 

else begin 

DetermineBounds ( Y, Lower, Upper ); 

for ScanLine := Lower to Upper do begin 

WhichTwoLines ( X, Y, ScanLine, 

Left, Right ); 

Validate ( Left, Right ); 

for i := Left to Right-1 do 
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OutImage[ScanLine,i] := true; 

end; {for} 

end; {else} 

end; { DrawBlock } 

procedure DrawTree ( Row, Col, 
RowSize, ColSize : integer; 
DX, DY : real); 

var 
RowOffset, ColOffset: integer; 
RO, Rl, R2, R3, 
CO, CI, C2, C3 : integer; 
PerDX, PerDY : real; 
Rowlnc, Collnc : integer; 

begin { DrawTree } 

if ((RowSizeOO) and (ColSizeOO)) then 

if (RowSize < = RowCutoff) and 
(ColSize < = ColCutoff) then begin 

if Tree[treecount] in ['B','WV('] then 

case Tree[treecount] of 
'B' : begin 

DrawBlock ( Row, Col, 
RowSize, ColSize, DX, DY ); 

treecount := treecount + 1; 
end; 

'W' : treecount := treecount + 1; 

'(' : begin 
treecount := treecount + 1; 

if odd(RowSize) then Rowlnc := 1 
else Rowlnc := 0; 

if odd(ColSize) then Collnc := 1 
else Collnc := 0; 

DrawTree ( Row, 
Col, 
RowSize div 2 + Rowlnc, 
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ColSize div 2 + Collnc, 
DX, DY); 

DrawTree ( Row, 
Col + ColSize div 2 
+ Collnc, 
RowSize div 2 + Rowlnc, 
ColSize div 2, 
DX, DY); 

DrawTree ( Row + RowSize div 2 
+ Rowlnc, 
Col, 
RowSize div 2, 
ColSize div 2 + Collnc, 
DX, DY); 

DrawTree ( Row + RowSize div 2 
+ Rowlnc, 
Col + ColSize div 2 
+ Collnc, 
RowSize div 2, 
ColSize div 2, 
DX, DY ); 

end; 
end; {case} 

end 

else begin 

if Tree[treecount] in ['B', 'W', '(' ] then 

case Tree[treecount] of 

'B' : begin 
DrawBlock ( Row, Col, RowSize, 

ColSize, DX, DY); 
treecount := treecount + 1; 
end; 

'W' : treecount := treecount + 1; 

'(' : begin 
treecount := treecount + 1; 
offsetcount := offsetcount + 1; 
RowOffset := Offset [offsetcount ,0]; 
ColOffset := Offset [offsetcount, 1]; 

CO := Col; 
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RO := Row; 

CI := CO + round(ColOffset * DX ); 
R1 := RO + round(ColOffset * DY ); 

PerDX := -DY; 
PerDY := DX; 

C2 := CO + round (RowOffset * PerDX ); 
R2 := RO + round(RowOffset * PerDY ); 

C3 := C2 + round (ColOffset * DX ); 
R3 := R2 round(ColOffset * DY ); 

DrawTree ( RO, CO, 
RowOffset, ColOffset, 
DX, DY); 

DrawTree ( Rl , CI, 
RowOffset, ColSize-ColOffset, 
DX, DY ); 

DrawTree ( R2, C2, 
RowSize-RowOffset, ColOffset, 
DX, DY); 

DrawTree ( R3, C3, 
RowSize-RowOffset, 
ColS ize-ColOffset, 
DX, DY); 

end; 

end; {case} 

end; {size check} 

if Tree[treecount] = ')' then 
treecount := treecount + 1; 

end; { DrawTree } 

begin { DisplaylndependentTree } 

XLeft := 0; XRight := max; 
YBottom := 0; YTop := max; 

staxttime := clock; 
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treecount := 1; 
offsetcount := 0; 

DrawTree ( Extent.Row, Extent.Col, 
Extent.RowSize, Extent.ColSize, 
Extent.DX, Extent.DY 

); 

obtdi[z] := clock - staxttime; 

end; { DisplayIndependentTree } 



BIBLIOGRAPHY 

Books 

Foley, J. D. and A. Van Dam, Fundamentals of Interactive Computer Graphics, 
Addison-Wesley, Reading, MA., 1982. 

Hoel, Paul G., Introduction to Mathematical Statistics (Fourth Edition), John Wiley 
& Sons, Inc., New York, 1971. 

Horowitz, Ellis and Salmi, Sartaj, Fundamentals of Computer Algorithms, 
Computer Science Press, Rockville, MD., 1978 

Pavlidis, Theo, Algorithms for Graphics and Image Processing, Computer Science 
Press, Rockville, MD, 1982. 

Articles 

Dyer, Charles R., Rosenfeld, Azriel, and Samet, Hanan, "Region Representation: 
Boundary Codes from Quadtrees," Communications of the ACM, vol. 23, pp. 171-
179, March 1980. 

Gargantini, Irene, "An Effective Way to Represent Quadtrees," Communications of 
the ACM, vol. 25, pp. 905-910, December 1982. 

Hunter, G. M. and Steiglitz, K., "Linear Transformations of Pictures Represented 
by Quad Trees," Computer Graphics and Image Processing, vol. 10, pp. 289-296, 
1979. 

Hunter, Gregory M., and Steiglitz, Kenneth, "Operations on Images Using Quad 
Trees," IEEE Transactions of Pattern Analysis and Machine Intelligence, vol. 1, pp. 
145-153, April 1979. 

Jackins, C. L. and Tanimoto, S.L., "Decompostion of Euclidean Space," IEEE 
Transactions of Pattern Analysis and Machine Intelligence, vol. 5, pp. 533-539, 
Sept. 1983. 

Kawaguchi, Eiji and Endo, Tsutomu, "On a Method of Binary-Picture 
Representation and Its Application to Data Compression," IEEE Transactions of 
Pattern Analysis and Machine Intelligence, vol. 2, pp. 27-35, January 1980. 

Li, Ming, William I. Grosky, and Ramesh Jain, "Normalized Quadtrees with 
Respect to Translations," Computer Graphics and Image Processing, vol. 20, pp. 
72-81, 1982. 

65 



66 

Oliver, M. A. and N. E. Wiseman, "Operations on Quadtree Encoded Images," The 
Computer Journal, vol. 26, pp. 83-91, 1983. 

Samet, Hanan, "An Algorithm for Converting Rasters to Quadtrees," IEEE 
Transactions on Pattern Analysis and Machine Intelligence, vol. 3, pp. 93-95, 
January 1981. 

, "The Quadtree and Related Hierarchical Data Structures," ACM 
Computing Surveys, vol. 16, pp. 187-260, June 1984. 

, "Region Representation: Quadtrees from Binary Arrays," Computer 
Graphics and Image Processing, vol. 13, pp. 88-93, 1980. 

, "Region Representation: Quadtrees from Boundary Codes," 
Communications of the ACM, vol. 23, pp. 163-170, Maxch 1980. 

Tamminen, Maxkku, "Comment on Quad- and Octtrees," Communications of the 
ACM, vol. 27, pp. 248-249, Maxch 1984. 

van Lierop, Marloes L. P., "Geometrical Transformations on Pictures Represented 
by Leafcodes," Computer Vision, Graphics, and Image Processing, vol. 33, pp. 81-
98, 1986. 


