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CHAPTER 1

INTRODUCTION

A natural question to ask about an algebraic structure is the following: What are the

possible Polish topologies which make the structure continuous? There are a number of

specialized results for this question. For some groups, there is no Polish topology making

the groups into Polish groups. For some rings, there are 2C many Polish topologies. For a

number of groups or rings, there is only one unique topology making them into Polish groups

or rings.

De�nition 1.1. We call a Polish group [ring, algebra, Poisson algebra, etc] G an algebraically

determined Polish group [ring, algebra, Poisson algebra, etc] if, for H a Polish group [ring,

algebra, Poisson algebra, etc], ' : H ! G is an algebraic group [ring, algebra, Poisson algebra,

etc] isomorphism implies that ' is a topological isomorphism (i.e. a homeomorphism).

Many times, when a ring of continuous real or complex valued functions (or related objects

like vector �elds) on a space is algebraically determined, then a use of a version of \Milnor's

Exercise" ([10], pg 11, problem 1-C) gives an underlying homeomorphism between the spaces.

Often, if the ring is \nice" in some way, then the homeomorphism is also nice in a related

way.

The purpose of this dissertation is to show that some rings of functions are algebraically

determined and to give results regarding induced homeomorphisms. Gel'fand and Kolmogorov

(originally [3], see [12] for an English translation) showed that isomorphisms of the rings of

real valued continuous functions on two �rst countable spaces induce a homeomorphism

between the spaces. Here, we show that various subrings of the ring of continuous real
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or complex valued functions on a second countable space are algebraically determined (in

Chapter 2) and that ismorphisms of these subrings induce a homeomorphism (in Chapters

4 and 5) . We also prove that the group of real analytic functions on R does not have a

topology in which it is a Polish group (Chapter 3). In Chapter 6 we prove that the Lie ring of

smooth functions on R2n with the Poisson bracket is algebraically determined and that for a

symplectic manifold M, the Lie ring of Hamiltonian vector �elds is algebraically determined.

Chapter 7 contains the theorem that the smooth complex vector �elds on the complex plane

are algebraically determined.

1.1. Basic De�nitions and Tools

In the rest of Chapter 1, these preliminary results are all known and thus do not represent

original work. Original work will start with Chapter 2.

We call a group G a Polish group if the group is Polish in some topology (i.e. separable

and completely metrizable) which makes the group operation and inversion continuous. Here,

the term \group" can be replaced with ring, algebra, etc., where any additional algebraic

structures must also be continuous.

The following propositions outline very useful cases in which automatic continuity follows.

Here, an analytic subset of a topological space is one which is the continuous image of a

Polish space. Here, a set A has the Baire property if there is an open set U so that A�U is

meager.

Proposition 1.2. (Mackey, [9]) If X and Y are standard Borel spaces, fAngn�1 is a collection

of Borel subsets of Y which sepearates points, and ' : X ! Y is so that for all n � 1,

'�1(An) is analytic, then ' is measurable with respect to sets with the Baire property.

Proof:

By Theorem 3.3 of Mackey [9], the fAngn�1 generate the Borel structure of Y and hence

' is measurable with respect to sets with the Baire property.
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Proposition 1.3. (B.J. Pettis, [2]) Let G and H be Polish groups and let ' : G ! H be an

algebraic isomorphism which is measurable with respect to sets with the Baire property. Then

' is a topological isomorphism. This applies in particular if ' is a Borel mapping.

Corollary 1.4. If H is a Polish group, and for any Polish group G and algebraic isomorphism

' : G ! H, there is a collection fAngn�1 of Borel subsets of H which separate points so that

for each n � 1, '�1(An) is analytic, then H an is algebraically determined Polish group.

This corollary uses a fact proved by Nikod�ym (which can be found in [8]), that analytic

sets are sets with the Baire property.

Another quite useful theorem is the following corollary to the Lusin-Suslin Theorem ([8]).

Here, a Borel isomorphism is a bijection for which both it and its inverse are Borel mappings,

and standard Borel space is de�ned to be a Borel isomorphic image of a Polish space.

Theorem 1.5. Let X and Y be standard Borel spaces and f : X ! Y a Borel mapping. If A

is a Borel set so that f jA is injective, then f (A) is a Borel subset of Y and f jA is a Borel

isomorphism (in particular f �1 is Borel).

Another useful fact is the following, which will be of use in Chapter 6.

Lemma 1.6. If R is a Polish Lie ring and I is a closed ideal of R, then R=I is a Polish Lie ring

with bracket [x + I; y + I] = [x; y ] + I and the projection map � : R ! R=I is a continuous

Lie ring homomorphism.

Proof:

Let R be a Polish Lie ring and I be an ideal of R. If x; y 2 R and a; b 2 I then

[x+a; y+b] = [x; y ]+[x; b]+[a; y ]+[a; b] 2 [x; y ]+I and (x+a)+(y+b) = (x+y)+(a+b),

so the induced bracket [x + I; y + I] = [x; y ] + I is a well-de�ned Lie bracket, the induced

addition (x + I) + (y + I) = (x + y) + I is a well-de�ned addition, so R=I is a Lie ring
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and the quotient map � : R ! R=I is a homomorphism. R=I with the quotient topol-

ogy is a metric space since if d is a compatible metric on R, we can de�ne the metric

d�(A;B) = inffd(x; y) : x 2 A; y 2 Bg on R=I which is compatible with the quotient topol-

ogy on R=I. � is a continuous open mapping from a completely metrizable space onto a

metric space and hence by a result of Hausdor� ([4]), R=I is completely metrizable.

To see that [�; �] : R=I2 ! R=I is continuous, let x + I, y + I 2 R=I and let U be open

about [x + I; y + I]. Then [x; y ] 2 ��1(U), an open set since � is continuous, and so there

are open sets V and W so that x 2 V , y 2 W and [V;W ] � ��1(U). Then x + I 2 �(V ),
y + I 2 �(W ), and �(V ) and �(W ) are open sets so that [�(V ); �(W )] = �([V;W ]) � U.

Thus [�; �] is continuous. Prove the continuity of + similarly to see that R=I is a Polish Lie

ring. �

The following proposition is contained in a paper to appear at a later date [7], but the

proof is included for the convenience of the reader.

Proposition 1.7. . Let n � 1. Make Rn into a commutative Polish ring (Rn; ?) with the usual

topology and vector addition together with the multiplication (x1; : : : ; xn) ? (y1; : : : ; yn) =

(x1y1; : : : ; xnyn), so (Rn; ?) =
∏

1�`�n

(R; �) as a product of rings. Let R be a Polish ring and let

' : R ! (Rn; ?) be a surjective ring homomorphism such that '�1(0) is an analytic subset

of R. Then ' is continuous. In particular (Rn; ?) is an algebraically determined Polish ring.

Similar statements hold for (R1; ?) =
∏̀
�1

(R; �).
Proof:

If x = (x1; : : : ; xn), y = (y1; : : : ; yn) 2 Rn, de�ne a partial order � by x � y if and only if

x` � y` for all 1 � ` � n. If z 2 Rn, let U(z) = f x 2 Rn j z � x g and L(z) = f x 2 Rn j x �
z g. If S = f x ? x j x 2 Rn g, then U(z) = z + S and L(z) = z � S. Therefore if a, b 2 Rn

and a � b, we have that B(a; b) = f x 2 Rn j a � x � b g = U(a)\L(b) = (a+S)\(b�S).
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If R is a Polish ring and ' : R ! Rn is a surjective ring homomorphism such that '�1(0) is

analytic, then '�1(x) is also an analytic subset of R for every x 2 Rn, for if w 2 '�1(x),

then '�1(x) = w +'�1(0) is an analytic subset of R. Furthermore, '�1(B(a; b)) = '�1(a+

S) \'�1(b� S) = ('�1(a) +'�1(S)) \ ('�1(b)�'�1(S)) is an analytic subset of R since

'�1(S) = '�1(0)+f r 2 j r 2 R g and therefore both '�1(a)+'�1(S) and '�1(b)�'�1(S)

are analytic sets. If W � Rn is open, then W is a countable union of sets of the form B(a; b)

and '�1(W ) is an analytic subset of R. Hence, Theorem 9.10 in [8] implies that ', viewed

as a homomorphism of additive abelian groups, is continuous since every analytic set is a set

with the Baire property. If ' is a bijection, then '�1(0) is a single point and therefore trivially

an analytic set, ' is continuous, and �nally ' is a topological isomorphism by Proposition

1.3.

For the (R1; ?) case, let S = f x ? x j x 2 R1 g as before. For n � 1 and x1, . . . ,

xn 2 R, let z 2 R1 with z` = 0 for 1 � ` � n and z` = �1 for ` > n, z ? S = f z ? w j w 2
S g, U(x1; : : : ; xn) = (x1; : : : ; xn; 0; 0; : : : ) + S + (z ? S) = f y 2 R1 j x` � y` for 1 �
` � n and y` 2 R for ` > n g and L(x1; : : : ; xn) = (x1; : : : ; xn; 0; 0; : : : ) � S � (z ? S) =

f y 2 R1 j y` � x` for 1 � ` � n and y` 2 R for ` > n g. If a, b 2 Rn with a � b let

B(a; b) = U(a) \ L(b) = f y 2 R1 j a` � y` � b` for 1 � ` � n and y` 2 R for ` > n g.
If R is a Polish ring and ' : R ! R1 is a surjective ring homomorphism such that '�1(0)

is analytic, then '�1(x) is also an analytic subset of R for every x 2 R1 by the same

argument as before. If a 2 Rn then '�1(U(a)) = '�1((a1; : : : ; an; 0; 0; : : : ) + S + (z ? S)) =

'�1((a1; : : : ; an; 0; 0; : : : ))+'
�1(S)+'�1(z)'�1(S) is an analytic set, '�1(S) = f r 2 j r 2

R g+'�1(0) is an analytic set and '�1(z ? S) = '�1(z)'�1(S) +'�1(0) is an analytic set.

Similarly '�1(L(b)) is an analytic set for all b 2 Rn. Hence, if a, b 2 Rn with a � b then

'�1(B(a; b)) = '�1(U(a))\'�1(L(b)) is an analytic set. Since every open subset W � R1

is a countable union of sets of the form B(a; b), '�1(W ) is an analytic subset of R. One

�nishes this proof in this case as before. �
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Also note that in the rest of this document, for topological spaces X and Y , let C(X)

denote the collection of continuous real-valued functions on X. For a function f : X ! Y ,

de�ne the support of f , supp(f ) = fx 2 x : f (x) 6= 0g. Let C0(X) denote the collection of

continuous real valued functions on X with compact support. That is, f 2 C0(X) if and

only if supp(f ) = fx 2 X : f (x) = 0g is compact. Also if X, Y , and Z are sets, and if

f : X ! Y is 1 � 1, de�ne the push-forward of f to be f�, where for each g : X ! Z,

f�(g) = g � f �1 : Y ! Z.

1.2. Basic Facts About Analytic Sets

Here are some common facts about analytic sets, with proofs included for the convenience

of the reader.

Lemma 1.8. Let X be a topological space, and let fAngn�1 be a sequence of analytic subsets

of X. Then
⋂
n�1

An is analytic.

Proof:

Since each An is analytic, there each is an image of some continuous function fn whose

domain is Xn, a Polish space. De�ne D = fv 2 XN : 8i ; j � 1; v(i) = v(j)g, a closed subset

of XN. Let F :
∏
i�1

Xi ! XN be the continuous function de�ned by F (x)(i) = fi(xi). Then

F�1(D) is a closed subset of
∏
n�1

Xn and hence is a Polish space using the subspace topology

inherited from
∏
n�1

Xn. Thus
⋂
n�1

An = �1F (F
�1(D)), hence is analytic.

Lemma 1.9. Let X; Y be standard Borel spaces, A � Y analytic, and let f : X ! Y be so

that graph(f ) is analytic. Then f �1(A) is analytic in X.

Proof:

A is analytic implies that X�A is analytic. So, graph(f )\ (X�A) is analytic by Lemma
1.8 and hence �1(graph(f ) \ (X � A)) = f �1(A) is analytic.
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1.3. Continuous Functions on Polish Spaces

The following theorem is contained in [8], but a short proof is included using theorems

found in many places ([15], for example).

Theorem 1.10. A Hausdor�, locally compact, second countable space is a Polish space.

Proof:

If X is a locally compact second countable Hausdor� space, the the one-point com-

pacti�cation X̂ of X exists. X̂ is a compact second countable Hausdor� space (by using

complements of a countable compact basis for X), and so it is completely metrizable by the

Urysohn metrization theorem ([15]). Thus the open subspace X � X̂ is completely metriz-

able. Since X is a second countable metric space, it is also separable. �

The proofs (though not statements) of the following lemmas can be found in [13] (Lemma

1.9, Theorem 1.11)

Lemma 1.11. If X is a locally compact, Hausdor�, 2nd countable topological space (and

therefore a Polish space), then there is a sequence of compact sets fKigi�1 so that
⋃
i�1

Ki = X

and for each i 2 N, Ki � int(Ki+1).

