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The study seeks to determine the degree of accumulation
of Type II error rates, while violating the assumptions of
normality, for different specified levels of power among
sample means. The study employs a Monte Carlo simulation
procedure with three different specified levels of power,
methodologies, and population distributions.

On the basis of the comparisons of actual and observed
error rates, the following conclusions appear to be
appropriate.

1. Under the strict criteria for evaluation of the
hypotheses, Type II experimentwise error does accumulate at
a rate that the probability of accepting at least one null
hypothesis in a family of tests, when in theory all of the
alternate hypotheses are true, is high, precluding valid
tests at the beginning of the study.

2. The Dunn-Bonferroni procedure of setting the
critical value based on the beta value per contrast did not
significantly reduce the probability of committing a Type I1

error in a family of tests.




3. The use of an adequate sample size and orthogonal
contrasts, or limiting the number of pairwise comparisons to
the number of means, is the best method to control for the
accumulation of Type II errors.

4. The accumulation of Type Il error is irrespective

of distributions.
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CHAPTER 1

INTRODUCTION

The use of statistical packages in the current
computers allows the researcher to test multiple hypotheses
from the data collected. The researcher is faced, however,
with the problem of accumulation of errors of each
hypothesis tested. Even though the individual! test is the
conceptual unit for defining error probabilities, the family
of tests is often considered as a unit. While many
manuscripts have been published on how to protect against
the accumulation of Type 1 error, it is a rare article that
addresses the accumulation of Type II error. Westermann and
Hager (1986), for example, noted that even when the problem
has been addressed in the literature, it has been dealt with
in an oblique manner.

Westermann and Hager (1986) have suggested that three
general hypotheses be used in any research question: (a) the
substantive (or educational) hypothesis {EH), the hypothesis
of interest, which is a linear relationship that can not be
directly tested; (b) the statistical hypothesis that can be
tested directly; and {(c) the derived statistical hypothesis
(DSH) which is the research hypothesis stated either in the

null or alternate form and which has optimal agreement

[y



between the substantive hypothesis under study and a
statistical hypothesis. The connection between the EH and
the DSH can be symbolized by EH --> DSH. An example of
the three hypotheses would be: the EH postulates that

no correlation exists between two variables and is

examined by a Pearson product-moment correlation:

EH --> (DSH: p = 0) Ho. The advantages of examining the
research under the three hypotheses are in the evaluation of
the error terms.

Westermann and Hager (1986} also suggest two
nontraditional error probabilities:

1. € {(epsilon)-- the probability of accepting the DSH
when it is not valid; and

2. ® (phi)-- the probability of rejecting the DSH when
it is valid.

The relationship between the probabilities of correct
and incorrect decisions concerning the Derived Statistical
Hypothesis (DSH} that most adequately represents the
Substantive Hypothesis (EH) and the error terms of alpha and
beta can be seen in Table 1.

In the general usage of educational research, the
alternate hypothesis (ui=uz=...=uwx) is true in relationship
to the substantive hypothesis, in which C+1 means are tested
by C orthogonal contrasts. Since the relationship of alpha
and beta errors is symmetrical, Westermann and Hager have

suggested that the Dunn-Bonferroni inequality, a procedure




utilized to protect against the accumulation of Type I
error, can also be applied to Type II errors. In Table 1,
when the alternate hypothesis is true, epsilon will be as
low as the maximum value of all alphas associated with the
tests. Therefore, any control of Type I errors, in this
case, is to control the wrong error term at the expense of
the right error term.

Table 1

Relationship of Error Probability in the DSH Decision

DSH = H, DSH = H,
Valid Not Valid Valid Not Valid
DSH Accepted 1-0=1- e=q 1-0=1-« e=f
{Power) (Type I} (Type II)
DSH Rejected o= l-g=1-a b= €=1-
(Type I1) {Type I) (Power)

Source: Westermann & Hager, 1986.

Publications concerning Type II errors have in
general focused on how to limit the accumulation of Type I
errors, while maintaining adequate power (Rodger, 1974 ;
Rosenthal & Rubin, 1984; Silverstein, 1986). Inasmuch as
power is defined as 1 - B, maintaining adequate power is
actually a result of limiting the Type II error. A Type 1
error can only occur if the null hypothesis is true, and a
Type II error can only occur if the alternate hypothesis is

true. So, logically, one cannot limit both Type I errors




and Type II! errors simultanecusly. Only one error term can

be of concern at a time. If the null hypothesis is true,
then it is appropriate to limit the accumulation of Type 1
errors. Likewise, if the alternate hypothesis is true, then
it is appropriate to limit the accumulation of Type I1I
errors. In practice, the researcher does not know which
situation is true. 1In the case that the actual value of
beta (.20) is much larger than alpha (.05}, the accumulation
of beta and the subsequent loss of power are more dramatic
than the accumulation of alpha. Thus, the probability of
falsely accepting at least one null hypothesis in a family
of tests, when the alternate hypothesis is true, is high,
precluding valid tests at the beginning of the study.
Statement of the Problem

The problem of this study is to determine the degree of
accumulation of Type II error rates, while violating the
assumptions of normality, for different specified levels of
power among sample means.

Purpose of the Study

The purpose of this study is to analyze the
accumulation of Type II error rates in a Helmert contrast
and all possible pairwise comparisons at specified levels of
power, and to analyze the effect of violating the assumption
of normality in data generated by Maonte Carlo methods where

the alternate hypothesis is true.



Questions

The following questions were formulated to carry out
the purpose of this study:

1. What is the difference between the expected Type 11
error rate and the observed error rate for Helmert
orthogonal contrasts and all possible pairwise comparisons
over different levels of power and shape of the
distributions?

2. What is the difference between the expected and the
observed experimentwise Type I1 error rates of the Helmert
orthogonal contrasts and all possible pairwise comparisons
for the different levels of power and shape of the
distributions?

3. How do the following procedures compare in the
number of Type !I errors for the levels of power and
distribution:

(a) Fisher Least Significant Difference with a. = ,05
and the sample size determined from the beta error per
family (B»):

(b) Dunn-Bonferroni inequality procedure with X, = .05
and the sample size determined from the beta error per
contrast (fi/c); and

{(c) Dunn-Bonferroni inequality procedure with . = B/c

and the sample size based on beta error per family (Bs)?




Significance of the Problenm

In the application of research, decisions are made
based on the results of statistical findings. The
researcher protects the findings by taking a conservative
approach because a wrong decision could affect lives and/or
money. Since the determination of a correct decision is so
critical, the traditional approach is to protect the null
hypothesis against the probability of a Type I error.
Westermann and Hager (1986) argue that the stated null
hypothesis may not be the hypothesis to protect, but that
reality should be protected. If the alternate hypothesis is
in reality true, then it also should be protected. Since
beta and alpha errors are reciprocal in their relationship,
the study of the accumulation of beta errors is eqgually
important as the accumunlation of alpha errors.

Definition of Terms

The following definitions are specifically related to

this study.

Monte Carlo simulation methods were invented at Los

Alamos, New Mexico, to deal with the difficult calculations
for nuclear research. Randonm samples from populations of
specific parameters are generated, and then a statistic is
computed. This is the technique by which the analysis of

the accumulation of beta will be studied (Tietjen, 19886},



A Type 1 error concerns the declision to reject the null

hypothesis when it is truye. The probability of committing a
Type I error, called a level of significance, is determined
by the researcher and is designated by the Greek letter o
{alpha) (Tietjen,1986),

A Type II error occurs when the researcher fajils to

reject the null hypothesis when it is false. The
probability of making a Type II error is designated by the
Greek letter B (beta). This error term is determined by the
variables of: {(a) the level of significance and whether a
one-or two-tailed test is used, (b) sample size, {c) size of
the population standard deviation, and (d) the magnitude of
the differences between the means (Kirk, 1982).

The power of the test is the probability of correctly

rejecting the null hypothesis when the alternative
hypothesis is true. The probability of making a correct
rejection is equal to 1 - 8 (Kirk, 1982).

The effect size index is the degree of departure from

the null hypothesis that is detectable. It is a
standardized raw effect size expressed as the difference of
the population means divided by the standard deviation of
either population (since they are assumed equal). A priori,
the effect size can be estimated by the following: small

effect size d = .2, medium effect size d = .5, and large

effect size d .8 (Cohen, 1977).




A priori orthogonal contrast is a linear relationship

of the combination of means with coefficients such that (a)
at least two coefficients are not equal to zero, (b) the sum
of the coefficients is equal to zero, and {c) the sum of the
crossproducts is zero. The number of orthogonal contrasts
in any set of ¢ + 1 means is equal to . Thus, the
conirasts are mutually nonredundant and uncorrelated
(Perguson, 1981; Kirk, 1982).

Pairwise comparisons involve a linear relationship of

the combination of means with coefficients such that two of

the

coefficients are equal to ! and -1, and all others are equal
to zero. The number of pairwise comparisons for c + 1 means
is equal to [(c+1)-1](c+1)/2 (Kirk, 1982).

Helmert contrast of four means is an orthogonal set of

contrasts with the coefficients of:
1) 1 -1/3 -1/3 -1/3
2) 0 1 -1/2 -1/2
3) o 0 1 -1

The substantive (or educational) hypothesis (EH) refers

to a linear or other functional relationship in which the
researcher is interested {(Westermann & Hager, 1986).

The derived statistical hypothesis (DSH) usually

concerns the correlation or variance and corresponds to the
substantive hypothesis in an optimal manner (Westermann &

Hager, 1986).




The statistical hypothesis is the actual statistical

test applied to the null or the alternate hypothesis
(Westermann & Hager, 1986).

Strict criteria for evaluation of the hypotheses would

specify that the DSH would be accepted only if all means are
significantly different.

Lenient criteria for evaluation of the hypotheses would

allow the DSH to be accepted if at least one contrast or
comparison is significant {Westermann & Hager, 1986},

Uniform or rectangular distribution is defined on an

interval where the probability of a random variable is equal
anywhere in the interval (Tietjen, 1986).

Exponential or J-shaped distribution is a continuous

probability distribution whose density function can be
derived as: f(x) = e ™, for x > 0 (Robinson, 1985) .

Error rate per contrast (apc) is equal to the number of

contrasts falsely declared significant divided by the total
number of contrasts {Kirk, 1982). Por this study, the error
rate per contrast will be based on the number of contrasts
falsely declared nonsignificant.

Error rate per experiment (ape) is the number of

contrasts falsely declared significant, or for this study

nonsignificant, divided by the number of exXperiments. This

is the error rate most utilized and is an eXpected number of

errors per experiment (Kirk, 1882).
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Error rate experimentwise (aew) is the number of

experiments with at least one contrast falsely declared

significant, or for this study nonsignificant, divided by

the number of experiments. This is a more conservative
appreoach than the per experiment error rate and is a
probability. For orthogonal contrasts, the relationship is
defined as: PBpyw = 1 - (1 - Bec)® and the error rate
experimentwise cannot exceed the error rate per experiment
(Kirk, 1982).

Error rate familywise is utilized in ANOVA as the unit

of concern for the family of contrasts, with the error rate
per family and the error rate familywise determined
similarly to the per experiment and experimentwise
(Kirk, 1982},
Delimitations

The present study is limited to the following
experimental, simulated conditions:

1. All samples are from one of the three population
distributions: noermal, uniform, and eXponential,

2. Only the case of four equally spaced treatment
groups of equal variance are considered.

3. The set of Helmert contrast and the set of all
possible pairwise comparisons will be utilized.

4. The levels of power to be considered will be .70,

.80, and .90.




