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The study seeks to determine the degree of accumulation 

of Type II error rates, while violating the assumptions of 

normality, for different specified levels of power among 

sample means. The study employs a Monte Carlo simulation 

procedure with three different specified levels of power, 

methodologies, and population distributions. 

On the basis of the comparisons of actual and observed 

error rates, the following conclusions appear to be 

appropriate. 

1. Under the strict criteria for evaluation of the 

hypotheses, Type II experimentwise error does accumulate at 

a rate that the probability of accepting at least one null 

hypothesis in a family of tests, when in theory all of the 

alternate hypotheses are true, is high, precluding valid 

tests at the beginning of the study. 

2. The Dunn-Bonferroni procedure of setting the 

critical value based on the beta value per contrast did not 

significantly reduce the probability of committing a Type II 

error in a family of tests. 



3. The use of an adequate sample size and orthogonal 

contrasts, or limiting the number of pairwise comparisons to 

the number of means, is the best method to control for the 

accumulation of Type II errors. 

4. The accumulation of Type II error is irrespective 

of distributions. 
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CHAPTER I 

INTRODUCTION 

The use of statistical packages in the current 

computers allows the researcher to test multiple hypotheses 

from the data collected. The researcher is faced, however, 

with the problem of accumulation of errors of each 

hypothesis tested. Even though the individual test is the 

conceptual unit for defining error probabilities, the family 

of tests is often considered as a unit. While many 

manuscripts have been published on how to protect against 

the accumulation of Type I error, it is a rare article that 

addresses the accumulation of Type II error. Westermann and 

Hager (1986), for example, noted that even when the problem 

has been addressed in the literature, it has been dealt with 

in an oblique manner. 

Westermann and Hager (1986) have suggested that three 

general hypotheses be used in any research question: (a) the 

substantive (or educational) hypothesis (EH), the hypothesis 

of interest, which is a linear relationship that can not be 

directly tested; (b) the statistical hypothesis that can be 

tested directly; and (c) the derived statistical hypothesis 

(DSH) which is the research hypothesis stated either in the 

null or alternate form and which has optimal agreement 



between the s u b s t a n t i v e h y p o t h e s i s under study and a 

statistical h y p o t h e s i s . The connection between the EH and 

the DSH can be s y m b o l i z e d by EH --> DSH. An e x a m p l e of 

the three h y p o t h e s e s would be: the EH p o s t u l a t e s that 

no c o r r e l a t i o n exists between two v a r i a b l e s and is 

examined by a Pearson p r o d u c t - m o m e n t c o r r e l a t i o n : 

EH -> (DSH: £ = 0) = H 0 . The a d v a n t a g e s of e x a m i n i n g the 

r e s e a r c h under the three h y p o t h e s e s are in the e v a l u a t i o n of 

the error terms. 

W e s t e r m a n n and Hager (1986) also suggest two 

n o n t r a d i t i o n a l error p r o b a b i l i t i e s : 

1. s (epsiIon)-- the p r o b a b i l i t y of a c c e p t i n g the DSH 

when it is not valid; and 

2. ® (phi)-- the p r o b a b i l i t y of r e j e c t i n g the DSH when 

it is valid. 

The r e l a t i o n s h i p between the p r o b a b i l i t i e s of correct 

and incorrect decisions c o n c e r n i n g the Derived S t a t i s t i c a l 

H y p o t h e s i s (DSH) that most adequately r e p r e s e n t s the 

S u b s t a n t i v e H y p o t h e s i s (EH) and the error terms of alpha and 

beta can be seen in Table 1. 

In the general usage of e d u c a t i o n a l research, the 

a l t e r n a t e h y p o t h e s i s ( u a = u a = . . . = u * ) is true in r e l a t i o n s h i p 

to the s u b s t a n t i v e h y p o t h e s i s , in which C+l means are tested 

by C orthogonal contrasts. Since the r e l a t i o n s h i p of alpha 

and beta errors is s y m m e t r i c a l , W e s t e r m a n n and Hager have 

suggested that the D u n n - B o n f e r r o n i inequality, a p r o c e d u r e 



utilized to protect against the accumulation of Type I 

error, can also be applied to Type II errors. In Table 1, 

when the alternate hypothesis is true, epsilon will be as 

low as the maximum value of all alphas associated with the 

tests. Therefore, any control of Type I errors, in this 

case, is to control the wrong error term at the expense of 

the right error term. 

Table 1 

Relationship of Error Probability in the DSH Decision 

DSH = Hi DSH = H 0 

Valid Not Valid Valid Not Valid 

DSH Accepted l-®=l-p 

(Power) 
e = a 

(Type I) 
1-0=1-a e = p 

(Type II) 

DSH Rejected <D = p 

(Type II) 
1-e=1-a <t> = a 

(Type I) 
e = l-3 
(Power) 

Source: Westermann & Hager, 1986. 

Publications concerning Type II errors have in 

general focused on how to limit the accumulation of Type I 

errors, while maintaining adequate power (Rodger, 1974; 

Rosenthal & Rubin, 1984; Silverstein, 1986). Inasmuch as 

power is defined as 1 - 3, maintaining adequate power is 

actually a result of limiting the Type II error. A Type I 

error can only occur if the null hypothesis is true, and a 

Type II error can only occur if the alternate hypothesis is 

true. So, logically, one cannot limit both Type I errors 



and Type II errors simultaneously. Only one error term can 

be of concern at a time. If the null hypothesis is true, 

then it is appropriate to limit the accumulation of Type I 

errors. Likewise, if the alternate hypothesis is true, then 

it is appropriate to limit the accumulation of Type II 

errors. In practice, the researcher does not know which 

situation is true. In the case that the actual value of 

beta (.20) is much larger than alpha (.05), the accumulation 

of beta and the subsequent loss of power are more dramatic 

than the accumulation of alpha. Thus, the probability of 

falsely accepting at least one null hypothesis in a family 

of tests, when the alternate hypothesis is true, is high, 

precluding valid tests at the beginning of the study. 

Statement of the Problem 

The problem of this study is to determine the degree of 

accumulation of Type II error rates, while violating the 

assumptions of normality, for different specified levels of 

power among sample means. 

Purpose of the Study 

The purpose of this study is to analyze the 

accumulation of Type II error rates in a Helmert contrast 

and all possible pairwise comparisons at specified levels of 

power, and to analyze the effect of violating the assumption 

of normality in data generated by Monte Carlo methods where 

the alternate hypothesis is true. 



Questions 

The following questions were formulated to carry out 

the purpose of this study: 

1. What is the difference between the expected Type II 

error rate and the observed error rate for Helmert 

orthogonal contrasts and all possible pairwise comparisons 

over different levels of power and shape of the 

distributions? 

2. What is the difference between the expected and the 

observed experimentwise Type II error rates of the Helmert 

orthogonal contrasts and all possible pairwise comparisons 

for the different levels of power and shape of the 

distributions? 

3. How do the following procedures compare in the 

number of Type II errors for the levels of power and 

distribution: 

(a) Fisher Least Significant Difference with <xc = .05 

and the sample size determined from the beta error per 

family (p*); 

(b) Dunn-Bonferroni inequality procedure with a c = .05 

and the sample size determined from the beta error per 

contrast (p/c); and 

(c) Dunn-Bonferroni inequality procedure with a c = p/c 

and the sample size based on beta error per family (p*)? 



S i g n i f i c a n c e of the Problem 

In the a p p l i c a t i o n of research, d e c i s i o n s are made 

based on the results of s t a t i s t i c a l findings. The 

r e s e a r c h e r protects the findings by taking a c o n s e r v a t i v e 

a p p r o a c h because a wrong d e c i s i o n could affect lives and/or 

money. Since the d e t e r m i n a t i o n of a correct d e c i s i o n is so 

critical, the traditional a p p r o a c h is to protect the null 

h y p o t h e s i s against the p r o b a b i l i t y of a Type I error. 

W e s t e r m a n n and Hager (1986) argue that the stated null 

h y p o t h e s i s may not be the h y p o t h e s i s to p r o t e c t , but that 

reality should be p r o t e c t e d . If the a l t e r n a t e h y p o t h e s i s is 

in reality true, then it also should be p r o t e c t e d . Since 

beta and alpha errors are r e c i p r o c a l in their r e l a t i o n s h i p , 

the study of the a c c u m u l a t i o n of beta errors is equally 

important as the a c c u m u l a t i o n of alpha errors. 

D e f i n i t i o n of Terms 

The f o l l o w i n g d e f i n i t i o n s are s p e c i f i c a l l y related to 

this study. 

Monte Carlo s i m u l a t i o n methods were invented at Los 

Alamos, New Mexico, to deal with the difficult c a l c u l a t i o n s 

for nuclear research. Random samples from p o p u l a t i o n s of 

specific p a r a m e t e r s are g e n e r a t e d , and then a s t a t i s t i c is 

c o m p u t e d . This is the technique by which the analysis of 

the a c c u m u l a t i o n of beta will be studied (Tietjen, 1986). 



- T y P e — I — g r r o r concerns the decision to reject the nuil 

h y p o t h e s i s when it is true. The p r o b a b i l i t y of c o m m i t t i n g a 

Type I error, called a level of s i g n i f i c a n c e , is d e t e r m i n e d 

by the r e s e a r c h e r and is designated by the Greek letter a 

(alpha) (Tietjen,1986). 

A Type II error occurs when the r e s e a r c h e r fails to 

reject the null h y p o t h e s i s when it is false. The 

p r o b a b i l i t y of making a Type II error is d e s i g n a t e d by the 

Greek letter |J (beta). This error term is d e t e r m i n e d by the 

v a r i a b l e s of: (a) the level of s i g n i f i c a n c e and w h e t h e r a 

one-or two-tailed test is used, (b) sample size, (c) size of 

the p o p u l a t i o n standard deviation, and (d) the m a g n i t u d e of 

the d i f f e r e n c e s between the means (Kirk, 1982) 

— P o w e r — — L l L S test is the p r o b a b i l i t y of correctly 

r e j e c t i n g the null h y p o t h e s i s when the a l t e r n a t i v e 

h y p o t h e s i s is true. The p r o b a b i l i t y of m a k i n g a correct 

r e j e c t i o n is equal to 1 - |J (Kirk, 1982). 

The effect size index is the degree of d e p a r t u r e from 

the null h y p o t h e s i s that is d e t e c t a b l e . It is a 

s t a n d a r d i z e d raw effect size expressed as the d i f f e r e n c e of 

the p o p u l a t i o n means divided by the standard d e v i a t i o n of 

either p o p u l a t i o n (since they are assumed equal). A priori, 

the effect size can be estimated by the f o l l o w i n g : small 

effect size d = .2, medium effect size d = .5, and large 

effect size d = .8 (Cohen, 1977). 
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A priori orthogonal contrast is a linear relationship 

of the combination of means with coefficients such that (a) 

at least two coefficients are not equal to zero, (b) the sum 

of the coefficients is equal to zero, and (c) the sum of the 

crossproducts is zero. The number of orthogonal contrasts 

in any set of £ + l means is equal to £. Thus, the 

contrasts are mutually nonredundant and uncorrelated 

(Ferguson, 1981; Kirk, 1982). 

Pairwise comparisons involve a linear relationship of 

the combination of means with coefficients such that two of 

the 

coefficients are equal to 1 and -1, and all others are equal 

to zero. The number of pairwise comparisons for c + 1 means 

is equal to [(c+1)-l](c+1)/2 (Kirk, 1982). 

Helmert contrast of four means is an orthogonal set of 

contrasts with the coefficients of: 

(1) 1 -1/3 -1/3 -1/3 
( 2 ) 0 1 - 1 / 2 - 1 / 2 
(3) 0 0 1 -i . 

The substantive—(or educational) hypothesis (EH) refers 

to a linear or other functional relationship in which the 

researcher is interested (Westermann & Hager, 1986). 

The derived statistical hypothesis (DSH) usually 

concerns the correlation or variance and corresponds to the 

substantive hypothesis in an optimal manner (Westermann & 

Hager, 1986). 



The statistical hypothesis is the actual statistical 

test applied to the null or the alternate hypothesis 

(Westermann & Hager, 1986). 

Strict criteria for evaluation of the hypotheses would 

specify that the DSH would be accepted only if all means are 

significantly different. 

Lenient criteria for evaluation of the hypotheses would 

allow the DSH to be accepted if at least one contrast or 

comparison is significant (Westermann & Hager, 1986). 

Uniform or rectangular distributer. i s defined on an 

interval where the probability of a random variable is equal 

anywhere in the interval (Tietjen, 1986). 

Exponential or J-shaped distributer, i s a continuous 

probability distribution whose density function can be 

derived as: f_[xj_ = e~", for x > 0 (Robinson, 1985). 

E r r 0 r — r a t e P e r—contrast (a P C) is equal to the number of 

contrasts falsely declared significant divided by the total 

number of contrasts (Kirk, 1982). For this study, the error 

rate per contrast will be based on the number of contrasts 

falsely declared nonsignificant. 

Error rate per experimpnt ( a „ ) l s the number of 

contrasts falsely declared significant, or for this study 

nonsignificant, divided by the number of experiments. This 

is the error rate most utilized and is an expected number of 

errors per experiment (Kirk, 1982). 
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Error rate exoerimentwi«» ( a E w ) i s t h e n u m b e r o f 

experiments with at least one contrast falsely declared 

significant, or for this study nonsignificant divided by 

the number of experiments. This is a more conservative 

approach than the per experiment error rate and is a 

probability. For orthogonal contrasts, the relationship is 

defined as: p E W = 1 - (1 - (JPC)
C and the error rate 

experimentwise cannot exceed the error rate per experiment 

(Kirk, 1982 ) . 

