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This study examined central mechanisms of persistent pain using an 

autoradiographic technique to localize phosphoinositide hydrolysis (PI) in the rat spinal 

cord dorsal horn. The lateral half of laminae I-II showed the highest levels of baseline PI 

turnover and carbachol-stimulated PI turnover in normal animals as well as after 

inflammation. Inflammation resulted in increased baseline PI turnover in this region of 

the ipsilateral (76%) and contralateral (65%) dorsal horns. Carbachol increased PI 

turnover in this region in normal rats (55%) and following inflammation (ipsilateral: 

46%, contralateral: 45%). The absolute magnitudes of these increases were 1.85, 2.71, 

and 2.51 nCi/mg, respectively. 

The results of this study demonstrate the involvement of PI turnover in neural 

mechanisms of persistent pain, and provide evidence for the involvement of cholinergic 

systems in this process.  Because spinal cholinergic systems have been reported to be 

anti-nociceptive, the present results appear to reflect an upregulation of anti-nociceptive 

activity in response to inflammation. Thus, the spinal cholinergic system may be a 

regulatory site within the anti-nociceptive pathway, and may provide an attractive target 

for the development of new therapeutic agents. 
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CHAPTER 1

INTRODUCTION

The focus of this study is to examine changes in dorsal horn neurons during

peripheral inflammation. These changes include increased responsiveness to

suprathreshold stimuli, decreased response thresholds, receptive field expansion, and

sensitivity to non-noxious stimuli. These changes underlie hyperalgesia and allodynia

associated with persistent pain. Therefore, it is critical to understand what mediates these

changes in addition to classifying them. The long lasting effects of hyperalgesia may be

mediated by changes in second messenger systems in neurons associated with pain

signaling. Phosphoinositide (PI) hydrolysis is a second messenger system that mediates

the effects of many neurotransmitters acting at G-protein coupled receptors, including

acetylcholine acting on muscarinic receptors. Neurotransmitter-stimulated PI turnover

can be assessed in spinal cord slices using a radiolabeled precursor to an intermediate of

the PI cycle that becomes incorporated into the cell membrane where it can be quantified.

In addition, the distribution of the PI turnover within the spinal cord can be established

and compared to areas within the dorsal horn known to receive nociceptive input.

Elucidating pain-related changes in this pathway may provide new therapeutic targets for

pharmacological agents in the treatment of persistent pain.
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Background and significance

Persistent pain can increase the excitability of neurons in the pain pathway,

especially in the dorsal horn of the spinal cord. This increase in excitability is termed

sensitization. The changes underlying sensitization have most likely evolved to serve a

protective function to avoid further damage to injured tissue. Defining these changes

should aid in developing new therapeutic approaches in the treatment of pain. The neural

mechanisms underlying sensitization have been studied employing techniques to measure

neurotransmitter levels, receptor densities, and electrophysiological changes. An

additional approach, used in this study, is to examine a second messenger system

associated with cholinergic neurons in the dorsal horn of the spinal cord. A benefit of

studying second messenger systems is that functional changes in the

neurotransmitter/receptor system can be assessed. This approach may provide evidence

of regulation within the pain pathway. This study examined functional changes in the

pain pathway as revealed by the phosphoinositide second messenger response to a

specific cholinergic agonist.

Models of persistent pain

Models of persistent pain can be classified as neuropathic or inflammatory.

Neuropathic pain refers to pain caused by damage to the nervous system. Neuropathic

pain in animal models is typically established by loose ligation of a peripheral nerve,

nerve crush, partial nerve transection, or complete nerve transection. Neuropathic models
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exhibit varying degrees of spontaneous pain behaviors, increased sensitivity of dorsal

horn neurons, and hyperalgesia (Bennett, 1993).

Inflammatory models of pain involve cutaneous tissue damage, usually provoked

by chemical irritants. These chemical irritants include mustard oil, carrageenan, formalin,

and complete Freund's adjuvant (CFA). Mustard oil is a topical agent and is therefore not

suitable for studies of persistent pain. Carrageenan, formalin, and CFA are administered

by subcutaneous injection, often into the plantar surface of the hind paw. These three

agents differ in the time course of the inflammatory state that is produced. Formalin

produces its effects immediately, carrageenan’s effects peak at approximately 3 hours,

and the effects of CFA peak over the course of 2-3 days (Honore et al., 1999).

CFA was the model of choice for the present study due to its time course of

activity. Since CFA is considered a long-term model, it provides a good opportunity to

examine long-term central changes associated with PI turnover. CFA has been widely

used in the study of persistent pain and its effects are well characterized. Although

neuropathic models also cause long-term changes, some of these include reorientation of

the terminals of some primary afferent fibers to different dorsal horn laminae and

reduction or degeneration of inhibitory interneurons (primarily in laminae I and II) in the

dorsal horn (Nakamura and Meyers, 2000; Ibuki et al., 1997; Mao et al., 1997;

Nachemson and Bennet, 1993; Sugimoto et al., 1989). Since the present study localized

PI turnover resulting from activation of synapses formed by inhibitory interneurons these

are obviously undesirable effects.
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CNS changes associated with persistent pain

Evidence for central changes associated with persistent pain comes from studies

of zones of hyperalgesia. Inflammatory pain is associated with two principle zones of

hyperalgesia in the periphery (Hardy et al., 1950). The first is a zone of primary

hyperalgesia, and is comprised of the region of tissue damage itself. Primary hyperalgesia

is characterized by spontaneous pain and increased sensitivity to heat and mechanical

stimuli.

There is a large body of evidence documenting the sensitization of primary

afferent neurons (e.g., Beitel and Dubner, 1976; Perl et al., 1976; Campbell and Meyer,

1983; Koltzenburg et al., 1992), that reveals a peripheral mechanism underlying the

primary hyperalgesia. A zone of secondary hyperalgesia involves undamaged tissue

surrounding the site of injury. Dorsal horn neurons in the representation of the zone of

secondary hyperalgesia display increased sensitivity to mechanical but not heat stimuli.

