ANALYSIS OF SEQUENTTIAL BARYCENTER RANDOM PROBABILITY
MEASURES VIA DISCRETE CONSTRUCTIONS
LeRoy I. Valdes, B.S., M.S.

Dissertation Prepared for the Degree of
DOCTOR OF PHILOSOPHY

UNIVERSITY OF NORTH TEXAS
December 2002

APPROVED:

Michael Monticino, Major Professor

John Quintanilla, Committee Member

Neal Brand, Committee Member and Chair
of the Department of Mathematics

C. Neal Tate, Dean of the Robert B. Toulouse
School of Graduate Studies



Valdes, LeRoy 1., Analysis Of Sequential Barycenter Random Probability Measures via
Discrete Constructions. Doctor of Philosophy (Mathematics), December 2002, 134 pp.,

31 references.

Hill and Monticino (1998) introduced a constructive method for generating random
probability measures with a prescribed mean or distribution on the mean. The method
involves sequentially generating an array of barycenters that uniquely defines a probability
measure. This work analyzes statistical properties of the measures generated by sequential
barycenter array constructions. Specifically, this work addresses how changing the base
measures of the construction affects the statististics of measures generated by the SBA
construction. A relationship between statistics associated with a finite level version of the
SBA construction and the full construction is developed. Monte Carlo statistical
experiments are used to simulate the effect changing base measures has on the statistics

associated with the finite level construction.



© Copyright 2003
by
LeRoy I. Valdes, B.S., M.S.

il



© Copyright 2003
by
LeRoy I. Valdes, B.S., M.S.

il



ACKNOWLEDGEMENTS

Many more thanks to Michael than I can express in words. I will try some here. From
you | have learned many things not just dealing with Mathematics. | have benefitted
from and enjoyed our discussions and our time together. In my attempt to have an
honest, relevant, virtuous and fulfilling life, T shall need to look no further than your
example. Thank you and Julia for being there for Connie and me when we needed
you. It has been a privilege and a pleasure to work with you and for you. I hope
that we can work together again. Thanks to Neal and John for agreeing to be on
my thesis committee and for your helpful suggestions. Thank you Olivia and Miles
for demonstrating patience far beyond your years when daddy has had work to finish
and playtime was rare. And thank you Connie, for all the work you put into making
our family and home a beautiful place for growth, love and expression. I love you

deeply.

iii



Contents

ACKNOWLEDGEMENTS iii
1 Introduction 1

2 Background

2.1 The Sequential Barycenter Array Construction . . . . . . .. .. ... 3
2.2 Approximations Of SBA Random Probability Measure Constructions 10
2.3 The Distribution Of Moments In The Support Of B, , . . . . . . .. 23

3 Random Splittings Of An Interval 37
3.1 A Splitting Model . . . . . . ... o 37
3.2 Numerical Methods . . . . . . ... ... ... ... ... ... 46
3.2.1  An Algorithm For Approximating F,, . . . . . ... ... ... 46

4 Simulations Of Statistics For SBA Constructions 53
4.1 Introduction And Simulation Implementation . . . . .. .. ... .. 53
4.2 'The Second Moment . . . . . .. .. ... ... ... ... ..., 58
4.3 'The Standard Deviation . . . .. .. ... ... .. .. ........ 68
4.4 The Third Moment . . . . . . .. .. ... ... ... ... ...... 76
4.5 'The Third Central Moment and Skewness . . .. ... ... ... .. 84
4.6 The Fourth Moment . . . .. ... ... ... ... .. ........ 95
4.7 'The Fourth Central Moment and Kurtosis . . . . ... ... ... .. 103
4.8 Conclusions And Open Questions . . . . . . ... ... ... ..... 115

v



A A Discussion Of The Simulation Procedure 117

B Annotated Source Code 119

Bibliography 131



Chapter 1

Introduction

The notion of a sequential barycenter array (SBA) random probability measure
(rpm) construction was introduced by Hill and Monticino [19]. This work extends
the characterizations of the support of this construction. In particular, this work
investigates the relationships between the generating measure used in the SBA rpm
construction and the distributions of the standard deviation, skewness, third central
moment, kurtosis and fourth central moment of the measures in the support of the
SBA rpm. Because of the analytical intractability of this relationship, much of the
investigation is accomplished through numerical simulation. Among other results,
the simulations imply that base measures which concentrate their mass near 1 are
more likely to produce measures with a larger standard deviations than those which
concentrate their mass near 0. Also, base measures which concentrate their mass near
1 are more likely to produce measures that are more symmetric than those with mass
near 0.

Random probability measure constructions are techniques for specifying a prior
on the space of probability measures. Priors are an important component of Bayesian
statistical analysis. Priors based upon parametric classes have been extensively stud-
ied. Due, in part, to improvements in computability, interest in nonparametric
Bayesian techniques has increased. Several nonparametric constructions have been
given in the literature. These methods include Ferguson’s Dirichlet processes [15]

and [16], the Dubins-Freedman scheme for generating random distribution functions



[11], Graf, Mauldin and Williams’ random rescaling scheme [17], Mauldin, Sudderth
and Williams’ Polya tree priors [24], Monticino and Mauldin’s generalization of the
random rescaling scheme [23], and Bloomer’s variance split arrays [5]. In varying
degree, all these techniques comply with Ferguson’s [15, 16] criteria that nonpara-

metric constructions be analytically manageable and have large support. However,

while general properties of measures in the support of the constructions are known,
more detailed properties are not. For example, if the base measure used in the SBA
construction has full support on the interval [0,1], then the associated prior has full
support on the set of probability measures on [0,1]. On the other hand, it is not
known how the selection of the base measure affects the standard deviations of the

generated measures.

All the constructions mentioned above share the common feature that they in-
volve a recursive process which makes them analytically manageable and relatively
straightforward to simulate. In this work, the SBA construction is simulated and the
relationship between the base measure and the types of measures in the support is
investigated. Chapter 2 reviews the SBA construction given by Hill and Monticino
[19] and develops relationships between statistics associated with a finite level version
of the SBA construction and those from the full construction. Chapter 3 gives some
partial results on a random splitting problem which was motivated by the relation-
ship between the finite and full SBA constructions. Chapter 4 presents results of the

Monte Carlo simulations.



Chapter 2

Background

2.1 The Sequential Barycenter Array Construc-
tion

The sequential barycenter array (SBA) construction gives a general and natural
method for randomly generating probability measures with a prescribed mean. Before
describing the construction, some definitions are in order.

Throughout this work, let X be a real-valued random variable with distribution

function F, such that E[|X|] < co.

Definition 2.1 The F-barycenter of the interval (a,c|, br(a,c|, is given by

_ Jaqg®dF@
be(a, ] = { EIX|X € (a,c]] = o) Fla) if F(c)>F(a)

a if F(c)=F(a).

That is, the F-barycenter of (a,c| is the conditional expectation of X over the in-
terval (a,c]. The following lemma characterizes some elementary properties of F-—

barycenters.

Lemma 2.2 (Hill and Monticino [19]) Fiz a < ¢ such that P[X € (a,c|]] > 0, and let
b=bp(a,c]. Then



i. F(c)> F(a) if and only if b > a,

ih. (F(c) — Fla))b = (F(b) — F(a))br(a,b] + (F(c) — F(b))br (b, c],
iti. bp(a,b] = b if and only if bp(b,c] = b,
iv. b>bp(a,x], for all x € (a,c].

Definition 2.3 (Hill and Monticino [19]) For a random variable X with distribution

function F, the sequential barycenter array (SBA) of F is the triangular array
{(mai ) %2 = {max(F)} defined inductively by

. ml’l = E[X],
. Mpoj =My 14, forn>landj=1,...,2"1 =1,
o - n—1
1. Mp2j—1 = bF<mn,1’j,1, mn,l’j], fOT’ ] = 1, ceey 2 5
with the convention that my, o = —oco and my9n = 00.

Note that (iii) of Definition 2.3, defines m, ;1 as the conditional barycenter of
X over (mp_1;-1,Mn_1,], for n > 1. These conditional barycenters can be viewed as

an infinite binary tree, as shown in Figure 2.4.

Figure 2.4 Binary tree of F-barycenters




Example 2.5 Suppose that the random variable X is uniformly distributed over

[0,1]. Then the sequential barycenter array of X is given by

ot [k 00, 271
{mn,k‘}n:l,k:l— on . (2.1)

n=1,k=1

Example 2.6 Suppose X is a geometric random variable with parameter p = 1/2.
Then

m171 = E(X) = 2,

3 +2(3)(3)
M = brlm00 2= pr S T
and
2 —[1/2+2(1/2)?] 1
Mmas = bF(27 OO) = F(OO) _ F(Q) = 1-3 =4.
4
The next level of barycenters are
1 1
— _ — 2 __2
ma1 = br(=o0,4/3] = Fr =g b
m3,3 = bF(4/3, 2] = 2,
B C3(1/28 +4(1/2)f 2 10
mas = br24] = =T pn; B
and
2 —[1/2+2(1/2)2 + 3(1/2)% + 4(1/2)Y] s
= 4 = = — 0.
maz = bp(4 o) F(oo) — F(4) IR

The fourth level barycenters are

1 = bF(_Ooal]: 1,
m4’3 = bF(1,4/3]:1

Mys = bF(4/3,2]:2

my7 = 27



od|wa

Mg = bF(Q, 10/3] = = 3,

@[~
Ao

m4,11 = bF(10/3,4]:4,
5(1/2)° +6(1/2)° 16

M = b 6] = ey = 5
and
m4’15 = bF(6, OO)
_ 2-[1/2+2(1/2)° 4 3(1/2)* + 4(1/2)" + 5(1/2)° + 6(1/2)°] _ N

Figure 2.7 represents the barycenters as a binary tree.

Figure 2.7 The binary tree of barycenters for Example 2.6

=4 m =163 m, 38
41 43 45 47 49 41 4,13 415

Hill and Monticino [19] show that a probability measure is completely determined
by its sequential barycenter array and they give an inversion formula (Theorem 2.8)

for recovering the distribution function of the probability measure from its SBA.



Theorem 2.8 (Hill and Monticino, [19]) F is completely determined by the values

{(max 25t In particular, F(my, ) is given inductively by F(my, o) = 0, F(myon) =

1; by Definition 2.3(ii) for even k; and, for k =25 —1,

1 i1 — 1N i
F(mnj-1) = F(mu_1j-1) + (F(mu_1 ;) — F(my_ o)) — =2
Mpt1,45—-1 — Mp41,45-3

with the convention thal % =1.

The following theorem gives conditions so that a given array is a sequential

barycenter array.

Theorem 2.9 (Hill and Monticino, [19]) A triangular array M = {mnk}zojnk;ll is an
SBA for some distribution function F' of X if and only if M satisfies i1, of Definition
2.3,

e Mp -1 < My g, foralln>1and k=1,2,...,2", and

U, Mpak—3 = My ak—2, if and only if my a1 = My ak—2, for all n > 2
and k=1,2,...,2"2

Hill and Monticino [19] introduce a method for generating probability measures with
support on [0,1] by randomly generating arrays which are almost surely sequential
barycenter arrays for probability measures. The construction proceeds as follows.

Let p and pg be probability measures with support on [0,1] and [0,1) respec-
tively. Denote by P([0,1]) the set of all Borel probability measures on [0,1]. Let
{Xn,gj_l}zoz’%;ll be an array of independent random variables defined on a probabil-
ity space (€2, F, P) such that X;; has distribution py and for n > 2, each X,, ; has
distribution pu.

_ 0,2™"—1
Define a random array M = {my, 1}, .=, by
1. my1 = X1,17

ii. Mp2j = Mp-14 , form>1andj=1,2,.. .,2”71 -1,



iii.

Mp—1,2j-1, if Mp—1,2j—1 = Mnp—12y;
Mp_12j—2 = Mp_1,25-1;
My 4j-3 = § Xnaj—3=0,0r X, 451 =0,

Mp—-1,25-1 —

| Xnj-a(Mn 1251 — Mp 12j-2) otherwise,

and
iv.
I'4 S
My—1,2j15 0 My4j-3=Mp12j1:
Mpaj—1 =94 Mp12j- 17T

X aj1(mMp_12; —Mp_12j-1) otherwise.

Endow the set of triangular arrays A = [0,1] x [0, 1]> x --- x [0,1]*"7! x - -+ with
the standard product topology. Let A € A be the Borel subset of arrays which satisfy
(ii) of Definition 2.3 and conditions (i) and (ii) of Theorem 2.9. Clearly, M(w) € A
for all w € €. Let Q) be the distribution of M on A. It is shown by Hill and
Monticino [19] that the mapping T, induced by (ii) of Definition 2.3 and Theorem
2.8, which sends an array {m,;} € A to its associated distribution, T({m,}), is

Borel from A to P([0,1]) given the weak* topology.

Definition 2.10 (Hill and Monticino, [19]) The sequential barycenter array random
probability measure (SBA rpm) By, ,is the Borel measure Q. 0T on P([0,1]).

? Hill and Monticino [19] give

What kind of measures are in the support of B,

some general properties of the support of B,,, ,— for instance, Theorem 2.11 states
conditions on p and g so that B, , has full support on P([0,1]). Theorem 2.12
specifies when all measures in the support are continuous, discrete or have finite
support.

A probability measure v defined on a compact Hausdorff space H has full support

if H is the smallest compact set whose complement has v-measure zero.



Theorem 2.11 (Hill and Monticino, [19])
If po and p have full support on [0,1], then B, ,has full support on P([0,1]).

Theorem 2.12 (Hill and Monticino, [19])

i. By, u-almost all SBA measures are continuous on [0,1] if and only if 1o({0,1}) =

0 = u({0}).

ii. If uo({0}) > 0, then almost all SBA measures are discrete.

iii. If po({0}) > 1 — /2, then B,, ,-almost all measures have finite support.

One of the objectives of this work is to extend the characterization of the support
of B, .. For instance, what is the distribution of the standard deviation (SD) of the
measures generated by an SBA construction? What is the distribution on the third
or fourth moments? The shape and form of a distribution of a random variable X
with mean m can be described by its departure from symmetry about the mean and
from its degree of peakedness or flatness (Wilks [31]). The statistics that serve as
descriptors are calculated using the third and fourth central moments of X.

The ith central moment of a random variable X is defined by
n=FE[(X —m)]. (2.2)

The SD, o = /1, gives a measure of dispersion of the distribution about the mean.
For a random variable on [0,1], with mean m between 0 and 1, the SD has values
between 0 and /m — m?2 (Corollary 2.26). The third central moment, 7;, gives a
measure of how symmetric the distribution of mass is relative to the mean. If a
distribution is symmetric about the mean, then 73 is zero. A positive value for 73
implies that most of the mass of a distribution lies to the left of the mean and a
negative value for 73 means that most of the mass lies to the right of the mean.

The third moment of the standardized random variable

_X—m
o

X*

(2.3)



is referred to as the skewness of the distribution of X and is denoted by a3 = 13/03.

If a3 < 0, then most of the mass of the distribution is to the left of the mean and
the distribution is said to be negatively skewed. If oz > 0, then the distribution is
positively skewed and most of the mass is to the right of the mean. If a3 = 0, then
the distribution of X is symmetric about m. The range for skewness of a random
variable on [0,1] is (—o0, 00).

Kurtosis is defined by ay = F(X*') — 3. If ay = 0, the distribution is neither
excessively peaked nor flat. If ay > 0, the distribution is sharply peaked (leptokurtic).
If oy < 0 the distribution is flat (platykurtic). For a detailed discussion about central
moments, the SD, skewness and kurtosis, see Wilks [31]. The kurtosis of the random
variable on [0,1] takes on values in [-2, 00) [27].

Unfortunately, deriving the distributions of the moments of measures in the sup-
port of B, , appears to be analytically intractable. Therefore, simulation will be
used to empirically characterize them. One question addressed here is how well do
the statistics derived from simulation represent the actual statistics associated with
B,.? To address this question, the notion of an SBA approximation of a random

probability measure is developed.

2.2 Approximations Of SBA Random Probability

Measure Constructions

This section introduces a method for approximating a probability measure using the

measure’s SBA.

Definition 2.13 Let X be a real-valued random variable with cumulative distribution
function (cdf) F and SBA {m,;}°> % Z}. Forn > 1, the nth level SBA approz-
imation of X is the discrete random variable, X™, with support on {mw_l}ﬁf
such that

P (XM =my91) = F(my) — Fmasi-s),
with the convention F(—oo) =0 and F(oo) = 1.

10



The cdf, F™_ of X is given by

0 it x <my,
F(n) (ZL’) = F(mn’gﬁ if Mp,2i—1 <z < Mip 2115 forall 1 << n-l 2 (24)
1 if z Z Mpon—1.

The distribution, (™, of X is given by

2n—1

M(n) = Zpgn]dmn,zi—w (2.5)
=1

where p[n] = F(mn’2i> — F(mn’gi_2>.

%

Example 2.14 Let X be random variable such that P (X = é) = % =P (X = %)
and P (X = 2) = 3. Then my; = E[X] = 9/16 and the first level approximation X ()
of X has measure 6, ;. Now, my; = bp(0,9/16] = 1/4 and my3 = bp(9/16, 1] = 2/3.

Thus, the second level approximation X® of X has cdf

0 xz<1/4
FO@)=14 1/8 1/4<z<2/3
1 z>2/3.

Continuing with this process, we get ms; = bp(0,1/4] = 1/6, m3 3 = bp(1/4,1/2] =
1/3 and mss = msr = 2/3; ma; = bp(0,1/6] = 1/6 = ma3 = bp(1/6,1/4] = ms,,
mas = bp(1/4,1/3] = muyz = 1/3 = m33 and {ma,}2y = 2/3. By applying Lemma
2.2 (ii) and (iii) repeatedly, it is straightforward to see that all the elements of the
SBA of X after the first three rows are equal to 1/6, 1/3 or 2/3. Moreover, for all
n > 3, the nth level SBA approximation of X has distribution function

0 x<1/6
1/8 1/6<z<1/3
1/4 1/3<2<2/3
1 z2>2/3,

F(”)(:ﬁ) =

11



which is equal to F'.