Proof:

Let fUigi�1 be an open basis for the topology of X consisting of sets with compact

closures. Then, take K1 = U1, and recursively, if Ki = U1 [ � � � [ Uni , then since Ki is a �nite
union of compact sets and is hence compact, there is an ni+1 > ni so that Ki � U1[� � �[Uni+1.
Let Ki+1 = U1 [ � � � [ Uni+1. Then each Ki is compact, Ki = U1 [ � � � [ Uni � U1[� � �[Uni+1 �
int(Ki+1) and

⋃
i�1

Ki �
⋃
i�1

Ui = X.
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De�nition 1.12. A collection of real valued functions � with the same domain, a topological

space, X, is called locally �nite if for every x 2 X, there is an open V � X containing x so

that f� 2 � : 9y 2 V (�(y) 6= 0)g is �nite.

Theorem 1.13. If X is a locally compact, Hausdor�, 2nd countable (and hence Polish) space,

then R = C(X) can be made into a Polish ring with pointwise multiplication and addition.

Moreover C0(X) is dense in this topology.

Proof:

Let fKigi�1 be a sequence of compact sets as in Lemma 1.11. Then for f ; g 2 R, de�ne
the metric d(f ; g) =

∑
i�1

2�i
supKi (jf�gj)

1+supKi (jf�gj)
to de�ne the topology of R. Let U = fUigi�1 be a

precompact basis for X and for each pair m; n 2 N so that Um � Un, let fm;n be a function

(given by Urysohn's Lemma) so that 0 � fm;n � 1, fm;njUm = 1 and fm;nj(X � Un) = 0. The

countable set which will be shown to be dense is the set of �nite products & sums of the fm;ns

and constant rational functions. To see this, one could use the Stone-Weierstrauss theorem,

but a direct proof follows. Let f 2 R, � > 0 and K compact. To approximate f on K, we

can assume f > 0, since otherwise we could replace f with f + q where q is within �=2 of

the minimum of f over K. De�ne q1 2 Q so that �=3 < jq1 � supK(f )j < 2�=3. Also, using

the compactness of fx 2 K : f (x) � supK(f )� �=3g, let U1;1; : : : ; U1;k1 � U so that for each

U1;i , there is a U
0
1;i so that U1;i � U 01;i � fx 2 K : f (x) > supK(f )� 2�=3g, and also so that

fx 2 K : f (x) � supK(f )� �=3g �
k1⋃
i=1

U1;i . Now as an abuse of notation, let f1;i be the func-

tion above which is 1 on U1;i and 0 on X�U 01;i , and let h1 = q1(1�
k1∏
i=1

(1�f1;i)). If jf �h1j < �

on K, then stop, otherwise notice that on fx 2 K : f (x) � supK(f )� �=3g, jf � h1j < 2�=3,

on fx 2 K : supK(f )�2�=3 < f (x) < supK(f )��=3g, jf �h1j < supK(f )��=3, and f �h1 = f

on fx 2 K : f (x) � supK(f ) � 2�=3g. Inductively, if supK(f � (h1 + � � � + hn)) � �, de�ne

qn+1 2 Q so that �=3 < jqn�supK(f �(h1+� � �+hn))j < 2�=3. Also, using the compactness of

fx 2 K : f (x) � supK(f � (h1+ � � �+hn))��=3g, let Un+1;1; : : : ; Un+1;kn � U so that for each
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Un;i , there is a U
0
n;i so that Un;i � U 0n;i � fx 2 K : f (x) > supK(f � (h1 + � � �+ hn))� 2�=3g,

and also so that fx 2 K : (f �(h1+ � � �+hn))(x) � supK(f �(h1+ � � �+hn))��=3g �
k1⋃
i=1

U1;i .

Now as an abuse of notation, let fn;i be the function above which is 1 on Un;i and 0 on X�U 0n;i ,
and let hn+1 = qn+1(1 �

kn+1∏
i=1

(1 � fn+1;i)). If jf � (h1 + � � � + hn+1)j < � on K, then stop,

otherwise notice that on fx 2 K : (f �(h1+� � �+hn))(x) � supK((f �(h1+� � �+hn)))��=3g,
jf � (h1 + � � �+ hn+1)j < 2�=3, on fx 2 K : supK(f � (h1 + � � �+ hn))� 2�=3 < (f � (h1 +

� � �+ hn))(x) < supK(f � (h1 + � � �+ hn))� �=3g, jf � (h1 + � � �+ hn+1)j < supK(f )� �=3,
and f � (h1 + � � � + hn+1) = f � (h1 + � � � + hn) on fx 2 K : (f � (h1 + � � � + hn))(x) �
supK(f � (h1 + � � � + hn)) � 2�=3g. Of course since the maximum is reduced each time

by at least �=3, and the minimum stays above ��, eventually there is some n0 so that

jf � (h1 + � � �+ hn)j < �.

Now to approximate a function f on all of X, let 0 < � < 1 and take n 2 N so that

2�n < �=2 and take h a �nite sum/product of rational constant functions and functions of

the form fm;n as above so that supKn(jf � hj) < �
2�� . Then d(f ; h) =

∑
i�1

2�i
supKi (jf�hj)

1+supKi (jf�hj)
�

supKn (jf�hj)

1+supKn (jf�hj)
+

∑
i>n

2�i < �.

To see that (R; d) is complete, let ffkgk�1 � R be a Cauchy sequence. For each x 2 X,
there is some i0 so that x 2 Ki0. Then for each 0 < � < 2�i0, there is an N so that if

n;m � N, d(fn; fm) < �. If n;m � N, then � >
∑
i�1

2�i
supKi (jfm�fnj)

1+supKi (jfm�fnj)
� 2�i0

supKi0
(jfm�fnj)

1+supKi0
(jfm�fnj)

and hence supKi0 (jfm � fnj) <
2i0�

1�2i0�
so jfm(x) � fn(x)j < 2i0�

1�2i0�
. So ffm(x)gm�1 is a Cauchy

sequence and hence converges to some real number f (x). To see that f is continuous, take

x 2 X , � > 0 and i0 2 N so that x 2 Ki0 and hence x 2 int(Ki0+1). Let N 2 N be so that

for n;m � N, supKi0+1(jfm� fnj) < �=2. Then, for each y 2 Ki0+1 there is an my � N so that

jf (y)� fm(y)j < �=2, and so if n � N, jf (y)� fn(y)j � jf (y)� fmy (y)j+ jfmy (y)� fn(y)j < �.

Hence, fn converges uniformly on Ki0+1 and so if xm ! x , there is someM so that for m � M,

xm 2 Ki0+1 and jf (x) � f (xm)j � jf (x) � fN(x)j + jfN(x) � fN(xm)j + jfN(xm) � f (xm)j ! 0

as m ! 1. Thus f is continuous. To see that fn ! f , let � > 0 and let n0 2 N be
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so that 2�n0 < �, and let N 2 N so that for n � N, supKn0+1(jf � fnj) < �. Then

d(f ; fn) =
∑
i<n0

2�i
supKi (jf�fnj)

1+supKi (jf�fnj)
+

∑
i>n0

2�i
supKi (jf�fnj)

1+supKi (jf�fnj)
� �

1+�
+ �. Thus fn ! f and hence

R is complete.

To see that C0(X) is dense in R, let f 2 R and � > 0. Then take i0 2 N so that 2�i0 < �.

Then, by Urysohn's Lemma there is an g 2 C0(X) so that gjKi0 = 1 and gj(int(Ki0+1))
c = 0.

Then f g 2 C0(X) and d(f g; f ) �
∑
i>i0

2�i = 2�i0 < �. �

Similarly one can put a Polish topology on S(X), the continuous functions which vanish

at in�nity (i.e. for every � > 0 there is a compact set K so that jf jKc j < �) using the

supremum metric.

1.4. Basic Facts About Manifolds

A manifold M of dimension n is a topological space which has a basis consisting of open

sets which are homeomorphic to Rn. Such pairs of open sets and homeomorphisms are called

charts of M. For 1 � r � 1, a Cr manifold is one in which if (U1;  1) and (U2;  2) are charts

of M, where U1 \ U2 6= ;, then  �1
1 �  2 has continuous derivatives of order r . A function f

on M is a member of Cr(M) if for any chart (U; ),  �(f ) = f � �1 2 Cr( (U)), where, for
an open set W , Cr(W ) is the set of functions on W with continuous derivatives of order r .

Here, a Cr partition of unity subordinate to an open cover U is a collection F of Cr

functions so that each f 2 F, f : M ! [0; 1], supp(f ) � U for some U 2 U, so that if

m 2 M, there is an open set U containing m so that only �nitely many f 2 F are nonzero on

U (called locally �nite), and also so that
∑
f 2F

f = 1.

Lemma 1.14. If 0 � r � 1, M is a Cr manifold and U is an open cover of M, then there is

a Cr partition of unity f�igi2N subordinate to U so that each �i has compact support.

Proof:

First take a sequence fKigi�1 for M as in Lemma 1.11 (and set K0 = ;). Then for
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each p 2 M let ip be the largest integer so that p 2 M � Kip . Also choose Up 2 U so that

p 2 Up and let (Vp; �p) be a Cr chart centered at p so that Vp � Up \ (int(Kip+2) � Kip)

and so that �p(Vp) contains the closed cube [�2; 2]dim(M). Let g 2 C1(Rdim(M)) so that

gj[�1; 1]dim(M) = 1, gj(Rdim(M) � (�2; 2)dim(M)) = 0, and for all x 2 Rdim(M), 0 � g(x) � 1.

The de�ne  p : M ! R by  p(x) =

 g � �p(x); if x 2 Vp;
0; otherwise.

Now,  p has compact support which is a subset of Vp and p 2 Wp = fx 2 M :  p(x) = 1.

Since eachWp has nonempty interior, for each i � 1 there is a �nite collection fpi ;1; : : : ; pi ;jig �
M so that

ji⋃
k=1

� Ki+1�int(Ki). Now the collection f pi ;kgi�1, 1�k�ji is locally �nite and count-

able, and hence 	 =
∑

i�1, 1�k�ji

 pi ;k is a well-de�ned member of Cr(M) and moreover 	 > 0

on M. Thus f pi;k
	
gi�1, 1�k�ji is C

r partition of unity subordinate to U.

Lemma 1.15. Let 0 � r � 1 and let M be a Cr manifold. Then if F � U � M, F is

compact, U is open, and f 2 Cr(M) so that f jU > 0, then there is a function h 2 Cr0(M)

with f jF = hjF and h > 0 everywhere.

Proof:

Let d be a metric compatible with the topology on M and let � = d(F; Uc) > 0. Then

let f�igi�1 be a partition of unity subordinate to fB(Uc ; 2�=3); B(F; 2�=3)g (where for a

set A and 
 > 0, B(A; 
) = fx : d(x; A) < 
g). Take h1 =
∑

supp(�i )�B(F;2�=3)

�i and h2 =∑
supp(�i )�B(Uc ;2�=3)

�i . Then f h1 + h2 is the desired function since if x 2 F , (f h1 + h2)(x) =

f (x)�1+0 = f (x) > 0, if x 2 B(Uc ; 2�=3)\B(F; 2�=3), (f h1+h2)(x) � min(f (x); 1)(h1(x)+

h2(x)) = min(f (x); 1) > 0, and if x 2 B(Uc ; 2�=3) � B(F; 2�=3), then (f h1 + h2)(x) =

h2(x) = 1. �

Lemma 1.16. If M is a Cr manifold, U; V � M are open in M and U � V , then there is a Cr

function h on M which is 0 on V c and 1 on U, and for all x 2 M, 0 � h(x) � 1.

11



Proof:

Using Lemma 1.14, let f'igi�1 be a C
r partition of unity subordinate to the cover fUc ; V g.

If h =
∑

i : supp('i )�V

'i , then h is the desired function. �

Lemma 1.17. If M is a Cr manifold, U; V � M are open in M and U � V , then for any

f 2 C1(V ) there is a function F 2 C1(M) so that supp(F ) � V and F jU = f jU.
Proof:

Take G 2 Cr(M) which is 1 on U so that supp(G) � V as in Lemma 1.16. Then de�ne

F (m) =

 Gf (m); if m 2 V;
0; otherwise.

Then F 2 Cr(M), supp(F ) � supp(G) � V and F jU = Gf jU = f jU. �
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CHAPTER 2

THE RING OF CONTINUOUS FUNCTIONS ON A 2ND COUNTABLE SPACE

Unless stated, the following lemmas do not require the space X in question to be Haus-

dor�.

