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An anti-G"11 antibody was used to label neuronal cilia throughout the rat central

nervous system.  Immunoreactive cilia were observed in every examined region of the rat

CNS, but not in monkey or mouse tissue.  Antibodies to G"q and G"q/11 failed to label

cilia.  Immunoreactive cilia were observed as early as postnatal day 0 in spinal tissue,

and postnatal day 3 in hypothalamic tissue.  There was a statistically significant negative

correlation between a region’s mean cilium length and that region’s distance to the

nearest ventricle; regions nearest ventricles were those with the longest cilia.  This

correlation suggests neuronal cilia may function as chemosensors, detecting substances

as they move out from the cerebrospinal fluid and into the extracellular space of the

brain.
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INTRODUCTION

Background Information

The presence of cilia have long been reported in the nervous system.  Olfactory

cilia have been well characterized as chemosensors, binding odorants to specific odorant

receptors and initiating signal transduction.  Bundles of motile cilia are also well

recognized on ependymal cells that line the ventricles of the brain and the central canal

of the spinal cord.  The occurrence of neuronal cilia - solitary, non-motile cilia extending

from neuronal somata and displaying a 9+0 microtubule pattern - have also been

described, but these primary cilia have received considerably less attention despite their

seemingly pervasive presence throughout the nervous system.  Ultrastructural studies of

the nervous system have localized these neuronal cilia in areas such as the inner nuclear

and ganglion cell layers of the retina of guinea pigs and humans (Allen, 1965), in the

lateral geniculate nucleus (Karlsson, 1966) and the lateral vestibular nucleus of the rat

(Sotelo and Palay, 1968), in the preoptic nucleus of the rat (Peters et al., 1976), in the rat

cerebral cortex (Dahl, 1963), in the fascia dentata of the rat hippocampal formation

(Dahl, 1963), in the guinea pig hypothalamus (Vigh-Teichmann et al., 1980), and in the

dorsal gray column of the rat spinal cord in or near the substantia gelatinosa (Duncan et

al., 1963).  Neuronal cilia have also been described in the dopaminergic tyrosine

hydroxylase-immunoreactive neurons of the rat ventral tegmental area (Bayer and Pickel,

1990), and in the neuropeptide Y-immunoreactive neurons of the rat striatum (Wolfram
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and Nitsch, 1992).  Immunocytochemical studies have identified two receptors localized

to the plasma membrane of neuronal cilia: the serotonin receptor 5-HT6
 (Brailov et al.,

2000) and the somatostatin receptor sst3 (Handel et al., 1999).  5-HT6 receptor

immunostaining was found in neuronal cilia in the rat striatum, nucleus accumbens,

olfactory tubercle, and islands of Calleja (Brailov et al., 2000).  Much more widespread

were the sst3 immunoreactive neuronal cilia, which were identified within areas of each

of the following regions of the rat central nervous system: the main olfactory bulb,

cerebral cortex, hippocampus, basal ganglia, septal and basal forebrain regions,

amygdala and related areas, thalamus, hypothalamus, midbrain, pons, medulla oblongata,

cerebellum, and spinal cord (Handel et al., 1999).

Where described, neuronal cilia arise as solitary projections from invaginations of

the perikarya; the cilia display a 9+0 microtubule pattern in their basal bodies and

proximal segments, while showing a 8+1 pattern in their more distal segments (Dahl,

1963; Duncan et al., 1963; Allen, 1965; Karlsson, 1966; Sotelo and Palay, 1968; Peters et

al., 1976; Chalfie and Thomson, 1982; Bayer and Pickel, 1990; Brailov et al., 2000). 

Cilia of other body tissues, typically occurring in bundles, show a 9+2 microtubule

pattern and these cilia are motile.  In contrast, cilia with a 9+0 pattern, such as neuronal

cilia, are presumably non-motile (Barnes, 1961; Peters et al., 1976; Handel et al., 1999). 

The basal body of a neuronal cilium represents the cell's distal centriole (Allen, 1965;

Wheatley, 1995); in electron microscopy studies of primary cilia in other tissues, the

basal body appears to have developed ontogenetically from a structure indistinguishable

from a centriole (Barnes, 1961).  The basal body extends to or protrudes slightly beyond



3

the soma's plasma membrane, and consists of nine evenly spaced triplets of microtubules

arranged in cylindrical form, continuous with the filaments of the cilium (Allen, 1965;

Peters et al., 1976).  There is also usually a proximal centriole located near the basal

body and oriented at nearly right angles with respect to it, which also displays the same

9+0 pattern of microtubule triplets (Dahl, 1963; Allen, 1965; Peters et al., 1976).  From

both the basal body and proximal centriole, thin rootlets resembling small ladders radiate

into the surrounding cytoplasm, curving as they converge and ending in proximity to the

Golgi apparatus (Dahl, 1963; Allen, 1965; Peters et al., 1976; Bayer and Pickel, 1990).