5. The sample size of each group will be equal and

will be determined by the specified level of power for the

overall F-test and the beta eérror per contrast.

11



CHAPTER II
REVIEW OF RELATED LITERATURE

History of Power

The literature concerning Type II errors pevolves
around the concept of power analysis, Before 1925, the
field of statistical analysis was dominated by two men:

Karl Pearson, most known for his product-moment correlation
coefficient, and R. A. Fisher, probably the most widely
known statistician of all time and the founder of many
statistical techniques, including the analysis of variance.
These two men were challenged by the appearance in the field
of J. Neyman and E. §. Pearson. A controversy soon
developed between the two factions regarding the general
area of hypothesis testing and the interpretation of
statistical tests.

The philosophies of the Fisherian school and the
Neyman-Pearson school, respectively, can be compared, as
noted by Hogben (1957}, as the “Backward Look"” and the
"Forward Look." Upon the detection of a significant
difference, for example, the Fisher approach would note tha;
the null hypothesis was invalid. The Neyman-Pearsoan
approach, on the other hand, would only conclude this upon

the completion of a series of tests that had repeatedly
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rejected the null. Further,the two schools differed on
whether the significance level should be stated a priori.
Contrary to popular belief, while Fisher favored the .05
level, he did not believe it to be firm nor that it had to
be stated a priori. In contrast, the Neyman-Pearson
approach was to state a priori the significance level and
adhere to it for all statistical decisions.

The third disagreement between the two approaches
involves the interpretation of the results of research. The
Fisherian approach is asymmetrical in its process. If the
null is rejected, then it can be stated that the effect size
is not zero, while if the null is retained, then it cannot
be stated that the effect size ils zero. The effect size.of
the alternate hypothesis is stated as not equal to zero, but
to what extent this is true is never specified, while the
Neyman-Pearson approach is to state an exact value for the
alternate hypothesis.

The issue of the asymmetrical approach of the Fisher
school prompted Neyman and Pearson to introduce the concept
of power and Type II error. Type I error was recognized by
the Fisher school, but only in context of the level of
probability a researcher was willing to accept for a false
rejection of the null. The Neyman-Pearson approach
determined the Type I error probability, over a series of
tests, by the ratio of incorrect decisions (Chase & Tucker,

1976) .
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Despite the theoretical work and controversies on the
subject, the concept of power did not find common usage in
statistical application until Cohen's article on power in
1962, Cohen later developed his concept more fully in his

book, Statistical Power Analysis for the Behavioral

Sciences, in 1969. After the appearance of Cohen's article
and book, surveys of current research journals and later
publications by other authors attempted to determine and
define the evolving role of the power concept in statistical
application, a process which continued into the 1980's
(Brewer, 1972; Sawyer & Ball, 1981:; Woolley & Dawson, 1983) .,
The second area of publication in the field concerned the
containing of Type I errors while minimizing the loss of
Type II errors {de Cani, 1984; Games, 1871; Petrinovich &
Hardyck, 1969; Rodger, 1967; Rosenthal & Rubin, 1984) .

Cohen is the expert in power analysis most often cited
by researchers, and the tables in his book are the source of
reference for nearly all power analysis. Since power is
defined in its relationship to beta, one can not discuss the
accumulation of beta without discussing power. The focus
of power analysis is to determine if a research design has
the power to detect a significant difference between the

null and alternate population distribution.
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Cohen envisioned power analysis as a situation in
which, a priori, a researcher could ascertain the
probability of having significant research results by
consulting the tables in his book to determine the power of
4 statistical test. Cohen's calculation of power is a
direct result of the effect size, sample size, and the level
of alpha. The researcher could fix the values of two of the
three variables for a certain level of power and choose the
third variable {usually sample size). The researcher could
then conclude if, a priori, an adequate sample size was
available for a certain research design.

However, excessively high power would increase the
likelihood of detecting a trivial effect due to the decrease
in the standard error as a result of an increase in the
sample size. With an increase in power, a trivial
difference could be found significant. if the sample size
were large enough. Therefore, Cohen (1977) recommended that
an adequate level of power be .80. A power level of .80 is
a beta level of .20. The ratio of an alpha level of .08 to
a beta level of .20 indicates that the probability of
committing a Type I error is more serious than the
probability of committing a Type II error.

Multiple Comparisons

Simultaneous multiple comparison procedures are

performed on (a) a limited number of a priori comparisons

based on specific hypotheses; (b) all or most of the
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pairwise comparisons of means; and (c) exploratory

analysis of combinations of means (Klockars & Saxs, 1986} .
Debate exists among authors as to the optimal method or
procedure of dealing with the accumulation of errors
(usually Type I) in these multiple comparison procedures.
Games (1971} offers ten procedures, based in part on the F
test and the multiple t statistic. Seven of the procedures
use the multiple t statistic, with the differences found in
the determination of the critical values. Four of the
procedures, as outlined by Games, include:

1. Specify the per comparison rate for each orthogonal
contrast and allow the experimentwise error rate to increase
to 1 - (1 - a)© (Games, 1971).

The variability among means is divided into exclusive
parts and is equal to the variability found in the between-
group sum of squares. The main advantage of using the
orthogonal contrasts is in the error rate, since the
probability of a Type I (or Type II)} error in one comparison
Is more likely to be isolated and not repeated on the other
contrasts of the set. In view of this property, some
authorities debate the need to have a significant overall F
test before the testing of the individual contrasts
(Games, 1971; Kirk, 1982; Klockars & Sax, 1986).

According to the multiplicative rule of independent

events, the probability of not making a Type I error for 19
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contrasts is {1 - @g)c°,. Therefore, the probability of making
o¢ne or more Type I errors will be equal to 1 - (1t - q«)°. As
the number of contrasts increases, the probability of Type I
errors also increases (Games, 1971; Kirk, 1982).

An example of the comparisons of alpha and beta levels
with error rate per contrasts can be seen in Table 2.
Table 2

Expected Type I and Type II Error Rates Per C Number of

Orthogonal Contrasts

Number of: Alpha Beta Beta Beta

Means Contrasts .05 .10 .20 .30

3 2 .0975 .13%00 .3600 .5100

4 3 .14286 L2710 .4880 .6570

5 4 .1855 .3439 .5904 .7599

6 S 2262 .4095 .6723 .8319

10 9 .3697 , 6513 .8658 .9718
Prob. of Type I error (alpha) = 1 - (1 - o)*

Prob. of Type II error (beta)

H
[V
1

(1 - 8)<

2. Specify the per comparison rate for all possibile
comparisons and allow the exXperimentwise error rate to
increase as the number of means increases {Games, 1971,

The major difference in orthogonal and nonorthogaonal
comparisons is in the number of €rrors in an experiment.
The errors are isolated in orthogonal tests. However, in
nonorthogonal tests, errors are likely to be replicated

in the experiment (Klockars & Sax, 1986} . As a result, in
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multiple comparisons, the emphasis is on the accumulation of
Type 1 errors,

3. Specify the eéXperimentwise error rate by the use of
an overall F test (Games, 1971).

From the upper limit of the error rate per family of
tests, the Type I error rate per contrast can be derived
accordingly by the expression a = 1 - (1 - ag)*©. Similarly,
according to Westermann and Hager (1983}, the upper limit
for Type II errors per contrast in a family of tests is
equal to 1 - (1 - Be)€“,

An alternative could be to utilize the Fisher's Least
Significant Difference, which offers the least protection of
a Type I error and, therefore, the most protection for a
Type 1II error. The Fisher's LSD is often not recommended,
however, since the probability of a Type I error is likely
to be larger than the specified level of significance. The
Fisher's LSD is also seen in the idea of "protected” and
"unprotected.” If the Fisher LSD is performed after a
significant F-ratio, then the test is referred to as a
"Fisher-protected” LSD. Otherwise {t is referred to as the
“unprotected LSD." The implication is that the error rate
per contrast will be higher than expected when the F test is
unprotected (Roscoe, 1975).

A significant overall F test means that the researcher
rejects Ho: p, = B2 = Ua, but does not indicate which means are

different or how the means differ. For a larger numbers of




19

means it is possible to obtain a significant F with all
nonsignificant t's. When the boundaries of the areas of
rejection of the F test and the multiple t tests are
diagrammed, the difference between regions can be examined
to explain how the tests differ in results. Since the
significant F test does not indicate which contrast is
significant, a Type II error will occur in the LSD test
(Games, 1971).

4, Limit the upper boundary of the experimentwise
error rate by the Dunn-Bonferroni inequality (Games, 1971) .,

One of the statistical methods used to contain the

accumulation of Type I errors is the Dunn-Bonferroni
procedure. Dunn {1961) originally examined the properties
of the Bonferroni inequality, which shows that the error
rate experimentwise could not exceed the sum of the per
contrast error rate, that is, Qew < L @pc. If each C contrast
is tested at the a/C level of significance, then the total
error rate experimentwise will not exceed o (Games, 1971),

The Dunn-Bonferroni procedure is additive in
definition. The error rate for any family of tests
(aew) is not exceeded by the sum of the £ per contrast error
rate (Kirk, 1982). The procedure can be based on orthogonal
or nonorthogonal comparisons, but in general the procedure
is more powerful as the number of contrasts tested

approaches the number of means (Games, 1971).
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In the ordered Bonferroni procedure, power is saved for
contrasts of more interest, while sacrificing power for
other contrasts of less interest. An example of subdividing
the error term based on the Dunn-Bonferroni procedure can be
found in the study by de Cani (1984), which found that in
ordered or weighted Bonferroni procedures: {a) the loss of
power is larger at the overall alpha level at .05 than at
-10; (b) main effects have less loss of power, while
interaction suffers the most loss of power: (c} loss of
power is larger at low levels of power rather than at higher
levels of power: and (d} the average level of power suffers
less relative to the change of overall alpha level,

Rosenthal and Rubin (1984), in a related study of
unordered, partially ordered, and completely ordered
contrasts, found that the power of the Dunn-Bonferroni
procedure increases as one progresses from unordered to
completely ordered contrasts. In this study as well as the
de Cani article, the emphasis is still on undergoing
procedures to limit the accumulation of Type I error, while
maintaining power.

Silverstein (1986) also conducted a study of the Dunn-
Bonferroni procedure, Type I error rate, and power.,

This study found that although the Dunn-Bonferroni procedure
controls the risk of Type I errors, when the number of tests
performed increases, the risk of failing to reject a false

null also increases. Silverstein also found that increasing
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sample size was more effective in increasing the power of a
test than was reducing the level of significance. Indeed,
Games (1971) noted that there is little logic in resorting
to sophisticated, statistical methods to control the
probability of accumulation of Type I error for all
contrasts when no attempt is made to control the probability
of Type 1 error accumulating in the contrasts. While
Westermann and Hager (1986) suggest the use of the Dunn-
Bonferroni inequality procedure to control for the
accumulation of either Type I or Type 11 errors, the
procedure may have difficulties that preclude its use.

Westermann and Hager {1986) noted in their article
summary that the researcher should "always adjust the error
probability a« and/or B8 that is connected with the false
rejection of the statistical metahypothesis" (p. 38). In
order to accomplish these adjustments, the Westermann and
Hager article posed two perpectives,.

First, in the case where the value of the Type II error
probability is determined for the family of tests, with . =
Brec/C = ®./C, the critical value is then based on Bc. The
article suggests that the researcher is free to choose
"comparatively large values of a.” (p. 132). However, the
example demonstrated utilizes a., = g, = ®. = .05 and B. = ®./8 =

.01667, with the sample size based on this critical value.
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The problems with this procedure are two-fold in the
determination of the critical value and sample size. From
the example, the power level of the test is set at .95,
which according to Cohen (1977} is an excessive level of
power that will require a much targer sample size than that
required for power set at the adequate level of .8C. The
procedure to determine the sample size based on the beta
rate per familywise (Bp.) is found in Cohen's tables, but
Cohen's tables are not available for unusual critical values
that would result from the beta rate per comparison.