Lemma 2.1. Let X be a 2nd countable topological space, and denote by C(X) the continuous

real-valued functions on X. Also let R be a subring of C(X) equipped with a topology so

that there is a countable dense subset D � X such that for all x 2 D, Ex : R! R de�ned by

Ex(f ) = f (x) is continuous. Then for y 2 R and open U � X, ff 2 R : f (x) � y for x 2 Ug
is a closed subset of R.

Proof:

ff 2 R : f (x) � y for x 2 Ug = ff 2 R : f (x) � y for x 2 D \ Ug =⋂
x2D\U

E�1
x ([y ;1)), which is an intersection of closed sets and hence closed. �

Theorem 2.2. Let X and R be as in Lemma 2.1, so that

� For any f 2 R with f (x) > 0 for all x 2 X, pf 2 R
� R is Polish in some topology

� There is a collection fgngn�1 � R of nonnegative functions so that for any open

U � X,
⋃fint(supp(gn)) : supp(gn) � Ug = U

� For all q 2 Q, n 2 N, qgn 2 R
� There is a collection fqngn�1 � R of bounded positive functions so that for each x ,

qn(x)! 0 as n !1.

Then R is an algebraically determined Polish ring.
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Proof:

Let q 2 Q, U � X be open, and de�ne N(U) = fn : supp(gn) � Ug, Aq;U = ff 2 R :

f � q on Ug and S = fr 2 : r 2 Rg. Note that by Lemma 2.1, Aq;U is a closed subset of

R. Also notice that f � q on U if and only if f gn � qgn � 0 for all n 2 N(U) if and only if

f gn � qgn + q` > 0 for all n 2 N(U), ` � 1. Thus if f � q on U, then f gn � qgn + q` 2 S

for all n 2 N(U), ` � 1. Conversely, if f gn � qgn + q` 2 S for all n 2 N(U), ` � 1, then

f gn � qgn + q` � 0 for all n 2 N(U), ` � 1, and hence f gn � qgn � 0 for all n 2 N(U) and
so f � q on U. Thus f � q on U if and only if f gn � qgn + q` 2 S for all n 2 N(U), ` � 1.

Aq;U = ff 2 R : f � q on Ug = ⋂
`�1;n2N(U)

ff 2 R : f gn � qgn + q` 2 Sg.
Let K be a Polish ring, ' : K ! R an algebraic isomorphism of Polish rings, S0 = fx2 :

x 2 Kg, and fUkgk�1 be a neighborhood base of open subsets of X. Then '�1(Aq;Uk ) =⋂
`�1;n2N(Uk)

'�1(ff 2 R : f gn � qgn + q` 2 Sg) = ⋂
`�1;n2N(Uk)

fr 2 K : r'�1(gn) � '�1(qgn) +

'�1(q`) 2 S0g, which is analytic since S0 is analytic, continuous preimages of analytic sets are

analytic by Lemma 1.9, and intersections of sequences of analytic sets are analytic by Lemma

1.8. So, fAq;Ukgq2Q;k2N is a collection of Borel subsets of R which separate points and the

preimage under ' of each subset is analytic in H. Thus by corollary 1.4, R is an algebraically

determined Polish ring. �

It is worth noting that the proof for R = C(X) is slightly simpler since f 2 C(X) is

nonnegative if and only if f 2 S = fg2 : g 2 C(X)g. This tells us that ff : f � q on Ug =⋂
n2N(U)

ff : (f � q)gn 2 Sg. This fact is not necessarily true for other Cr . For example, take
something which behaves like x2 at one point of S1 but levels o� otherwise. Since jx j is not
di�erentiable, for our function to be a square it must behave like x nearby. But this function

would have only one sign change, which is impossible in S1.
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Corollary 2.3. If M is a 2nd countable manifold, 0 � r � 1, Cr(M) is an algebraically

determined Polish ring.

Proof:

Use qn(x) = 1=n and if fUngn�1 is a base for the topology ofM, de�ne gn;m when Vn � Vm

to be a C1 function which is 1 on Vn and 0 outside of Vm. �

Let Sr(X) be the Cr functions on X which vanish at in�nity, meaning f 2 Sr(X) if

f 2 Cr(X) and for every � > 0 there is K compact so that jf jKc j < �. One can put a Polish

topology on Sr(X) by using the usual metric on Cr(X) plus the supremum metric.

Corollary 2.4. IfM is a 2nd countable manifold and 0 � r � 1, then Sr(M) is an algebraically

determined Polish ring.

Proof:

Let fKigi�1 be an increasing sequence of compact sets as in Lemma 1.11 and take

ffigi�1 � Cr0(X) with 0 � fi � 1, fi jKi = 1 and fi jint(Ki+1)
c = 0 by Lemma 1.16. Then

f =
∑
i�1

2�i fi is a member of S
r(X) (since the sequence of partial sums is a Cauchy sequence)

and f is strictly positive. Let qn =
1
n
f , and apply Theorem 2.2. �

Corollary 2.5. If X is a 2nd countable locally compact Hausdor� (and hence Polish) space,

then C(X), the continuous real valued functions on X, is an algebraically determined Polish

ring.

Proof:

The considerations for Theorem 2.2 are either trivial or implied by Theorem 1.13 or its

proof. �
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De�nition 2.6. A Polish complex star-algebra is a Polish algebra R over C together with a

continuous involution � : R ! R so that for r; s 2 R, c 2 C, (r �)� = r , (r + s)� = r � + s�,

(r s)� = s�r �, and (cr)� = c(r �).

Theorem 2.7. Let X be a second countable topological space and let R be a subalgebra

of C(X;C) (the continuous, complex valued functions on X) or S(X;C) (the continuous,

complex valued functions on X which vanish at in�nity) so that

� There is a countable dense set D � X so that if e 2 D, r 7! r(e) is continuous as

a map from R to C.

� For any f 2 R which is real valued with f (x) > 0 for all x 2 X, pf 2 R
� R is Polish in some topology

� There is a collection fgngn�1 � R of nonnegative real valued functions so that for

any open U � X,
⋃fint(supp(gn)) : supp(gn) � Ug = U

� There is a collection fqngn�1 � R of bounded positive real valued functions so that

for each x , qn(x)! 0 as n !1.

� If r 2 R, then r 2 R

Then R is an algebraically determined Polish complex star-algebra.

Proof:

Let K be a Polish complex star-algebra, and let ' : K ! R be an algebraic isomorphism.

Let SA(K) = fk 2 K : k� = kg. Then '(SA(K)) = ff 2 R : f is real valuedg since

f 2 SA(K) if and only if f � = f if and only if '(f ) = '(f �) = '(f ) if and only if '(f )

is real valued. Now 'jSA(K) is a topological isomorphism by Theorem 2.2. Notice that if

k 2 K, '(k) = '(k+k
�

2
+ i k�k

�

2i
) = '(k+k

�

2
)+ i'(k�k

�

2i
). ( x+x

�

2
)� = x�+x

2
= x+x�

2
and ( x�x

�

2i
)� =

x��x
2i

= x�x�

2i
, so x+x�

2
; x�x

�

2i
2 SA(K). Thus x 7! ( x+x

�

2
; x�x

�

2i
) 7! ('( x+x

�

2
); '( x�x

�

2i
)) 7!

'( x+x
�

2
) + i'( x�x

�

2i
) = '(x) is continuous, hence ' is continuous and hence is a topological

isomorphism by Proposition 1.3. �
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CHAPTER 3

THE REAL ANALYTIC FUNCTIONS ON R CANNOT BE MADE INTO A POLISH RING

A function f : R! R is real analytic if for each a 2 R, there is an r > 0 and a sequence

of real numbers fangn�0 so that if jx � aj < r , then f (x) =
∑
n�0

an(x � a)n. In this section, R

is the ring of real analytic functions on R with usual function addition and multiplication.

Lemma 3.1. If R has a topology in which it is a Polish ring, then the natural injection

i : R! C1(R), given by i(f ) = f , is continuous.

Proof:

Let a 2 R, let Ia = ff 2 R : f (a) = 0g. Note that Ia = (x � a)R, and hence

each Ia is analytic in R. Also notice that f 7! f (a) is a homomorphism onto R, and its

kernel is the analytic set Ia, and hence by Proposition 1.7 it is continuous. Thus g : R! RQ,

g(f ) =
∏
q2Q

f (q) is a continuous injection. Also notice that h : C1(R)! RQ, h(f ) =
∏
q2Q

f (q)

is a continuous injection, hence its image is a Borel set and its inverse is a Borel mapping by

Theorem 1.5. So i = h�1 � g is a Borel mapping and hence i is continuous by Proposition

1.3. �

Lemma 3.2. For a �xed f 2 R, then the map R! R given by � 7! �f is continuous.

Proof:

The mapping R ! R given by � 7! �f is a 1-1 group homomorphism (if f 6= 0, as

otherwise the lemma is trivial) and is Borel by viewing it as a composition of a continuous

and a Borel map by � 2 R 7! �i(f ) = i(�f ) 2 C1(R) i�17! �f 2 R, since by Lemma 3.1, i is

a one-to-one continuous mapping and hence i�1 is a Borel mapping on the range of i. Any

Borel homomorphism is continuous by [2]. Thus, � 7! �f is continuous. �
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Theorem 3.3. R cannot have a topology which makes it a Polish ring.

Proof:

Assume not, that R has a topology in which it is a Polish ring. For each f 2 R there is

a c 2 R so that for all k 2 N jf (k)(0)j � k!ck and hence
⋃
c2N

ff 2 R : 8k 2 N; jf (k)(0)j �
k!ckg = R. For each c 2 N, ff 2 R : 8k 2 N; jf (k)(0)j � k!ckg is closed since it is

the intersection over k 2 N of sets of the form ff 2 R : jf (k)(0)j � k!ckg, which are

closed since they are the inverses of [�k!ck ; k!ck ] under the composition of the continuous

maps i : R ! C1, di�erentiation k times (C1 ! C1), and evaluation at 0 (C1 ! R).

Thus, by the Baire category theorem, there is some n0 2 N and open U � R so that

U � ff 2 R : 8k 2 N; jf (k)(0)j � k!nk0g. Note that U � U is open and 0 2 U � U � ff 2
R : 8k 2 N; jf (k)(0)j � k!2nk0g. Now, for any f 2 R, 1

n
f ! 0 as n ! 1 by Lemma 3.2,

and hence there is some n 2 N so that 1
n
f 2 U � U. Hence for any f 2 R there is some

constant Cf so that for all k 2 N, jf (k)(0)j � Cf n
k
0k!. Take f (x) = tan�1(2n0x). Now for all

k � 1, f (2k+1)(0) = (2n0)
2k+1(2k)!. By above, for all k � 1, jf (2k+1)(0)j � Cf n

2k+1
0 (2k+1)!,

and hence 22k+1 � Cf (2k + 1), a contradiction since
{

22k+1

2k+1

}
k�1

is unbounded. �
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CHAPTER 4

SUBRINGS OF Cr(M) CONTAINING Cr

0(X)

Lemma 4.1. Let 0 � r � 1, let M be a Cr manifold, and let R be an abstract subring of

Cr(M) so that Cr0(M) � R and R has some topology in which it is a Polish ring, then the

natural injection i : R ! Cr(M) is continuous. Moreover, for each a 2 M, the associated

point evaluation map f 7! f (a), R! R is continuous.

Proof:

First it will be shown that for a 2 M, Ia = ff 2 R : f (a) = 0g is an analytic subset

of R. Note that Ia = ff 2 R : f (a) � 0g \ �ff 2 R : f (a) � 0g, and so it will su�ce

to show that ff 2 R : f (a) � 0g is analytic. First, let ( ;U) be a chart so that a 2 U,

 (a) = 0, and B(0; 1) �  (U), and let gn 2 C10 (M) with gnj �1(B(0; 1
n+1

)) = 1 and

supp(gn) �  �1(B(0; 1
n
)). Then as will be shown in the following paragraph, ff 2 R :

f (a) � 0g =
⋂

q2Q+

⋃
n�1

ff 2 R : f g2n + qg2n 2 Sg, where S = fs2 : s 2 Rg. Thus since S is

analytic and f 7! f g2n + qg
2
n is continuous, this set is a countable intersection of a countable

union of analytic sets, and hence is analytic.

To show the aforementioned set equality, �rst assume f 2 R with f (a) � 0. Then for

each q 2 Q+, f (a)+ q > 0 and hence f + q is positive in  �1(Iq) for some ball Iq about 0. If

n 2 N so that B(0; 1
n
) ( Iq, let h 2 C1(M) so that hj �1(B(0; 1

n
)) = (f + q)j �1(B(0; 1

n
)),

and h > 0 (the existence of h is guaranteed by Lemma 1.15). Then
p
h 2 C1(M), and

(f + q)g2n = hg2n . Thus f g
2
n + qg

2
n = (

p
hgn)

2 2 fk2 : k 2 C10 (M)g � S.

