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 A Monte Carlo simulation study investigated the effect of scoring format, item 

parameterization, threshold configuration, and prior ability distribution on the accuracy of ability 

estimation given various IRT models. Item response data on 30 items from 1,000 examinees was 

simulated using known item parameters and ability estimates. The item response data sets were 

submitted to seven dichotomous or polytomous IRT models with different item parameterization 

to estimate examinee ability.  The accuracy of the ability estimation for a given IRT model was 

assessed by the recovery rate and the root mean square errors. The results indicated that 

polytomous models produced more accurate ability estimates than the dichotomous models, 

under all combinations of research conditions, as indicated by higher recovery rates and lower 

root mean square errors.  For the item parameterization models, the one-parameter model out-

performed the two-parameter and three-parameter models under all research conditions. Among 

the polytomous models, the partial credit model had more accurate ability estimation than the 

other three polytomous models. The nominal categories model performed better than the general 

partial credit model and the multiple-choice model with the multiple-choice model the least 

accurate.  The results further indicated that certain prior ability distributions had an effect on the 

accuracy of ability estimation; however, no clear order of accuracy among the four prior 

distribution groups was identified due to an interaction between prior ability distribution and 

threshold configuration. The recovery rate was lower when the test items had categories with 

unequal threshold distances, were close at one end of the ability/difficulty continuum, and were 

administered to a sample of examinees whose population ability distribution was skewed to the 

same end of the ability continuum.    
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   CHAPTER 1 

INTRODUCTION 
 

Overview 

 Testing is essential in education and other social science fields because many 

decisions, and policies are made according to the results of testing. The purpose of testing 

is to estimate a person�s ability, i.e. latent trait or construct. In a test setting, responses to 

a set of test items are recorded by each individual. Through a scoring scheme, test scores 

are assigned to individuals according to their item responses. Test scores provide 

information from which we infer a person�s ability. In educational measurement, 

Classical Test Theory (CTT) partitions test scores (X) into two components, X = T + E, 

to represent the ability estimate�the true score (T), and error (E). This type of 

measurement is juxtaposed to measurement in a field like Physics where all factors 

contained in a model can be accounted for. Error indicates factors that couldn�t be 

accounted for or controlled in the test design, test administration, and/or examinee. Test 

score reliability and the true score estimates, however, change from one test form to 

another test form even though the test design and administration are the same. Error in 

this instance is due to the random sampling of items to form the two tests. The test score 

reliability and the true score estimates are test-dependent because the properties of items 

are selected but not controlled in the process of ability estimation in CTT. Item Response 

Theory (IRT) uses mathematical models to adjust for the item properties making the 

ability estimates freer from test-dependence.  

Different IRT parameterization models adjust for different item properties leading 

to different ability estimation. 1-parameter (1-PL) IRT adjusts for item difficulty; 2-
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parameter (2-PL) IRT accounts for item difficulty and discrimination; and 3-parameter 

(3-PL) IRT takes into account the effect of item guessing, difficulty and discrimination. If 

a set of item responses is submitted to a 1-PL, 2-PL, or 3-PL model and item parameters 

are estimated, a model fit statistic indicates that item parameterization in the models was 

satisfactorily completed. The three different item parameterization models may yield 

different ability estimates. It is a known fact that item parameterization will affect the 

estimation of ability in IRT (Lord & Novick, 1968), however, other factors, e.g. 

dimensionality of the test, and test-scoring format may also affect ability estimation. The 

present study deals only with unidimensional IRT models, but will address different test-

scoring formats.  

It may not be so much an issue of item parameterization, but rather item response 

format (right/wrong, partial credit, rating scale, etc.), that influences ability estimation. In 

the first few decades of the development of IRT, research interests were concentrated on 

dichotomous models, which involve test item responses scored either right or wrong (1, 

0). One year after Lord and Novick (1968) established the 1-, 2-, and 3-parameter logistic 

models for dichotomous items, Samejima (1969) introduced the first polytomous model 

(Graded Response Model). Although Bock and Samejima (1972) presented a different 

polytomous model (Nominal Categories Model), it was not until the 1980�s that interest 

in polytomous IRT models began. There have been many polytomous models developed 

since 1970 (Andrich, 1978, 1982, 1995; Masters, 1982; Muraki, 1990, 1992; Thissen & 

Steinberg, 1984, Thissen, Steinberg & Fitzpatrick, 1989, etc.). In polytomous models, 

items in the test are not scored just right or wrong; but instead, each of the categories of 

response is evaluated and scored according to its degree of correctness or the amount of 
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information provided toward the full answer. The polytomous models are appropriate for 

multiple-choice items and performance assessments where test items are designed to have 

steps of difficulty or thresholds. Since choices of categories other than the best answer 

are given partial credit in polytomous models, instead of no credit as in dichotomous 

models, ability estimates for individuals are expected to be different depending on 

whether dichotomous or polytomous models are used in scoring item responses.  