This example illustrates the general case which will be shown in Theorem 2.20: If X
has support on a set of k points, then X = X, for all n > k. Note that due to

(n

the binary nature of the SBA approximation, it might seem that X should equal
X for any n that 2™ > k. However, Example 2.14 shows that it may be necessary to
have n > k before X® £x.

A few preliminary definitions are needed before proving Theorem 2.20. Denote by
B(R) the Borel subsets of R. Suppose B € B(R) and P(B) # 0, then the conditional
random variable X5 of X is the random variable such that

P[X € AN B]
P[XeB| '

P[XBGA]:

for A € B(R). Denote the cdf of X by Fp.
The notion of a nth level SBA decomposition of the measure of a random variable

is given next.

Definition 2.15 Let X be a random wvariable with cdf F, distribution p, and SBA
{mnp}o Q,Z;f. Forn>1andl <i<2"!let

n=1

Xi[n] = X(mn,2i727mn,2i]7 (26)

and denote the distribution of Xi["] by u["]. The nth-level SBA decomposition of p s

7

given by

2n—1

p=>_ . (2.7)
=1

Note that, for A € B(R),
Qn—l 2n—1
pn(A) = (Zp?”u&"]) (A) =Y pua). (2.8)
i=1 i=1

Using the inversion formula given in Theorem 2.8, the values {pE"]} can be calcu-
[n]

lated from the SBA of X without explicitly knowing p. Also, note that y; * has density

12



FXem 12_72 o] L 2i-2.ma i) With respect to pi. (For A C €, the indicator function,

14, is the function on €2 that assumes the value 1 on A and 0 on the complement of

A))

Definition 2.16 Let M be the SBA for the random variable X. For each odd integer
i between 1 and 2" — 1, the (n, i) conditional SBA M!" = {mé"jz)}gikfl of X is
defined by

(1)
7]

mk .= mn+k_1,(i_1)2k—1+j, (29)

fork>2andj=1,2,...,2% 1.

For example, the (3, 3) conditional SBA, M?E?’], is the triangular subtree of M with

apex ms 3, as shown in the following figure.

Figure 2.17 Subtree comprising M?E?’]

13



Proposition 2.18 For a random variable X with SBA {m,, ;} %2/, the (n,2i —1)

conditional SBA, Mz[?]_l, is the SBA for the random variable X}"l with distribution

.

Proof: First, by Definition 2.15,

BE(xM) = / rdul(z)

1
= 21 (m 2i—2,Mp, 2 dp(z 2.10
/ (Mn,2i~2,mn, ]F(mn’zi) — F(my2i—2) (@) ( )
. f(mn,Qi—Q,mn,2i] $du($> (2 11)
F(mn’%) — F(mn,2i—2> ‘
= Mp2i-1 (2.12)

Equality (2.10) follows from Billingsley [4] (Theorem 16.10) and the fact that
[(mn’m—?amn,Qi]F(m 2.),}(m —y is the density of ,ug") with respect to u. Equality (2.12)

follows from Definition 2.1 and Equality (2.13) from Definition 2.16.
Let k> 1,1< 4 <21 — 1. By Definition 2.16, and Definition 2.3 (ii),

(n,2i—1)
My 95 = Mpyipp—1,((2i-1)-1)2k-1425

= Mpik—1)-1,(2i—-2)2k—245

B k1,5

Thus, MQ[ZL]_l satisfies the second condition of Definition 2.3 for the SBA of Xi["].
Lastly,

m%?:l) = Mpip—1,(2i-2)2k~ 14251 (2.14)
= Myyk_12(2i-2)2k—244]-1 (2.15)
= bF(mn+k—2,(2i—2)2’“*2—|—j—1: mn+k—2,(2i—2)2’“*2+j] (2.16)
B LY

F(mn+k—2,(2i—2)2k*2+j) - F(mn+k—2,(2i—2)2’“*2—|—j—1)

14



Equality (2.14) follows from Definition 2.16. Equality (2.15) follows from Defin-

ition 2.3 and (2.16) from Definition 2.1. Let a = my, 5 o @i_ok-—24;-1 and b =

: [n] : 1
My k—2,(2i-2)2h—24 - Oince ;- has density [(mn’2i_2’m"’%]F(mn,Zi)*F(mn,Zifz)

to ¢ and by Definition 2.16, (2.17) equals

with respect

F(my2:) — F(mp2i_2) / o1 1
F(b) - F(a) (a,b] (mTLi?Zi?’mn‘?Z]F(mn,?i) - F(mn,Qzé?)

du{z)  (2.18)

— ! rdpl(a
- " /(] dp () (2.19)

= Rl (o) : DR / , - wdpl(a) (2.20)
I (mkil,j ) — B (mkzil,jﬂ) (m{ T )
n,2i—1 n,2i—1
:bFi[”](mgcfl,jfLmI(cfl,j . (2.21)

Hence MQ[ZL]_l satisfies the three conditions of Definition 2.3 for the SBA of XZ-["]. O

Proposition 2.19 Let n,k > 1 and let X be a random variable with distribution p.
Let Zf;l pE"]ﬂ[”] be the nth level SBA decomposition of . For each i, let (/LE"])(’“) =

7
ok—1

D qz[k;](S (n.2i-1) be the kth level SBA approzimalion of ,,LE”]. Then
WM 951

o(nt+k—1)-1
e Y . S (2.22)
=1
2n—1
= > pl)®. (2.23)
=1

Proof: Note that (2.22) can be written as
on—1 2k—1

n — nt+k—1
P =3 T b |- (2.24)

=1 \I=(i—1)2F-141

15



To prove the proposition it will suffice to show that for each 1 <7 <271,

iQk_l

n n n+k—1
pL J(ME J)k = Z p% ’ Jémn-i—k—l,?l—l' (2.25)

I=(i—1)2k—141

Re-indexing the sum on the right hand side of (2.25), this is equivalent to showing
that for each 1 < j < 2F°1

(], [k] 5(n.2i-1) _ [n+k—1] (2.26)

Pi a5 Omy 5y = Plamnyor—145 Ome i1 ook 1ay-1”
But, by Definition 2.16,
(n72i71) m . .
k,2j—1 - nt+k—1,(2i—2)2k—14+25-1
= Mpyk—1,2((i—1)2k—145)—1 (2.27)
By Definition 2.15 and Proposition 2.18,
n] [k n n,2i—1 n n,2i—1
gl = (F(mag) = Flmaz ) (R i3 0) = FMm{t,")) - (2.28)
n,2i—1 n,2i—1
Fmis V) = Fms",")

= (F(mna2i) — F(mppi—2)) F(mna) — F(mmos2) (2.29)
= F(m" ") - Fim3",") (2:30)
= F(mn—l—k—l,Q((i—l)Qk*l—l—j)) - F(mn—l—k—l,Q((i—l)Qk*l+j)—2) (2.31)
= Py (2:32)

Equality (2.28) follows from Definition 2.15, and equality (2.29) follows from the
definition of a conditional random variable. Equality (2.31) follows from (2.27), and
equality (2.32) from Definition 2.15. O

The next theorem shows that a random variable with support on a finite set of &

elements will be equal to its nth level SBA approximation, for all n > k.

Theorem 2.20 Let X be a random variable with measure p having support on the
finite set {ay,as,...,a;} CR. Let F be the cdf of X. Then X £ X, for alln > k.

16



Proof: The proof proceeds by induction on the cardinality of the support of X,
|supp(X)|. First, suppose X gives unit mass to {a}, i.e., up = d,. By Definition (2.1)

:

mi1 = bp(—00,00)
= /xdF(x)
R
= a (2.33)
Thus,
m271 = bp(—oo,ml,l] (234)
_ w7 (2.35)
F(ml,l) — F(—OO)
zdF(x
_ JewqdF@) (2.36)
F(a) — F(-o0)
a
= ) 2.37
By Lemma 2.2 (iii), it follows that mes = bp(my1,00) = a. Moreover, by re-

peated application of Definition 2.1, Lemma 2.2 (iii) and Definition 2.3, it follows
that my 9,1 = a, for all n > 1 and 1 <4 < 2" !, Thus,

2n—1

,u(n) - Z pgn] 5m,2i71 =04 = My (238)
=1

for all n > 1. Assume that if 4 has support on a set of k— 1 elements, then X ™ £x
foralln > k — 1.

Suppose X has support on a set of k distinct elements, {a1,as,...,ar}. Let u be

the distribution of X. Write p as p = p[12] u[12] + p[22] M[QQ]. Recall M[12] is the conditional

measure of p over (—oo, my1]; 1 is the conditional measure over (ma 1, 00); P =
P(X < my,), and p[22] =1- p[12]. There can be at most k£ — 1 a;’s less than or equal
to my; = E(X). Similarly, there can be at most £ — 1 a;’s greater than or equal to

mi,1. Thus MEQ] and M[QQ] have support on at most £ — 1 elements. By the induction
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assumption, (,u[f])(”) = ,u[f] and (,u[;])(") = ,u[22], for all n > k—1. Thus, by Proposition
2.19, for all n > k,

wo= !+ gy (2.39)
= A+ )Y (2:40)
= u™, (2.41)

For a random variable with support on an infinite set, some more background is
needed in order to continue the discussion of how well a random variable is approxi-
mated by its SBA approximation. The following discussion can be found in Billingsley
[3] for a general metric space S. Here S is often assumed to be [0,1] with the Fuclidean
metric 5. Let P be a probability measure on the class of Borel subsets, B(S) of S. Let
P(S) denote the space of probability measures on (S, B(S)). Make P(S) into a Haus-

dorff space by taking basic neighborhoods B = {Q : ‘ / f:dQ — / fidP

where ¢ is positive and fy, fo, ..., fr are in the class of bounded, continuous real func-

tions on S. The topology of weak convergence is the resulting topology, and it is

metrizable by the following metric.

<€1=1,...

7k}7

Definition 2.21 The Prohorov distance, p, between two measures P and Q on (S, B(S)),

denoted by p(P,Q), is the infimum of all € > 0 so that
P(A) < Q(A) +¢ (2.42)

and
Q(A) < P(A) +e¢ (2.43)

Jor all sets A € B(S), where A, = {x: B(z, A) < €}.

Note that if p(P,Q) = 0, then P and @ agree on closed sets and therefore are
identical, since every probability measure on (S, B(S)) is regular. Compact subsets

of a metric space are closed, hence one can characterize p on compact sets only.
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The notation p(X,Y), for random variables X and Y, denotes the Prohorov distance
p(L(X), L(Y)) between L(X) and L(Y'), the laws of X and Y, respectively.

Lemma 2.22 places a bound on the Prohorov distance between a probability mea-

sure p1, with m = [ zdp(z), and the Dirac measure d,,.

Lemma 2.22 (Bloomer, [5]) Suppose X is a random variable with m = E(X) and
V =Var(X). Then,
p(X,6,) < VV. (2.44)

Using Lemma 2.22 and the following notion of the balayage random variable, a
bound on the Prohorov distance between a random variable and its nth level SBA

approximation is obtained in Theorem 2.28.

Definition 2.23 (Hill and Kertz, [18]) Let Y be an integrable random variable and
let a,b be constants such that —oo < a < b < o0o. The (balayage) random variable, Y

is equal to Y if Y & [a,b], is equal to a with probabzlzty (b —a) er o] dP
and is equal to b with probability (b — a) fYG ab] —a)dP.
Note that ( fYEab Y)dP + (b fYEab —a)dP = P(Y € [a,b]).

Hill and Kertz [18] note that Ya” is the random variable with maximum variance
which coincides with Y off [a,b], and which has expectation E(Y'). This statement
can be extended to the following: If Y takes only positive values, Y’ is the random
variable with maximum kth moment, & > 1, which coincides with Y off [a, b], and
which has expectation E(Y). Denote the kth moment of Y by E(Y?").

Lemma 2.24 Let Y be a nonnegative integrable random variable and 0 < a < b < oo.
Then E(Y*) < E(Y?"), for k > 1, with equality when k = 1.

The proof follows directly from the proof given by Hill and Kertz [18] (Lemma 2.2).
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Proof:

EYY = /KMP
= / KMP+/ Yrdp
Yd[a,b] Y €la,b]
1 1
= / KMP+{< /‘ @—Yﬁw>m+< / WFaMéVJ
Yo b—a Jyepy b—a Jyepy
1
= /ﬁ Y dP + /1 (b—a)Y dP
Y ¢[a,b] b—a Y €a,b]
= /ﬁ YdP+/n Y dP
Y ¢&[a,b] Y€[a,b)
= Y dP
— E(Y)

b—Y Y-
/ G (Y)dP = / wk< ot “b> Jr
Ye[ab] Ye[ab] b—a b—a

b—Y Y —a
< wi(a) + Vi (b) dP 9.45
L @)+ (2.45)
1

1
= b—Y)dP b Y —a)dP
o) / LR IOT e / et

- / Gu(Y?) dP.
Y €la,b]

Equality (2.45) follows from the convexity of ¢y (y) over [0,00). Thus,

) = [ PGS [ wwar

Y €la,b]

Y)Y dp Yhdp
S/W[a,b]wk<a> +/ (YD)

Y €[a,b]

= E(¢(Y))). O
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Note that the condition that Y take nonnegative values in Lemma 2.24 is not necessary
for k even.

Corollary 2.25 Suppose 0 < a < b < 0o, Y has support on [a,b], and let m = E(Y).
Then E(Y) = E(Y}) and, for allk > 1, E(Y*) < E(Y}?") = oF (422 4 pF (m29).

b—a b—a

Corollary 2.26 gives a bound for the variance of a random variable with support
on [a,b] in terms of E(X) = m, a and b.

Corollary 2.26 Suppose X is a random variable with support on [a,b] and let m =
h— 2
E(X). Then Var(X) <m(b+a) —m? —ab < ( 4@) .

Proof: By Corollary 2.25,

Var(X) E(X?) - EB(X)?

E((Xg)*) — B(Xg)?

b—m m—a
2 b2 2
(o) e (5=0)

IN

= m(b+a) —m® — ab. (2.46)
Equality (2.46), as a function of m, is maximized over [a, b] at m = L% with maximum
value of %. Thus
bh— 2
Var(X) < & 4“) . (2.47)
1

The following result is given in Bloomer [5].

Lemma 2.27 (Bloomer [5]) If P = pQ; + (1 — p)Q2 and P’ = pQ| + (1 — p)Q% are
probability measures, with 0 < p < 1, and p(Q1,Q}) = €1 and p(Q2, Q%) = €2, then
p(P, P") < max{e;,es}.

A bound for the Prohorov distance between a random variable X and its nth level

SBA approximation X can now be given.
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Theorem 2.28 Suppose X is a random variable with support on the interval [0,1].
Let {my, ;122 %] be the SBA of X and let X™be the nth level SBA approzimation
of X. Then

R . 2
p(X™, X) < max (/(mn,m o2 (2.48)

1<i<on=1 4

for each n > 1.

Proof Fix n > 1. Let u be the distribution of X and let (™ be the distribution of
X Then, by Definitions 2.13 and 2.15,

2n—1

p=>_ "yl (2.49)
=1

and
2n—1

= Z pgn]dmn,%—l’ (2'50)
=1

where pi™ = F(mp.5:) — F(mpai_s), p™ is the distribution of X! with support on

2

[Mp2i—2, M 2], and my, 9,1 = E(X["]). By Lemmas 2.22, 2.27 and Corollary 2.26,

7

p(,LL,,U(n)) < max ,O(ME ],5mn 2i1)

1<i<an—1
2
< max \S/(anz - mn,Zi—Z)
T oa<i<an-l 4 '

Example 2.29 Let X be U[0,1]. Then

p(X, XM , for each n > 1. (2.51)
\/ \/ 22

Example 2.30 Suppose X ~ Beta(1,2). Then

1

1

miy = br(0,1] = / 2¢(1 —z)dx = 3
0
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mo1 = b (O —]

_ 1/32:):(1—:1:)d:1: T
= fol/z 21 — &) dz — 0 45
B f1/3 2z(1 — x)dx 5
T T T Bl —w)yds 9
f07/45 2¢(1 — x) dx 847
msy = f07/452( B )d$ ~ 11205
B Jojas 20(1 — x) du 553
m33z = f01/3 21 — ) di — 7/452(1 —2)dx 9995
fl%g 2z(1 — x) dx 59
T T 0 o de — [P 2 —a)de 135
f5/9 2¢(l — z) dx 19
ms7 =

1-— 5/92( —x)dx_2_7-

Using Theorem 2.28, p(X®), X) <

o d A (BTN B (7 8T N of(553 T\ o[(1 5537
11205/ "\ \45 11205/ >\ \2295 45/ "\ \3 2205/ °
(59 IV ef(5 50N L[(10 5N L[ 1VEL
135 3 9 135 27 9 27
max {0.17878,0.43082,0.19393, 0.20435,0.22073, 0.24128, 0.27998, 0.44444}

= — ~ 0.28.
V4

2.3 The Distribution Of Moments In The Support
Of By,

The goal of this section is to specify two methods of assessing the accuracy of using
an nth level simulation of the SBA construction to estimate the distribution of the

moments of measures in the support of B, ,. The first method gives upper and lower
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bounds on G{*(y) = B, ,{X : E(X*) < y}, the distribution function of E(X¥)

with respect to B, , in terms of the distribution of the Prohorov distance between

:

X and X™ . The second method is less analytically tractable but allows for a sharper

bound for simulations.