Conversely, suppose that for each q 2 Q+, there is an n 2 N so that f g2n+qg
2
n 2 S. Then

f g2n + qg
2
n � 0 gives f (a) + q = (f g2n + qg

2
n)(a) � 0 and so f (a) � �q for all q 2 Q+. Thus

f (a) � 0. Hence Ia is analytic.
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For any a 2 M, the mapping f 7! f (a), R! R is a ring homomorphism with kernel Ia, an

analytic set, and hence it is continuous by Proposition 1.7. Let fqngn�1 � M be dense, and

then the mapping g : R! RN given by g(f ) =
∏
n�1

f (qn) is a continuous injection (since any

two continuous functions agreeing on a dense set are equal). Also, the map h : C1(M)! RN

given by h(f ) =
∏
n�1

f (qn) is continuous, and hence its inverse mapping is a Borel mapping

on the range of h, a Borel set, by Theorem 1.5. Hence, i = h�1 � g is a Borel mapping and

hence i is continuous by Proposition 1.3. �

Corollary 4.2. If H is a Polish ring, 0 � r � 1, M is a Cr manifold, and  : H ! Cr(M)

is a ring isomorphism between H and R =  (H) so that Cr0(M) � R � Cr(M), then  is

continuous.

Proof:

Equip R with the topology inherited from H through  . Then  : H ! R is a homeomor-

phism by de�nition. Moreover, by Lemma 4.1, i : R! Cr(M) is continuous.  : H ! Cr(M)

is simply  : H ! R composed with i, a composition of continuous maps which is therefore

continuous. �

Of course it should be noted that R is not generally closed in Cr(M). For example

i : C1(M)! C1(M) would be continuous but C1(M) is not closed in C1(M).

Theorem 4.3. If 0 � r � 1, M is a Cr manifold, and R is an abstract subring of Cr(M)

which is Polish in some topology such that Cr0(M) � R then R is an algebraically determined

Polish ring.

Proof:

Let H be a Polish ring and ' : H ! R be an algebraic isomorphism. If i : R ! Cr(M) is

the natural injection, then i is continous by Lemma 4.1 and ' � i is continuous by Corollary
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4.2. Moreover, i is a continuous injection, and hence by Theorem 1.5 its inverse is a Borel

mapping between the range of i, a Borel set, and R. Thus ' = ' � i � i�1 is the composition

of a continuous and a Borel mapping, and hence is a Borel mapping. Thus by Proposition

1.3, ' is an topological isomorphism. �

Theorem 4.4. Let 0 � r � 1, let M1 and M2 be C
r manifolds, and let R1 and R2 be abstract

subrings of Cr(M1) and Cr(M2), respectively, each with a Polish topology so that each Ri

contains Cr0(Mi) as a dense subset. If ' : R1 ! R2 is an algebraic isomorphism of rings, then

there is a Cr di�eomorphism � : M1 ! M2, so that ' = �� (i.e. '(g)(x) = g(��1(x)) for

g 2 R1, x 2 M2).

In order to prove the theorem, several lemmas need to be established �rst. In each of

these lemmas, 0 � r � 1 and R is an abstract subring of Cr(M) which is Polish in some

topology and contains Cr0(M) as a dense subset. The following lemma is similar (but more

general) than one found in [6] (who in turn references [1] for another similar result).

Lemma 4.5. Assume 0 � r � 1, M is a Cr manifold, and that R is an abstract subring of

Cr(M) which is Polish in some topology and contains Cr0(M) as a dense subset. If J is an

ideal of R, then exactly one of the following is true:

� J � Cr0(M)

� there is an a 2 M so that for all f 2 J, f (a) = 0.

Proof:

Assume that J does not have the second property. Then let g 2 Cr0(M). For each

a 2 supp(g), there is a function fa 2 J so that fa(a) 6= 0. If Ua = fm 2 M : fa(m) 6= 0g,
there are faigni=1 so that supp(g) � ⋃

1�i�n

Ui , and thus f =
∑

1�i�n

f 2ai is strictly positive on⋃
1�i�n

Ui � supp(g) and f 2 J. Let h 2 Cr0(M) so that hjsupp(g) = 1
f
and supp(h) � ⋃

1�i�n

Ui

(which exists by taking a function which is 1 on supp(g) and multiplying it by 1=f on Ua).

Then hf 2 J and is 1 on supp(g). Finally notice that g = hf g 2 J. �
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Corollary 4.6. Assume 0 � r � 1, M is a Cr manifold, and that R is an abstract subring of

Cr(M) which is Polish in some topology and contains Cr0(M) as a dense subset. Then the

set of ideals of R which are maximal with respect to being both closed and proper is exactly

fIa : a 2 Mg, where Ia = ff 2 R : f (a) = 0g.
Proof:

For each a, Ia is an ideal since if f 2 R and g 2 Ia, f g(a) = f (a)0 = 0, and if h 2 Ia,

(g + h)(0) = 0 + 0 = 0. Ia is proper since there is a member of Cr0(M) which is nonzero

at a. Ia is closed since point evaluation is continuous by the second proof of Theorem 4.3.

To see that Ia is maximal, let J � Ia be a closed proper ideal. J 6� Cr0(M) since otherwise

J = J � C10 (M) = R, and hence J is not proper. Thus J � Ia0 for some a
0 2 M by Lemma

4.5. Now, a0 = a since otherwise Ia � Ia0, which is a contradiction since there is a member

of Cr0(M) which is 0 at a and 1 at a0. Therefore J = Ia and hence the Ia's are maximal with

respect to being closed proper ideals.

Now if J is any maximal closed proper ideal, J cannot contain Cr0(M) as above, and thus

there must be some a 2 M so that Ia � J by Lemma 4.5. Thus J = Ia since J is maximal

and Ia is a closed proper ideal. �

A Kuratowski closure operation on a set A is a mapping � : P(A)! P(A) so that

� ; = ;
� For E 2 P(A), E � E

� For E 2 P(A), (E) = E

� For E, F 2 P(A), E [ F = E [ F

A Kuratowski closure operation de�nes a topology in which the closed sets are fE : E 2 P(A)g
([15], Theorem 3.7).

Theorem 4.7. Assume 0 � r � 1, M is a Cr manifold, and that R is an abstract subring

of Cr(M) which is Polish in some topology and contains Cr0(M) as a dense subset. For the
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space of maximal closed proper ideals of R, M, de�ne an operation A � M 7! A � M by

A = fB 2M :
⋂
J2A

J � Bg. Then � is a Kuratowski closure operator and the map a 7! Ia is a

homeomorphism using the topology given by � as set closure (sometimes called the hull-kernel

topology).

Proof:

A � A since for J 2 A, J � ⋂
I2A

I.

If J 2 A then J � ⋂
I2A

I � ⋂
I2A

(
⋂
A2A

A) =
⋂
A2A

A. So J 2 A, A � A � A and hence they are

equal.

; = fA 2M : A � ⋂
B2;

B = Mg = ;.
To see that A [B = A [ B, de�ne � : X ! M by �(m) = Im, a bijection. Then

we will be done if for C � X, �(C) = �(C), since then A [B = �(��1(A [B)) =

�(��1(A) [ ��1(B)) = �(��1(A) [ ��1(B)) = �(��1(A)) [ �(��1(B)) = A [ B. If m =2 C
then there is a function f 2 Cr0(M) so that f (m) = 1 and supp(f ) � C

c
, and hence

�(C) � �(C). Also the fact that if f jC = 0 then f jC = 0 will imply that �(C) � �(C). �

Lemma 4.8. Let 0 � r � 1, let M1 and M2 be Cr manifolds, and let R1 and R2 be

abstract subrings of Cr(M1) and Cr(M2), respectively, each with a Polish topology so that

each Ri contains C
r
0(Mi) as a dense subset, and Mi is the space of ideals which are maximal

with respect to being closed and proper, equipped with the topology from Theorem 4.7. If

' : R1 ! R2 is an algebraic isomorphism, then '0 : M1 ! M2 is a homeomorphism, de�ned

by '0(J) = f'(f ) : f 2 Jg.
Proof:

' is a topological isomorphism by Theorem 4.3, and '0 maps M1 to M2 since the im-

age of an element of M1 is closed because ' is a homeomorphism, and a proper ideal since

' is an isomorphism, and if the image wasn't maximal with respect to these properties,

the pullback wouldn't be either. Note that '0 is a bijection since ' is. Also, if A � M1,
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'0(A) = '0(fB 2 M2 : B � ⋂
A2A

Ag) = f'(B) : B 2 M1 and B � ⋂
A2A

Ag = f'(B) :

B 2M1 and '(B) �
⋂
A2A

'(A)g = fC 2M2 : C � ⋂
A02'0(A)

A0g = '0(A), so '0 is a bijection

which preserves closures and hence is a homeomorphism. �

Proof of Theorem 4.4:

First note that ' is a topological isomorphism by Theorem 4.3. Let �0 : M1 !M2 given

by '0(Ia) = f'(f ) : f 2 Iag. '0 is a homeomorphism by following the proof of Lemma 4.8.

For i = 1 or 2, let �i : Mi ! Mi be de�ned by �i(a) = Ia. Note that each of �1 and �2 are

homeomorphisms by Theorem 4.7, and thus � = ��1
2 � '0 � �1 is a homeomorphism between

M1 and M2.

For the second part of the theorem, it is prudent to �rst observe the behavior of ' on

Cr0(M1). Two things will be proven: that '(Cr0(M1)) = Cr0(M2) and that for g 2 Cr0(M1),

'(g) = ��(g). Notice that since 'jCr0(M1) is additive and continuous, it is homoge-

neous with respect to scalar multiplication. Also notice that if g 2 R1, then if x 2 M1,

g(x) = 0 if and only if '(g)(�(x)) = 0 since g(x) = 0 if and only if g 2 Ix if and only if

'(g) 2 '0(Ix) if and only if '(g) 2 I�(x). Thus supp('(g)) = fy 2 M2 : '(g)(y) 6= 0g =

fy 2 M2 : g(��1(y)) 6= 0g = �(fx 2 M1 : g(x) 6= 0g) = �(fx 2 M1 : g(x) 6= 0g) =
�(supp(g)) and since � is a homeomorphism, if g 2 R1, supp(g) is compact if and only if

�(supp(g)) = supp('(g)) is compact. Thus '(Cr0(M1)) = Cr0(M2). Next, let M1 =
⋃
j�1

Kj ,

where each Kj is compact, Kj � int(Kj+1) for each j � 1, and for each j , let gj 2 Cr0(M1)

so that gj jKj = 1 and supp(gj) � Kj+1. If g 2 Cr0(M2), there is a k0 � 1 so that

gk'
�1(g) = '�1(g) for k � k0, and so '(gk)g = g, thus '(gk)(x)g(x) = g(x) for ev-

ery x 2 M2. Thus for every x 2 M2, '(gk)(x) is eventually 1. So, if g 2 Cr0(M1) and

x 2 M1, (g(x)gk � gkg)(x) = 0 gives that '(g(x)gk � gkg)(�(x)) = 0 and hence that

g(x)'(gk)(�(x)) = '(gk)(�(x))'(g)(�(x)). The left-hand side of this equation is eventually

g(x) and the right-hand is eventually '(g)(�(x)). Thus '(g)(�(x)) = g(x) for g 2 Cr0(M1).
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If x 2 M1, and g 2 R1, then g = gkg + (g � gkg) gives '(g)(�(x)) = '(gkg)(�(x)) +

'(g � gkg)(�(x)). Since gkg 2 Cr0, '(gkg)(�(x)) = (gkg)(x), which is eventually g(x).

Since (g � gkg)(x) is eventually 0, '(g � gkg)(�(x)) is eventually 0. So the right-hand side

is eventually g(x) and hence '(g)(�(x)) = g(x), hence ' = ��.

It is worth noting that in the same way that � is the homeomorphism induced by the

isomorphism ', ��1 is the homeomorphism induced by '�1, since ��1 = (��1
2 �'0 � �1)�1 =

��1
1 � ('0)�1 � �2 = ��1

1 � ('�1)0 � �2 and so the proof could be repeated for '�1 and ��1,

giving that (��1)� = '�1.

To see that � is Cr , it is su�cient to show that in a neighborhood of any point,  �� is Cr

for an arbitrary Cr chart  of M2 about that point. Let x 2 M1, and let ( ;U) be Cr chart

of M2, so that x 2 ��1(U). Let  ̂ 2 (C10 (M2))
dim(M2) so that  ̂jV =  jV for some open

V � U with x 2 ��1(V ). Then if 1 � n � dim(M2), ( � �)nj��1(V ) = ( ̂ � �)nj��1(V ) =

 ̂n � �j��1(V ) = '�1( ̂n)j��1(V ). Since each '�1( ̂n) 2 C10 (M1), each component of

' � � is Cr in a neighborhood about x , and hence ' � � is Cr in a neighborhood about x .