Secondary hyperalgesia appears to involve a central sensitization. Initial evidence for

central sensitization was obtained by Thalhammer and LaMotte (1982), who found that

cutaneous hyperalgesia spreads well beyond the area of nociceptor sensitization. In

addition, hyperalgesia that develops after capsaicin injection remains even after

anesthetizing the region of injection, but if the region is anesthetized prior to capsaicin

injection hyperalgesia does not develop (LaMotte et al., 1991). Furthermore, capsaicin

induced hyperalgesia can be prevented by a proximal block of the peripheral nerve that

innervates the area corresponding to the injection. This clearly demonstrates the
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requirement for nociceptive information to reach the spinal cord to establish secondary

hyperalgesia.

A variety of neurotransmitters and neuromodulators related to nociceptive

processing in the dorsal horn have been identified and display varying degrees of

colocalization and corelease (reviewed by Millan, 1999). At least three of these appear to

be essential for the establishment of sensitization: glutamate, substance P, and nitric

oxide. Both NMDA and substance P are necessary for induction of hyperalgesia, whereas

NMDA is also necessary for the maintenance of hyperalgesia. Nitric oxide appears to

mediate the effects of NMDA in producing hyperalgesia.

The majority of work in the pain field has concentrated on the nociceptive

component of the pain system, yet there is also a critical anti-nociceptive component. It

should be evident that a balance must exist between the nociceptive and anti-nociceptive

components for normal pain transmission. Changes in this balance could lead to

detrimental effects on pain perception such as the sensitization described above.

Therefore it is important to understand the role of the anti-nociceptive component in

persistent pain.

Anti-nociception

The pathways involved in anti-nociception are beginning to be resolved, but the

nature of their regulation in response to persistent pain is not known. It is possible that

anti-nociceptive pathways are upregulated in response to persistent pain. It is also

possible, however, that persistent pain produces a loss of inhibitory tone, which in turn
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produces sensitization. A better understanding of how these pathways are regulated

should aid in deriving alternative therapeutic approaches in the treatment of pain.

The existence of critical factors involved in endogenous anti-nociception remains

unclear. This is partially due to the complex nature of the anti-nociceptive pathway. The

anti-nociceptive pathway involves both descending and intrinsic spinal pathways, and

involves at least twenty-five different neurotransmitters. The bulk of present research

focuses on six different neurotransmitters: acetylcholine (ACh), opioids, norepinephrine,

serotonin, gamma aminobutyric acid (GABA), and nitric oxide. It appears that

norepinephrine and serotonin are the primary neurotransmitters that are released by

descending neurons of the anti-nociceptive pathway. At least a portion of the descending

anti-nociceptive effects is mediated by ACh. ACh also participates in intrinsic anti-

nociceptive pathways, along with the opioids, nitric oxide, and GABA.

Descending Anti-nociceptive Systems

Stimulation of bulbospinal neurons in the nucleus raphe magnus (NRM) decreases

responsiveness to noxious stimuli (Oleson et al., 1978; Oliveras et al., 1979; Oliveras et

al., 1975; Proudfit et al., 1975) by inhibiting dorsal horn neurons that are activated by

noxious stimuli (Basbaum et al., 1976; Duggan et al., 1979; Fields et al., 1977; Guilbaud

et al., 1977). Several lines of evidence suggest that adrenergic and serotonergic neurons

are involved in this effect. Serotonin and norepinephrine are released into spinal cord

superfusates in response to electrical stimulation of the NRM (Hammond et al., 1985).

Intrathecal injection of either serotonergic or noradrenergic antagonists blocks the anti-
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nociception produced by electrical stimulation of the NRM (Hammond and Yaksh,

1984).

Intrinsic Anti-nociceptive Systems

Intrinsic neurons of the spinal cord reside in the cord and do not project to

supraspinal locations. These neurons can be classified as intersegmental (propriospinal),

interlaminar intrasegmental (interneurons), and intralaminar intrasegmental

(interneurons) (Willis and Coggeshal, 1991). The intrinsic neurons of the dorsal horn are

also known to exhibit varying degrees of neurotransmitter colocalization. For example:

GABA-glycine, GABA-enkephalin, enkephalin-SP, and GABA-nitric oxide synthase are

colocalized (Todd and Sullivan, 1990; Riberio-da-Silva and Coimbra, 1980; Todd et al.,

1992; Senba et al., 1988 Tashiro et al., 1987; Ribeiro-da-Silva et al., 1991; Laing et al.,

1994). It appears that anti-nociceptive effects are at least partially mediated by intrinsic

neurons.

ACh in the Spinal Cord

It is generally thought that ACh-induced anti-nociceptive effects arise from

intrinsic neurons since evidence shows a lack of cholinergic projection neurons (Sherriff

et al., 1991; Eisenach, 1999; Barber et al., 1984). ACh is also known to be colocalized

with GABA and nitric oxide synthase (Spike et al., 1993; Laing et al., 1994; Todd et al.,

1991; Kluchova et al., 2000). Muscarinic receptors are concentrated primarily in lamina
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II with some in lamina III, whereas nicotinic receptor concentrations have been

demonstrated in laminae I, III, and IV (Coggeshall and Carlton, 1997).

Acetylcholine and Anti-nociception

There is considerable evidence to support the finding that ACh is anti-nociceptive

in the dorsal horn. Spinal cord ACh content is significantly increased following formalin

injection, and intrathecal injections of muscarinic antagonists inhibit the second phase

(prolonged phase of tonic pain) of the nociceptive response (Honda et al., 2000).