 
Statement of the Problem 

If unidimensional tests, e.g. mathematics ability test, are administered to a group 

of examinees, the ability estimates of the examinees will vary as a function of item 

parameterization (1-, 2-, 3-PL) and scoring (dichotomous versus polytomous) model 

applied to the item responses. Since item parameterization and type of scoring model 

affects ability estimation; one needs to investigate which approach will produce ability 

estimates closest to the levels of the true ability of examinees, i.e., which combination of 

the item parameterization and scoring models gives the most accurate ability estimates? 

The true measure of ability, however, is latent and therefore not known. A comparison 

can only be made among the ability estimates.  

Embretson and Reise (2000) compared the latent trait scores obtained from five 

different polytomous IRT models and the raw scores. The five models differed in item 

parameterization. The Partial Credit Model (PCM) and Rating Scale Model (RSM) are 

Rasch Models, which assume the same slope (1.0) for all items. Graded Response Model 

(GRM), Modified Graded Response Model (MGRM), and Generalized Partial Credit 

Model (GPCM) all allow items to differ in slope parameters. They compared the five 

models on item responses of 350 undergraduates to 12 items on the Neuroticism scale of 
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the Neuroticism Openness Five-Factor Inventory (NEO-FEI) (Costa & McCrae, 1992) 

and obtained five latent trait scores, i.e. ability estimates. They found that the ability 

estimates were highly correlated with each other and with the raw scores. The lowest 

Pearson r was .97. Although the significant correlations indicated that the relative 

ordering of examinees was basically maintained in all five different polytomous models, 

they did not give information about the accuracy of the ability estimation of individual 

models. The information on accuracy of the estimation of individual examinee�s ability is 

as important as their relative ordering in some test settings, e.g. in a criterion-referenced 

test involving a specific cut-off score.  Therefore, it is important to compare the accuracy 

of ability estimation, not just the correlations of the ability estimates from different 

models, because the polytomous models with different parameterization may lead to very 

different ability estimates and thus different variance of the ability estimates. 

Furthermore, the Embretson and Reise study compared only polytomous models. If 

dichotomous models with different parameterization were included in the comparison, 

more diversified ability estimates would be expected. The present study, therefore, 

investigates different dichotomous and polytomous models to determine which model 

produces ability estimates closest to the true latent ability of the examinee, using a 

confidence interval to capture the true latent ability of an examinee, and a root mean 

square deviation index, for deviation of the ability estimates.   

 
Rationale for the Study 

 Several factors that affect ability estimation in IRT are of interest in this study. 

These factors are hypothesized to have an impact on the accuracy of estimation of a 
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person�s ability or knowledge. The rationales for several hypotheses are given in the 

following section.  

Item Parameterization and Scoring Models 

Studies exist which compared different item parameterization and scoring models, 

but the emphases were on items, e.g. model fit, recovery of item parameters, and person 

fit (Wright & Master, 1982; Muraki, 1992).  No study specifically compared different 

models on the ability estimates of examinees. A comparison of dichotomous and 

polytomous IRT models with regard to the accuracy of ability estimation is therefore 

needed. Using Monte Carlo methods, item responses of examinees with known ability 

scores can be simulated, and submitted to different IRT models to compare examinee 

ability estimation. The sets of examinee ability estimates from the different models can 

then be compared to the empirically known ability estimates to examine the bias and 

variance of ability estimation.  

Ability Distributions 

Different prior ability distributions of the examinees will affect the comparison of 

the ability estimates from different models. The difference between scoring a test 

dichotomously and polytomously may not be as prominent in extreme ability groups 

(low, high) as in medium ability groups. It is reasonable, therefore, to investigate the 

effect of the prior ability distributions of the examinees on the model comparisons. Four 

types of distributions will be examined, namely normal, skewed to the right, skewed to 

the left, and bimodal. The ability estimates of a random sample of examinees are 

expected to be normally distributed. A sample that has high ability examinees will 

produce an ability distribution skewed to the left, while that of a sample containing low 
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ability examinees will be skewed to the right. The bimodal distribution of ability 

represents a sample of examinees with very diversified, even polarized, levels of ability. 