The proximal segment of the cilium contains a 9+0 pattern of longitudinal

microtubule doublets, and as the doublets extend distally the arrangement of

microtubules changes to a 8+1 pattern (Dahl, 1963; Duncan et al., 1963; Allen, 1965;

Sotelo and Palay, 1968; Peters et al., 1976; Chalfie and Thomson, 1982; Bayer and

Pickel, 1990; Brailov et al., 2000).  This pattern results from the central displacement of

one of the peripheral filaments, though the aberrant doublet does not come to occupy the

true center of the arrangement, and the remaining eight doublets subsequently adjust

their positions so as to remain evenly spaced (Duncan et al., 1963; Allen, 1965; Peters et

al., 1976).  This pattern remains until the most distal tip of the cilium (Allen, 1965).  It

has been offered that this change in filament pattern: (1) is regressive, and the cilium

vestigial; (2) occurred to meet a new functional demand; (3) was an accident (Dahl,

1963).  Based on the common occurrence of neuronal cilia and the consistency of their

internal structure, the first and third of these explanations can be considered as unlikely, 
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and therefore in this regard it may be that these cilia have adapted to serve unique

sensory functions (Allen, 1965).

Statement of Purpose

The aim of this project was to investigate a novel immunolocalization of neuronal

cilia in the central nervous system of the rat using an anti-G"11 antibody.  The principal

investigative goals included: (1) characterizing the immunoreactivity of the cilia through

the use of additional antibodies and tissue from other species; (2) detailing the

anatomical locations of G"11-immunoreactive (IR) cilia throughout the central nervous

system of the adult rat; (3) examining the developmental emergence of G"11-IR cilia in

prenatal / neonatal rat pups; and (4) scrutinizing those physical characteristics of either

the cilia or the somata on which they appeared that could lend insight toward

determining a possible physiological function.  

Significance of the Problem

Since the first reports of their existence, there have been numerous postulates as

to the function of neuronal cilia with little evidence to support any position.  Perhaps the

most prevailing line of thought, leading to the apparent neglect with which neuronal cilia

have been treated, is that they are merely vestigial and functionless remnants (Peters et

al., 1976).  Others have suggested sensory functions, such as possible mechanoreceptors

(Allen, 1965), or chemosensors (Barnes, 1961).  With the discovery of 5-HT6  and sst3

receptors on the plasma membranes of neuronal cilia, it now seems more likely that they
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could indeed be functional, serving as interfaces with the extracellular environment,

similar to the function of olfactory cilia (Handel et al., 1999; Brailov et al., 2000). 

Neuronal cilia might provide a receptive surface capable of sensing specific molecules in

the cell's immediate milieu, and the discovery of signal transduction machinery in

neuronal cilia (as found in olfactory cilia) would lend increasing support to this

hypothesis.

It has already been revealed that the motile cilia of ependymal cells lining the

ventricular cavities contain a specific G protein subunit (Gi2), and this subunit could

likely function as a transducer in the movement of these cilia (Shinohara et al., 1998). 

There are also distinct G protein subunits in olfactory cilia; a Gs-like protein mediates

odor-induced cAMP production, whereas a Go-like protein mediates odor-induced IP3

formation (Schandar et al., 1998).  In addition, a G"q and G"11 subunit have been shown to

be present at the apical surface of cells within the olfactory tissue of the rat and catfish,

where they most likely play a role  in olfaction (Dellacorte et al., 1996).  If similar

subunits are also present within the membranes of neuronal cilia, it would not only be the

first localization of a G protein subunit inside these cellular organelles, but would further

aid in the assertion that neuronal cilia do possess a physiological function, plausibly of a

nature concerning chemosensation.   



6

MATERIALS AND METHODS

Subjects

The tissue sections studied came from subjects including: (1) adult male Long-

Evans hooded and Sprague Dawley rats; (2) Long-Evans hooded rat pups collected on

embryonic day 18 (E18), the day of birth (P0), and postnatal day 3 (P3); (3) adult male

Balb-C/ICR mix mice; (4) adult G"11 -/- mutant and G"q -/- mutant mice (this tissue came

from prior experiments in the laboratory) ; (5) an adult male bonnet macaque monkey

(provided by E.G. Jones at the University of California at Davis); and (6) an adult male

rhesus macaque monkey (provided by Chris Muly at Emory University). 

Antibodies

The main primary antibody used was a rabbit polyclonal IgG antibody directed

against an amino terminal domain of the G"11 subunit, obtained from Santa Cruz

Biotechnology (catalog #sc-394).  An anti-G"q antibody directed against an amino

terminal domain of the G"q subunit (catalog #sc-393), and a combined anti-G"q/11 antibody

directed against a domain common to both subunits (catalog #sc-392) were also

obtained, in addition to the blocking peptides for each antibody.     
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Tissue Preparation

Rats and mice were deeply anesthetized with either a urethane solution (1g/kg) or

Nembutal solution (80 mg/kg) administered i.p., and then transcardially perfused with a

0.9% saline solution followed by a 4% paraformaldehyde solution in 0.1 M phosphate

buffer (pH 7.4).  The spinal cords and brains were rapidly removed, blocked, and then

post-fixed in the same fixative solution for 1 h at 4/C.  The tissues were then

cryoprotected in a 30% sucrose solution in 0.1 M phosphate buffer for approximately 48

h, and frozen in powdered dry ice and stored at -80/C.

The bonnet macaque spinal cord tissue was perfused with a 4% paraformaldehyde

solution in 0.1 M phosphate buffer and post-fixed overnight in 4% paraformaldehyde in

phosphate buffer.  The rhesus macaque brain tissue was perfused with a 4%

paraformaldehyde, 0.2% gluteraldehyde, 15% picric acid solution, and post-fixed for 2-5

h in a 4% paraformaldehyde solution.  The bonnet macaque spinal cord tissue was

provided as frozen blocks, whereas the rhesus macaque brain tissue was sectioned at a

thickness of 50:m and shipped in cryoprotectant solution. 