Intrathecal administration of carbachol (a muscarinic agonist) or acetylcholinesterase

inhibitors produces anti-nociception (Taylor et al., 1982; Gillberg et al., 1989; Abram and

O’Connor, 1995; Bouaziz et al., 1995) that can be inhibited by the muscarinic antagonist

atropine (Zhuo and Gebhart, 1991; Naguib and Yaksh, 1994). Cholinergic anti-

nociception appears to involve both muscarinic and nicotinic receptors since both

produce analgesia when administered intrathecally, and the analgesia can be reversed by

addition of specific nicotinic and muscarinic antagonists (Yaksh et al., 1985; Rao et al.,

1996; Lawand et al., 1999; Marubio et al., 1999; Pan et al., 1999). However, most of the

anti-nociceptive effects of acetylcholine appear to be mediated through muscarinic

receptors: intrathecal muscarinic antagonists nearly abolish anti-nociceptive effects

whereas nicotinic antagonists only attenuate about 40% of the effect (Pan et al., 1999).

The effects of nicotinic agonists are further complicated depending on their route of

administration. If administered intrathecally they demonstrate nociceptive and anti-
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nociceptive properties (depending on concentration), whereas, if given systemically they

produce anti-nociceptive effects (Rueter et al., 2000).

Mechanisms of ACh Anti-nociception

Acetylcholine likely exerts its anti-nociceptive actions through both pre- and

postsynaptic mechanisms including activation of other inhibitory interneurons (Fig. 1).

Evidence obtained by Naguib and Yaksh (1997) suggest that M1 and/or M3 receptor

subtypes mediate cholinergic anti-nociception.

The precise role of ACh in anti-nociception remains unclear, perhaps due to

considerable interaction between ACh and other neurotransmitter systems. Some of these

interactions are described below. Some of ACh’s anti-nociceptive actions are mediated

through reductions in spinal levels of SP. This was demonstrated by intrathecal

administration of carbachol following the application of radiant heat. Carbachol increased

tail flick latencies and reduced spinal levels of SP in the dorsal horn by 30%, and both of

these effects were inhibited by atropine (Smith et al., 1989).

At least a portion of cholinergic interneuron activation appears to be mediated by

descending serotonergic and adrenergic pathways. There is strong evidence for

cholinergic activation by the adrenergic pathway. ACh release in the spinal cord is

stimulated by intrathecal administration of clonidine (De Kock et al., 1997; Klimscha et

al., 1997). Intrathecal administration of an acetylcholinesterase inhibitor plus an

adrenergic agonist (clonidine) provides a more profound anti-nociception than clonidine

alone (Gordh et al., 1989). Further evidence for ACh interaction with descending
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adrenergic and serotonergic pathways comes from studies in which spinal anti-

nociception produced by carbachol was inhibited by depletion of descending adrenergic

neurons (Gillberg et al., 1989) or by addition of adrenergic or serotonergic antagonists

(Zhuo and Gebhart, 1990). These studies provide evidence for descending anti-

nociceptive pathways whose effects are mediated by ACh within the spinal cord.

Cholinergic-mediated anti-nociception also involves nitric oxide. Intrathecal

clonidine causes ACh release from the spinal cord (De Kock et al., 1997; Klimscha et al.,

1997), which in turn stimulates nitric oxide synthesis (Xu et al., 1997). Activation of

muscarinic as well as nicotinic receptors appears to stimulate nitric oxide release in the

spinal cord (Xu et al., 2000). Anti-nociception resulting from supraspinal (Iwamoto and

Marion, 1994b) or intrathecal (Iwamoto and Marion, 1994a) administration of cholinergic

agonists is antagonized by nitric oxide synthase inhibitors. Nitric oxide synthase

inhibitors also block the enhancement of anti-nociception produced by intrathecal

administration of clonidine or neostigmine (Xu et al., 1996).

ACh also appears to play a role in opioid mediated analgesia. A study by Kang et

al. (1997) suggests that analgesia produced by muscarinic receptors at the spinal level

might be mediated by endogenous opioids and ATP-sensitive potassium channels in a

cascade form since (1) carbachol anti-nociception could be antagonized by atropine; (2)

carbachol anti-nociception could be blocked by glibenclamide (blocker of ATP sensitive

potassium channels) or naloxone (opiate antagonist); (3) morphine anti-nociception could

be blocked by glibenclamide but not by atropine. These data suggest that carbachol



11

activates opioidergic neurons which in turn open ATP sensitive potassium channels

postsynaptically.

Additional evidence for cholinergic interactions in anti-nociceptive processing

comes from a recent study of GABAergic interneurons in the dorsal horn of the rat spinal

cord (Baba et al., 1998). GABA release in the substantia gelatinosa is facilitated by the

cholinergic agonist carbachol. Carbachol and neostigmine increase TTX-sensitive

GABAergic IPSCs in the majority of substantia gelatinosa neurons. Carbachol, but not

neostigmine, increases the quantal release of GABA from presynaptic terminals. This

facilitatory effect of carbachol was antagonized by atropine.

The involvement of spinal cholinergic systems with multiple anti-nociceptive

neurotransmitters suggests that they may play a key role in anti-nociception. Moreover,

the spinal cholinergic system might present an alternative treatment opportunity, with

fewer of the harmful side effects that are seen with opioid treatments. Some muscarinic

receptors exert their effects by stimulating PI turnover. The regulation of PI turnover

provides a good target for studying pain processing because it reflects changes in

functional aspects of cell processing.

Phosphatidylinositol Turnover in the Spinal Cord

Studies of (PI) hydrolysis utilizing anion exchange chromatography of

radiolabeled inositol suggest that there is endogenous PI turnover in spinal cord (Prat et

al., 1993; Parsons et al., 1995) and brain (Bymaster et al., 1998). These studies reported

stimulated PI hydrolysis as a percent increase over baseline. Using cross-chopped slices
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Hassessian et al (1992) demonstrated basal PI turnover that could be antagonized by the

anesthetic pentobarbital but not urethane. Because these studies were done on cross-

shopped slices, the distribution of PI turnover within the spinal cord could not be

ascertained. One aim of this study was to measure the magnitude and location of

endogenous PI turnover within the dorsal horn to allow for comparisons between

endogenous and stimulated PI turnover in normal animals and in response to

inflammation.