Error rate familywise is utilized in ANOVA as the unit 

of concern for the family of contrasts, with the error rate 

per family and the error rate familywise determined 

similarly to the per experiment and experimentwise 

(Kirk, 1982) . 

Del imitations 

The present study is limited to the following 

experimental, simulated conditions: 

1. All samples are from one of the three population 

distributions: normal, uniform, and exponential. 

2. Only the case of four equally spaced treatment 

groups of equal variance are considered. 

3. The set of Helmert contrast and the set of all 

possible pairwise comparisons will be utilized. 

4. The levels of power to be considered will be .70, 

.80, and .90. 
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5. The sample size of each group will be equal and 

will be determined by the specified level of power for the 

overall F-test and the beta error per contrast. 



CHAPTER II 

REVIEW OF RELATED LITERATURE 

History of Power 

The literature concerning Type II errors revolves 

around the concept of power analysis. Before 1925, the 

field of statistical analysis was dominated by two men: 

Karl Pearson, most known for his product-moment correlation 

coefficient, and R. A. Fisher, probably the most widely 

known statistician of all time and the founder of many 

statistical techniques, including the analysis of variance. 

These two men were challenged by the appearance in the field 

of J. Neyman and E. S. Pearson. A controversy soon 

developed between the two factions regarding the general 

area of hypothesis testing and the interpretation of 

statistical tests. 

The philosophies of the Fisherian school and the 

Neyman-Pearson school, respectively, can be compared, as 

noted by Hogben (1957), as the "Backward Look" and the 

"Forward Look." Upon the detection of a significant 

difference, for example, the Fisher approach would note that 

the null hypothesis was invalid. The Neyman-Pearson 

approach, on the other hand, would only conclude this upon 

the completion of a series of tests that had repeatedly 

1 2 
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rejected the null. F u r t h e r , t h e two schools differed on 

whether the s i g n i f i c a n c e level should be stated a priori. 

C o n t r a r y to popular belief, while Fisher favored the .05 

level, he did not believe it to be firm nor that it had to 

be stated a priori. in contrast, the N e y m a n - P e a r s o n 

approach was to state a priori the s i g n i f i c a n c e level and 

adhere to it for all s t a t i s t i c a l d e c i s i o n s . 

The third d i s a g r e e m e n t between the two a p p r o a c h e s 

involves the i n t e r p r e t a t i o n of the results of r e s e a r c h . The 

F i s h e r i a n approach is a s y m m e t r i c a l in its p r o c e s s . If the 

null is rejected, then it can be stated that the effect size 

is not zero, while if the null is retained, then it cannot 

be stated that the effect size is zero. The effect size of 

the a l t e r n a t e h y p o t h e s i s is stated as not equal to zero, but 

to what extent this is true is never specified, while the 

N e y m a n - P e a r s o n approach is to state an exact value for the 

a l t e r n a t e h y p o t h e s i s . 

The issue of the a s y m m e t r i c a l approach of the Fisher 

school p r o m p t e d Neyman and P e a r s o n to introduce the concept 

of power and Type II error. Type I error was r e c o g n i z e d by 

the Fisher school, but only in context of the level of 

p r o b a b i l i t y a r e s e a r c h e r was w i l l i n g to accept for a false 

r e j e c t i o n of the null. The N e y m a n - P e a r s o n a p p r o a c h 

d e t e r m i n e d the Type I error p r o b a b i l i t y , over a series of 

tests, by the ratio of incorrect decisions (Chase & Tucker, 

1976 ) . 
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D e s p i t e the theoretical work and c o n t r o v e r s i e s on the 

subject, the concept of power did not find c o m m o n usage in 

s t a t i s t i c a l a p p l i c a t i o n until Cohen's article on power in 

1962. Cohen later developed his concept more fully in his 

b ° 0 k ' S t a t i s t i c a l Power A n a l y s i s for the Behavioral 

Sciences, in 1969. After the a p p e a r a n c e of Cohen's article 

and book, surveys of current r e s e a r c h journals and later 

p u b l i c a t i o n s by other authors attempted to d e t e r m i n e and 

define the e v o l v i n g role of the power concept in s t a t i s t i c a l 

a p p l i c a t i o n , a process which continued into the 1980's 

(Brewer, 1972; Sawyer & Ball, 1981; W o o l l e y & D a w s o n , 1983). 

The second area of p u b l i c a t i o n in the field c o n c e r n e d the 

c o n t a i n i n g of Type I errors while m i n i m i z i n g the loss of 

Type II errors (de Cani, 1984; Games, 1971; P e t r i n o v i c h & 

Hardyck, 1969; Rodger, 1967; R o s e n t h a l & Rubin, 1984). 

Cohen is the expert in power analysis most often cited 

by r e s e a r c h e r s , and the tables in his book are the source of 

r e f e r e n c e for nearly all power analysis. Since power is 

defined in its r e l a t i o n s h i p to beta, one can not discuss the 

a c c u m u l a t i o n of beta without d i s c u s s i n g power. The focus 

of power analysis is to d e t e r m i n e if a r e s e a r c h design has 

the power to detect a significant d i f f e r e n c e between the 

null and a l t e r n a t e p o p u l a t i o n d i s t r i b u t i o n . 
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Cohen envisioned power analysis as a situation in 

which, a priori, a researcher could ascertain the 

probability of having significant research results by 

consulting the tables in his book to determine the power of 

a statistical test. Cohen's calculation of power is a 

direct result of the effect size, sample size, and the level 

of alpha. The researcher could fix the values of two of the 

three variables for a certain level of power and choose the 

third variable (usually sample size). The researcher could 

then conclude if, a priori, an adequate sample size was 

available for a certain research design. 

However, excessively high power would increase the 

likelihood of detecting a trivial effect due to the decrease 

m the standard error as a result of an increase in the 

sample size. With an increase in power, a trivial 

difference could be found significant if the sample size 

were large enough. Therefore, Cohen (1977) recommended that 

an adequate level of power be .80. A power level of .80 is 

a beta level of .20. The ratio of an alpha level of .05 to 

a beta level of .20 indicates that the probability of 

committing a Type I error is more serious than the 

probability of committing a Type II error. 

M u l t i p l e C o m p a r i s o n s 

S i m u l t a n e o u s m u l t i p l e c o m p a r i s o n p r o c e d u r e s are 

p e r f o r m e d on (a) a limited n u m b e r of a priori c o m p a r i s o n s 

based on specific h y p o t h e s e s ; (b) all or most of the 



16 

pairwise comparisons of means; and (c) exploratory 

analysis of combinations of means (Klockars & Saxs, 1986). 

Debate exists among authors as to the optimal method or 

procedure of dealing with the accumulation of errors 

(usually Type I) in these multiple comparison procedures. 

Games (1971) offers ten procedures, based in part on the F 

test and the multiple t statistic. Seven of the procedures 

use the multiple t statistic, with the differences found in 

the determination of the critical values. Four of the 

procedures, as outlined by Games, include: 

1. Specify the per comparison rate for each orthogonal 

contrast and allow the experimentwise error rate to increase 

to 1 - (l - a )
c (Games, 1971). 

The variability among means is divided into exclusive 

parts and is equal to the variability found in the between-

group sum of squares. The main advantage of using the 

orthogonal contrasts is in the error rate, since the 

probability of a Type I (or Type II) error in one comparison 

is more likely to be isolated and not repeated on the other 

contrasts of the set. In view of this property, some 

authorities debate the need to have a significant overall F 

test before the testing of the individual contrasts 

(Games, 1971; Kirk, 1982; Klockars & Sax, 1986). 

According to the multiplicative rule of independent 

events, the probability of not making a Type I error for C 
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contrasts is (l - a)«. Therefore, the probability of making 

one or more Type I errors will be equal to 1 - (1 - «) c. As 

the number of contrasts increases, the probability of Type I 

errors also increases (Games, 1971; Kirk, 1982). 

An example of the comparisons of alpha and beta levels 

with error rate per contrasts can be seen in Table 2. 

Table 2 

Expected Type I and Type II Error Rates Per C Numhsr nf 

Orthogonal Contrasts 

Number of: Alpha Beta Beta Beta 

Means Contrasts . 05 . 10 . 20 . 30 

3 2 . 0975 . 1900 . 3600 .5100 
4 3 . 1426 .2710 . 4880 . 6570 
5 4 . 1855 . 3439 . 5904 . 7599 
6 5 .2262 . 4095 . 6723 .8319 

1 0 9 . 3697 .6513 . 8658 .9718 

Prob . of Type I error (alpha) = 1 " (1 - a ) c 

Prob . of Type II error (beta) = l - (1 - fl)c 

2. Specify the per comparison rate for all possible 

comparisons and allow the experimentwise error rate to 

increase as the number of means increases (Games, 1971). 

The major difference in orthogonal and nonorthogonal 

comparisons is in the number of errors in an experiment. 

The errors are isolated in orthogonal tests. However, in 

nonorthogonal tests, errors are likely to be replicated 

in the experiment (Klockars & Sax, 1986). As a result, in 
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multiple co.parisons, the e.phasis is on the accumulation of 

Type I errors. 

3. Specify the experimentwise error rate by the use of 

an overall £ test (Games, 1971). 

From the upper limit of the error rate per family of 

tests, the Type I error rate per contrast can be derived 

accordingly by the expression a = 1 - (i - Qlr)ct similarly. 

according to Westermann and Hager (1983), the upper limit 

for Type II errors per contrast in a family of tests is 

equal to 1 - (l - p K )
c . 

An alternative could be to utilize the Fisher's Least 

Significant Difference, which offers the least protection of 

a Type I error and, therefore, the most protection for a 

Type II error. The Fisher's LSD is often not recommended, 

however, since the probability of a Type I error is likely 

to be larger than the specified level of significance. The 

Fisher's LSD is also seen in the idea of "protected" and 

"unprotected." if the Fisher LSD is performed after a 

significant F-ratio, then the test is referred to as a 

"Fisher-protected" LSD. Otherwise it is referred to as the 

"unprotected LSD." The implication is that the error rate 

per contrast will be higher than expected when the F test is 

unprotected (Roscoe, 1975). 

A significant overall F test means that the researcher 

rejects H 0: b u t d o e s n o t i n d l c a t e w h i c h m e a n s ^ 

different or how the means differ. For a larger numbers of 
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means it is possible to obtain a significant F with all 

nonsignificant t' s . When the boundaries of the areas of 

rejection of the F test and the multiple t tests are 

diagrammed, the difference between regions can be examined 

to explain how the tests differ in results. Since the 

significant F test does not indicate which contrast is 

significant, a Type II error will occur in the LSD test 

(Games, 1971) . 

4. Limit the upper boundary of the experimentwise 

error rate by the Dunn-Bonferroni inequality (Games, 1971). 

One of the statistical methods used to contain the 

accumulation of Type I errors is the Dunn-Bonferroni 

procedure. Dunn (1961) originally examined the properties 

of the Bonferroni inequality, which shows that the error 

rate experimentwise could not exceed the sum of the per 

contrast error rate, that is, a E W < L a p c . I f e a c h £ c o n t r a s t 

is tested at the <x/C level of significance, then the total 

error rate experimentwise will not exceed a (Games, 1971). 

The Dunn-Bonferroni procedure is additive in 

definition. The error rate for any family of tests 

(°tEW) is not exceeded by the sum of the C per contrast error 

rate (Kirk, 1982). The procedure can be based on orthogonal 

or nonorthogonal comparisons, but in general the procedure 

is more powerful as the number of contrasts tested 

approaches the number of means (Games, 1971). 
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In the ordered B o n f e r r o n i p r o c e d u r e , power is saved for 

contrasts of more interest, while s a c r i f i c i n g power for 

other c o n t r a s t s of less interest. An example of s u b d i v i d i n g 

the error term based on the D u n n - B o n f e r r o n i p r o c e d u r e can be 

found in the study by de Cani (1984), which found that in 

ordered or weighted B o n f e r r o n i p r o c e d u r e s : (a) the loss of 

power is larger at the overall alpha level at .05 than at 

•10; (b) main effects have less loss of power, while 

i n t e r a c t i o n suffers the most loss of power; (c) loss of 

power is larger at low levels of power rather than at higher 

levels of power; and (d) the a v e r a g e level of power suffers 

less relative to the change of overall alpha level. 

R o s e n t h a l and Rubin (1984), in a related study of 

u n o r d e r e d , p a r t i a l l y ordered, and c o m p l e t e l y ordered 

contrasts, found that the power of the D u n n - B o n f e r r o n i 

p r o c e d u r e increases as one p r o g r e s s e s from u n o r d e r e d to 

c o m p l e t e l y ordered contrasts. In this study as well as the 

de Cani article, the e m p h a s i s is still on u n d e r g o i n g 

procedures to limit the accumulation of Type I error, while 

m a i n t a i n i n g power. 

S i l v e r s t e i n (1986) also conducted a study of the Dunn-

B o n f e r r o n i procedure, Type I error rate, and power. 

This study found that although the D u n n - B o n f e r r o n i p r o c e d u r e 

controls the risk of Type I errors, when the number of tests 

p e r f o r m e d increases, the risk of failing to reject a false 

null also increases. S i l v e r s t e i n also found that i n c r e a s i n g 
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sample size was more effective in increasing the power of a 

test than was reducing the level of significance. Indeed, 

Games (1971) noted that there is little logic in resorting 

to sophisticated, statistical methods to control the 

probability of accumulation of Type I error for all 

contrasts when no attempt is made to control the probability 

of Type II error accumulating in the contrasts. While 

Westermann and Hager (1986) suggest the use of the Dunn-

Bonferroni inequality procedure to control for the 

accumulation of either Type I or Type II errors, the 

procedure may have difficulties that preclude its use. 