This study investigated what effect the ability distributions had on the ability estimates 

under different item parameterization and scoring models.  

Threshold Distances 

When scored polytomously, the categories of each multiple-choice item can 

represent different levels of difficulty. The threshold between two adjacent categories is 

the ability level at which an examinee has equal probability to choose either one of two 

categories. When polytomous models are applied to multiple-choice items, and partial 

credits are given to categories other than the best answers, the configuration of the 

thresholds of an item affects the information function of the item and thus the precision 

of ability estimation. Configuration of the thresholds includes two aspects, namely the 

order of the thresholds and the distances between them. Dodd and Koch (1985) found 

that item information functions for the partial credit model differs as a function of the 

thresholds. The distance between the first and last thresholds affected the shape of the 

information function of an item. Items with shorter distances between first and last 

thresholds had a more peaked information function for a narrower range of ability 

continuum. In a follow-up study of the issue (Dodd & Koch, 1987), they systematically 

altered the order of the same set of thresholds to form different items. They concluded 

that the items with the same set of thresholds yielded the same total amount of 

information across the entire ability continuum, but different ordering of the thresholds 

affected the peakedness of the item information curve. They found that the peakedness of 

the curve increased as the degree of deviation from the sequential order of the thresholds 
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increased. While peaked information function is desired in some testing, e.g. in 

computerized adaptive testing (CAT), flatter information functions that yield maximum 

information for a wider range of ability is preferred in tests developed for examinees 

from all possible ability groups. It is the latter kind of testing under consideration in the 

present study. Therefore, the thresholds of the items in the test constructed for the present 

study were in their sequential order, i.e. monotonically increasing from the least to the 

most difficult. However, distances between the thresholds were varied to investigate its 

effect on ability estimation. The threshold distances could be equal or unequal. If the 

threshold distances are unequal and narrower at the lower end, the categories are 

expected to be less effective in discriminating lower ability groups in the sample, because 

their responses to each of the two adjacent lower difficulty categories may not be very 

different. In contrast, narrower threshold distances at the higher end are expected to cause 

the categories to be less effective in discriminating higher ability groups. With different 

prior ability distributions, it is meaningful to investigate how different polytomous 

models perform when the threshold distances are unequal.  

 
Research Questions 

 The present study hypothesized that the type of item parameterization, scoring 

model format, prior ability distribution of the examinees, and configuration of category 

threshold distances were factors affecting the accuracy of ability estimation of examinees. 

The research questions postulated for this study were as follow: 

1. How do dichotomous and polytomous IRT models differ in accuracy of 

recovering ability estimates in different combinations of prior ability distributions 

and item category threshold distance configurations? 
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2. How do different IRT item parameterization models (i.e. modeling difficulty only; 

both difficulty & discrimination; and difficulty, discrimination & guessing) differ 

in accuracy of recovering ability estimates in different combinations of prior 

ability distributions and item category threshold distance configurations? 

3. How do the polytomous IRT models differ in accuracy of recovering ability 

estimates in different combinations of prior ability distributions and item category 

threshold distance configurations? 

 
Delimitation 

 The factors identified for examination in this study have fixed levels, which were 

selected according to the literature review. The generalizability of the findings of this 

study is limited to the seven IRT models (1-, 2-, and 3-PL dichotomous model, partial 

credit model, general partial credit model, multiple-choice model, and nominal categories 

model), four types of prior ability distributions (normal, skewed to the right, skewed to 

the left and bimodal), and the three types of threshold distance configurations (equal, 

unequal-close at the lower end, and unequal-close at the higher end). Some factors other 

than those examined in this study affect ability estimation but they were controlled in the 

study. The number of examinees in the sample was fixed at 1,000 and the number of 

items in the test was fixed at 30 according to recommendations in the literature (Dodd 

and Koch, 1987; Chen, 1996). The number of response categories in each item was four 

to model typical multiple-choice item tests.  
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Definition of Terminology 

1. Dichotomous item response model�item response model for test with binary 

items. Examinees taking the test will respond in either one of the two response 

categories. A test with items scored right or wrong is dichotomous.  

2. Polytomous item response model�item response model for items with more than 

two response categories, e.g. multiple-choice item that allows partial credits for 

each of the response categories, or constructed-response item with multiple steps.  

3. Ability estimate�the estimate of the level of a latent trait of an examinee 

demonstrated in an observed response pattern to a test. 

4. Item response categories�the possible ways pre-assigned by the item writer that 

an examinee could respond to an item. In the context of multiple-choice items, 

they are the options provided for the examinee to choose; in constructed-response 

items, they are the steps or parts of the solution to the item that allow different 

partial credits to be awarded upon their completion.  

