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Discriminant analysis is a procedure for identifying the relationships between qualitative 

criterion variables and quantitative predictor variables.  Data bases of genetic polymorphisms are 

currently available that group such polymorphisms by ethnic origin or nationality. Such 

information could be useful to entities that base financial determinations upon predictions of 

disease or to medical researchers who wish to target prevention and treatment to population 

groups. While the use of genetic information to make such determinations is unlawful in states 

and confidentiality and privacy concerns abound, methods for  human “redlining” may occur.  

Thus, it is necessary to investigate the efficacy of the relationship of certain genetic information 

to ethnicity to determine if a statistical analysis can provide information concerning such 

relationship.  The use of the statistical technique of discriminant analysis provides a tool for 

examining such relationship. 
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INTRODUCTION 

 In the United States, one hundred and fifty million Americans are provided health 

insurance that is based upon statistical risk factors.  These Americans constitute the majority of 

Americans covered by health insurance  and pay premiums that allow the continuation of such 

insurance for many others. As a result, insurance companies in this country are constantly 

seeking data that allow a matching of the premiums paid for the risk assumed while allowing a 

profit to be obtained.  

 Genetic information is a veritable cache of health care information.  What better 

information to obtain for risk analysis than that of the diseases to which a person is prone based 

upon genetic analysis?  Yet the problem is more complicated than appears at first blush.  The 

recent revelation that the human genome contains fewer genes than originally predicted raises 

the question of whether or not various genetic predictors at this point in time are truly reliable. 

The problem is easier with genetically-based diseases such as Huntington’s disease or cystic 

fibrosis but is more complicated with multifactoral diseases such as cancer or coronary disease. 

 In the mortgage industry, the concept of  “redlining”  undesirable property locations has 

been prohibited by many states.  The same has been the subject of recent “genetic 

discrimination” laws in the insurance context.  While this well-intentioned legislation is salutary, 

the reality is that readily available information provides an ability for any person, including those 

who are engaged in risk analysis, to “redline” population groups that possess genetic 

dispositions.  The result is a potential “black market” for information which may surreptitiously 

be used to identify and then exclude certain population groups from insurance coverage or 

potentially employment. The exclusion may be patently illegal pursuant to the aforementioned 

laws, but data bases containing such information may be available to the unscrupulous operator 
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or to those who simply want to “fine tune” the risk, taking into account other risk bearing 

features.  While no one would be so bold as to deny coverage blatantly for genetic reasons, the 

wealth of genetic information which is being produced and is available on a population scale 

provides more data which may be used in making actuarial decisions.  

 On the positive side, the identification of groups for the purpose of specific medicine 

treatments may be a good outcome for the statistical identification of population groups.  This 

activity is already taking place in a more informal manner among the Hasidic Jewish population 

of New York where carriers for Tay-Sachs Disease and other diseases are routinely counseled on 

the genetic advisability of a proposed marriage.  Identification of the potentially damaging 

alleles in population groups such as this group could allow the targeting a prophylactic medicine 

to such groups. Indeed, recently the entire genome of the Icelandic population was sold to a 

private company which may use such information to develop targeting drugs. (8)  However, such 

targeting and identification poses the insurance and employability issues set forth above.  Thus, 

intelligent legislative responses must be formulated.  For example, what if a certain population 

group showed a lowered risk for heart disease based on genetic data?  Would not a reduction in 

health insurance premiums be in order? 

In this age of increasing bioinformatics (6), the appropriate use of population  genetic 

information is statistically based.  If the statistical basis for the conclusions of the analysis is 

flawed, then the fact that genetic information exists and is easily available will not matter. The 

assault on an individual’s privacy and the use of such information will matter for naught. 

 The statistical analysis regarding the use of genetic information may take many forms.  

However, for the purposes of this paper, only one analysis will be examined; i.e., discriminant 

analysis.  Information available which identifies polymorphic alleles in the genetic code of 
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humans is the subject to which discriminant analysis shall be applied in order to determine if that 

statistical analysis can result in reliable predictors of population groups, which are genetic units 

and can be easily the subject of “genetic redlining”. 

Health Care Benefits in the United States are Delivered Through Actuarial Analysis 

 The basis for the delivery of a majority of health insurance benefits in the United States is 

statistical. Actuarial analysis provides the foundation for indemnity insurance, preferred provider 

payments and health maintenance organizations “capitation.”  Insurance companies use data to 

identify risk pools of members and classify those whose medical needs are great as “outliers”. 

 Starting in the 1940s and 1950s, health care benefits were delivered through insurance 

companies and were based on actuarial underwriting which used health care history as a basis for 

analyzing risk.  Also during this time frame, health care benefits began to be delivered through 

employment with many American having their benefits through their jobs. 

 During this period, there was a division between the insurance company which assumed 

the financial risk and paid the benefits, and the employer whose job it was to provide the 

employment and pay the premiums (usually shared with the employee). Thus, because of this 

division of responsibility,  the information regarding the health of any particular worker was 

somewhat insulated from the knowledge of the employer. 

 The divisions between employment and insurance blurred starting before the passage of 

the Employee Retirement Income Security Act of 1974 (“ERISA”).  Prior to the passage of 

ERISA, employers had begun to “self fund” health care benefits using insurance companies to 

administer payment of the benefits.  Thus, the line between employer and insurer was not as 

clear.  ERISA recognized  the employers  “self funding” of the risk of providing benefits and, 

thus, allowed the employer to be more in the information flow regarding the employee’s physical 
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history.  While the real onslaught of ERISA health care benefits did not start until the late 

1980’s, the current situation in the United States is that the vast majority of the 150,000,000 

Americans who have health care benefits receive the same through ERISA plans, and the 

employers are intimately included in the risk analysis of insurability.  Indeed, employers are 

considered “pools” of risk, as described above. 

 The ascension of ERISA has given rise to the managed care concepts that are prevalent 

today.  Under managed care, the employer forges a relationship with the insurance company 

which acts as an administrator for the health care plan and seeks to provide quality health care 

benefits at an affordable price.  Since risk must be managed and pools of high risk 

employees/insureds must be identified, the accumulation of health care information data is 

essential for managed care statistical analysis. 

Predictors of Disease are Essential for Health and Life Insurance Analysis 

 Grouping of disease statistics by age and sex are some of the basic indicators of risk.  

There are, of course, many other factors in assessing risk such as life style, smoking, dangerous 

activities and the like.  However, the basic tenet is the same – data drives the decision and is 

needed to provide appropriate risk assessment. 

The concern of the “patchwork quilt” of state medical information confidentiality laws 

that has sprung up over the years and the recent developments under HIPAA (see, infra) is that 

individual patient information be protected.  However, protected data (i.e., that data which 

contains no patient identifiers) may be used to provide information regarding groups of people 

which, for managed care companies, provides a more detailed analysis and  risk profile. The use 

of population data provides an overview of the risks associated with certain areas of the country 

and certain groups and subgroups of people.  Thus, genetic data can be of use in evaluating risk 
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for employers and insurance companies that underwrite the risk without ever having to know the 

individuals who compose the group  While this statistical analysis is commonplace using 

common physical data, the question arises as to whether or not group genetic data is of use in 

looking at risk pools.   The major question is whether or not such genetic data will provide better 

risk analysis and, thus, lowered costs, or discrimination. 