For the SBA rpm B let

HOs 1

G (y) = Bupu{X : B(X™") <y} (2.52)

denote the distrubution function of the kth moment of the nth level SBA approx-
imation, X(™. Let F#o# be the distribution function of the length of the largest

(barycenter) subinterval induced at the nth level of the B, , construction. That is,

BI0) = Buog { X5 (o) ~main (0} <0} 259

1<i<2n—1

Proposition 2.31 For the SBA rpm B, .,

1_FM0,M 2 L o2 < GMO,M( )<
n—1 k+2 = k Y) >

3/2
N oo J
Igl;(l)l{Gk (y+9)+1—FFy (2 (k—i—?) )} (2.54)

For the proof of Proposition 2.31, two lemmas will be needed. Lemma 2.32 gives a
lower bound for By, , {X : p(X, X() < €} in terms of F2°}" and Lemma 2.33 bounds

the difference between moments of two random variables in terms of the Prohorov

max {Gé")uo’u(y —0) —

>0

distance.

Lemma 2.32 Let € > 0, then

Buou 41X 1 p(X, XMy < ¢} > Flot(2642). (2.55)
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Proof: By Theorem 2.28, p(X, X™) < max; <;<on-1 {/w Hence,

Fot(26%) = By, {X comax Amu_14(r) — mpo1(0) ) < 263/2}

1<i<2n-1
af (Mp2i(T) — Mp 2 o())?
_ g X m » : < :
ror { 1<igan \/ 4 ¢ (256)

< B {X :ip(X, XMy < e},

Equality 2.56 follows from Definition 2.3. O

For a metric space (S,d), the Lipschilz semi-norm for a real-valued function f

on S is defined by ||f||z = sup,,, |f(z) — f(y)|/d(z,y). The supremum norm on
f is given by [|f]leec = sup, |f(z)|. Lemma 2.33 is essentially Corollary 11.6.5 (to
Strassen’s Theorem) of Dudley [12].

Lemma 2.33 For any separable metric space (S,d) and random variables X and Y
on S, |[E(X*) — E(Y*)| < (J|z*| + 2||2*||s0) p(X,Y"), for any k > 1. In particular,
for § = [0,1], [E(X*) — BY*)| < (k+2)p(X,Y).

Proof: Let ¢ > 0. By Corollary 11.6.4 (Dudley [12]), there exists a probability space
(Q, P) and random variables X and Y such that £(X) = £(X), £L(Y) = £(Y), and
P(d(X,Y) > p(L(X), L)) 4+ ¢€) < p(L(X),L(Y)) +€ Let A= {(z,y) € SxS:
d(z,y) < p(X,Y) + €}, and let R be the measure of (X,Y) on S x S. Following the
proof of Corollary 11.6.5 (Dudley [12]),

|B(X*) - E(YH)| < BIX*-YF

< [t =R + [ 1t = R )
<l / Az, y)dR(x, y) + 2||7 || (o(X, Y) + €)

< Il / (P(X,Y) + €)dR(z, 5) + 2"l (p(X, Y) + €)
< Nla¥1L(o(P,Q) + €) + 2|z oo (p(X, V) + )

(12"l + 2l [|oo) (p(X, Y) + 6). (2.57)
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The first portion of the proof is complete since ¢ > 0 was arbitrary.

For the second part of the lemma, note that for S =[0,1] and k£ > 1, ||2*||c = 1
|z* — o]

and ||z*||, = sup =k. O

Y [z — v

Proof of Proposition 2.31: Define D}(X) = |E(X*) — E(X™")|. Then, for all
0 >0,

GZO’!L(?J) B, ,M{X :
By {X : B

B
(X )
By {X + B(X™) <y + DR(X)}
(X7 <
E(X™) <
B

IN

Buou{X 1 E y+ Di(X), Dp(X) <o} +

Buguf X : y + Dp(X), Dp(X)) > 6}

Blou{ X« B(X™") <y + 6} + By uf X - DP(X) > 6}

G (y +6) + By o {X : D}(X) > 6} (2.58)

G (4 0) + By {X : (k4 2)p(X, X™M) > 6} (2.59)
+9) +

)
. (n) _
#Ou{X.p(X,X ) > k—l—Q}
4]

G,(Cn) “(y+0)+1— By, {X p(X, XM < m}

- 5 3/2
n)HoH TN
Gk (y+5)+1 2 (2 <k+2> ) . (2.60)

Inequality (2.60) follows from Lemma 2.32 and Lemma 2.33. Thus, G}*"(y) <

. 5\ B
: n)HOH _ pHosu
I§1>1(I)1{Gk (y+96)+1—F (2 (k—i—?) )}

Similarly, for all 6 > 0,

VAN

IN

G /J'O/J«< 6

IN

GZO’#(Z/) = uou{X B Xk) < y}
{X:E(X™") <y-DpX)}

Blgu =

> BuudX : BX®') <y — DI(X), Dp(X) < 6}

>

26



> B {X: B(X™') <y -4, Di(X) < 6}

> BM{X L BE(X™) <y -4}
B, AX :Dp(X) <6} -1 (2.61)
o 5 3/2

> chm My — &) + Frow (2 <m> ) —1 (2.62)

o 5 \*?
= G\ (1 F“O’“( k+2> )) (2.63)

Inequality (2.61) follows from the Bonferroni inequality and (2.62) follows from Lemma
5\
1—FFF 12 —— . 0O
et ( (k + 2)

Corollary 2.34 places bounds on the distribution function of the standard deviation

>0

2.33. Thus, G¥**(y) > max {C‘,i W’“(@/ —4) —

of the measures in the support of B, ,in terms of the distribution function of the

second central moment and F'°F. Let m = E(X), let

Ci*"(y) = By X + E(X — E(X))* <y} (2.64)

and let,
O (y) = By X : E(X™ — BE(X®)F <y}, (2.65)

Note that B, ,{X : /E(X?) — E(X)2 < y} = C§**(y?) . Also, note that F(X) =
E(X™). The proofs for Corollaries 2.34, 2.35, and 2.36 are similar to the proof of
Proposition 2.31.

Corollary 2.34 (Corollary to Proposition 2.31.) For the SBA rpm B

[y
(mpro ;5 6%/
n)Ho-H _ _ ok [ Y
elerv-afoms () -
Bl X - VEOO) “B(XP <) <
) (n)rook , o §3/2
min {C'Q (y*+90) +1—Ef (T) } . (2.66)
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Proof: For § > 0,
Buoyu{X : VE(X - B(X))? < y}

= B {X: E(X - E(X))* <y}
< B X 1 E(X™ — E(X™))? <o + | BE(X") — E(X?)|} (2.67)
= Buu{X : E(X" — E(X™))? < 4?4+ Dy(X), D3(X) < 6} +
By u{X 1 B(X™ — E(X™))? <y? + Dy(X), Dy (X) > 6}
< B X :BE(X™ - E(XM"))? < y? + 6} + B, {X : D(X) > &}
< O (P 4 6) + 1 — Frop (%). (2.68)

Inequality 2.67 follows because F(X)
2.32. Also, for 6 > 0,
{X: E(X - E(X))* <y}

Blou

Y

B, X B(X™ —
Buoy{X : B(X™ —
B dX  E(X™ —

v

Y

By (X ¢ DY(X) <5} -

i (g2 — 6) —

Y

1—

= E(X™). Inequality 2.68 follows from Lemma,

X)) <2~ D3(X)
X)) < 7~ DR(X), DY(X) < )
X)) <2 -5} +
1 (2.69)

F.lto’#

n—1

@)

Inequality (2.69) follows from the Bonferroni inequality. Since (2.68) and (2.69) hold

for all 6 > 0, the result follows. O

Corollary 2.35 places similar bounds on the third central moment. The proof is

similar to the proof for Corollary 2.34.

Corollary 2.35 (Corollary to Proposition 2.31.)

4]
_ pHosp v

max 1

>0

{Cz(,")uo'“(y —5) -

For the SBA rpm B

HOsH >

)]} <O (y) <

ol
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) Ao _ o [ [ O)?
r§1>1(r)1{03 (y+06)+1— F* ((17> )} (2.70)

Proof:  Recall that E(X) = E(X®™) and that EF(X) < 1. Let SD3(X) =
|E(X™*) — BE(X?)| + 3|E(X™) — E(X?)|. Then for § > 0,

Buou{X : E(X — E(X))’ < y}

< Bugu{X : E(X™ — B(X™))? <y + [B(X™ - B(X™))? - E(X - B(X))’|}
< Buu{X : E(X™ — B(X™))? <y + SDy(X)}

< BuudX : (X" — B(X™))* <y + 6} + By u{X : SDF(X) > 6}

< My +0) + BMM{X 17p(X, X™) > 6} (2.71)
< Oy 4 0) + 1= B { X 17p(X, X M) < 6}

< O (y4+8) 41— Fror ((%) 2) : (2.72)

Inequality (2.71) follows from Lemma 2.33. Inequality (2.72) follows from Lemma
2.32.
Also, for 6 > 0,

By u{X : E(X — E(X))” < y}

> B {X: E(X B(X™))? <y — SDI(X)}
> B {X : B(X™ — B(X™))? <y — SD}(X), SDI(X) < 6}
> By, (X B(X® - B(XO) <y -5} +
By {X - SD}(X) < 6} — 1 (2.73)
< OBy —8) ~ [1 - By {X : 175(X, X™) < 6]

= "y —9) -

| — prop ((%) )] | (2.74)

Inequality (2.73) follows from the Bonferroni inequality. Since (2.72) and (2.74) hold
true for all 6 > 0, the result is true. O
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Corollary 2.36 places bounds on the fourth central moment. The proof is similar
to Corollaries 2.34 and 2.35.

Corollary 2.36 (Corollary to Proposition 2.31.) For the SBA rpm B, ,,,

- ey (2 (%) ) } < Cpor(y) <
n)HOsH 1)
I§1>i(1)l {C’i POy +8) +1 — Fhot (2 <%> ) } . (2.75)

Proof: Let SD}(X) = |E(X™") — B(X*)| + 4|E(X®™®) — BE(X3)| + 6|E(X™") —
E(X?)|. Recall that F(X) = F(X™) and that F(X) < 1. Then for all § > 0,

max {C’in)uo’u(y —0) —

>0

wlw

By X 1 E(X — E(X))" < y}

< Buo{ X : B(X™ — B(X™)* <y + |[B(X™ — BE(X™))* — B(X — E(X))*|}
= Byuou{ X : B(X" — B(X™))* <y + SD}(X),SDj(X) < 6} +

Bupu{X : E(X™ — E(X®™))' <y + SD}(X),SD}(X) > 6}
< By X B(X™ — B(X") <y 46} + By, o {X : SD}(X) > 4}

< O (Y +0) + 1= By, {X 1 50p(X, X ™) < 5} (2.76)

< O (y + 8) + 1 — B (2 <%> ) :

Inequality (2.76) follows from Lemma 2.32. Also,

Buou{ X+ B(X - E(X))4 v}

> By, d Xt E(X™ — E(X™)) <y - SD}(X)}
> By d Xt E(X™ — E(X™))! <y — SD}(X), SD}(X) < 6}
> B X E(X™ — E(XM) <y — 6} +
B {X - SD2(X) <6} —1 (2.77)
> CF*(y — 8) = [1 = By, {X  50p(X, X ) < 6}].
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> C{My —0) -

| prop (2 (%) )] |

Inequality (2.77) follows from the Bonferroni inequality. Since each inequality in
(2.75) holds for all 6 > 0, the result is true. O
Note that in the proof of Proposition 2.31, B, , {X : D}(X) > ¢} is bounded by
5 \32
1—FFr 2 <m> which is likely not to be a sharp bound (Refer to Chapter

4). In numerical simulation, a better approximation for B, , {X : DZ(X) > 6} may

be obtained from Proposition 2.38.

Proposition 2.37 For a random variable X, and its nth level SBA approximation
)((ni

?

Mp2i — Mp2i-1 k Mp2i—1 — Mp 22 k
n, 22 + mn,2i - mn,?ifl .
Mp2; — My 2i—2 Mp2; — My 2i—2

[B(X*) = B(X™)")] <

2n1

Zp@

(2.78)
Proof
B - B = [ - [ ataw)
(—00,00) (—00,00)
AL 1 on— 1
- |z / SICEDY / ) (z)
mn?l 2~ mn?l mn?l 2~ mn?l
2n—1
<> shauto) - [ 2 dp™) (2)
i=1 |Y (mn,2i—2 —mp 2i] (my 2i—2 — mp, 2]
2n—1
- >/ ol — | A i
i=1 |7 (mp,2i—2 —my 2] (mp,2i—2 = My, 2i]
2n—1
S Z Pgn] / xkdﬂgn] (.l’) — (mn’gi,l)k
i=1 (mp,2i—2 — Mp,2i]
<
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2n—1

o]y & Mp2i — Mn2i—1 k Mp2i—1 — Mn2i-2 k
E P My 2o + My, 94 — M9 q]-  (2.79)
=1

Mp2i — Mp2i—2 Mp2i — Mp2i—2

Inequality (2.79) follows from Corollary 2.25. O

The distribution B,,, ,{X : D}(X) > ¢} on the right hand side of equality 2.58
(Proposition 2.31) is bounded by the distribution function of the longest (barycenter)
subinterval (2.72). This bound can be replaced by the distribution of the bound given
in Proposition 2.37. This leads to Proposition 2.38.

Proposition 2.38 For the SBA rpm B, ,,, let

k Mp,2i — My 2i-1
My, 959

Mp,2i — Mp2i—2

k Mp2i—1 — Mp 22 k
My, 9; = My, 9,1
Mp2; — My 2i—2

Qn—l
Rok(0) = By {X : Zpgn]
i=1

< 5} . (2.80)
Then

max {G{"""" (y — ) = [1 - RIG(0)] } < G*(y) < min {GI"" (y+0) +1 - R (9) }

>0 §>0

Proof: By (2.58) and (2.61) in the proof of Proposition 2.31,

max { IV (y = 8) = Byl X 1 DE(X) > 8} | < Gl (y) <

>0

min { G (y + 8) + By (X 1 DE(X) > 0} }.

The result now follows from Proposition 2.37. O
Corollary 2.39 places bounds in terms of sz’,;“ on the distribution function of the

standard deviation.

Corollary 2.39 (Corollary to Proposition 2.38.) For the SBA rpm B, ,,,

max { G (y? = 8) = [1 = RIS ()]} < Bupu{X : VEOX) — EQX) <y}

>0
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< min {C§">“°"‘(y2 +6)+1— R;;?Z’“(a)} .

o (2.81)
Proof: Let § > 0. Then B, {X : VE(X — E(X))2 <y}
= Buu{X : E(X - E(X))* <y}
S Bupu{ X B(X™ = B(XM)? <y + |B(X™) - B(X?)]}
= Byou{X : B(X™ — B(X™))? <y + D} (X), D5(X) < 6} +
By £ B~ BOX)E <+ DECE), DY) > 5)
< B X5 BX®) — B(XU))? <7 4 6} + Byl X : DY) > 0)
< (Y 4 6) + 1 - RIS(D). (2.82)
Inequality (2.82) follows from Lemma 2.37. Also, for 6 > 0,
Buou{ X+ E(X = B(X))* < y?}
> #0 u{X E(X( ( ))2 < ?/ n(X)}
> By Xt E(X™ — B(X™))? <y? - DJ(X), D5(X) < 6}
> B {X : B(X™ — B(X™))? <y? — 5} +
B X : Dy(X) <6} =1 (2.83)

CEo*(y* —0) — [1— Rp%.

Inequality (2.83) follows from the Bonferroni inequality. Since inequalities (2.82) and
(2.83) hold for all § > 0, then (2.81) follows. O

Corollary 2.40 places similar bounds on the third central moment.
Corollary 2.40 (Corollary to Proposition 2.38.) For the SBA rpm By, ., let
RS, 3"(0) =

on— 1
#ou{ sz

<mn,2i - mn,?il) n m3 (mn,2i1 - mn,?i?) m3
n 2i— 70,21 - Mip 2i—1
Mp2i — Mp2i—2 Mp2i — Mnp,2i-2
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gn— 1
Mp,2i — Mp,2{—1 Mp,2i—1 — Mp 2;-2
+3 E p@ me g ( o : +m o : : —mpg 1| <0 ). (2.84)
Mp2i — Mp,2i-2 Mp2i — Mnp,2i-2
Then

(nypoot, o [ 10 Sk I (n)ro# _ 1ot
max { G5 (y - 6) - |1 - RS{5(0)] } < C1"(y) < max {O5"""" (y +6) + 1 Rf )(6)}.
2.85

Proof: Let § > 0 and let SD} = |E(X™") — B(X3)|+ 3| E(X™") — E(X?)|. Recall
that E(X) = E(X®™) and E(X) < 1. Then

By u{X : E(X — E(X))’ < y}

< Bupu{ X : E(X™ — B(X™))* <y + |[B(X™ — B(X™))* - B(X - E(X))*|}
< B dX : B(X™ — B(XM))® <y + SD}(X),SD(X) <8} +

By {X : B(X™ — BE(X™))* <y + SDY(X), SD(X) > 6}
< Bl X B(X™ — B(X™))? <y + 6} + By, u{ X : SDF(X) > 6}

)
< CEoM(y +8) +1 — RSI%S(6). (2.86)

Inequality (2.86) follows from Lemma 2.37. Also, for 6 > 0,

By {X : B(X - E(X))* <y}
> By u{X : E(X™ — E(X™))* <y — SD}(X)}
> By u{X : E(X™ — E(X™))* <y — SD}(X), SD3(X) < 6}
> By X E(X™ — B(X™))® <y -5} +
B, AX 1 SDE(X) <6} —1 (2.87)
> Oy —0) — [1 = RS;3M(6)].

