
47?
A/8/J

/Jo. £SK 7

INDEPENDENT QUADTREES

DISSERTATION

Presented to the Graduate Council of the

North Texas State University in Partial

Fulfillment of the Requirements

For the Degree of

DOCTOR OF PHILOSOPHY

By

Larry D. Atwood, B.S., M.S.

Denton, Texas

December, 1986

r c T

Atwood, Laxry D., Independent Quadtrees. Doctor of Philosophy (Computer

Science), December, 1986, 66 pp., 1 table, 18 titles.

This dissertation deals with the problem of manipulating and storing an image

using quadtrees. A quadtree is a tree in which each node has four ordered children

or is a leaf. It can be used to represent an image via hierarchical decomposition.

The image is broken into four regions. A region can be a solid color (homogeneous)

or a mixture of colors (heterogeneous). If a region is heterogeneous it is broken into

four subregions, and the process continues recursively until all subregions are

homogeneous.

The traditional quadtree suffers from dependence on the underlying grid. The

grid coordinate system is implicit, and therefore fixed. The fixed coordinate system

implies a rigid tree. A rigid tree cannot be translated, scaled, or rotated. Instead,

a new tree must be built which is the result of one of these transformations.

This dissertation introduces the independent quadtree. The independent

quadtree is free of any underlying coordinate system. The tree is no longer rigid

and can be easily translated, scaled, or rotated. Algorithms to perform these opera-

tions axe presented. The translation and rotation algorithms take constant time.

The scaling algorithm has linear time in the number nodes in the tree. The disad-

vantage of independent quadtrees is the longer generation and display time.

This dissertation also introduces an alternate method of hierarchical decompo-

sition. This new method finds the largest homogeneous block with respect to the

corners of the image. This block defines the division point for the decomposition.

If the size of the block is below some cutoff point, it is deemed to be to small to

make the overhead worthwhile and the traditional method is used instead. This

new method is compared to the traditional method on randomly generated rectan-

gles, triangles, and circles. The new method is shown to use significantly less space

for all three test sets. The generation and display times are ambiguous. More time

is taken for each node, but there axe, on average, fewer nodes. The worst case is

significantly worse.

TABLE OF CONTENTS

Page

LIST OF TABLES iv

LIST OF ILLUSTRATIONS v

Chapter

I. INTRODUCTION 1

Quadtrees
Problems with. Quadtrees
Previous Attempts at Solving Problems
Chapter Summary

II. INDEPENDENT QUADTREES 9

The Idea
A Rigorous Explanation
Chapter Summary

III. GEOMETRIC TRANSFORMATIONS OF INDEPENDENT
QUADTREES 21

Translation
Scaling
Rotation
Chapter Summary

IV. COMPARISON OF DEPENDENT QUADTREES AND
INDEPENDENT QUADTREES 30

Theoretical Comparison
Statistical Comparison
Worst Case Comparison
Chapter Summary

V. CONCLUSION 37

APPENDIX 40

BIBLIOGRAPHY . 65

m

LIST OF TABLES

Table Page

I. Dependent vs. Independent Quadtrees 32

LIST OF ILLUSTRATIONS

Figure Page

1. A Quadtree 2

2. A Quadtree Representing an Image 3

3. A Quadtree is Dependent on the

Underlying grid 4

4. Constructing an Independent Quadtree 10

5. A Treecode Representation of a Quadtree 12
6. The Homogeneous Blocks With Respect

to the Corners of the Image.

7. Pseudocode for BuildTree

8. Pseudocode for DrawTree

9. Example of Translation .

10. Example of Scaling .

11. Example of Rotation.

15

17

18

23

25

28

CHAPTER I

INTRODUCTION

This dissertation will deal with the problem of storing and manipulating an

image using quadtrees. An image is a matrix of colors. The matrix can be of any

size and the colors are black and white.

Storing an N x M image would require NM bits if stored naively. There have

been several attempts to reduce the amount of storage needed below NM.

Run Length Encoding (2, pp. 498-499) was one of the first attempts at storage

reduction. Run Length Encoding considers the matrix row by row. Each row is

broken into a series of ordered pairs. The elements of an ordered pair indicate the

color and how many times that color repeats before the color changes in that row.

Run Length Encoding can achieve large storage savings, however, the image is diffi-

cult to manipulate.

Another early attempt at storage reduction was the medial axis transform

(10). The medial axis transform finds the set of points within a region that is

equidistant from the boundary. This set of points form a skeleton (or medial axis)

of the region. The medial axis transform requires extensive calculation. It is not

widely used.

Quadtrees

A quadtree is a generalization of a binary tree. Each node of a quadtree has

four children. The children are ordered, (see Figure 1.) A quadtree is used to

represent an image. An image is either homogeneous (solid black or solid white) or

Fig. 1 A quadtree

heterogeneous (a mixture of of black and white). If the image is homogeneous then

mark (B or W) the root of the quadtree as such and stop. If the image is hetero-

geneous then maxk the root of the quadtree as such, divide the image into four

subimages, and create four children of the root, corresponding to the subimages. If

any of the subimages are homogeneous then mark that node as such and stop. If

any of the subimages are heterogeneous then mark that node as such, divide the

subimage into four subimages, and create four children of that node. Recursively

continue to break up the image and create the quadtree until all nodes axe homo-

geneous or until a desired resolution is reached, (see Figure 2.)

Extensive research has been done on the quadtree representation of an image

over the last fifteen years. Samet (11) gives an excellent overview of this work and

other hierarchical data structures. This work has concentrated on representations

of quadtrees (3,14,6), translating other representations (e.g. polygons and binary

arrays) to and from quadtrees (12,13,1,5,7), and manipulating quadtrees through

some form of transformation (9,4,8,15).

Problems with Quadtrees

There are two traditional methods of representing quadtrees; a pointer

representation and a linear representation. These methods, while superficially dif-

(note: interior of solid is 'Black']

The image

The image divided into four equal subregions

The heterogeneous subregions divided into equal four subregions

The corresponding quadtree (note that B is black and W is white)

Fig. 2 A quadtree representing an image

ferent, have several assumptions in common.

First, the image is square. The quadtree is always built on a square image.

Second, the length of the sides of the square is always a power of two. The square

can be as large or as small as desired, as long as it is a power of two. Common

values are 256, 512, and 1024.

The subregions are always of equal size. Thus we see the reason for the power

of two size. Successive divisions by two will always produce equal subregions when

the original size is a power of two.

The underlying grid is fixed. The lines of division that create the quadtree are

fixed on the grid. The quadtree is thus dependent on the grid, and is itself fixed,

(see Figure 3.)

root and first level nodes shown

all nodes of a quadtree are fixed

quadtree from 'above' the grid

Fig. 3 A quadtree is dependent on the underlying grid

Intuitively, the quadtree is a rigid structure attached to a grid. The quadtree

cannot move. Thus the three standard transformations in computer graphics,

translation, scaling, and rotation, are difficult, if not impossible to implement.

Previous Attempts at Solving Problems

It is well known that the special cases of scaling by powers of two and rota-

tions by 90 or 180 degrees is easy. The quadtree's dependence on the underlying

grid makes general translation, scaling, and rotation extremely difficult. The grid's

square size and limitation to powers of two make the use of quadtrees on any rec-

tangular image impractical. All previous attempts at solving these problems have

stayed within the conceptual framework of the dependent quadtree. Below is a

summary of the most important work in this area.

Oliver and Wiseman (9) use a linear (non-pointer) representation of a quad-

tree. They develop several algorithms capable of manipulating their representation;

including translation and rotation. Their translation algorithm is only briefly

described and they admit another type of representation is probably better. Their

rotation algorithms are limited to 90 and 180 degrees. They don't mention scaling.

Hunter and Steiglitz (4) describe a complicated algorithm for building a

transformed quadtree after a general linear operator has been applied to the origi-

nal quadtree. They show that the algorithm has time complexity 0(n+sp+mq)

where n is the number of nodes in the original tree, s is a scale factor, p is the per-

imeter of the original image, m is the number of regions, and q is a resolution

parameter. This algorithm requires a special quadtree representation in which the

leaves are directly joined to their neighbor. This representation is called a netted

quadtree.