Westermann and Hager (1986) noted in their article 

summary that the researcher should "always adjust the error 

probability a and/or 0 that is connected with the false 

rejection of the statistical metahypothesis" (p. 38). in 

order to accomplish these adjustments, the Westermann and 

Hager article posed two perpectives. 

First, in the case where the value of the Type II error 

probability is determined for the family of tests, with = 

P ' o/C = 0 c/c, the critical value is then based on p o . The 

article suggests that the researcher is free to choose 

"comparatively large values of a." ( p. i 3 2). However, the 

example demonstrated utilizes «, - e 0 - - .05 and Pc! = « o / 3 

•01667, with the sample size based on this critical value. 
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The problems with this p r o c e d u r e are two-fold in the 

d e t e r m i n a t i o n of the critical value and sample size. From 

the example, the power level of the test is set at .95, 

which a c c o r d i n g to Cohen (1977) is an excessive level of 

power that will require a much larger sample size than that 

required for power set at the adequate level of .80. The 

p r o c e d u r e to determine the sample size based on the beta 

rate per familywise ( p P c ) is found in Cohen's tables, but 

Cohen's tables are not a v a i l a b l e for unusual critical values 

that would result from the beta rate per c o m p a r i s o n . 

The article could also be viewed from the second 

p e r s p e c t i v e of setting the critical values of cxc = 0 e and 

d e t e r m i n i n g the sample size with the overall beta rate per 

f a m i l y w i s e (3*). If the were equal to .20, for example, 

then the a c would equal .20/£, which could be c o n s i d e r e d an 

e x c e s s i v e l y large critical level of s i g n i f i c a n c e in the 

p u b l i s h i n g circles. A l t h o u g h the critical value of this 

p r o c e d u r e is n o n t r a d i t i o n a l , the p r o c e d u r e for d e t e r m i n i n g 

similar sample size is found in current r e s e a r c h . For 

example, in the K e s e l m a n (1976) study, the sample size for 

the Tukey p r o c e d u r e was based on the beta rate per 

f a m i l y w i s e . 

In c o m p a r i n g the two p r o c e d u r e s , the power of the test 

can be examined through the area of the region of r e j e c t i o n . 

For example, if one starts with a sample size based on 

the overall stated F-test power, the change in the region of 
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rejection for the individual sets of contrasts/comparisons 

will increase or decrease the originally stated F test 

power, as seen in the Tables 3 and 4. 

Table 3 

Comparisons of the Proportion of A r e a under th» 

Two-Tailed Test of Orthogonal Contrasts with the Least 

Significant Difference and the Dunn-Bonferroni Prnnprinro 

with Four Groups 

Power Level .70 , 8 0 9 Q 

L S D .05/2=.025 .05/2=.025 .05/2=.025 

DB( .70 ) (.30/2)/3=.05 

D B ( , 8 0 ) (-20/2)/3=.033 

D B ( • 9 0 ) ( 10/2 ) /3 = .0167 

D B ( . 7 0 ) > LSD DB(.80) > LSD LSD > DB(.90) 
Difference: .025 . 0 0 8 3 .0083 

For the orthogonal contrasts, when the critical value 

is subdivided by the Dunn-Bonferroni procedure, a larger 

area of rejection (hence more power in the test) occurs in 

the power levels of .70 and .80, but not in the .90 level of 

power. For the pairwise comparisons, the LSD provides a 

larger or equal area of rejection than does the subdivided 

Dunn-Bonferroni, thus confirming that the power of the test 

is maximized as the number of contrasts approaches the 

number of means. Indeed, when a researcher utilizes 

orthogonal contrasts, the probability of both a Type I and 
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Type II error can be specified. However, if a researcher 

tests all possible palrwise means, then the probability of 

Type I error or Type II error, depending on the situation, 

increases as the number of means increases (Games, 1971). 

Table 4. 

Comparisons of the Proportion of u n d e r t h p r,lt,„Q 

Two-Tailed Test of Pairwise Contrasts with the 

Significant Difference and the Dunn-Bonferroni P r n o » H „ ^ 

with Four Groups 

Power 

.05/2=.025 05/2=.025 .05/2=.025 

DB(.70) ( .30/2)/6=.025 

DB(.80) 

DB(.90) 

( . 20/2)/6=.0167 

( . 1 0 / 2 ) / 6 = . 0 0 8 3 

DB(.70) = LSD 
Difference: o.0 

LSD > DB(.80) LSD > DB(.90) 
• 0083 .0167 

In summary, Type I and Type II errors are reciprocal in 

nature, but the researcher is usually faced with the problem 

of which error term to protect. Traditionally, research 

methodology has protected against the occurrence of the Type 

I error, while ignoring the probability of the occurrence of 

the Type II error. The researcher could utilize (a) the 

traditional approaches as outlined by Games (1971) for both 

Type I and Type II errors, or (b) the nontraditional 

approaches such as the ones outlined by Westermann and Hager 

(1986). 



CHAPTER III 

PROCEDURES 

The comparisons of contrasts and the analysis of 

variance in this Monte Carlo simulation require that the 

following assumptions be made: 

1. The simulated observations will be samples from 

three population distributions: normal, uniform, and 

exponential. 

2. Observations are random samples from the 

populations. 

3. In the null case, the numerator and denominator of 

the F ratio are estimates of the same population variance. 

4. The numerator and denominator of the F ratio are 

independent of each other. 

5. The model equation, Y l d = u + a, + e 4 ( , , , reflects 

the sum of all the sources of variation that affect each 

Y i A 

6. The experiment contains all the treatment levels, 

aj's, of interest. 

7. The error term, e A ( 3 , , (a) is independent of all 

other error terms, and (b) is normally distributed within 

each treatment population, with (c) mean equal to zero and 

(d) variance equal to one (Kirk, 1982). 

25 
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The Models 

The model of interest is the fixed-effects for a 

completely randomized design model: 

1*3 = 31 + id + e l d (i = 1 n; i = 1 c + l). 

In the fixed effects model, the treatment effect, 

i l d = i s a c°nstant for all observations within a 

group but may vary for each i = l £ + 1 group and the 

sum of all aj 1 s is equal to zero. Since u and a., are 

constant for all observations within the population j., the 

only source of variation is due to the error effect, e ^ , 

which can be shown to equal to Y 4 J - u - ad (Kirk, 1982). 

The hypotheses of interest included the overall null 

hypothesis: 

H 0 • JUa - U 2 = U 3 = U u.4 

and the two sets of alternate hypotheses, which included: 

Set 1: Helmert Contrasts 

Hal : 111 ~ (ua + II3 + u_4) / 3 = 0, 
H» 2 : ii2 - (113 + JU4)/2 = 0, 
H a. 3 • U 3 U 4 — 0 . 

Set 2: All Pairwise Comparisons 

H»a: Uj - u 2 = 0, H a 4 : u 2 - u 3 = 0, 
H. a: u a - u 3 = 0, H. 0: u 2 - u 4 = 0, 
H« 3: u x - u 4 = 0, H a e : u 3 - u 4 = 0. 

The test statistics utilized for £ + 1 = 4 included: 

1. To test the overall F significance, the SWEEP 

function of SAS(IML) was utilized to calculate the sums of 

squares (Goodnight, 1979): 
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( SSE, - SSEo )/ c 

( S S E a )/( £ + i)( „ _ 

w h e r e SSE,. is the total sum of s q u a r e s and S S E a is the sum 

Of s q u a r e s error c a l c u l a t e d from the r e g r e s s i o n a n a l y s i s on 

the m o d e l e q u a t i o n . 

2. The m u l t i p l e t s t a t i s t i c , F i s h e r ' s L e a s t 

S i g n i f i c a n t D i f f e r e n c e , w i l l test (a) the o r t h o g o n a l 

c o n t r a s t s and p a i r w i s e c o m p a r i s o n s and (b) the o r t h o g o n a l 

c o n t r a s t s w h e r e the s a m p l e size is b a s e d on the p o w e r of 

1 - p/c: 

X. • j 
t = 

J i i . r r o r (2 ( C ^ / O j ) ) 

In w h i c h is the c o e f f i c i e n t term and M S a r r . o r = 

( S S E 2 ) / [ N - ( c + l ) ] . and the c r i t i c a l v a l u e of t . o s / a w i t h the 

d e g r e e s of f r e e d o m e q u a l to that of the M S . r r o r (Kirk, 

1 9 8 2 ) . 

3. The D u n n - B o n f e r r o n i p r o c e d u r e (_tD) u t i l i z e s 

the t s t a t i s t i c , but uses a d i f f e r e n t c r i t i c a l v a l u e , 

I D O/a i c , v = t , a / , ) / 0 i V 1 

w h e r e C is the n u m b e r of p l a n n e d c o n t r a s t s , and v is the 

n u m b e r of d e g r e e s of f r e e d o m for the As s u g g e s t e d 

by W e s t e r m a n n and H a g e r (1986), this p r o c e d u r e w a s to be 

u t i l i z e d w i t h the r e s p e c t i v e (3 v a l u e s of .10, .20, and .30. 
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The Simulation Plan 

In order to generate data for the study, a plan was 

employed of applying the F-test and the two specified 

multiple comparison procedures, and presenting the summary 

statistic. 

This study was conducted by means of a computer 

simulation using the SAS Matrix (IML) procedure. For the 

normal distribution, the error terms for each observation 

were produced by the RANNOR random number generator which 

generates numbers with a mean of zero and variance of one. 

For the uniform distribution, the error term was generated 

by the RANUNI procedure on the interval of 0 to 1. The 

exponential distribution was produced by the RANEXP, which 

generates uniform random numbers with a parameter of one 

(SAS Institute, Inc., 1988). 

The following procedure was used to obtain the sample 

size, means, and treatment effects for each group: 

1. The medium effect size (f = .25) was utilized from 

the Table 8.3.14 (Cohen, 1969, p . 308,) to determine the 

sample size for each group, where: 

Power = .90, nj = 58, 
Power = .80, nj = 44, and 
Power = .70, n.j = 36. 

The sample size was based on p/c values, where: 

Power = .97, nj = 76, 
Power = .93, nj = 64, and . 
Power = .90, nd = 58. 
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2. The range ( d, - b j £ ) is the distance between the 

largest and smallest of the c . 1 means. For intermediate 

variability with equally spaced means, the range was 

determined from Table 8.2.1 (Cohen. 1969) where b. - 2.68, 

and f is computed by the formula: 

d (c + 1) + i 

f = 2 >T 3(c) 

and where (c + l) = 4 Fnr f - or 
X ) * o r 1 - -25, the range would be 

d 2 = 2.68(.25) = .67 (Cohen, 1969, pp. 270-272). 

3. The means were equally spaced over the range of .67 

of a within-population standard deviation, at an interval of 

d/(c) to give intermediate variability. Since the error 

term has a variance of 1, the within-population standard 

deviation is 1, and, therefore, the range will be .67 , with 

intervals of .2233. 

4. The grand mean was arbitrarily set at 10; then each 

observation was the sum of a randomly generated error term, 

the grand mean, and the treatment effect of that group. 

Therefore, the scores for each treatment group would be: 

I " = 10 + (- • 3350) + e i d , 
Y i a = 10 + (-.1117) + e±J , 
— 1 3 = 10 + .1117 + e±j, and 
li* = 10 + .3350 + j. 
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A n a l y s i s of Data 

The s i m u l a t i o n s in the study involved two m e t h o d s . 

The first method involved the c o m p u t a t i o n of an overall F 

test, and the u n p r o t e c t e d Least S i g n i f i c a n c e D i f f e r e n c e 

m u l t i p l e t, statistic, with the critical value of .05 for the 

o rthogonal and all p a i r w i s e c o m p a r i s o n s , and the Dunn-

B o n f e r r o n i _t statistic, with the orthogonal c o n t r a s t s and 

critical values based on p/c. The sample size for each group 

was based on the power of the overall 1? test. This 

p r o c e d u r e was replicated 1,000 times per each level of power 

for each d i s t r i b u t i o n . 

Method two involved the c o m p u t a t i o n s of an overall F 

test and the u n p r o t e c t e d Least S i g n i f i c a n t D i f f e r e n c e 

m u l t i p l e _t statistic with the critical value of .05 for the 

o r t h o g o n a l and all pairwise c o m p a r i s o n s , but the sample size 

would be determined from the power of p/c instead of the 

overall F test. This p r o c e d u r e was also r e p l i c a t e d 1000 

times per level of power for each d i s t r i b u t i o n . 

On the data from the c o n t r a s t s / c o m p a r i s o n s the 

f o l l o w i n g statistical analysis was p e r f o r m e d on each 

proposed d i s t r i b u t i o n . For M ethod One with sample size 

based on overall £ Test: 

1. The number of s i g n i f i c a n t results for the Dunn-

Bonferroni (tD) p r o c e d u r e was tabulated for each of the 3 

c o n t r a s t s over the 1,000 s i m u l a t i o n s and divided by 1000 to 

d e t e r m i n e the level of observed power. The results were 



31 

subtracted from 1.00 to determine the Type II error rate for 

the orthogonal contrasts. For each level of power, the 

resulting Type II observed error rate per contrast was 

compared to the expected error rate. 

2. The number of significant results for the Fisher's 

LSD statistic was tabulated for each simulation, then 

divided by 1000 to determine the level of observed power. 