Inequality (2.87) follows from the Bonferroni inequality. Since inequalities (2.86) and
(2.87) each holds for all 6 > 0, then (2.85) holds true. O

Corollary 2.41 places bounds on the fourth central moment.
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Corollary 2.41 (Corollary to Proposition 2.38.) For the SBA rpm B, ,, let
RSan (6) =

2n71
. [n)] 4 Mnp,2; — Mnp 2i—1 4 Mnp,2i—1 — Mn 22 4
Bugu {X : E D My 2i—2 — , + My, 9 — My 21

Mp,2¢ — Mp,2i—2

3 Mp2i — Mnp,2i—1 3 Mp2i—1 — Mn2i-2 3
My, 2i—9 A A + My, 9 — My 9 1

Mp2i — Mp2i—2
< (5} .

(n),uo,,u _ _ _ 1051 O 51 3 (n)HOsM _ 1051
max { O (y = 8) - |1 - BSIG"0)] | < C*"(y) < min {7y +0) +1 an,4 )(5)}.
2.88

[n] 2 Mnp,2; — Mp,2i—1 2 Mnp,2i—1 — Mn 22 2
+6 E D |Mp2i2 A A + My, 9; — My 9 1

Mp2i — Mp2i—2

Then,

Proof: Let § > 0 and let SD? = |E(X™") — B(X")| + 4|E(X™*) — B(X?)| +
6| E(X™ — E(X?)).

< Bupu{X : E(X™ — B(X™)* <y +[BE(X™ —m)* — B(X — E(X))*"|}
= B, X : B(X™ — (X)) <y + SD}(X),SD}(X) <8} +
Bupu{X : B(X™ — B(X"))* <y + SD}(X), SD}(X) > 6}
< B AX  E(X™ — B(X™))? <y + 6} + By, (X : SD}(X) > 68}
< CY*(y +0) + 1 — RSEGM(0). (2.89)

Inequality (2.89) follows from Lemma 2.37. Also, for 6 > 0,
Buou{ X 1 E(X = E(X))* <y}

> By, (X B(X® — B(X™))" <y - SDI(X))
> By, (X B(X® — BX™)' <y — SDI(X), SD}(X) < 6)
> By, (X B(X™ - BXM)' <y -5} +
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By AX :SDF(X) <5} —1 (2.90)
> C{*"(y—0) —[1 - RS (0)]-

Inequality (2.90) follows from the Bonferroni inequality. Since each of (2.89) and
(2.90) hold true for all § > 0, the result stated in inequality (2.88) follows. O

In the next chapter, some partial results on the closed form of F®# are given.
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Chapter 3

Random Splittings Of An Interval

This chapter develops a model and numerical procedure for approximating the
distribution function of the longest (barycenter) subinterval at level n of the B, , con-
struction. Denote this distribution function by F#o#. Although F!** can be defined
recursively (in terms of F¥°{"), the form of EFo# becomes analytically unmanageable
as n gets large, except for trivial distributions of yy and p. After introducing a “ran-
dom splitting” model for F}¥°* examples for special cases of py = p are given along
with some partial results on the general form of F#°#. Then the numerical procedure
for approximating FFo# is specified.

Note that many random splitting models appear in the literature (see, for instance
Feller [14], Lloyd and Williams [21], Lloyd [22] and Holst [20]). As Feller [14] indicates,
these models are important in physics, chemistry and statistics. However, it does not
appear that any of the papers in the literature address the problem of calculating

[
FHoH,

3.1 A Splitting Model

Let p = po be a distribution on [0,1] with density f(z). (It is straightforward to
generalize the results if u # pg.) The first step of the process is to split the interval
[0,1] into two pieces, where the splitting point is chosen according to p(= o). Next,

split each of the two subintervals into two pieces. The splitting points are chosen
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independently according to p scaled to the length of each subinterval respectively.

Fach of the four resulting subintervals is split in two pieces, and so on. For n > 1,
let LEo# denote the length of the longest subinterval after n steps of the splitting

process. It is straightforward to see that

P(Lp" <y) = F*"My) = By u{ X = max |my;(X) —mp 0 (X)| <y} (31)

1<¢<2n
Note,
0 y <3
Py <y)=plr max{z, 1 -z} <y} = [, fl@)dz 3<y<1 (3.2)
y>1,
and, for n > 1, the following recursive relation holds.
' y y
Fron(y) = P <) = [ BP0 de (3.3)
0 x -

Thus, in theory, F#o#* can be determined recursively for any n > 1 and density f(z).

Example 3.1 Suppose g = p is uniformly distributed over the interval [0,1]. (This
is often the assumption made for splitting processes analyzed in the literature. See
Feller [14], as well as Lloyd and Williams [21], Holst [20] and Lloyd [20]). Then, by
(32),

0 ifo<y<i
Fiot gy =< 29 —1 if% <y<l1 (3.4)
1 ify > 1.

By (3.3), F3" is given by

Fy) =

38



1/2 Y Y
— 2 / F{/’/O#’L(_) X F1//L07/"/< ) d./I;,
0 T

11—z
where
1 if x <y
F{o*"y/z) = 2%—1 ify<ax<2y
0 if z > 2y,
and
0 ifx <1—2y
o Y y_ ) o Y i1y <<l —
Fy (1_x) 12 y < Y
1 ifz>1-y.

Thus, through straightforward, but tedious, calculus,

4

2[fy A y/x)Fl(ﬁ Jde+ [ Fi(y/2) Fi(%) do
+ o Fi(y/o)Fi(725) de|
2y ¥ RO AL) do+ [L, (Y R(L) do
Fory) = &+ [TV ROF) de+ [ ROF
2| [ Y PR dr + [, RI(Y)F(Y
+ [P RO R )dﬂ
2 Fi(i) da+ [} d ]

)]

)

;

0 if
ey e g
- L%%~ndﬂ“@ 1) (2 -] i

YA — 1)dx]+2y—1 if
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(0 if y < 1/4,
8y%In ( = 2y)+4yln( ) 4y — 1 if 1/4 <y <1/3,
=<{ 8%In \ dyln2—-8y+3 if1/3<y<1/2,
4y(1—ln( ))—3 if1/2 <y <1,
1 ify>1.

\

The graph of F3°" is given in Figure 3.2.

Figure 3.2 F}'°" for pg = p uniform over [0,1]

1 T T T T T T T T T

091 _

0.8 4

0.7 i

0.6 1

0.3 T

0.2 b

01 J

Example 3.3 Suppose g = p is beta(1,2). Then

(0 if0<y<j
F™'y) = S, 20 -a)de=2y =1 if 5 <y <1
1 ify>1.
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If 41 is beta(2,1), then

0 if0<y<s
Ffot(y) = [V 2wdr=2y—1 if§<y<1 (3.10)
1 if y > 1.

Thus, by (3.3) and (3.4), Fto# for uy = p equal to beta(1,2) or beta (2,1) is the same

as when pp = p is equal to the uniform distribution over [0,1].

Example 3.4 Suppose pg = p is beta(2,2), then

0 if y < 3,
FloMy) = —dP+6y2 —1 ifL<y<1, (3.11)
1 if y > 1.

The graph of FI" in this case, is given in Figure 3.5.

Figure 3.5 F/'" for pg = p = beta(2,2).
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Fo"is given by

4

0 if y < 1/4,
1292(=3 — 2y + 18y2 — 243° + 16y%) 1n(2—y1)
+(9 4 6y — 54y? + 72y — 48y )1n(2y 1)

—192y5 + 240y* + 304y — 72y? — if 1/4 <y <1/3,
ylj[—Q + 2y — 66y2 + 182y> — 68y*
FlIOH(y) = < —24y%(=3 + y + 2y*) In(1 — y)]

o5 (=1 4y — 114y + 302y + 148y* — 768y° + 384y°)
22 In(¥1)(3 — y — 20y° + 42y° — 40y* + 16°)

1
" —112y% + (729 + 48y>) In(2y) if 1/3 <y <1/2,
—3 — 108y? + 11293 — 24y%(3 + 2y) In(y) if1/2<y<1,
\ 1 if y > 1.
(3.12)

Figure 3.6 FJ" ug = p =beta(2,2)

(I) 0 ‘ 2 0 ‘ 4 0 I 6 0 ‘ 8 i
As indicated by Example 3.4, tractable analytical expressions for F#°* do not appear
possible except in simple cases. Nonetheless, some partial results on the form of [#o-#

are given in the next two propositions.
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Proposition 3.7 For the SBA construction B, ,, F'"(y) =0, for all 0 < y < QL
andn > 1.

Proof: At the nth stage of the splitting process, the interval [0,1] is split into 2"
subintervals. Obviously, at least one subinterval must be of length greater than or
equal 5. Thus, By, {Lio# <y} = Fror =0, for 0< y < 7. O

Lemma 3.8 is used in Proposition 3.9 to give a closed form solution to FFo#(y),

Hos 1
for y € [3,1] and po = p uniform over [0,1].

Lemma 3.8 Ifuozu,nEQand%<y§1then

) X f(z)dx = ’ f(z) dz. (3.13)

1-y

y
/ Fuou(y)Fu o
1y x " 1—x

If n =1, then F{""(y) = [ y [ (@) dz asin (3.2).

Proof: For l <y<land1l-y <z <y, both £ and ;% are greater than or equal
to 1. Thus, each of F*{'(£) and Fio#(7L) are equal to 1, and so (3.13) holds.

Proposition 3.9 For pg = p uniform over [0,1], n > 1 and % <y<l1,

Fpot(y) = 2"y [In(y)]* - (2" - 1). (3.14)

Proof: By(3.4) of Example 3.1, (3.14) holds for n = 1.
Assume (3.14) holds for all j < n. Then, for y > 3

1
, _ wY , Yy
Rt = [ PR

r 1
2 Y Y
= 92 JFrHosH (7Y prHosp —\d
| Erenpen oy x]
by y y :
_ 9 / o (Yy o )dg:+/ dz | . (3.15)
0 T 1—2z 1—y
r rl—y o y J 1
= 2 Frob(—— —=1. 1
[ mer e (5-3))] (3.16)
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1_x>1’f) — (- 1)] da

k=0
T2y -1 (3.17)
+1 nil 1 -y
/0 1—x l;) ky 1_33)] :c+( +)/0 z
+2y—1
anl(_ By oy y o »
=2 I;) B 1_$<[ln(1_$)])dx+(—2 +2) (1—y)
+2y—1
= 2n+1nzl (_ /1y Y [ln( Yy )]k dr + 2TL+1 . (2n+1 . 1)
k! 0 1—2z 1—=x Yy
— 9nitl k+1 ntl,— rontl
= 2 Z k, <k+1> [In(y)]""" +2" 'y — (2 1) (3.18)
k+1
= 2n+1 Z k+1 k+1+2n+1y_(2n+1_1)
—1
— 2”+1yz T[ln(y)]k 4oty (nt 1) (3.19)
n-l - (_1)k k n+1
= 2"ty Y () - 27 ), (3.20)
k=0 )

Equality (3.15) follows from Lemma 3.8. Equality (3.16) holds since y > 3 and

0 <z <1-yimplies £ > 1. Equality (3.17) follows from the induction assumption.
Equality (3.18) follows from the Fundamental Theorem of Calculus and equality (3.19)
holds by re-indexing. Thus, by induction, (3.20) implies (3.14) holds for all n > 1. O
Finding a closed form for % <y <1 when pis equal to another base measure such

1

as beta(2,2) or beta(1,10) is not as easy. However, F¥o* over [3,1] must follow the

form given in Proposition 3.10 regardless of the generating distribution.

Proposition 3.10 Let puy = pu, n > 1, % <y <1, and H, 1, G,_1 and f be

differentiable functions on [0,1], with H),_,(z) = Fi*{({£) and G},_,(z) = FI{'(%).

11—z
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Then

1-y

Erot(y) = Hoa(L—y)f(1—y) — Hpa(0)f(0) — (@) Hy (z) do

+Gaa(Nf(1) = Gaa (W) f(y) - /1 f1(@) G () do + F{*M(y) (3.21)

Proof: By integration by parts, and because F{"*(y) = fly,y f(z)dx over (1/2,1],

Frod(y) = /0 yFﬁE’f(%)f(x)dan /1 " fw)de + / Fﬁi’f‘(%)f(w) dr (3.22)

I—y

= Hy 1 (1-y)f(1—y)— Hna(0)/(0) — ; ['(@)Hy o (z) dx
+Gn (1) f (1) = Gna(y) f(y) —/ f(@) G () do + F*"(y). (3.23)

O

Example 3.11 In the case of a uniform generating measure, as in Example 3.1,
f(z) =1 and for n =2, F{"*"(y) =2y — 1, Hi(z) = —2yIn(l — z) — x and G(z) =

2ylnz — . Hence, over [3,1]
FyoR(y) = =2ylny —14+y—1—-2ylny+y+2y—1=4y(1—Iny)—3 (3.24)
which agrees with Example 3.1.

Example 3.12 For a beta(2,2) generating measure, as in Example 3.4,

2 3 2 3
weldy Y Y _ 4 Yy
Fl,uo #<;) =1 + 6? — 4;, G1<JJ> = —T — 6? + 2;; <3'25)
and,
2 3 2 3

1—x (1—xz)2 (1—2x) 1—z (1—x)?
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Hence, over [%, 1],

F3o'(y) = 36y" —30y° — 6y — (=3(1 —y)” +4(1 —y)” + 125" + 725°(1 — )
—12¢% 4+ 36y Iny + 24y Iny) + 30 % y*(1 — 7)

1 2 3 y?)
—/ ( 6x—36—+12( 5) + 1207 + 72 — 24(?)> da
K

—1+ 6y — 4y°
= —3—108y* + 112y° — 24y*(3 + 2y) Iny.

3.2 Numerical Methods

This section specifies a procedure for numerically approximating F*o# and gives an

error bound on the approximation. Note that this section is developed for the case

Ho = K-

3.2.1 An Algorithm For Approximating F),

The approximation proceeds inductively. Let F“O’“ denote the approximation of FhoH
to be determined. Fix N large. For an integral fo z)dz, let Simpy fo x)dzx)
denote the approxunatlon of the integral using Slmpson s rule with respect to the
partition {0, - e N, e %, 1}.

Step 1. Assume /" has been calculated. It is straightforward to calculate F/*(y)
and often F{°*(y), so in general the algorithm can be initialized with FI**(y) =
F{oH(y) or B (y) = F"(y).

Step 2. For y;, = %, 1 <1< N, set

Fron(y) = Simpy ( /0 1 Fron (%) F;E’{L(l{ix) £(2) d:):). (3.27)
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Step 3. Set

0 if y < 2%,
Fross(y) - Fpon(y) I2et y frod(y, ()4t if o <y <landy, 1 <y <y,
" fori=1,...,N,
1 ify>1.

(3.28)
Step 4. Iterate with respect to n.

Example 3.13 (Continuation of Example 3.1). Let py = g be the uniform
distribution over [0,1]. Figures 3.14 through 3.18 give the numerical approximation

for FOF, Fyot ) FEOE D FIOECFSOR The value of N in Simpson’s rule is equal to 500.

Figure 3.14 Fj**
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Figure 3.15 F}°*

Figure 3.16 F{™*"
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Figure 3.17 FJ°*
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Figure 3.18 F3*

1 T T T

091 i

0.8 1

0.7 1

06 4

05 1

0.4t .

0.3 1

0.2 1

01 1

Error Estimates: Figures 3.19 through 3.21 represent the plots of F}* F{*" and
Fyot with N = 250, 500 and 750. The figures show that changing the number, N,
has a greater effect on the accuracy of the graph of F#o# for larger n than it does for
smaller n. This is due to the recursive process of determining F#o#  specifically for

n > 3. Error is introduced in the estimation of F§*. This error is added to the error
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from the estimation of F}°*, F{®" and so on. This is why the plots for F}** in Figure
3.19 are much closer together than the plots for F{* in Figure 3.21. Comparing the
empirical distributions for F;°*, where N = 250 and 500 shows that the maximum

difference between the two graphs over all y is 0.0073, while the maximum difference

between the graphs for F;™" over all y, when comparing the graphs for N = 500 and
750, is 0.0024.

Figure 3.19 F}* N = 250,500 and 750
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Comparing the empirical distributions for F}°*, where N = 250 and 500 shows
that the maximum difference between the two graphs over all y is 0.0158, while the
maximum difference between the graphs for F{'", where N = 500 and 750 is 0.0053.
Note that the difference of the graphs of FF" in Figure 3.20 is more apparent than
in Figure 3.19.

o0



Figure 3.20 F/*", N = 250,500 and 750
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When comparing the empirical distributions for Fj§", for the same values of N the
maximum difference between the two graphs over all y is 0.041, for N = 250 and 500,

respectively. The maximum difference between the graphs for F)°* over all y, where
N =500 and 750 is 0.0143.

Figure 3.21 F/** N = 250,500 and 750
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Since there is a closed form for F#o# for all y > 1/2, the graphs of the empirical
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distribution functions can be compared against the true distribution function given in

Proposition 3.9 to see how well the empirical distribution function approximates the
true distribution function. The results of the comparison show that as /N increases,
the difference between the empirical distribution function and the true distribution
function decreases substantially. For the case where n = 4, the maximum difference
over all y between the empirical distribution for F}°* and the closed form for Fj°*,
for N = 250, is 0.0146. For N = 500, the maximum difference over all y is 0.0073,

and for N = 750, the maximum difference over all y is 0.0049. For the case where

n = 6, the maximum difference over all y between the empirical distribution for F{®*
and the closed form for F[" for N = 250, is 0.0224. For N = 500, the maximum
difference over all y is 0.0113, and for N = 750, the maximum difference over all y is
0.0076. Finally, for the case where n = 9, the maximum difference over all y between
the empirical distribution for F}* and the closed form for F§{**, for N = 250, is
0.0184. For N = 500, the maximum difference over all y is 0.0083, and for N = 750,

the maximum difference over all y is 0.0052.
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Chapter 4

Simulations Of Statistics For SBA

Constructions

4.1 Introduction And Simulation Implementation

The goal of this chapter is to determine the distribution of the moments of SBA rpms
and how these distributions are affected by the base measure of the construction.
Since it does not appear that the distribution on the moments generated with the
SBA construction can be obtained analytically, the idea is to approximate the distrib-

ution functions GY*and C*o* by G

estimated through simulation. Specifically, empirical bounds for G;** are obtained

HO 1 HQsH . . .
and C’,i") , respectively, which are in turn

using Proposition 2.31 and Proposition 2.38 and empirical bounds for C}** are ob-
tained from Corollaries 2.39, 2.40, and 2.41. How the distribution of the standard
deviation (SD), skewness, kurtosis, second third and fourth moments, and the third
and fourth central moments are affected by the base measure is also investigated.