Li, Grosky, and Jain (8) recognize the rigid nature of the quadtree. They

describe a method to build a normalized quadtree. Normalized here means a

minimum representation, in terms of space. They find the minimum tree by mov-

ing the image on the grid. Their algorithm takes 0(s~2*log(s)) where s is the

6

length of the grid.

van Lierop (15) describes an algorithm for applying general geometric transfor-

mations to a lineax representation of a quadtree. He does this by applying the

transformation to the leaves of the quadtree and generating the leaves of the

transformed quadtree. The algorithm takes 0(M*(n+log(N))) time, where M is the

number of nodes in the output tree, N is the number of leaves input, and n is the

resolution of the grid.

Chapter Summary

The quadtree is introduced. It suffers from dependence on the underlying

grid. Previous attempts at manipulating the quadtree do not fully recognize this

dependence, and axe thus complex and time consuming.

CHAPTER BIBLIOGRAPHY

1. Dyer, Chaxles R., Rosenfeld, Azriel, and Samet, Han an, "Region Representa-
tion: Boundary Codes from Quadtrees," Communications of the ACM, vol. 23,
pp. 171-179, March 1980.

2. Foley, J. D. and A. Van Dam, Fundamentals of Interactive Computer Graph-
ics, Addison-Wesley, Reading, MA., 1982.

3. Gargantini, Irene, "An Effective Way to Represent Quadtrees," Communica-
tions of the ACM, vol. 25, pp. 905-910, December 1982.

4. Hunter, G. M. and Steiglitz, K., "Linear Transformations of Pictures
Represented by Quad Trees," Computer Graphics and Image Processing, vol.
10, pp. 289-296, 1979.

5. Hunter, Gregory M., and Steiglitz, Kenneth, "Operations on Images Using
Quad Trees," IEEE Transactions of Pattern Analysis and Machine Intelli-
gence, vol. 1, pp. 145-153, April 1979.

6. Jackins, C. L. and Tanimoto, S.L., "Decompostion of Euclidean Space," IEEE
Transactions of Pattern Analysis and Machine Intelligence, vol. 5, pp. 533-539,
Sept. 1983.

7. Kawaguchi, Eiji and Endo, Tsutomu, "On a Method of Binary-Picture
Representation and Its Application to Data Compression," IEEE Transactions
of Pattern Analysis and Machine Intelligence, vol. 2, pp. 27-35, January 1980.

8. Li, Ming, William I. Grosky, and Ramesh Jain, "Normalized Quadtrees with
Respect to Translations," Computer Graphics and Image Processing, vol. 20,
pp. 72-81, 1982.

9. Oliver, M. A. and N. E. Wiseman, "Operations on Quadtree Encoded Images,"
The Computer Journal, vol. 26, pp. 83-91, 1983.

10. Pavlidis, Theo, Algorithms for Graphics and Image Processing, Computer Sci-
ence Press, Rockville, MD, 1982.

11. Samet, Hanan, "The Quadtree and Related Hierarchical Data Structures,"
ACM Computing Surveys, vol. 16, pp. 187-260, June 1984.

12. Samet, Hanan, "An Algorithm for Converting Rasters to Quadtrees," IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 3, pp. 93-95,
January 1981.

13. Samet, Hanan, "Region Representation: Quadtrees from Boundary Codes,"
Communications of the ACM, vol. 23, pp. 163-170, March 1980.

14. Tamminen, Markku, "Comment on Quad- and Octtrees," Communications of
the ACM, vol. 27, pp. 248-249, March 1984.

15. van Lierop, Marloes L. P., "Geometrical Transformations on Pictures
Represented by Leafcodes," Computer Vision, Graphics, and Image Process-
ing, vol. 33, pp. 81-98, 1986.

CHAPTER II

INDEPENDENT QUADTREES

This dissertation proposes a new type of quadtree, the independent quadtree.

An independent quadtree is a quadtree whose position and orientation is indepen-

dent of the implicit coordinate system of the represented image. The independent

quadtree is free of any underlying grid and can represent ail image of any size, not

just a square power of two. Later we shall see that the independent quadtree

makes geometric transformations (translation, scaling, and rotation) quite easy.

The Idea

In order to make a quadtree independent, it has to be "freed" from depen-

dence on the underlying grid. The dependence manifests itself in the implicit coor-

dinate system of the grid. Traditionally, this coordinate system has been used in

the quadtree. The implicit coordinate system has the advantage of not having to

explicitly store any coordinates, and the disadvantage of "binding" the quadtree to

the grid. This dissertation proposes that the coordinate system used by the quad-

tree be made explicit. The independent quadtree has coordinate information as

paxt of it's data structure. The coordinate information will consist of the location

and size of the image. Supplying location and size information removes the

"square" and "powers of two" limitations.

The independent quadtree is constructed in a manner quite similar to the

dependent quadtree (2). (see Figure 4.)

10

The Image b

The Extent about the Image

The Extent divided into not necessarily equal subregions

(some subregions have an area of zero)

The corresponding Quadtree (nodes representing a size zero area not shown)

Fig. 4 Constructing an independent quadtree

First, the location and size of the image is found. This is done by constructing a

bounding box axound the image. Note that this is already implicitly present for the

dependent quadtree. Next, the homogeneity test is applied. If the image (within

the bounding box) is homogeneous then the algorithm terminates. If the image is

heterogeneous the image is decomposed into four regions and continues the process

recursively. For the dependent quadtree these regions would always be equal.

However, for the independent quadtree the regions will be chosen according to a

11

different criteria.

Decomposing a region into four subregions is a difficult problem in both the

dependent and independent cases. Equal size regions is the easiest to do, but this

dissertation will propose something different. The largest homogeneous block with

respect to the four corners will be found. This block will form the basis for the

decomposition. The information about each decomposition will have to stored •

since it is no longer implicit.

Converting the tree back into a binary grid is done in a manner quite similar

to the dependent case. A Depth First Search (1; pp. 268-269) is done until a

homogeneous block is found. At each node in the tree the appropriate offsets axe

added to the location. For dependent quadtrees it is always known exactly what

those offsets would be; for independent quadtrees the information will have been

stored when the tree was constructed.

If the image lacks coherence, (e.g. a matrix of randomly distributed points)

then storing these offsets can take an excessive amount of storage. The storage of

specific offsets can be suspended when the size of a region falls below a certain cut-

off point. The tree below that cutoff point returns to an equal division, which is

implicit, and does not have to store offsets. This cutoff point can be selected from

within the program by setting the variables RowCutoff and ColCutoff.

A Rigorous Explanation

A lineax representation known as a treecode will be used for demonstration

purposes. This is for convenience only, all results will also apply to pointer

representations. A treecode uses three symbols to form a sequence that will

represent the tree. The three symbols axe; 'B' to indicate a Black node, 'W' to

12

indicate a White node, and '(' to indicate that the node is heterogeneous and will

be decomposed, (see Figure 5.)

would become: ((WWBBW(WBWBB

Fig. 5 A Treecode representation of a quadtree

An independent quadtree is a quadtree whose position and orientation is

independent of the implicit coordinate system of the represented image.

Assume that the image is represented by a binary array of arbitrary size.

Later we will make comparison to the dependent tree, so the image used here will

be 256 x 256. This square power of two is used ONLY because the dependent tree

requires it. It will become clear that the independent tree can be built out of arbi-

trary size arrays.

The following data structures will describe the independent quadtree.

treetype = packed array [CLtreemax] of char;

offsettype = packed array [l..nodemax, 0..1] of range;

extenttype = record
Row, RowSize,
Col, ColSize : integer;
DX, DY : real;

end;

13

The type treetype is of chax for purposes of clarity only. The only values that this

array can take on are 'B', 'W', and In a real application 2 bits would be suffi-

cient. Since Pascal axrays are static the constant treemax is some large number.

The type offsettype will contain an (X,Y) value for each node in the tree. The con-

stant nodemax is some large number. The subrange range is 0..255, therefore 16

bits per node will be used beyond what the dependent tree uses. The type extent-

type defines the location (Row, Col), the size (RowSize, ColSize), and the orienta-

tion (DX, DY) of the quadtree initially. It is extenttype that achieves the indepen-

dence from the underlying image grid. Offsets will be computed with respect to

the Extent as defined in extenttype. Note that the orientation will always be per-

pendicular to the sides of the image initially.