The utility of analyzing neurotransmitter-stimulated PI turnover lies in the ability

to localize the functional effects of neurotransmitter actions, and to determine if these

change with persistent pain. Many previous studies have used receptor binding to gauge

changes in neurotransmitter effectiveness. For example, it has been demonstrated that

hindpaw inflammation and chronic constriction injury produce an increase in the affinity

of substance P receptors in the dorsal horn (Stucky et al., 1993; Aanonsen et al., 1992).

These results are supported by evidence that inflammation increases SP receptor

immunoreactivity (Abbadie et al., 1996; Kar et al., 1993; Schafer et al., 1993; McCarson

and Krause, 1994). However, changes in receptor binding do not necessarily reflect the

function of receptors. For example, increased expression of NK 1 receptors in cultured

spinal cord neurons does not result in increased generation of PI (Abrahams et al., 1999).

This is further supported by the work of Holland et al. (1993), showing that SP receptors

and G proteins can uncouple with repeated stimulation. Recent evidence also indicates

that changes in PI signaling can exist without changes in 5-HT receptor number or

affinity (Toscano et al., 1999).
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Therefore, in order to understand the role of a neurotransmitter/receptor system in

pain signaling it is useful to also investigate receptor function as seen in second

messenger responses. If changes in PI turnover are detected, changes in receptor

numbers or affinities can then be studied in order to begin to localize the site of

regulation.

Binding of ACh to a PI linked receptor activates a G protein (Gq), which activates

phospholipase C to cleave PIP2 into two second messengers, diacylglyceraol (DAG) and

IP3. DAG activates protein kinase C (resulting in protein phosphorylation), and IP 3

releases Ca++ from intracellular stores (Fig. 2).

Measurement of PI turnover is usually done on crosschopped slices (typically 350

x 350 µm). The slices are incubated with radiolabeled myo-inositol in the presence of

lithium in Krebs buffer solution. Receptor activation resulting from the addition of a

neurotransmitter agonist causes the accumulation of labeled inositol phosphates, which

are analyzed by anion exchange chromatography. The use of [3H]cytidine as a precursor

was developed by Godfrey (1989) for biochemical analyses, and was recognized by

Solomon Snyder as being suitable for autoradiography because the intermediate

[3H]CDP-DAG is membrane bound and does not wash out during subsequent treatments

(Hwang et al., 1990). The obvious advantage of the autoradiographic method is that it

allows the investigator to localize the response histologically.
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Figure 1. Diagram showing the putative relationship between descending and intrinsic
components of the anti-nociceptive systems in the dorsal horn. NRM=nucleus raphe
magnus, LC=locus coeruleus, PAF=primary afferent fiber, WDR=wide dynamic range,
NS=nociceptive specific.
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CHAPTER 2

EXPERIMENTAL METHODS AND PROCEDURES

Studies utilizing the technique used in this study have localized PI turnover in

intact brain slices (Hwang et al., 1990; Robinson et al., 1993; Bevilacqua, 1995).

However, no one has focused on the spinal cord using this method. Previous studies have

provided evidence that levels of certain receptors are significantly affected by

inflammation (Stucky et al., 1993; Aanonsen et al., 1992; Abbadie et al., 1996; Kar et al.,

1993; Schafer et al., 1993; McCarson and Krause, 1994). ACh receptors however, have

not been studied with respect to inflammatory effects. Measurement of PI turnover

allowed us to assess the impact of persistent pain on the function of muscarinic ACh

receptors.

Subjects and Anesthesia

Subjects were P30-P35 male Long-Evans hooded rats. Ketamine (100 mg/kg i.m.)

was used as the anesthetic for the purpose of hindpaw inflammation. Subsequent surgical

removal of the spinal cord was performed two days later under deep anesthesia via

urethane (2 g/kg i.p.). Barbiturates were not used due to evidence presented by

Hassessian et al. (1992) that they significantly reduce basal PI turnover.
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Inflammation

Hindpaw inflammation was achieved by injecting complete Freund’s adjuvant

(CFA). The CFA was emulsified 1:1 with phosphate buffer for a total volume of 150µl,

which was then injected into the plantar plexus of the hindpaw. Control animals were not

injected with vehicle because such injections would produce painful stimulation.

Surgery and Slice Preparation

Two days after CFA injection each animal was deeply anesthetized and the dorsal

half of the vertebral column and the dura mater were removed. India ink was used to

mark the L4 region ipsilateral to the inflamed hindpaw. The L4 region of the cord was

then removed and placed into cold (approximately 4°C) Krebs buffer (114 mM NaCl,

4.57 mM KCl, 2.44 mM CaCl2, 1.14 mM KH2PO4, 1.2 mM MgSO4, 24.7 mM NaHCO3,

10 mM glucose, 0.1 mM ascorbic acid, pH 7.4). The cord was then transferred to the

stage of a McIlwain tissue chopper and cut into 400 µm slices. The slices were

transferred to a dish of Krebs buffer (room temperature) where the L4 segment slices

were carefully separated with brushes.

Recovery

Slices were placed on a 3 µm Millicell-PC tissue culture platform (Millipore,

Marlboro MA) and submersed in 5 ml Krebs buffer at room temperature. The recovery

period began with 30 min in low calcium/high magnesium (0.5 mM Ca++, 10 mM Mg++)

Krebs buffer, followed by an additional 30 min period in the standard Krebs buffer. The
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buffer was changed every 15 min during the recovery period, and all solutions were

continuously aerated with 95% O2 / 5% CO2.

Autoradiographic Method for Assessing PI Turnover.