So � is Cr . ��1 is also Cr by the comments in the previous paragraph, and hence � is a Cr

di�eomorphism. �
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CHAPTER 5

ISOMORPHISMS OF CONTINUOUS FUNCTIONS ON A LOCALLY COMPACT POLISH

SPACE GIVE AN UNDERLYING HOMEOMORPHISM

In Corollary 2.5, it was shown that the continuous functions on a locally compact Polish

space are algebraically determined. It is also the case that an isomorphism between certain

subrings of the continuous functions on two such spaces induces a homeomorphism of the

underlying spaces, similar to the results from Chapter 4, and the second half of the proof of

Theorem 5.2 and the following corollary are very similar to proofs from Chapter 4 but are

included for the sake of clarity.

Theorem 5.1. Let X1 and X2 be locally compact Polish spaces and for i = 1; 2, suppose Ri

is an abstract subring of C(Xi) which is Polish in some topology, and Ri contains C0(Xi)

as a dense subset. Then each Ri is algebraically determined, and if ' : R1 ! R2 is an

algebraic isomporphism, then there is a homeomorphism � : X1 ! X2 so that ' = �� (i.e.

'(g)(x) = g(��1(x)) for all g 2 R1, x 2 X2).

As in Chapter 4, the proof of Theorem 5.1 will be broken up into several lemmas.

Theorem 5.2. Let X be a locally compact Polish space and let R be an abstract subring

of C(X) containing C0(X) which is Polish in some topology. Then the natural injection

i : R ! C(X) given by i(f ) = f is continuous. Moreover if x 2 X, the map f 7! f (a),

R! R is continuous.

Proof:

Let fUngn � 1 be a precompact basis for X and let ffm;ngm;n2N be as in the proof of

Theorem 1.13. Then if x 2 X, if f 2 R so that f (x) � 0, then if q 2 Q+, there are
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m; n 2 N so that x 2 Um, Um � Un and (f + q)jUm > 0 and hence fm;n(f + q) � 0 and

thus
√
fm;n(f + g) 2 C0(X). This shows that ff 2 R : f (x) � 0g � ⋂

q2Q+

⋃
m;n�1;

x2Um; Um�Un

ff 2

R : fm;n(f + q) 2 Sg where S = ff 2 : f 2 Rg. Conversely if for each q 2 Q+ there are

m; n � 1 with x 2 Um and Um � Un so that fm;n(f + q) is a square, then for each q 2 Q+,

fm;n(x)(f + q)(x) = f (x) + q � 0 and hence f (x) � �q. Thus f (x) � 0, showing that

ff 2 R : f (x) � 0 =
⋂

q2Q+

⋃
m;n�1;

x2Um; Um�Un

ff 2 R : fn(f + q) 2 Sg, an analytic set since S is and

f 7! fm;n(f + q) is continuous. Thus Ix = ff 2 R : f (x) = 0g = ff 2 R : f (x) � 0g \ ff 2
R : f (x) � 0g is analytic.

Now if x 2 X, the map f 7! f (x), R! R is continuous since it is a homomorphism onto

the reals (since C0(X) takes all values at each x 2 X) with analytic kernel Ix by Theorem

1.7.

For any x 2 X, the mapping f 7! f (x), R! R is a ring homomorphism with kernel Ix , an

analytic set, and hence it is continuous by Proposition 1.7. Let fqngn�1 � X be dense, and

then the mapping g : R! RN given by g(f ) =
∏
n�1

f (qn) is a continuous injection (since any

two continuous functions agreeing on a dense set are equal). Also, the map h : C(X)! RN

given by h(f ) =
∏
n�1

f (qn) is continuous, and hence its inverse mapping is a Borel mapping

on the range of h, a Borel set, by Theorem 1.5. Hence, i = h�1 � g is a Borel mapping and

hence i is continuous by Proposition 1.3. �

Corollary 5.3. If H is a Polish ring, X is a 2nd countable Polish space, and  : H ! C(X)

is a ring isomorphism between H and R =  (H) so that C0(X) � R � C(X), then  is

continuous.

Proof:

Equip R with the topology inherited from H through  . Then  : H ! R is a homeomor-

phism by de�nition. Moreover, by Lemma 4.1, i : R ! C(X) is continuous.  : H ! C(X)

is simply  : H ! R composed with i, a composition of continuous maps which is therefore
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continuous. �

Corollary 5.4. R as de�ned in Theorem 5.2 is algebraically determined.

Proof:

Let H be a Polish ring and ' : H ! R be an algebraic isomorphism. If i : R ! C(X) is

the natural injection, then i is continous by Theorem 5.2 and ' � i is continuous by Corollary
5.3. Moreover, i is a continuous injection, and hence by Theorem 1.5 its inverse is a Borel

mapping between the range of i, a Borel set, and R. Thus ' = ' � i � i�1 is the composition

of a continuous and a Borel mapping, and hence is a Borel mapping. Thus by Proposition

1.3, ' is an topological isomorphism. �

Lemma 5.5. Let R be as in Theorem 5.2. If J is an ideal of R, then exactly one of the

following is true:

� J � C0(X)

� there is an x 2 X so that for all f 2 J, f (x) = 0.

Proof:

Assume J does not have the second property and let g 2 C0(X). For each x 2 X there is

fx 2 J so that fx(x) > 0 (by squaring if necessary). Then there is some collection fx1; : : : ; xng
so that

n⋃
i=1

Wxi � supp(g), where Wx = fz 2 X : fx(z) > 0g, since the Wx are an open cover

of X and supp(g) is compact. Then let f =
n∑
i=1

fi 2 J and note that f jsupp(g) > 0. Let

V be a precompact open set so that supp(g) � V and V �
n⋃
i=1

Wxi , and let h1 2 C0(X;R)

so that h1jsupp(g) = 1 and h1j(X � V ) = 0. Then de�ne h2(x) =


h1(x)
f (x)

for x 2 V
0 x 2 X � V

and notice that h2 is a continuous function since each piece is continuous and the de�nitions
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agree on V \ (X � V ). Notice that h2f 2 J and h2f jsupp(g) = 1. Thus g = h2f g 2 J, and

hence C0(X) � J. �

Corollary 5.6. Assume X is a 2nd countable Polish space and that R is an abstract subring

of Cr(M) which is Polish in some topology and contains Cr0(M) as a dense subset. Then the

set of ideals of R which are maximal with respect to being both closed and proper is exactly

fIa : a 2 Xg, where Ia = ff 2 R : f (a) = 0g.
Proof:

For each a 2 X, Ia is an ideal since if f 2 R and g 2 Ia, f g(a) = f (a)0 = 0, and if h 2 Ia,

(g+ h)(0) = 0+0 = 0. Ia is proper since there is a member of C0(X) which is nonzero at a.

Ia is closed since point evaluation is continuous by Theorem 5.2. To see that Ia is maximal,

let J � Ia be a closed proper ideal. J 6� C0(X) since otherwise J = J � C0(X) = R, and

hence J is not proper. Thus J � Ia0 for some a
0 2 X by Lemma 5.5. Now, a0 = a since

otherwise Ia � Ia0, which is a contradiction since there is a member of C0(X) which is 0 at

a and 1 at a0. Therefore J = Ia and hence the Ia's are maximal with respect to being closed

proper ideals.

Now if J is any maximal closed proper ideal, J cannot contain C0(X) as above, and thus

there must be some a 2 X so that Ia � J by Lemma 5.5. Thus J = Ia since J is maximal

and Ia is a closed proper ideal. �

Lemma 5.7. Let X1 and X2 be 2nd countable Polish spaces and let R1 and R2 be abstract

subrings of C(X1) and C(X2), respectively, each with a Polish topology so that each Ri

contains C0(Xi) as a dense subset, and Mi is the space of ideals which are maximal with

respect to being closed and proper, equipped with the topology from Theorem 4.7. If ' :

R1 ! R2 is an algebraic isomorphism, then '0 : M1 ! M2 is a homeomorphism, de�ned by

'0(J) = f'(f ) : f 2 Jg.
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Proof:

' is a topological isomorphism by Theorem 5.4, and '0 maps M1 to M2 since the im-

age of an element of M1 is closed because ' is a homeomorphism, and a proper ideal since

' is an isomorphism, and if the image wasn't maximal with respect to these properties,

the pullback wouldn't be either. Note that '0 is a bijection since ' is. Also, if A � M1,

'0(A) = '0(fB 2 M2 : B � ⋂
A2A

Ag) = f'(B) : B 2 M1 and B � ⋂
A2A

Ag = f'(B) :

B 2M1 and '(B) �
⋂
A2A

'(A)g = fC 2M2 : C � ⋂
A02'0(A)

A0g = '0(A), so '0 is a bijection

which preserves closures and hence is a homeomorphism. �

Proof of Theorem 5.1:

First note that ' is a topological isomorphism by Theorem 5.4. Let M1;M2 be the spaces

of maximal closed proper ideals of R1 and R2, respectively, and let �0 : M1 ! M2 given by

'0(Ia) = f'(f ) : f 2 Iag. '0 is a homeomorphism by Lemma 5.7. For i = 1 or 2, let

�i : Mi !Mi be de�ned by �i(a) = Ia. Note that each of �1 and �2 are homeomorphisms by

Theorem 4.7, and thus � = ��1
2 � '0 � �1 is a homeomorphism between M1 and M2.

For the second part of the theorem, it is prudent to �rst observe the behavior of '

on C0(X1). Two things will be proven: that '(C0(X1)) = C0(X2) and that for g 2 C0(X1),

'(g) = ��(g). Notice that since 'jC0(X1) is additive and continuous, it is homogeneous with

respect to scalar multiplication. Also notice that if g 2 R1, then if x 2 X1, g(x) = 0 if and only

if '(g)(�(x)) = 0 since g(x) = 0 if and only if g 2 Ix if and only if '(g) 2 '0(Ix) if and only
if '(g) 2 I�(x). Thus supp('(g)) = fy 2 X2 : '(g)(y) 6= 0g = fy 2 X2 : g(��1(y)) 6= 0g =
�(fx 2 X1 : g(x) 6= 0g) = �(fx 2 X1 : g(x) 6= 0g) = �(supp(g)) and since � is a homeo-

morphism, if g 2 R1, supp(g) is compact if and only if �(supp(g)) = supp('(g)) is compact.

Thus '(C0(X1)) = C0(X2). Next, let X1 =
⋃
j�1

Kj , where each Kj is compact, Kj � int(Kj+1)

for each j � 1, and for each j , let gj 2 C0(X1) so that gj jKj = 1 and supp(gj) � Kj+1. If

g 2 C0(X2), there is a k0 � 1 so that gk'
�1(g) = '�1(g) for k � k0, and so '(gk)g = g, thus
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'(gk)(x)g(x) = g(x) for every x 2 X2. Thus for every x 2 X2, '(gk)(x) is eventually 1. So,

if g 2 C0(X1) and x 2 X1, (g(x)gk �gkg)(x) = 0 gives that '(g(x)gk �gkg)(�(x)) = 0 and

hence that g(x)'(gk)(�(x)) = '(gk)(�(x))'(g)(�(x)). The left-hand side of this equation

is eventually g(x) and the right-hand is eventually '(g)(�(x)). Thus '(g)(�(x)) = g(x) for

g 2 C0(X1).

If x 2 X1, and g 2 R1, then g = gkg + (g � gkg) gives '(g)(�(x)) = '(gkg)(�(x)) +

'(g� gkg)(�(x)). Since gkg 2 C0(X1), '(gkg)(�(x)) = (gkg)(x), which is eventually g(x).

Since (g � gkg)(x) is eventually 0, '(g � gkg)(�(x)) is eventually 0. So the right-hand side

is eventually g(x) and hence '(g)(�(x)) = g(x), and thus ' = �� on all of R1. �

Corollary 5.8. Let X1 and X2 be locally compact Polish spaces and for i = 1; 2, suppose

Ri is an abstract complex star-subalgebra of C(X;C) which is Polish in some topology, and

Ri contains C0(X;C) as a dense subset. Then each Ri is algebraically determined, and if

' : R1 ! R2 is an algebraic isomorphism, then there is a homeomorphism � : X1 ! X2 so

that ' = ��.

Proof:

The Ri are algebraically determined by Theorem 2.7, and if SAi = ff 2 Ri : f
� = f g,

then SAi = ff 2 Ri : f is real valuedg since f (x) = f �(x) if and only if f (x) = f (x).