There axe two operations of interest. The first is constructing the quadtree

from a binary array. The second is displaying the image represented in the quad-

tree, i.e. reconstructing the binary array. The first operation is implemented in a

Pascal procedure called GeneratelndependentTree. The second operation is imple-

mented in a Pascal procedure called Display Independent Tree. These procedures

will be explained in detail here. Complete listings of both procedures can be found

in the Appendix.

GeneratelndependentTree begins by determining the extent of the image.

This is done by a call to the procedure Bound. Bound determines the upper,

lower, left, and right bounds of the image in it's grid. Bound first determines the

lower and upper bounds. Then it uses these new bounds to determine the left and

right bounds. These bounds are then used to determine the location and size of

the image. Location will be assumed to be the upper left corner, and size will be a

pair of numbers; row size and column size. GeneratelndependentTree then calls

14

BuildTree, which is the heart of GeneratelndependentTree.

BuildTree is the recursive part of GeneratelndependentTree. BuildTree is

invoked four times at each heterogeneous region, i.e. once for each subregion.

BuildTree begins by checking the size of the region that it is checking for homo-

geneity. It is possible that the region is nonexistent (size zero). If the region is

nonexistent then no recursion occurs and BuildTree is done.

BuildTree then checks if the region size is below the cutoff point. If it is, then

the subdivision will be based on equal size subregions. However, the region size at

this point is not necessarily a power of two, so the size of a region will not always

be divisible by two. There will be a remainder of one at times. BuildTree arbi-

trarily chooses to add the one, if it exists, to the upper left subregion. The recur-

sive decomposition continues on this basis.

If the region size is greater than the cutoff point the subdivision will be done

on the basis of the largest homogeneous block with respect to a corner, (see Figure

6.) The size of that block is used to compute the subdivision for this region. The

subdivision is stored as offsets. The color of the homogeneous block with respect to

each corner is stored in an array called BlackOrWhite. BuildTree finds the homo-

geneous blocks by calling the procedure HomogeneousBlock four times, once for

each corner of the region.

HomogeneousBlock has seven parameters. The first two indicate which corner

of the region is to be operated on. The third and fourth parameters indicate which

direction from the corner is to be considered. The fifth parameter is the size of the

block for that corner as found by the procedure. The last two parameters are the

length of the sides of the block. HomogeneousBlock tries to construct, a row at a

time, a block which is the same color as the corner value. The axea represented by

15

the addition of a new row is compared to the previous largest value. If the new

area is laxger, it becomes the axea value. This is done for all rows in the region, so

we are guaranteed that the area returned will be the laxgest possible, with respect

to that corner.

The Extent

Fig. 6 The homogeneous blocks with respect to the corners of the image

After obtaining the size of the four homogeneous blocks BuildTree finds the

largest one, which will be the laxgest in that region with respect to any corner.

BuildTree also finds the color of the block.

BuildTree will then set the offsets for this node to the row size and column

size for the laxgest block.

Next, BuildTree invokes itself three times, once for each of the smaller blocks.

The largest block is homogeneous, by definition, and does not require further pro-

cessing.

16

After the last quadrant has been processed for this region BuildTree adds the

temporary element ')' to the tree. This is used by the later condensation procedure

and is NOT a permanent part of the tree. After the last quadrant has been pro-

cessed it may be possible to condense the block to a smaller block. BuildTree

invokes the procedure Condense to perform the condense operation. Condensation

is possible in the following cases:

(B) or (W) will condense to B or W respectively

(BB) or (WW) will condense to B or W respectively

(BBBB) or (WWWW) will condense to B or W respectively

Condense is implemented as a Finite State Automata.

After BuildTree returns from it's recursive decomposition of the image, control

returns to GeneratelndependentTree. GeneratelndependentTree removes the ')'

from the tree, collects some statistics and ends. Figure 7 gives the pseudo code for

the BuildTree.

DisplaylndependentTree begins by setting maximum bounds for the image.

These will later be used for any necessary clipping. DisplaylndependentTree then

invokes DrawTree, the heart of the algorithm.

DrawTree first checks the size of the region it is to display. If the region is

nonexistent (size zero) then no recursion occurs and DrawTree is done. DrawTree

then checks to see if the region is less than the cutoff point.

If the region size is less or equal to the cutoff then the display of the tree will

proceed in the traditional manner. The region will either be colored if it is homo-

geneous, or it will be divided into equal parts along both axes. Since the region is

not necessarily a square power of two in size, the division by two will not always be

17

begin Build Tree

if region_size = 0 then stop

if regionalize < cutoff then

output (>(>)

divide region into equal size subregions

if pixel then output (colorjofjpixel)

else
BuildTree (upperJeftjcorner)
BuildTree (upperjrightjcorner)
BuildTree (lowerJeft^corner)
Buildtree (lowerjrightjcorner)

else

output (>(>)

find largest homogeneous blocks w.r.t. the four corners

if largest is upperJeft then output (upper Jeftjcolor)

else
BuildTree (upperJeftJblock)

if largest is upperjright then output (upper Jieftjcolor)
else

BuildTree (upperjrightjblock)
if largest is lower Jeft then output (lowerJeftjcolor)
else

BuildTree (lowerjieftjblock)
if largest is lower jright then output (lowerjrightjcolor)
else

Buildtree (lower jrightjblock)
CondenseTree

end BuildTree
Fig. 7 Pseudocode for BuildTree

exact. There may be a remainder of one. The remainder of one will be added to

the upper left region to correspond to what was done in the construction of the

tree.

If the region size is greater than the cutoff then the region will either be

colored if it is homogeneous, or the location and size of the four subregions must be

computed on the basis of the offsets for the current node. Once the location and

size are determined DrawTree can invoke itself recursively. Figure 8 gives the

18

pseudo code for DrawTree.

begin DrawTree
if regionalize = 0 then stop

if region_size < cutoff then

else

if next (Tree) in [}B', 'W'] then DrawBlock
else

DrawTree (upperjleft)
DrawTree (upperjright)
DrawTree (lowerJeft)
DrawTree (lowerjright)

if next (Tree) in ['B', 'W'] then DrawBlock
else

compute size and location of the four subregions

end DrawTree

DrawTree (upperJeft)
DrawTree (upperjright)
DrawTree (lower J e f t)
DrawTree (lowerjright)

Fig. 7 Pseudocode for DrawTree

The procedure that actually draws a homogeneous block into the binary array

is called DrawBlock. DrawBlock computes the four corners of the homogeneous

block. If the four corners represent a region whose sides are parallel to the implicit

axes of the grid, then a simple row by row fill is performed. If the four corners form

a rectangle that is not parallel to the implicit axes then a simplified version of the

standard polygon fill algorithm is performed. It is a simplified fill algorithm

because it is known that there will always be exactly four vertices. The simplified

polygon fill algorithm determines the upper and lower bounds of the polygon.

Then for each row in the range between upper and lower a left and right bound is

found. The binary array is filled between left and right inclusive. Clipping will be

performed when necessary.

19

Chapter Summary

The independent quadtree is introduced. It is independent of the underlying

grid. This independence is achieved by making the coordinate system of the quad-

tree explicit. Algorithms for constructing and displaying the independent quadtree

are presented.

Within the construction algorithm a new method of decomposition is

presented. This method divides the image by finding the largest homogeneous

block with respect to a corner and using that block to indicate the division points

of the image.

20

CHAPTER BIBLIOGRAPHY

1. Horowitz, Ellis and Sahni, Saxtaj, Fundamentals of Computer Algorithms,
Computer Science Press, Rockville, MD., 1978

2. Samet, Hanan, "The Quadtree and Related Hierarchical Data Structures,'
ACM Computing Surveys, vol. 16, pp. 187-260, June 1984.

CHAPTER i n

GEOMETRIC TRANSFORMATIONS OF INDEPENDENT QUADTREES

The data structures that form the independent quadtree make geometric

transformations simple and elegant. Freeing the quadtree from the image grid

makes the tree itself coordinate free. All of the location, size, and orientation infor-

mation are contained in the record variables Extent and Offset.