5. Item response function (IRF)�the mathematical equation that governs the 

probability of answering an item correctly as a function of the ability of the 

examinee attempting the item and the item parameters.  

6. Item category response function (ICRF)�the mathematical equation governing 

the probability of an item category being chosen as a function of the ability of the 

examinee and item category parameters. 

7. Threshold distance�the distance on the ability continuum between two 

thresholds. The threshold between two adjacent categories is the ability level at 

which an examinee has equal probability to choose either one of two categories.  
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8. Item step response function (ISRF)�In polytomous IRT model with ordinal 

response categories, item step is defined as two adjacent categories. ISRF is the 

mathematical equation governing the probability of an item step being completed, 

i.e. an examinee responds in the higher category when the two adjacent categories 

are given as the condition. ISRF is a function of the ability of the examinee and 

the step parameters, e.g. thresholds, and slope parameters.  

9. Item characteristic curve (ICC)�the curve that demonstrates the relationship 

between the ability of an examinee and the probability of the examinee answering 

the item correctly. Sometimes it is referred as a trace line. It is the graph of IRF 

plotting against the ability parameters. 

10. Item category characteristic curve (ICCC)�the curve represents the relationship 

between the probability of an examinee choosing an item category and the ability 

of the examinee. ICCCs of all the categories within an item are usually plotted on 

the same graph.  

11. Prior ability distribution�the probability distribution of ability levels in the 

population of examinees before estimation of parameters. It is usually assumed to 

be normal. It can also be estimated by the response data in some programs. 

12. Posterior ability distribution�the probability distribution of the ability estimate 

for an examinee across the ability continuum. In marginal maximum likelihood 

estimation, a probability distribution replaces the point estimate for each 

examinee in the sample.  
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13. Item parameterization model�the mathematical model in item response theory 

through which item properties are calibrated in the measurement of an examinee�s 

ability. 

14. Scoring model�the different scoring formats on which the ability estimation and 

item parameters are modeled. 
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   CHAPTER 2 

REVIEW OF RELATED LITERATURE  

 
Overview 

 A comprehensive review of literature relevant to the present study is provided in 

this chapter. First, a brief introduction to item parameterization and dichotomous IRT 

scoring models is presented. Second, a summary of different polytomous scoring models 

is given. Third, different ability estimation methods are discussed.  

 
Item Parameterization: Basis for Family of IRT Models 

 Item Response Theory, as its name suggests, models testing at the item level. In 

contrast to Classical Test Theory (CTT), which depends on the test scores in ability 

estimation, IRT utilizes mathematical models to estimate the effect of different properties 

of individual items in the test on ability estimation. IRT item parameterization enables 

IRT models to be freer from test-dependence and allows estimation of error on an item-

by-item basis. The modeling of item properties in IRT also permits individual estimates 

of standard error of measurement (SEM), instead of assuming an equal SEM for all 

examinees as in CTT. Therefore, while the primary purpose of IRT is the estimation of 

ability, item parameterization is very important and distinguishes different IRT models.  

Unidimensional IRT models address only one latent trait parameter, but vary in 

the number of parameters used in item parameterization. The most commonly used 

dichotomous IRT models are the 1-, 2-, and 3-PL logistic models. Although a 4-PL 

logistic model was introduced (McDonald, 1967; Barton and Lord, 1981), it is of 

theoretical interest only, for no practical gain on ability estimation was found by the 
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application of the model (Barton and Lord, 1981). The three item parameters involved in 

the IRT models are identified by three item properties, i.e. difficulty (or location 

parameter, usually labeled �b�), item discrimination (or slope parameter, usually labeled 

�a�), and pseudo-chance (or lower asymptote parameter, usually labeled �c�). These item 

properties also apply in the polytomous item response models, which will be reviewed in 

the next section. The development of the three models took decades and bridged across 

two continents, America, and Europe (Hambleton and Swaminathan, 1985).  

One-, Two- and Three-Parameter IRT Models 

Normal ogive models. 

Hambleton and Swaminathan (1985) traced the history of Item Response Theory 

all the way back to 1916, but credited Frederic M. Lord for providing impetus for the 

development of the theory in its present form. The model that Lord introduced was the 

two-parameter normal ogive model (1952). He used the normal ogive curve to model the 

probabilities of the examinees answering an item correctly as a function of their ability, 

i.e. the latent trait under measure, and two item parameters. The item response function 

(IRF) for a two-parameter normal ogive model is:  

( ) ( )( )
dzzP ii ba

i ⋅−= ∫
−

∞−

θ

π
θ 2exp

2
1 2

, 

where Pi(θ) is the probability of an examinee with ability θ answering item i correctly. 