The article could also be viewed from the second
perspective of setting the critical values of @ = 3. and
determining the sample size with the overall beta rate per
familywise (Bg). If the Br. were equal to .20, for example,
then the a. would equal .20/¢, which could be censidered an
excessively large critical level of significance in the
publishing circles. Although the critical value of this
procedure is nontraditional, the procedure for determining
similar sample size is found in current research. For
example, in the Keselman (1976} study, the sample size for
the Tukey procedure was based on the beta rate per
familywise.

In comparing the two procedures, the power of the test
can be examined through the area of the region of rejection.
For example, if one starts with a sample size based on

the overall stated F-test power, the change in the region of
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rejection for the individual sets of contrasts/comparisons
will increase or decrease the originally stated F test
power, as seen in the Tables 3 and 4.

Table 3

Comparisons of the Proportion of Area under the Curve for

Two-Tailed Test of Orthogonal Contrasts with the Least

Significant Difference and the Dunn-Bonferroni Procedure

with Four Groups

Power Level .70 . 80 .90

LSD .05/2=.025 .05/2=.025 .05/2=.025

DB(.70) {.30/2)/3=.05

DB( .80} (.20/2)/3=.033

DB{.90) (10/2)/83=.0167
DB(.70) > LSD DB(.80) > LSD LSD > DB(.90)

Difference: .025 .0083 .0083

For the orthogonal contrasts, when the critical value
is subdivided by the Dunn-Bonferroni procedure, a larger
area of rejection {(hence more power in the test) occurs in
the power levels of .70 and .80, but not in the .90 level of
power. For the pairwise comparisons, the LSD provides a
larger or equal area of rejection than does the subdivided
Dunn-Bonferroni, thus confirming that the power of the test
is maximized as the number of contrasts approaches the
number of means. Indeed, when a researcher utilizes

orthogonal contrasts, the probability of bhoth a Type I and
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Type 1I error can be specified. However, if a researcher

tests all possible pairwise means, then the probability of
Type I error or Type II error, depending on the situation,
increases as the number of means increases (Games, 1971) .

Table 4.

Comparisons of the Proportion of Area under the Curve for

Two-Tailed Test of Pairwise Contrasts with the Least

Significant Difference and the Dunn-Bonferroni Procedure

with Four Groups

Power .70 . 80 .90

LSD .058/2=.025 .06/2=.025 .08/2=.025

DB{.70) {(.80/2)/6=.025

DB(.80) (.20/2)}/6=.0167

DB(.90) (.10/2)/6=.0083
DB(.70) = LSD LSD > DB(.80) LSD > DB{(.90)

Difference: 0.0 .0083 .0167

In summary, Type I and Type II errors are reciprocal in
nature, but the researcher is usually faced with the problem
of which error term to protect. Traditionally, research
methodology has protected against the occurrence of the Type
I error, while ignoring the probability of the occurrence of
the Type II error. The researcher could utilize (a) the
traditional approaches as outlined by Games (1971) for both
Type I anﬁ Type I1 errors, or (b} the nontraditional

approaches such as the ones outlined by Westermann and Hager

(19886) .



CHAPTER I11I

PROCEDURES

The comparisons of contrasts and the analysis of
variance in this Monte Carlo simulation require that the
following assumptions be made:

1. The simulated observations will be samples from
three population distributions: normal, uniform, and
exponential.

2. Observations are random samples from the
populations.

3. In the null case, the numerator and denominator of
the F ratio are estimates of the same population variance.

4. The numerator and denominator of the F ratio are
independent of each other.

5. The model equation, Y3 = u + a, + €1¢33, reflects
the sum of all the sources of variation that affect each
Yisy.

6. The experiment contains all the treatment levels,
ay's, of interest.

7. The error term, €1¢s5, (a) is independent of all
other error terms, and {b) is normally distributed within
each treatment population, with (c} mean equal! to zero and

(d) variance equal to one (Kirk, 1982).

25
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The Models
The model of interest is the fixed-effects for a
completely randomized design model:
Yis3 = u + ay + €ry (i = 1.....,n; j = 1,....,c + 1},

In the fixed effects model, the treatment effect,

843 = Uy - u, is a constant for all observations within a
group but may vary for each d=1,..., £ + 1 group and the
sum of all a,'s is equal to zero. Since u and ay, are

constant for all observations within the population J, the
only source of variation is due to the error effect, €13,
which can be shown to equal to Ya3 - U - a; (Kirk, 1982).
The hypotheses of interest included the overall null
hypothesis:.
Ho! 1 = uz = us = U,

and the two sets of alternate hypotheses, which included:

Set 1: Helmert Contrasts

Haa: u. - (Ez t Us + ue)/83 = 0,
Haz! Ba ~ (ua + ug)/2 = 9,
Haa: Ua - uy = 0,

Set 2: All Pairwise Comparisons

Haa: u, - u= = 0, Haa: Bz - us = 0,

Haz: Ui - ua = 0, Haw: uz; - u, = 0,

H=a3 u - Ua = 0; Hgﬁ: Uy - U, = 0.
The test statistics utilized for £+ 1 = 4 included:

1. To test the overall F significance, the SWEEP
function of SAS(IML) was utilized to calculate the sums of

squares {Goodnight, 1979):
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( SSE1 - SsEz j/ E

F =
© ( $SE. )/ e+ t)(n - 1),

where SSE, is the total sum of squares and SSE, is the sum

of squares error calculated from the regression analysis on
the model equation.

2. The multiple t statistic, Fisher's Least
Significant Difference, will test (a) the orthogonal
contrasts and pairwise comparisons and (b) the orthogonal
contrasts where the sample size is based on the power of
1 - B/c:

Zcs Y. 4
1=

J MSarrar (E(c®,/n,4))
in which ¢, is the coefficient term and MS.rvor =
(SSE2)/[N-(g+1)], and the critical value of t.oa,2 with the
degrees of freedom equal to that of the MSarror (Kirk,
1982).
3. The Dunn-Bonferroni procedure (tD) utilizes
the t statistic, but uses a different critical value,
D aec.v = @ ay,0, v,
where C is the number of planned contrasts, and v is the
number of degrees_of freedom for the MSeucrroce. As suggested

by Westermann and Hager (1986), this procedure was to be

utilized with the respective B values of .10, .20, and .30.
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The Simulation Plan

In order to generate data for the study, a plan was
employed of applying the F-test and the two specified
multiple comparison procedures, and presenting the summary
statistic.

This study was conducted by means of a computer
simulation using the SAS Matrix (IML) procedure. For the
normal distribution, the error ternms for each observation
were produced by the RANNOR random number generator which
generates numbers with a mean of zero and variance of one.
For the uniform distribution, the error term was generated
by the RANUNI procedure on the interval of 0 to 1. The
exponential distribution was produced by the RANEXP, which
generates uniform random numbers with a parameter of one
{SAS Institute, Inc., 1988),

The following procedure was used to obtain the sample
size, means, and treatment effects for each group:

1. The medium effect size (f = .25) was utilized from
the Table 8.3.14 (Cohen, 1969, p. 308,}) to determine the

sample size for each group, where:

Power = .90, n, = 58,
Power = .80, n, = 44, and
Power = .70, n, = 36.

The sample size was based on B/c values, where:

Power = .97, n, = 786,
Power = .93, n, = 64, and
Power = .90, n, = 58,
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2. The range ( d; = b,f ) is the distance between the
largest and smallest of the ¢ + 1 means. For intermediate
variability with equally spaced means, the range was
determined from Table 8.2.1 (Cohen, 1969) where b= = 2.88,

and f is computed by the formula:

4| (e + 1) + 12
£ = ; ¥ 3(c) ,
and where (¢ + 1) = 4. For f = .25, the range would be
de = 2.68(.25) = .g7 (Cohen, 1969, pp. 270-272).
3. The means were equally spaced over the range of .87

of a within-population standard deviation, at an interval of
d/(c) to give intermediate variability. Since the error
term has a variance of 1, the within-population standard
deviation is 1, and, therefore, the range will be .67 , with
intervals of .2233.

4, The grand mean was arbitrarily set at 10; then each
observation was the sum of a randomly generated error term,
the grand mean, and the treatment effect of that group.

Therefore, the scores for each treatment group would be:

Yia = 10 + (-.3350) + es4,
Y2 = 10 + (-.1117) + €44,
Xia = 10 + L1117 0+ €,,4., and
Yia = 10 + .3350 + [P




30

Analysis of Data

The simulations in the study involved two methods.

The first method involved the computation of an overall P
test, and the unprotected Least Significance Difference
multiple t statistic, with the critical value of .05 for the
orthogonal and all pairwise comparisons, and the Dunn-
Bonferroni t statistic, with the orthogonal contrasts and
critical values based on B/¢. The sample size for each group
was based on the power of the overall F test. This

procedure was replicated 1,000 times per each level of power
for each distribution.

Method two involved the computations of an overall F
test and the unprotected Least Significant Diffefence
multiple t statistic with the critical value of .05 for the
orthogonal and all pairwise comparisons, but the sample size
would be determined from the power of B/c instead of the
overall F test,. This procedure was also replicated 1000
times per level of power for each distribution.

On the data from the contrasts/comparisons the
following statistical analysis was performed on each
proposed distribution. For Method One with sample size
based on overall F Test:

1. The number of significant results for the Dunn-
Bonferroni (tD) procedure was tabulated for each of the 3
contrasts over the 1,000 simulations and divided by 1000 to

determine the level of observed power. The results were




31

subtracted from 1.00 to determine the Type II error rate for
the orthogonal contrasts. For each level of power, the
resulting Type Il observed error rate per contrast was
compared to the expected error rate.

2. The number of significant results for the Fisher's
LSD statistic was tabulated for each simulation, then
divided by 1000 to determine the level of observed power.
The results were subtracted from 1.00 to determine the Type
II error rate for the orthogonal contrasts and pairwise
comparisons, For each level of power, the actual Type II
error rate computed was compared to the expected error rate.

3. For the strict evaluation criteria of each Fisher
LSD and Dunn-Bonferroni procedure, the number of signjificant
contrasts/comparisons per experiment was tabulated. The
resulting number of experiments in which all the
contrasts/comparisons were significant was divided by 1000
and subtracted from 1.00 to give the experimentwise error
rate. For the lenient criteria evaluation, the experiments
in which at least one of the contrasts/comparisons was
significant were also tabulated and divided by 1000 to
indicate the percent of experiments in which at least one of
the hypotheses was significant.

4. The number.of significant results for the F test
was tabulated for each simulation (as would be found if the

researcher were utilizing the PROC GLM command of SAS) and




32

then divided by 1000 to determine the observed level of
pPOwWer. The results were subtracted from 1.00 to determine
the Type II error rate familywise. The resulting error rate
familywise was then compared to the expected Type II error
rate for each level of power.