In this chapter, differences between statistics associated with five base measures,
uniform [0,1], beta (2,2), beta (10,1), beta (1,10) and beta (.5,.5) will be discussed.
These base measures were used to simulate SBA constructions in order to answer
some basic questions about the support of B, ,, such as what base measures should

be chosen to be more likely to yield a small or large SD, skewness or kurtosis; or
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which base measures are more likely to yield large or small central moments. For

example, from the base measures used in this study, it appears that base measures
which concentrate their mass near 1 are more likely to produce measures with a large
SD. Base measures which concentrate their mass near zero are more likely to produce

measures with a larger skewness and kurtosis, but smaller SD.

Statistics associated with each the five generating measures are compared against
one another in the following six sections. Section 4.2 is devoted to the second moment,
section 4.3 to the SD, section 4.4 to the third moment, section 4.5 to the third central
moment and to skewness, section 4.6 to the fourth moment, and section 4.7 to kurtosis
and the fourth central moment.

The rest of this section is devoted to the discussion of implementation issues of

the simulation — the number of Monte Carlo points and the number of SBA levels —
and confidence bands for the empirical results obtained from the simulations. Then
a discussion will follow about the choice of base measures and the determination of
the smallest nonrandom bounds on the distribution functions.

Recall that if Hy is an empirical distribution obtained from i.i.d. samples from a

distribution, H, then the distribution of the random variable
Dy = sup [Hn(y) — H(y)|- (4.1)
Yy

is independent of the distribution of H (Feller [14]). Asymptotic percentiles are

computed using the following limiting distribution

. z = . )
din P (Dy < 5] = -2 1 272 (12
1=
~ 1—2exp(—227). (4.3)
Thus for large N,
P(Dy <z)~1-2exp(—2(zN)?). (4.4)
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For instance, for large N,

P | [Hy(y) — H(y)|

IN

The value
_% In (17.995)

2
N

will be called the 99.5% confidence band width for N. Table 4.1 gives confidence

band widths for different confidence levels with N = 65, 000 points.

(1.6)

Table 4.1: Confidence Band Widths, N=65,000

Confidence Level | Confidence Band Width
.999 0.00003
.995 0.000028
.99 0.000025
.95 0.00002
.9 0.00001

For each base measure in this section, a quasi-Monte Carlo method [8] was used
to generate 65,000 finite SBAs (n levels). Then the distributions of those SBAs were
calculated.

Proposition 2.38 and (4.6) were used to determine 99.5% confidence bands on
GHF, GEF, and G and Corollaries 2.39 through 2.41 and (4.6) were used to
calculate 99.5% confidence bands on the SD, C{**and C}**. (Appendix B gives
details of the simulation procedure.) The rest of this section provides a discussion on
the parameters used in the simulations.

The base measures: To investigate the support of B the base measure i

HOsH
is chosen so that po{s} = 1. For p, five base measures were chosen because of the
different ways that they distribute their mass: beta (2,2), beta (10,1}, beta (1,10),
beta (.5,.5) and uniform[0, 1]. The beta (2,2) distribution has most of its mass near

the mean (m = 0.5) while beta (.5,.5) has most of its mass concentrated near the
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endpoints 0 and 1 of its support. The base measures beta (1,10) and beta (10,1) have

most of their mass near one of the endpoints — 0 for the former and 1 for the latter.

The uniform [0, 1] generating measure has its mass evenly distributed over [0, 1].

The choice of §: The value of § is used to give nonrandom bounds on the

distribution function of the kth moment, G}°", discussed in Proposition 2.38 and the
distribution function of the kth central moment C}°*, discussed in Corollaries 2.39,

2.40 and 2.41. For each experiment, a ¢* value was determined. The value of ¢* was

that 4 which minimized the value

max {(G7" (46 + 1 - RIS 69) - (G0 (-6 — [1 - Ri67)])
(4.7)
over all y € [0, 1]. The bounds on G;** discussed in Proposition 2.31 and the bounds
on C}*" given in Corollaries 2.34, 2.35, 2.36 were found to be fairly large and not
adequate for this study.

Table 4.2 gives the values of 0* for the second, third and fourth moments with
uniform [0, 1], beta (2,2), beta (10,1) and beta (1,10) generating measures. Table 4.3
gives the values of §* for the SD, C¥* C{*", for each of the five base measures. The
last column gives the range of the ¢’s tested. Note that the bounds given by the ¢*
chosen are conservative in the sense that the bounds given by Proposition 2.38 and
Corollaries 2.39, 2.40 and 2.41 are guaranteed to be better than that associated with
any particular choice of 9.

The number of levels in the SBA approximation and the number of
Monte Carlo points: For each base measure, a collection of 9-level SBA approxi-
mations was generated. Sixty-five thousand distributions were generated for each base
measure. For each base measure, the second, third and fourth moments, the SD, and
the third and fourth central moments of each SBA approximation were calculated;
and the distribution of these statistics was determined.

The number of Monte Carlo points, 65 thousand, and the number of levels in
the SBA construction were at the upper limits of available computing power. In
particular, the total number of values generated for each simulation was 2% x 65, 000 =

33.28 million. The confidence bands presented in this chapter show that the number
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Table 4.2: This table lists the values of 6* which give smallest confidence band widths
for GE**, GEOF, GY°" and the range of 6*’s tested for each base measure.

H Base Measures ‘ Moments | o ‘ Range of ds in experiment H
Uniform [0,1]
Second moment | 0.00006 [0.000001, 0.01]
Third moment | 0.00009 [0.00001, 0.001]
Fourth moment | 0.0001 [0.0001, 0.01]
Beta (2,2)
Second moment | 0.00006 [0.000001, 0.1]
Third moment 0.0002 0.000001, 0.01
Fourth moment | 0.0002 0.00001, 0.001
Beta (10,1)
Second moment | 0.002 [0.000005, 0.005]
Third moment, 0.003 [0.0005,0.005]
Fourth moment | 0.003 [0.0005, 0.005]
Beta (1,10)
Second moment | 0.00004 [0.000001, 0.001]
Third moment | 0.0001 [0.00005, 0.005]
Fourth moment | 0.00009 [0.00001, 0.005]
Beta (.5,.5)
Second moment | 0.00009 [0.00001, 0.0001]
Third moment | 0.0001 [0.0001, 0.001]
Fourth moment | 0.0001 [0.0001, 0.001]

of levels in the SBA construction and the number of Monte Carlo points used provide
a good estimate for the distribution functions of the moments, the central moments,
and the SD.
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Table 4.3: This table lists the values of 6* which give smallest confidence band widths
for CEO*, CEOF CY" and the range of the 6*’s tested for each base measure.

H Base Measures | Moments | o* | Range of ds ||
Uniform [0,1]
SD 0.000009 | [0.000001, 0.005]
Third central moment 0.001 [0.00001, 0.005]
Fourth central moment | 0.012 [0.00001, 0.005]
Beta (2,2)
SD 0.0001 [0.0009, 0.005]
Third central moment 0.0001 [0.0009, 0.005]
Fourth central moment | 0.00005 | [0.00001, 0.005]
Beta (10,1)
SD 0.0006 [0.0003, 0.003]
Third central moment 0.0001 [0.00005,0.0003]
Fourth central moment | 0.00002 | [0.00001, 0.03]
Beta (1,10)
SD 0.000009 | [0.000001, 0.01]
Third central moment | 0.0001 | [0.00001, 0.005]
Fourth central moment | 0.0001 | [0.000001, 0.005]
Beta (.5,.5)
SD 0.0006 [0.00001, 0.005]
Third central moment | 0.0002 | [0.00001, 0.005]
Fourth central moment | 0.0002 | [0.00001, 0.005]

4.2 The Second Moment

Figures 4.1 through 4.5 show confidence bands about the distribution function of the
second moment, G4, associated with the base measures uniform [0, 1], beta (2,2),
beta (10,1), beta (1,10) and beta (.5,.5). Recall the upper and lower bounds for
Gi** are given in Proposition 2.38. Shown in the following graphs are the upper half

of the 99.5% confidence band about the upper bound on G}**,

GO (y — 6%) — [1 - REYH(8Y)],
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and the lower half of the 99.5% confidence band about the lower bound on G{°”,

G (y - 6") + 1 — REY(5).

Hence, 99% of the distribution functions of the second moment of the random variable

X, in the support of B are within this band. The resulting graphs are of the 99%

HOsH
confidence band about the distribution function of the 2nd moment, G5°*. The 99%
confidence bands are displayed for each of the base measures — uniform [0, 1], beta
(2,2), beta (10,1), beta (1,10) and beta (.5,.5).

For most cases, the separation between the upper and lower functions is small.

The exception is beta (10,1) (see Figure 4.3) which presents a clearer distinction
between the upper and lower bands. It is not known why the confidence bands have
a greater width than the other confidence bands. The relatively large width of the
confidence band might be caused by the inefficient algorthim used to generate random
numbers according to the beta (10,1) distribution. (Refer to [8] and Appendix B).

In Figure 4.1, the bound (2.54) given by Proposition 2.31, is plotted along with
the 99% confidence band for Ggg)”‘)’”. It is clear from this figure that the bound from
Proposition 2.31, which uses F’fl‘f’f , is not useful since the corresponding bounds are
too large. Many more levels of the SBA approximation would be needed for F**# to
provide a more precise bound. Bounds on selected values of the distribution functions
accompany Figures 4.1 through 4.5 in tabular form.

Figures 4.1 through 4.5 show that the beta (10,1) measure is more likely to gener-
ate measures with large second moment than those associated with the base measures.
Intuitively, this happens because at each level of the construction beta (10,1), scaled
to the appropriate interval, behaves similarly to the balayage random variable over
that interval. Just as the balayage random variable maximizes moments over an inter-
val (Corollary 2.25), the beta (10,1) base measure is more likely to generate measures
with large moments. The beta (1,10) base measure, scaled to the appropriate interval
at each level of the construction, behaves in an manner opposite to the balyage. Thus,
the conditional barycenters are more likely to be close to previous level barycenters,

generating measures with smaller moments. With the beta (.5,.5) case, at each level
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of the construction, conditional barycenters are equally likely to be close to previous

level barycenters as they are to be pushed away from the previous level’s barycenter.
Hence the beta (.5,.5) base measure is more likely to generate distributions with larger

second moment than the beta (1,10) case, but not as likely as the beta (10,1) case.

A summary of results from analysis of the simulated data follows: 50% of the
distributions associated with beta (10,1) have second moment between 0.45 and 0.48.
For the uniform [0, 1] case, 50% of the distributions have second moment between
0.28 and 0.36 and 50% of the distributions associated with beta (2,2) have second
moment between 0.37 and 0.43. For the beta (1,10) case, 50% of the distributions
associated have second moment between 0.264 and 0.288 while 50% of the distribu-
tions associated with beta (.5,.5) have second moment between 0.26 and 0.39. Thus
the beta (10,1) base measure is most likely to produce measures with large second
moment than the other base measures and is least likely to produce measures with
small second moment. Also, the base measure beta (1,10) is most likely to produce
measures with small second moments. Figures 4.6 through 4.10 support this with

density plots.

Figure 4.1 The 99% confidence band about G, * = 0.00006, with a uniform [0, 1] generating
measure. The strips near zero and one are the bounds given by Proposition 2.31. The narrow band
represents the bound given by Proposition 2.38. The upper band represents the upper bound of the
99.5% confidence band around Gég) (y+0.00006) + Ry%*(0.00006) and the lower band represents the
lower bound of the 99.5% confidence band about G5 (y — 0.00006) — R4%* (0.00006).
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0.25 0.3 0.35 0.4 0.45 0.5

Table 4.1.1: The 99% confidence bands associated with selected values of the distri-

bution function of the second moment in the uniform case.

99% Confidence Interval

Glo(25) [0,0.001]
GEoH(.277) [0.248,0.25]
GEoH(.3) [0.429,0.431]

GOt (312) [0.499,0.5]
GLo*(.363) [0.748,0.75]

Gl (4) [0.877,0.879]
GHoM(45) [0.966,0.968]

Figure 4.2 The 99% confidence band about G, §* = 0.00006, with a beta (2,2) generating
measure. The narrow band represents the bound given by Proposition 2.38. The upper band

represents the upper bound of the 99.5% confidence band around Ggg) (y+0.00006) + Rg%*(0.00006)
and the lower band represents the lower bound of the 99.5% confidence band about Ggg) (y—0.00006)—
RE%(0.00006).
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Table 4.2.1: The 99% confidence bands associated with selected values of the distri-

bution function of the second moment in the beta (2,2) case are given below.

99% Confidence Interval
Glok(3) [0.045,0.049]
GLo( 37) [0.248,0.25]
Gl (.397) [0.498,0.5]
GOt (434) [0.749,0.75]
Kot 45) [0.844,0.848]
Gl ( 49) [0.993,0.997]

Figure 4.3 The 99% confidence band about Gs, 6* = 0.002, with a beta (10,1) generating
measure. The upper band represents the upper bound of the 99.5% confidence band around
Ggg) (y40.002) + R§%*(0.002) and the lower band represents the lower bound of the 99.5% confidence
band about G4 (y — 0.002) — R4%*(0.002).
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Table 4.3.1: The 99% confidence bands associated with selected values of the distri-

bution function of the second moment in the beta (10,1) case are given below.

99% Confidence Interval
Glob( 44) [0.046,0.087]
GLoH( 45) [0.22,0.25]
Glok(46) [0.28,0.366]
GLOH (466) [0.38,0.5]
Kot (479) [0.68,0.75]
Gl ( 49) [0.89,0.92]

Figure 4.4 The 99% confidence band about G, §* = 0.00004, with a beta (1,10) generating
measure. The narrow band represents the bound given by Proposition 2.38. The upper band
represents the upper bound of the 99.5% confidence band around G (y +0.00004) + Rg%#(0.00004)
and the lower band represents the lower bound of the 99.5% confidence band about G§9> (y—0.00004)—
REYH(0.00004).
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Table 4.4.1: The 99% confidence bands associated with selected values of the distri-

bution function of the second moment in the beta (1,10) case are given below.

99% Confidence Interval

Gl ( 25) [0.046,0.047]
GLo¥ (255) [0.245,0.25]
Gl (26) 10.393,0.398]
GhoI(264) [0.495,0.5]

Gl ( 28) [0.68,0.685)]
Gl ( 988) [0.745,0.75)]
GLot(.3) 0.81,0.82]

Glot ( 4) [0.958,0.962]

Figure 4.5 The 99% confidence band about G, §* = 0.004, with a beta (.5,.5) generating mea-
sure. The narrow band represents the bound given by Proposition 2.38. The upper band represents
the upper bound of the 99.5% confidence band around Gés)(y + 0.00009) + R§%*(0.00009) and the
lower band represents the lower bound of the 99.5% confidence band about Gés) (y — 0.00009) —
REYH(0.00009).
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Table 4.5.1: The 99% confidence bands associated with selected values of the distri-

bution function of the second moment in the beta (.5,.5) case are given below.

99% Confidence Interval

GEoH(.253) [0.13,0.14]
GEo#(.259) 0.19,0.20]
GEoH(.263) [0.24,0.25]
GLok(.283) [0.39,0.4]
GLO*(.305) [0.49,0.5]

kot ( 388) [0.74,0.75]
GLo(41) [0.79,0.80]

Figures 4.6 through 4.10 give the frequency distributions of the second moment for
each base measure. While these figures do not provide confidence bands, they do
provide visual support for the the analysis given above. The empirical average for the
second moment for each base measure are: 0.47 for beta (10,1), 0.33 for beta (.5,.5)
0.32 for uniform, 0.35 for beta (2,2), and 0.27 for beta (1,10).

:
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Figure 4.6 The frequency distribution of the second moment associated with generating uniform

[0, 1] generating measure. The average of the distribution is 0.32.

0.015¢ .t
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Figure 4.7 The frequency distribution of the second moment associated with generating beta,

(2,2) generating measure. The average of the distribution is 0.35.
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Figure 4.8 The frequency distribution of the second moment associated with generating beta,

(10,1) generating measure. The average of the distribution is 0.47.
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Figure 4.9 The frequency distribution of the second moment, Gég)uoyu associated with generating

beta (1,10) generating measure. The average of the distribution is 0.27.
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Figure 4.10 The frequency distribution of the second moment, Gg‘””"’” associated with beta

(.5,.5) generating measure. The average of the distribution is 0.33.

4.3 The Standard Deviation

Figures 4.11 through 4.15 give the 99% confidence bands about the standard deviation
associated with each of the generating measures. For the beta (10,1) case, 50% of the
generated distributions have SD between 0.45 and 0.48. For the beta (.5,.5) case, 50%
of the distributions have SD between 0.12 and 0.37 while 50% of the distributions
generated from the base measure beta (1,10) have SD between 0.09 and 0.19. For the
uniform base measure, 50% of the distributions have SD between 0.15 and 0.325. For
the beta (2,2) base measure, 50% of the distributions have SD between 0.27 and 0.35.
This implies that the beta (10,1) base measure is most likely to produce measures
with large SD. The beta (1,10) base measure is most likely to produce measures with
small SD. Figures 4.16 through 4.20 support this with density plots. The beta (10,1)
base measure is most likely to produce measures with large SD. Again, intuitively,
this follows since the beta (10,1) base measure behaves like the balayage random
variable at each step in the construction and the mean is fixed at 1/2. Conversely,

the beta (10,1) more likely concentrates mass near the barycenters at each stage of
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the construction (behaving in an opposite fashion to the balayage random variable at

each step), and so is more likely to generate measures with small SD.