The results were subtracted from 1.00 to determine the Type 

II error rate for the orthogonal contrasts and pairwise 

comparisons. For each level of power, the actual Type II 

error rate computed was compared to the expected error rate. 

3. For the strict evaluation criteria of each Fisher 

LSD and Dunn-Bonferroni procedure, the number of significant 

contrasts/comparisons per experiment was tabulated. The 

resulting number of experiments in which all the 

contrasts/comparisons were significant was divided by 1000 

and subtracted from 1.00 to give the experimentwise error 

rate. For the lenient criteria evaluation, the experiments 

in which at least one of the contrasts/comparisons was 

significant were also tabulated and divided by 1000 to 

indicate the percent of experiments in which at least one of 

the hypotheses was significant. 

4. The number of significant results for the F test 

was tabulated for each simulation (as would be found if the 

researcher were utilizing the PR0C GLM command of SAS) and 
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then divided by 1000 to determine the observed level of 

power. The results were subtracted from 1.00 to determine 

the Type II error rate familywise. The resulting error rate 

familywise was then compared to the expected Type II error 

rate for each level of power. 

5. The Kolmogorov-Smirnov test of goodness-of-fit was 

used to test whether the observed frequency distribution 

departed significantly from the hypothesized frequency 

distribution of the noncentral F. A noncentral F 

probability was determined and counted according to the 

cumulative frequency. The cumulative frequency distribution 

was divided into 17 intervals of .005, .01, .025, .05, 1 

, 2 , * 3 , -4> -5' 6> -7- -8. -9, .95, .975, .990, and .995. 

The level of significance for the goodness-of-fit tests was 

set at .05 and by the formula 1.36/4N , resulting in a 

critical value of Dmax = .043 for 1,000 replications 

(Roscoe, 1975). 

For Method Two with sample size based on beta per 

contrast: 

1. The number of significant results for the Fisher's 

LSD statistic was tabulated for each simulation, then 

divided by 1000 to determine the level of observed power. 

The results were subtracted from 1.00 to determine the 

Type II error rate for the orthogonal contrasts and pairwise 

comparisons. For each level of power, the actual Type II 

observed error rate was compared to the expected error rate. 
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2. For the strict evaluation criteria of each Fisher 

LSD and Dunn-Bonferroni procedure, the number of significant 

contrasts/comparisons per experiment was tabulated. The 

resulting number of experiments in which all the 

contrasts/comparisons were significant was divided by 1000 

and subtracted from 1.00 to give the experimentwise error 

rate. For the lenient criteria evaluation, the experiments 

m which at least one of the contrasts/comparisons were 

significant were tabulated and divided by 1000 to indicate 

the percent of experiments in which at least one of the 

hypotheses was significant. 

3. The number of significant results for the F test 

was tabulated for each simulation (as would be found if the 

researcher was utilizing the PR0C GLM command of SAS) and 

then divided by 1000 to determine the observed level of 

power. The results were then subtracted from 1.00 to 

determine the Type II error rate familywise. The resulting 

error rate familywise was then compared to the expected Type 

II error rate for each level of power. 

4. The Kolmogorov-Smirnov test of goodness-of-fit is 

used to test whether the observed frequency distribution 

departed significantly from the hypothesized frequency 

distribution of the noncentral F. A noncentral F 

probability was determined and counted according to the 

cumulative frequency. The cumulative frequency distribution 
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was divided into 17 intervals of .005, .01, .025, .05, .1 

' 2 ' - 3' , 4 ' - 5' -6- - 7' - 8' -9. -95, .975, .990, and .995. 

The level of significance for the goodness-of-fit tests was 

set at .05 and by the formula 1.36/JN , the critical value of 

Dmax = .043 for 1,000 replications (Roscoe, 1975). 



CHAPTER IV 

RESULTS OF THE S I M U L A T I O N S 

Introduction 

Before the s i m u l a t i o n s of this study were executed, a 

p r e l i m i n a r y study was initiated to verify the m a t h e m a t i c a l 

f o r m u l a s and coding of the e i g h t e e n computer p r o g r a m s , 

c o n s e q u e n t l y v e r i f y i n g the three different random n u m b e r 

g e n e r a t o r s , the coding, and the r e s u l t i n g f i n d i n g s . The 

s i m u l a t i o n s were then executed a c c o r d i n g to the two 

m e t h o d o l o g i e s under study. 

Method I examines the procedure in which the sample 

size is based on the power of the overall £ test, and then 

c o m p a r e s the results of (a) the Fisher LSD (T1 to T3) with 

a = .05, to the D u n n - B o n f e r r o n i p r o c e d u r e (TD1 to TD3) with 

a/c = |5/c, with the Helmert orthogonal contrasts, (b) all 

p a i r w i s e c o m p a r i s o n s (CI to C6), and (c) the F tests for the 

specified levels of power and d i s t r i b u t i o n s to v i o l a t i o n s of 

n o r m a l i t y . Method II examines the procedure in which the 

sample size is based on the power of the D u n n - B o n f e r r o n i 

inequality |J/c, and then c o m p a r e s the results of (a) the 

Fisher LSD with « = .05 for the Helmert o r t h o g o n a l contrasts 

(T1 to T3) to all pairwise c o m p a r i s o n s (CI to C6) with a c = 

.05, and (b) the F tests for the specified levels of power 

and d i s t r i b u t i o n s to v i o l a t i o n s of n ormality. 

35 
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P r e l i m i n a r y Study 

The final results of the p r e l i m i n a r y study are 

p r e s e n t e d in Tables 5 through 7. From the initial results, 

the standard deviation of the uniform d i s t r i b u t i o n was found 

not to be in a c c o r d a n c e to the s p e c i f i c a t i o n s of the study. 

A variety of a p p r o a c h e s were examined, and it was found that 

a standard d e v i a t i o n of a p p r o x i m a t e l y 1.00 would result if 

each error term was m u l t i p l i e d by the constant four. For 

the overall F test, the sweep o p e r a t i o n s were tested to 

d e t e r m i n e which type of coding would result in the correct 

sums of squares as found in the PROC GLM p r o c e d u r e of SAS. 

For theoretical reasons and accuracy of results, the Helmert 

o r t h o g o n a l coding was utilized in the sweep o p e r a t i o n s , 

which did produce the required sums of squares for the 

c o m p u t a t i o n s of the F test. 

Table 5 

.Verification of the Normal Random Number G e n e r a t o r 

Group Mean Std. Dev. Min. Value Max . V a l u e Range 

I 9 . 74 1.1387 7 . 155 11 . 667 4 . 51 

II 9 . 93 . 8606 8.126 12 , . 309 4.18 

III 10 . 14 1.0389 8 . 253 12 . 745 4.49 

IV 10.39 1.0885 7.811 12 . 960 5 . 14 

AVG . 10 . 05 1.0316 7 . 836 12 . 420 4 . 58 
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Table 6 

V e r i f i c a t i o n of the E x p o n e n t i a l Random N u m b e r G e n e r a t o r 

Group Mean St. Dev. Min. Value Max. Value Range 

I 10.75 1.1196 9 . 699 15.621 5 . 92 

II 10 . 63 .7100 9 . 916 13.596 3 . 67 

III 11.17 1.1553 10.117 15.468 5 . 35 

IV 11.15 . 7622 10 . 341 14 . 040 3 . 69 

AVG . 10 . 93 . 9367 10.018 14.681 4 . 65 

Table 7 

V e r i f i c a t i o n of the Uniform Random Number G e n e r a t o r 

Group Mean St. Dev. Min. Value Max. Value Range 

I 11.91 1.1711 9 . 794 13 . 657 3 . 86 

II 11.97 1.2163 9 . 997 13.885 3 . 89 

III 12.16 1.1102 10.409 14.059 3 . 65 

IV 12.43 1.0446 10.410 14.163 3 . 75 

AVG . 12.11 1.1355 10.153 13.941 3 . 03 

To better u n d e r s t a n d the tables and d i s c u s s i o n , the 

coding of the orthogonal c o n t r a s t s and p a i r w i s e c o m p a r i s o n s 

will be r e p e a t e d : 

T1/TD1 (3 -1 -l -i ) , 

T 2/TD2 (0 2 -1 -1 ) , 

T3/TD3 (0 0 1 -1 ) * 

CI ( 1 - 1 0 0) , C4 (0 1 - 1 o) , 
0 2 ( 1 0 - 1 0) , C5 (0 1 0 -1 ) , 
C 3 (1 0 0 -1), AND C6 (0 0 1 -1). 
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As p r e v i o u s l y stated, the p u r p o s e of M ethod I of the 

study was to evaluate the a c c u m u l a t i o n of the Type II error 

for: (a) the Helmert contrasts and all p a i r w i s e c o m p a r i s o n s , 

as measured by the n u m b e r of significant results per 

contrast and comparison; (b) the significant results 

e x p e r i m e n t w i s e of the contrasts and c o m p a r i s o n s ; and (c) the 

n u m b e r of significant results f a m i l y w i s e of the overall F 

test for each level of power and for the different 

d i s t r i b u t i o n s when the sample size is based on the overall F 

test. In Table 8, the results of Method I are p r e s e n t e d in 

the form of the observed level of power for the s t a t i s t i c a l 

p r o c e d u r e s utilized. 

In Table 8, the levels of power for the o r t h o g o n a l 

c o n t r a s t s were, in general, less than the expected levels of 

power. The Fisher LSD p r o c e d u r e was found to have a smaller 

level of power than the D u n n - B o n f e r r o n i p r o c e d u r e . The 

levels of power for the pairwise c o m p a r i s o n s were 

c o n s i d e r a b l y less than the expected levels, except for the 

C3 c o m p a r i s o n . The observed levels of power for the F test 

were as expected except for the uniform d i s t r i b u t i o n 

s i m u l a t i o n s , which were lower than expected, e s p e c i a l l y for 

the lower levels of power. 

The purpose of Method II of this study was to evaluate 

the a c c u m u l a t i o n of the Type II error for the (a) Helmert 

contrasts and all p a i r w i s e c o m p a r i s o n s , as m e a s u r e d by the 
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Table 8 

Observed Levels of Power of Method I for the D i s t r i b u t i o n s 

and S p e c i f i e d Levels of Power 

Normal E x p o n e n t i a l Uniform 

Power 70 80 90 70 80 90 70 80 

O r t h o g o n a l C o n t r a s t s 
Critical V a l u e s 

90 

a = 

T1 

T2 

T3 

. 05 

. 642 

. 383 

. 178 

. 700 

. 418 

. 183 

. 821 

.518 

. 213 

. 651 

. 398 

. 159 

. 728 

. 461 

. 190 

. 838 

.576 

. 244 

. 529 

. 283 

. 124 

. 712 

.413 

. 196 

. 722 

. 445 

.166 

a = 

TDl 

TD2 

TD3 

p/c 

. 729 

.514 

. 273 

. 727 

.471 

. 228 

. 768 

. 468 

. 167 

. 742 

. 520 

. 249 

. 761 

. 515 

. 229 

. 794 

.511 

. 194 

. 633 

. 389 

.210 

. 649 

. 369 

. 143 

. 660 

. 367 

. 127 

Pai rwi se C o m D a r i s o n s 

a = . 05 

CI .159 .154 .213 

C2 .465 .526 .648 

C3 .799 .870 .945 

C4 .164 .184 .216 

C5 .483 .570 .646 

C6 .178 .183 .213 

a = . 05 

•721 .765 .899 

.151 .187 . 234 . 123 .214 . 185 

.491 . 566 .679 . 384 . 539 . 575 

. 795 . 875 . 944 . 678 . 879 . 880 

. 146 . 190 . 238 . 127 . 165 . 192 

.475 . 572 . 688 . 364 . 533 . 546 

. 159 . 190 . 244 . 124 . 196 . 166 

F Tests 

. 690 . 800 . 898 . 551 . 791 . 798 

n u m b e r of significant results per contrast and c o m p a r i s o n ; 

(b) the number of s i g n i f i c a n t results e x p e r i m e n t w i s e of the 

c o n t r a s t s and c o m p a r i s o n s ; and (c) the n u m b e r of s i g n i f i c a n t 

results familywi se of the overall F test for each level of 

power and for the different d i s t r i b u t i o n s when the sample 
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size is based on a/c. The results of Method II, in Table 9, 

are presented in the form of the observed levels of power 

for the various statistical procedures utilized. 

Table 9 

Observed Levels of Power of Method II for the Distribution* 

and Specified Levels of Power 

Normal Exponential Uniform 

Power 90 93 97 90 93 97 90 93 97 

Orthogonal Contrasts 

a = . 05 
T1 
T2 
T3 

. 831 

. 524 

.219 

. 870 

. 599 

. 246 

. 932 

. 652 

. 271 

. 843 

. 563 

. 236 

. 853 

. 609 

. 245 

. 901 

. 656 

. 284 

. 721 

.411 

. 186 

. 749 

.472 

. 182 

. 835 

. 531 

. 205 

Pairwise Comparisons 

a = . 05 
CI . 247 . 255 .311 .213 . 236 
C2 . 680 . 738 . 797 . 662 . 780 
C3 . 949 . 960 . 990 . 952 . 959 
C4 .216 . 254 . 263 . 238 . 258 
C5 . 645 . 704 . 770 . 674 . 733 
C6 .219 . 246 . 271 . 236 . 245 

F Tests 

a = . 05 
. 904 . 932 . 973 . 902 . 927 

. 271 . 182 . 178 . 232 

. 768 . 533 . 560 . 693 

. 979 . 861 . 896 . 943 

. 277 . 166 .171 . 224 

. 778 . 547 . 608 . 662 

. 284 .186 . 182 . 205 

. 956 . 766 . 832 . 906 

The power levels of Method II, as seen in Table 9, are 

similar to those in the Method I in findings, with the 

levels of power being slightly higher in all areas than they 

were in Method I. However, it can be noted that the power 

levels of Method II are still lower than the expected levels 

of power. 
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Findings 

The data will be presented in accordance with the 

research questions and procedural questions examined. 