The methods were based on those of Hwang et al. (1990) with modifications

(Robinson et al. 1993). Following the recovery period, each Millicell platform was

transferred to a tissue culture plate (Fig. 4) containing inhibitor solution (500 µl Krebs

buffer with 200 µl nucleic acid synthesis inhibitor (0.9 µg actinomycin D and 50 mM

hydroxyurea in Krebs-carbonate buffer) for 10 min. The tissue culture plate was kept in a

water bath at 37°C with constant aeration of 95% O2/5% CO2. After 10 min 200 µl of

[3H]cytidine (21.5Ci/mmol, Sigma; lyophilized in buffer) was added for a final

concentration of 10µCi/ml. After an additional 30 min, 50µl of LiCl (5mM) was added to

block recycling of the intermediates. Five minutes after adding lithium, half of the

sections from each animal were incubated with the muscarinic agonist carbachol (1mM)

for 45 min and the other half were incubated without agonist. Sections from control

animals (non-inflamed) were also divided into agonist and no agonist incubations.

Sectioning the Slice

After the incubation, slices were transferred to an embedding mold. Embedding

compound (O.C.T., Miles) was poured over the slice; the mold was covered and placed

into an ultra cold freezer (-80°C). The slice was sectioned at 40µm in a cryostat and

thaw-mounted onto gelatinized slides.
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Removal of [3H]cytidine Incorporated into Nucleic Acids

Slide-mounted sections were washed for 5 min in a nuclease rinse (50mM Tris-

Hcl, 2mM EDTA, 10mM LiCl, 3% polyethylene glycol, 20µg/ml RNase A, and 20µg/ml

DNase), rinsed in dH2O and air-dried.

Autoradiography and Histology

Following the nuclease rinse the sections were exposed to tritium sensitive film

(3H-Hyperfilm, Amersham) along with tritium standards (ART 123A, American

Radiolabeled Chemicals). The exposure period was four weeks. The film was then

developed with Kodak D19 and further processed according to the manufacturer’s

directions. Spinal cord sections were stained for cytochrome oxidase activity since the

majority of Nissl substance was removed by the nuclease rinse prior to exposure to film.

Data Analysis

The data were collected using a computerized video-based densitometry system

(MCID M-4, Imaging Research, St. Catherines, Ontario). Film densities were calibrated

with respect to a best-fit curve based on the tritium standards. The digitized image was

visualized on a color monitor where it was then overlayed with the image of the

cytochrome oxidase-stained section. Using the cytochrome oxidase image, Rexed’s

laminae 1-6 were outlined and the data were collected from the autoradiograph (Fig. 5)

via redirected sampling from the outlined laminae.

For data sampling both ipsilateral and contralateral sides for each section were

further divided into a medial half and a lateral half. Data were then collected from
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laminae I-II, III-IV, and V-VI regions for each half. This gave readings from twelve

locations on each section (IpsiMed I-II, IpsiLat I-II, ContraMed I-II, ContraLat I-II,

IpsiMed III-IV, IpsiLat III-IV, ContraMed III-IV, ContraLat III-IV, IpsiMed V-VI,

IpsiLat V-VI, ContraMed V-VI, and ContraLat V-VI).

Statistical Analysis

For each animal, medians of laminar density readings were calculated for analysis

due to the small sample size. Statistical analysis was performed using Jandel SigmaStat

software. Except where noted, data were analyzed using a two-way analysis of variance,

with treatment or side (ipsilateral, contralateral) of spinal cord as one factor and laminar

location as the other factor. Tukey’s test was used for post-hoc analyses except where

noted. Significance for all analyses was set at p<0.05.
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Figure 4. Tissue culture plate aerated in 37°C water bath containing a Millicell well with
a spinal cord section immersed in buffer.

Figure 5. Digitized images from image analysis system showing the cytochrome oxidase
stained image (upper) with laminar boundaries depicted. Bottom image shows the film
image with the corresponding laminar boundaries from the upper image.
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CHAPTER3

Results

Cytochrome oxidase activity was restricted to the spinal gray matter with little or

no staining in the white matter (Fig. 6). The lightest area of staining was in laminae I and

II of the superficial dorsal horn. More intense staining was found in the deep dorsal horn

and the ventral horn. Stain intensity was uniform across the mediolateral aspect of the

dorsal horn. Intense staining was also observed around the anterior median artery.

Baseline PI turnover in spinal cord of non-inflamed rats

Measures of PI turnover in control animals were based on combined readings

from both sides of the spinal cord. Baseline (non-stimulated) PI turnover in non-inflamed

rats was confined to the spinal gray matter. Within the gray matter, labeling was

concentrated in the dorsal horns and around the central canal. The labeling was highest in

the superficial laminae of the dorsal horn and declined with increasing depth. Across the

dorsal horn, lateral regions were more densely labeled than medial regions. This general

pattern of labeling was observed in all experimental groups (Fig. 7). As a result of this

pattern of labeling, all statistical tests revealed a significant effect of laminar location.

Therefore in the following sections only significant interactions between treatment and

location, or significant effects of treatment, will be described in detail. Reduced synaptic

activity (incubation in low Ca++/ high Mg++ buffer) resulted in significantly lower levels

of PI turnover in the dorsal horn (F1,72=21.65, p<0.001, Figure 8). On average, labeling

was reduced by 35%, with a range of 24-45% across laminar locations.
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Figure 6. Digitized image of section stained for cytochrome oxidase activity. The lightest
area of staining in the gray matter was found in Laminae I-II. The darkest staining was
found in the deep dorsal horn and ventral horn.

Figure 7. Digitized image of autoradiograph showing PI labeling in the dorsal horn of the
spinal cord. Labeling is concentrated in the lateral portion of the superficial dorsal horn.
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Carbachol-stimulated PI turnover in non-inflamed rats

The addition of carbachol to the incubation solution resulted in significantly

higher levels of PI turnover in the dorsal horn compared to sections incubated without

carbachol (F1,78=19.23, p<0.001, Figure B). The average increase was 36%, with a range

of 18-55%. The largest increase was in the lateral half of laminae I-II (Figure 9).

