CO₂-Laser Induced Hot Electron Magneto-Transport Effects in n-InSb

PDF Version Also Available for Download.

Description

The effects of optical heating via infrared free carrier absorption on the electron magneto-transport properties of n-InSb at helium temperatures have been studied for the first time. Oscillatory photoconductivity (OPC) type structure is seen in the photon energy dependence of the transport properties. A C0₂ laser (hω = 115 to 135 meV) was used as the optical source. Concentrations between 1 x 10¹⁵ cm⁻³ and 2 x 10¹⁶ cm⁻³ were studied. The conclusions of this study are that the energy relaxation of high energy photoexcited electrons, generated by free carrier absorption of C0₂ laser radiation in degenerate n-InSb at liquid ... continued below

Physical Description

viii, 193 leaves : ill.

Creation Information

Moore, Bradley T. August 1979.

Context

This dissertation is part of the collection entitled: UNT Theses and Dissertations and was provided by UNT Libraries to Digital Library, a digital repository hosted by the UNT Libraries. More information about this dissertation can be viewed below.

Who

People and organizations associated with either the creation of this dissertation or its content.

Unspecified Role

Chair

Committee Members

Publisher

Rights Holder

For guidance see Citations, Rights, Re-Use.

  • Moore, Bradley T.

Provided By

UNT Libraries

The UNT Libraries serve the university and community by providing access to physical and online collections, fostering information literacy, supporting academic research, and much, much more.

Contact Us

What

Descriptive information to help identify this dissertation. Follow the links below to find similar items on the Digital Library.

Degree Information

Description

The effects of optical heating via infrared free carrier absorption on the electron magneto-transport properties of n-InSb at helium temperatures have been studied for the first time. Oscillatory photoconductivity (OPC) type structure is seen in the photon energy dependence of the transport properties. A C0₂ laser (hω = 115 to 135 meV) was used as the optical source. Concentrations between 1 x 10¹⁵ cm⁻³ and 2 x 10¹⁶ cm⁻³ were studied. The conclusions of this study are that the energy relaxation of high energy photoexcited electrons, generated by free carrier absorption of C0₂ laser radiation in degenerate n-InSb at liquid helium temperatures, is by emission of a maximum number of optical phonons, and that this relaxation mechanism produces OPC type structure in the photon energy dependence of the electron temperature of the conduction band electron gas. This structure is seen, therefore, in the transport properties of the sample, including the Shubnikovde Haas effect, the effective absorption coefficient, and the photoconductivity (mobility) response (lower concentrations only). In addition, the highest concentration studied, nₑ = ~2 x 10¹⁶ cm⁻³, sets an experimental lower limit on the concentration at which electron-electron scattering will become the dominant energy relaxation mechanism for the photoexcited electrons, since OPC effects were present in this sample.

Physical Description

viii, 193 leaves : ill.

Language

Identifier

Unique identifying numbers for this dissertation in the Digital Library or other systems.

Collections

This dissertation is part of the following collection of related materials.

UNT Theses and Dissertations

Theses and dissertations represent a wealth of scholarly and artistic content created by masters and doctoral students in the degree-seeking process. Some ETDs in this collection are restricted to use by the UNT community.

What responsibilities do I have when using this dissertation?

When

Dates and time periods associated with this dissertation.

Creation Date

  • August 1979

Added to The UNT Digital Library

  • Aug. 22, 2014, 6 p.m.

Description Last Updated

  • Oct. 24, 2018, 10:37 a.m.

Usage Statistics

When was this dissertation last used?

Yesterday: 0
Past 30 days: 4
Total Uses: 8

Interact With This Dissertation

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Moore, Bradley T. CO₂-Laser Induced Hot Electron Magneto-Transport Effects in n-InSb, dissertation, August 1979; Denton, Texas. (digital.library.unt.edu/ark:/67531/metadc330925/: accessed November 19, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; .