Investigation of Lead Hydrolytic Polymerization and Interactions with Organic Ligands in the Soil/Sediment-Water Environment

PDF Version Also Available for Download.

Description

The objective of this research was to investigate lead speciation in the soil/sediment-water environment and to better understand how the species affect lead mobility under different environmental conditions. The research involved both field soil and sediment samples as well as standard lead solutions. Field samples were fully characterized and extracted by aqueous and organic solvents. The results were compared and evaluated with the metal speciation model, MINTEQA2. Hydrolytic polymerization and organic complexation studies were conducted with standard lead solutions under controlled experimental conditions. Results of the field samples showed that pH, dissolved cations, ionic strength, dissolved organic matter, and nature ... continued below

Creation Information

Sanmanee, Natdhera December 2002.

Context

This dissertation is part of the collection entitled: UNT Theses and Dissertations and was provided by UNT Libraries to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 772 times . More information about this dissertation can be viewed below.

Who

People and organizations associated with either the creation of this dissertation or its content.

Chair

Committee Members

Publisher

Rights Holder

For guidance see Citations, Rights, Re-Use.

  • Sanmanee, Natdhera

Provided By

UNT Libraries

The UNT Libraries serve the university and community by providing access to physical and online collections, fostering information literacy, supporting academic research, and much, much more.

Contact Us

What

Descriptive information to help identify this dissertation. Follow the links below to find similar items on the Digital Library.

Description

The objective of this research was to investigate lead speciation in the soil/sediment-water environment and to better understand how the species affect lead mobility under different environmental conditions. The research involved both field soil and sediment samples as well as standard lead solutions. Field samples were fully characterized and extracted by aqueous and organic solvents. The results were compared and evaluated with the metal speciation model, MINTEQA2. Hydrolytic polymerization and organic complexation studies were conducted with standard lead solutions under controlled experimental conditions.

Results of the field samples showed that pH, dissolved cations, ionic strength, dissolved organic matter, and nature of the soil/sediment matrix play major roles in the distribution and mobility of lead (Pb) from contaminated sites. In the aqueous equilibration experiment, the magnitude of Pb2+ solubilization was in the order of pH4>pH7>pH9. The results were in good agreement with MINTEQA2 predictions. An important finding of the research is the detection of Pb polymerization species under controlled experimental conditions. At pH 5.22, Pb polymeric species were formed at rate of 0.03 per day. The role of Pb complexation with organic matter was evaluated in both field and standard samples. Different methodologies showed three types of organically bound Pb. A very small fraction of Pb, in the ppb range, was extractable from the contaminated soil by polar organic solvents. Sequential extractions show that 16.6±1.4 % of the Pb is organically complexed. Complexation of Pb with fulvic acid provided new information on the extent of Pb association with soluble organic matter.
The overall results of this research have provided new and useful information regarding Pb speciation in environmental samples. The results, in several instances, have provided verification of MINTEQA2 model's prediction. They also revealed areas of disagreement between the models prediction and the experimental results. A positive note regarding the experimental work done in the research is the verification of the mass balance in all the repeated experiments.

Language

Identifier

Unique identifying numbers for this dissertation in the Digital Library or other systems.

Collections

This dissertation is part of the following collection of related materials.

UNT Theses and Dissertations

Theses and dissertations represent a wealth of scholarly and artistic content created by masters and doctoral students in the degree-seeking process. Some ETDs in this collection are restricted to use by the UNT community.

What responsibilities do I have when using this dissertation?

When

Dates and time periods associated with this dissertation.

Creation Date

  • December 2002

Added to The UNT Digital Library

  • Sept. 26, 2007, 2:58 a.m.

Description Last Updated

  • May 24, 2013, 12:06 p.m.

Usage Statistics

When was this dissertation last used?

Yesterday: 0
Past 30 days: 1
Total Uses: 772

Interact With This Dissertation

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Sanmanee, Natdhera. Investigation of Lead Hydrolytic Polymerization and Interactions with Organic Ligands in the Soil/Sediment-Water Environment, dissertation, December 2002; Denton, Texas. (digital.library.unt.edu/ark:/67531/metadc3314/: accessed November 16, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; .