The effects of inflammation on baseline PI turnover

The general pattern of PI labeling in the dorsal horn of inflamed animals was

similar to that seen in control animals. Statistical comparison of the ipsilateral and

contralateral sides of the spinal cords from these animals revealed only a significant

effect of laminar location (F5,108=33.78, p<0.001, Figure 10). Post-hoc analyses (Tukey

test) revealed that labeling in the lateral half of laminae I-II was significantly higher than

in the other laminar locations. The next highest labeling was found in the medial half of

laminae I-II, followed by the lateral half of laminae III-IV. PI turnover in sections from

inflamed animals was higher than in sections from non-inflamed animals. Comparing

ipsilateral and contralateral sides to sections from non-inflamed animals, there were

significant main effects of location (F5,162=36.29, p<0.001) and treatment (F2,162=16.71,

p<0.001, Fig 11). Post hoc analyses revealed that both sides of spinal cords from

inflamed rats showed increased PI turnover (average increases of 35% in the ipsilateral

side and 31% in the contralateral side).

Incubation in low calcium buffer to reduce synaptic activity resulted in reduced PI

labeling. Comparing ipsilateral and contralateral sides to sections from non-inflamed

animals, there were significant main effects of location (F5,54=8.87, p<0.001) and
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treatment (F2,54=7.59, p<0.001, Fig 12). Post hoc analyses revealed that both sides of

spinal cords from inflamed rats showed reduced PI turnover (average reductions of 26%

in the ipsilateral side and 17% in the contralateral side).

The effects of inflammation on carbachol stimulated PI turnover

Levels of PI turnover in sections from inflamed animals were increased by the

addition of carbachol to the incubation solution. A two-way analysis of variance revealed

a significant interaction between treatment and laminar location (F11,192=2.51, p<0.006,

Fig. 13). On both the ipsilateral and contralateral sides, the lateral half of laminae I-IV

and the medial half of laminae I-II showed significant increases, ranging from 33 to 46%.

Compared to sections from non-inflamed animals, carbachol stimulated higher

levels of PI turnover in sections from inflamed animals. A two-way analysis of variance

revealed significant main effects of laminar location (F5,108=43.82, p<0.001) and

treatment (non-inflamed vs. ipsilateral inflamed vs. contralateral inflamed; F2,108=8.95,

p<0.001, Fig. 14). On average, the ipsilateral side of spinal cords from inflamed animals

showed a 32% increase in PI turnover, and the contralateral side showed a 25% increase.

Within laminar positions, the increases ranged from 9-65% on the ipsilateral side and

from 3-55% on the contralateral side.

In all of the experiments, the lateral half of laminae I-II showed the densest

labeling. This was true for baseline PI turnover and carbachol-stimulated PI turnover in

non-inflamed animals as well as after inflammation. Without carbachol stimulation, PI

turnover in this laminar location following inflammation was 76% (ipsilateral) and 65%

(contralateral) higher than in non-inflamed (3.34, 5.87 and 5.51 nCi/mg, respectively).
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With carbachol stimulation, PI turnover increased in this location in each of the

conditions: non-inflamed (55%; 3.34 to 5.19 nCi/mg), ipsilateral inflamed (46%, 5.87 to

8.58 nCi/mg) and contralateral inflamed (45%, 5.51 to 8.02 nCi/mg). The absolute

magnitudes of these increases were 1.85, 2.71, and 2.51 nCi/mg, respectively (Fig. 15).

Expressed in this way, the PI turnover stimulated by carbachol was greater after

inflammation compared to non-inflamed by 46% (ipsilateral) and 36% (contralateral).
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Figure 8. Effects of low Ca++ buffer on PI labeling in spinal cord sections from non-
inflamed animals without carbachol stimulation. Low Ca++ buffer significantly reduced
overall baseline turnover (p<0.001) (n=10). Data points represent average medians for
medial or lateral region of each laminar group (+or- SEM).
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Figure 9. Effects of carbachol stimulation on PI labeling in spinal cord sections from non-
inflamed animals. The addition of carbachol (n=5) to the incubation solution resulted in
significantly higher levels of PI turnover in the dorsal horn compared to sections
incubated without carbachol (n=10) (p<0.001). The largest increase was seen in the
lateral half of laminae I-II. Data points represent average medians for medial or lateral
region of each laminar group (+or- SEM).
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Figure 10. Effects of inflammation on baseline PI labeling. There was a significant effect
of laminar location (p<0.001) (n=10). Post-hoc analyses revealed that labeling in the
lateral half of laminae I-II was significantly higher than in other locations. Data points
represent average medians for medial or lateral region of each laminar group (+or- SEM).
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Figure 11. Comparison of baseline PI turnover between ipsilateral and contralateral sides
of inflamed (n=10) animals to sections from non-inflamed (n=10) animals. Both
ipsilateral and contralateral sides of inflamed animals were significantly higher than non-
inflamed animals (p<0.001). Post-hoc analyses revealed significant increases in lateral I-
II and lateral III-IV of both ipsilateral and contralateral sides over non-inflamed sections.
Data points represent average medians for medial or lateral region of each laminar group
(+or- SEM).
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Figure 12. Effects of reduced synaptic activity (by low Ca++) comparing ipsilateral and
contralateral sides of inflamed animals (n=4) to sections from non-inflamed animals
(n=4). Both ipsilateral and contralateral sides of sections from inflamed animal showed
significant reductions in PI labeling when compared to non-inflamed animals (p<0.001).
Data points represent average medians for medial or lateral region of each laminar group
(+or- SEM).
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Figure 13. Effects of carbachol stimulation on sections from inflamed animal. A two
analysis of variance revealed a significant interaction between treatment and laminar
location (p<0.006). Post-hoc analyses demonstrated both the ipsilateral and contralateral
sides, the lateral half of laminae I-IV and the medial half of laminae I-II showed
significant increases. Data points represent average medians for the medial and lateral
regions of the ipsilateral and contralateral sides (+or-SEM) (no carb n=10, w/carb n=8).
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Figure 14. Effects of carbachol stimulation comparing the ipsilateral and contralateral
regions of sections from inflamed animals (n=8) to sections from non-inflamed animals
(n=5). Compared to sections from control animals, carbachol stimulated significantly
higher levels of PI turnover in sections from inflamed animals (p<0.001). Post-hoc
analyses revealed both the ipsilateral and contralateral sides of sections from inflamed
animals were significantly higher with lateral I-II being higher than medial I-II. Data
points represent average medians for medial or lateral region of each laminar group (+or-
SEM).
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Figure 15. Demonstration of absolute magnitudes for carbachol stimulation in the lateral
region of laminae I-II of sections from non-inflamed animals (n=5) and the ipsilateral and
contralateral sides of sections from inflamed animals (n=8).
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Chapter 4