5. The Kolmogorov-Smirnov test of goodness-of-fit was
used to test whether the observed frequency distribution
departed significantly from the hypothesized frequency
distribution of the noncentral F. A noncentral F
probability was determined and counted according to the
cumulative frequency. The cumulative frequency distribution
was divided into 17 intervals of .005, .01, .025, .05, .1,
.2, .3, .4, .5, .8, .7, .8, .9, .95, .975, .990, and .995.
The level of significance for the goodness-of-fit tests was
set at .05 and by the formula 1.36/JN , resulting in a
critical value of Dmax = .043 for 1,000 replications
(Roscoe, 1975},

For Method Two with sample size based on beta per
contrast:

1. The number of significant results for the PFPisher's
LSD statistic was tabulated for each simulation, then
divided by 1000 to determine the level of observed power.
The results were subtracted from 1.00 to determine the
Type Il error rate for the orthogonal contrasts and pairwise
comparisons., For each level of power, the actual Type 11

observed error rate was compared to the expected error rate.
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2. For the strict evaluation criteria of each Fisher
LSD and Dunn-Bonferroni procedure, the number of significant
contrasts/comparisons pPer experiment was tabulated. The
resulting number of experiments in which all the
contrasts/comparisons were significant was divided by 1000
and subtracted from 1.00 to give the experimentwise error
rate. For the lenient criteria evaluation, the experiments
in which at least one of the contrasts/comparisons were
significant were tabulated and divided by 1000 to indicate
the percent of experiments in which at least one of the
hypotheses was significant.

3. The number of significant results for the P test
was tabulated for each simulation (as would be found if the
researcher was utilizing the PROC GLM command of SAS) and
then divided by 1000 to determine the observed level of
power, The results were then subtracted from 1.00 to
determine the Type II error rate familywise. The resulting
error rate familywise was then compared to the expected Type
II error rate for each level of power.

4. The Kolmogorov-Smirnov test of goodness-of-fit is
used to test whether the observed frequency distribution
departed significantly from the hypothesized freguency
distribution of the noncentral F. A noncentral F
probability was determined and counted according to the

cumulative frequency, The cumulative frequency distribution
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was divided into 17 intervals of .005, .01, .025, .05, .1,
.2, .8, .4, .5, .8, .7, .8, .9, .95, .975, .990, and .995.
The level of significance for the goodness-of-fit tests was
set at .05 and by the fornmula 1.36/JN , the critical value of

Dmax = .043 for 1,000 replications (Roscoe, 1975).



CHAPTER 1V

RESULTS OF THE SIMULATIONS

Introduction

Before the simulations of this study were executed, a
preliminary study was initiated to verify the mathematical
formulas and coding of the eighteen computer programs,
consequently verifying the three different random number
generators, the coding, and the resulting findings. The
simulations were then executed according to the two
methodologies under study.

Method I examines the procedure in which the sample
size is based on the power of the overall F test, and then
compares the results of (a) the Fisher LSD (T1 to T3) with
« = .05, to the Dunn-Bonferroni procedure {TD1 to TD3} with
a/c = B/c, with the Helmert orthogonal contrasts, (b) all
pairwise comparisons {Cl1 to C6), and (c¢) the F tests for the
specified levels of power and distributions to violations of
normality. Method II examines the procedure in which the
sample size is based on the power of the Dunn-Bonferroni
inequality f/c, and then compares the results of {(a) the
Fisher LSD with a= .05 for the Helmert orthogonal contrasts
(Tl to T3) to all pairwise comparisons (C1 to C6) with Az =
-05, and (b) the F tests for the specified levels of power

and distributions to violations of normality.

335
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Preliminary Study

The final results of the preliminary study are
presented in Tables 5 through 7. From the initial results,
the standard deviation of the uniform distribution was found
not to be in accordance to the specifications of the study.
A variety of approaches were examined, and it was found that
a standard deviation of approximately 1.00 would result if
each error term was multiplied by the constant four. For
the overall F test, the Sweep operations were tested to
determine which type of coding would result in the correct
sums of squares as found in the PROC GLM procedure of SAS.
For theoretical reasons and accuracy of results, the Helmert
orthogonal coding was utilized in the sweep operations,
which did produce the required sums of squares for the
computations of the F test,
Table 5

Verification of the Normal Random Number Generator

Group Mean Std. Dev. Min. Value Max. Value Range
I 9.74 1.1387 7.135 11.6867 4.51

II 9.93 .8608 8.126 12.309 4.18
IT1 10.14 1.0389 8.253 12.745 4.49
Iv 10.39 1.0885 7.811 12.960 5.14

AVG. 10.05 1.0818 7.836 12.420 4.58




Table 6

Verification of the Exponential Random Number Generator

Group Mean St. Dev. Min. Value Max. Value Range
I 10.75 1.1198 9.699 15.621 5.92
11 10.63 L7100 9.916 13.596 3.67
111 11.17 1.1553 10.117 15.4868 5.835
1V 11.15 .7622 10,341 14,040 3.69
AVG, 10.93 .9367 10.018 14.681 4.65
Table 7
Verification of the Uniform Random Number Generator
Group Mean St. Dev. Min. Value Max. Value Range
I 11.91 1.1711 9,994 13.657 3.86
I1I 11,97 1.2163 9.999 13.885 3.89
111 12.186 1.1102 10.409 14.059 3.65
IV 12.43 1.04486 10.410 14,163 3.75
AVG, 12.11 1.13855 10.153 13.941 3.03

To better understand the tables and discussion, the
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coding of the orthogonal contrasts and pairwise comparisons

will be repeated:

T1/TD1

T2/TD2

T3/TD3
c1 (1 -1 o
c2 (r 0 -1
c3 (1 0 o

(3
(0
(0

0},
0},

_1}v

-1
2

0
C4
C5
AND

-1 -1},
-1 -1),
1 -1),
(0 1 -1 9)
(0 1 0 -1)
C6 (0 o0 1

-1).
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As previously stated, the purpose of Method I of the
study was to evaluate the accumulation of the Type II error
for: (a) the Helmert contrasts and all pairwise comparisons,
as measured by the number of significant results per
contrast and comparison; (b) the significant results
experimentwise of the contrasts and comparisons; and {c} the
number of significant results familywise of the overall F
test for each level of power and for the different
distributions when the sample size is based on the overall F
test. In Table 8, the results of Method I are presented in
the form of the observed level of power for the statistical
procedures utilized.

In Table 8, the levels of power for the orthogonal
contrasts were, in general, less than the expected levels of
power. The Fisher LSD procedure was found to have a smaller
level of power than the Dunn-Bonferroni procedure. The
levels of power for the pairwise comparisons were
considerably less than the expected levels, except for the
C3 comparison. The observed levels of power for the F test
were as expected except for the uniform distribution
simulations, which were lower than expected, especially for
the lower levels of power.

The purpose of Method II of this study was to evaluate
the accumulation of the Type II error for the {a) Helmert

contrasts and all pairwise comparisons, as measured by the
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Table 8

Observed Levels of Power of Method I for the Distributions

and Specified Levels of Power

Normal Exponential Uniform
Power 70 80 80 70 80 a0 70 80 90

Orthogonal Contrasts

Critical Values

a = ,05

T1 .642 .700 .821 .651 . 728 .838 .529 .712 .T722
T2 .383 .418 .518 .398 .461 .376 .2883 .413 .445
T3 .178 .183 . 213 .159 .190 . 244 .124 .196 .1686
a = B8/C

TD1 .729 727 .768 .742 .761 .794 .6383 .849 .660
TD2 .914 .471 .468 .520 .5185. .511 .389 .369 .367
TD3 .273 .228 .167 . 249 . 229 .194 .210 .143 .127

Pairwise Comparisons

a = .05

C1 .159 .154 .213 .151 .187 .234 .123 .214 .185
c2 .465 .5286 .648 .491 .566 .679 . 384 .83¢ .575
c3 .799 .870 . 945 .795 .875 . 944 . 678 .879 .880
C4 .164 .184 .216 .146 .190 .238 .127 .165 .192
C5 .483 .5%70 .8486 .4175 .5%72 .688 .364 .533 .5486
Cé .178 .183 .218 .159 .190 .244 .124 .1986 . 166

F Tests
a = .05

.721 .765 .899 .690 .800 .898 . 951 .791 .798

number of significant results per contrast and comparison:
(b) the number of significant results exXperimentwise of the
contrasts and comparisons:; and (c} the number of significant
results familywise of the overall F test for each level of

power and for the different distributions when the sample
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size is based on a/c. The results of Method I1, in Table 9,
are presented in the form of the observed levels of power
for the various statistical procedures utilized.

Table 9

Observed Levels of Power of Method II for the Distributions

and Specified Levels of Power

Normal Exponential Uniform
Power 90 93 97 80 93 a7 90 93 97

Orthogonal Contrasts

a = .05

T1 .831 .870 .9832 .843 .853 . 901 .721 .749 .835
T2 .524 .599 .652 .563 .609 .8656 .411 472 .531
T3 .219 . 2486 .271 .236 . 245 .284 .186 .182 .205

Pairwise Comparisons

a = .05

C1 . 247 .255 .311 .213 .236 .271 .182 .178 .232
c2 .680 .738 797 .662 .780 .768 .533 .560 . 693
Cc3 .949 .960 . 990 .952 .959 .979 .861 .896 .943
C4 .2186 . 254 .263 .238 .258 . 277 .1686 171 .224
C5 .645 .704 .770 .674 .738 .778 .54%7 .608 .662
Ccé .219 .246 .271 .236 .245 .284 .186 .182 .205

F Tests
x = ,08

.904 .932 .973 .902 .927% 956 .766 .832 .906

The power levels of Method II, as seen in Table 9, are
similar to those in the Method I in findings, with the
levels of power being slightly higher in all areas than they
were in Method 1I. However, it can be noted that the power

levels of Method II are still lower than the expected levels

of power.



41

Findings
The data will be presented in accordance with the
research questions and procedural questions examined.

Research Questions

1. What is the difference between the expected Type I1I
error rate and the observed error rate between Helmert
orthogonal contrasts and all possible pairwise comparisons
for different levels of power and distributions?

{See Tables 10 and 11 in Appendix A.)

The observed error rates per contrast and per
comparison were in general larger than the expected error
rates, In Figures 1, 2, 3 and 5, it can be noted that the
lowest error occurred with the Helmert orthogonal contrasts
T1/TD1 (3 -1 -1 -1), followed by T2/Tb2 (0 2 -1 -1), and
with T3/TD3 (0 0 1 -1) for both Methods I and I1I. In Method
I, the error rates of the LSD and the Dunn-Bonferroni
procedures behaved as expected. With the normal and
exponential distributions, the Dunn-Bonferroni procedure
produced lower error with the lower beta levels, but higher
error for the beta level of .10. With the uniform
distribution, the LSD procedure produced lower error rates
for the beta value of .30, then crossed to higher error
rates for the lower beta values,

For the pairwise comparisons, as seen in Figures 4 and

6, the LSD of the contrast C3 (1 00 -1) for both methods
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and distributions produced lower than expected error rates.
Both methods are testing, at least for this study, the
extreme linear range of the group means. Of all the
contrasts and comparisons tested, these methods should have
tested significantly different. The intermediate results
were produced by the comparisons of €2 {1 0 -1 0) and C5 (0
10 -1). The largest error was produced by the comparisons
of C1 (1 -1 0 0), €4 (0 1 -1 0), and C6 (0 0 1 -1),

The contrasts or comparisons that tested groups in
which the means were next to each other had the highest
error rate. Por example, the orthogonal contrast T3 or D3,
and the pairwise comparisons C1, C4, and C8§ produced the
largest error rate. The orthogonal contrasts and pairwise
comparisons in which, in theory, the means tested were
separated by at least one group did produce lower error
rates. Therefore, the linear relationship of the means did
affect the observed error rates. This phenomenon occurred
across the levels of power, method, and distributions.

The familywise error was as expected with the exception
of a higher than expected error rate for the uniform
distributions. As seen in Figures 7 and 8, the familywise
error rate was more greatly affected in the power level of

-70 of Method I and the power level of .90 for Method II.