Research Questions 

1. What is the difference between the expected Type II 

error rate and the observed error rate between Helmert 

orthogonal contrasts and all possible pairwise comparisons 

for different levels of power and distributions? 

(See Tables 10 and 11 in Appendix A.) 

The observed error rates per contrast and per 

comparison were in general larger than the expected error 

rates. In Figures 1, 2, 3 and 5, it can be noted that the 

lowest error occurred with the Helmert orthogonal contrasts 

T1/TD1 (3 -1 -1 -l), followed by T2/TD2 (0 2 -1 -1), and 

with T3/TD3 (0 0 1 -1) for both Methods I and II. m Method 

I, the error rates of the LSD and the Dunn-Bonferroni 

procedures behaved as expected. With the normal and 

exponential distributions, the Dunn-Bonferroni procedure 

produced lower error with the lower beta levels, but higher 

error for the beta level of .10. With the uniform 

distribution, the LSD procedure produced lower error rates 

for the beta value of .30, then crossed to higher error 

rates for the lower beta values. 

For the pairwise comparisons, as seen in Figures 4 and 

6, the LSD of the contrast C3 (1 0 0 -1) for both methods 
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and distributions produced lower than expected error rates. 

Both methods are testing, at least for this study, the 

extreme linear range of the group means. Of all the 

contrasts and comparisons tested, these methods should have 

tested significantly different. The intermediate results 

were produced by the comparisons of C2 (1 o -1 0) and C5 (0 

1 0 -1). The largest error was produced by the comparisons 

of CI (1 -1 0 0), C4 (0 1 -1 0), and C6 (0 0 1 -1). 

The contrasts or comparisons that tested groups in 

which the means were next to each other had the highest 

error rate. For example, the orthogonal contrast T3 or TD3, 

and the pairwise comparisons CI, C4, and C6 produced the 

largest error rate. The orthogonal contrasts and pairwise 

comparisons in which, in theory, the means tested were 

separated by at least one group did produce lower error 

rates. Therefore, the linear relationship of the means did 

affect the observed error rates. This phenomenon occurred 

across the levels of power, method, and distributions. 

The familywise error was as expected with the exception 

of a higher than expected error rate for the uniform 

distributions. As seen in Figures 7 and 8, the familywise 

error rate was more greatly affected in the power level of 

.70 of Method I and the power level of .90 for Method II. 
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Figure 1. The error rate per contrast for Fisher LSD and 

the D u n n - B o n f e r r o n i p r o c e d u r e of the Helmert c o n t r a s t s of 

Method I: Normal d i s t r i b u t i o n . 
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Figure 2. The error rate per contrast for Fisher LSD and 

the Dunn-Bonferroni procedure of the Helmert contrasts of 

Method I: Exponential distribution. 
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Figure 3. The error rate per contrast for Fisher LSD and 

the Dunn-Bonferroni procedure of the Helmert contrasts of 

Method I: Uniform distribution. 
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Figure 4. The error rate per pairwise comparison for Fisher 

LSD of Method I: Normal distribution. 
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Figure 5. The error rate per contrast for Fisher LSD 

of the Helmert contrasts of Method II: Normal d i s t r i b u t i o n 
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Figure 6. The error rate per pairwise comparison for Fisher 

LSD of Method II: Normal distribution. 
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Figure 7. The familywise error rate for the different 

distributions and levels of power: Method I. 
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Figure 8. The familywise error rate for the different 

distributions and levels of power: Method II. 
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2. What is the difference between the expected and 

observed experimentwise Type II error rates of the Helmert 

orthogonal contrasts and all possible pairwise comparisons 

when using the different levels of power and the 

distributions? (See Tables 12 to 16, Appendix A.) 

If the experiments are evaluated from a strict 

criteria, the results indicate that all of the observed 

experimentwise error rates were much larger than the 

expected experimentwise error rates for all levels of power 

and the distributions (Tables 12 and 13, Appendix A). For 

the orthogonal contrasts, the number of complete significant 

experiments was less than 18 percent at the most for all 

levels of power, distribution, and method. The largest 

experimentwise error did occur with the largest beta values 

and the least error for the smallest beta value, as was 

expected. The error values did not vary to any extent from 

distribution to distribution (Figure 9). The pairwise 

comparisons contained only 3 experiments in the 18 

simulation situations in which all of the comparisons were 

significant (Table 13, Appendix A). Thus only 3 experiments 

in 18,000 were significant for all of the pairwise 

comparisons. All 3 experiments were from Method II, which 

did have larger sample sizes than Method I. 
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Figure 9. The experimentwise error rate for the Fisher LSD 

procedure of Method II for all levels of power and the 

distributions: Strict criteria. 
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Figure 10. The e x p e r i m e n t w i s e error rate for the D u n n -

Bonferroni procedure of Method I for all levels of power and 

the d i s t r i b u t i o n s . 



54 

P 

NORMAL 
— i — 

EXP. 
— * — 

UNFDRM 

90 91 92 93 94 95 96 97 

LEVEL OF P O M 

Figure 11. The experimentwise error rate for the Fisher LSD 

procedure of Method II for all levels of power and the 

distributions. 
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Table 17 

E x p e r i m e n t w i s e Error Rate for Method I: Strict C r i t e r i a 

Normal E x p o n e n t i a l Uniform 

Power 70 80 90 70 80 90 70 80 90 

O r t h o g o n a l C o n t r a s t s 

a = . 05 

.950 .941 .920 .936 .925 .876 .980 .940 .946 

a = p/C 

.850 .916 .953 .880 .860 .913 .945 .963 .966 

Pairwise C o m p a r i s o n s 
a = .05 

1 . 0 0 1 . 0 0 1 . 0 0 1 . 0 0 1 . 0 0 1 . 0 0 1 . 0 0 1 . 0 0 1 . 0 0 

Table 18 

E x p e r i m e n t w i s e Error Rate for Method II: Strict C r i t e r i a 

Normal E x p o n e n t i a l U n i f o r m 

Power 90 93 97 90 93 97 90 93 97 

O r t h o g o n a l C o n t r a s t s 

a = . 05 

.898 .868 .845 .882 .860 .822 .490 .932 .909 

Pairwise C o m p a r i s o n s 
a = .05 

1.00 .999 .999 1.00 .999 1.00 1.00 1.00 1.00 

If, however, the c o n t r a s t s / c o m p a r i s o n s are e x a m i n e d in 

the lenient criteria e v a l u a t i o n , in which at least one of 
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the p l a n n e d c o n t r a s t s / c o m p a r i s o n s are s i g n i f i c a n t , then some 

i n t e r e s t i n g trends emerge. First, by the d e f i n i t i o n of 

lenient criteria, the p e r c e n t a g e of such e x p e r i m e n t s either 

meets or exceeds the initial level of power for all levels 

of power, method, and d i s t r i b u t i o n . 

Second, when e x a m i n i n g the individual c o n t r a s t s or 

c o m p a r i s o n s , as the level of power increases, the n u m b e r of 

s i g n i f i c a n t e x p e r i m e n t s increases and the n u m b e r of 

n o n s i g n i f i c a n t e x p e r i m e n t s d e c r e a s e s . Method II had the 

least number of n o n s i g n i f i c a n t e x p e r i m e n t s across levels of 

power and to the v i o l a t i o n s of n o r m a l i t y . The n u m b e r of 

n o n s i g n i f i c a n t e x p e r i m e n t s for pairwise c o m p a r i s o n s was less 

than the orthogonal c o n t r a s t s in most of the s i m u l a t i o n s . 

For the Helmert c o n t r a s t s in Method I, the largest 

number of significant e x p e r i m e n t s occurred when only one of 

the contrasts was s i g n i f i c a n t . For Method II, the largest 

n u m b e r of significant Helmert contrasts occurred with at 

least two of the three c o n t r a s t s s i g n i f i c a n t . For the 

p a i r w i s e c o m p a r i s o n , the c o m b i n a t i o n of at least three of 

the six c o m p a r i s o n s being significant p r o d u c e s the largest 

number of results for all levels, d i s t r i b u t i o n s , and 

m e t h o d s . While zero results were found under the strict 

criteria, the lenient criteria p r o d u c i n g the least n u m b e r of 

n o n s i g n i f i c a n t results were two e x p e r i m e n t s for the power of 

.97 under Method II (normal d i s t r i b u t i o n ) . 
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Figure 12. The percent of significant c o n t r a s t s / c o m p a r i s o n s 

under the lenient criteria for Method I: Normal 

d i s t r i b u t i o n . 
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Figure 13. The percent of significant contrasts/comparisons 

under the lenient criteria for Method I: Normal 

distribution. 
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3. Regarding the three procedures--(a) the Fisher Least 

Significant Difference with a = .05 and the sample size 

determined from the beta error per family (pp); (b) the 

Dunn-Bonferroni inequality procedure with a = .05 and the 

sample size determined from the beta error per contrast 

(/c); and (c) the Dunn-Bonferroni inequality procedure with a 

= p/c and the sample size based on the beta error per family 

( ) - - h o w do the procedures compare in the number of Type II 

error rates for the levels of power and distribution? (See 

Tables 19 to 21, Appendix A.) 

Of the three procedures, both of the Dunn-Bonferroni 

procedures produced, in general, fewer Type II error rates 

than did the Fisher LSD. The exception is the Beta value of 

.10 in Method I, which, when subdivided by the number of 

contrasts, has a smaller area of rejection than the Fisher 

LSD. The Dunn-Bonferroni procedure of Method II did produce 

a lower Type II error rate than did the Dunn-Bonferroni 

procedure of Method I. As seen in Figure 14, when comparing 

the orthogonal contrasts of T1/TD1 and T2/TD2 in Method I 

and of T1 and T2 in Method II, Method II clearly produced 

lower error rates. For the pairwise comparisons, Method II 

produced smaller error rates than did Method I (Figure 15). 

Method II was able to produce this reduced error rate, but 

did so with a larger sample size requirement. Indeed, 
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Figure 14. The error rates per comparison of the Helmert 

orthogonal contrast for Methods I and II: Normal 

distribution. 
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Figure 15. The error rates per comparison of the pairwise 

comparisons for Methods I and II: Normal distribution. 
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across the methods, levels, and distributions, a larger 

sample size produced fewer Type II error rates. 

Procedural Question 

I. Are the £ test probabilities distributed according 

to the noncentral £ distribution? 

The Kolmogorov-Smirnov test of goodness of fit 

determines if an observed distribution departs from a 

theoretical distribution. For this, the observed 

distributions were the £ test probabilities of the 

noncentral £ distribution for the three distributions 

utilized in the study. (See Table 22, Appendix A.) 

As seen in Figures 16 to 21, the normal and exponential 

distributions for the level of power .70 are not 

significantly different from those expected, indicating that 

the observed noncentral £ distributions closely approximate 

the theoretical distribution. The simulations of the 

exponential distribution of Method I with a power of .90 had 

four significant intervals but the differences were small. 

All of the observed distributions of the uniform 

distributions are statistically different from the 

theoretical distribution. For Method I, 9 of 18 levels are 

significantly different. For Method II, 11 of the levels 

are significantly different. The distribution probability 

levels from .10 to .975 are less than the theoretical 

distribution, producing a pronounced curve instead of a 

straight line as expected. This confirms the general 
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Figure 16. Kolmogorov-Smirnov Goodness of Fit Test 

comparison of actual and theoretical levels of significance 

of the distributions of the F test probabilities theoretical 

distributions levels: Normal distribution, Method I, Power 

level .70. 



64 

J < 
• 
I-
0 < 

0,6 (18 02 Q4 

EXP, 

THEDRETCAL 

Figure 17. Kolmogorov-Smirnov Goodness of Fit Test 

comparison of actual and theoretical levels of significance 

of the distributions of the £ test probabilities theoretical 

distribution Levels: Exponential distribution, Method I, 

Power level .70. 
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F i gure 18. Kolmogorov-Smirnov Goodness of Fit Test 

•comparison of actual and theoretical levels of significance 

of the distributions of the £ test probabilities theoretical 

distributions levels: Uniform distribution, Method I, Power 

level . 70. 
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F i gure 19. Kolmogorov-Smirnov Goodness of Fit Test 

comparison of actual and theoretical levels of significance 

of the distributions of the £ test probabilities theoretical 

distributions levels: Normal distribution, Method II, Power 

level .70. 
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Figure 20. Kolmogorov-Smirnov Goodness of Fit Test 

comparison of actual and theoretical levels of significance 

of the distributions of the _F test probabilities theoretical 

distribution levels: Exponential distribution, Method II, 

Power level .70. 
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Figure 21. Kolmogorov-Smirnov Goodness of Fit Test 

comparison of actual and theoretical levels of significance 

of the distributions of the £ test probabilities theoretical 

distribution levels: Uniform distribution, Method II, Power 

level .70. 
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findings of the study, in that overall the uniform 

distribution experiments produced larger error terms and 

some unusual behavior of the contrasts. 