Immunohistochemistry

Frozen tissue samples were sectioned at a thickness of 40 :m using a sliding

microtome (with the exception of the rhesus macaque brain tissue, as previously noted). 

The sections were collected in Tris-buffered saline (TBS; pH 7.6), or if previously

sectioned removed from cryoprotectant solution and rinsed in TBS.  Sections were then

submerged in a pre-incubation solution comprised of TBS with 5% normal goat serum
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(NGS) and 0.1% Triton X-100 for 30 min at room temperature (RT).  All incubations

were performed under continuous gentle agitation.  Tissue sections were then incubated

with the primary antibody of choice at an optimal dilution of 1:3,000 for spinal cord

tissue, and 1:1,500 for brain tissue, in pre-incubation solution at 4/C overnight.  For

adsorption control, the blocking peptide for the antibody of use was added to this

solution.

Upon completion of incubation in the primary antibody solution, tissue sections

were washed in a 15 min rinse of TBS, a 15 min rinse of pre-incubation solution, and

then incubated with a secondary antibody (goat anti-mouse; Jackson ImmunoResearch

Laboratories) at an optimal dilution of 1:1,000 for either spinal cord or brain tissue, for 1

h in pre-incubation solution at RT.  After two 15 min rinses in TBS with 1% NGS, the

tissue sections were processed with an ABC solution (50 :l each of Vector Standard A

and B solutions in 2.5 ml of TBS with 1% NGS and 0.0365 g NaCl), providing biotin

amplification.  Tissue sections were then washed in two 15 min rinses of TBS before

incubation in a TBS solution containing (per 5 ml of TBS) 2.5 mg 3,3'-diaminobenzidine

and 2 :l of 50% hydrogen peroxide.  Tissue sections were allowed to react in this

solution for 2 min, and then were washed in two 15 min rinses of TBS.  Tissue sections

then were mounted onto subbed slides, dehydrated through a series of ethanol solutions

(50%, 70%, 95%, 100% and 100%), cleared in three consecutive xylene solutions, and

then coverslipped with DPX mounting medium.  When desired, the tissue sections were

counterstained with thionin and differentiated in an acidified 95% ethanol solution.
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Serial Sections through the Adult Rat Brain

In order to obtain a series of sections throughout the whole adult rat brain,

coronal sections were taken through an entire brain and stored in a 30% glycerol and

30% ethylene glycol in 0.1 M phosphate buffer cryoprotectant solution at -20°C for no

longer than three months.  Every tenth section was then processed for

immunohistochemistry.  This equated to a 0.4 mm distance between sections and ensured

that most of the principal regions, layers, and nuclei of the brain would be present.

Data Analysis

Sections that were immunohistochemically processed, Nissl counterstained, and

mounted were examined for the presence of immunoreactive cilia via light microscopy. 

Specific regions of the CNS were chosen to represent the range of neuronal cilia length

and somata sizes.  Within these selected regions, approximately 30 to 50 cilia and 30 to

50 somata outlines were drawn separately with the aid of a camera lucida.  Those cilia

selected for drawing were those who lay horizontal across the plane of the section, and

thus their entire length could be brought into focus at the same level; those somata

selected for drawing were those who appeared to be sectioned through their center, as

evident by a detectable nucleus, and were thus at or near their maximum width.  The

drawings were then digitized and analyzed using image-analysis software (AIS 6.0 Rev.

1.0, Imaging Research Inc.).  Portions of the data presented have been previously

published in abstracts (Fuchs et al., 2000; Schwark and Fuchs, 2000).
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RESULTS

Immunostaining of Neuronal Cilia

Tissue sections from the spinal cords and brains of rats, mice, and monkeys were

analyzed for the presence of immunoreactive neuronal cilia.  Results from experiments

using the anti-G"q antibody, the anti-G"q/11 antibody, and all those using the mutant mice

tissue were generated in the laboratory prior to this study.  Of the three antibodies used,

only the anti-G"11 antibody provided staining of neuronal (or ependymal) cilia. 

Furthermore, G"11-IR cilia were identified only in rat tissue, and only at or after postnatal

day 0.  The results from these experiments are presented in Table 1.
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Table 1. Immunostaining of neuronal cilia

Antibody Species Subject Tissue IR neuronal cilia IR ependymal cilia

anti-G"11 rat E18 spinal cord - -

brain - -

PO spinal cord  +  +

brain - +

P3 spinal cord  + +

brain + +

adult spinal cord + +

brain + +

mouse adult spinal cord - -

brain - -

G"11-/-
*+ spinal cord - -

G"q -/-
*+ spinal cord - -

monkey adult spinal cord - - 

brain - -

anti-G"q/11
+ rat adult spinal cord - -

brain - -

mouse adult spinal cord - -

brain - -

G"11-/-
* spinal cord - -

G"q -/-
* spinal cord - - 

anti-G"q
+ rat adult spinal cord - -

mouse adult spinal cord - -

*Tissue came from prior experiments in the laboratory
+Results generated in prior experiments in the laboratory
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Immunolocalization of Neuronal Cilia in the Adult Rat CNS

A nearly ubiquitous presence of G"11-IR neuronal cilia was revealed within the

adult rat CNS upon analysis of a series of tissue sections containing most of the principal

regions, layers, and nuclei of the CNS (Table 2).  Cilia were always observed as a single

cilium per soma, and were never observed on glial cells.  