Translation

Translation is the movement of an object. If the object is represented by

polygons then the movement is accomplished by adding the desired offset to the

vertices of the polygons (1; pp. 245-246). Translation of a dependent quadtree is

far more complex. An entirely new tree has to be constructed since the old quad-

tree is fixed with respect to the underlying grid.

However, translation of the independent quadtree is easy. Location informa-

tion for the whole image is stored in Extent. To translate an independent quadtree

requires only adding the desired offset to the location of the tree. The tree struc-

ture itself, being independent of any coordinate system, is untouched.

Here is the entire Translate procedure:

procedure Translate (vax Extent : extenttype:
DeltaX,
DeltaY : integer);

21

22

begin { Translate }

Extent.Row := Extent.Row + DeltaY;
Extent.Col := Extent.Col + DeltaX;

end; { Translate }

This is, obviously, a constant time algorithm. In fact, there are only two integer

additions to the whole operation. Figure 9 shows an example of a circle translated

by (100,100). The image printing software does not correct for distortion caused by

the aspect ratio of the printer, so the circle looks flattened. The origin is the upper

left corner.

Scaling

Scaling is the enlargement or reduction of an object. If the object is

represented by polygons then the scaling is accomplished by multiplying the ver-

tices by the desired scaling factors in X and Y (1; p. 247).

Scaling by a power of two is well known (2). This is done by increasing (or

reducing) the size of the tree by one level. If the scaling is up by a factor of two

then one of the four child nodes of the root is chosen as the new root. The display

size is the same so the image of the chosen node is scaled up by a factor of two in X

and Y. If the scaling is down by a factor of two then three blank nodes are added

to the current root and a new root is created above them. The display size is the

same so the old image is scaled down by a factor of two.

Scaling by an arbitrary integer, or even continuous scaling using reals is unk-

nown in the literature.

Scaling an independent quadtree is not only easy but it can be done using

arbitrary real numbers. Scaling is performed by multiplying the size of the Extent

23

Fig. 9 Example of Translation

24

by the desired values, and multiplying all of the offsets by the desired values. The

tree structure itself, being independent of any coordinate system, is untouched.

Here is the entire scaling procedure:

procedure Scale (vax Extent : extenttype;
vax Offset : offsettype;

SX,
SY : real);

var

i : integer;

begin { Scale }

Extent.RowSize := round (Extent.RowSize * SY);
Extent.ColSize := round (Extent.ColSize * SX);

i := 1;
while Offset [i,0] < > -1 do begin

Offset
Offset

i,0 := round f Offset
:= round (Offset

i,0
ijl

* SY
* SX

i := i + 1;

end;

end; { Scale }

This algorithm is obviously linear in the number of nodes in the tree. Figure 10

shows an example of a triangle scaled by a factor 3.0 in X and 5.0 in Y. The scal-

ing is done with respect to the upper left corner of the Extent. The origin is the

upper left corner.

In this implementation scaling only works if the cutoff values are set to zero.

This is a software problem, not a theoretical problem. It has no bearing on the

validity of independent quadtrees.

25

Fig. 10 Example of Scaling

26

Rotation

Rotation is the movement through an angle about a point. If an object is

represented as polygons then the operation is performed by applying the following

trigonometric transformations to each vertex:

X := X * cos(theta) - Y * sin(theta)
Y := Y * sin(theta) + Y * cos(theta)

where theta is the angle of rotation (1; p. 248).

Rotation of a dependent quadtree is unknown in the literature. As discussed

in chapter II there are some general linear transformation algorithms. These algo-

rithms construct the new tree that results from a transformation.

Rotation of an independent quadtree is quite easy. It is only necessary to

apply the transformations mentioned above to the orientation parameters (DX &

DY) in Extent. The tree structure itself, being independent of any coordinate sys-

tem, is untouched.

Here is the entire rotation procedure:

procedure Rotate (vax Extent : extenttype;

Angle : real);

{ Angle should be in radians }

var
Tl , T2,

CosA, SinA : real;

begin { Rotate }

CosA := cos(Angle);
SinA := sin(Angle);
T l := Extent.DX * CosA - Extent.DY * SinA;
T2 := Extent.DX * SinA + Extent.DY * CosA;
Extent.DX := Tl;
Extent.DY := T2;

27

end; { Rotate }

This algorithm is obviously a constant time algorithm. Figure 11 shows an example

of a rectangle being rotated by approximately 45 degrees. The image printing

software does not correct distortion caused by the aspect ratio of the printer, so the

rectangle looks flattened. The origin is the upper left corner.

Translation, Scaling, and Rotation can be combined to achieve any linear

transformation of an independent quadtree. The transformations axe, in general,

not commutative. Foley and Van Dam (1; pp. 253-254) show that translation can

be commuted with translation, scaling can be commuted with scaling, rotation can

be commuted with rotation, and scaling can be commuted with the other two when

the X and Y scale factors axe equal.

Chapter Summary

Algorithms for the translation, scaling, and rotation, of independent quadtrees

are presented. Independent quadtrees can be translated by any real number offset

(subject to roundoff). The translation algorithm is constant in time and space.

Independent quadtrees can be scaled by any real number (subject to roundoff). A

current software limitation is that the cutoff point must be set to zero. The scaling

algorithm is linear in the number of nodes of the tree. Independent quadtrees can

be rotated by any real angle (subject to roundoff). The rotation algorithm is con-

stant in time and space.

28

Fig. 11 Example of Rotation

29

CHAPTER BIBLIOGRAPHY

1. Foley, J. D. and A. Van Dam, Fundamentals of Interactive Computer Graph-
ics, Addison-Wesley, Reading, MA., 1982.

2. Samet, Hanan, "The Quadtree and Related Hierarchical Data Structures,"
ACM Computing Surveys, vol. 16, pp. 187-260, June, 1984.

CHAPTER IV

COMPARISON OF DEPENDENT QUADTREES AND

INDEPENDENT QUADTREES

Independent quadtrees have a major advantage over dependent quadtrees in

their ability to manipulate the image. The comparison of the generation and

display of independent quadtrees with the generation and display of dependent

quadtrees is the subject of this chapter. For comparison purposes two procedures

called GenerateDependentTree and DisplayDependentTree were constructed.

These procedures were constructed in a manner analogous to that suggested by

Samet (3). Listings of GenerateDependentTree and DisplayDependentTree can be

found in the Appendix.

Theoretical Comparison

First we consider the time requirements for the generation of the quadtree.

GenerateDependentTree visits every element in the image array exactly once. So

GenerateDependentTree is O(e) where e is the number of elements in the image.

GeneratelndependentTree may visit an element more than once, but never more

than the number of levels in the tree (as it searches for the homogeneous blocks).

Let 1 be the number of levels in the tree. Then, GeneratelndependentTree is

0(l*e) where e is the number of elements in the image.

Next, we consider the time requirements for the display of the quadtree.

DisplayDependentTree visits each node in it's quadtree exactly once.

30

31

DisplayIndependentTree visits each node in it's quadtree exactly once. Both algo-

rithms axe therefore, O(n) where n is the number of the nodes in the tree. The

algorithms are equivalent up to a constant term; however, the number of nodes in

each tree may not be the same.

Next, we consider the space requirements for the quadtree. Both dependent

and independent quadtrees require two bits per node (storing 'B', 'W', or '('). In

addition, the independent quadtree has the overhead of the extent which is four

integers and two reals. The independent quadtree may also store offset information

at each node. The independent quadtree has, therefore some overhead and larger

nodes than the dependent quadtree. However, the approach that the independent

quadtree takes to region decomposition (largest homogeneous block) may lead to

fewer nodes. The actual space determinations axe data dependent.

Statistical Comparison

The theoretical comparisons axe not very enlightening. To obtain a better

understanding of how independent and dependent quadtrees compare with each

other we need to run them and test for significant differences. The four procedures

GenerateDependentTree, GeneratelndependentTree, DisplayDependentTree, and

Display Independent were implemented in Pascal running on a VAX 11/780 under

Unix* 4.2BSD. Pascal was chosen for its algorithmic claxity. C would be a better

choice for efficiency.

Three sets of test data were used, rectangles, triangles, and circles. These

objects represent the three types of boundaxies between object and background;

horizontal and vertical, sloping, and curved. Each element in a test set was of

*Unix is a registered trademark of Bell Labs

32

random size and position. One object was generated per image. There were 500

random objects in each set. All of the object will be contained within the grid, i.e.

no need for clipping. The average time and space usage of dependent and indepen-

dent quadtrees is shown in Table I.