CHAPTER V 

SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS 

Summary 

The main purpose of this study was to investigate, 

through the use of Monte Carlo simulations, the accumulation 

of Type II errors to the varying levels of power, population 

distributions, and methodology. The Monte Carlo computer 

simulations controlled the various parameters of the study 

within each experiment. The simulation conditions included 

in this study involved equal sample size, equally spaced 

means, and three specified levels of power. The population 

distributions, from which the error terms were sampled, were 

normal, exponential, or uniform, with a mean of zero and 

standard deviation of one. 

The observed levels of power produced were obtained by 

computing the proportion of times each experiment yielded a 

rejection of the hypothesis at the specified levels of 

significance. The various error terms were computed by the 

proportion of times the experiment did not reject the 

hypothesis at the specified levels of power. 

The study was reported by the methodology procedure 

examined and the various research questions. Several points 

emerge from the study: 

70 
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1. Under the strict criteria, the accumulation of Type 

II experimentwise error does occur at a significant rate, 

especially for pairwise comparisons, at all specified levels 

of power. The high rate of accumulation can be expected 

since the value of beta is always much higher than alpha. 

The study does indicate that the probability of falsely 

accepting at least one null hypothesis in a family of tests, 

when in theory all of the alternate hypotheses are true, is 

high, precluding valid tests at the beginning of the study. 

2. Neither of the Dunn-Bonferroni procedures utilized 

in this study resulted in significant improvement over the 

Fisher LSD for the Helmert contrasts. Although the Dunn-

Bonferroni procedure with the sample size based on the beta 

per contrast did produce an improvement in the number of 

significant results, it did so at the cost of requiring a 

much larger sample size. The Dunn-Bonferroni procedure 

basing the critical value on the beta per contrast is too 

nontraditional of an approach to statistical methodology to 

be widely accepted unless dramatic changes could be 

verified. Therefore, the usage of either procedure could 

not be justified for a change in methodology. 

3. From the lenient criteria evaluation of the means, 

the optimum approach to limiting the accumulation of Type II 

errors is two-pronged. First, orthogonal contrasts are more 

favorable than pairwise comparisons in limiting the number 

of falsely accepted null hypotheses. The problem lies in 
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that some researchers view the use of contrasts as not being 

as easy as the pairwise approach, although this study does 

indicate that the extra effort and forethought of planning 

orthogonal contrasts will pay off in the increased number of 

significant findings. If pairwise comparisons are to be 

utilized, then the number of comparisons should be close to 

the number of means. 

Second, adequate sample size is indicated as a method 

of limiting the accumulation of Type II error. The use of 

Cohen's tables for the determination of sample size as 

indicated from this study only assures that the extreme 

differences in means will be detected, not the differences 

in adjacent means. Therefore, the probability of Type II 

errors remains high even if the proper sample size is 

utilized. Cohen's tables for sample size determination are 

fairly simple to use for the average researcher. Again, 

adequate sample size does require planning and forethought 

by the researcher. 

The use of orthogonal contrasts or of a limited number 

of comparisons and adequate sample size is not a panacea for 

the accumulation of Type II error. As a part of proper 

methodology, however, it will improve the probability of 

rejecting the null hypothesis when the alternate hypothesis 

is true. 

4. The accumulation of Type II error is irrespective of 

distribution. Although some variation among distributions 

was noted, no significant differences could be found. 
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Conclusions 

On the basis of the results of the various data 

presented, the following conclusions are appropriate. 

1. The accumulation of Type II exerimentwise error is 

as substantial as Westermann and Hager (1986) theorized for 

both orthogonal contrasts and pairwise comparisons. Using 

the strict criteria of evaluation, one could argue that with 

an experimentwise error rate of 1.00 (as was found in 15 of 

the 18 simulation situations), the accumulaltion of error is 

larger than one would imagine. 

2. The accumulation of Type II error is not affected by 

the violation of normality. Research that would support or 

contradict this finding is not found in the literature. 

3. The two proposed Dunn-Bonferroni methods under 

investigation to limit the accumulation of Type II error 

were not as effective as expected. Westermann and Hager's 

(1986) proposal that the Dunn-Bonferroni method be used to 

deal with this issue is interesting but is not applicable 

for the researcher. 

4. The procedures as outlined by Games (1971) to deal 

with Type I error are applicable for Type II errors, as 

well, namely: (a) isolate the error by the use of orthogonal 

contrasts; or (b) limit the number of pairwise comparisons 

to no more than the number of means. 
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Recommendations 

The purpose of this study was to examine the issue of 

the accumulation of Type II error and possible 

methodologies to limit that accumulation when the 

assumptions of normality are violated. The study did not 

deal with all of the issues of the accumulation of Type II 

error, since only the medium effect size and medium 

variability were explored. Additional situations for 

research are indicated to explore fully the implications of 

the accumulation of Type II error. 

It would be of interest to see if similar results would 

occur in the accumulation of Type II error: 

1. when the combination of the assumptions of 

normality and equal variance are violated; 

2. when the effect size and range variability are other 

than medium; and 

3. when the number of group means are less than four. 
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Table 10 

Observed Error Rate per Contrast and Comparison with 

Method I for the Distributions and Specified Levels of Power 

Power 70 

Normal 

80 90 

Exponent i a 1 

70 80 90 

Uniform 

70 80 90 

Orthogonal Contrasts 

a = . 05 

T1 . 358 . 300 . 179 . 349 .272 . 162 . 471 . 288 . 278 

T2 .617 . 582 . 482 . 602 . 539 .424 .717 . 587 . 555 

T3 . 822 .817 . 787 . 841 .810 . 756 . 876 . 804 . 834 

a = p / c 

TD1 . 271 . 273 . 232 . 258 . 239 . 206 . 376 . 351 . 340 

TD2 . 486 . 529 . 532 . 480 . 485 . 489 .611 . 631 . 633 

TD3 .727 . 772 . 833 . 751 . 771 . 806 . 790 . 857 . 873 

Pairwi se Comparisons 

a = . 05 

CI . 841 . 846 . 787 . 849 .813 . 766 . 877 . 786 .815 
C2 . 535 . 474 . 352 . 509 . 434 . 321 .616 . 461 .425 
C3 . 201 . 130 . 055 . 205 . 125 . 056 . 322 . 121 . 120 
C4 . 836 .816 . 784 . 854 . 810 . 762 . 873 . 835 . 808 
C5 .517 . 430 . 354 . 525 .428 . 312 . 636 . 467 . 454 
C6 . 822 .817 . 787 . 841 .810 . 756 .876 . 804 . 834 
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Table 11 

Observed Error Rate per Contrast and Comparison with 

Method II for the Distributions and Specified Levels 

of Power 

Normal Exponential Uniform 

Power 90 93 97 90 93 97 90 93 97 

Orthogonal Contrasts 

a = . 05 

T1 . 169 . 130 . 068 . 157 . 147 . 099 . 279 . 251 . 165 

T2 . 476 .401 . 348 . 437 . 391 . 344 . 589 . 528 . 469 

T3 . 781 . 754 . 729 . 764 . 755 .716 .814 .818 . 795 

Pairwise Comparisons 

a = . 05 

CI . 753 . 745 . 689 . 787 . 764 . 729 .818 . 822 . 768 

C2 . 320 . 262 . 203 . 383 . 220 . 232 . 467 . 440 . 307 

C3 . 051 . 040 .010 . 048 . 041 . 021 .139 . 104 . 057 

C4 . 784 . 746 . 737 . 762 . 742 . 723 . 834 . 829 . 776 

C5 . 355 . 296 . 230 . 326 . 267 . 222 . 453 . 392 . 338 

C6 . 781 . 754 .729 . 764 . 755 .716 .814 .818 . 795 
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Table 12 

The Percent of S i g n i f i c a n t C o n t r a s t s / C o m p a r i s o n s per 

Experiment with Method I for the Strict and Lenient Criteria 

Power 

Normal 

70 80 90 

E x p o n e n t i a l 

70 80 90 

Uniform 

70 80 90 

O r t h o g o n a l Contrasts 

a = .05 

Strict Criteria 

3 of 3 .050 .059 

Lenient Criteria 

2 of 3 .281 .336 

1 of 3 .491 •452 

Sum .822 848 

0 of 3 .178 .153 

a = p/C 

Strict C r i t e r i a 

3 of 3 .105 .084 

Lenient Criteria 

2 of 3 .397 .374 

1 of 3 .407 .726 

Sum 

080 

449 

414 

943 

. 057 

064 

274 

468 

806 

194 

075 .124 

. 366 

. 422 

. 863 

. 137 

475 

336 

930 

, 065 

020 

203 

470 

693 

, 307 

060 .054 

339 

463 

862 

138 

. 352 

. 467 

. 873 

. 127 

. 047 120 .140 087 

.405 .375 .410 .420 

.452 .401 .373 .398 

0 of 3 

a = .05 

909 .884 .904 .895 .887 .905 

091 .116 .096 .105 .113 .095 

Pairwise C o m p a r i s o n s 

055 

299 

469 

803 

117 

.037 .034 

. 277 

. 493 

. 807 

. 793 

. 267 

.518 

.819 

. 1 8 1 

Strict Criteria 

6 of 6 . 000 000 . 000 . 000 . 000 . 000 . 000 . 000 . 000 

Lenient Criteria 

5 of 6 . 001 025 . 036 .011 .031 . 061 . 006 . 023 . 021 

6 of 6 .123 172 . 241 . 141 . 205 . 293 . 084 . 192 . 175 

3 of 6 . 337 347 .418 . 313 . 351 . 386 . 236 . 337 . 383 

2 of 6 . 263 255 . 205 . 251 .221 . 163 . 361 . 349 . 233 

1 of 6 .164 123 . 073 . 157 . 110 . 066 . 204 . 134 . 124 

Sum . 898 922 . 973 . 873 .918 . 969 . 791 . 935 . 936 

0 of 6 .102 078 . 027 . 127 . 082 . 031 . 209 . 065 . 064 
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Table 13 

The Percent of S i g n i f i c a n t C o n t r a s t s / C o m p a r i s o n s per 

E x p e r i m e n t With Method II for the Strict and Lenient 

Criteria 

Power 

Normal 

90 93 97 

E x p o n e n t i a l 

90 93 97 

Uniform 

90 93 97 

O rthogonal C o n t r a s t s 

a = . 05 

Strict Criteria 

3 of 3 .102 .132 

Lenient C r i t e r i a 

2 of 3 

1 of 3 

Sum 

0 of 3 

425 

418 

487 

345 

. 155 

. 557 

. 276 

118 .140 .178 

. 459 

. 370 

. 474 

. 339 

511 

285 

510 

346 

473 

068 

378 

443 

945 .964 .988 .947 .953 .974 

055 .036 .012 .053 .047 .026 

Pairwise C o m p a r i s o n s 

870 .889 

130 .111 

091 

441 

416 

948 

052 

a = . 05 

Strict Criteria 

6 of 6 . 000 001 . 001 . 000 . 001 . 000 . 000 . 000 . 000 

Lenient Criteria 

5 of 6 . 050 079 . 106 . 063 . 065 . 105 . 021 . 026 . 050 

4 of 6 . 247 294 . 106 . 063 . 065 . 105 . 021 .026 . 050 

3 of 6 . 420 407 . 385 . 384 . 359 . 378 . 342 . 379 .404 

2 of 6 .198 157 .107 . 179 . 166 . 109 . 256 . 251 . 194 
1 of 6 . 062 045 . 033 . 078 . 055 . 036 . 128 . 102 . 065 

Sum . 977 983 . 998 . 977 . 982 . 989 . 923 . 939 . 974 

0 of 6 . 023 017 . 002 . 028 .018 .011 . 077 . 061 . 026 
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Table 14 

Percent of Significant E x p e r i m e n t s for Beta Value of .30 

Method I 

Normal Exp. Uniform 

Power 70 70 70 

Method II 

Normal Exp. 