 For exactly this concern, many states have prohibited the use of genetic information for 

insurance, health risk and employment analysis. Twenty-six states have prohibited the use of 

genetic technology by insurance companies and employers in the evaluation of risk factors for 

insured and employees, respectively.  At present, the United States Congress has not passed laws 

that would prohibit such practices; however, through the Health Insurance Portability and 

Accountability Act of 1996 (“HIPAA”), the use of genetic information is prohibited through the 

“pre-existing” clause legislation.  In addition, the HIPAA privacy regulations regulate the 

disclosure of genetic information of an individual.  

 While these efforts are good, the efficacy of the prohibition on the use of genetic 

information is questionable.  First, even though use of genetic material in insurance risk analysis 

is prohibited, there may still be the use of such information illegally. Secondly, proof of 

discrimination based on genetic standards is very difficult at best.  It is easy for an employer or 

insurance company to deny employment or coverage on reasons other than genetic concerns.  

Employers and insurers are likely to take the position that other factors weigh against a person’s 

insurability and employability. Finally, since population data is available, such data may be a 

source of information for risk assessment. 

Thus, it is necessary to analyze the true present efficacy of population genetic data as a 

predictor of disease.  Many articles and papers have been written on such predictions on the 
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individual basis.  However, the analysis on genetic data predictability using statistical methods 

for identifying groups is in its infancy, and the purpose of this paper is to analyze certain data 

using a statistical test – discriminant analysis – that is useful in providing “groupings” based on 

data.  
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GENERAL DESCRIPTION OF THE DISCRIMINANT ANALYSIS TEST 

 Discriminant analysis is a procedure for identifying the relationships between qualitative 

criterion variables and quantitative predictor variables.  Discriminant analysis is a procedure for 

identifying boundaries between groups of objects.  The boundaries are those variable 

characteristics which distinguish such objects in the criterion groups. The main use of 

discriminant analysis is to predict group membership from a set of predictors, and discriminant 

analysis reveals similar conclusions as regression analysis. (11) 

 There is a twofold benefit to the use of discriminant analysis.  First, discriminant analysis 

can reveal which variables are related to the criterion variables.  Secondly, discriminant analysis 

can predict values on the criterion variable when values on the predictor variables are given. (11) 

 Discriminant analysis is essentially an adaptation of the regression analysis techniques 

for situation where the criterion variable is qualitative rather than quantitative.  The assumptions 

for the data used in discriminant analysis are (a) a random sample, (b) normal distribution, (c) 

homoscedasticy and (d) correlation among the data. (11) 

Discriminant Analysis Procedure 

 The procedure for using discriminant analysis is first to classify into two or more 

criterion groups a number of objects that are measured on each of a number of predictor 

variables.  For example, if groups A, B and C are to be discriminated, then objects within the 

groups need to be classified with each of the groups (e.g., Object A1…..Object Az, Object 

B1….Object Bz, Object C1….Object Cz and so forth).  This can be accomplished by using an 

input data matrix as shown on Exhibit 1.  Scores on the predictor variables (x1, x2…xz) are then 

run. (11) 
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Objects of classification means that each object possesses one of the values on the 

associated qualitative variable.  These are essentially, then, two groups; i.e., objects belonging to 

groups and objects having values on a qualitative variable. (11) 

 Examples of the use of discriminant classification are to classify predictor variables such 

as credit risk versus non-risk, smoker versus non-smoker, Protestant Catholic or Jew, Democrat, 

Republican or Independent or, in the immediate case for , Japanese, Druze, or Dane. 

 Note that the groups are mutually exclusive and that the input data is not really different 

from multiple correlation and regression analysis.  The main difference is that the objects in DA 

are grouped beyond correlation or regression analysis according to some meaningful criterion.  

Also, every object is measured on the same set of predictor variables. 

 A criterion variable is composed of the classification labels attached to the objects.  Thus, 

a criterion variable can have a minimum of two values; e.g., smoker versus non-smoker, Danish 

versus non-Danish.  The criterion variable may also have several values; e.g., Protestant, 

Catholic or Bhuddist, or Japanese, Danish or Druze. 

 The object chosen for analysis along with the criterion variable dictates the nature of the 

predictor variables.  For example, buyers of cars being predicted might lead to seeking data on 

age, sex, income, geographic home location and number of children in a family.  In this paper, 

the variables used are single nucleotide polymorphisms, single tandem repeats and other allelic 

sequences. 

 The task of discriminant analysis is to assign to the given objects a qualitative label based 

on information on predictor or classification variables.  Predictor variables are dictated by the 

objects and criterion variables chosen for analysis; e.g., buyers of autos, diseases, nationality of 
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genotypes.  The effectiveness of discriminant analysis  is in the existence of predictor variables 

which differ in mean value from one criterion group to another. (11) 

 In this analysis, some assumptions are critical.  First, the variance of a predictor variable 

must be the same in the population from which the groups are drawn.  Secondly, the correlation 

between any two predictor variables is the same in the populations from which the criterion 

groups have been sampled. (11) 

The Discriminant Function 

 In a manner similar to regression analysis, the discriminant function uses a weighted 

combination of predictor variable values to classify an object into one of the criterion variable 

groups or, alternatively, to assign the object a value on the qualitative criterion variable.  The 

function is described as “L” which represents a derived variable defined as a weighted sum of 

values on individual predictor variables. Each object’s score on the discrimiant function (i.e., the 

discriminant score) depends on such object’s values on the various predictor variables. Thus, L = 

b1x1+b2x2+b3x3….bzxz.  In this formula, “x1, x2 …xz” forth represent values on the various 

predictor variables, and “b1, b2 ….bz” represent the weights associated with each of the 

respective predictor variables.  L, then, results in the object’s resultant discriminant score.  Note 

that this is the same in essence as a multiple regression equation (q.v., y`=a+bx).  However, the 

difference is that “y`” in regression is numerical while “L” in discriminant analysis is qualitative.  

This difference is accomplished by utilizing a “cutoff score”. (11) 

The Cutoff Score 

 The cutoff score is a method of assigning objects to one group or another.  Objects with  

L>X are assigned to one group and those with  L<X are assigned to another group.  The defining 

parameters in this assignment are weights and cutoff scores.  Obviously, the point of the exercise 
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is to minimize the number of classification errors and, thus, the cutoff score with the fewest 

errors of classification is the best cutoff score.  For example, if the frequency of a certain single 

tandem repeat is >0.02, such repeat could be assigned to Group A and if < 0.02, assigned to 

Group B.   Also, if the allele count is >57, the classification would be to Group A and, if < 57, to 

Group B.  