Also, since ' : SA1 ! SA2 is an algebraic isomorphism, then there is an � : X1 ! X2

so that 'jSA1 = �� by Theorem 5.1. If f 2 Ri , then '(f ) � � = '( f+f
�

2
+ i f�f

�

2i
) � � =

'( f+f
�

2
) � �+ i'( f�f

�

2i
) � � = f+f �

2
+ i f�f

�

2i
= f and hence ' = ��. �
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CHAPTER 6

POISSON BRACKETS ON C1(R2n) AND THE HAMILTONIAN VECTOR FIELDS

If x1; : : : ; xn; y1; : : : ; yn are the standard coordinate basis for R
2n, then the Poisson bracket

operation on C1(R2n) is given by ff ; gg =
n∑
i=1

@f
@xi

@g
@yi

� @f
@yi

@g
@xi
. The goal in this Chapter is

to show that the in�nitely di�erentiable functions of R2n with the Poisson brackets is an

algebraically determined Polish Lie ring. When looking at the symplectic structure of R2n,

it is natural to divide between \x" and \y", and henceforth the statement (~a;~b) 2 R2n will

mean that each of ~a and ~b are real vectors of length n.

Lemma 6.1. Let ' : H ! (C1(R2n); f�g;+) be an algebraic isomorphism of Polish Lie rings.

Then C = ff : f is constantg is closed, '�1(C) is closed and 'j'�1(C) is continuous.

Proof:

First notice that C is the center of C1(R2n) and hence '�1(C) is the center of H and thus

both are closed. Next, for each i , de�ne Mx;i = ff 2 C1(R2n) : 9� 2 R such that f (~x; ~y) =

�xig, and notice that both Mx;i and '
�1(Mx;i) are closed since Mx;i =

⋂
1�j�n

ff : ff ; xjg =

0g \ ⋂
1�j�n; j 6=i

ff : ff ; yjg = 0g \ ff : ff ; yig 2 Cg \ ff : f = ff ; xiyig g and so '�1(Mx;i) =⋂
1�j�n

fr 2 H : fr; '�1(xj)g = 0g \ ⋂
1�j�n; j 6=i

fr 2 H : fr; '�1(yj)g = 0g \ fr 2 H :

fr; '�1(yi)g 2 Cg \ fr 2 H : r = fr; '�1(xiyi)g g. To see why this is true, assume

f 2 C1(R2n) such that for j 6= i , ff ; xjg = 0 = ff ; yjg, ff ; xjg = 0 and ff ; yig = c

and ff ; xiyig = f . The �rst equations give us that @f
@xj

= 0 = @f
@yj

for j 6= i , @f
@yi

= 0 and

@f
@xi

= c , so f (~x; ~y) = cxi + d . Then cxi + d = f = ff ; xiyig = @f
@xi
xi � @f

@yi
yi = cxi , so

f = cxi . Similarly each My;i = ff 2 C1(R2n) : 9� 2 R(f (~x; ~y) = �yi)g and '�1(My;i)

are closed. Since '�1(C) and '�1(Mx;i) are closed additive subgroups of H, and since

the mapping '�1(Mx;i) ! '�1(C) given by '�1(�xi) 7! f'�1(�xi); '
�1(yi)g = '�1(�) is
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continuous and one-to-one, and hence a homeomorphism by Proposition 1.3. Hence each

'�1(�) 7! '�1(�xi) is continuous, and similarly so is each '�1(�) 7! '�1(�yi). Thus

� : '�1(C)2 ! '�1(C) given by ('�1(�); '�1(�)) 2 '�1(C)2 7! ('�1(�x1); '
�1(�y1)) 2

'�1(Mx;1) � '�1(My;1) 7! f'�1(�x1); '
�1(�y1)g = '�1(��) 2 C is continuous. Thus

('�1(C);+; �) and (C;+; �) are each Polish rings which are isomorphic to (R;+; �). Thus 'jC
is a homeomorphism by Proposition 1.7. �

Lemma 6.2. If f 2 C1(R2n) and (~a;~b) 2 R2n, then there are G1; : : : ; Gn; H1; : : : ; Hn such

that f (~x; ~y) = f (~a;~b) +
∑

1�i�n

f xi
2

2 � aixi ; Gig+ fHi ; y
2
i

2
� biyig.

Proof:

Expand f in its 2nd order Taylor expansion to get f (~x; ~y) = f (~a;~b) +
∑

1�i�n

gi(~x; ~y)(xi �

ai) + hi(~x; ~y)(yi � bi). Let Hi(~x; ~y) =
xi∫
0

hi(x1; : : : ; xi�1; z; xi+1; : : : ; xn; ~y)dz and let Gi =

yi∫
0

gi(~x; y1; : : : ; yi�1; z; yi+1; : : : ; yn)dz . Then the necessary equality is satis�ed since f x2i
2
�

aixi ; Gig(~x; ~y) = (xi � ai)@Gi@yi
(~x; ~y) = (xi � ai)gi(~x; ~y) and fHi ; y

2
i

2
� biyig(~x; ~y) = @Hi

@xi
(~x; ~y) �

(yi � bi) = hi(~x; ~y)(yi � bi). �

Corollary 6.3. Let H be a Polish Lie ring and let ' : H ! C1(R2n) be an algebraic isomor-

phism of Lie rings. For each r 2 H and (~a;~b) 2 R2n there is a unique c 2 '�1(C) and there

are r1; : : : ; rn; s1; : : : sn 2 H such that r = c +
∑

1�i�n

f'�1(
x2
i

2
� aixi); rig+ fsi ; '�1(

y2
i

2
� biyi)g.

Moreover, c = '�1('(r)(~a;~b)).

Proof:

To see existence, apply '�1 to the equation in the statement of Lemma 6.2. To see the

uniqueness of c , apply ' to the equation in the statement of this lemma, and plug in (~a;~b).

�

Lemma 6.4. Using the notation from Corollary 6.3, the mapping r 7! c is Borel.
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Proof:

Fix c1; c2 2 '�1(C). De�ne S~a;~b = f(c; r; r1; : : : ; rn; s1; : : : ; sn) 2 C � ∏2n+1
i=1 H : r =

c+
∑

1�i�n

f'�1(
x2
i

2
�aixi); rig+fsi ; '�1(

y2
i

2
�biyi)g g, a closed additive subgroup of C�

∏2n+1
i=1 H.

Notice that by Corollary 6.3, �2 : S(~a;~b) ! H is onto. If (c; r; r1; : : : ; rn; s1; : : : ; sn) 2 S(~a;~b),

then ��1
2 (r) = (c; r; r1; : : : ; rn; s1; : : : ; sn)+

f(0; 0; r 01; : : : ; r 0n; s 01; : : : ; s 0n) : (0; 0; r 01; : : : ; r 0n; s 01; : : : ; s 0n) 2 S(~a;~b)g, a closed additive subgroup

of S. Thus, by Theorem 12.17 in [8], there is a Borel set U � S such that �2jU is a bijection.

Since projections are continuous Theorem 1.5 yields that (�2jU)�1 is a Borel mapping, and

hence �1 � (�2jU)�1 is a Borel mapping i.e. the mapping r 7! c is Borel. �

Theorem 6.5. Let H be a Polish Lie ring and let ' : H ! (C1(R2n);+; f�g) an algebraic

isomorphism of Lie rings. Then ' is a topological isomorphism.

Proof:

For each (~a;~b) 2 R2n, de�ne  (~a;~b) : H ! R by  (~a;~b)('
�1(f )) = f (~a;~b), which is con-

tinuous since is it the composition of the maps '�1(f ) 7! '�1(f (~a;~b)) 7! f (~a;~b), which

are each continous by Lemmas 6.4 and 6.1. Let f(~ai ; ~bi)gi�1 � R2n be dense, and de�ne

	 : H ! ∏
i�1

R by � =
∏
i�1

 (~ai ;~bi )
, a continous mapping. Also de�ne � : C1(R2n)! ∏

i�1

R by

�(f ) =
∏
i�1

f (~ai ; ~bi). Since � is continuous and one-to-one, ��1 is a Borel mapping on the

range of � by Theorem 1.5, so ' = ��1 �	 is a Borel mapping, and hence by Proposition

1.3, ' is a topological isomorphism. �

One might wonder if a similar theorem holds for general symplectic manifolds instead of

simply on R2n. It does not, as shown by the following theorem.

Theorem 6.6. The Lie ring of in�nitely di�erentiable functions on the torus R2=Z2 with the

Poisson bracket is not algebraically determined.
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Proof:

Note that if f 2 C1(R2=Z2), f can be written in C1(T 2;C) as a complex Fourier series∑
`;k2Z

ck;`e
2�i(kx+`y). Also note that if m; n; k; ` 2 Z, then fe2�i(mx+ny); e2�i(kx+`y)g is only

constant if it is 0, since fe2�i(mx+ny); e2�i(kx+`y)g = (2�im)e2�i(mx+ny)(2�i`)e2�i(kx+`y)�
(2�in)e2�i(mx+ny)(2�ik)e2�i(kx+`y) = 4�2(nk �m`)e2�i [(m+k)x+(n+`)y ], so the bracket is con-

stant if and only if m = �k and n = �`. But if m = �k and n = �`, then nk �m` = 0 and

hence the bracket is 0. Thus, if we take a discontinuous group automorphism ' : R! R

(say, a permutation of a Hamel basis), then the map  : C1(R2=Z2)! C1(R2=Z2) de�ned

by  (
∑
`;k2Z

ck;`e
2�i(kx+`y)) = '(c0;0)+

∑
`;k2Z; (`;k)6=(0;0)

ck;`e
2�i(kx+`y) is an algebraic isomorphism

of Lie rings since the constant terms are eliminated by the bracket and no more constant

terms can be introduced. Since  is a discontinuous automorphism of C1(R2=Z2), it cannot

be algebraically determined. �

When looking at the symplectic structure of R2n, another important object is the Hamil-

tonian vector �elds. For a symplectic manifold (M;!), for each f 2 C1(M), the Hamiltonian

vector �eld associated with f is the vector �eld Xf with the property that �df (Y ) = !(Xf ; Y )

for any vector �eld Y (a full discussion can be found in [11]. Also note that in some texts, Xf is

de�ned with the opposite sign). In R2 they are given by Xf = fx
@
@y
� fy @@x . For f ; g 2 C1(M),

Xf = Xg if and only if f and g di�er by constants over each connected component. Also,

Xf+g = Xf +Xg and [Xf ; Xg] = Xff ;gg, so the Hamiltonian vector �elds on M with the vector

�eld bracket form a Lie ring which is isomorphic with C1(M)=C with operation induced on

the quotient by the Poisson bracket, where C is the set of locally constant functions (i.e.

constant on each connected component). This is the motivation for the following work, to

show that the Hamiltonian vector �elds on R2n are algebraically determined by showing that

C1(R2n)=ff : f is constant g is algebraically determined. The methods will be similar to the

methods above but the technical details are di�erent.
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Lemma 6.7. C = ff 2 C1(R2n) : f is constant g is a closed ideal of C1(R2n) (and hence

C1(R2n)=C makes sense as a Polish Lie ring).

Proof:

C is the center of C1(R2n) and hence is closed. Also, if f 2 C, g 2 C1(R2n), then

ff ; gg = 0 2 C. �

For Lemma 6.8 through Theorem 6.10, n 2 N, and C = ff 2 C1(R2n) : f is constant g.

Lemma 6.8. If H is a Polish Lie ring and ' : H ! C1(R2n)=C an algebraic isomorphism of Lie

rings, then for each 1 � i � n, the set Lx;i = '�1(ff + C : 9c 2 R 8(~x; ~y) 2 R2n; f (~x; ~y) =

cxi + dg) and Ly;i = '�1(ff + C : 9c 2 R 8(~x; ~y) 2 R2n; f (~x; ~y) = cyi + dg) are closed

subsets of H and 'jLx;i and 'jLy;i are continuous.

Proof:

Fix 1 � i � n and notice that Lx;i = fh 2 H : fh; '�1(xiyi + C)g = hg \ ⋂
1�j�n

fh 2
H : fh; '�1(xj + C)g = 0 = fh; '�1(yj + C)gg and Ly;i = fh 2 H : f'�1(xiyi + C); hg =

hg \ ⋂
1�j�n

fh 2 H : fh; '�1(xj + C)g = 0 = fh; '�1(yj + C)gg and so each Lx;i or Ly;i

are closed, additive subgroups of H. To see this, take h 2 H such that for 1 � j � n,

fh; '�1(xj + C)g = 0 = fh; '�1(yj + C)g and such that fh; '�1(xiyi + C)g = h. Then the

�rst equalities give that, if f 2 '(h), � @f
@yj

2 C and @f
@xj

2 C, so f = c +
∑

1�j�n

(ajxj +bjyj), and

so the last equality gives that c +
∑

1�j�n

(ajxj + bjyj) = f = ff ; xiyig = aixi � biyi (mod C), so

f 2 aixi + C. The equality for Ly;i is proved in a similar manner.