In addition to determining whether G"11-IR cilia were present or absent, each

region was evaluated in terms of its percentage of ciliated neurons, or the percentage of

somata in an region that were expressing G"11-IR cilia.  Regions recorded as having a

high percentage of ciliated neurons were those in which all, or nearly all, somata were

found to possess a cilium; because somata were viewed from a fixed perspective, and the

possibility existed that a soma may have been divided during sectioning, it could not be

determined that a soma found to be lacking a cilium did not indeed possess a cilium

outside that limited range of view.  Regions recorded as having a low percentage of

ciliated neurons were those in which the percentage of somata not expressing cilia was

great enough to most likely require additional explanations beyond those associated with

sectioning, as mentioned above.  These regions with a low percentage of ciliated neurons

were much less common than those with a high percentage of ciliated neurons, and

included certain layers of the olfactory bulb, the septal nuclei, the medial geniculate

nucleus, and the cerebellar cortex.
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Table 2. Immunolocalization of neuronal cilia in the adult rat CNS

                                                                 Presence of           Percentage of 
        G"11-IR cilia         ciliated neurons

Telencephalon
Olfactory system

Olfactory bulb: glomerular layer + low
external plexiform layer + low
mitral cell layer + high
internal plexiform layer + low
internal granular layer + high
ependymal layer + low

Accessory olfactory bulb + high
Anterior olfactory nucleus + high
Olfactory tubercle + high
Islands of Calleja + high
Nucleus of the lateral olfactory tract + high
Bed nucleus, accessory olfactory tract + high

Cerebral cortex
Frontal + high
Parietal + high
Temporal + high
Cingulate + high
Retrospenial + high
Piriform + high
Perirhinal + high
Occipital + high
Entorhinal + high
Insular + high
Tenia tecta + high
Indusium griseum + high

Hippocampal formation and associated areas
CA1 + high
CA2 + high
CA3 + high
Dentate gyrus + high
Presubiculum + high
Parasubiculum + high
Subiculum + high
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                                                                 Presence of           Percentage of 
        G"11-IR cilia         ciliated neurons

Basal Ganglia
Caudate putamen +       high
Nucleus accumbens +         high
Globus pallidus +        high
Claustrum +         high
Ventral pallidum +         high
Subthalamic nucleus +        high

Amygdala areas
Basolateral nuclear group +         high
Corticomedial nuclear group +        high
Central amygdaloid nucleus +         high

Septal areas
Medial septal nucleus +       low
Lateral septal nucleus +       low

Diencephalon
Thalamus

Anterior nuclear group +          high
Midline nuclear group +          high
Mediodorsal nucleus +     high
Intralaminar nuclear group + high
Lateral nuclear group + high
Ventral nuclear group + high
Lateral geniculate nucleus + high
Medial geniculate nucleus + low
Posterior nuclear group + high

Hypothalamus
Preoptic nuclear group + high
Suprachiasmatic nuclear group + high
Tuberal nuclear group + high
Mammillary nuclear group + high

Mesencephalon
Pretectal region + high
Superior colliculus + high
Inferior colliculus + high
Oculomotor nuclear group + high
Midbrain reticular formation + high
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                                                                 Presence of           Percentage of 
        G"11-IR cilia         ciliated neurons

Red nucleus + high
Periaqueductal grey matter + high
Interpeduncular nucleus + high
Ventral tegmental area + high
Substantia nigra + high

Metencephalon
Pons

Trigeminal nuclei + high
Pontine reticular formation + high
Superior olivary complex + high
Locus coeruleus + high

Cerebellum
Molecular layer of cortex + low
Purkinje cell layer of cortex + low
Granule cell layer of cortex + low
Cerebellar nuclei + high

Myelencephalon
Medulla oblongata

Vestibular nuclei + high
Cochlear nuclei + high
Medullary reticular formation + high
Solitary nucleus + high
Inferior olivary complex + high

Spinal Cord
Dorsal horn + high
Ventral horn + high
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Development of G"11-IR Neuronal Cilia

Within the spinal cord, G"11-IR neuronal cilia were absent at E18, but were

present at P0, at which time they appeared on only a few neurons.  Within three days

(P3), their presence had dramatically increased such that they appeared on a percentage

of somata comparable to that in adult tissue.  G"11-IR ependymal cilia were also absent at

E18 and present at P0, though at P0 the percentage of ependymal cells expressing G"11-IR

ependymal cilia was closer to that of adult levels than was the percentage of neurons

expressing G"11-IR neuronal cilia.  By P3, the percentage of ependymal cells expressing

G"11-IR cilia was also comparable to that in adult tissue.  