 The use of the cutoff score is subjective and depends heavily upon whether or not there is 

more than one predictor variable.  If there is only one, the smaller the difference between the two 

groups on the predictor variable, the larger the overlap.  If there are multiple predictor variables, 

weighting the various predictor variables is highly important.  Such weighting derives a single 

predictor variable (i.e., the discriminant function).  Thus, maximizing the difference to minimize 

the overlap is the rule.  Unless there is no overlap, classification errors will occur. (11) 

 In the case of multiple predictor variables, in determining the weights of the predictor 

variables, the correlation which exists among the predictor variables are taken into account.  The 

procedure may be generalized to any number of variables and allows the weighting of the 

discriminant analysis.  Again, regression analysis provides an analogy; i.e., a high correlation 

between predictor variables and criterion variables results in reduced errors of prediction. (11) 

More than Two Criterion Groups 

 If there are more than two criterion groups, then more than one discriminant function is 

needed.  The rule is that one fewer discriminant function than the number of criterion groups is 

required unless there are fewer predictor variables than criterion groups.  An example would be 

buyers of different automobiles; e.g., Acura, Infiniti and Volvo (criterion groups) based on 

income, profession, mortgages and education (predictor variables).  In this case, two 

discriminant functions are needed.  The first discriminant function discriminates Acuras from 



 11

Volvo and Infiniti buyers and the second discriminant function discriminates Infiniti buyers from 

Volvo buyers. The formulas for determining such discriminant functions are: 

Discriminant Function One 

L1 = 6y1-4y2+2y3+5y4 

(with the stipulation if L > 100, assign to Volvo buyers) 

Discriminant Function Two 

L2 = 5y1+3y2-4y3-6y4 

(with the stipulation if L < 75, assign buyer to Acura buyers) 

In this exercise, the next step would be to establish the cutoff score and assign the buyers to the 

Acura, Infiniti or Volvo groups.  Then, in sequence, the Acura buyers would be compared 

against all other, then the Infiniti buyers, then Volvo buyers. (11) 

Stepwise Procedures 

 Stepwise procedures may be used with discriminant analysis as with regression analysis.  

Such procedures allow use of a smaller set that discriminates between or among the criterion 

groups in a manner that would be as well as the entire set itself.  Here, one must be concerned 

about collinearity (i.e., the situation in which predictor variables are very highly correlated.  

Such problem can be avoided by not including overlapping data (e.g., sales, costs and profits).  

In an allelic analysis, this problem would not appear to be very significant. (11), (25). 

Evaluating the Amount of Discrimination 

 There are several summary indices of the amount of discrimination achieved in a 

discriminant function evaluation.  R2, the multiple correlation coefficient, is one of the indices as 

is  Mahalanobis, D2, Wilks’ Lambda and Rao’s V.  A meaningful evaluation of the discriminant 

function is in terms of the “actual errors of classification’ in numbers and type.  A confusion 
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matrix shows the tabulation of the objects’ actual groups membership versus that of the predicted 

group membership.  (Exhibit 2). What is important in the confusion matrix are the frequencies in 

the body of the table which reflects the associations between the predicted and actual group 

membership. (11) 

Importance of the Predictor Variables 

 The relative importance of the predictor variables can be determined from the squared 

coefficient weights associated with each variable in the discriminant function.  However, in 

order to do so, the discriminant function must be in the standardized “z score” form which is: 

Lz = beta1z1+beta2z2…..+betzkzk 

Squared beta weights reflect on the relative importance of the variables and do not reflect their 

absolute importance. (11) 

Limitations on the Use of Discriminant Analysis 

 Sometimes discriminant analysis is incorrectly used where a regression analysis is more 

appropriate and powerful.  Also, arbitrary assignment into groups by the cutoff score may 

overshadow the information given by the actual data.  In addition, the “all or none” analysis 

contained in discriminant analysis can be challenged.  The solution, obviously, is to do a tandem 

analysis of discriminant analysis and regression analysis on the data.  As with correlation 

analysis and regression analysis, discriminant analysis is a function of the three key functions of 

statistical analysis – to wit, data reduction, inference and identification of association among 

variables. (11) 
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THE GATHERING OF THE DATA 

 The first step in the process is to gather the data for the discriminant analysis procedure; 

i.e., data revealing polymorphisms among populations. The gathering of this data was 

accomplished by visiting the ALFRED (the “Alelle FREquency Database”) site on the Internet.  

This site is sponsored by Yale University and is found at 

http://alfred.med.yale.edu/alfred/index.asp.  The site is designed to store and disseminate 

frequencies of alleles at human polymorphic sites for populations and is used for the study of 

population genetics and molecular anthropology. (16)  The ALFRED site contains data from 

population groups and certain polymorphisms that occur in such groups.  The format of 

presenting the data shows the chromosomal band position of the gene, the population name, the 

locus name, the locus symbol, the polymorphism name, the sample size, the sample 

identification, the allele name, the allele symbol, the frequency and the frequency identification.  

The sample and frequency identifications are used for purposes internal to ALFRED.  As of 

2001, more than 100,000 single nucleotide polymorphisms had been identified.  (16) 

 The data used in this study was gathered for four population groups.  Those population 

groups are the Druze, the Danish, the Japanese and the Europeans (mixed) and were selected on 

the availability of the data for common loci.  For example, all of these groups reveal data for the 

dopamine receptor D2 (symbol DRD2) and, thus, provide a comparison of certain single 

nucleotide polymorphisms and single tandem repeats for that locus.  Thus, a direct comparison 

may be made among the groups, the frequency of this data and the number of alleles for each 

group. 

 The dopamine receptor D2 was selected because of its importance in the neurotransmitter 

diseases of Alzheimer’s Disease and Parkinson’s Disease, two inflictions that are very current in 
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research and for which stem cell research holds some promise.  Both are debilitating diseases 

and both have a genetic component, although there may be environmental contributors as well.  

In addition, the DRD2 gene has been examined as possibly having a role in the proclivity toward 

alcoholism. (1) 

 DRD2 encodes the dopamine D2 receptor which is critical in the functioning of neural 

circuits in the brain.  The DRD2 gene spans >270 kilobases with an initial large intron of 250 

kilobases.  The gene is found at 11q22.3-q23.1  (2) 

Dopamine receptors mediate enzymatic activities, metabolic rates and ion channels.  

These receptors are involved in neurological signaling. They are involved in cognitive and 

emotional functions and neurological disorders (17).  There are five different receptors encoded 

by five separate genes.  These genes are grouped further into two subgroups – the first comprised 

of the D1 and D5 receptors and the other composed of the D2, D3 and D4 receptors. 

The sites within the DRD2 locus are: 

5` (GAAA)n tetranucleotide STR 

-141 C In/Del 

Exon 8 SSCP 

EcoRI site 

Ser311Cys 

TaqI D site 

BclI site 

Intron2 (GT)n dinucleotide STRP 

Intron 1 (CT)n dinucleotide STRP 

HincII site 
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TaqI A site 

MboI site 

TaqI B site 

4-site haplotype (TaqI B, Taq I D, (CA) repeat, TaqI A) 

5-site haplotype (TaqI B, TaqI D, (GT) STRP, HincII) 

The sites chosen for this study are the 5`(GAAA)n tetranucleotide single tandem repeat 

polymorphism (STRP), the Intron 1 (CT) dinucleotide STRP, the –141 C In/Del polymorphism 

and the Intron 2 (GT)n dinucleotide STRP.  A single tandem repeat polymorphism is a form of 

gene cluster where many identical genes lie in a tandem array.  The Ins/Del polymorphism is a 

polymorphism that occurs due to insertion or deletion of genes.  The Intron polymorphisms 

occur in the intron section of the DNA sequence and are the intervening sequences that are 

removed when the primary transcript is processed into RNA. 