In order to show that ' is continuous on the L's, we will de�ne a multiplication on them

which will be continous and will create a ring structure on the L's which mirrors R2n with

addition and componentwise multiplication, which will then imply that the L's are homeo-

morphic with R. In order to do this, �rst de�ne Qx;i = f'�1(f + C) : 9c; d 2 R 8(~x; ~y) 2
R2n; f (~x; ~y) = cx2i g and Qy;i = f'�1(f + C) : 9c; d 2 R 8(~x; ~y) 2 R2n; f (~x; ~y) = cy 2i g.
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Each Qx;i or Qy;i is closed because Qx;i = fh 2 H : fh; '�1(xiyi + C)g = 2hg \ fh 2
H : fh; '�1(yi + C)g 2 Lx;ig \

⋂
1�j�n

fh 2 H : fh; '�1(xj + C)g = 0g \ ⋂
1�j�n; i 6=j

fh 2 H :

fh; '�1(yj + C)g = 0g and Qy;i = fh 2 H : f'�1(xiyi + C); hg = 2hg \ fh 2 H : fh; '�1(xi +

C)g 2 Ly;ig\
⋂

1�j�n

fh 2 H : fh; '�1(yj +C)g = 0g\ ⋂
1�j�n; i 6=j

fh 2 H : fh; '�1(xj +C)g = 0g.
To see why this holds, let h 2 H such that fh; '�1(xiyi + C)g = 2h, such that for all j 6= i ,

fh; '�1(yj + C)g = 0 = fh; '�1(xj + C)g, fh; '�1(yi + C)g 2 Lx;i and fh; '�1(xi + C)g = 0.

Then if f 2 '�1(h), this means that for j 6= i , @f
@xj

= 0 = @f
@yj

(mod C), there is some c 2 R
so that @f

@xi
2 2cxi +C and @f

@yi
2 C. So we have that f (~x; ~y) = cx2i + d +

∑
1�j�n

ajxj + bjyj and

hence 2f (x; y) = 2cx2i + 2d + 2
∑

1�j�n

(ajxj + bjyj) = ff ; xiyig = 2cx2i + aixi � biyi (mod C).

Hence, aixi + 3biyi +
∑
j 6=i

(2ajxj + 2bjyj) 2 C and so each aj = 0 and each bj = 0. Thus

f (~x; ~y) = cx2i + d and hence h = '(f + C) = '(cx2i + C). A similar argument works for the

Qy;i 's.

So eachQ is a closed, additive subgroup ofH. Moreover, if h1 2 Qx;i , then for some b 2 R,
'(h1) = bx2i +C and hence fh1; '�1(yi+C)g = '�1(2bxi+C), and if h2 2 Ly;i , then for some

c 2 R, '(h2) = cyi+C and so f'�1(
x2
i

2
+C); h2g = '�1(cxi+C), and so the maps h1 2 Qx;i 7!

fh1; '�1(xi)g = '�1(cxi+C) 2 Lx;i and h2 2 Ly;i 7! f'�1(
x2
i

2
); h2g = '�1(cxi+C) 2 Lx;i are

continuous isomorphisms of additive Polish groups, and hence their inverses are continuous

by Proposition 1.3. These inverses are precisely '�1(cxi + C) 2 Lx;i 7! '�1(
cx2
i

2
+ C) 2 Qx;i

and '�1(dxi + C) 2 Lx;i 7! '�1(dyi + C) 2 Ly;i . So, de�ne � : Lx;i � Lx;i ! Lx;i

by ('�1(cxi + C); '�1(dxi + C)) 7! '�1(cdxi + C). � is continuous since it is the com-

position of the maps ('�1(cxi + C); '�1(dxi + C)) 7! ('�1(
cx2
i

2
+ C); '�1(dyi + C)) 7!

f'�1(
cx2
i

2
+ C); '�1(dyi + C)g = '�1(cdxi + C), and hence (Lx;i ;+; �) is a Polish ring which

is isomorphic to (R;+; �). Thus the isomorphism '�1(cxi + C) 7! c is continuous by Propo-

sition 1.7 and hence 'jLx;i is continuous since it is the composition of the continuous maps

'�1(cxi + C) 2 Lx;i 7! c 2 R 7! cxi + C 2 C1(R2n)=C. The proof is completed by using a

similar argument for each Ly;i . �
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Lemma 6.9. For each h 2 H, (~a;~b) 2 R2n, 1 � i � n, there is a unique dx;i 2 Lx;i and a

unique dy;i 2 Ly;i such that there are r1; : : : ; rn; s1; : : : ; sn; t1; : : : ; tn; u1; : : : ; un 2 H such that

h = dx;i + f'�1(
x3i
3
� aix2i + a2i xi + C); rig+

∑
1�j�n
j 6=i

f'�1(
x2j
2
� ajxj + C); rjg

+
∑
1�j�n

fsj ; '�1(
y 2j
2
� bjyj + C)g, and

h = dy;i + fti ; '�1(
y 3i
3
� biy 2i + b2i yi + C)g+

∑
1�j�n
j 6=i

ftj ; '�1(
y 2j
2
� bjyj + C)g

+
∑
1�j�n

f'�1(
x2j
2
� ajxj + C); ujg:

Moreover the maps h 7! dx;i and h 7! dy;i are Borel.

Proof:

The lemma will be proven for dx;1. The other 2n�1 cases are proved in a similar manner.

If f 2 C1(R2n) and (~a;~b) 2 R2n, expand f in its 2nd order Taylor expansion about (~a;~b)

and then collect all terms which involve linear factors with variables other than x1 to see that

f (x; y) = c+ax1+u1(x1�a1)2+
∑

2�j�n

uj(xj �aj)+
∑

1�j�n

vj(yj �aj), where each uj and vj are

smooth functions. For each 1 � j � n, let Vj(~x; ~y) =
xj∫
0

vj(x1; : : : ; xj�1; z; xj+1; : : : ; xn; ~y)dz

(an \xj" antiderivative of vj) and Uj =
yj∫
0

uj(~x; y1; : : : ; yj�1; z; yj+1; : : : ; yn)dz (a \yj" anti-

derivative of uj). Then f + C = ax1 + C + f x31
3
� a1x

2
1 + a21x1 + C; U1 + Cg + ∑

2�j�n

f x
2
j

2
�

ajxj + C; Uj + Cg + ∑
1�j�n

fVj + C;
y2
j

2
� bjyj + Cg. Apply '�1 to get the equation desired in

the statement of the lemma. The uniqueness of '�1(ax1 + C) is obtained by mapping by ',

taking @
@x1

and then plugging in (~a;~b) to get that a = @f
@x1

(~a;~b).

To see that h 7! dx;1 is Borel, �rst de�ne S~a;~b = f(d; h; r1; : : : ; rn; s1; : : : ; sn) 2 Lx;1 �
H2n+1 : h = d + f'�1(

x3
i

3
� aix2i + a2i xi + C); rig+

∑
1�j�n; j 6=i

f'�1(
x2
j

2
� ajxj); rjg +∑

1�j�n

fsj ; '�1(
y2
j

2
� bjyj)g g, a closed additive subgroup of Lx;1 �H2n+1. De�ne �1 : S(~a;~b) !
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Lx;1 and �2 : S(~a;~b) ! H be the projection from tuples in S(~a;~b) to the �rst and sec-

ond coordinates, and let Z(~a;~b) = ��1
1 (0) \ ��1

2 (0), a closed additive subgroup of S(~a;~b).

Note that �2 : S(~a;~b) ! H is surjective, and if (d; h; r1; : : : ; rn; s1; : : : ; sn) 2 S(~a;~b), then

��1
2 (h) = (d; h; r1; : : : ; rn; s1; : : : ; sn)+Z(~a;~b). Since Z(~a;~b) is a closed subgroup of S(~a;~b), The-

orem 12.17 in [8] gives that there is a Borel subset U � S(~a;~b) such that �2jU is one-to-one.

Thus by Theorem 1.5, (�2jU)�1 is a Borel mapping on H. Thus the map �1 �(�2jU)�1, being

the composition of a Borel and a continuous mapping, is a Borel mapping. In other words

the mapping h 7! dx;1 is a Borel mapping. �

Theorem 6.10. If ' : H ! C1(R2n)=C is an algebraic isomorphism of Lie rings, then ' is

also a topological isomorphism (i.e. C1(R2n)=C is algebraically determined)

Proof:

Using the notation and results from the previous two lemmas, for each 1 � i � n and

each (~a;~b), h 7! dx;i = '�1(@'(h)
@xi

j(~a;~b)xi + C) 2 Lx;i is continuous (here,
@'(h)
@xi

means @f
@xi

for any f 2 '(h)). Also, 'jLx;i is continuous by Lemma 6.8, and ax + C 7! a is con-

tinuous since it is an additive isomorphism of Polish groups and (R;+; �) are algebraically

determined by Proposition 1.7. By composition of these maps we get the continuous map

'�1(f + C) 7! @f
@xi
(~a;~b). Similarly each '�1(f + C) 7! @f

@yi
(~a;~b) is continuous. Now let

f(~aj ; ~bj)gj�1 � R2n be dense, and let � : H ! ∏
j�1

R2n be the continuous map de�ned by

�('�1(f + C)) =
∏
j�1

( @f
@x1
; : : : ; @f

@xn
; @f
@y1
; : : : ; @f

@yn
)(~aj ; ~bj). De�ne 	 : C1=C ! ∏

j�1

R2n to be

the continuous map given by 	(f + C) =
∏
j�1

( @f
@x1
; : : : ; @f

@xn
; @f
@y1
; : : : ; @f

@yn
)(~aj ; ~bj), which is well-

de�ned since each member of a given coset has the same derivatives. 	 is a one-to-one

continuous map, so by Theorem 1.5, 	�1 is a continuous map on the image of 	, a Borel

set. Thus 	�1 �� = ' is a Borel isomorphism of Polish groups, and hence ' is a topological

isomorphism by Proposition 1.3. �
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The following theorem uses identical ideas as Theorem 6.10 but is very speci�c and hence

is stated separately. This more speci�c version will be used to show that the Hamiltonian

vector �elds on a symplectic manifold are algebraically determined. The following lemmas

could be done with any interval replacing (�1; 1) (for closed intervals one would need to use

the Whitney extension theorem (see [14] for the real analytic version, and see [5] for the C1

version))

Theorem 6.11. Let R be a Lie subring of (C1((�1; 1)2n); f�g) which contains the multinomial

functions of orders less than or equal to 3, and so that for each f 2 R and (~a;~b) 2 (�1; 1)2n,
then there are G1; : : : ; Gn; H1; : : : ; Hn 2 R such that

f (~x; ~y) = f (~a;~b) +
∑
1�i�n

fxi
2

2

� aixi ; Gig+ fHi ; y
2
i

2
� biyig:

Then, if R is Polish in some topology, R is algebraically determined. Moreover if C = ff 2
R : f is constantg, and R is so that for each f 2 R, (~a;~b) 2 R2n and 1 � i � n, there are

r1; : : : ; rn; s1; : : : ; sn; t1; : : : ; tn; u1; : : : ; un 2 R and c; d 2 R such that

f = c +
@f

@xi
(~a;~b)xi + fx

3
i

3
� aix2i + a2i xi ; rig+

∑
1�j�n
j 6=i

fx
2
j

2
� ajxj ; rjg+

∑
1�j�n

fsj ;
y 2j
2
� bjyjg

and

f = d +
@f

@yi
(~a;~b)yi + fti ; y

3
i

3
� biy 2i + b2i yig+

∑
1�j�n
j 6=i

ftj ;
y 2j
2
� bjyjg+

∑
1�j�n

fx
2
j

2
� ajxj ; ujg

then R=C is algebraically determined.

The proof of this theorem is exactly the proof of Theorems 6.5 and 6.10 and the associated

lemmas.

Proposition 6.12. Let ( ;U) be a symplectic chart of a symplectic manifold M of dimension

2n so that  (U) = R2n. De�ne C = ff 2 C1(M) : f is locally constantg and C =
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ff + C : f j �1((�1; 1)2n) is constantg. C is a closed ideal of C1(M), C is a closed ideal of

C1(M)=C, and (C1(M)=C)=C is algebraically determined.

Proof:

First notice that C is the center of C1(M) and hence is closed. Also since if c 2 C and

f 2 C1(M), ff ; cg = 0 2 C by Darboux's Theorem (found in [11], this theorem will be used

throughout without further mention), C is an ideal and hence the quotient C1(M)=C makes

sense and is a Polish Lie ring.

C is closed since it is the centralizer in C1(M)=C of S = fZ 2 C1(M)=C : 9f 2
Z such that supp(f ) �  �1((�1; 1)2n)g). To see this, let Z 2 C1(M)=C and f 2 Z so that

supp(f ) �  �1((�1; 1)2n). Now, if g 2 G 2 C', then if a =2 supp(f ), ff ; gg(a) = 0 since

all derivatives of f vanish at a. If b 2 supp(f ), then g is constant in a neighborhood of b

and hence all derivatives of g vanish at b, so ff ; gg(b) = 0. Thuse ff ; gg = 0 and hence

fZ;Gg = 0 and so C is a subset of the centralizer of S. Conversely take G in the centralizer

of S and take a 2 (�1; 1)n and 1 � i � n. Then there is some f 2 C1(M) and open

W � (�1; 1)2n so that a 2  �1(W ), ��(f )jW = xi and supp(f ) �  �1((�1; 1)2n). Then if

g 2 G,  �(ff ; gg) = @ �(g)
@yi

is constant and so is  �(ff 2; gg) = 2@ �(g)
@yi

xi . Thus @ �(g)
@yi

= 0

on W . Repeating this argument with xi and yi interchanged yields that  �(g) is constant on

a neighborhood of each point of (�1; 1)2n and hence gj �1((�1; 1)2n) is constant. Hence

G 2 C and so C is the centralizer of S.