90 90 

Uniform 

90 

a = . 05 

O rthogonal C o n t r a s t s 

T1 . 642 . 651 . 529 . 831 . 843 . 721 

T2 . 383 . 398 . 283 . 524 . 563 .411 

T3 . 178 . 159 . 124 . 219 . 236 . 186 
a = p / c 
TD1 . 729 . 742 . 633 

TD2 . 514 . 520 . 389 

TD3 .273 . 249 .210 

Pairwise C o m p a r i s o n s 
a = . 05 

CI . 159 . 151 . 123 . 247 . 213 . 182 

C 2 .465 .491 . 384 . 680 . 662 . 533 

C3 . 799 . 795 . 678 . 947 . 952 . 861 

C4 . 164 . 146 . 127 . 216 . 236 . 166 

C5 . 483 .475 . 364 . 645 . 674 . 547 

C6 . 178 . 159 . 124 .219 . 236 . 186 

Observed Level of Power 
a = . 05 

F Test . 721 . 690 . 551 . 904 . 920 . 766 

E x p e r i m e n t w i se 

Orthogonal Contrasts 
a = . 05 

3 of 3 . 050 . 064 . 020 . 102 . 118 . 510 

2 of 3 . 281 . 274 . 203 .425 . 459 . 346 

1 of 3 . 491 . 468 .470 .418 . 370 . 473 
0 of 3 . 178 . 194 . 307 . 055 . 053 . 130 
a = P/C 
3 of 3 . 150 . 120 . 055 

2 of 3 . 397 . 375 . 299 

1 of 3 .407 .401 .469 

Pairwise C o m p a r i s o n s 
a = . 05 

6 of 6 . 000 . 000 . 000 . 000 . 000 . 000 
5 of 6 . 011 . 011 . 006 . 050 . 063 . 176 
4 of 6 . 123 . 141 . 084 . 247 . 268 . 176 
3 of 6 . 337 .313 . 236 . 420 . 384 . 342 
2 of 6 . 263 . 251 . 261 . 198 . 179 . 246 
1 of 6 . 164 . 157 . 204 . 062 . 078 . 128 
0 of 6 . 102 . 127 . 209 . 023 . 280 . 077 
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Table 15 

Percent of Significant E x p e r i m e n t s for Beta Value of .20 

Method I Method II 

Normal Exp . Uniform Normal Exp . Uniform 

Power 80 80 80 93 93 93 

O r t h o g o n a l Contrasts 
a = . 05 

T1 . 700 . 728 .712 . 870 . 853 . 749 
T2 .418 . 461 .413 . 599 . 609 . 472 
T3 . 183 .190 . 196 . 246 . 245 . 182 
a = p/c 
TD1 . 727 . 761 . 649 
TD2 .471 .515 . 369 
TD3 . 228 . 229 . 143 

Pairwise Compari sons 
a = . 05 

CI . 154 . 187 .214 . 255 . 236 . 178 
C 2 . 526 . 566 . 539 . 738 . 780 . 560 
C3 . 870 . 875 . 879 . 960 . 959 . 896 
C4 . 184 .190 . 165 . 254 . 258 .171 
C5 . 570 . 572 . 533 . 704 . 733 . 608 
C6 .183 . 190 . 196 . 246 . 245 . 182 

Observed Level of Power a = .05 

£ test . 765 . 800 . 791 . 932 . 927 . 832 

E x p e r i m e n t w i s e 

O r t h o g o n a l C o n t r a s t s 
a = . 05 

3 of 3 . 059 . 075 . 060 . 132 . 140 . 068 
2 of 3 . 336 . 366 . 339 . 487 .474 . 378 
1 of 3 .452 . 422 .463 . 345 . 339 . 443 
0 of 3 .153 . 137 . 138 . 036 . 047 .111 
a = P/C 
3 of 3 . 084 . 140 . 037 
2 of 3 . 374 .410 . 277 
1 of 3 . 426 . 373 . 493 
0 of 3 . 116 . 113 . 193 

Pai rwi se C o m p a r i s o n s 
a = . 05 

6 of 6 . 000 . 000 . 000 . 001 . 001 . 000 
5 of 6 . 025 . 031 . 023 . 079 . 065 . 026 
4 of 6 . 172 . 205 . 192 . 294 . 336 .181 
3 of 6 . 347 . 351 . 337 .407 . 359 . 379 
2 of 6 . 255 . 221 . 249 . 157 . 166 . 251 
1 of 6 . 123 . 110 . 134 . 045 . 055 . 102 
0 of 6 . 078 . 082 . 065 .017 .018 . 061 
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Table 16 

Percent of Significant Experiments for Beta Value of ,10 

Method I 
Normal Exp. Uniform 

Power 90 90 90 

Method II 
Normal Exp. 

97 97 
Uniform 

97 

Orthogonal Contrasts 
a = . 05 
T1 . 821 . 838 . 722 . 932 . 901 . 835 

T2 .518 . 576 . 445 . 652 . 656 . 531 

T3 .213 . 244 . 166 . 271 . 284 . 205 

a = | P / C = . 03 

TD1 . 768 . 794 . 660 
TD2 . 468 .511 . 367 

TD3 . 167 . 194 . 127 
Pairwise Comparisons 

a = . 05 
CI .213 . 234 . 185 .311 .271 . 232 

C2 . 449 . 475 . 352 . 557 .511 . 441 

C3 . 945 . 944 . 880 . 990 . 979 . 943 

C4 .216 . 238 . 192 . 263 . 277 . 224 

C5 . 646 . 688 . 546 . 770 . 778 . 662 
C6 .213 . 244 . 166 . 271 . 284 . 205 

Observed Level of Power a = .05 

JP Test . 899 . 898 . 798 . 973 . 956 . 906 

Experimentwise 
Orthogonal Contrasts 

a = . 05 
3 of 3 . 080 . 124 . 054 . 155 . 178 . 091 
2 of 3 . 449 . 475 . 352 . 557 .511 . 441 
1 of 3 .414 . 336 . 467 . 276 . 285 .416 
0 of 3 . 057 . 065 . 127 .120 . 026 . 052 
a = p/c = . 03 
3 of 3 . 047 . 087 . 034 
2 of 3 . 405 . 420 . 267 
1 of 3 . 452 . 398 .518 
0 of 3 . 096 . 095 . 181 

Pairwise Comparisons 
a = . 05 

1 . 000 1 . 000 1 . 000 . 999 . 999 o
 

o
 

Familywise Error Rate 

F Test . 235 . 2 0 0 . 209 068 073 1 6 8 
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Table 19 

Error Rates for Beta Value of .30 

Method I Method II 

Normal Exp. Uniform Normal Exp . Uni f oi 

Power 70 70 70 90 90 90 

Error Rates per O r t h o g o n a l C o n t r a s t s 

a = . 05 

T1 . 358 . 351 .471 .169 157 . 279 

T2 .617 . 602 .717 .476 437 . 589 

T3 . 822 . 841 . 876 . 781 764 .814 

a = p / c 
TD1 . 271 . 258 . 367 

TD2 .486 .480 .611 

TD3 . 727 . 751 . 790 

Error Rates per C o m p a r i s o n s 

a = . 05 

CI . 841 . 849 . 877 . 753 787 .818 

C2 . 535 . 509 .616 .320 338 . 467 

C3 . 201 . 205 . 322 .051 048 . 139 

C4 . 836 . 854 . 873 . 784 762 . 834 

C5 .517 . 525 . 636 . 355 326 . 453 

C6 . 822 . 841 . 876 . 781 764 .814 

Exper imentwi se Error Rate 

N 

O r t h o g o n a l C o n t r a s t s 

a = . 05 

. 950 . 936 . 980 . 898 882 . 4 9 0 

a = p/C 

.850 .880 .945 

Pairwise C o m p a r i s o n s 

a = . 05 

1.000 1.000 

F Test .279 

1.000 1.000 1.000 

F a m i l y w i s e Error Rate 

.310 .449 .096 .080 

1 . 0 0 0 

. 234 
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Table 20 

Error Rates for Beta Value of .20 

Method I Method II 

Normal Exp. Uniform Normal Exp. Uniform 

Power 80 80 80 93 93 93 

Error Rates per Orthogonal Contrasts 

T1 . 300 . 272 . 288 .130 . 147 . 251 

T2 . 582 . 539 . 587 . 401 . 391 . 528 

T3 .817 . 810 . 804 . 754 . 755 .818 

a =3 / C = . 07 

TD1 . 273 . 239 . 351 

TD2 . 529 .485 . 631 

TD3 . 772 . 771 . 857 

Error rates per C o m p a r i s o n s 

a = .05 

CI . 846 .813 . 786 . 745 . 764 . 822 

C2 . 474 . 434 . 461 . 262 . 220 .440 

C3 . 130 . 125 .121 . 040 . 041 . 104 

C4 .816 .810 . 835 . 746 . 742 . 829 

C5 . 430 .428 . 467 . 296 . 267 . 392 

C6 .817 .810 . 804 . 754 .755 .818 

a = . 05 

a = p/C 

E x p e r i m e n t w i s e Error Rate 

O r t h o g o n a l Contrasts 

.941 .925 .940 .868 .860 .932 

.916 .860 .963 

Pairwise C o m p a r i s o n s 

a = .05 
1.000 1.000 1.000 .999 .999 1.000 

F a m i l y w i s e Error Rate 

F test .235 .200 .209 .068 .073 .168 
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Error Rates for Beta Value of .10 
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Method I Method II 

Normal Exp. Uniform Normal Exp . Uni f orn 

Power 80 80 80 97 97 97 

Error Rates per Orthogonal C o n t r a s t s 

a = . 05 

T1 . 179 . 162 . 278 . 068 . 099 . 165 

T2 . 482 .424 . 555 . 348 . 344 . 469 

T3 . 787 . 756 . 834 . 729 .716 . 795 

a = p / c 

CO 
o
 II 

TD1 . 232 . 206 . 340 

TD2 . 532 . 489 . 633 

TD3 . 833 . 806 . 873 

Error Rates per C o m p a r i s o n s 

a = . 05 

CI . 789 . 766 .815 . 689 . 729 . 768 

C2 . 352 . 321 . 425 . 203 . 232 . 307 

C3 . 055 . 056 . 120 .010 . 021 . 057 

C4 . 784 . 762 . 808 . 737 . 723 . 776 

C5 . 354 .312 .454 . 230 . 222 . 338 

C6 . 787 . 756 . 834 . 729 .716 . 795 

a = . 05 

920 

a = p/C = .03 

. 953 

a = .05 

E x p e r i m e n t w i s e Error Rate 

O r t h o g o n a l C o n t r a s t s 

876 . 946 . 845 8 2 2 909 

913 .966 

Pairwise C o m p a r i s o n s 

1.000 1.000 1.000 .999 1.000 1.000 

F a m i l y w i s e Error Rate 

F test .101 .102 .202 .027 .044 .094 
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************************************************** 
* * 

SET UP AND INITIALIZE VARIABLES 

* * * * * * * * 
* 

: * * * * * * * * * * * * * * * * 

PROC MATRIX FUZZ 
* 

* 

* 

* 

* 

* 

* * * * * * * 
* 

* * * * * * * * * * * * * * * * * * * * * . 

INITIALIZED VARIABLES 

* * * * * * : 
* 

* 

* 

* 

: * * * * * * * * * * * * * * * * * * 

N = 36; 
CNT=J(18,1,0); 
CFKS=J(18,1,0); 
CFKS(,1)=.005/.01/.025/.05/.1/.2/.3/.4/.5/.6/.7/.8/ 

.9/.95/.990/.995/1/0; 
TCNT=J(4,1,0); 
TDNT=J(4,1,0); 
SUMT=J(1,1,0); 
SUMTD=J(1,1,0) ; 
SUMC=J(1,1,0); 
SUMTCNT=J(4,1,0) ; 
SUMTDNT=J(4,1,0) ; 
FCNT=J(1,1,0); 
CPCNT=J(7,1,0); 
SUMCP=J(7,1,0) ; 
* * * * * * * * * * * * * * * * * * * . 

0=J(N,1,1); 
S1=J(N,1,9.665) ; 
S2=J(N,1,9.8883); 
S3=J(N,1,10.1117); 
S4=J(N,1,10.335); 
* * * * * * * * * * * * * * * * * * * . 

X2G1=J(N,1,3); 
X3G1=J(N,1,0); 
X4G1=J(N,1,0); 
GR1=0IIX2G1IIX3G1IIX4G1; 
X2G2=J(N,1,-1); 



X3G2=J(N,1,2); 
X4G2=J(N,1,0); 
GR2=0IIX2G2IIX3G2IIX4G2; 
X2G3=J(N,1,-1); 
X3G3=J(N,1,-1); 
X4G3=J(N,1,1); 
GR3=0IIX2G3IIX3G3IIX4G3; 
X2G4=J(N,1,-1) 
X3G4=J(N,1,-1) 
X4G4=J(N,1,-1) 
GR4=0IIX2G4IIX3G4IIX4G4; ******************************************************* 

* 
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RANDOM NUMBER GENERATOR NORMAL POWER 70 

i t * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 

* . 
9 

DO I = 1 TO 1000; 
* . 

9 

ERR1=RANNOR(J(N,1,0)); 
Y1=S1+ERR1; 
MAT1=GR11 IYl; 
ERR2=RANNOR(J(N,1,0)); 
Y2=S2+ERR2; 
MAT2=GR2IIY2; 
ERR3=RANNOR(J(N,1,0)); 
Y3=S3+ERR3; 
ERR4=RANNOR(J(N,1,0)); 
MAT3=GR3IIY3 
Y4=S4+ERR4; MAT4=GR4I IY4 ************ 

, MN1=MAT1(,5) 
1 MEAN1=MN1(., 
MN2=MAT2(,5) 
MEAN2=MN2(., 
MN3=MAT3(,5) 
MEAN 3 =MN 3(., 
MN4=MAT4(,5) 
MEAN4=MN4(.,). 
MEAN=MEAN1//MEAN2//MEAN3//MEAN4; 

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * . 