Figure 4.11 The 99% confidence band about the SD, with a uniform [0, 1] generating measure
and §* = 0.000009. The upper band represents the upper bound of the 99.5% confidence band

around C’ég)(gf +0.000009) + R§%"(0.000009) and the lower band represents the lower bound of the
99.5% confidence band about C5” (y> — 0.000009) — R4%" (0.000009).

Table 4.11.1: The following are 99% confidence bands for selected values of the the
distribution function of the SD.

99% Confidence Interval
BMM(\/XZ — 1< 151) [0.23,0.25]
BNW(\/XQ — 1< 24 [0.485,0.5]
BMM(\/XQ — L < 31) [0.718,0.73]
By u(y/X? — 4 < 325) [0.742,0.75]
B,LO’M(\/X? — 1 < 376) [0.847,0.859]

Figure 4.12 The 99% confidence band for the SD, with a beta (2,2) generating measure and
6* = 0.0001. The upper band represents the upper bound of the 99.5% confidence band around
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Cég) (y*> 4 0.0001) + R§%*(0.0001) and the lower band represents the lower bound of the 99.5%
confidence band for C” (y* — 0.0001) — R5%*(0.0001).

10

Table 4.12.1: For the distribution function of the standard deviation associated with
the beta (2,2) base measure, the following are 99% confidence bands for selected

values of the distribution function of the SD.

99% Confidence Interval
BNM(\/X2 —L< a7 [0.037,0.04]
B,LO’M(\/X? — L < 265) [0.239,0.25]
By u(y/X2 - £ < 312) [0.488,0.5]
BNW(\/XQ — 1 < 350) [0.748,0.75]
By i ‘V/XQ — L < 37) [0.83,0.84]
B,M(\/X2 — 1< 416) [0.936,0.94]
BNM(\/X2 — L < 447) [0.979,0.98]

Figure 4.13 The 99% confidence band for the SD, with a beta (10,1) generating measure and
6* = 0.0006. The upper band represents the upper bound of the 99.5% confidence band around
Cég) (y*> + 0.0006) + R§%"(0.0006) and the lower band represents the lower bound of the 99.5%
confidence band for C” (3> — 0.0006) — R5%* (0.0006).
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Table 4.13.1: For the distribution function of the standard deviation associated with
the beta (10,1) base measure, the following are 99% confidence bands for selected

values of the distribution function of the SD.

99% Confidence Interval
BNM(\/X2 — L < 416) .015,.018]
By u(y/ X2 — £ < 447) [0.134,0.196]
By u(y/ X2 - 1 < 453) [0.22,0.25]
BNM(\/X2 — 1< 461) [0.322,0.387]
B,LO’M(\/X? — L < 466) [0.41,0.5]
By u(y/X2 - + < 473) [0.555,0.64]
By u(y/X? — 1 < 477) [0.69,0.752]
By i ‘V/XQ — 1< 4g4) [0.797,0.86]
Biou(y/X? — 1 < 491) [0.90,0.94]
BNM(\/X2 — 1 < 495) [0.95,0.98]

Figure 4.14 The 99% confidence band for the SD, with a beta (1,10) generating measure and
6* = 0.000009. The upper band represents the upper bound of the 99.5% confidence band around
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Cég) (y* + 0.000009) + R§%"(0.000009) and the lower band represents the lower bound of the 99.5%
confidence band for C5 (3> — 0.000009) — R4S (0.000009).

l_' T T T e |

Table 4.14.1: For the distribution function of the standard deviation associated with
the beta (1,10) base measure, the following are 99% confidence bands for selected

values of the distribution function of the SD.

99% Confidence Interval
By u(y/ X2 = 1 <0) [0.01,0.11]
BMM(\/XQ — 1< .089) [0.22,0.257]
B uly/X2— £ < 1) [0.317,0.347]
B,LO’M(\/X? — 1< 126) [0.46,0.5]
BMM(\/XZ — 1< 132) [0.525,0.535]
BNW(\/XQ — 1< 141) [0.609,0.624]
Bﬂw(\/X? — 1< 190) [0.743,0.753]
By u(y/X? — 4 < .32) [0.95,0.96]
B,LO’M(\/X? — 1< 39) [0.999,1]
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Figure 4.15 The 99% confidence band for the SD, with a beta (.5,.5) generating measure and
6* = 0.0006. The upper band represents the upper bound of the 99.5% confidence band around
Cég) (y*> + 0.0006) + R§%"(0.0006) and the lower band represents the lower bound of the 99.5%
confidence band for C (y* — 0.0006) — R5%* (0.0006).
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Table 4.15.1: For the distribution function of the standard deviation associated with
the beta (.5,.5) base measure, the following are 99% confidence bands for selected

values of the distribution function of the SD.

99% Confidence Interval
B,LO’M(\/X? — 1< 041) [0.09,0.1]
BMO,M(\/X2 ~ 1< 19) [0.24,0.25]
J_%,M(\/)(2 — 1< 234) [0.49,0.5]
Bﬂw(\/X? — 1< 371) [0.74,0.75]
B,LO’M(\/X? — 1< 49) [0.84,0.85]
B,LO’M(\/X? — 1 < 495) [0.945,0.988]

Figures 4.16 through 4.20 give the density plots of the the standard deviation asso-

ciated with each base measure. The empirical average of the SD for each case are as
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follows: 0.25 for uniform, 0.32 for beta (2,2), 0.45 for beta (10,1), 0.247 for and beta
(.5,.5), and 0.145 for beta (1,10).

Figure 4.16 The frequency distribution of the SD associated with generating uniform [0, 1] gen-

erating measure. The average of the distribution is 0.25.
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Figure 4.17 The frequency distribution of the SD with a beta (2,2) generating measure. The

distribution on the SD has an average of 0.32.
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Figure 4.18 The frequency distribution of the SD associated with the beta (10,1) base measure.

The mean of the distribution is 0.45.

Figure 4.19 The frequency distribution of the SD associated with the beta (1,10) base measure.
The average of the distribution is 0.145.
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Figure 4.20 The frequency distribution of the SD with a generating measure beta (.5,.5). The

mean of the distribution is 0.247.
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4.4 The Third Moment

Figures 4.21 through 4.25 show 99% confidence bands around the distribution function
of the third moment associated with each of the base measures. The results for the
third moment are similar to the results for the second moment and the standard
deviation in that the beta (10,1) base measure is more likely to generate distributions
with a large third moment than the the other base measures.

For the beta (10,1) case, 50% of the distributions generated have third moment
between 0.43 and 0.47, while for the beta (.5,.5) case, 50% for the distrubutions
generated have third moment between 0.15 and 0.33. For the beta (1,10) case, 50%
of the distributions generated have third moment between 0.132 and 0.183 and 50%
of the distributions have third moment between 0.16 and 0.297, for the uniform base
measure. For the beta (2,2) measure, 50% of the distributions have third moment
between 0.285 and 0.398. Thus beta (10,1) base measure is more likely to produce
measures with a large third moment. The beta (1,10) base measure is more likely to
generate measures with small third moment. Figures 4.26 through 4.30 give density

plots that support this characterization.
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Figure 4.21 The 99% confidence band for G§°** with 6* = 0.00009 with a uniform [0, 1] generat-
ing measure. The upper strip is the upper bound of the 99.5% confidence band around G§9>“°’” (y +
0.00009) + R§%"(0.00009) and the lower strip is the lower bound of the 99.5% confidence band for
G (y — 0.00009) — RA%*(0.00009)

0.15 0.2 0.25 0.3 0.35 0.4 0.45

Table 4.21.1: The following are 99% confidence bands for selected values of the distri-

bution function of the third moment associated with the uniform [0, 1] base measure.

99% Confidence Interval

GHov(125) [0.001,0.002]
Glok(15) [0.174,0.176]
GEoH(.16) [0.247,0.25]
Gho(213) [0.495,0.5]
GHo(25) [0.619,0.621]
Lo (997) [0.747,0.75]

Kol ( 455) [0.978,0.981]
GHow(483) [0.999,1]

Figure 4.22 The 99% confidence band for G4>* with a beta (2,2) generating measure and
6* = 0.0002. The upper band represents the upper bound of the 99.5% confidence band around
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G (y 4+ 0.0002) + R§%"(0.0002) and the lower band represents the lower bound of the 99.5%
confidence band for G§'"*" (y — 0.0002) — R§%*(0.0002).

Table 4.22.1: The following are 99% confidence bands for selected values of the dis-

tribution function of the third moment associated with the beta (2,2) base measure.

99% Confidence Interval
Glob(2) [0.0309,0.031]
GOk (285) [0.249,0.25]
Gl (.3) [0.3259,0.326]
Gl ( 34) [0.498,0.5]
GloH(398) [0.749,0.75]
GO ( 45) [0.9319,0.932]

Figure 4.23 The 99% confidence band for G5°* with a beta (10,1) generating measure and
6* = 0.003. The upper band represents the upper bound of the 99.5% confidence band around
Ggg)uovp(y + 0.003) + Rg%*(0.003) and the lower band represents the lower bound of the 99.5%
confidence band for G§"°" (y — 0.003) — RA%*(0.003).
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Table 4.23.1: The following are 99% confidence bands for selected values of the dis-

tribution function of the third moment associated with the beta (10,1) base measure.

99% Confidence Interval
GHoH(4) [0.032,0.037]
Glo( 42) [0.102,0.157]
GEoH(.43) [0.19,0.25]
GHo(44) [0.278,0.366]
GO ( 45) [0.41,0.5]
Gl (.46) [0.56,0.64]
GEoH(.468) [0.68,0.75]
GLo*(.48) [0.84,0.89]
GEoH(.49) [0.92,0.97]

Figure 4.24 The 99% confidence band for G4>* with a beta (1,10) generating measure and
6* = 0.0001. The upper band represents the upper bound of the 99.5% confidence band around
Ggg) (y + 0.0001) + Rg%*(0.0001) and the lower band represents the lower bound of the 99.5%
confidence band for G§"*" (y — 0.0001) — R§%*(0.0001).

2
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Table 4.24.1: The following are 99% confidence bands for selected values of the dis-

tribution function of the third moment associated with the beta (1,10) base measure.

99% Confidence Interval

GHov(126) [0.042,0.046]
Glo#(132) [0.245,0.25]
GLo#(146) [0.495,0.5]

GLoH(.183) [0.745,0.75]
Ghot (2) [0.819,0.828]
G ( 95) [0.898,0.902]
Gk (.3) [0.935,0.940]
GloH ( 4) [0.99,0.99]

Figure 4.25 The 99% confidence band for G4°* with a beta (.5,.5) generating measure and
6* = 0.0001. The upper band represents the upper bound of the 99.5% confidence band around
Ggg)uovp(y + 0.0001) + Rg%*(0.0001) and the lower band represents the lower bound of the 99.5%
confidence band for G§""*" (y — 0.0001) — R4%*(0.0001).
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Table 4.25.1: The following are 99% confidence bands for selected values of the dis-

tribution function of the third moment associated with the beta (.5,.5) base measure.

99% Confidence Interval
Gl (125) [0.020,0.043]
G (138) [0.18,0.2]
Gl (.145) [0.235,0.25]
GEo*(.20) [0.49,0.5]
Gl (.328) [0.739,0.75]
GHo( 384) [0.84,0.85]
Glob(42) [0.89,0.9]
GHo ( 45) [0.94,0.95]

Figures 4.26 through 4.30 give the density plots of the third moment associated with
each of the generating measures. The average was 0.45 for the beta (10,1) case. For
the beta (.5,.5) case, the average was 0.25. The average associated with the beta
(1,10) case is 0.17. The uniform case has an average of 0.23 while the beta (2,2) case
has an average of 0.28. These averages indicate that the beta (10,1) base measure

is most likely to generate distributions with large third moment than the other base
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measures and the beta (1,10) base measure is most likely to generate measures with

small third moment.

Figure 4.26 The frequency distribution of the third moment associated with the uniform [0, 1]

base measure. It has an average of 0.23.
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Figure 4.27 The frequency distribution of the third moment associated with a beta (2,2) base

measure. The mean is 0.28.
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Figure 4.28 The frequency distribution of the third moment associated with a beta (10,1) base

measure. The average of the distribution is 0.45.
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Figure 4.29 The distribution on the third moment associated with a beta (1,10) generating

measure. The average of the distribution is 0.17.
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Figure 4.30 The frequency distribution of the third moment associated with a beta (.5,.5) base

measure. The mean is 0.25.
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4.5 The Third Central Moment and Skewness

The distribution functions and density plots below imply that beta (10,1) measure
is more likely to produce a third central moment with a value near zero, which im-
plies that these base measures are most likely to produce approximately symmetric
measures. The graphs show that most of the distributions occur over a very small
interval centered about zero making it difficult to infer sufficient information from
the data. The distribution functions for the third central moment associated with
each of the base measures is given in Figures 4.31 through 4.35. For the beta (10,1)
base measure (Figures 4.33 and 4.38), 50% of the distributions have third central
moment between -0.002 and 0.0006. For beta (1,10), 50% of the distributions have
third central moment between -0.0017 and 0.0019. Note that this interval is nearly
twice as large as the interval in the beta (10,1) case, but still very close to having
length zero. (See Figures 4.34 and 4.39). The beta (1,10) base measure is most likely
to produce measures with smallest third central moments. For the beta (.5,.5) base
measure (Figures 4.35 and 4.40), 50% of the distributions have third central moment
between -0.006 and 0.004. For beta (2,2), 50% of the distributions have third central
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moment between -0.008 and 0.006. (Refer to Figures 4.32 and 4.37). For the uniform
case, 50% of the distributions have third central moment between -0.007 and 0.004.
(See Figures 4.31 and 4.36). The beta (2,2) base measure is most likely to produce

measures with largest third central moments.

Figure 4.31 The 99% confidence band for the third central moment, with a uniform [0, 1] gener-

ating measure and 6* = 0.001. The upper band represents the upper bound of the 99.5% confidence
band around C?Eg)uovy (y +0.001) + RS§%*(0.001) and the lower band represents the lower bound of
the 99.5% confidence band for C3"°" (y — 0.001) — RSL%* (0.001).

l L
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Table 4.31.1: The following are 99% confidence bands for selected values of the distrib-

ution function of the third central moment associated with the uniform base measure.

99% Confidence Interval

OOt (— 027) [0.0031,0.006]
CLor(—.01) [0.15,0.178]
CLok(—.007) [0.202,0.25]
C4oH(—.001) [0.41,0.5]
CLom(.0039) [0.702,0.75]
Clo(01) [0.834,0.874]
OOt (.02) [0.972,0.985]
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Figure 4.32 The 99% confidence band for the third central moment, with a beta (2,2) generating
measure and ¢* = 0.0001. The upper band represents the upper bound of the 99.5% confidence band
around C?Eg)uovy (y 4 0.0001) + RSg%*(0.0001) and the lower band represents the lower bound of the
99.5% confidence band for C§”""" (y — 0.0001) — RS4%*(0.0001).

l [

-0.02 -0.01 0 0.01 0.02

Table 4.32.1: The following are 99% confidence band for selected values of the dis-

tribution function of the third central moment associated with the beta (2,2) base

measure.
99% Confidence Interval

Clok(— 02) [0.0183,0.0184]
CLok(—.01) [0.17,0.19]
CHoR (= 0077) [0.245,0.252]
CloH (— .00037) [0.485,0.5]
CEoH(.006) [0.733,0.752]
CLo(01) [0.856,0.859]
CLoH(02) [0.988,0.991]
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Figure 4.33 The 99% confidence band for the third central moment, with a beta (10,1) generat-

ing measure and 6* = 0.0001. The upper band represents the upper bound of the 99.5% confidence

band around Cég)uoyu (y +0.0001) 4+ RS§%*(0.0001) and the lower band represents the lower bound
of the 99.5% confidence band for C§”""" (y — 0.0009) — RSL%* (0.0001).

l [
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0.002 0.004 0.006

Table 4.33.1: The following are 99% confidence bands for selected values of the dis-

tribution function of the third central moment associated with the beta (10,1) base

measure.

99% Confidence Interval

CLoH(Z— 005) [0.004,0.012]
CLor(— 002) [0.131,0.147]
Clo(—001) [0.22,0.25]
CLo(—.0002) [0.439,0.5]

O (.0003) [0.60,0.65]
CLo#(.0006) [0.71,0.75]
CLo(002) [0.89,0.90]
CEoH(004) [0.98,0.98]
CLo(0067) 0.997,1]
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Figure 4.34 The 99% confidence band for the third central moment, with a beta (1,10) generat-
ing measure and 6* = 0.0001. The upper band represents the upper bound of the 99.5% confidence
band around Cég)uoyu (y +0.0001) 4+ RS§%*(0.0001) and the lower band represents the lower bound
of the 99.5% confidence band for C§”""" (y — 0.0009) — RSL%* (0.0001).

l [
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Table 4.34.1: The following are 99% confidence bands for selected values of the dis-

tribution function of the third central moment associated with the beta (1,10) base

measure.
99% Confidence Interval
Clok(—.01) [0.0051,.007]
Clo(— 0017) [0.22,0.25]
CLol(— 00015) [0.417,0.5]
CLom(.00022) [0.57,0.625]
CLoH(.0019) [0.72,0.75]
CEoH(.005) [0.829,0.843)]
OOt (.01) [0.907,0.926]
Clo(.02) [0.967,0.982]
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Figure 4.35 The 99% confidence band for the third central moment, with a beta (.5,.5) generat-
ing measure and 0* = 0.0002. The upper band represents the upper bound of the 99.5% confidence
band around Cég)uoyu (y +0.0002) + RS§%"(0.0002) and the lower band represents the lower bound
of the 99.5% confidence band for C§”""" (y — 0.0002) — RSL%* (0.0002).