09
——
(8 i
-——+___
4 7
06
K S T3
é 05 “\* —_—
14
E 04 Tt
+
BE e 02
L, D':—L\'gk_::__-‘_-
~ s | Tt
02 e
R 03
iy
i)
X ) &) ¥ Q
LEVEL OF POWER

Figure 1. The error rate per contrast for Fisher LSD and

the Dunn-Bonferroni procedure of the Helmert contrasts of

Method I: Normal distribution.

43



ERROR RATE

Figure 2.

the Dunn-Bonferroni procedure of the Helmert contrasts of

Method I:

08

§
a7

(i

e

X

rl-
5L
MK
mg___—\—a—__

4

T
.H\\*
—

(12 H
s
Ml
0
¥ 5 & 5 Q0

LEVEL OF POWER

The error rate per contrast for Fisher LSD and

Exponential distribution.

1

12

13

0!

102

03

44



——

. T1
4 : —

& 17
—F—

X 13

ERROR RATE
=
T/
+ .
=

~_ 8 =) 2
\l— 2 ——
is 03
G
i Iy 0 & 90
LEVEL OF POWER

Figure 3. The error rate per contrast for Fisher LSD and
the Dunn-Bonferroni procedure of the Helmert contrasts of

Method I: Unifornm distribution.
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Figure 5. The error rate per contrast for Fisher LSD

of the Helmert contrasts of Method II:

Normal distribution.
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2. What is the difference between the expected and
observed experimentwise Type Il error rates of the Helmert
orthogonal contrasts and all possible pairwise comparisons
when using the different levels of power and the
distributions? {See Tables 12 to 16, Appendix A.)

If the experiments are evaluated from a strict
criteria, the results indicate that all of the observed
experimentwise error rates were much larger than the
expected experimentwise error rates for all levels of power
and the distributions {(Tables 12 and 13, Appendix A}). For
the orthogonal contrasts, the number of complete significant
experiments was less than 18 percent at the most for all
levels of power, distribution, and method. The largest
experimentwise error did occur with the largest beta values
and the least error for the smallest beta value, as was
expected. The error values did not vary to any extent from
distribution to distribution (Figure 9). The pairwise
comparisons contained only 3 experiments in the 18
simulation situations in which all of the comparisons were
significant (Table 13, Appendix A}. Thus only 3 experiments
in 18,000 were significant for all of the pairwise
comparisons. All 3 experiments were from Method II, which

did have larger sample sizes than Method I.
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distributions: Strict criteria.
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Table 17

Experimentwise Error Rate for Method I: Strict Criteria

Normal Exponential Uniform

Power 70 80 90 70 80 90 70 80 90

Orthogonal Contrasts

a = .05
.950 .941 .820 .936 .925 . 876 .980 .940 .948
a = B/C
.850 .916 .953 .880 .860 .913 . 945 .963 .966
Pairwise Comparisons
a = .05

1.00 1.00 1.00 1.00 1,00 1.00 1.00 1.00 1.00

Table 18

Experimentwise Error Rate for Method II: Strict Criteria

Normal Exponential Uniform

Power 90 93 97 90 93 97 90 93 97

Orthogonal Contrasts

.898 .868 .84535 .882 . 860 .822 .480 . 932 .909

Pairwise Comparisons

1.00 .999 .99¢ 1.00 .999 1.00 1.00 1.00 1.090

If, however, the contrasts/comparisons are examined in

the lenient criteria evaluation, in which at least one of



56

the planned contrasts/comparisons are significant, then some
interesting trends emerge. First, by the definition of
lenient criteria, the percentage of such experiments either
meets or exceeds the initial level of power for all levels
of power, method, and distribution.

Second, when examining the individual contrasts or
comparisons, as the level of power increases, the number of
significant experiments increases and the number of
nonsignificant experiments decreases. Method II had the
least number of nonsignificant experiments across levels of
power and to the violations of normality. The number of
nonsignificant experiments for pairwise comparisons was less
than the orthogonal contrasts in most of the simulations.

For the Helmert contrasts in Method I, the largest
number of significant experiments occurred when only one of
the contrasts was significant. For Method II, the largest
number of significant Helmert contrasts occurred with at
least two of the three contrasts significant. For the
pairwise comparison, the combination of at least three of
the six comparisons being significant produces the largest
number of results for all levels, distributions, and
methods. While zero results were found under the strict
criteria, the lenient criteria producing the least number of
nonsignificant results were two experiments for the power of

.97 under Method II (normal distribution}.
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3. Regarding the three procedures--(a) the Fisher Least

Significant Difference with a = .05 and the sample size
determined from the beta error per family (Beg); (b) the
Dunn-Bonferroni inequality procedure with o = .05 and the

sample size determined from the beta error per contrast

(/c); and {(c} the Dunn-Bonferroni inequality procedure with a
= B/c and the sample size based on the beta error per family
(Be)-—-how do the procedures compare in the number of Type I1I
error rates for the levels of power and distribution? (Sce
Tables 19 to 21, Appendix A.)

Of the three procedures, both of the Dunn-Bonferroni
procedures produced, in general, fewer Type II error rates
than did the Fisher LSD. The exception is the Beta value of
<10 in Method I, which, when subdivided by the number of
contrasts, has a smaller area of rejection than the Fisher
LSD. The Dunn-Bonferroni procedure of Method II did produce
a lower Type II error rate than did the Dunn-Bonferroni
procedure of Method I. As seen in Figure 14, when comparing
the orthogonal contrasts of T1/TD1 and T2/TD2 in Method I
and of T1 and T2 in Method II, Method II clearly produced
lower error rates. For the pairwise comparisons, Method II
produced smaller error rates than did Method I (Figure 15).
Method Il was able to produce this reduced error rate, but

did so with a larger sample size requirement. Indeed,
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across the methods, levels, and distributions, a larger
sample size produced fewer Type II error rates.

Procedural Question

I. Are the F test probabilities distributed according
to the noncentral F distribution?

The Kolmogorov-Smirnov test of goodness of fit
determines if an observed distribution departs from a
theoretical distribution. For this, the observed
distributions were the F test probabilities of the
noncentral F distribution for the three distributions
utilized in the study. (See Table 22, Appendix A.)

As seen in Figures 16 to 21, the normal and exponential
distributions for the level of power .70 are not
significantly different from those expected, indicating that
the observed noncentral F distributions closely approximate
the theoretical distribution. The simulations of the
exponential distribution of Method I with a power of .90 had
four significant intervals but the differences were small.
All of the observed distributions of the uniform
distributions are statistically different from the
theoretical distribution. For Method I, 9 of 18 levels are
significantly different. For Method II, 11 of the levels
are significantly different. The distribution probability
levels from .10 to .975 are less than the t.2ovetical
distribution, producing a pronounced curve instead of =a

straight line as expected. This confirms the general
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Figure 16. Kolmogorov-Smirnov Goodness of Fit Test
comparison of actual and theoretical levels of significance
of the distributions of the F test probabilities theoretical
distributions levels: Normal distribution, Method I, Power

level .70,
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Figure 17. Kolmogorov-Smirnov Goodness of Fit Test
comparison of actual and theoretical levels of significance
of the distributions of the F test probabilities theoretical
distribution Levels: Exponential distribution, Method I,

Power level .70.
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Figure 18. Kolmogorov-Smirnov Goodness of Fit Test
‘comparison of actual and theoretical levels of significance
of the distributions of the F test probabilities theoretical

distributions levels: Uniform distribution, Method I, Power

level .70.



66

|
§
F il
®)
g
041
02 p—
a 4
0 02 (4 i) (8 1
THEORETEAL
Figure 19. Kolmogorov-Smirnov Goodness of Fit Test

comparison of actual and theoretical levels of significance
of the distributions of the F test probabilities thecretical

distributions levels: Normal distribution, Method 1I, Power

level .70.
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Figure 290. Kolmogorov-Smirnov Goodness of Fit Test
comparison of actual and theoretical levels of significance
of the distributions of the F test probabilities theoretical

distribution levels: ExXxponential distribution, Method II,

Power level .70.
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Figure 21. Kolmogorov-Smirnov Goodness of Fit Test
comparison of actual and thecretical levels of significance
of the distributions of the F test probabhilities theoretical

distribution levels: Uniform distribution, Method II, Power

level .70,



findings of the study, in that overall the uniform
distribution experiments produced larger error terms and

some unusual behavior of the contrasts.

69



CHAPTER V
SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS

Summary

The main purpose of this study was to investigate,
through the use of Monte Carlo simulations, the accumulation
of Type II errors to the varying levels of power, population
distributions, and methodology. The Monte Carlec computer
simulations controlled the various parameters of the study
within each experiment. The simulation conditions included
in this study involved equal sample size, equaliy spaced
means, and three specified levels of power. The population
distributions, from which the error terms were sampled, were
normal, exponential, or uniform, with a mean of zero and
standard deviation of one.

The observed levels of power produced were obtained by
computing the proportion of times each experiment yielded a
rejection of the hypothesis at the specified levels of
significance. The various error terms were computed by the
proportion of times the experiment did not reject the
hypothesis at the specified levels of power,

The study was reported by the methodology procedure
examined and the various research questions. Several points

emerge from the study:

70
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1. Under the strict criteria, the accumulation of Type
IT experimentwise error does occur at a significant rate,
especially for pairwise comparisons, at all specified levels
of power. The high rate of accumulation can be expected
since the value of beta is always much higher than alpha.
The study does indicate that the probability of falsely
accepting at least one null hypothesis in a family of tests,
when in theory all of the alternate hypotheses are true, is
high, precluding valid tests at the beginning of the study.

2. Neither of the Dunn-Bonferroni procedures utilized
in this study resulted in significant improvement over the
Fisher LSD for the Helmert contrasts. Although the Dunn-
Bonferroni procedure with the sample size based on the beta
per contrast did produce an improvement in the number of
significant results, it did so at the cost of requiring a
much larger sample size. The Dunn-Bonferroni procedure
basing the critical value on the beta per contrast is too
nontraditional of an approach to statistical methodology to
be widely accepted unless dramatic changes could be
verified. Therefore, the usage of either procedure could
not be justified for a change in methodology.

3., From the lenient criteria evaluation of the means,
the optimum approach to limiting the accumulation of Type II
errors is two-pronged. First, orthogonal contrasts are more
favorable than pairwise comparisons in limiting the number

of falsely accepted null hypotheses. The problem lies in
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that some researchers view the use of contrasts as not being
as easy as the pairwise approach, although this study does
indicate that the extra effort and forethought of planning
orthogonal contrasts will pay off in the increased number of
significant findings. I1f pairwise comparisons are to be
utilized, then the number of comparisons should be close to
the number of means.

Second, adequate sample size is indicated as a method
of limiting the accumulation of Type 11 error. The use of
Cohen's tables for the determination of sample size as
indicated from this study only assures that the extreme
differences in means will be detected, not the differences
in adjacent means. Therefore, the probability of Type II
errors remains high even if the proper sample size is
utilized. Cohen's tables for sample size determination are
fairly simple to use for the average researcher. Again,
adequate sample size does require planning and forethoughf
by the researcher.

The use of orthogonal contrasts or of a limited number
of comparisons and adequate sample size is not a panacea for
the accumulation of Type II error. As a part of proper
methodology, however, it will improve the probability of

rejecting the null hypothesis when the alternate hypothesis

is true.
4. The accumulation of Type II error is irrespective of
distribution. Although some variation among distributions

was noted, no significant differences could be found.
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Conclusions

On the basis of the results of the various data
presented, the following conclusions are appropriate.