TABLE I
DEPENDENT VS. INDEPENDENT QUADTREES

Test Set Dependent Independent
Space* Usage

Rectangles 1815 130
Triangles 2629 2241
Circles 1345 1186

Generation Time*
Rectangles 7050 1759
Triangles 7392 3675
Circles 6975 1983

Display Time*
Rectangles 184 96
Triangles 195 484
Circles 116 228

*space is in bits, time is in milliseconds

The table shows that space usage was less for independent quadtrees over all three

test sets. Independent quadtrees also took less time to generate over all three test

sets. The results for display were less straightforward. The independent quadtrees

for rectangles took less time to display, but they took more time for triangles and

circles.

In order to test the statistical significance of these results, 95% confidence

intervals for the difference in means were computed. Since the population variance

is not known the Student's t distribution was assumed (1; pp. 262-264). The null

hypothesis is that the there is no significant difference between independent and

dependent quadtrees for space, generation time or display time, over any of the test

sets. This can be accepted or rejected by the presence or absence of zero in confi-

33

dence intervals for the difference of the means.

The confidence intervals for space were:

Rectangles 1592 < D < 1778
Triangles 281 < D < 494
Circles 70 < D < 247

where D is the difference, dependent minus independent. The numbers represent

bits. Zero is not present in any of these intervals so the null hypothesis of no

difference is rejected. Independent quadtrees use less space. This is easily

accounted for by the adaptive nature of the independent quadtree. It tries to find

large homogeneous blocks, implying less storage if the image has any coherence to

it.

The confidence intervals for generation time were:

Rectangles 5199 < D < 5389
Triangles 3564 < D < 3870
Circles 4907 < D < 5077

where D is the difference, dependent minus independent. The numbers are in mil-

liseconds. Zero is not present in any of these intervals so the null hypothesis of no

difference is rejected. Independent quadtrees take less time to generate. This is a

somewhat surprising result. The theoretical analysis seemed to indicate that the

independent quadtrees should take more time. But again, the adaptive nature of

the algorithm means fewer blocks, even though each block takes longer to generate.

However, the difference is probably not as pronounced as it might seem from the

confidence intervals. GenerateDependentTree is highly recursive. A nonrecursive

version of the algorithm would probably show gains relative to Generatelndepen-

dentTree. The amount of gain is hinted at by the results for display time.

The confidence intervals for display time were:

34

Rectangles 71 < D < 104
Triangles -311 < D < -267
Circles -126 < D < -98

where D is the difference, dependent minus independent. The numbers represent

milliseconds. Zero is not present in any of the intervals so the null hypothesis of no

difference is rejected. The display of an independent quadtree representing a rec-

tangle takes less time, while triangles and circles take more. The adaptive algo-

rithm is displaying it's bias for objects that have boundaries perpendicular to the

axes of the image. The trees generated for triangles and circles were not small

enough to overcome the inherently longer time per block taken by the independent

tree.

Worst Case Comparison

The worst kind of image for a dependent quadtree is a checkerboard at lowest

resolution (2; p. 217). A checkerboard is even worse for an independent quadtree.

A test was run on a 128 x 128 checkerboard. The independent quadtree used 4.6

times more memory. The independent quadtree took 17 times longer to generate.

The independent quadtree took 7 times longer to display. Clearly, in the worst

case, the independent quadtree is inferior to the dependent quadtree.

Chapter Summary

Dependent and independent quadtrees are compared theoretically and empiri-

cally. Theoretically independent quadtrees should take longer to generate and

display. The space requirements of quadtrees are data dependent.

Empirically, the independent quadtree takes less space. The empirical results

indicate that the independent quadtree take less time to generate, but this may be

35

due to the intensely recursive nature of the dependent algorithm. The indepen-

dent quadtree takes longer to display.

Overall, these results suggest a space-time trade-off. The independent quad-

tree will take less space, but may take longer to generate and will take longer to

display, for a generalized object.

36

CHAPTER BIBLIOGRAPHY

1. Hoel, Paul G., Introduction to Mathematical Statistics (Fourth Edition), John
Wiley & Sons, Inc., New York, 1971.

2. Samet, Han an, "The Quadtree and Related Hierarchical Data Structures,"
ACM Computing Surveys, vol. 16, pp. 187-260, June 1984.

3. Samet, Hanan, "Region Representation: Quadtrees from Binary Arrays," Com-
puter Graphics and Image Processing, vol. 13, pp. 88-93, 1980.

CHAPTER V

CONCLUSION

A quadtree is a tree in which each node has four ordered children or is a leaf.

It can be used to represent an image via hieraxchical decomposition. The image is

broken into four regions. A region can be a solid color (homogeneous) or a mixture

of colors (heterogeneous). If a regions is heterogeneous it is broken into four

regions, and the process continues recursively until all regions are homogeneous (or

until a specified limit is reached).

The traditional quadtree suffers from dependence on the underlying grid. The

grid coordinate system is implicit, and therefore fixed. The fixed coordinate system

implies a rigid tree. A rigid tree cannot be translated, scaled, or rotated. Instead,

a new tree must be built which is the result of one of these transformations.

This dissertation has introduced the independent quadtree. The independent

quadtree is free of any underlying coordinate system. The tree is no longer rigid

and can be easily translated, scaled, or rotated. Algorithms to perform these opera-

tions have been presented. The translation and rotation algorithms take constant

time. The scaling algorithm has linear time in the number nodes in the tree. The

disadvantage of independent quadtrees is the longer display time. However, the

ease with which an image may be transformed should more than compensate for

the longer display time.

This dissertation has also introduced an alternate method of hieraxchical

decomposition. This new method finds the largest homogeneous block with respect

37

38

to the corners of the image. This block defines the division point for the decompo-

sition. If the size of the block is below some cutoff point, it is deemed to be to

small to make the overhead worthwhile and the traditional method is used instead.

This new method is compared to the traditional method on randomly generated

rectangles, triangles, and circles. The new method has been shown to use signifi-

cantly less space for all three test sets. The generation and display times axe ambi-

guous. More time is taken for each node, but there are, on average, fewer nodes.

The worst case is significantly worse.

Future Work

The scaling algorithm should be made to work for any value of the cutoff

point. It can almost certainly be improved to constant time. This will require

changes to GeneratelndependentTree and DisplaylndependentTree, which may

make them run even slower. Constant time algorithms for all three transformations

should make the slower time worthwhile.

Obviously, the worst case performance needs to be improved. This can be

accomplished by making the algorithm even more adaptive. It should be possible

to dynamically determine when the algorithm should switch from a irregular

decomposition (homogeneous blocks) to a regular decomposition (equal sizes). In

fact, it should be possible to switch back and forth between the two types of

decomposition.

There is still at least one major obstacle to quadtrees becoming an important

modeling tool. Quadtrees axe hard to encode. This dissertation assumed that the

image was already in binary form. But the major representation in use today in

computer graphics is the polygon, i.e. a set of vertices. It is easy to describe a

39

polygon, it is not easy to describe a quadtree. An interactive solution may be feasi-

ble.

The 3D case

This work should easily generalize to three dimensions. In three dimensions

the quadtree is known as an octtree. Each dimension is divided along it's axis.

This implies eight regions, thus an octtree. The traditional method, as for the

quadtree, is to divide the space into equal parts. The disadvantages of this

approach have been well documented by this dissertation (see chapter I) and

should hold for the three dimensional case as well as the two dimensional case.

The movement of objects through space, once a major challenge, should be signifi-

cantly simplified by using independent octtrees. The major advantages of octtrees

is the simple solution they offer to the hidden surface problem. Independent

octtrees should still have that advantage and offer fast transformations as well.

Generalizing to four dimensions may be useful as well. Four dimensions would

introduce a time element. The possibility of animation is intriguing. Beyond four

dimensions is not interesting to the field of computer graphics.

APPENDIX

This appendix contains listings of the procedures described in this

dissertation. Those procedures axe GenerateDependentTree,

DisplayDependentTree, GeneratelndependentTree, and DisplayIndependentTree. It

also contains a listing of the global variables used by those procedures.