Discussion

The present study utilized a technique that allows for the autoradiographic

localization of PI turnover in the rat spinal cord. Measurement of PI turnover is usually

done on cross-chopped slices (typically 350 x 350 µm). The slices are incubated with

radiolabeled myo-inositol in the presence of lithium in Krebs buffer solution. Receptor

activation resulting from the addition of a neurotransmitter agonist causes the

accumulation of labeled inositol phosphates, which are analyzed by anion exchange

chromatography. A major advantage of the present technique is that it allows for

histological localization of PI turnover within the spinal cord. This is important in the

study of pain because it allows for the comparison of PI turnover with nociceptive

innervation of the dorsal horn. In addition it makes it possible to measure the magnitude

and location of endogenous PI turnover. Typically in cross-chopped slice experiments PI

hydrolysis is simply reported as a percent change over baseline (Prat et al., 1993; Parsons

et al., 1995). Similar to the case of cross-chopped slice preparations the present study

cannot determine how much PI turnover is due to PI linked receptors not accounted for

by the agonist (agonist) or baseline turnover.

The present study demonstrated that superficial dorsal horn laminae expressed

higher levels of PI turnover than deeper laminae across all treatment groups. This finding

is consistent with previous work showing that muscarinic receptors (as well as other PI
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linked receptors) are concentrated in lamina II followed by lamina III (Coggeshall and

Carlton, 1997). An interesting finding was that the lateral region of the cord consistently

expressed higher levels of PI labeling than the medial region. Mapping of the rat dorsal

horn shows that the toes are situated medially with the plantar surface occupying a more

lateral position (Snow and Wilson, 1991). This organization is consistent with the pattern

of lateral PI labeling in the inflamed rats since the injection site was the plantar surface.

This does not, however, explain the lateral labeling in the control animal. Although

generally not commented on, there are several examples of lateralized effects in the

superficial dorsal horn of the spinal cord. Results from Martin et al., (1999) suggests that

CFA inflammation produces an increase in PKCγ in the lateral half of lamina IIi. Chronic

sciatic constriction injury also appears to produce a distinct lateral increase in FOS

immunoreactiviy (Yamazaki et al., 2001).

There is evidence for medial/lateral localization of receptors in the spinal cord.

Results from Yang et al., (2001) suggest that GABAb immunoreactivity in the dorsal

horn of L4 is laterally located. There is also very good evidence for SP receptors being

medially located (Stucky et al., 1993; Woolf, 1987). However, work from Abbadie et al.,

(1996) shows that inflammation significantly increases SP immunoreactivity in the lateral

region of the dorsal horn. They speculate that their lateral increase in SP

immunoreactivity with inflammation is a result of medially located cell bodies whose

dendrites arborize laterally. Consideration for future studies is the size and location of

inflammatory injections. By utilizing smaller injection volumes one could test various
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regions of the rostral-caudal aspect of the hindpaw with location of labeling in the dorsal

horn.

A somewhat surprising finding was the increase in PI labeling in the contralateral

dorsal horn following inflammation. The primary termination of afferent input is in the

ipsilateral dorsal horn. One possible explanation is that unilateral inflammation increases

the sensitivity of the contralateral side. This idea is supported by the work of Yamazaki et

al., (2001) who found a significant increase in FOS immunoreactivity contralateral to

sciatic nerve constriction. Also, chronic constriction injury to the infraorbital nerve

increases sensitivity in the receptive field of the contralateral infraorbital nerve (Vos et

al., 1994). Of further interest is the finding that inflammation results in a bilateral

increase in 2-deoxyglucose (2-DG) in laminae I-II at two, four, and fourteen days post

inflammation (Schadrack et al., 1999). In addition, differences with respect to side of

cord were not seen until day fourteen. Since the 2-DG technique reflects regional glucose

utilization, it is thought to be a measure of neuronal activity. The bilateral increase in PI

turnover in the present study might be a reflection of this increased activity since 2-DG in

the study of pain would reflect both nociceptive and anti-nociceptive activity. The

bilateral increase in 2-DG labeling in laminae I-II was evenly distributed medial to lateral

across the dorsal horn. In the rat, lamina I contains large numbers of terminals of primary

afferents, propriospinal neurons, and interneurons (Chung et al., 1989). Primary afferents

appear to be evenly distributed medial to lateral whereas propriospinal and interneuron

terminals are located laterally in the dorsal horn (Coggeshall, 1981; Earle 1952;

Szentagothai, 1964). It is generally thought that Ach-induced anti-nociceptive effects
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arise from intrinsic neurons since evidence shows a lack of cholinergic projection

neurons (Sherriff et al., 1991; Eisenach, 1999; Barber et al., 1984). Therefore the lateral

effects found in the current study and by other researchers may reflect the activity of

propriospinal and interneurons.

The origin of these contralateral effects is not clear. Willis and Coggeshall (1991)

have reviewed the mapping studies of the dorsal horn, and from this work it appears that

large axons from spinothalamic tract neurons in lamina deep to lamina I do not have

collaterals. However, branching of small axons from lamina I was uncertain. Since the

major input into lamina I arises from C and Aδ fibers the possibility exists that

spinothalamic tract neurons originating from lamina I send collaterals to the contralateral

dorsal horn while decussating in the cord. In addition, other studies have demonstrated

that some primary afferent fibers send projections to the contralateral side (Culberson et

al., 1979; Light and Perl, 1979; Sugiura et al., 1986).