1. The accumulation of Type II exerimentwise error is
as substantial as Westermann and Hager (1986) theorized for
both orthogonal contrasts and pairwise comparisons. Using
the strict criteria of evaluation, one could argue that with
an experimentwise error rate of 1.00 (as was found in 15 of
the 18 simulation situations), the accumulalticen of error is
larger than one would imagine.

2. The accumulation of Type II error is not affected by
the violation of normality. Research that would support or
contradict this finding is not found in the literature.

3. The two proposed Dunn-Bonferroni methods under
investigation to limit the accumulation of Type II error
were not as effective as expected. Westermann and Hager's
(1986) proposal that the Dunn-Bonferroni method be used to
deal with this issue is interesting but is not applicable
for the researcher.

4. The procedures as outlined by Games (1971} to deal
with Type I error are applicable for Type II errors, as
well, namely: (a) isolate the error by the use of orthogonal
contrasts; or (b) limit the number of pairwise comparisons

to no more than the number of means.
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Recommendations

The purpose of this study was to examine the issue of
the accumulation of Type II error and possible
methodologies to limit that accumulation when the
assumptions of normality are violated. The study did not
deal with all of the issues of the accumulation of Type II
error, since only the medium effect size and medium
variability were explored. Additional situations for
research are indicated to explore fully the implications of
the accumulation of Type II error.

It would be of interest to see if similar results would
cccur in the accumulation of Type 11 error:

1. when the combination of the assumptions of
normality and equal variance are violated;

2. when the effect size and range variability are other
than medium; and

3. when the number of group means are less than four,
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Table 10

Observed Error Rate per Contrast and Comparison with

Method I for the Distributions and Specified Levels of Power

Normal Exponential Uniform

Power 70 80 90 70 80 90 70 80 90

Orthogonal Contrasts

a = .05

T1 .358 .300 .179 .349 .272 .162 .471 .288 .278
T2 .617 .582 .482 .602 .539 .424 L7117 .587 .5558
T3 .822 .8117 LT87 . 841 .810 .756 .876 .804 .834
a = B/C

TD1 .271 .2738 .232 .258 .239 .208 .376 .351 .340
TD2 .4886 .529 .532 .480 .485 .489 .611 .631 .633
TD3 .727 .T72 .833 .751 L7711 .806 .790 .857 .873

Pairwise Comparisons

a = .05

C1 .841 .846 .787 .849 .813 .766 .8797 .786 .815
c2 .535 .474 .352 .509 .434 .321 .6186 .461 .425
C3 .201 .130 .0558 .205 .125 .0586 .322 121 .120
C4 .836 .816 .784 .854 .810 .762 .873 .835 .808
C5S .517 .430 .354 .525 .428 .312 . 636 L4867 .454

cé .822 .817 .787 .841 .810 ., 756 .876 .804 .834




Table 11

Observed Error Rate per Contrast and Comparison with

Method II for the Distributions and Specified Levels

of Power

Normal Exponential Uniform

Power 90 93 917 90 g3 97 90 93 97

Orthogonal Contrasts

a = .05

T1 .168 .130 .068 .187 .147 .09¢ .279 .2581 .165
T2 .476 .401 . 348 L4317 .391 .344 .589 .H28 .469
T3 .781 .754 .729 .764 .755 .716 .814 .818 .795

Pairwise Comparisons

a = .05

Ci1 .753 .745 .689 L7817 .764 .729 .818 . 822 .768
c2 .320 .262 .203 .383 .220 .232 .467 .440 .307
c3 .051 .040 .010 .048 .041 .021 .139 .104 .057
C4 .784 .748 L7137 .762 .742 .723 .834 .829 .776
(0443 .355 .296 . 230 .3286 . 267 .222 .458 .392 .338

C6 .781 .754 .729 .764 785 .716 .814 .818 .795




Table 12

The Percent of Significant Contrasts/Comparisons per

78

Experiment with Method I for the Strict and Lenient Criteria

Normal Exponential Uniform
Power 70 80 90 70 80 70 80 90
Orthogonal Contrasts
a = .05
Strict Criteria
3 of 3 .050 .059 .080 .064 .075 .124 .020 .080 .054
Lenient Criteria
2 of 8 .281 .336 .449 . 274 .366 .475 .203 .3839 .352
1 of 3 .491 .452 .414 .468 ,422 .336 ,470 .463 .4617
Sum .822 .848 .943 .806 .863 .930 .693 .862 .873
0 of 3 .178 .158 .057 .194 .137 .065 .307 .138 .127
a = B/C
Strict Criteria
3 of 3 .105 .084 .047 .120 .140 .087 .0585 .037 .034
Lenient Criteria
2 of 3 .397 .374 .405 .375 .410 . 420 .299 277 . 267
1 of 3 .407 726 .452 .401 .373 .398 .469 .493 .518
Sum .809 .884 .904 .895 .887 .905 .803 . 807 .819
0 of 3 .091 .116 .096 .105 .113 .095 .117 .793 .181
Pairwise Comparisons
a = .05
Strict Criteria
86 of 6 .CC0 , 000 .000 .000 .000 .000 .000 .000 .000
Lenient Criteria
5 of 6 .001 .025 .0386 .011 .031 .061 .0086 .023 .021
6 of 6 .123 .172 .241 .141 .205 .293 .084 .192 L1795
3 of 6 .337 .347 .418 .313 .351 .386 .236 .337 .383
2 of 6 .263 .2558 .205 . 251 .221 .163 .361 .349 .2383
1 of 6 .164 .123 .073 .157 .110 .066 .204 .134 124
Sum .898 922 .973 .873 .918 .969 .791 .935 .936
0 of 6 .102 .078 027 127 .082 .031 . 209 .0865 .064
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Table 13

The Percent of Significant Contrasts/Comparisons per

Experiment With Method II for the Strict and Lenient

Criteria
Normal Exponential Uniform
Power 90 g3 97 g0 93 97 a0 93 a7
Orthogonal Contrasts
a = .05

Strict Criteria
3 of 3 .102 .132 .155 .118 .140 .178 .510 .068 .091

Lenient Criteria :

2 of 3 .425 .487 .557 .459 .474 .511 .346 .378 .441
1 of 3 .418 .345 .276 .370 .339 .285 .473 .443 .416
Sum .945 ,964 .988 .9479 .953 .8974 .870 .889 .48

0 of 3 .055 .036 .012 .083 . 047 .026 .130 111 .082

Pairwise Comparisons

a = .05

Strict Criteria
6 of 6 .000 .001 .001 .000 .001 .000 .000 .000 .000

Lenient Criteria

5 of 6 .050 .079 .106 .063 ,065 .105 .021 .026 .0850
4 of 6 .247 .294 .106 .063 .065 .105 .021 .026 .050
3 of 6 ,420 .407 .385 .384 .359 .378 .342 .379 .404
2 of 6 .198 .157 .107 179 .166 .109 .256 .251 .194
l of 6 .062 .045 .033 .078 .055 .036 .128 .102 .085
Sum .977 .983 ,998 .977 .982 .989 .828 .939 .974

0 of 6 .023 .017 .00z .028 .018 .011 .077 .061 .026




Table 14

Percent of Significant Experiments for Beta Value of .30

Method I Metheod I1I
Normal Exp. Uniform Normal Exp. Uniform

Power 70 70 70 90 g0 90

Orthogonal Contrasts
a = .05
Tt .642 .651 .529 .831 .843 .721
T2 .383 .398 .283 .524 .563 411
T3 178 .159 .124 .219 .236 .1886
a = f3/C
D1 .729 .742 .633
Tb2 .514 .520 .389
TD3 .273 .249 . 210

Pairwise Comparisons
a = .05
c1 .159 . 151 .123 L2417 .2138 .182
c2 .465 .491 .384 .680 .662 .533
C3 .799 .795 .678 .947 .952 .861
C4 .164 .1486 .127 .216 .238 .166
C5 .483 .475 .384 .645 .674 . 547
Cé6 .178 .159 .124 .218 .236 .1886

Observed Level of Power
a = .05
F Test .721 .690 .551 .904 .920 .766
Experimentwise

Orthogonal Contrasts
a = .05
3 of 3 .050 .064 .020 .102 .118 .510
2 of 3 .281 .274 .203 .425 .459 . 346
1 of 3 .491 .468 .470 .418 .370 .473
0 of 3 .178 .194 .307 .055 .053 . 130
a = B/C
3 of 3 .150 .120 .055
2 of 3 .397 .375 .299
1 of 3 .407 401 .469

Pairwise Comparisons
a = .05
6 of 6 .000 .000 .Q00 .000 . 000 .000
5 of 6 .011 .011 .006 .050 .063 .176
4 of 8 .123 . 141 .084 .247 .268 .176
3 of 6 .337 .313 .236 .420 .384 .342
2 of 6 .268 .251 .261 .198 .179 .246
1 of 6 .164 .157 .204 .062 .078 .128
0 of 6 .102 .127 .209 .023 . 280 .077




Table 15

Percent of Significant Experiments for Beta Value of .20

Method 1 Method I1
Normal Exp. Uniform Normal Exp. Uniform
Power 80 80 80 93 93 93

Orthogonal Contrasts

a = .05

T1 700 .728 712 .870 .853 .749
T2 .418 .461 .413 .599 .609 .472
T3 .183 .190 .196 .246 .245 .182
a = B/C

TD1 .727 .761 .649

TD2 .471 .B15 .369

TD3 .228 .229 .143

Pairwise Comparisons

a = .05

C1 .154 .18% .214 . 255 .236 .178
c2 .526 .5606 .539 .738 .780 .560
C3 . 870 .875 .879 .960 .959 .8986
c4 .184 .190 .165 .254 .258 .171
C5 .570 .872 .538 .704 .733 .608
C8 .183 .190 .1986 .2486 .245 .182

Observed Level of Power a = .05

F test L7658 .800 .791 .932 .927 .832

Experimentwise
Orthogonal Contrasts

of 3 .059 .075 .060 .132 .140 .068
of 3 .338 .366 .339 . 487 .474 .378
of 3 . 452 .422 .463 . 345 .339 .443
of § .153 .137 .138 .036 .047 111

of 3 .084 . 140 .037
of 3 .374 .410 . 277
of 3 .426 .373 .493

O MMDWa O WR
]
W
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of 3 .116 .113 .193
Pairwise Comparisons

a = .05

6 of 6 . 000 .000 .000 .001 .001 .000
5 of 6 .025 .031 .023 .079 .065 .026
4 of 6 172 .205 .192 .294 .336 .181
3 of 6 .347 .351 .337 .407 .359 .379
2 of 6 .255 .221 .249 .157 .166 .251
1 of 6 .128 .110 .134 .045 .055 .102
0 of 6 .078 .082 .085 .017 .018 L0861




Table 16

Percent of Significant Experiments for Beta Value of .10

82

Method I Method II
Normal Exp. Uniform Normal Exp. Uniform
Power 30 90 g0 97 97 97
Orthogonal Contrasts
a = .05
T1 .821 .838 .722 .932 .901 .835
T2 .518 .576 .445 .652 .656 .531
T3 . 213 .244 .1686 .271 .284 . 205
a = B/C = .03
TD1 .768 .794 .660
TD2 .468 .511 .367
TD3 .167 .194 .127
Pairwise Comparisons
a = .05
C1 .213 .234 .185 .311 .271 .282
ce .449 .475 .352 .587 .011 .441
C3 .945 . 944 .880 .990 .979 .943
C4 .2186 .238 .192 .263 L2717 .224
CS .646 .688 .546 770 778 .662
cé6 .213 .244 .166 .271 .284 .205
Observed Level of Power a = .05
F Test .889 .898 .798 .83 .956 .906
Experimentwise
Orthogonal Contrasts
o = .05
3 of 3 .080 .124 .054 .155 .178 .091
2 of 3 .449 .475 .3582 .987 .511 .441
1 of 3 .414 .336 .467 .276 .285 .4186
0 of 3 .0567 .065 .127 .120 .0286 .0582
a = B/C = .03
3 of 3 .047 .087 .034
2 of 3 .405 . 420 . 267
1 of 38 .452 .398 .518
0 of 3 .096 .095% .181
Pairwise Comparisons
a = .05
1.000 1.000 1.000 .999 .999 1.000
Familywise Error Rate
F Test .235 .200 .209 .068 .073 , 168