The 5` (GAAA) tetranucleotide STRP is an STRP that ends in the 5` sequences upstream 

of exon 1.  The Intron 1 (CT)n dinucleotide STRP is a dinucleotide STRP located in Intron 1 and 

is 7608 base pairs upstream of exon 2.  The –141 C In/Del polymorphism is a single nucleotide 

insertion/deletion polymorphism at –141 base pairs (upstream) of the start of transcription.  The 

insertion allele corresponds to a restriction site but the deletion allele does not contain that site.  

The Intron 2 (GT)n dinucleotide STRP is an intron 2 dinucleotide STRP with a repeat structure 

varying in the dinucleotide repeat domain.  This STRP is located 1311 base pairs upstream of 

exon 3 and 1384 base pairs downstream of the TaqI “D” site. 

 The population groups were chosen because of their commonality of polymorphisms but 

also because of their diversity in location and, perhaps, genetic history.  The Danes, of course, 

are from Denmark while the Mixed Europeans contain genotypes that may also be considered to 
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be American.  There may be some overlap between these populations. The Druze are a Middle 

Eastern groups of about a half a million people who live in the villages in the mountains of 

Syria, Lebanon, Israel and Jordan.  The Japanese, of course, are inhabitants of Japan.  These 

population groups provide diversity that will be useful as a background to run the data in order to 

determine if statistical significance occurs. 

 The data for each of the population groups is set forth on the following tables.  The 

number in (  ) to the right of the population group name is the diploid sample size.  The 

classification of populations into 1 and 2 as occurs in places in these tables means that the data 

on ALFRED was obtained from two sample groups, often as different dates. 

Table 1  Intron 2 (GT)n Dinucleotide STRP 

Population   Frequency by Allele Symbol 

     12           13     14      15       16       17 

Druze 1 (2N=200)               0.285     0.150    0.385     0.180 

Druze 2 (2N=150)    0.300     0.133    0.407     0.160  

Danes 1 (2N=388)      0.003     0.186     0.098    0.451     0.263 

Danes 2 (2N=102)    0.127     0.108    0.529     0.235    

European 1 (2N=62)         0.161     0.129    0.435     0.274 

European 2 (2N=172) 0.006    0.099     0.122    0.599     0.169    0.006 

Japanese (2N=100)                                0.490    0.060     0.450 
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Table 2  -141 C Ins/Del 

Population    Frequency by Allele Symbol 

     Ins   Del 

Druze 1 (2N=190)   0.021   0.979 

Druze 2 (2N=142)   0.021   0.979 

Danes 1 (2N=494)   0.119   0.881 

Danes 2 (2N=180)   0.072   0.928 

Europeans (2N=108)   0.056   0.944 

Japanese (2N=102)   0.235   0.765 
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Table 3   5' (GAAA)n Tetranucleotide STRP 

Population   Frequency by Allele Symbol 

   7 8 9 10 11 12 

Druze 1 (2N=102)  0.059 0.127 0.176 0.167 0.235 

Druze 2 (2N=96)  0.063 0.135 0.156 0.167 0.240 

Danes 1 (2N=458) 0.002 0.124 0.061 0.212 0.214 0.188 

Danes 2 (2N=64)  0.031 0.109 0.250 0.219 0.219 

Europeans (2N=102) 0.010 0.108 0.039 0.275 0.196 0.176 

Japanese (2N=100)  0.110 0.080 0.100 0.130 0.270 

   13 14 15 16 17 18 

Druze 1 (2N=102)  0.157 0.078 0.010 

Druze 2 (2N=96) 0.146 0.083 0.010 

Danes 1 (2N=458) 0.090 0.068 0.009 0.009 0.002 0.002 

Danes 2 (2N=64) 0.078 0.063  0.031 

European (2N=102 0.147 0.029 0.020   0.010 

Japanese (2N=100) 0.140 0.100 0.070 
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Table 4  Intron 1 (CT)n Dinucleotide STRP 

Population   Frequency by Allele Symbol 

    112 114 116 118 120 122 

Druze 1 (2N=172)  0.006 0.029 0.826 0.064 0.006 

Druze 2 (2N=132)  0.008 0.030 0.818 0.068 0.008 

Danes 1 (2N=172)    0.762 0.058 0.029 

Danes 2 (2N=98)  0.020  0.857 0.020 0.010 

European (2N=92)  0.011 0.022 0.815 0.033 0.011 

Japanese (2N=96)  0.531 0.021 0.021 

    124 126 128 130 132 

Druze 1 (2N=172)  0.058  0.012 

Druze 2 (2N=132)  0.061  0.008 

Danes 1 (2N=172)  0.145   0.006 

Danes 2 (2N=98)  0.082    0.010 

European (2N=92)  0.098 

Japanese (2N=96)  0.385  0.031 0.010 

   

The Preparation of the Data 

 As can be seen from the preceding tables, only certain alleles in the populations had 

frequencies that were truly common to one another.  Thus, the data selected this study had to be 

limited to these alleles that were common and the alleles that were not common were not used.  

The remaining alleles that were used are: 

  1. Intron 2 (GT)n dinucleotide STRP – Alleles 13, 14, 15, 16 
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  2.-141 C Ins/Del – Alleles Ins and Del 

3. 5`(GAAA)n tetranucleotide STRP – Alleles 8, 9, 10, 11, 12, 13, 14 

4. Intron 1 (CT)n dinucleotide STRP – Alleles 116, 118, 120, 124 

Also, note that the population samples are expressed as 2N in ALFRED.  Thus, the true sample 

of N is equal to one-half of the population number expressed in ALFRED.  It is easy to 

determine the number of individual genomes tested by dividing the 2N by one- half (e.g., since 

Druze in Intron 2 (GT)n dinucleotide STRP has a 2N of 200, 100 individuals would have been 

used in the study.  This formulaic analysis accounts for the diploid nature of the human genome. 

It is necessary to realize that the data is presented as frequencies in the tables.  It is not 

possible to use these frequencies since, if all the data frequencies were used, each category 

would add up to a total of one, and analysis would be useless.  However, it may be better to 

utilize the hard data numbers rather than the data frequencies, and, thus, it is necessary to 

translate the frequencies into the actual number of alleles.  This transformation is done by the 

formula: 

2(POP) X frequency = Alleles 

The calculation is simple.  Using Druze again from the Intron 2 (GT)n dinucleotide STRP, the 

population of 2N (i.e., 200) would be multiplied by the frequency for allele 13 and the product is 

57 alleles (200 x 0.285 = 57). 