Within hypothalamic tissue (selected for examination a priori for its abundant and

easily visualized G"11-IR neuronal cilia in adult sections), G"11-IR neuronal cilia were

absent in both E18 and P0 tissue.  G"11-IR neuronal cilia were present in P3 tissue, but

occurred on fewer somata than in adult tissue.  G"11-IR ependymal cilia, however, were

absent at E18 but present at P0.  As in the spinal cord, by P3 the percentage of

ependymal cells expressing G"11-IR cilia was comparable to that in adult tissue (Table 3).
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Table 3. Development of G"11-IR neuronal cilia

a. Immunolocalization of cilia

         E18            P0            P3         Adult
Spinal Cord:

neurons - + + +
ependymal cells - + + +

Hypothalamus:
neurons - - + +
ependymal cells - + + +

b.  Percentage of cells expressing G"11-IR cilia

Spinal Cord:
neurons P0 << P3 = adult
ependymal cells PO < P3 = adult

Hypothalamus:
neurons P3 < adult
ependymal cells P0 < P3 = adult
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Measurements of Cilia Lengths and Somata Areas in the Adult Rat CNS

Measurements of cilia lengths (ranging from mean values of 2.1 :m to 9.4 :m)

and somata areas (ranging from mean values of 44.9 :m2 to 1016.6 :m2) were taken

from selected regions of the adult rat CNS (Table 4).  Regression analysis of the means

revealed no statistically significant correlation between these two variables across CNS

regions (Figure 1; r = 0.048, df = 21, p > 0.05).  The distance from each region of the

CNS to the nearest cerebrospinal fluid (CSF)-containing cavity was also recorded, and

was measured as the distance from the center of the region to the nearest border of the

nearest ventricle (or other CSF-containing cavity) using a stereotaxic atlas of the rat brain

(Paxinos, 1986).  Regression analysis revealed a statistically significant negative

correlation between these two variables (Figure 2; r = -0.613, df = 21, p < 0.01), such that

those regions closest to a ventricle displayed the longest cilia.  Furthermore, those

regions within an approximate 2 mm distance to the nearest ventricle retained this

statistically significant negative correlation (r = -0.608, df = 12, p < 0.05), while those

beyond this distance did not (r = 0.415, df = 7, p > 0.05).  Each region’s ratio of cilium

length:soma area was also compared to that region’s distance to the nearest ventricle. 

There was a statistically significant negative correlation between these two variables

(Figure 3; r = -0.482, df = 21, p < 0.05), such that those regions closest to ventricles were

those with the largest ratio of cilium length:soma area.  Measurements of cilia lengths

and somata areas taken from CNS regions with obvious similarities were further

analyzed individually, and included those measurements from (1) different layers of the

same cortical region, in which there was not a statistically significant correlation
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between cilium length and soma area (r = 0.732, df = 2, p > 0.05), (2) regions defined as

having a low percentage of ciliated neurons, and (3) different laminae of the same spinal

region (Figures 4 - 6).   
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Table 4. Cilia lengths and somata areas in the adult rat CNS

                                        Cilium                                 Soma                         Cilium length:
                                        length                                  area                                 soma area 
CNS Region                     (:m)   S.D.   S.E.   n          (:m2)    S.D.     S.E.    n        (:m-1)

TELENCEPHALON

Olfactory system

Anterior olfactory nucleus

medial part 3.2 0.6 0.1 50 80.4 24.2 4.1 36 0.040

Cerebral cortex

Entorhinal

layers 2/3 3.5 0.6 0.1 43 116.5 21.8 3.3 45 0.030

Frontal

layers 2/3 2.8 0.4 0.1 40 95.0 18.8 3.0 41 0.029

layer 4 2.3 0.4 0.1 52 65.5 11.4 1.7 46 0.035

layer 5 3.1 0.4 0.1 48 155.4 76.5 11.9 42 0.020

layer 6 3.1 0.4 0.1 55 86.6 13.3 1.7 61 0.035

Occipital

layers 2/3 3.1 0.4 0.1 53 98.9 18.1 2.6 49 0.031

Perirhinal

layers 2/3 3.2 0.5 0.1 46 108.3 17.3 3.0 35 0.029

Hippocampus

Dentate gyrus

granular layer 3.8 0.5 0.1 71 70.4 16.2 2.5 43 0.054

Subiculum 4.8 0.6 0.1 47 176.1 27.6 4.2 45 0.027

Basal ganglia

Caudate putamen 4.9 0.7 0.1 44 94.7 29.5 4.8 39 0.052

Septal areas

Lateral septal nucleus 5.1 0.7 0.1 38 86.1 16.9 2.8 37 0.059
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                                        Cilium                                 Soma                        Cilium length:
                                        length                                  area                                soma area 
CNS Region                     (:m)   S.D.   S.E.   n          (:m2)    S.D.     S.E.    n       (:m-1)

DIENCEPHALON

Thalamus

Anterior nuclear group

anterodorsal nucleus 5.7 1.2 0.2 38 158.5 32.2 5.0 43 0.036

Medial geniculate nucleus 2.1 0.3 0.1 22 131.0 17.0 3.0 34 0.016

Ventral nuclear group

ventral posterior nucleus 2.1 0.4 0.1 46 158.0 30.6 5.2 36 0.013

Hypothalam us

Preoptic nuclear group

periventricular nucleus 7.5 1.2 0.2 44 92.9 18.9 3.0 41 0.080

Tuberal nuclear group

arcuate nucleus 6.0 1.1 0.2 50 105.5 26.3 4.1 43 0.057

MESENCEPHALON

Periaqueductal grey matter 9.4 1.4 0.2 34 126.0 39.6 6.9 34 0.074

METENCEPHALON

Cerebellum

Cerebellar nuclei 4.1 0.6 0.1 37 294.2 81.2 14.6 32 0.014

Molecular layer of cortex 2.8 0.4 0.1 41 44.9 9.7 1.7 34 0.062

MYELENCEPHALON

Spinal Cord

Lumbar region

  dorsal horn (l. 1-4) 4.3 0.9 0.1 43 58.6 12.3 2.2 32 0.073

  ventral horn (l. 9) 4.4 0.9 0.2 22 1016.6 349.9 93.5 15 0.004

  central canal (l. 10) 5.7 1.2 0.2 37 153.8 42.9 8.1 29 0.037
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Figure 1. Cilium length versus soma area (mean ± sem; r = 0.048, df = 21, p > 0.05).
Cilium length (:m) Soma area (:m2)