40

41

const
min = 0;
max = 255;

treemax = 60000;
nodemax = 60000;
resolution = 8;

elementmax = 30;

type
range = min..max;

imagetype - packed axray [range, range]
of boolean;

treetype = packed array [0..treemax]
of char;

offsettype = packed array [1..nodemax, 0..1
of range;

extenttype = record
Row, RowSize,
Col, ColSize : integer;
DX, DY : real;

end;

var
Image,
OutDImage,
Outllmage : imagetype;

DTree,

ITree : treetype;

Extent : extenttype;

Offset : offsettype;

report : text;

RowCutoff,
ColCutoff : integer;
obsd, obtgd,
obtdd, obsi,

obtgi, obtdi : array[1..500] of integer;

z : integer;

42

procedure

GenerateDependentTree (vax image : imagetype;
vax Tree : treetype);

var
twos : array[l..resolution] of range;
i,
treecount,
starttime : integer;

procedure BuildTree (level,
quadrant,
row,

col : integer);

procedure Condense;

vax i : integer;

begin { Condense }

i := treecount - 5;
if(Tree

Tree
Tree
Tree
Tree

i] = '(') a nd
i+1
i+2
i+3
i+4

= 'W') and
= 'W' and
= 'W' and
= 'W'))

then begin
Tree[i] := 'W';
treecount := treecount-4;

end

else

if (Tree
Tree
Tree
Tree
Tree

i+1
i+2
i+3
i+4

= '(') and
= 'B') and
= 'B') and
= 'B') and
= 'B'))

then begin
Tree[i] := 'B';
treecount := treecount-4;

end;

end; { Condense }

43

begin { BuildTree }

if quadrant = 0 then begin
Tree[treecount] :=
treecount := treecount + 1;
end;

if level < resolution then begin

BuildTree (level+1, 0,
row , col);

BuildTree (level+1,1,
row , col+twos[level+l]);

BuildTree (level+1, 2,
row+twos [level+1 j, col);

BuildTree (level+1, 3,
row+twos[level+lj, col+twos[level+l]);

end; {if}

if level = resolution then begin

if image[row,col] then begin
Treeftreecount] := 'B';
treecount := treecount+1;
end

else begin
Tree[treecount] := 'W';
treecount := treecount+1;
end;

end; {if}

if quadrant = 3 then Condense;

end; { BuildTree }

begin { GenerateDependentTree }

treecount := 0;

twos [resolution] := 1;
for i := resolution-1 downto 1 do

twos[i] := twos[i+l] * 2;

starttime := clock;

BuildTree (0, 0, 0, 0);

44

Tree[treecount] := chr(3); {ETX}

obtgdfzj := clock - starttime;
obsd [z] := 2*(treecount - 1);

end; { GenerateDependentTree }

45

procedure

DisplayDependentTree (vax Tree : treetype;
vax outimage : imagetype);

var
twos : array [0..resolution] of integer;
i>
treecount,
starttime : integer;

procedure DrawBlock (row,
col,
size : integer);

vax
i, j : integer;

begin { DrawBlock }

for i := row to row+size-1 do
for j := col to col+size-1 do

outimage [i j] := true;

end; { DrawBlock }

procedure DrawTree (level,
row,
col : integer);

begin { DrawTree }

if Tree [treecount] in ['B','WV('] then

case Tree [treecount] of

'B ' : begin
DrawBlock (row, col, twos [level]);
treecount := treecount+ 1;
end;

' W ' : treecount := treecount + 1;

: begin
treecount := treecount + 1;
DrawTree (level+1, row,

46

col);
DrawTree (level+1, row,

col+twos[level+l]);
DrawTree (level+1,

row+twos[level+1],
col);

DrawTree (level+1,
row+twos[level+l],
col+twos [level+1]);

end;

end; {case}

end; { DrawTree }

begin { DisplayDependentTree }

twos [resolution] := 1;
for i := resolution-1 downto 0 do

twosfi] := twos[i+l]*2;

starttime := clock;

treecount := 1;

DrawTree (0, 0, 0);

obtdd[z] := clock - starttime;

end; { DisplayDependentTree }

47

procedure

GeneratelndependentTree (vax Image : imagetype;
vax Tree : treetype;
vax Extent : extent type;
var Offset: offsettype);

var
treecount,
offsetcount,
staxttime : integer;

procedure RemoveRP (var Tree : treetype);

vax
T : treetype;

i j : integer;

begin { RemoveRP }

j : = i;

for i := 1 to treecount do

if Tree[i] < > ')' then begin
T[j] := Tree[i];
j j + l;
end;

Tree := T;
treecount := j-1;

end; { RemoveRP }

procedure Bound (vax Extent : extenttype);

label 100, 200, 300, 400;

vax
i.j»
Upper, Lower, Left, Right : range;
Flag : boolean;

begin { Bound }

Flag := false;

48

Lower := 0;
Upper := max;
Left := 0;
Right := max;

for i := 0 to max do
for j := 0 to max do

if Image [ij] then begin
Lower := i;
Flag := true;
goto 100;

end;

100 : if Flag then begin

for i := max downto 0 do
for j := 0 to max do

if Image[ij] then begin
Upper := i+1;
goto 200;

end;

200 : for j := 0 to max do
for i := Lower to Upper do

if Image[ij] then begin
Left := j;
goto 300;
end;

300 : for j := max downto 0 do
for i := Lower to Upper do

if Image[ij] then begin
Right := j+1;
goto 400;
end;

end;
400 : Extent.Row := Lower;

Extent.Col := Left;
Extent.RowSize := Upper - Lower;
Extent.ColSize := Right - Left;
Extent. DX := 1.0;
Extent.DY := 0.0;

end; { Bound }

49

procedure BuildTree (Level,
Quadrant,
Row,
Col,
RowSize,
ColSize : integer;
Adapt : boolean);

type
SizeType = axray [0..3, 0..1] of range;
AreaType = array f 0..3 1 of integer;
ValueType = array [0..3] of boolean;
QuadrantType = 0..3;

vax

Size : SizeType;
Area : AreaType;
Largest : QuadrantType;
BlackOrWhite : ValueType;
i,t : integer;
Indicator : char;
Rowlnc,
Collnc : integer;

procedure HomogeneousBlock (Row,
Col,
RowChange,
ColChange : integer;

var Area : integer;
vax AreaRow,

AreaCol : range);

vax
New Area,
CurrentRow,
CurrentCol,
RowLimit,
ColLimit : integer;

Value : boolean;

begin { HomogeneousBlock }

Area := 0;
RowLimit := Row + (RowChange * RowSize);
ColLimit := Col + (ColChange * ColSize);
Value := Image [Row,Col];

50

CurrentRow := Row;
while (CurrentRow < > RowLimit) do begin

CurrentCol := Col;
while (CurrentCol < > ColLimit) and

(Value = Image[CurrentRow, CurrentCol])
do

CurrentCol := CurrentCol + ColChange;

if CurrentCol < > ColLimit then
ColLimit := CurrentCol;

New Area := (abs(CurrentRow-Row)+l)
* (abs(ColLimit-Col));

if New Area > Area then
begin
Area := New Area;
AreaRow := abs(Current Row-Row)+1;
AreaCol := abs(ColLimit-Col);

end;

CurrentRow := CurrentRow + RowChange;

end; { while }

end; { HomogeneousBlock }

procedure Condense;

var

State, i : integer;

begin { Condense }

i := treecount - 2;

State := 0;
repeat

case State of

0 : begin
if Tree
if Tree
end;

= 'W' then State := 1;
= 'B' then State := 2;

1 : if Tree[i] = '(' then begin

51

Tree[i] := 'W];
treecount := i + 1;
if Adapt then

offsetcount := offsetcount - 1;
State := 7;
end

else
if Tree[i] = 'W' then State := 3

else State := 7;

2 : if Treefil = '(' then begin
Tree[i] := 'B';
treecount := i + 1;
if Adapt then

offsetcount := offsetcount - 1;
State := 7;
end

else
if Tree[i] = 'B' then State := 4

else State := 7;

3 : if Tree[i] = '(' then begin
Tree[i] := 'W';
treecount := i + 1;
State := 7;
end

else
if Tree[i] = 'W' then State := 5

else State := 7;