 The converted results are presented in the following tables using only the alleles to be 

used in this study. 
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Table 5  Intron 2 (GT)n Dinucleotide STRP 

Population    Number of Diploid Alleles 

     14  15  16 

Druze 1 (2N=200)   30  77  36 

Druze 2 (2N=150)   20  61  24 

Danes 1 (2N=388)   38  175  102 

Danes 2 (2N=102)   11  44  28 

European (2N=62)   8  27  17 

European (2N=172)   21  103  29 

Japanese (2N=100)   49  6  45 

 

Table 6  -141 C Ins/Del 

Population    Number of Diploid Alleles 

     Ins   Del 

Druze 1 (2N=190)   4   186 

Druze 2 (2N=142)   3   139 

Danes 1 (2N=494)   59   435 

Danes 2 (2N=180)   13   167 

European (2N=108)   6   102 

Japanese (2N=102)   24   78 
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Table 7  5' (GAAA)n Tetranucleotide STRP 

Population   Number of Diploid Alleles 

    8 9 10 11 12 13 14 

Druze 1 (2N=102)  6 13 18 17 23 16 8 

Druze 2 (2N=96)  6 13 15 16 23 14 8 

Danes 1 (2N=458)  57 28 97 98 86 41 31 

Danes 2 (2N=64)  2 7 16 14 14 5 4 

Europeans (2N=102)  11 4 28 20 18 15 3 

Japanese (2N=100)  11 8 10 13 27 14 10 

 

Table 8  Intron 1 (CT)n Dinucleotide STRP 

Population     Number of Diploid Alleles 

    116  118  120  124 

Druze 1 (2N=172)  142  11  1  10 

Druze 2 (2N=132)  108  9  1  8 

Danes 1 (2N=172)  131  10  5  25 

Danes 2 (2N=98)  84  2  1  8 

Europeans (2N=92)  75  3  1  9 

Japanese (2N=96)  51  2  2  37 
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 Using the basic discriminant analysis function, L, the following calculations show the 

trends in the population groups based upon the following Input Matrices for the alleles. 

Matrix 1  Intron 2 (GT)n Dinucleotide STRP 

Groups   Objects          Scores 

   x1 x2 x3 

Druze   14, 15, 16   30 20 36 

       20 61 24   

Danes   14, 15, 16   38 175 102 

    11 44 28 

European  14, 15, 16   8 27 17 

       21  103 29 

Japanese  14, 15, 16   49 6 45 

 

 Using the formula L=b1x1+b2x2….bzxz and weighting all “b” factors by the percentage 

which the particular population related to all of the populations studied (to eliminate the 

population size bias), the results for Matrix 1 are: 

1. L(Druze) = (2.39)(248) = 594.18 

2. L(Danes) = (1)(398) = 398 

3. L(Europeans) = (2.40)(205) = 491.6 

4. L(Japanese) = (2.39)(100) = 239 
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Matrix 2  -141 C Ins/Del 

Groups   Objects         Scores 

        x1  x2 

Druze    Ins/Del   4  186 

        3  139 

Danes    Ins/Del   59  435 

13  167 

Europeans   Ins/Del   6  102 

 

Japanese   Ins/Del   24  78 

 

 The calculation of the discriminant function for Matrix 2 is as follows: 

1. L(Druze) = (1.8)(232) = 598.97 

2. L(Danes) = (1)(674) = 674 

3. L(Europeans) = (1,8)(108) = 194.4 

4. L(Japanese) = (1.8)(102) = 184.0 
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Matrix 3  5' (GAAA)n Tetranucleotide STRP 

Groups Objects    Scores 

     x1 x2 x3 x4 x5 x6 x7 

Druze  8,9,10,11,12,13,14 6 13 18 17 23 16 8 

     6 13 15 16 23 14 8 

Danes  8,9,10,11,12,13,14 57 28 97 98 86 41 31 

     2 7 16 14 14 5 4 

Europeans 8,9,10,11,12,13,14 11 4 28 20 18 15 3 

Japanese 8,9,10,11,12,13,14 11 8 10 13 27 14 10 

 

 The discriminant functions for Matrix 3 are as follows: 

1. L(Druze) = (1.85)(196) = 366.5 

2. L(Danes) = (1)(500) = 500 

3. L(Europeans) = (1.88)(99) = 187 

4. L(Japanese) = (1.88)(93) = 175.66 
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Matrix 4  Intron 1 (CT)n Dinucleotide STRP 

Groups Objects    Scores 

      x1 x2 x3 x4 

Druze  116,118,120,124  142 11 1 10 

      108 9 1 8 

Danes  116,118,120,124  131 10 5 25 

      84 2 1 8 

Europeans 116,118,120,124  75 3 1 9 

Japanese 116,118,120,124  51 2 2 37 

 

 Running the formula for Matrix 4, the results are as follows: 

1. L(Druze) = (1)(290) = 290 

2. L((Danes) = (2.5)(266) = 661.73 

3. L(Europeans) = (2.5)(87) = 220.57 

4. L(Japanese) = (2.5)(92) = 230.60 
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ANALYSIS OF THE MANUALLY RUN ALLELE DATA 

 Examining the L values for the data run in the above matrices, the following results were 

observed. 

 In Matrix 1, the highest value (i.e., number of alleles weighted to reduce population size 

bias) of 594.18 was found in Druze with Europeans next at 491.6, Danes at 398 and Japanese at 

239.  Thus, if this particular allele was deleterious, the population with the greatest risk is the 

Druze with the Japanese having the lowest risk. 

 In Matrix 2, the Danes lead with 674, the Druze followed with 598.97 and the Europeans 

and Japanese had 194.4 and 184, respectively.  Similar conclusions regarding risk are possible 

from these numbers. 

 In Matrix 3, the Danes were high with 500, the Druze next with 366.5 and the Europeans 

were third with 187.  The Japanese came in lowest at 175.66. 

 In Matrix 4, the Danes led with 661.73, the Druze were next with 290, the Japanese third 

with 230.6 and the Europeans with 220.57. 

 In each example, the number for each population can be used as a cutoff score.  For 

example, in Matrix 3 which deals with the 5` (GAAA)n tetranucleotide STRP, a cutoff score 

could be established for Danes of 500.  Any allele count over 500 would be subjectively (and 

perhaps artificially) considered to be Danish.  In a similar fashion, the cutoff score could be set 

at 366.5 for Druze, 187 for Europeans and 175.66 for Japanese for this particular polymorphism. 

 Thus, if a set of data was run which resulted in a discriminant function of 325.7, for 

example, given the arbitrary cutoff scores above, the Danish and Druze populations could be 

ruled out and the Europeans and Japanese considered.  The idea is to establish the cutoff score 

that will result in the fewest errors of classification.  Indeed, a simple scale of cutoff scores of 
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100, 200, 300, 400, 500 and so forth could be used to identify these population groups from the 

discriminant function produced by the alleles. 

 If a further discrimination was desired, one could discriminate among the particular 

alleles in each population.  For example, in the case of Allele Matrix 2 (-141 C Ins/Del), a 

comparison and discrimination may be made for each of the insertions and deletions against each 

population group.  The discriminant function would appear as follows: 

   (L) Druze – Ins = (1.8)(7) = 12.6 

   (L) Druze – Del = (1.8)(325) = 585 

   (L) Danes – Ins = (1)(72) = 72 

   (L) Danes – Del = (1)(602) = 602 

   (L) Europeans – Ins = (1.8)(6) = 10.8 

   (L) Europeans – Del = (1.8)(102) = 183.6 

   (L) Japanese – Ins = (1.8)(24) = 43.2 

   (L) Japanese – Del = (1.8)(78) = 140.4 

Thus, looking at the L functions for the insertion genes,  the high is 43.2 for the Japanese and the 

low is 10.8 for the Europeans with the Druze next at 12.6 and the Danes at 72.  On the deletion 

side, the highest L function is 602 for  the Danes with descending scores of 585 (Druze),  183.6 

for the Europeans and 140.4 for the Japanese. 