A significant portion of baseline PI turnover in the dorsal horn for both inflamed

and non-inflamed animals was synaptically mediated. Sections incubated in low Ca++

buffer showed a significant reduction in PI labeling in treatment groups. An unexpected

finding was that low Ca++ buffer had a greater effect on sections from inflamed animals.

Caution must be used in the interpretation of this finding since the numbers of animals in

each group was small. A possible explanation for this comes from studies of a member of

the regulator of G-protein signaling (RGS) family (RGS2) (Dohlman and Thorner, 1997;

Koelle, 1997). RGS2 stimulates the GTPase activity of the α subunit of the G-protein Gq.

Second messenger mediated receptors in response to an agonist undergo a conformational
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change, which causes the Gα subunit to release GDP. Binding of GTP results in the

dissociation of GTPα from the βγ subunits. In turn each of these components can regulate

downstream effectors. The Gα subunit also has GTPase ability. This terminates the signal

by converting GTP to GDP which allows for the reassociation of the α, β, and γ subunits

(Siegel et al., 1999).

Ingi et al. (1998) report that RGS2 is rapidly upregulated in response to plasticity-

inducing stimuli in brain neurons. Therefore increasing GTPase activity would decrease

the duration of signaling by the α and βγ subunits. A possible explanation that low Ca++

buffer had a greater effect on sections from inflamed animals could be attributed to RGS

stimulation of GTPase activity. If inflammation were sufficient to induce RGS increased

GTPase activity then the duration of signaling by the subunits would be reduced.

Therefore non-inflamed animals would express longer signaling by the subunit than

inflamed animals. The addition of a low Ca ++ buffer could have a greater effect on

inflamed animals since their signaling duration would be shorter. This would mean that

PI turnover in the presence of low Ca++ would be due to G-protein activation in the

absence of an agonist. Several muscarinic receptors (including Gα) have been shown to

activate G-proteins in the absence of an agonist (Costa and Herz, 1989; Tian et al., 1994;

Samama et al., 1994; Barker et al., 1994; Leeb-Lunberg et al., 1994). This has been

explained by allosteric models in which receptors exist in equilibrium between two

conformations one of which interacts with agonists (Samama et al., 1993; Chidiac et al.,

1994). Agonists are thought to increase the probability of G-protein interaction with the
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active form. Even though less probable, G-proteins can interact with the active form in

the absence of the agonist thereby stimulating a second messenger response.

To localize inflammation effects on PI turnover in this study, G-protein

regulation, muscarinic receptor binding, and muscarinic receptor/G-protein coupling with

inflammation need to be explored. Inflammation is known to increase affinity and

immunoreactivity of other receptors in the dorsal horn associated with nociceptive input

(Stucky, et al., 1993; Aanonsen et al., 1992; Abbadie et al., 1996; Kar et al., 1993;

Schafer et al., 1993; McCarson and Krause, 1994). However, changes in receptor

binding do not necessarily reflect the function of receptors. For example, increased

expression of NK 1 receptors in cultured spinal cord neurons does not result in increased

generation of PI (Abrahams et al., 1999). This is further supported by the work of

Holland et al. (1993), showing that SP receptors and G proteins can uncouple with

repeated stimulation. Recent evidence also indicates that changes in PI signaling can exist

without changes in 5-HT receptor number or affinity (Toscano, 1999).

The results of this study provide further evidence for cholinergic involvement in

pain processing and indicate a possible regulatory site within the anti-nociceptive

pathway. Carbachol-induced increases in PI turnover with inflammation in this study

most likely reflect upregulation of anti-nociceptive activity in response to the

inflammation. This would represent an attempt to counteract the effects of increased

nociceptive processing. There is considerable evidence to support the finding that ACh is

anti-nociceptive in the dorsal horn. Spinal cord ACh content is significantly increased

following formalin injection, and intrathecal injections of muscarinic antagonists inhibit
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the second phase (prolonged phase of tonic pain) of the nociceptive response (Honda et

al., 2000). Intrathecal administration of carbachol (a muscarinic agonist) or

acetylcholinesterase inhibitors produces anti-nociception (Taylor et al., 1982; Gillberg et

al., 1989; Abram and O’Connor, 1995; Bouaziz et al., 1995) that can be inhibited by the

muscarinic antagonist atropine (Zhuo and Gebhart, 1991; Naguib and Yaksh, 1994).

Cholinergic anti-nociception appears to involve both muscarinic and nicotinic receptors

since both produce analgesia when administered intrathecally, and the analgesia can be

reversed by addition of specific nicotinic and muscarinic antagonists (Yaksh et al., 1985;

Rao et al., 1996; Lawand et al., 1999; Marubio et al., 1999; Pan et al., 1999). However,

most of the anti-nociceptive effects of acetylcholine appear to be mediated through

muscarinic receptors: intrathecal muscarinic antagonists nearly abolish anti-nociceptive

effects whereas nicotinic antagonists only attenuate about 40% of the effect (Pan et al.,

1999). The effects of nicotinic agonists are further complicated depending on their route

of administration. If administered intrathecally they demonstrate nociceptive and anti-

nociceptive properties (depending on concentration), whereas, if given systemically they

produce anti-nociceptive effects (Rueter et al., 2000).

A possible future direction might be to study the time course of inflammation

using measures of carbachol stimulated PI turnover. Since two days post CFA

inflammation represents peak nociceptive effects (Honore, 1999) larger increases in anti-

nociceptive effects may be seen at time intervals beyond two days. This could be why

higher 2-DG labeling is seen after four days post inflammation, but not at one and two

days post inflammation. It is possible that chronic pain may reflect a deficit in anti-



38

nociceptive processing in addition to upregulated nociceptive input. Follow-up studies

should include inflammation effects on muscarinic receptors and G proteins, since both

have a direct impact on PI turnover.
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