Medial geniculate nucleus 2.1 131.0

Ventral posterior nucleus - thalamus 2.1 158.0

Frontal cortex, layer 4 2.3 65.5

Frontal cortex, layers 2/3 2.8 95.0

Molecular layer of cerebellar cortex 2.8 44.9

Frontal cortex, layer 6 3.1 86.6

Occipital cortex, layers 2/3 3.1 98.9

Frontal cortex, layer 5 3.1 155.4

Perirhinal cortex, layers 2/3 3.2 108.3

Anterior olfactory nucleus, medial part 3.2 80.4

Entorhinal cortex, layers 2/3 3.5 116.5

Dentate gyrus, granular layer 3.8 70.4

Cerebellar nuclei 4.1 294.2

Dorsal horn (l. 1-4) of lumbar spinal cord 4.3 58.6

Ventral horn (l. 9) of lumbar spinal cord 4.4 1016.6

Subiculum 4.8 176.1

Caudate putamen 4.9 94.7

Lateral septal nucleus 5.1 86.1

Lamina 10 of lumbar spinal cord 5.7 153.8

Anterodorsal nucleus - thalamus 5.7 158.5

Arcuate nucleus - hypothalamus 6.0 105.5

Periventricular nucleus - hypothalamus 7.5 92.9

Periaqueductal grey matter 9.4 126.0

average 4.2 155.4
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Figure 2. Cilium length versus distance to nearest ventricle (r = -0.613, df = 21, p < 0.01).
Cilium length (:m) Ventricular proximity (mm)

Medial geniculate nucleus 2.1 3.5

Ventral posterior nucleus - thalamus 2.1 2.2

Frontal cortex, layer 4 2.3 4.4

Frontal cortex, layers 2/3 2.8 4.7

Molecular layer of the cerebellar cortex 2.8 2.2

Frontal cortex, layer 6 3.1 3.7

Occipital cortex, layers 2/3 3.1 5.2

Frontal cortex, layer 5 3.1 3.9

Perirhinal cortex, layers 2/3 3.2 4.1

Anterior olfactory nucleus, medial part 3.2 0.4

Entorhinal cortex, layers 2/3 3.5 5.0

Dentate gyrus, granular layer 3.8 0.3

Cerebellar nuclei 4.1 0.7

 Dorsal horn (l. 1-4) of lumbar spinal cord 4.3 1.3

Ventral horn (l. 9) of lumbar spinal cord 4.4 1.2

Subiculum 4.8 4.7

Caudate putamen 4.9 1.8

Lateral septal nucleus 5.1 0.2

Lamina 10 of lumbar spinal cord 5.7 0.1

Anterodorsal nucleus - thalamus 5.7 0.9

Arcuate nucleus - hypothalamus 6.0 0.1

Periventricular nucleus - hypothalamus 7.5 0.1

Periaqueductal grey matter 9.4 0.3

average 4.2 2.2
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Figure 3. Cilium length:soma area versus distance to nearest ventricle 
( r = -0.482, df = 21, p <0.05).

Cilium length:soma area (:m-1) Ventricular proximity (mm)

Periventricular nucleus - hypothalamus 0.080 0.1

Lamina 10 of lumbar spinal cord 0.037 0.1

Arcuate nucleus - hypothalamus 0.057 0.1

Lateral septal nucleus 0.059 0.2

Dentate gyrus, granular layer 0.054 0.3

Periaqueductal grey matter 0.074 0.3

Anterior olfactory nucleus, medial part 0.040 0.4

Cerebellar nuclei 0.014 0.7

Anterodorsal nucleus - thalamus 0.036 0.9

Ventral horn (l. 9) of lumbar spinal cord 0.004 1.2

 Dorsal horn (l. 1-4) of lumbar spinal cord 0.073 1.3

Caudate putamen 0.052 1.8

Molecular layer of the cerebellar cortex 0.062 2.2

Ventral posterior nucleus - thalamus 0.013 2.2

Medial geniculate nucleus 0.016 3.5

Frontal cortex, layer 6 0.035 3.7

Frontal cortex, layer 5 0.020 3.9

Perirhinal cortex, layers 2,3 0.029 4.1

Frontal cortex, layer 4 0.035 4.4

Frontal cortex, layers 2,3 0.029 4.7

Subiculum 0.027 4.7

Entorhinal cortex, layers 2,3 0.030 5.0

Occipital cortex, layers 2,3 0.031 5.2

average 0.039 2.2
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Figure 4. Cilium length versus soma area by layer in the frontal cortex                     
(mean ± sem; r = 0.732, df = 2, p > 0.05).

Soma area (:m2) Cilium length (:m)

Layer 4 65.5 2.3

Layer 6 86.6 3.1

Layers 2/3 95.0 2.8

Layer 5 155.4 3.1

average 100.6 2.8



26

Figure 5. Cilium length versus soma area in regions with a low percentage of ciliated
neurons (mean ± sem). 