 Again, the idea for this comparison would be to establish a cutoff score that would limit 

overlap and then classify. 

 Therefore, it is possible to take each of the discriminant functions for each group by total 

for the group or by each allele and establish a cutoff score that will serve as an identifier of 

population based upon the weighted number of polymorphic alleles.  A confusion matrix 
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(Exhibit 2) could then be used to run actual polymorphic data from individuals against predicted 

polymorphic data using the cutoff scores for different populations. 

Using the SAS Data 

 While the manual calculations set forth above give some results from which conclusions 

may be drawn, the use of the SAS Program to run a discriminant analysis function and to run 

other tests reveals more information about the data.   

 The program used to input the data into SAS is as follows: 

    DATA DRD2 ALLELES; 

    INPUT POPULATION$ ALLELES @@; 

    CARDS; 

[Here input the actual data using the following type of format….Z 

50 D 49 E 29 J 49…..] 

    PROC PRINT; 

    ID ALLELES; 

    PROC UNIVARIATE PLOT NORMAL; 

    VAR ALLELES; 

    PROC CORR; 

    VAR ALLELES; 

    PROC DISCRIM; 

    CLASS POPULATION; 

    VAR ALLELES; 

    PROC CANDISC; 

    VAR ALLELES; 
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    CLASS POPULATION; 

    PROC STEPDISC; 

    VAR ALLELES; 

    CLASS POPULATION; 

    RUN. 

 The PROC PRINT command prints out the data arranged by indicated population.  The 

PROC UNIVARIATE PLOT NORMAL runs several tests, the most important of which is the 

test of whether or not the distribution of the data is normal.  The PROC CORR command runs a 

correlation analysis.  The PROC DISCRIM command runs the discriminant analysis test.  The 

PROC CANDISC command runs a canonical discriminant analysis function which is a 

dimension reduction technique related to principal component analysis and canonical correlation.  

Finally, the STEPDISC procedure selects a subset of quantitative variables to produce a good 

discrimination model using forward selection, backward elimination or stepwise selection.  An 

example of the input programs for the Intron 2, the –141 C Ins,/Del. The 5` (GAAA) and the 

Intron 1 data are set forth on Exhibits 3, 4, 5 and 6, respectively. 

 The output for each of the four data sets is set forth in Exhibits 7, 8, 9 and 10.  Prior to an 

examination of each output, a couple of observations are in order. 

 First, it appears that the larger data set (Matrix 3) produces a better stepwise output.  In 

the smaller datasets, the stepwise procedure did not complete the program. 

 Secondly, as mentioned above, the assumptions for discriminant analysis is that the data 

is a random sample, normally distributed, homoscedastic and correlated.  Thus, prior to 

examining any further outputs, an examination of whether or not this data meets these 

assumptions is necessary. 



 31

 It is necessary to assume here that the samples collected in the ALFRED site are random.  

This is truly an assumption since there is no evidence either way. 

 As to normality of the distribution, the Shapiro-Wilks test on the Intron 1 and 5` data 

shows <0.0001 (normal distribution) while the –141C and Intron 2 data show 0.0058 and 0.0339, 

respectively, which evidences a non-normal distribution. 

 Homoscedasticity means that the variances of the y distributions in regression analysis 

are all equal to one another. (20)  For purposes here, this will be assumed. 

 Finally, the variables are assumed to be correlated since each data set shows a  

correlation coefficient of 1.000. 

 As one final preliminary note, the discriminant analysis procedure is not a real statistical 

test in and of itself.  That is to say, while certain of the components of discriminant analysis lend 

themselves to the traditional tests for statistical significance, the entire analysis is not done in the 

traditional “null hypothesis” model.  Thus, in analyzing the following data set, the emphasis will 

be on evaluating the data with appropriate mention of statistical significance, where appropriate. 

Analysis of the 5` (GAAA)n Tetranucleotide STRP Data Set 

 Since the 5` (GAAA)n tetranucleotide STRP data set was the only one of the four data 

sets to meet all the assumptions and to allow a complete run through the stepwise procedure, this 

data set will be analyzed for purposes of this thesis.  For ease of referral, the entire program 

results are set forth on the immediately following pages and is highlighted for ease of referral.  
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5`(GAAA)n TETRANUCLEOTIDE STRP 

 
CREATED BY 
 
BRUCE F. HOWELL 
 
 
                                       ALLELES    POPULATION 
 
                                          12          Z 
                                          59          D 
                                          11          E 
                                          11          J 
                                          26          Z 
                                          35          D 
                                           4          E 
                                           8          J 
                                          33          Z 
                                         113          D 
                                          28          E 
                                          10          J 
                                          33          Z 
                                         112          D 
                                          20          E 
                                          13          J 
                                          46          Z 
                                         100          D 
                                          18          E 
                                          27          J 
                                          30          Z 
                                          46          D 
                                          15          E 
                                          14          J 
                                          16          Z 
                                          35          D 
                                           3          E 
                                          10          J 
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                                     The UNIVARIATE Procedure 
                                        Variable:  ALLELES 
 
                                              Moments 
 
                  N                          28    Sum Weights                 28 
                  Mean               31.7142857    Sum Observations           888 
                  Std Deviation      30.3227786    Variance            919.470899 
                  Skewness           1.81657489    Kurtosis            2.68560781 
                  Uncorrected SS          52988    Corrected SS        24825.7143 
                  Coeff Variation    95.6123648    Std Error Mean      5.73046651 
 
 
                                    Basic Statistical Measures 
 
                          Location                    Variability 
 
                      Mean     31.71429     Std Deviation           30.32278 
                      Median   23.00000     Variance               919.47090 
                      Mode     10.00000     Range                  110.00000 
                                            Interquartile Range     23.50000 
 
              NOTE: The mode displayed is the smallest of 5 modes with a count of 2. 
 
 
                                    Tests for Location: Mu0=0 
 
                         Test           -Statistic-    -----p Value------ 
 
                         Student's t    t  5.534329    Pr > |t|    <.0001 
                         Sign           M        14    Pr >= |M|   <.0001 
                         Signed Rank    S       203    Pr >= |S|   <.0001 
 
 
                                       Tests for Normality 
 
                    Test                  --Statistic---    -----p Value------ 
 
                    Shapiro-Wilk          W     0.756606    Pr < W     <0.0001 
                    Kolmogorov-Smirnov    D      0.24257    Pr > D     <0.0100 
                    Cramer-von Mises      W-Sq  0.390083    Pr > W-Sq  <0.0050 
                    Anderson-Darling      A-Sq  2.409628    Pr > A-Sq  <0.0050 
 
 
                                     Quantiles (Definition 5) 
 
                                      Quantile      Estimate 
 
                                      100% Max         113.0 
                                      99%              113.0 
                                      95%              112.0 
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                                     The UNIVARIATE Procedure 
                                        Variable:  ALLELES 
 
                                     Quantiles (Definition 5) 
 