Note also that if f 2 F 2 C and g 2 C1(M), ff ; ggj �1((�1; 1)2n) is zero and hence

fF; g + Cg 2 C , so C is an ideal and hence (C1(M)=C)=C is a Polish ring.

Take C to be the constant functions in (�1; 1)2n and now Theorem 6.11 gives that

(C1(M)=C)=C is algebraically determined since it embeds isomorphically as a subring of

C1((�1; 1)2n)=C by (f + C) + C 7!  �(f )j(�1; 1)2n + C. To see why  �((C
1(M)=C)=C )

has the desired property from the statement of Theorem 6.11, follow the proof of Lemma 6.9,
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noting that each  �(f ) 2 C1((�2; 2)2n) and so we can apply Lemma 1.17 to the antideriva-
tives with U =  �1((�1; 1)2n) and V =  �1((�2; 2)2n) to see that those antiderivatives are

in  �((C
1(M)=C)=C ). �

Theorem 6.13. Let M be a smooth symplectic manifold of dimension 2n. Let C = ff 2
C1(M) : f is constant on connected components of Mg. Then C is a closed ideal of

(C1(M); f�g) and hence C1(M)=C is a Polish Lie ring. Moreover, C1(M)=C is an alge-

braically determined Polish Lie ring. The Lie ring of Hamiltonian vector �elds on a symplectic

manifold is also an algebraically determined Polish Lie ring, since it is algebraically isomorphic

to C1(M)=C.

Proof:

By Proposition 6.12, (C1(M);+; f�g) is a Polish Lie ring. Let ' : H ! C1(M)=C be

an algebraic ring isomorphism. Then for any chart (U; ) so that  (U) = R2n, then as in

Proposition 6.12 de�ne C = ff + C 2 C1(M)=C :  �f j(�1; 1)2n is constantg. If S is as in

the proof of Proposition 6.12, C is the centralizer of S and hence '�1(C ) is the centralizer

of '�1(S) and hence closed. Since C is an ideal, so is '�1(C ), so H='
�1(C ) is a Polish Lie

ring. ' induces an isomorphism between the quotients, ' : H='�1(C )! (C1(M)=C)=C ,

by ' (h + '�1(C )) = '(h) + C . Since (C1(M)=C)=C is algebraically determined by

Proposition 6.12, ' is a homeomorphism and hence the map h 7! h+'�1(C ) 7! '(h)+C 

is continuous.

H
'���! C1(M)=Cy y

H='�1(C )
' ���! (C1(M)=C)=C 

Now, take f(Ui ;  igi�1 be a collection of charts of M so that f �1
i ((�1; 1)2n)gi�1 covers

M. For each i , let �i be the continuous map H ! H='�1(C i ) by h 7! '(h) + C i .

Thus � =
∏
i�1�i is a continuous map. Notice also that the map � : C1(M)=C !
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∏
i�1

((C1(M)=C)=C i ) given by �(f + C) =
∏
i�1

(f + C) + C i is continuous, and it is also

one-to-one since if �(f ) = �(g), then on each factor i , ( i)�(f ) and ( i)�(g) di�er by

a constant on (�1; 1)2n. Since the  �1
i ((�1; 1)2n) cover M, f � g 2 C and so f + C =

g + C. Thus, by Theorem 1.5, its inverse is a Borel function on its range, a Borel set. Thus

' = ��1 � � is a Borel mapping and hence a topological isomorphism by Proposition 1.3.

�
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CHAPTER 7

COMPLEX VECTOR FIELDS

The ring of smooth real vector �elds on a smooth manifold was shown to be algebraically

determined in [7]. It is unlikely that the ring of smooth complex vector �elds on a smooth

complex manifold would be, because the ring of complex numbers itself is not algebraically

determined. However, if we view it as an algebra instead of just a ring, we get enough

structure to determine the Polish topology. Here the case of L(C), the complex vector �elds

over the complex plane, is given.

Lemma 7.1. Let R be a Polish Lie algebra over C, let ' : R ! L(C) be an algebraic

isomorphism of Lie algebras and C = f �D j � 2 C g. Then C is a closed Lie subalgebra

of L(C) and '�1(C) is closed in R. Continuous binary operations can be de�ned on both C

and '�1(C) with respect to which they are both algebraically and topologically isomorphic to

the Polish algebra C and such that 'j'�1(C) : '�1(C) ! C is a topological isomorphism of

Polish �elds.

Proof:

C is closed in L(C) and the mapping �D ! �, C ! C is a topological isomorphism

between two additive abelian Polish groups by the de�nition of the topology on L(C). Note

also that C = f f D 2 L(C) j [f D;D] = 0 g since [f D;D] = �f 0D. This observation

gives an algebraic proof that C is a closed commutative Lie subalgebra of L(C). Hence,

'�1(C) = f r 2 R j [r; '�1(D)] = 0 g is closed in R. Notice that the binary oper-

ation (�D;�D) ! [�D; [�D; x
2

2
D]] = [�D;�xD] = ��D, C � C ! C makes C into a

commutative Polish algebra which is algebraically isomorphic to the �eld C. Similarly, no-

tice that the binary operation ('�1(�D); '�1(�D)) ! ['�1(�D); ['�1(�D); '�1( x
2

2
D)]] =
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['�1(�D); '�1(�xD)] = '�1(��D), '�1(C)�'�1(C)! '�1(C) makes '�1(C) into a com-

mutative Polish algebra which is algebraically isomorphic via ' to the Polish �eld C and

therefore to the Polish �eld C. If f'�1(cn)gn�1 ! '�1(c), then cn'
�1(1) ! c'�1(1) and

hence fcngn�1 ! c , so 'j'�1(C) is a topological isomorphism. �

It is important to note that for g 2 C1(C), a 2 C, there is some fangn�0 so that

g(x) =
∑
i�0

an(x � a)n = g(a) + (x � a)

[∑
i�0

an+1
n+1

(x � a)n+1

]0
. In other words, there is a

G 2 C1(C) so that g(x) = g(a) + (x � a)G 0(x).

Lemma 7.2. Let f 2 C1(C) and a 2 C. Then there exist G 2 C1(C) and a unique b 2 C
such that f D = bD + GD + [GD; aD] � [GD; xD]. G is unique up to an additive constant

and b = f (a).

Proof:

bD + GD + [GD; aD]� [GD; xD] = bD + GD + (G � 0� G 0 � a)D � (G � 1� G 0 � x)D =

(b + (x � a)G 0)D. Therefore f D = bD + GD + [GD; aD]� [GD; xD] if and only if f (x) =

b + (x � a)G 0(x) for all x 2 J. Therefore b = f (a) and G is uniquely determined up to an

additive constant. �

Lemma 7.3. Fix c1 2 '�1(C). Then for every r1 2 R, there is a unique c2 2 '�1(C) and an

r2 2 R such that r1 = c2+ r2+ [r2; c1]� [r2; '
�1(xD) ]. The mapping r1 ! c2, R! '�1(C),

is a Borel mapping.

Proof:

Sc1 = f (r1; r2; c2) 2 R2 � '�1(C) j r1 = c2 + r2 + [r2; c1] � [r2; '
�1(xD)] g is a closed

additive subgroup of R2�'�1(C) since both sides of the equation de�ning Sc1 are continuous

in (r1; r2; c2). If �` (1 � ` � 3) is the projection onto the `-th coordinate in R3, note

that Lemma 7.2 implies that �1(Sc1) = R and the uniqueness of c2 for a given r1. Zc1 =

f (0; r; 0) j (0; r; 0) 2 Sc1 g is a closed additive subgroup of Sc1. If (r1; r2; c2) 2 Sc1, then

��1
1 (r1)\Sc1 = f (r1; r2+r; c2) j (0; r; 0) 2 Sc1 g = (r1; r2; c2)+Zc1. Theorem 12.17 of Kechris
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([8]) implies that there is a Borel uniformization for the quotient group Sc1=Zc1 or, equivalently,

there is a Borel uniformization U on Sc1 with respect to �1, i.e., U � Sc1 is a Borel set such

that �1jU : U ! R is a bijection. Theorem 1.5 now implies that (�1jU)�1 : R! U � Sc1 is a

Borel mapping and hence that �3 � (�1jU)�1 : R ! '�1(C) is a Borel mapping. This is just

the statement that the mapping r1 ! c2, R! '�1(C), is a Borel mapping. �

Theorem 7.4. L(C) is an algebraically determined Polish Lie algebra.

Proof:

Let R be a Polish Lie algebra and let ' : R ! L(C) be an algebraic isomorphism

of Lie algebras. Let f 2 C1(C) and a 2 C. There is G 2 C1(C) such that f (x) =

f (a) + (x � a)G 0(x) for all x 2 C. But then f D = f (a)D + GD + [GD; aD] � [GD; xD]

and so '�1(f D) = '�1(f (a)D) + '�1(GD) + ['�1(GD); '�1(aD)]� ['�1(GD); '�1(xD)].

Note that both '�1(f (a)D) and '�1(aD) are elements of '�1(C). Lemma 7.3 and Lemma

7.1 imply that the mapping  a : '
�1(f D)! '�1(f (a)D)! f (a)D ! f (a), R! '�1(C)!

C! C, is a Borel mapping for every a 2 C.
Let fangn�1 � C be dense and de�ne 	 : R!∏

n�1C by 	('�1(f D)) =
∏
n�1 an('

�1(f D))

=
∏
n�1 f (an). Then 	 is a one-to-one Borel mapping and therefore is a Borel isomorphism

onto its range, a Borel set, by Theorem 1.5. Similarly the mapping � : L(C)!∏
n�1C de-

�ned by �(f D) =
∏
n�1 f (an) is a continuous one-to-one mapping onto its range. Again, The-

orem 1.5 implies that �(L(R)) is a Borel subset of
∏
n�1C and that ��1 : �(L(C))! L(C)

is a Borel mapping. Note that 	('�1(L(C))) = �(L(C)) and therefore ��1 � 	 makes

sense and is a Borel mapping. But ��1 �	 : '�1(f D)! f D and therefore coincides with '.

Hence, ' : R! L(C) is a Borel isomorphism of additive abelian Polish groups and therefore

is a topological isomorphism by Proposition 1.3. �

46



BIBLIOGRAPHY

[1] Y. Akizuki, Harmonic Integral, Iwanami Syoten, 1955, (Japanese).

[2] Howard Becker and Alexander S. Kechris, The descriptive set theory of Polish group actions, Cambridge

University Press, 1996.

[3] I. Gelfand and A. Kolmogorov, On rings of continuous functions on topological spaces, Doklady Akademii

Nauk SSSR 22 (1939), 11{15, (Russian).

[4] Felix Hausdor�, �Uber innere Abbildungen, Fundamenta Mathematicae 23 (1934), 279{291.

[5] Lars H�ormander, The Analysis of Linear Partial Di�erential Operators I, Springer-Verlag, 1990.

[6] Tadashi Ishii, On homomorphisms of the ring of continuous functions onto the real numbers, Proceedings

of the Japan Academy 33 (1957), no. 8, 419{423.

[7] Robert R. Kallman and Alexander P. McLinden, The Polish Lie ring of vector �elds on a smooth manifold

is algebraically determined, preprint.

[8] Alexander S. Kechris, Classical descriptive set theory, Springer-Verlag, New York, 1994.

[9] G. W. Mackey, Borel structure in groups and their duals, Trans. Amer. Math. Soc. 85 (1957), 134{165.

[10] John W. Milnor and James D. Stashe�, Characteristic classes, Princeton University Press, 1974.

[11] J�urgen Moser and Eduard Zehnder, Notes on dynamical systems, Courant Lecture Notes in Mathematics,

2005.

[12] V. M. Tikhomirov (ed.), Selected Works of A. N. Kolmogorov Volume I: Mathematics and Mechanics,

Kluwer Academic Publishers, 1985, translated by V. M. Volosov.

[13] Frank W. Warner, Foundations of di�erentiable manifolds & Lie groups, Springer-Verlag, 1983.

[14] Hassler Whitney, Analytic extensions of functions de�ned on closed sets, Transactions of the American

Mathematical Society 36 (1934), 63{89.

[15] Stephen Willard, General Topology, Addison-Wesley Publishing Company, 1970.

47