4 : if Treefil = '(' then begin
Tree[i] := 'B';
treecount := i + 1;
State := 7;
end

else
if Tree[i] = 'B' then State := 6

else State := 7;

5 : if Tree[i] = 'W' then begin
Tree[i-1] := 'W';
treecount := i;
State := 7;
end

else
State := 7;

6 : if Tree[i] = 'B' then begin
Tree[i-1] := 'B';
treecount := i;
State := 7;

52

end
else

State := 7;

7 : null;

end; {case}

i := i - 1;

until State = 7;

end; { Condense }

begin { BuildTree }

if (RowSize < > 0) and (ColSize < > 0) then

if (RowSize < = RowCutoff) and
(ColSize < = ColCutoff) then begin

Adapt := false;

if (RowSize = 1) and (ColSize = 1) then

if Image[Row,Col] then begin
Treejtreecount] := 'B';
treecount := treecount + 1;
end

else begin
Tree[treecount] := 'W';
treecount := treecount + 1;

end

else begin

Tree[treecount] := '(';
treecount := treecount + 1;

if odd(RowSize) then Rowlnc := 1
else Rowlnc := 0;

if odd(ColSize) then Collnc := 1
else Collnc := 0;

BuildTree (Level-fl, 0,
Row,
Col,
RowSize div 2 + Rowlnc,

53

ColSize div 2 + Collnc,
Adapt);

BuildTree (Level+1,1,
Row,
Col + ColSize div 2 + Collnc,
RowSize div 2 + Rowlnc,
ColSize div 2,
Adapt);

BuildTree (Level+1, 2,
Row + RowSize div 2 + Rowlnc,
Col,
RowSize div 2,
ColSize div 2 + Collnc,
Adapt);

BuildTree (Level+1, 3,
Row + RowSize div 2 + Rowlnc,
Col + ColSize div 2 + Collnc,
RowSize div 2,
ColSize div 2,
Adapt);

end;

end

else begin

Tree[treecount] :=
treecount := treecount + 1;

BlackOrWhitefO] :=
Image[Row, Col];

BlackOrWhite[l] :=
Image[Row, Col+ColSize-1];

BlackOrWhite[2] :=
Image[Row+RowSize-1, Col];

BlackOrWhite[3] :=
Image[Row+RowSize-1, Col+ColSize-1];

HomogeneousBlock (Row, Col,
1, 1, Area[0j, Size[0,0], Size[0,l]);

HomogeneousBlock (Row, Col+ColSize-1,
1, -1, Area[l], Size[l,0], Size[l,l]);

HomogeneousBlock (Row+RowSize-1, Col,
-1, 1, Area[2j, Size[2,0], Size[2,l]);

54

HomogeneousBlock (Row+RowSize-1, Col+ColSize-1,
-1, -1, Area[3j, Size[3,0], Size[3,l]);

Largest := 0;
for i := 1 to 3 do

if Area[Laxgest] < Area[i] then Largest := i;

if BlackOrWhite[Largest] then Indicator := 'B'
else Indicator := 'W';

case Largest of

0 : begin Offset[offsetcount ,0] := Size[0,0];
Offset[oifsetcount,l] := Size[0,l];

end;
1 : begin Offset[offsetcount,0] := Size[l,0];

Offset[oifsetcount,l] :=
ColSize - Size[l,l];

end;
2 : begin Offset [offsetcount,0] :=

RowSize - Size[2,0];
Offset[offsetcount,l] := Size[2,l];

end;
3 : begin Offset [offsetcount,0] :=

RowSize - Size(3,0];
Offset [offsetcount,!.] :=

ColSize - Size[3,l];
end;

end; {case}

offsetcount := offsetcount + 1;

t := offsetcount - 1;

if Largest = 0 then begin
Tree[treecount] := Indicator;
treecount := treecount + 1;
end

else
BuildTree (Level+1, 0,

Row,
Col,
Offset [t,0],
Offset t , l ,
Adapt);

if Largest = 1 then begin
Tree[treecount] := Indicator;
treecount := treecount + 1;
end

55

else
BuildTree (Level+1,1,

Row,
Col + Offset[t,l],
Offset [t,0],
ColSize - 0ffset[t,l],
Adapt);

if Largest = 2 then begin
Tree[treecount] := Indicator;
treecount := treecount + 1;
end

else
BuildTree (Level+1, 2,

Row + Offset [t ,0],
Col,
RowSize - Offset [t ,0],
Offset[t,l],
Adapt);

if Largest = 3 then begin
Tree [treecount] := Indicator;
treecount := treecount + 1;
end

else
BuildTree (Level+1, 3,

Row + Offset [t ,0],
Col + Offset[t,l],
RowSize - Offset[t,0],
ColSize - Offset[t,l],
Adapt);

end; {if size not 0}

if Quadrant=3 then begin
Tree[treecount] := ')';
treecount := treecount + 1;
Condense;
end;

end; { BuildTree }

begin { GeneratelndependentTree }

treecount := 1;
offsetcount := 1;

starttime := clock;

56

Bound (Extent);

BuildTree (0, 0, Extent.Row,
Extent.Col,
Extent.RowSize,
Extent.ColSize,
true);

Tree[treecount] := chr(3); {ETX}
Offset[offsetcount,0] := -1;

RemoveRP (Tree);

obtgifzj := clock - starttime;
obsi [z] := (2*(treecount - 1))

+ (16*(offsetcount-l]J + 128;

end; { GeneratelndependentTree }

57

procedure

DisplayIndependentTree (var Tree : treetype;
vax Extent : extenttype;
vax Offset : offsettype;
vax Outlmage : imagetype);

vax

XLeft, XRight, YBottom, YTop : integer;

staxttime : integer;

treecount,
offsetcount : integer;

procedure DrawBlock (Row, Col,
RowSize, ColSize : integer;
DX, DY : real);

type
numtype = array [0..3] of integer;

var
X, Y : numtype;

i, j,
Lower, Upper,
Left, Right,
Temp, ScanLine : integer;

PerDX, PerDY : real;

procedure DetermineBounds (Y : numtype;
vax Lower,

Upper : integer);

begin { DetermineBounds }

if Y[0] < YBottom then Lower := YBottom
else Lower := Y[0];

if Y[3] > YTop then Upper := YTop
else Upper := Y[3];

end; { DetermineBounds }

procedure Validate (vax Left, Right : integer);

58

var
Temp : integer;

begin { Validate }

if Left > Right then begin
Temp := Left;
Left := Right;
Right := Temp;
end;

if Left < XLeft then Left := XLeft;
if Left > XRight then Left := XRight+1;

if Right < XLeft then Left := XLeft-1;
if Right > XRight then Right := XRight;

end; { Validate }

procedure WhichTwoLines (X, Y : numtype;
ScanLine : integer;

var Left,
Right : integer);

var
Ml , M2 : real;

begin { WhichTwoLines }

Ml := (Y
M2 := Y

0]-Y[ll)/(X[0]-X
;o]-Y[2|)/(x[o]-x

then if ((ScanLine>=Y[0]) and (ScanLine<=Y[2])
Left := round (((ScanLine-Y[0])/M2)+X 0])

else
Left := round (((ScanLine-Y[2])/Ml)+X[2]);

if ((ScanLine>=Y[0]) and (ScanLine<=Y[l])) then
Right := round (((ScanLine-Y[0])/Ml)+X[0])

else

Right := round (((ScanLine-Y[3])/M2)+X[3]);

end; { WhichTwoLines }

procedure Fill Square;

var

59

i j ,
ColLeft, ColRight,
RowLower, RowUpper : integer;

begin { FillSquare }

if X[0] > X[l] then begin
ColLeft := X[ll;
ColRight := X[0];
end

else begin
ColLeft := X[0];
ColRight := X[l];
end;

if ColLeft < XLeft then ColLeft := XLeft;
if ColRight > XRight then ColRight := XRight+1;

if Y[0] < YBottom then RowLower := YBottom
else RowLower := Y[0];

if Y[2] > YTop then RowUpper := YTop+1
else RowUpper := Y[2];

for i := RowLower to RowUpper-1 do
for j := ColLeft to ColRight-1 do

OutImage[i j] := true;

end; { FillSquare }

function SignedUnit (Indicator : real) : real;

begin { SignedUnit }

if (Indicator < 0.0) and
(Indicator > -1.0) then SignedUnit := -1

else
if (Indicator > 0.0) and

(Indicator < 1.0) then SignedUnit := 1

else
{ Indicator = 0.0 or -1.0 or 1.0 }

SignedUnit := 0;

end; { SignedUnit }

begin { DrawBlock }

60

X
Y

:= Col;
:= Row;