                                      Quantile      Estimate 
 
                                      90%              100.0 
                                      75% Q3            35.0 
                                      50% Median        23.0 
                                      25% Q1            11.5 
                                      10%                8.0 
                                      5%                 4.0 
                                      1%                 3.0 
                                      0% Min             3.0 
 
 
                                       Extreme Observations 
 
                               ----Lowest----        ----Highest--- 
 
                               Value      Obs        Value      Obs 
 
                                   3       27           46       22 
                                   4        7           59        2 
                                   8        8          100       18 
                                  10       28          112       14 
                                  10       12          113       10 
 
 
                         Stem Leaf                     #             Boxplot 
                           11 23                       2                * 
                           10 0                        1                0 
                            9 
                            8 
                            7 
                            6 
                            5 9                        1                | 
                            4 66                       2                | 
                            3 03355                    5             +--+--+ 
                            2 0678                     4             *-----* 
                            1 0011234568              10             +-----+ 
                            0 348                      3                | 
                              ----+----+----+----+ 
                          Multiply Stem.Leaf by 10**+1 
 
 
 
 
                                     The UNIVARIATE Procedure 
                                        Variable:  ALLELES 
 
                                          Normal Probability Plot 
                        115+                                         *   * 
                           |                                      *         +++ 
                           |                                             +++ 
                           |                                         ++++ 
                           |                                      +++ 
                           |                                   +++ 
                           |                                +++ * 
                           |                            ++++ * * 
                           |                         +++** * 
                           |                      +++*** 
                           |              ** *+****** 
                          5+     *   *  *  +++ 
                            +----+----+----+----+----+----+----+----+----+----+ 
                                -2        -1         0        +1        +2 
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                                        The CORR Procedure 
 
                                      1  Variables:    ALLELES 
 
 
                                        Simple Statistics 
 
    Variable           N          Mean       Std Dev           Sum       Minimum       Maximum 
 
    ALLELES           28      31.71429      30.32278     888.00000       3.00000     113.00000 
 
 
                             Pearson Correlation Coefficients, N = 28 
                                    Prob > |r| under H0: Rho=0 
 
                                                     ALLELES 
 
                                       ALLELES       1.00000 
 
 
 
 
                                       The DISCRIM Procedure 
 
                     Observations      28          DF Total                27 
                     Variables          1          DF Within Classes       24 
                     Classes            4          DF Between Classes       3 
 
 
                                      Class Level Information 
 
                         Variable                                                  Prior 
           POPULATION    Name        Frequency       Weight    Proportion    Probability 
 
           D             D                   7       7.0000      0.250000       0.250000 
           E             E                   7       7.0000      0.250000       0.250000 
           J             J                   7       7.0000      0.250000       0.250000 
           Z             Z                   7       7.0000      0.250000       0.250000 
 
 
                                Pooled Covariance Matrix Information 
 
                                                Natural Log of the 
                                  Covariance    Determinant of the 
                                 Matrix Rank     Covariance Matrix 
 
                                           1               5.94346 
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                                       The DISCRIM Procedure 
 
                       Pairwise Generalized Squared Distances Between Groups 
 
                                 2         _   _       -1  _   _ 
                                D (i|j) = (X - X )' COV   (X - X ) 
                                            i   j           i   j 
 
 
                            Generalized Squared Distance to POPULATION 
 
                From 
                POPULATION             D             E             J             Z 
 
                D                      0       8.60761       8.86713       4.94699 
                E                8.60761             0       0.00193       0.50366 
                J                8.86713       0.00193             0       0.56790 
                Z                4.94699       0.50366       0.56790             0 
 
                                   Linear Discriminant Function 
 
                                  _     -1 _                              -1 _ 
                   Constant = -.5 X' COV   X      Coefficient Vector = COV   X 
                                   j        j                                 j 
 
 
                           Linear Discriminant Function for POPULATION 
 
                 Variable             D             E             J             Z 
 
                 Constant      -6.69120      -0.26232      -0.23149      -1.02820 
                 ALLELES        0.18735       0.03710       0.03485       0.07344 
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                                       The DISCRIM Procedure 
                 Classification Summary for Calibration Data: WORK.DRD2GAAAALLELES 
                     Resubstitution Summary using Linear Discriminant Function 
 
                               Generalized Squared Distance Function 
 
                                     2         _       -1   _ 
                                    D (X) = (X-X )' COV  (X-X ) 
                                     j          j            j 
 
                      Posterior Probability of Membership in Each POPULATION 
 
                                              2                    2 
                           Pr(j|X) = exp(-.5 D (X)) / SUM exp(-.5 D (X)) 
                                              j        k           k 
 
 
                   Number of Observations and Percent Classified into POPULATION 
 
            From 
            POPULATION            D            E            J            Z        Total 
 
            D                     4            0            0            3            7 
                              57.14         0.00         0.00        42.86       100.00 
 
            E                     0            3            3            1            7 
                               0.00        42.86        42.86        14.29       100.00 
 
            J                     0            1            5            1            7 
                               0.00        14.29        71.43        14.29       100.00 
 
            Z                     0            1            1            5            7 
                               0.00        14.29        14.29        71.43       100.00 
 
            Total                 4            5            9           10           28 
                              14.29        17.86        32.14        35.71       100.00 
 
            Priors             0.25         0.25         0.25         0.25 
 
 
                               Error Count Estimates for POPULATION 
 
                                    D           E           J           Z       Total 
 
             Rate              0.4286      0.5714      0.2857      0.2857      0.3929 
             Priors            0.2500      0.2500      0.2500      0.2500 
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                                       The CANDISC Procedure 
 
                     Observations      28          DF Total                27 
                     Variables          1          DF Within Classes       24 
                     Classes            4          DF Between Classes       3 
 
 
                                     Class Level Information 
 
                                Variable 
                  POPULATION    Name        Frequency       Weight    Proportion 
 
                  D             D                   7       7.0000      0.250000 
                  E             E                   7       7.0000      0.250000 
                  J             J                   7       7.0000      0.250000 
                  Z             Z                   7       7.0000      0.250000 
 
 
                                           
 
                                       The CANDISC Procedure 
 
                          Multivariate Statistics and Exact F Statistics 
 
                                       S=1    M=0.5    N=11 
 
          Statistic                        Value    F Value    Num DF    Den DF    Pr > F 
 
          Wilks' Lambda               0.36856946      13.71         3        24    <.0001 
          Pillai's Trace              0.63143054      13.71         3        24    <.0001 
          Hotelling-Lawley Trace      1.71319282      13.71         3        24    <.0001 
          Roy's Greatest Root         1.71319282      13.71         3        24    <.0001 
 
 
 
                                           
 
                                       The CANDISC Procedure 
 
                                            Adjusted    Approximate        Squared 
                            Canonical      Canonical       Standard      Canonical 
                          Correlation    Correlation          Error    Correlation 
 
                        1    0.794626       0.782871       0.070931       0.631431 
 

Test of H0: The canonical correlations in 
the 

Eigenvalues of Inv(E)*H                               current row and all that follow are                      
= CanRsq/(1-CanRsq)       zero 
 
                                                      Likelihood Approximate 
 Eigenvalue Difference Proportion Cumulative      Ratio     F Value Num DF Den DF Pr > F 
 