-0.03 -0.02 -0.01 0 0.01 0.02

Table 4.35.1: The following are 99% confidence bands for selected values of the dis-

tribution function of the third central moment associated with the beta (.5,.5) base

measure.
99% Confidence Interval

CLo* (—.006) [0.24,0.25]

CLO (— 0006) [0.29,0.5]

CEoH( 004) [0.74,0.75]

CEoH(.008) [0.84,0.85]

CLo(010) [0.89,0.90]
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Figures 4.36 through 4.40 show the average of each distribution is near 0. The base
measures beta (10,1) produces third central moments that are likely to be nearest to
zero. The average of the distribution associated with beta (10,1) is 4.5 x 107°. The
distribution for the beta (.5,.5) case has a mean of .0002. The averages for the other
cases are as follows: 0.00011 for beta (1,10), 0.00015 for beta (2,2), and 5.1 x 107°
for uniform. Although the averages for each of the cases are very close to each other,
the following density plots show that the beta (10,1) case concentrates its mass on
a smaller interval than do the other cases, although the difference in interval size is
very small. Thus, the beta (10,1) case is most likely to generate a zero valued third
central moment than the other cases, while the beta (2,2) and beta (.5,.5) cases are

most likely produces measures with larger third central moment.

Figure 4.36 The frequency distribution of the third central moment associated with the uniform

[0, 1] base measure. It has an average of 5.1x107°.
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Figure 4.37 The frequency distribution of the third central moment associated with a beta (2,2)

base measure. The mean is 0.00015.
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Figure 4.38 The frequency distribution of the third central moment associated with a beta (10,1)

base measure. The average of the distribution is 4.5x1075.
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Figure 4.39 The distribution on the third central moment associated with a beta (1,10) gener-

ating measure. The average of the distribution is 0.00011.
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Figure 4.40 The frequency distribution of the third central moment associated with a beta, (.5,.5)

base measure. The mean is 0.0002.
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Because the density plots for the third central moment occur over small intervals, the

plots are not nearly as informative as the density plots for the skewness ( Figures 4.41

through 4.45). These figures imply that the beta (10,1) measure generates distribu-

tions most likely to take on values for skewness that are closer than the distribution
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associated with the other cases. For the beta (10,1) case, 50% of the measures have
skewness between -0.01 and 0.01, while 50% of the measures generated have by the
beta (1,10) base measure have skewness between -1 and 1. For the uniform case, 50%

of the measures generated have skewness from -0.46 to 0.45 while 50% of the measures

generated by the beta (2,2) base measure have skewness on the between -0.22 and
0.26. For the beta (.5,.5) case, 50% of the measures generated have skewness between
-0.7 and 0.7. Therefore, the beta (10,1) base measure is most likely to produce mea-
sures with symmetric shape. However, the beta (1,10) base measure is not only most
likely to produce measures with positive skewness (tails to the right), but it is also
most likely to produce measures with negative skewness (tails to the left). That is, it
is most likely to produce a skewed distribution. This is because the beta (1,10) base
measure generates distributions that are most likely to have the smallest SD. Since
all the base measures generate distributions with very similar third central moments
(see Figures 4.36 through 4.40), the relatively small SD in the beta (1,10) case makes

a large skewness most likely.

Figure 4.41 The frequency distribution of the skewness associated with the uniform [0, 1] base

measure. It has an average of 0.047.
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Figure 4.42 The frequency distribution of the skewness associated with a beta (2,2) base mea-

sure. The mean is 0.032.

0.08f ' ' ‘ ".
0.06 : .-
0.04 . '.
0.02 . .
o . ’ . i "t eessatassnses |
-4 -3 -2 -1 0 1 2

Figure 4.43 The frequency distribution of the skewness associated with a beta (10,1) base mea-

sure. The average of the distribution is 0.0008
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Figure 4.44 The distribution on the skewness associated with a beta (1,10) generating measure.

The average of the distribution is 0.48.
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Figure 4.45 The frequency distribution of the skewness associated with a beta (.5,.5) base mea-

sure. The mean is 0.106.

—éO —éO —iO d 10 20 30

4.6 The Fourth Moment

The distribution functions of the fourth moments associated with each base measure

are given in Figures 4.46 through 4.50. For the beta (10,1) measure, 50% of the
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distributions have fourth moment between 0.417 and 0.460 while for the beta (.5,.5)
measure, 50% of the distributions have fourth moment between 0.09 and 0.29. For
the beta (1,10) case, 50% of the distributions have fourth moment between 0.071
and 0.123 while 50% of the distributions have fourth moment between 0.103 and
0.248 for the uniform case. For the beta (2,2) measure, 50% of the distributions have
fourth moment between 0.241 and 0.382. Note that the intervals over which 50% of

the distributions have fourth moment is about three times longer for the beta (10,1)

case. The following distribution functions and density plots show that the beta (10,1)
measure is most likely to produce measures with larger fourth moment than the other
cases while the beta (1,10) measure is most likely to produce measures with small
fourth moments. Note that the beta (.5,.5) measure is almost as likely to produce

measures with small fourth moments as the beta (1,10) base measure.

Figure 4.46 The 99% confidence band for G{°** with §* = 0.0001 with a uniform [0, 1] generating

measure. The narrow band represents the bound given by Proposition 2.38. The upper strip

represents the upper bound of the 99.5% confidence band around Gflg)uovy (y40.0001) + R§%"(0.0001)
(9)r0:#

and the lower band represents the lower bound of the 99.5% confidence band for G} (y—0.0001)—
RESH(0.0001)
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Table 4.46.1: The following are 99% confidence bands for selected values of the distri-

bution function of the fourth moment associated with the uniform [0, 1] base measure.

99% Confidence Interval

GHoH(.063) [0,0.002]

GHo (1) [0.231,0.233]

GO (.103) [0.247,0.25]
GHo#(162) [0.497,0.5]

Gl (2) [0.626,0.628]
GHoH(.248) [0.746,0.75]
GHoH(.3) [0.841,0.843]
GHoH(4) [0.962,0.965]

Figure 4.47 The 99% confidence band for G4°** with §* = 0.0002 associated with a beta (2,2)
generating measure. The upper strip represents the upper bound of the 99.5% confidence band
around Gflg)uoyu (y +0.0002) + R§%*(0.0002) and the lower band represents the lower bound of the
99.5% confidence band for G"*" (y — 0.0002) — R4S (0.0002)

10
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Table 4.47.1: The following are 99% confidence bands for selected values of the dis-

tribution function of the fourth moment associated with the beta (2,2) base measure.

99% Confidence Interval
GHor (1) [0.007,0.008]
GHo#(.2) [0.1389,0.139]
GO (.241) [0.249,0.25]
GHoH(3) [0.4549,0.455]
Gt (.31) [0.498,0.5]
Gho(.382) [0.748,0.75]
GHoH(.4) [0.8089,0.809)]
GHoH( 5) [0.9959,0.996]

Figure 4.48 The 99% confidence band for G4°** with §* = 0.003 associated with a beta (10,1)
generating measure. The upper strip represents the upper bound of the 99.5% confidence band
around Gflg)%“(y + 0.003) + R§%"(0.003) and the lower band represents the lower bound of the
99.5% confidence band for Gflg)uovp(y —0.003) — Rg%*(0.003)
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Table 4.48.1: The following are 99% confidence bands for selected values of the distri-

bution function of the fourth moment associated with the beta (10,1) base measure.

99% Confidence Interval

Ghot(.375) [0.028,0.032]
Gk ( 4) [0.083,0.129]
Gl (417) [0.20,0.25]
GHot(425) [0.26,0.31]
GHoH( 442) [0.44,0.5]
GHoH( 45) [0.54,0.61]
GHoH ( 465) [0.69,0.75]

Kot (475) 0.82,0.89)
Gl ( 485) [0.894,0.926]

Figure 4.49 The 99% confidence band for G{°* with §* = 0.00009 associated with a beta (1,10)
generating measure. The upper strip represents the upper bound of the 99.5% confidence band
around Gflg)uoyu (y 4 0.00009) 4 Rg%*(0.00009) and the lower band represents the lower bound of the
99.5% confidence band for G (y — 0.00009) — R4S (0.00009)
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Table 4.49.1: The following are 99% confidence bands for selected values of the distri-

bution function of the fourth moment associated with the beta (1,10) base measure.

99% Confidence Interval

G (.06) [0.0185,0.032]
GHor(.07) [0.24,0.25]
GHo(.08) [0.426,0.43]
GHOH(.085) [0.49,0.5]

Gl (1) [0.653,0.657]
GHo#(.123) [0.75,0.75]
GHor(.2) [0.898,0.903]
GHoH(4) [0.986,0.991]

Figure 4.50 The 99% confidence band for G{°* with §* = 0.0001 associated with a beta (.5,.5)
generating measure. The upper strip represents the upper bound of the 99.5% confidence band
around Gflg)uoyu (y +0.0001) + R§%*(0.0001) and the lower band represents the lower bound of the
99.5% confidence band for G"*" (y — 0.0001) — R4S (0.0001)
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Table 4.50.1: The following are 99% confidence bands for selected values of the distri-

bution function of the fourth moment associated with the beta (.5,.5) base measure.

99% Confidence Interval

GHo(35) [0.03,0.014]

GOk 4) [0.055,0.159]

GO ( 41) [0.10,0.25]
GHo(434) [0.3,0.5]
GHo*(45) [0.45,0.69]
GHov(454) [0.49,0.75]
GHoH(.475) [0.77,0.92]

Figures 4.51 through 4.55 give the frequency plots of the fourth moment for each of
the different base measures used in the experiments. The beta (10,1) case has a mean
is 0.44 while the distribution of the fouth moment in the beta (.5,.5) case has a mean
of 0.20. The mean of the distribution of the fourth moment in the beta (1,10) case
has a mean of 0.11. The distribution of the fourth moment in the uniform case has a

mean of 0.19 while the beta (2,2) case has a mean of 0.31.

Figure 4.51 The frequency distribution of the fourth moment associated with the uniform [0, 1]

base measure. The average is 0.19.
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Figure 4.52 The frequency distribution of the fourth moment associated with the beta (2,2)

base measure. The mean is 0.31.
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Figure 4.53 The frequency distribution of the fourth moment associated with the beta (10,1)

generating measure. The mean of the distribution is 0.44.
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Figure 4.54 The frequency distribution of the fourth moment associated with the beta (1,10)

base measure. The mean of the distribution is 0.11.

Figure 4.55 The frequency distribution of the fourth moment associated with the beta (.5,.5)

base measure. The average is 0.20.

4.7 The Fourth Central Moment and Kurtosis

Figures 4.56 through 4.60 give the confidence bands about the distribution function

of the fourth central moment associated with each of the base measures involved
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in the experiments. Figures 4.61 through 4.65 give the density plots. Figures 4.66

through 4.70 give the density plots of the distribution of the kurtosis associated with
each of the five base measures used in the experiments. The analysis of the fourth
central moment and kurtosis associated with each base measure is included for the

sake of completeness. However, little can be inferred from these summary measures

about the shape of measures generated by the different base measures. The summary
statistics for the fourth central moment associated with the five base measures will
be compared in order to note which measure or measures generate the largest and
smallest, fourth central moment.

The analysis of kurtosis does not provide enough information to infer character-
istics about the shape of a measure associated with any particular base measure.
This is because kurtosis is a summary of the extent to which the peak of a unimodal
probability distribution departs from the shape of the normal distribution [13]. Since
u({1/2}) # 0, then almost all distribution functions generated by the construction
are stricly singular (Hill and Monticino [19]). In particular, almost all distributions
are multimodal and kurtosis values are not informative for multimodal distributions.
Also, the kurtosis does not seem to give a good indication of the shape of a distrib-
ution over [0, 1] and in fact it can even be misleading. Kendall, Stuart and Ord [27]
suggest, that for many symmetrical or asymmetrical distributions, the terms flat and
peaked are better used to describe the sign of the a4 rather than the shape of the
distribution.

The beta (10,1) base is more likely to generate measures with larger fourth cen-
tral moments. For the beta (10,1) base measure, 50% of the distributions have fourth
central moment between 0.05 and 0.057 while 50% of the distributions associated
with the beta (1,10) base measure have fourth central moment between 0.0019 and
0.0051. For the uniform measure, 50% of the distributions have fourth central mo-
ment between 0.0033 and 0.019 while for the beta (2,2) base measure, 50% of the
distributions have fourth central moment between 0.012 and 0.024. For the beta
(.5,.5) base measure, 50% of the distributions have fourth central moment between
0.002 and 0.026. Thus, from the distribution functions and the density plots for the

fourth central moments, the beta (10,1) measure is most likely to generate measures
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with largest fourth central moments, while the beta (1,10) measure is most likely

to produce measures with smallest fourth central moment; although the difference
between smallest and largest is small. Note that the uniform measure is also likely to

produce measures with small fourth central moment.

For the beta (10,1) base measure, 50% of the distributions have kurtosis between
-1.92 and -1.82 with the median kurtosis at -1.9. For the beta (1,10) base measure,
50% of the distributions generated have kurtosis between -0.29 and 8.71, with the
median at 2.01. For the uniform case, 50% of the distributions have kurtosis between
-1.44 and 2.41 with the median at -0.5. In the beta (2,2) case, 50% of the generated
measures have kurtosis between -1.5 and -0.59 with the median at -1.2. 50% of the
distributions have kurtosis between -1.98 and 8.5 in the beta (.5,.5) case with a median
of 4.5. Hence, the beta (1,10) base measure is most likely to produce measures that
are peaked while the beta (10,1) base measure is most likely to produce measures

that are flat.

Figure 4.56 The 99% confidence band for the fourth central moment, C{***, with a uniform
[0, 1] generating measure and §* = 0.012. The upper band represents the upper bound of the 99.5%
confidence band around Cﬁg)uovu (y+0.012) + RS5%;"(0.012) and the lower band represents the lower
bound of the 99.5% confidence band for C{”""" (y — 0.012) — RS{%*(0.012).
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Table 4.56.1: The following are 99% confidence bands for selected values of the distri-

bution function of the fourth central moment associated with the uniform [0, 1] base

measure.
99% Confidence Interval
CHo¥(002) [0.0021,0.027]
CHoH(,0033) [0.242,0.252]
CEOH(.0094) [0.491,0.5]
Clor(01) [0.518,0.524]
CHor(.019) [0.749,0.752]
Clor(03) [0.890,0.893]
CoH(05) [0.981,0.984]

Figure 4.57 The 99% confidence band for the fourth central moment, C{°* with a beta (2,2)
generating measure and ¢* = 0.00005. The upper band represents the upper bound of the 99.5%
" (y + 0.00005) + RS5%9*(0.00005) and the lower band represents the
lower bound of the 99.5% confidence band for C{”""" (y — 0.00005) — RS4%*(0.00005).

confidence band around C’ig)

10

Table 4.57.1: The following are 99% confidence bands for selected values of the dis-
tribution function of the fourth central moment associated with the beta (2,2) base

measure.
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99% Confidence Interval

CHoR(01) [0.178,0.184]
CHoH(012) [0.248,0.25]
CHoH(.0174) [0.491,0.5]

Chok(02) [0.631,0.638]
CHo#(024) [0.745,0.75]
Chor(03) [0.859,0.865]
CHoH(05) [0.991,0.993]

Figure 4.58 The 99% confidence band for the fourth central moment, C°*, with a beta (10,1)
generating measure and ¢* = 0.00002. The upper band represents the upper bound of the 99.5%
confidence band around Cig)uoyu (y +0.00002) 4+ RS§%*(0.00002) and the lower band represents the
lower bound of the 99.5% confidence band for C{""" (y — 0.00002) — RSL%*(0.00002).

l [

0.04 0.045 0.05 0.055 0.06

Table 4.58.1: The following are 99% confidence bands for selected values of the dis-
tribution function of the fourth central moment associated with the beta (10,1) base

measure.
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99% Confidence Interval

CHo¥(045) [0.049,0.049]
CEoH(.05) [0.248,0.252]
CHok(.054) [0.497,0.5]

CHoH(055) 0.607,0.61]
CHo(057) [0.745,0.752]
C1or(058) [0.816,0.819]
CBoH(.06) 0.929,0.932]

Figure 4.59 The 99% confidence band for the fourth central moment, C5°*, with a beta (1,10)
generating measure and ¢* = 0.0001. The upper band represents the upper bound of the 99.5%
confidence band around C’ig)”oyu(y + 0.0001) + RSg%*(0.0001) and the lower band represents the
lower bound of the 99.5% confidence band for C§"*" (y — 0.0001) — RS4%*(0.0001).

l" T T T RN " — ]

Table 4.59.1: The following are 99% confidence bands for selected values of the dis-
tribution function of the fourth central moment associated with the beta (1,10) base

measure.
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99% Confidence Interval

C1o(.0001) [0.004,0.18]
C1o(.0019) [0.12,0.25]
0“0’“( 005) [0.32,0.36]

Hok(0012) [0.468,0.5]
C’“O"( 0051) [0.745,0.75]
Co#(.01) [0.879,0.88]
Ol (02) [0.94,0.954]
Cio"(.04) [0.986,0.99]

Figure 4.60 The 99% confidence band for the fourth central moment, C{***, with a beta (.5,.5)
generating measure and ¢* = 0.0002. The upper band represents the upper bound of the 99.5%

confidence band around C’ig)”oyu(y + 0.0002) + RSy%*(0.0002) and the lower band represents the

lower bound of the 99.5% confidence band for C{”"" (y — 0.0002) — RS4%*(0.0002).