* 

* * * * * * * * * * * 

* USING SWEEP OPERATOR 

* COMPUTE ERROR SUM OF 

TO 

SQUARES 

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ^ ^ ^ ^ ^ # 
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M=MAT1//MAT2//MAT3//MAT4; 
A=M'*M; 
SSE1=SWEEP(A,1); 
SSE2=SWEEP(A,1:4); 
* • 

r 
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 
* 

* COMPUTE F RATIO AND COUNTING NUMBER OF REJECTIONS 

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 
i 

* 

* 

* 

FTEST=((SSE1(5,5)-SSE2(5,5))#/3)#/(SSE2(5,5)#/140); 
PROB=l-PROBF(FTEST,3,140,8.79); 
FPB=l-PROBF(FTEST,3,140); 
IF FPB < .05 THEN FCNT(,1)=FCNT(,1)+1; 

IF PROB < .005 THEN GOTO CNT005; 
ELSE IF PROB< .01 THEN GOTO CNT01; 
ELSE IF PROB < .025 THEN GOTO CNT025; 
ELSE IF PROB < .05 THEN GOTO CNT05; 
ELSE IF PROB < .1 THEN GOTO CNT1; 
ELSE IF PROB < .2 THEN GOTO CNT2; 
ELSE IF PROB < .3 THEN GOTO CNT3; 
ELSE IF PROB < .4 THEN GOTO CNT4; 
ELSE IF PROB < .5 THEN GOTO CNT5; 
ELSE IF PROB < .6 THEN GOTO CNT6; 
ELSE IF PROB < .7 THEN GOTO CNT7; 
ELSE IF PROB < .8 THEN GOTO CNT8; 
ELSE IF PROB < .9 THEN GOTO CNT9; 
ELSE IF PROB < .95 THEN GOTO CNT95; 
ELSE IF PROB < .975 THEN GOTO CNT975; 
ELSE IF PROB < .990 THEN GOTO CNT990; 
ELSE IF PROB < .995 THEN GOTO CNT995; 
ELSE GOTO CNTONE; 
CNT005: CNT(1,1)=CNT(1,1)+1; 
CNT01: CNT(2,1)=CNT(2,1)+1; 
CNT025:CNT(3,1)=CNT(3,1)+1; 
CNT05: CNT(4,1)=CNT(4,1)+1; 
CNT1: CNT(5,1)=CNT(5,1)+1; 
CNT2: CNT(6,1)=CNT(6,1)+1; 
CNT3: CNT(7,1)=CNT(7,1)+1; 
CNT4: CNT(8,1)=CNT(8,1)+1; 
CNT5: CNT(9,1)=CNT(9,1)+1; 
CNT6: CNT(10,1)=CNT(10,1)+1; 
CNT7: CNT(11,1)=CNT(11,1)+1; 
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CNT8: CNT(12,1)=CNT(12,1)+1; 
CNT9: CNT(13,1)=CNT(13,1)+1; 
CNT95: CNT(14,1)=CNT(14,1)+1; 
CNT975: CNT(15,1)=CNT(15,1)+1 
CNT990: CNT(16,1)=CNT(16,1)+l 
CNT995: CNT(17,1)=CNT(17,1)+1 
CNTONE: CNT(18,1)=CNT(18,1)+1 
* 

r 

* . 
**********************************************. 
* . ' 

r 

* ORTHOGONAL CONTRASTS *• 
* . ' 

t 

************************************fe:kfe:kie*****. 

* . ' 
/ 

* *CODING* *********** • 
Cl=3 -1 -1 -1; 
C2=0 2 -1 -1; 
C3=0 0 1 -1; 
* * * * * * * * * * * * * * * * * * * * „ 

CMAT=C1//C2//C3; 
CSQ=CMAT*CMAT'; 
CMEAN=CMAT *MEAN; 
MSE=SSE2 (5,5) It/140; 
* * * * * * * * * * * * * * * * * * * * . 

T1=CMEAN(1,1)#/(MSE#(CSQ(l,l)#/36)) ## . 5 
T2=CMEAN(2, 1) #/(MSE#(CSQ(2,2)#/36))##.5 
T3=CMEAN( 3,1) If / (MSE# (CSQ (3,3)#/36))##.5, ***********************************************. 

TlPROB=l-PROBT(T1,140); 
IF T1PROB < .025 OR T1PROB > .975 THEN T1SIG=1; 
ELSE IF PROB > .025 OR T1PROB < .975 THEN T1SIG=0* 
T2PROB=l-PROBT(T2,140) ; 
IF T2PROB < .025 OR T2PROB > .975 THEN T2SIG=1; 
ELSE IF T2PROB > .025 OR T2PROB < .975 THEN T2SIG=0* 
T3PROB=l-PROBT(T3,140); 
IF T3PROB < .025 OR T3PROB > .975 THEN T3SIG=1; 
ELSE IF T3PROB > .025 OR T3PROB < .975 THEN T3SIG=0; 

* * * 
DUNN-BONFERRONI PROCEDURE WITH BETA ERRORS***; 

* . 

IF T1PROB < .05 OR T1PROB > .95 THEN TD1SIG=1; 
ELSE IF T1PROB > .05 OR T1PROB < .95 THEN TD1SIG=0* 
IF T2PROB < .05 OR T2PROB > .95 THEN TD2SIG=1; 
ELSE IF T2PROB > .05 OR T2PROB < .95 THEN TD2SIG=0• 
IF T3PROB < .05 OR T3PROB > .95 THEN TD3SIG=1; 
ELSE IF T3PROB > .05 OR T3PROB < .95 THEN TD3SIG=0; 
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IF T1SIG=1 THEN TCNT(1,1)=TCNT(1,1)+1 
IF T2SIG=1 THEN TCNT(2,1)=TCNT(2,1)+1 
IF T3SIG=1 THEN TCNT(3,1)=TCNT(3,1)+1; 
IF T1SIG=1 AND T2SIG=1 AND T3SIG=1 THEN TSUM=1; 
ELSE TSUM=0; 
IF TSUM=1 THEN TCNT(4,1)=TCNT(4,1)+1; 

IF T1SIG=1 THEN SUMT(1,1)=SUMT(1,1)+1; 
IF T2SIG=1 THEN SUMT(1,1)=SUMT(1,1)+1; 
IF T3SIG=1 THEN SUMT(1,1)=SUMT(1,1)+1; 
* . 

9 

IF SUMT(1,1)=3 THEN SUMTCNT(1,1)=SUMTCNT(1,1)+1; 
IF SUMT(1,1)=2 THEN SUMTCNT(2,1)=SUMTCNT(2,1)+1; 
IF SUMT(1,1)=1 THEN SUMTCNT(3,1)=SUMTCNT(3,1)+1; IF SUMT(1,1)=0 THEN SUMTCNT(4,1)=SUMTCNT(4,1)+1; **************************************************** 

IF TD1SIG=1 THEN TDNT(1,1)=TDNT(1,1)+1; 
IF TD2SIG=1 THEN TDNT(2,1)=TDNT(2,1)+1; 
IF TD3SIG=1 THEN TDNT(3,1)=TDNT(3,1)+1; 
* . 

9 

IF TD1SIG=1 AND TD2SIG=1 AND TD3SIG=1 THEN TDSUM=1; 
ELSE TDSUM=0; 
IF TDSUM=1 THEN TDNT(4,1)=TDNT(4,1)+1; 
* . 

IF TD1SIG=1 THEN SUMTD(1,1)=SUMTD(1,1)+1 
IF TD2SIG=1 THEN SUMTD(1,1)=SUMTD(1,1)+1 
IF TD3SIG=1 THEN SUMTD(1,1)=SUMTD(1,1)+1 * • 

9 

IF SUMTD(1,1)=3 THEN SUMTDNT(1,1)=SUMTDNT(1,1)+1; 
IF SUMTD(1,1)=2 THEN SUMTDNT(2,1)=SUMTDNT(2,1)+1; 
IF SUMTD(1,1)=1 THEN SUMTDNT(3,1)=SUMTDNT(3,1)+1; 
IF SUMTD(1,1)=0 THEN SUMTDNT(4,1)=SUMTDNT(4,1)+1; 
* . 

9 
• 

9 

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 

COMPARISIONS 

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 

* . 
9 

* • 

CP1=1 - 1 0 0; 
CP2=1 0 -1 0; 
CP3=1 0 0-1; 
CP4=0 1 -1 0; 
CP5=0 1 0 -1; 
CP6=0 0 1 -1; 
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * . 

CPMAT=CP1//CP2//CP3// CP4// CP5// CP6; 
CPSQ=CPMAT*CPMAT'; 
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CPMEAN=CPMAT *MEAN; *********** 
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ; 

P1=CPMEAN(1,1)#/(MSE#(CPSQ(1,1)#/36))JJ.5 
P2=CPMEAN(2,1)#/(MSE#(CPSQ(2,2 J/36 Jj-5 
P3=CPMEAN(3,l)#/(MSE#(CPSQ(3,3)#/36))##.5 
P4=CPMEAN(4,1)«/(MSE#(CPSQ(4,4 J/36 JJ.5 
P5=CPMEAN(5,1)#/(MSE#(CPSQ(5,5 J/36 JJ.5 
P6=CPMEAN (6,1)#/ (MSE# (CPSQ(6,6)#/36) ) ## . 5 * • 

CP1PROB=1-PROBT(P1,140); , 
IF CP1PR0B <.025 OR CP1PROB >.975 THEN ClSIG-1; 
ELSE IF CP1PROB >.025 OR CP1PROB <.975 THEN C1SIG-0; 

CP2PROB=l-PROBT(P2,140); 
IF CP2PROB <.025 OR CP2PROB >.975 THEN C2SIG 
ELSE IF CP2PROB >.025 OR CP2PROB <.975 THEN C2SIG-0; 
CP3PROB=1-PROBT(P3,140); 
IF CP3PROB <.025 OR CP3PROB >.975 THEN C3SIG-1; 
ELSE IF CP3PROB >.025 OR CP3PROB <.975 THEN C3SIG-0; 
CP4PROB=l-PROBT(P4,140); . 
IF CP4PROB < .025 OR CP4PROB > .975 THEN C4SIG-1, 
ELSE IF CP4PROB >.025 OR CP4PROB <.975 THEN C4SIG-0, 

CP5PROB=1-PROBT(P5,140); 
IF CP5PROB <.025 OR CP5PROB >.975 THEN C5SIG-1; 
ELSE IF CP5PROB >.025 OR CP5PROB <.975 THEN C5SIG-0; 
CP6PROB=1-PROBT(P6,140) ; , 
IF CP6PROB <.025 OR CP6PROB >.975 THEN C6SIG-1, 
ELSE IF CP6PROB >.025 OR CP6PROB <.975 THEN C6SIG-0; 
*******************************************************> 

IF C1SIG=1 THEN CPCNT(1,1)=CPCNT(1,1)+1; 
IF C2SIG=1 THEN CPCNT(2,1)=CPCNT(2,1)+1; 
IF C3SIG=1 THEN CPCNT(3,1)=CPCNT(3,1)+1; 
IF C4SIG=1 THEN CPCNT(4,1)=CPCNT(4,1)+1; 
IF C5SIG=1 THEN CPCNT(5,1)=CPCNT(5,1)+1; 
IF C6SIG=1 THEN CPCNT(6,1)=CPCNT(6,1)+1; 
IF C1SIG=1 AND C2SIG=1 AND C3SIG=1 AND C4SIG-1 AND 
C5SIG=1 AND C6SIG=1 THEN CSUM=1; 
ELSE CSUM=0; 
IF CSUM=1 THEN CPCNT(7,1)=CPCNT(7,1)+1; 

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 
* * * * * * * * * * * * * * * * * * 

IF C1SIG=1 
IF C2SIG=1 
IF C3SIG=1 
IF C4SIG=1 
IF C5SIG=1 
IF C6SIG=1 
* • 

IF SUMC(1, 
IF SUMC(1, 
IF SUMC(1, 

THEN 
THEN 
THEN 
THEN 
THEN 
THEN 

SUMC(1,1) 
SUMC(1,1) 
SUMC(1,1) 
SUMC(1,1) 
SUMC(1,1) 
SUMC(1,1) 

=SUMC(L,L)+L; 
=SUMC(1,1)+1; 
=SUMC(1,1)+1; 
=SUMC(1,1)+1; 
=SUMC(L,L)+1; 
=SUMC(L,L)+1; 

1)=6 THEN SUMCP(1,1)=SUMCP(1,1)+1; 
1)=5 THEN SUMCP(2,1)=SUMCP(2,1)+1; 
1)=4 THEN SUMCP(3,1)=SUMCP(3,1)+1; 
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IF SUMC(1,1)=3 THEN SUMCP(4,1)=SUMCP(4,1)+1; 
IF SUMC(1,1)=2 THEN SUMCP(5,1)=SUMCP(5,1)+1; 
IF SUMC(1,1)=1 THEN SUMCP(6,1)=SUMCP(6,1)+1; 
IF SUMC(1,1)=0 THEN SUMCP(7,1)=SUMCP(7,1)+1; 
* 

* 

* 

SUMT=J(1,1,0); 
SUMTD=J(1,1,0); 
SUMC=J(1,1,0); 
END; 
******* EXPERIMENT RATE COMPUTATIONS***************; 
* . 

9 

* . 

TERPC1=TCNT(1,1)#/1000 
TERPC2=TCNT(2,1)#/1000 
TERPC3=TCNT( 3,1) It/1000 
TDERPC4=TDNT(1,1)#/1000 
TDERPC5=TDNT(2,1)#/1000 
TDERPC6=TDNT(3,1)#/1000 
TERPE=TCNT(4,1)#/1000; 
TDERPE=TDNT(4,1)#/1000; 
ERPF=FCNT#/1000; 
* ; 

CPERPC1=CPCNT(1,1)#/1000 
CPERPC2=CPCNT(2,1)#/1000 
CPERPC3=CPCNT(3,1)#/1000 
CPERPC4=CPCNT(4,1)#/1000 
CPERPC5=CPCNT(5,1)#/1000 
CPERPC6=CPCNT(6,1)#/1000 
CPERPE=CPCNT(7,1)#/1000; 
* 

* 

* 

***********KOLMOGOROV—SMIRNOV*******************• 
• 
r 

* • 
/ 

CFCNT=CNT#/1000; 
MAXDIFF=CFKS-CFCNT; 
* . 

/ 

* . 
/ 

*********** *PRINT*******************************• 
* • 

TITLE ' NORMAL DISTRIBUTION POWER70 '; 
* . 

t 

PRINT 
TERPC1 TERPC2 TERPC3 TDERPC4 TDERPC5 TDERPC6 
TERPE TDERPE ERPF CPERPC1 CPERPC2 CPERPC3 CPERPC4 
CPERPC5 CPERPC6 CPERPE CFCNT MAXDIFF SUMTCNT SUMTDNT 
SUMCP; 
RUN; 
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