Soma area (:m2) Cilium length (:m)

Molecular layer of cerebellar cortex 44.9 2.8

Lateral septal nucleus 86.1 5.1

Medial geniculate nucleus 131.0 2.1

average 87.4 3.3
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Figure 6. Cilium length versus soma area in the lumbar spinal cord (mean ± sem).
Soma area (:m2) Cilium length (:m)

dorsal horn (laminae 1-4) 58.6 4.3

lamina 10 153.8 5.7

ventral horn (lamina 9) 1016.6 4.4

average 409.7 4.8



28

       A

       B

       C

Figure 7. Comparison of lengths of neuronal cilia.  Perikarya counterstained with thionin.
A, Frontal cortex, layers 2/3 (mean length = 2.8 :m).  B, Anterodorsal thalamic nucleus
(mean length = 5.7 :m).  C, Periaqueductal grey matter (mean length = 9.4 :m).  
Scale bar = 10 :m.



29

          A

          B

          C

Figure 8.  Ependymal cilia surrounding the third ventricle.  Perikarya counterstained with
thionin.  Scale bar: in A, 50 :m; in B, 25 :m; in C, 10 :m.
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         A

         B

Figure 9.  Ependymal and neuronal cilia of the spinal cord and central canal.  Perikarya
counterstained with thionin.  A, P3 spinal tissue.  B, Adult spinal tissue, lumbar.
Scale bar = 25 :m.
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Figure 10.  Neuronal cilia on motor neurons from the ventral horn of cervical spinal
tissue.  Perikarya counterstained with thionin.  Scale bar = 10 :m.



32

       A

        B

Figure 11.  Neuronal cilia are expressed in a 1:1 relationship to somata, and are most
often visible on the majority of somata in an area.  Perikarya counterstained with thionin. 
A, Periaqueductal grey matter.  B, Granule layer of the dentate gyrus.  Scale bar = 25 :m.
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DISCUSSION

Immunostaining of Neuronal Cilia

Immunohistochemical analysis of rat, mouse, and monkey tissue using an anti-

G"11, anti-G"q, and a combined anti-G"q/11 antibody revealed that neuronal (and

ependymal) cilia were labeled by only the anti-G"11 antibody, only within the CNS of the

rat, and only at or after postnatal day 0.  To explain the presence of G"11-IR neuronal cilia

in rat tissue but absence in mouse and monkey tissue, the following possibilities exist: (1)

mice and monkeys do not possess neuronal cilia, which seems an improbable suggestion

given that certain secretory cells in the pars distalis of the mouse hypophysis have been

found to bear primary cilia (Barnes, 1961); (2) mice and monkeys possess neuronal cilia

but these cilia do not contain G"11 subunits; or (3) mice and monkeys possess neuronal

cilia with G"11 subunits but the subunits’ region of epitope mapping is inaccessible to the

antibody within these species.  A complicating factor in these interpretations is the

specificity of the anti-G"11 antibody.  If the anti-G"11 antibody was indeed binding to a

G"11 subunit, it would be expected that the anti-G"q/11 antibody would also provide

immunoreactivity, as both antibodies are designed to bind the same antigen.  However,

the anti-G"q/11 antibody did not label neuronal cilia.  Thus, it could be proposed that either

rats possess neuronal cilia with a G"11 subunit which has an epitope domain accessible to

the anti-G"11 antibody but another domain inaccessible to the anti-G"q/11 antibody, or that
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the anti-G"11 antibody is binding to some unidentified component of the cilia such that no

safe conclusions can yet be accurately drawn about the existence of G protein subunits in

neuronal cilia.

Immunolocalization of Neuronal Cilia in the Adult Rat CNS

G"11-IR neuronal cilia were observed in every examined region of the rat CNS

that contained neuronal somata.  Furthermore, the vast majority of CNS regions had a

high percentage of ciliated neurons, such that most somata within these regions were

found to possess a G"11-IR cilium.  In contrast, a few regions had a low percentage of

ciliated neurons.  An explanation for such a difference is not immediately apparent based

solely upon a comparison of their anatomical locations.  However, several of these

regions with a low percentage of ciliated neurons are composed of a variety of cell types,

including the medial geniculate nucleus, the olfactory bulb, and the cerebellar cortex, so

the possibility exists that in these regions one or more cell types was expressing G"11-IR

cilia, while one or more cell types was not.  For example, within the cerebellar cortex,

both the outermost molecular layer and innermost granule cell layer are made up of two

different cell types; basket and stellate cells within the molecular layer, and granule and

Golgi cells within the granule layer (Afifi, 1998).  Thus, in each layer it is conceivable

that only one of the two cell types was expressing G"11-IR cilia.  However, this cannot be

the only explanation for regions with a low percentage of ciliated neurons, as the

Purkinje cell layer of the cerebellar cortex has only one cell type, Purkinje cells, and also

exhibited a low percentage of ciliated neurons.  Furthermore, there is cellular
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heterogeneity in numerous other regions that exhibited a high percentage of ciliated

neurons, such as in the different layers of the cortex.  As in these regions the vast

majority of somata were found to possess a G"11-IR cilium, then multiple cell types must

be expressing G"11-IR cilia simultaneously.  