Table 19

Error Rates for Beta Value of .30

Method I Method II
Normal Exp. Uniform Normal Exp. Uniform
Power 70 70 70 90 90 90

Error Rates per Orthogonal Contrasts

a = ,05
T1 .358 .351 L4171 .169 . 157 .2179
T2 .617 .602 LT17 L4786 .437 .589
T3 .822 .841 .876 .781 .764 .814
a = f3/C
TD1! .271 .258 .367
TD2 .486 .480 .611
TD3 .727 .751 .790
Error Rates per Comparisons
a = .08
Cc1 . 841 .849 . 877 .753 .787 .818
c2 .585 .509 .8186 .320 .338 .487
Cc3 .201 , 205 .322 .051 .048 .139
c4 .836 .854 .873 .784 .762 .834
C5 .517 .525 .86386 .355 .326 .453
C6 .822 .841 .876 .781 .764 .814
Experimentwise Error Rate
Orthogonal Contrasts
a = .05
.950 . 936 .980 .898 .882 .490
a = B/C
.850 .880 .945
Pairwise Comparisons
a = .08
1.000 1.000 1.000 1.000 1.000 1.00¢0
Familywise Error Rate
F Test .279 .310 .449 .096 .080 .234




Table 20

Error Rates for Beta Value of
S N S

84

Method I Method II
Normal Exp. Uniform Normal Exp. Uniform
Power 80 80 80 93 93 93
Error Rates per Orthogonal Contrasts
a = .05
T1 .300 .272 .288 .130 L1497 .251
T2 .582 .539 .587 .401 .391 .528
T3 .811 .810 .804 .754 .755 .818
a =B/C= .07
TD1 .273 .239 .351
TD2 .529 .485 .631
TD3 L7172 L7171 .857
Error rates per Comparisons
a = .05
C1 .846 .813 .786 .745 .764 .822
c2 .474 .434 .461 .262 .220 .440
c3 .130 .125 .121 .040 .041 .104
c4 .816 .810 .835 ., 746 .742 .829
C5 .430 .428 L4867 .296 L2617 .392
C6 .817 .810 .804 .754 .755 .818
Experimentwise Error Rate
Orthogonal Contrasts
a = .05
.941 .925 .940 .868 .860 .932
a = $/C
.916 ,860 .963
Pairwise Comparisons
o« = .05
.000 1.000 1.000 .999 .999 1.000
Familywise Error Rate
F test .235 .200 .209 .068 .073 .168




Table 21

Error Rates for Beta Value of

.10
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Method I Method II
Normal Exp. Uniform Normal Exp. Uniform
Power 80 80 80 97 97 a7
Error Rates per Orthogonal Contrasts
a = .05
T1 . 179 .162 .278 068 .099 .165
T2 .482 .424 .555 .348 .344 .469
T3 .187 .756 . 834 .729 .716 .795
a = B/C = .03
TD1 .232 . 206 .340
TD2 .532 .489 .633
TD3 .833 .8086 .873
Error Rates per Comparisons
a = .05
C1 .789 .766 .815 .689 .729 .768
c2 .352 .321 .425 .203 .232 .307
€3 .055 .056 .120 .010 .021 .057
c4 .784 762 .808 .737 .723 L7796
CS .354 .312 .454 .230 .222 .338
cé .7817 .756 .834 .729 .716 .795
Experimentwise Error Rate
Orthogonal Contrasts
a = .05
.920 .876 .946 .845 .822 .909
a = B/C = .03
.8583 .913 .966
Pairwise Comparisons
a = .05
1.000 .000 1.000 .999 .000 1.000
Familywise Error Rate
F test .101 102 .202 .027 .044 .094
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APPENDIX B

LISTING OF THE COMPUTER PROGRAM

USED IN THE SIMULATIOCN STUDY
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AR T XXX XA XA AR AR RRARRRRAXIXRRARN XA A XX R XAk X,

x x
* SET UP AND INITIALIZE VARIABLES *;
x b 4

I E R R R EE R ES A SRR R ERRRRRRRERRERRRRERRERSRSRSSEERREREESSEES I

x .
’

X«
]

X o
4

PROC MATRIX FUZZ ;

AAXAXA XXX XEAXAXXAXA XXX AR R XK XXX XA TR AR AN AR RRRRARAXRR AR R R Rk %X,
f

* INITIALIZED VARTIABLES

IR R R R R RS SRR R R REESE SRS RS SRS RS S S SRR R EEEREREREEEEEEEEEEEEEEEEE SN
’

* % % *
~e wy we wa

N = 36;
CNT=J{(18,1,0):
CFKS=J(18,1,0);
CFKS(,1)=.005/.01/.025/.05/.1/.2/.3/.4/.5/.6/.7/.8/
.9/.95/.990/.995/1/0;
TCNT=J(4,1,0);
TDNT=J3(4,1,0);
SUMT=J(1,1,0);
SUMTD=J(1,1.,0):;
SUMC=J(1,1,0);
SUMTCNT=J(4,1,0);
SUMTDNT=J(4,1,0);
FCNT=J(1,1,0);
CPCNT=J(7,1,0);
SUMCP=J(7.,1,0);
t***t**t****t**tt**:
0=J(N,1,1):
S1=J(N,1,9.665);
S2=J(N,1,9.8883):
S3=J(N,1,10.1117);
S4=J(N,1,10.335);
t********t****t****;
X2G61=J(N,1,3);
X3G1=J(N,1,0);
X4Gl=J(N,1,0);
GR1=011X2G1| IX3G1l| [X4G1;
X2G2=J(err"l);



X3G2=J(N,1,2):;
X4G2=J(N,1,0);

GR2=01| |X2G2| 1X3G2 | |X4G2;
X2G3=J(N,1,-1);
X3G3=J(N,1,-1);
X4G3=J(N,1,1);

GR3=0| |X2G3| 1X3G311X4G3;
X2G4=J(N,1,-1);
X3G4=J(N,1,-1);
X4G4=J(N,1,-1);
GR4=011X2G4! [X3G4| 1X4G4;

***t******t****ttt*************t***tttt*****t*****t****
*x

* RANDOM NUMBER GENERATOR NORMAL POWER 70

*********t*********************************t******t****
X .

DO I =1 TO 1000;
x,

ERR1=RANNOR(J(N,1,0)):
Y¥Y1=S1+ERR1l:;
MAT1=GR1IiY1l:;
ERR2=RANNOR(J(N,1,0));
Y2=S2+ERR2:
MAT2=GR211Y2;
ERR3=RANNOR{(J(N,1,0));
¥3=S3+ERR3;
ERR4=RANNOR(J(N,1,0));
MAT3=GR31|1Y3;
Y4=S4+ERR4;

MAT4=GR4l (Y4;
x*t******t****ttt*******;

. MN1=MAT1(,5);

" MEAN1=MN1(.,):
MN2=MAT2(,5);
MEANZ2=MN2(.,);
MN3=MAT3(,5);
MEAN3=MN3(.,);
MN4=MAT4(,5);
MEAN4=MN4(.,);
MEAN=MEAN1//MEAN2//MEAN3//MEAN4;

****************x**************t**********************.
’
X

* USING SWEEP OPERATOR TO

* COMPUTE ERROR SUM OF SQUARES

*****************************************t************.
’

89
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M=MAT1//MAT2//MAT3//MAT4;
A=M‘*M;

SSE1=SWEEP(A,1);
SSE2=SWEEP(A,1:4);

X

’
2 S R RS R E R R EE SRR R R R RERER RS RS SRR RRREER S SRR RERRERSSSEEEE I
’

x

* COMPUTE F RATIO AND COUNTING NUMBER OF REJECTIONS

x

*****************************************************;
X .
’

X .
r

X .

FTEST=((SSE1(5,5)-SSE2(5.5))#/3)#/(SSE2(5,5)#/140);
PROB=1-PROBF(FTEST, 3,140,8.79);

FPR=1-PRORF (FTEST, 3,140);

IF FPB < .05 THEN FCNT(,1l)=FCNT(,l)+1;

X .
’

x .
’

X .

IF PROB < .005 THEN GOTO CNTO0Q5;

ELSE IF PROB< .01 THEN GOTO CNTO1l;
ELSE IF PROB .02%5 THEN GOTO CNT025;
ELSE IF PROB .05 THEN GOTO CNTO05;
ELSE IF PROB THEN GOTO CNT1:;
ELSE IF PROB THEN GOTO CNT2;
ELSE IF PROB THEN GOTC CNT3;
ELSE IF PROB THEN GOTO CNT4;
ELSE IF PROB THEN GOTO CNTS;
ELSE IF PROB THEN GOTO CNT6;
ELSE IF¥ PROB THEN GOTO CNT7;
ELSE IF PROB THEN GOTO CNTS8;
ELSE IF PROB . THEN GOTO CNT9;
ELSE IF PROB .95 THEN GOTO CNT95;
ELSE IF PROB .97% THEN GOTO CNT975;
ELSE IF PRCB .990 THEN GOTO CNTSS0;
ELSE IF PROB < .995 THEN GOTO CNT995;
ELSE GOTC CNTONE;

CNTQ05: CNT(1l,1)=CNT(1l,1)+1;

CNTQOLl: CNT(2,1)=CNT(2,1)+1;
CNTO25:CNT(3,1)=CNT(3,1)+1;

CNTQS: CNT(4,1)=CNT(4,1)+1;

CNT1l: CNT(5,1)=CNT(5,1)+1;

CNT2: CNT(6,1)=CNT(6,1)+1;

CNT3: CNT(7,1)=CNT(7,1)+1;

CNT4: CNT(8,1)=CNT{(8,1)+1;

CNT5: CNT(9,1)=CNT(9,1)+1;

CNT6: CNT(10,1)=CNT(10,1)+1:;

CNT7: CNT(11l,1)=CNT(11,1)+1;

AAAAAAAAAAAAAA
OO~k
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CNT8: CNT(12,1)=CNT{(12,1)+1;
CNT9: CNT(13,1)=CNT(13,1)+1;
CNT95: CNT(214,1)=CNT(14,1)+1;
CNT975: CNT(15,1)=CNT(15,1)+1;
CNT990: CNT(16,1)=CNT(16,1)+1:
CNT995: CNT(17,1)=CNT(17,1)+1;
CNTONE: CNT(18,1)=CNT(18,1)+1;
x .

’
X .

’
***************************************R******.
4

x .
4

* ORTHOGONAL CONTRASTS *;

X .
’
x*x**t*t*x*xtt**tt*wt**x***xt*******xtx*x*****.
’

x .