1     1.7132                1.0000     1.0000 0.36856946       13.71      3     24 <.0001 
 
                                  NOTE: The F statistic is exact. 
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                                       The CANDISC Procedure 
 
                                    Total Canonical Structure 
 
                                    Variable              Can1 
 
                                    ALLELES           1.000000 
 
 
                                    Between Canonical Structure 
 
                                    Variable              Can1 
 
                                    ALLELES           1.000000 
 
 
                                 Pooled Within Canonical Structure 
 
                                    Variable              Can1 
 
                                    ALLELES           1.000000 
 
 
 
 
                                           
                                       The CANDISC Procedure 
 
                         Total-Sample Standardized Canonical Coefficients 
 
                                    Variable              Can1 
 
                                    ALLELES        1.552973583 
 
 
                      Pooled Within-Class Standardized Canonical Coefficients 
 
                                    Variable              Can1 
 
                                    ALLELES        1.000000000 
 
 
                                    Raw Canonical Coefficients 
 
                                    Variable              Can1 
 
                                    ALLELES       0.0512147520 
 
 
                                Class Means on Canonical Variables 
 
                                   POPULATION              Can1 
 
                                   D                2.033957293 
                                   E               -0.899916356 
                                   J               -0.943814715 
                                   Z               -0.190226222 
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                                      The STEPDISC Procedure 
 
                          The Method for Selecting Variables is STEPWISE 
 
               Observations        28          Variable(s) in the Analysis        1 
               Class Levels         4          Variable(s) will be Included       0 
                                               Significance Level to Enter     0.15 
                                               Significance Level to Stay      0.15 
 
 
                                     Class Level Information 
 
                                Variable 
                  POPULATION    Name        Frequency       Weight    Proportion 
 
                  D             D                   7       7.0000      0.250000 
                  E             E                   7       7.0000      0.250000 
                  J             J                   7       7.0000      0.250000 
                  Z             Z                   7       7.0000      0.250000 
 
 
 
 
 
                                      The STEPDISC Procedure 
                                    Stepwise Selection: Step 1 
 
                                 Statistics for Entry, DF = 3, 24 
 
                      Variable    R-Square    F Value    Pr > F    Tolerance 
 
                      ALLELES       0.6314      13.71    <.0001       1.0000 
 
                                Variable ALLELES will be entered. 
 
                                 All variables have been entered. 
 
 
                                     Multivariate Statistics 
 
  Statistic                                       Value    F Value    Num DF    Den DF    Pr > F 
 
  Wilks' Lambda                                0.368569      13.71         3        24    <.0001 
  Pillai's Trace                               0.631431      13.71         3        24    <.0001 
  Average Squared Canonical Correlation        0.210477 
 
 
 
 
 
                                      The STEPDISC Procedure 
                                    Stepwise Selection: Step 2 
 
                                Statistics for Removal, DF = 3, 24 
 
                             Variable    R-Square    F Value    Pr > F 
 
                             ALLELES       0.6314      13.71    <.0001 
 
                                   No variables can be removed. 
 
                                  No further steps are possible. 
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                                      The STEPDISC Procedure 
 
                                     Stepwise Selection Summary 
 
                                                                                    Average 
                                                                                    Squared 
       Number                     Partial                       Wilks'    Pr <    Canonical    Pr 
> 
 Step      In  Entered  Removed  R-Square  F Value  Pr > F      Lambda  Lambda  Correlation    
ASCC 
 
    1       1  ALLELES             0.6314    13.71  <.0001  0.36856946  <.0001   0.21047685  
<.000 
 

 

 

 First, note that the data meets the requirements for normal distribution with a Shapiro-

Wilk statistic of 0.756606 and a probability of normal distribution of <0.0001. (alpha=0.05)  

(Shapiro-Wilk, 0.756 <p<0.001). 

 Secondly, note that the data per the box plot appears to be skewed. 

 Thirdly, in the discrimination procedure, note that the weights given to the populations 

are equal.  This is different than the weighting that was done manually to eliminate population 

size bias.  This may be part of the explanation for the linear discriminant functions of the four 

populations being different from those functions run manually. 

 Using the CANDISC procedure, the observations are 28, the groups are 4 and the 

discriminant function is 3 since there are 4 groups.  Wilks’ Lambda is the proportion of the total 

variance in the discriminant scores not explained by differences among the groups. (25).  The 

test results in a quantity from 0 to 1 which measures the amount of variability among the data 

that is not expressed by the effect of the numbers on the examined factor (e.g., the amount of 

variability among weight that is not accounted for by the examined diets). The Wilks’ Lambda 

test shows that ratio of the within-groups sum of squares to the total sum of squares and,  per the 

output, is significant.  (Wilks’ Lambda 0.368, p<0.001).  Here, approximately 37% of the 
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variance is not explained by group differences. This is statistically significant and the null 

hypothesis of Druze=Danes=Europeans=Japanese is rejected. 

 The CANDISC program produces a canonical correlation among the data.  Here, the 

correlation is 0.794 which, being close to 1.000, is somewhat correlated. The canonical 

correlation measures the association between the discriminant scores and the groups.  Here, the 

association would appear to be high. 

 The Eigenvalue (25) is a ratio of the between-groups sum of squares to the within-groups 

sum of squares.  It is a function of roots of matrices. This value measures the spread of the group 

centroids in the dimension of multivariate space. (20)  Here, is 1.713 which is statistically 

significant (Eigenvalue 1.713, p <0.0001).  

 Finally, evaluating the STEPDISC procedure, the R2 has a value of 0.631 with a 

probability of <0.0001.  (Stepwise elimination, R2=0.631, p<0.0001).  This shows that the data 

is capable of being subjected to the stepwise procedure and in this procedure is statistically 

significant. 
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SUMMARY OF THE SAS AND MANUAL ANALYSIS 

 
 The SAS output is somewhat less intuitive than the computation of the discriminant 

functions done manually.  However, the SAS output is important to show different tests, such as 

canonical correlation and Wilks Lambda,  that are necessary to test the data for the discriminant 

function.   

 Here, the linear discriminant functions for the different populations shown by the SAS 

output and the manual output are as follows: 

 Population  SAS  Manual SASRank MRank 

 Druze   0.073  366.5  3  2 

 Danes   0.187  500  2  1 

 Europeans  0.037  187  4  3 

 Japanese  0.348  175.6  1  4 

 

In comparing the results produced by SAS to those produced manually, it is easy to see that they 

are quite different.  This can only be explained by the fact that, in the SAS program, the 

populations were weighted equally.  Also, since there is no correlation among the ranks of the 

populations in the above table, different results occur significantly when a cutoff score is to be 

used. 
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CONCLUSION 

 The discriminant analysis statistical test will produce a method of discriminating between 

populations based solely on the knowledge of genetic polymorphisms.  Of course, data are 

required to be collected in order for such actual data to be compared against predetermined and 

established cutoff scores for  various populations.  Such information may be used for 

discrimination in beneficial or non-beneficial manners.  The use to which such information is put 

will be determined by public policy. Such policy needs to swiftly be determined since the 

information regarding genetic polymorphisms and population is growing and more available 

each day. 
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