Table 4.60.1: The following are 99% confidence band for selected values of the dis-
tribution function of the fourth central moment associated with the beta (.5,.5) base

measure.
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Figures 4.61 through 4.65 give the density plot of the fourth central moment for for
each of the five base measures used in the experiments. The average of each of the
distributions is as follows: 0.053 is the mean for the beta (10,1) case, 0.0042 for the
beta (1,10) case, 0.014 for the uniform case, 0.020 for the beta (2,2) case, and 0.016

is the average for the beta (.5,.5) case.

Figure 4.61 The frequency distribution of the fourth central moment associated with the uniform

99% Confidence Interval
Clo(.002) [0.23,0.25]
Crot(01) [0.48,0.5]
CloH( 026) [0.74,0.75]
CHo# (044) [0.89,0.90]

[0,1] base measure. It has an average of 0.00012.
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Figure 4.62 The frequency distribution of the fourth central moment associated with a beta

(2,2) base measure. The mean is 0.020.
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Figure 4.63 The frequency distribution of the fourth central moment associated with a beta

(10,1) base measure. The average of the distribution is 0.053.
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Figure 4.64 The distribution on the fourth central moment associated with a beta (1,10) gen-

erating measure. The average of the distribution is 0.0042.
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Figure 4.65 The frequency distribution of the fourth central moment associated with a beta

(.5,.5) base measure. The mean is 0.016.
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Figures 4.66 through 4.70 give the density plots of the distribution of the kurtosis

assoicated with each of the five base measures used in the experiments.

Figure 4.66 The frequency distribution of the kurtosis associated with the uniform [0, 1] base

measure. The average is 4.8.
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Figure 4.67 The frequency distribution of the kurtosis associated with the beta (2,2) base mea-

sure. The mean is -0.76
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Figure 4.68 The frequency distribution of the kurtosis associated with the beta (10,1) generating

measure. The mean of the distribution is -1.87.

-2 -1.8 -1.6 -1.4 -1.2 -1 -0.8 -0.6

Figure 4.69 The frequency distribution of the kurtosis associated with the beta (1,10) base

measure. The mean of the distribution is 10.5.

0.175F %

0.15¢

0.125¢

0.075¢

0.025¢ .

0 20 40 60 80 100

114



Figure 4.70 The frequency distribution of the kurtosis associated with the beta (.5,.5) base

measure. The average is 28.
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4.8 Conclusions And Open Questions

From the generated measures examined:

e  SBA rpms are most likely to produce measures with small SD if the generating

measure concentrates its mass near 0.

e  SBA rpms are most likely to produce measures with large SD if the generating

measure concentrates its mass near 1.

° SBA rpms that concentrate their mass near 1 are also most likely to produce

measures with large second, third and fourth moments.

This is because in the construction given on pages 7 - 8, the child barycenter is pushed
out away from the parent barycenter (such as with the balayage random variable).
From the simulations, the beta (10,1) base measure produced measures with large

SD, and second through fourth moments.
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Of the base measures examined, the beta (1,10) measure most likely produced

measures with small SD. This is because child barycenters are not pushed out very
far from parent barycenters in the construction. The beta (1,10) base measure also
is more likely to produce measures with small second, third and fourth moments.

Measures that concentrate their mass near 1 are also most likely to produce mea-
sures with symmetric shape. The experiments showed that beta (10,1) base measure
is more likely to produce measures with third central moment and skewness near
zero. The beta (1,10), beta (2,2), beta (.5,.5), and uniform base measures each are
also likely to produce measures that are symmetric. However, since there is a likeli-
hood that each base measure will produce base measures that are nonsymmetric, it
is difficult to determine which base measures should be used to generated measures
that are positively or negatively skewed.

Measures that concentrate their mass near zero should be used to generate mea-
sures that are peaked (ay > 0). The beta (1,10) base measure generated base mea-
sures that were most likely to have kurtosis be not only be greater than zero, but to
also be quite large. Measures that concentrate their mass near one should be used
to generate measures that generate flat measures (ay < 0). The beta (10,1) base
measures is most likely to produce measures with negative values for kurtosis.

Some questions remain such as:

e  Why are the confidence band widths for beta (10,1) wide for the moments, but

relatively thin for the SD and central moments?

° What is the correlation between the SD and the skewness and kurtosis of the
generated measures and how does symmetry of the generated measures affect

the correlation?
e  What is the correlation between moments of the generated measures?

Further analysis directed to answer these open questions will help provide a complete

understanding of measures in the support of B, ..
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Appendix A

A Discussion Of The Simulation

Procedure

The simulation procedure discussed in Chapter 4 is discussed in detail in this appen-
dix. The first step in the simulation is to construct an n-level SBA generated from
a prescribed distribution (any of the five base measures — uniform [0,1], beta (2,2),
beta (10,1), beta (1,10) or beta (.5,.5)). Let {r;}, 0 < i < 2™ — 2, denote an array
of random numbers generated according to one of the five base measures used for u.
The n-level SBA is constructed as follows: The first element is 0 and the last element
is 1. The mean is 1/2. That is, pg is such that pg{1/2} = 1. The next element to the
left in the array is found as follows. The left conditional barycenter is mgo; = m; 1 —s;
and mo3 = My, + S9, where s; = 1y according to p scaled to [0, mq, 1] and s = 79
according to p scaled to [my,1,1]. This process is continued down to the nth level.
Applying the definition of the nth level approximation (Definition 2.13) to the nth
level SBA, an nth level approximation to the distribution function is generated.

The second, third and fourth moments of the approximation are then calculated
along with the the bound on the Prohorov distance between the true random variable
and the nth level SBA approximation given in Theorem 2.28. A representation of
sz’,;“ , for k = 2, 3,4 is also calculated, using Proposition 2.37. The above construction

is repeated 65,000 times for each base measure to obtain empirical estimates for

117



G and ¢ | a distribution on the bound on F## (given in Lemma 2.32),
and an empirical estimate for RZ?,;“ . Appendix B gives the annotated source code

used in the simulation procedure.
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Appendix B

Annotated Source Code

This appendix contains selected annotated C++ source code of algorithms used in
the simulation of the distribution functions of the moments, standard deviation, and
central moments associated with each of the generating measures beta (2,2), beta
(10,1), beta (1,10), beta (.5,.5) and uniform [0,1]. Included in the algorithms are the
construction of the barycenter array, the construction of the moments, and the nth

level SBA approximation.

In the DistGen class, the baryarray method generates the array of barycenters
used in MomentsMain.cc. The baryarray method takes the array of random numbers
and scales them to generate a Sequential Barycenter Array. The function values are
for graphing later on and the weights are for calculating moments.

DistGen.h

#ifndef DistGenH
#define DistGenH

class DistGen()
{

private:
//Data members
long double* baryarr, *barylist;

long int numpts;
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int _depth ;
long doublex DF_vals ;
long double* dist_vals;

public: //Methods
//Default constructor

DistGen();

//Destructor
“DistGen();

//Constructor

DistGen(long double* ba,int depth );

// Calculates the $n$th level barycenters.
long double* baryarray();

//Calculate the values of the distribution of the $n$th level SBA.
void ClcDistVal ();

// Produces a bound on the distribution function
// of the moments, central moments, etc.

long double* momentBound();

} ; //end of DistGen Class
#endif

DistGen.cc

#include "DistGen.h"

// Constructor
DistGen: :DistGen(long double* ba,int depth )
{
barylist = ba;
numpts=(long int) pow (2.,int(depth))+1;
_depth = depth ;
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// Destructor

DistGen::"DistGen (){delete[] baryarr;
delete[] DF_vals;
}s;

Iong double* DistGen::baryarray()
{
int wtpts= (numpts-1)/2 +1;
long double min,temp ;
int minind;
baryarr = new long double[numpts];

DF_vals = new long double[wtpts];

baryarr [0] *barylist;
baryarr[1] = *(barylist+1);
baryarr[2]=1.0;
DF_vals[0]=0;

DF_vals[2]=1;

long int mark=1;

long int place=2;

long int itv=0;

long int bpt =3;

int d=1;

long double numleft=0.0;
long double numright =0.0;

//Start iterative algorithm to calculate SBA and the distribution
for (int ptr=2;ptr<= _depth; ptr++)
{

//Sets up an array of scales at each level

long int numer=(long int) pow(2.,int(ptr-1));
long doublexscalearr = new long double[numer];
for (int i=0;i<numer;i++)

scalearr[i]=baryarr[i+1]-baryarr[i];
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mark=1;

itv=0;

d=1;

//Generates each parent’s child and the distribution value of each parent
for (int ctr=1;ctr<=(numer/2);ctr++)

{

numleft =baryarr[mark]-(*(barylist+place)*scalearr[itv]);

numright=baryarr [mark]+(*(barylist+place+1i)*scalearr[itv+1]);
place=place+2;

itv=itv+2;

baryarr [bpt]=numleft;
baryarr [bpt+1]=numright;

// Perform a check to prevent dividing by O.
long double denom = numright - numleft;
if (denom == 0)
{
denom = 0.0000001;

DF_vals[d] = DF_vals[d-1]+
(DF_vals[d+1]-DF_vals[d-1])* (numright-baryarr [mark])/denom;

mark=mark+2;
bpt=bpt+2;
d=d+2;

//Here, the weights are renamed to set the next level of weights
if (ptr< _depth){
for (int i=numer;i>=0;i--)

DF_vals[2*i]=DF_vals[il;

//The existing part of the SBA is sorted with a selection sort...
for (int i=0; i<place+1;++i)

{
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min = baryarrl[il;

minind = i;

for (int j=i+1;j<place+1;++j)

if (baryarr[j] < min)

{
min = baryarr([j];
minind = 3;

¥

//...perform the switch...

if (min < baryarr[il)

{
temp = baryarr[i];
baryarr[il= baryarr[minind];
baryarr [minind] = temp;
}
}

deletel] scalearr;
} //...go back to the beginning of the iterative calculation of SBA and distribution
return (baryarr);

} ; //end of baryarray function.

The method calcDistVal finds the distribution (density) values and it is used in
momentBound, the class member that uses the local algorithm to place bounds on
the moments.

void DistGen::calcDistVal ()

{

long int Bdepth = pow (2.0,int(_depth -1))+1;
dist_vals = new long double[Bdepthl;
dist_vals[0]=0;

for (int i=1;i<Bdepth;i++)
dist_vals[i]=DF_vals[i]-DF_vals[i-11;

return ;
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The momentBound method involves finding error in distance between kth mo-
ments of rv X and its nth level SBA approximation over barycenter subintervals

formed by the construction.

long double* DistGen::momentBound( )

{

long int Epoints=powl(2.0, int(_depth-1));

int k =2;

Ilong doublex Diff_Moms = new long double [3];

long double diff_moms=0.0;

for (int i=0;i<3;i++){

diff_moms = dist_vals[1]*fabsl((powl(baryarr[2],int(k))*(baryarr[1]/baryarr[2])
-powl(baryarr[1],int(k))));

for (int j=1; j< Epoints; j++)
{
long double denom = baryarr[2*]j+2]-baryarr[2%j];
// Perform another check to make sure compiler is not dividing by 0.
if( denom == 0 )
{
denom = 0.0000001;

long double quot=(baryarr[2xj+2]-baryarr[2*]j+1])/denonm;

long double int_case_l=(powl(baryarr[2*j],int(k))*(quot));
long double int_case_r=(powl(baryarr[2xj+2],int (k))*(1-quot));
long double int_case=dist_vals[j]*

fabsl(int_case_l+int_case_r- powl(baryarr[2*j+1],int(k)));

diff_moms = int_case + diff_moms ;

} //end of inner for loop

Diff_Moms[i] = diff_moms;

//diff_moms = 0.0;

k++;

} //end of outer for loop
return Diff_Moms;

}
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}//end of DistGen class

The next class is the RandNum class which contains the random number generators
used in the simulations. The uniform generators ran0, ranl and oldranl follow very
closely to the uniform generators found in Chapter 7 of [28]. The beta random number
generator follows from a psuedo algorithm given in [8].

RandNum.h

#ifndef RandNumH
#define RandNumH
#include "RandNum.h"

class RandNum ()
{
private:

long int * idum;

protected:

// RandNum cannot be instantiated but is accessed as a singleton.
// It is not abstract.

RandNum() ;

public:
float alpha;
float beta;

//Class destructor
“RandNum() ;

//The two random number generators that follow are from adapted Numerical Recipes

//in C, by Press, et. al.

//ran0 has a much smaller period than ranl

float ran0 (long * idum);

//Returns a uniform random deviate between 0.0 and

//1.0. Set idum to any negative value to initialize
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//or reinitialize the sequence.

static long double ranl(long& idum);

static long double beta_rand(
float& alpha, float& beta,long double& uni_1, long double& uni_2);

//01d random number generator.

//Returns a uniform random deviate between 0.0 and
//1.0. Set idum to any negative value to initialize

//or reinitialize the sequence

float oldranl(int idum);

}; //end of RandNum class
Randnum.cc

#include "RandNum.h"

//default constructor

RandNum: : RandNum{() {};

//destructor
RandNum: : “RandNum{() {};

long double RandNum::beta_rand(float& alph, float& bet, long double & uni_1,
long double& uni_2)

float alpha( alph );
float beta( bet );

long double expl= (long double)l/alpha;

long double exp2=(long double) 1/beta;

long double denom= min(powl(uni_1,expl)+powl(uni_2,exp2), (long double)1.0) ;
long double numerator = powl(uni_1,expl);

long double betaRand = numerator/denom;
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return betaRand;

}

The MomentsMain.cc class contains methods that calculate the moments of the nth
level SBA approximation. The generation of the unscaled random array is also imple-

mented here. These methods are included in this source code but could be methods
in separate classes to follow good object oriented programming practice.

MomentsMain.cc

#include <math.h>

#include "Moments.h"
#include "RandNum.h"
#include "DistGen.h"

main()
{
//This first part converts the user’s string entries to integer values.
float alpha = StrToFloat(alpha_val->Text);
float beta = StrToFloat(beta_val->Text);
long seed = StrTolnt(Seed->Text);
float M = StrToFloat(Mean->Text);
float Lev = StrToFloat(Levels->Text);
int K = StrTolnt(Monte->Text);

//This is necessary to scale the window and set the origin for the display.
long int num = (long int) pow(2.,int(Lev));

float r=0.0;

if(M==1) r = RandNum::ranl(seed);

else r=MNM;

long double EV=0.0;

long int numwts = num / 2;

//This big loop is the Monte Carlo Simulation to estimate an empirical
//distribution of the bound on the moments of a random variable generated
//by the SBA process.

for (int MCPnts=1; MCPnts<= K;++MCPnts){

127



long doublex randarray = new long double[num+1];

//Next we initialize randarray.
randarray[0]=0;
randarray[1]=r;

randarray [num]=1;

//If r=0, then the array of unscaled points is generated at random.
if (r == 0)

{

r=.5;

for (int i=1; i<=num-1;i++)

randarray[i]= RandNum: :ranl(seed);

// Put result of Pull down here to toggle between beta and uni.
if(alpha == 1 && beta == 1)

{
for(int i=2; i<=num-1;i++)
{
randarray[i]l= RandNum: :ranl(seed);
}
}
else
{
for(int i=2; i<=num-1;i++)
{
long double uni_1= RandNum: :ranl(seed);
long double uni_2= RandNum: :ranl(seed);
randarray[i]= RandNum: :beta_rand(alpha,beta,uni_1,uni_2);
}
}

//Call baryarray function in Genstruct class.
DistGen gen_info(randarray, Lev) ;
long double* SBA = gen_info.baryarray();
long double* DF=gen_info.CalcDist();
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gen_info.ClcDist_val ();
for (int i=0; i<numwts;i++)

DFun.listarray(DF[2*i],DF[2*i+1]1);

//The next part calculates the moment of the approximation down to Lev
//levels and store them in the array Exp. The bound on the error is also

//stored in he last three memory locations of Exp and are written to the file

//VMomArray.txt.

long double* Exp = new long double[7];
Expl[0l=r;

//This calls the moment bound function that is based on the global worst

//case bound.

//The max_int_n method gives back the bound on the Prohorov distance between the
//true random variable and its $n$thlevel SBA approximation.

long doublex imprv_bnd = gen_info.Bet_MomBnd();

long double max_int = gen_info.max_int_n();

//This next part creates the array with moments for the current monte carlo
//realization of the SBA generated approximation and writes them to a

//file.

long double** Mom_pts = new long doublex[2];
for (int m=0;m<2;m++)

Mom_pts [m]=new long double[numwts];

//The first for loop initializes the barycenter part and stores in the
//first row of the Mom_pts array.
for (int p=0; p< numwts ;p++)

Mom_pts[0] [p]l= *(SBA+2xp+1);

//This for loop calculates the probability and puts it in the second row of
//the Mom_pts array.
for (int p=0;p<numwts;p++)

Mom_pts[1] [p]= *(DF+2*p+3)-* (DF+2xp+1) ;
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//This nested for loop calculates the second, third and fourth moments.

//Ev is the array consisting of these three moments.

for (int i=1;i<=3;i++)

{

EV=0.0;

for (int p=0;p<numwts;p++)
{
EV=EV+ (powl(Mom_pts[0][p],i+1) * Mom_pts[1][pl);
¥

*(Exp+1)=EV;

//This part writes the array of moments and error bounds to a text file

//based on improved method to a file.

for(int 1=0;i<=2;i++)
*(Exp+(i+4))=*(imprv_bnd+i);
for(int i=0;i<=6;i++)

BetMom. listarrayl (*(Exp+i)) ;

BetMom.listarray2(max_int);

for (int p=0;p<2;p++)

delete[] Mom_pts[pl; //step 1: Delete the columns
delete[] Mom_pts; //step 2: Delete the rows
delete[] Exp;

delete[] randarray;

} //End of MCPoints loop.
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