*;CODING************;

Cl=3 -1 -1 -1;

c2=0 2 -1 -1:

C3=0 0 1 -1;

tt*ttt*ttt**tt**t***;

CMAT=C1//C2//C3;

CSQ=CMAT*CMAT';

CMEAN=CMAT *MEAN;

MSE=SSE2(5,5)#/140;

****t*x*tt****tt**xt;
T1=CMEAN(1,1)#/(MSE#(CSQ(1,1)#/36))4#%.5;
T2=CMEAN(2,1)#/(MSE#(CSQ(2,2)#/36))4#4.5:
T3=CMEAN(3,1)#/(MSE#(CSQ(3,3)#/36))#4.5;
******************t*ttt*tt**t***tt******t******;
T1PROB=1-PROBT(T1,140);

IF TIPROB < .025 OR T1PRCB > .975 THEN T1SIG=1:
ELSE IF PROB > .025 OR T1PROB < .975 THEN T1SIG=0;
TZPROB=1-PROBT(T2,140);

IF T2PROB < .025 OR T2PROB > .975 THEN T2SIG=1:
ELSE IF T2PROB > .025 OR T2PROB < .975 THEN T2SIG=0;
T3PROB=1-PROBT(T3,140);

IF T3PROB < .025 OR T3PROB > .975% THEN T3SIG=]1;
ELSE IF T3PROB > .025 OR T3PROB < .975 THEN T33IG=0;
x .

4

x .
¢

X .

***DUNN-BONFERRONI PROCEDURE WITH BETA ERRORS***;

x .
’

X o

IF T1PROB < .05 OR T1PROB > .95 THEN TD1SIG=]1;
ELSE IF T1PROB > .05 OR T1PROB < .95 THEN TD1SIG=0;
IF T2PROB < .05 OR T2PROB > .95 THEN TD2SIG=1;
ELSE IF TZPROB > .05 OR T2PROB < .95 THEN TD2SIG=0;
IF T3PROB < .05 OR T3PROB > .95 THEN TD3SI1G=1;
ELSE IF T3PROB > .05 OR T3PROB < .95 THEN TD3SIG=0;
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IF T1SIG=l THEN TCNT(1l,1l)=TCNT(1l,1)+1;

IF T2SIG=1 THEN TCNT(2,1)=TCNT(2,1)+l;

IF T35IG=1 THEN TCNT(3,1)=TCNT(3,1)+1;

IF T1SIG=1 AND T2SIG=1 AND T3SIG=1 THEN TSUM=]1;
ELSE TSUM=0;

IF TSUM=1 THEN TCNT(4,1)=TCNT(4,1)+1;

x .

IF T1SIG=1 THEN SUMT(1l,1)=SUMT{1l,1)+1;

IF T2SIG=1 THEN SUMT(1l,1)=SUMT(1l,1)+1:;

IF T3SIG=]1 THEN SUMT(1l,1)=SUMT(1,1)+1;

K .

IF SUMT(1,1)=3 THEN SUMTCNT(1l,1)=SUMTCNT(1l,1)+l:;
IF SUMT(1l,1)=2 THEN SUMTCNT(2,1)=SUMTCNT(2,1)+1;
IF SUMT(l,1)=1 THEN SUMTCNT(3,1)=SUMTCNT(3,1)+]1;
IF SUMT(1l,1)=0 THEN SUMTCNT(4,1)=SUMTCNT(4,1)+1;

LEEEEEEERE RS RERERSS SRR R R SRR R RRRERRRRRRRE R NN I
’

IF TD1SIG=1 THEN TDNT(1,1)=TDNT(1,1l)+1:
IF TD2SIG=1 THEN TDNT(2,1)=TDNT(2,1)+1;
IF TD3SIG=1 THEN TDNT(3,1)=TDNT(3,1)+1;
X,

IF TD1SIG=] AND TDZ2SIG=1 AND TD3SIG=1 THEN TDSUM=1;
ELSE TDSUM=0:;

IF TDSUM=1 THEN TDNT(4,1)=TDNT(4,1)+1;

X

IF TD1SIG=1 THEN SUMTD(1l,1)=SUMTD(1l,1l)+1;
IF TD2SIG=1 THEN SUMTD(1l,1)=SUMTD(1l,1)+1;
IF TD3SIG=1 THEN SUMTD(1l,1)=SUMTD(1,1}+1;
X »

IF SUMTD(1l,1)=3 THEN SUMTDNT(1l,1)=SUMTDNT{1l,1)+1;
IF SUMTD(1l,1)=2 THEN SUMTDNT(2,1)=SUMTDNT(2,1)+1;
IF SUMTD(1,1)=1 THEN SUMTDNT(3,1)=SUMTDNT(3,1)+1;
IF SUMTD(),1)=0 THEN SUMTDNT(4,1)=SUMTDNT(4,1)+1;

X
7

X .
’

IR E R EE S SSSE R EER R R R R R R R R R R S S R R R R R AR R R R R
* .

* COMPARISIONS
x

tE S S SRS S SRR R R R R R R R R R R R R R R R R R R R SRR R R R R R R R R R RS

CPl=1l -1 0 O;
CP2=1 0 -1 0O;
CP3=1 0 0 -1;
CP4=0 1 -1 0;
CP5=0 1 0 -1;

CpP6=0 0 1 -1;
**********t*t*******ttt*********t*x*x*;
CPMAT=CPl//CP2//CP3// CP4// CP5// CP6;
CPSQ=CPMAT*CPMAT' ;



CPMEAN=CPMAT*MEAN;

Pl=CPMEAN(l,l)#/(MSE#(CPSQ(l,l)#/36) YRE.S;
P2=CPMEAN(2,1)#/(MSEﬁ(CPSQ(Z,Z)#/as))##.5;
P3=CPMEAN(3,1)#/(MSE#(CPSQ(3,3)ﬁ/36))h#.5;
P4=CPMEAN(4.1)#/(MSE#(CPSQ(4,4)#/36))##.5
P5=CPMEAN(5,1)#/(MSE#(CPSQ(S.5)#/36) YE4.5;
P6=CPMEAN(6,1)#/(MSE#(CPSQ(6,6)#/36))ﬂﬁ.s-

CP1PROB=1-PROBT(P1,140);

IF CP1PROB <.025 OR CP1PROB >.975 THEN Cl1SIG=1;

ELSE IF CP1PROB »>.025 OR CP1PROB ¢.975 THEN ClSIG=0;
CP2PROB=1-PROBT(P2,140);

IF CP2PROB <.025 OR CP2PROB >.975 THEN C2816=1;

ELSE IF CP2PROB >.025 OR CP2PROB <.975 THEN C2SI1G=0;
CP3PROB=1-PROBT(P3,140):

IF CP3PROB <.025 OR CP3PROB >.975 THEN C3SIG=1;

ELSE IF CP3PROB »>.025 OR CP3PROB <.975 THEN C3SIG=0;
CP4PROB=1-PROBT(FP4,140});

IF CP4PROB < .025 OR CP4PROB > .975 THEN C4SIG=1;
ELSE IF CP4PROB >.025 OR CP4PROB <.975 THEN C4S1G=0;
CPS5PROB=1-PROBT(P5,140);

IF CPS5PROB <.025 OR CPSPROB ».975 THEN C581G=1;

ELSE IF CP5PROB »>.025 OR CPSPROB <.975 THEN C5S1G=0;
CP6PROB=1-PRCBT(P6,140):

1F CP6PROB <.025 OR CP6PROB >.975 THEN C6SIG=1;

ELSE IF CP6PROB >.025 OR CP6PROB <.975 THEN C6SIG=0;

**t***t**tt***************tt**t***t*t*x*********tt*x**x.
’

IF Cl1SIG=1 THEN CPCNT{1,1)=CPCNT(1,1)+1;
IF C2SIG=1 THEN CPCNT(2,1)=CPCNT(2,1)+1;
IF C3SIG=1 THEN CPCNT(3,1)=CPCNT(3,1)+1;
IF C4SIG=1 THEN CPCNT(4,1)=CPCNT(4,1)+1;
IF C5SIG=1 THEN CPCNT(5,1)=CPCNT(5,1)+1;
IF C6SIG=1 THEN CPCNT(6,1)=CPCNT(6,1)+1;
IF C1SIG=1 AND C2SIG=1 AND C3SIG=1 AND C4SIG=1 AND
C5SIG=1 AND C6SIG=1 THEN CSUM=1;

ELSE CSUM=0;

IF CSUM=1 THEN CPCNT{7,1)=CPCNT(7,1)+1:
L2

’
X .

’
‘k***'K******'K****‘k**‘k**‘k*‘k**‘X‘X*‘R********t**t***‘x****tt.

4
X .

IF Cl1SIG=1 THEN SUMC(1,1)=SUMC(1,1)+1;
IF C2SIG=1 THEN SUMC{1,1)=SUMC(1l,1)+1;
IF C3SIG=1 THEN SUMC(1,1)}=SUMC(1,1)+1;:
IF C4SI1IG=1 THEN SUMC{1,1)=SUMC(1,1)+1;
IF C58IG=1 THEN SUMC(1,1)=SUMC(1,1)+1;
IF C6SIG=1 THEN SUMC{1,1)=SUMC(1,1)+1;
X .

IF SUMC{1l,1l)=6 THEN SUMCP(1,1)=SUMCP(1,1)+1;
IF SUMC(1l,1)=5 THEN SUMCP(2,1)=SUMCP{(2,1)+1;
IF SUMC{l,1l)=4 THEN SUMCP(3,1)=SUMCP(3,1}+1:



IF SUMC(1,1)=3 THEN SUMCP(4,1)=SUMCP(4,1)+1;
IF SUMC(1,1)=2 THEN SUMCP(5,1)=SUMCP(5,1)+1;
IF SUMC(1l,1)=1 THEN SUMCP(6,1)=SUMCP(6,1)+1;
IF SUMC(1,1)=0 THEN SUMCP(7,1)=SUMCP(7.1)+1;
x .

14

X .
’

x .

SUMT=J(1,1,0);

SUMTD=J(1,1,0);

SUMC=J(1,1,0):;

END;

*xxxxx* EYPERIMENT RATE COMPUTATIONSXXXXXXXXXXXXAX K.,

X .
’

X .

TERPCI=TCNT(1,1}#/1000;
TERPC2=TCNT(2,1)}#/1000;
TERPC3=TCNT(3,1)#/1000;
TDERPC4=TDNT(1,1)#/1000;
TDERPCS=TDNT(2,1)#/1000;
TDERPC6=TDNT(3,1)%/1000;
TERPE=TCNT(4,1)#/1000;
TDERPE=TDNT(4,1)#/1000;
ERPF=FCNT#/1000;

X .

CPERPC1=CPCNT(1,1)#/1000;
CPERPC2=CPCNT(2,1)#/1000;
CPERPC3=CPCNT(3,1)#/1000;
CPERPC4=CPCNT(4,1)#/1000;
CPERPCS5=CPCNT{5,1)#/1000;
CPERPC6=CPCNT(6,1)#/1000;
CPERPE=CPCNT(7,1)%/1000;
X o

4

* L4
’

X .

t;t'k'k'k'k'k*'k*KOLMOGOROV__SMIRNOV*************tttttt;

X .
4

®

CFCNT=CNT#/1000;
MAXDIFF=CFKS-CFCNT;
X .

’

X .
’
*****tt*‘k‘k**PRINT*******‘X*tttt*t****************;

X .

TITLE ' NORMAL DISTRIBUTION POWER70 ';
x

PRINT

TERPC1 TERPCZ TERPC3 TDERPC4 TDERPCS TDERPC6

TERPE TDERPE ERPF CPERPCl CPERPCZ CPERPC3 CPERFPC4
CPERPCS5 CPERPC6 CPERPE CFCNT MAXDIFF SUMTCNT SUMTDNT
SUMCP ;

RUN;
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