X[l] := X[0]
+ roundfColSize * DX + SignedUnit(DX));

Y[l] := Y[0]
+ round(ColSize * DY + SignedUnit(DY));

PerDX := -DY;
PerDY := DX;

X[2] := X[0] +
round(RowSize * PerDX + SignedUnit(PerDX));
Y[2] := Y[0] +

round(RowSize * PerDY + SignedUnit (PerDY));

X[3] := X[2] +
round(ColSize * DX + SignedUnit (DX));
Y[3] := Y[2] +
round(ColSize * DY + SignedUnit (DY));
for i := 0 to 2 do
for j := i+1 to 3 do

if Y[j] < Y[i] then begin

Temp := X[j];
X[j] := X[i];
X[i| := Temp;
Temp := Y[j];

:= Y|i]l
:= Temp;

Y[j
Y i
end

if ((X[0]=X[2l) and (X[ll=X[3l)) or
((Xp]=X[3]) and (X[1]=X[2J)) then
FillSquare

else begin

DetermineBounds (Y, Lower, Upper);

for ScanLine := Lower to Upper do begin

WhichTwoLines (X, Y, ScanLine,

Left, Right);

Validate (Left, Right);

for i := Left to Right-1 do

61

OutImage[ScanLine,i] := true;

end; {for}

end; {else}

end; { DrawBlock }

procedure DrawTree (Row, Col,
RowSize, ColSize : integer;
DX, DY : real);

var
RowOffset, ColOffset: integer;
RO, Rl, R2, R3,
CO, CI, C2, C3 : integer;
PerDX, PerDY : real;
Rowlnc, Collnc : integer;

begin { DrawTree }

if ((RowSizeOO) and (ColSizeOO)) then

if (RowSize < = RowCutoff) and
(ColSize < = ColCutoff) then begin

if Tree[treecount] in ['B','WV('] then

case Tree[treecount] of
'B' : begin

DrawBlock (Row, Col,
RowSize, ColSize, DX, DY);

treecount := treecount + 1;
end;

'W' : treecount := treecount + 1;

'(' : begin
treecount := treecount + 1;

if odd(RowSize) then Rowlnc := 1
else Rowlnc := 0;

if odd(ColSize) then Collnc := 1
else Collnc := 0;

DrawTree (Row,
Col,
RowSize div 2 + Rowlnc,

62

ColSize div 2 + Collnc,
DX, DY);

DrawTree (Row,
Col + ColSize div 2
+ Collnc,
RowSize div 2 + Rowlnc,
ColSize div 2,
DX, DY);

DrawTree (Row + RowSize div 2
+ Rowlnc,
Col,
RowSize div 2,
ColSize div 2 + Collnc,
DX, DY);

DrawTree (Row + RowSize div 2
+ Rowlnc,
Col + ColSize div 2
+ Collnc,
RowSize div 2,
ColSize div 2,
DX, DY);

end;
end; {case}

end

else begin

if Tree[treecount] in ['B', 'W', '('] then

case Tree[treecount] of

'B' : begin
DrawBlock (Row, Col, RowSize,

ColSize, DX, DY);
treecount := treecount + 1;
end;

'W' : treecount := treecount + 1;

'(' : begin
treecount := treecount + 1;
offsetcount := offsetcount + 1;
RowOffset := Offset [offsetcount ,0];
ColOffset := Offset [offsetcount, 1];

CO := Col;

63

RO := Row;

CI := CO + round(ColOffset * DX);
R1 := RO + round(ColOffset * DY);

PerDX := -DY;
PerDY := DX;

C2 := CO + round (RowOffset * PerDX);
R2 := RO + round(RowOffset * PerDY);

C3 := C2 + round (ColOffset * DX);
R3 := R2 round(ColOffset * DY);

DrawTree (RO, CO,
RowOffset, ColOffset,
DX, DY);

DrawTree (Rl , CI,
RowOffset, ColSize-ColOffset,
DX, DY);

DrawTree (R2, C2,
RowSize-RowOffset, ColOffset,
DX, DY);

DrawTree (R3, C3,
RowSize-RowOffset,
ColS ize-ColOffset,
DX, DY);

end;

end; {case}

end; {size check}

if Tree[treecount] = ')' then
treecount := treecount + 1;

end; { DrawTree }

begin { DisplaylndependentTree }

XLeft := 0; XRight := max;
YBottom := 0; YTop := max;

staxttime := clock;

64

treecount := 1;
offsetcount := 0;

DrawTree (Extent.Row, Extent.Col,
Extent.RowSize, Extent.ColSize,
Extent.DX, Extent.DY

);

obtdi[z] := clock - staxttime;

end; { DisplayIndependentTree }

BIBLIOGRAPHY

Books

Foley, J. D. and A. Van Dam, Fundamentals of Interactive Computer Graphics,
Addison-Wesley, Reading, MA., 1982.

Hoel, Paul G., Introduction to Mathematical Statistics (Fourth Edition), John Wiley
& Sons, Inc., New York, 1971.

Horowitz, Ellis and Salmi, Sartaj, Fundamentals of Computer Algorithms,
Computer Science Press, Rockville, MD., 1978

Pavlidis, Theo, Algorithms for Graphics and Image Processing, Computer Science
Press, Rockville, MD, 1982.

Articles

Dyer, Charles R., Rosenfeld, Azriel, and Samet, Hanan, "Region Representation:
Boundary Codes from Quadtrees," Communications of the ACM, vol. 23, pp. 171-
179, March 1980.

Gargantini, Irene, "An Effective Way to Represent Quadtrees," Communications of
the ACM, vol. 25, pp. 905-910, December 1982.

Hunter, G. M. and Steiglitz, K., "Linear Transformations of Pictures Represented
by Quad Trees," Computer Graphics and Image Processing, vol. 10, pp. 289-296,
1979.

Hunter, Gregory M., and Steiglitz, Kenneth, "Operations on Images Using Quad
Trees," IEEE Transactions of Pattern Analysis and Machine Intelligence, vol. 1, pp.
145-153, April 1979.

Jackins, C. L. and Tanimoto, S.L., "Decompostion of Euclidean Space," IEEE
Transactions of Pattern Analysis and Machine Intelligence, vol. 5, pp. 533-539,
Sept. 1983.

Kawaguchi, Eiji and Endo, Tsutomu, "On a Method of Binary-Picture
Representation and Its Application to Data Compression," IEEE Transactions of
Pattern Analysis and Machine Intelligence, vol. 2, pp. 27-35, January 1980.

Li, Ming, William I. Grosky, and Ramesh Jain, "Normalized Quadtrees with
Respect to Translations," Computer Graphics and Image Processing, vol. 20, pp.
72-81, 1982.

65

66

Oliver, M. A. and N. E. Wiseman, "Operations on Quadtree Encoded Images," The
Computer Journal, vol. 26, pp. 83-91, 1983.

Samet, Hanan, "An Algorithm for Converting Rasters to Quadtrees," IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 3, pp. 93-95,
January 1981.

, "The Quadtree and Related Hierarchical Data Structures," ACM
Computing Surveys, vol. 16, pp. 187-260, June 1984.

, "Region Representation: Quadtrees from Binary Arrays," Computer
Graphics and Image Processing, vol. 13, pp. 88-93, 1980.

, "Region Representation: Quadtrees from Boundary Codes,"
Communications of the ACM, vol. 23, pp. 163-170, Maxch 1980.

Tamminen, Maxkku, "Comment on Quad- and Octtrees," Communications of the
ACM, vol. 27, pp. 248-249, Maxch 1984.

van Lierop, Marloes L. P., "Geometrical Transformations on Pictures Represented
by Leafcodes," Computer Vision, Graphics, and Image Processing, vol. 33, pp. 81-
98, 1986.