Development of G"11-IR Neuronal Cilia

In spinal cord tissue, G"11-IR neuronal cilia were detected on a low percentage of

somata at P0.  By P3, they occurred on a percentage of somata comparable to that in

adult tissue.  The same was true for G"11-IR ependymal cilia around the central canal,

except they appeared at P0 on a higher percentage of ependymal cells than did G"11-IR

neuronal cilia on neurons.  This pattern may reflect the development of cilia, such that

ependymal cells begin expressing cilia before neurons.  Alternatively, it may reflect the

development of the antigen responsible for the cilia’s immunolocalization, such that

ependymal cells begin producing the antigen before neurons.  This latter explanation may

reflect an earlier physiological need for functional ependymal cilia as compared to

neuronal cilia, assuming the antigen in question is one that is required for functionality,

as would be a G protein subunit for signal transduction.  In either case, it seems that

ependymal cilia can be labeled using the anti-G"11 antibody prior to neuronal cilia.  As

such, and due to the high percentage of ependymal cells expressing G"11-IR cilia at P0, it

would not be surprising to find G"11-IR ependymal cilia in the spinal cord prior to P0, but

after E18, though on fewer ependymal cells as compared to P0.  As at P0 there are only a

few detectable neurons expressing G"11-IR cilia, then P0 may represent the time at which
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G"11-IR neuronal cilia are indeed first detectable using the anti-G"11 antibody in the spinal

cord, and thus G"11-IR neuronal cilia might not be found prior to P0 as might G"11-IR

ependymal cilia.

In hypothalamic tissue, G"11-IR neuronal cilia were not present until P3, and

occurred on a lower percentage of somata than that seen in adult tissue.  G"11-IR

ependymal cilia around the third ventricle, however, were visible at P0, and by P3

occurred on a percentage of ependymal cells comparable to adult levels.  This situation

may be interpreted as being analogous to that in the spinal cord, in which ependymal

cilia can be immunolocalized prior to neuronal cilia.  The reason for the absence of G"11-

IR neuronal cilia at P0 may reflect the temporal caudal-to-rostral development of the

nervous system, such that at P0, the spinal cord tissue is at a more developed state

(contains G"11-IR neuronal cilia) than hypothalamic tissue (lacks G"11-IR neuronal cilia).

Measurements of Cilia Lengths and Somata Areas in the Adult Rat CNS

G"11-IR neuronal cilia displayed a range in mean length from 2.1 :m to 9.4 :m. 

Measurements of individual cilium ranged from 1.4 :m to 12.3 :m.  A previous study

reported measurements of individual neuronal cilium in the rat CNS ranging from 3-8

:m (Handel et al., 1999).  In comparison, ependymal and respiratory cilia in the rat have

been measured to have a mean length ± SD of, respectively, 8.1 ± 0.2 :m and 5.6 ± 0.5

:m (O’Callaghan et al., 1999).

In the present study, there was not an overall statistically significant correlation

between cilium length and soma area, such that across CNS regions an increase in
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somata areas did not predict a lengthening of G"11-IR neuronal cilia (Figure 1).  Likewise,

there was not a statistically significant correlation between cilium length and soma area

across the different layers of the frontal cortex (Figure 3).  Measurements taken from

regions with a low percentage of ciliated neurons and from different laminae of the

lumbar spinal region further demonstrated a varying range of cilia lengths on somata of

varying sizes (Figures 5 and 6). 

There was a statistically significant negative correlation between the mean cilium

length of a CNS region and the distance of that region to the nearest cavity containing

cerebrospinal fluid.  Thus, those regions closest to a CSF-containing cavity tended to be

those with the longest cilia.  This correlation is demonstrated in Figure 2.  Indeed, the

nine regions measured closest to a cavity included those regions with the six longest cilia

measurements (above 5 :m).  Figure 2 further suggests that this negative correlation was

valid only within an approximate 2 mm distance to the nearest cavity.  Those regions

within this distance retained a statistically significant negative correlation, while those

beyond this distance did not.  Furthermore, those regions beyond this distance had mean

cilia lengths that were shorter than the overall measured mean of 4.2 :m, with the sole

exception of the subiculum.  There was also a statistically significant negative correlation

between the distance of a CNS region to the nearest CSF-containing cavity and that

region’s ratio of cilium length:soma area.  Regions near CSF-containing cavities had a

larger ratio of cilium length:soma area.  Therefore, due to this larger ratio, the longer

cilia in these regions near CSF-containing cavities were not simply the product of larger

somata.  
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The discovery that those CNS regions in close proximity to CSF-containing

cavities are those with the longest cilia is perhaps compatible with the proposal that

neuronal cilia are not vestigial remnants but rather functional cellular organelles. 

Assuming neuronal cilia are functioning in a role similar to that of chemosensors, it

would be logical to suppose that the length of the cilia would indeed be critical in

determining their capability to function; longer cilia would be better suited to provide an

accurate sampling of the surrounding extracellular environment.  Those cilia of a shorter

length might function less effectively or not at all.  Thus, it could be hypothesized that

the neuronal cilia in those regions near CSF-containing cavities are indeed functional and

are serving as chemosensors, designed to report on the presence or absence of substances

as they move out from the cerebrospinal fluid and into the surrounding interstitial fluid. 

This hypothesis is in accordance with current known properties of the CSF.  For instance,

CSF is partly responsible for maintaining the consistency of the ionic composition of the

interstitial fluid and for providing nourishment for the brain, and thus there is free

communication between the extracellular space of the brain and CSF-containing cavities

(Marieb, 1995; Kandel et al., 2000; Bruni, 2001).  Furthermore, the CSF is believed to be

a transport system for the CNS, and as such contains numerous biologically active

substances including releasing factors, hormones, neurotransmitters, and metabolites

(Spector, 1956; Marieb, 1995; Kandel et al., 2000; Bruni, 2001).
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