The two parameters that characterize item i are ai (the item discrimination), and bi (the 

item difficulty). The normal ogive curve obtained by plotting Pi(θ) against θ is called item 

characteristic curve (ICC) (Figure 1). The bi value is on the ability continuum where the 

Pi(θ) = 0.5, and ai is the slope of the curve at that point.  
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Figure 1. Item characteristic curves with different item parameters.1 

 

The parameter estimation in this model is mathematically complex and computationally 

involved. The lack of convenient computer programs and high-capacity computers 

needed for the parameter estimation explained the painstakingly slow pace of the early 

development of IRT.  

 Logistic models. 

Birnbaum (1957, 1958a, 1958b) made his contribution by introducing the more 

mathematically tractable logistic model. He used the logistic distribution function to 

approximate the normal ogive. It had been proved that the two curves differ absolutely by 

less than .01 for all values of ability θ, if a constant scaler D = 1.7 was applied to the 

logistic deviate (Haley, 1952). The logistic model not only simplified the computation 

involved in parameter estimation, but also provided an explicit function for item and 

ability parameters. The log odds of success in choosing the correct answer over failure is 

equal to Dai (θ � bi), which is a linear function of the item parameters ai, bi and ability 

parameter θ. The endorsement that Lord had given to the logistic model by including 

Birnbaum�s work in his book co-authored with Novick (1968), helped to promote the 

logistic models replacing normal ogive models in practical use. Birnbaum (1968) added 

                                                 
1 Adopted from Allen and Yen (1979), 255. 
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one more chapter in his book to introduce the pseudo-guessing parameter, thus creating 

the 3-PL logistic model. The IRF of the 3-PL logistic model is: 

( ) ( ) ( )[ ]
( )[ ]ii

ii
iii bDa

bDa
ccP

−+
−

−+=
θ

θ
θ

exp1
exp

1  

where Pi(θ), ai, and bi, have the same meaning as in the normal ogive model, but ci is 

added for the pseudo-guessing, or pseudo-chance parameter, which represents the 

probability of answering the item correctly even though an examinee does not know the 

answer. The ICCs of 2- and 3-PL logistic models are shown in Figure 2. The horizontal 

line Pi(θ) = ci is the lower asymptote of the 3-PL logistic ICC.  

Figure 2. Item characteristic curves of 2- and 3-PL logistic IRT models.2 

 
 

The 3-PL model is the most general among the three logistic models, because the 1- and 

2-PL models can be obtained by fixing (i.e. not altering from item to item) one or two of 

the item parameters in the 3-PL model. The 2-PL logistic model is obtained when ci is set  

                                                 
2 Adopted and modified from Embretson and Reise (2000), 47. 

Pi(θ) = ci 
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to 0. It assumes no guessing on items in the test. When Dai is fixed (usually set to 1) and 

ci is set to 0, a 1-PL logistic model is obtained. The only item parameter in the 1-PL 

model used to estimate an examinee�s ability is item difficulty. The ICCs in a 1-PL model 

will never intersect each other because they have the same slope at bs (Figure 3).  

Figure 3. Item characteristic curves in a 1-PL model.3 

 

The 1-PL logistic IRT model included in the comparison shouldn�t be mistaken as 

a Rasch model. While logistic IRT models were developed in America, George Rasch in 

Denmark introduced a different logistic model. Rasch�s model (1960), shares a general 

form of the logistic model, but was developed prior to and independently from 

Birnbaum�s work. Despite a similar logistic function, the Rasch model has a fundamental 

difference from the Birnbaum logistic IRT models. The Rasch model forms a common 

item and person scale that is equal interval and linear, while Birnbaum logistic IRT 

models are designed to describe the data as close as possible. The Rasch model is more 

                                                 
3 Adopted from Embretson and Reise (2000), 46. 
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theory-driven than data-driven (van der Linden & Hambleton, 1997). The Rasch 

measurement model specifies the conditions that the data must meet. Data that does not 

fit the model is not good enough to make measures from and thus are questioned or 

discarded. The existence of sufficient statistics in the Rasch model allows it to separate 

the item and ability parameter calibrations thus providing sample-free item estimation 

and item-free ability estimation. The present study compares ability estimation of IRT 

models under different item parameterization and scoring models. The Rasch model is 

not included in this study because of its fundamental difference from IRT models, and 

because the parameter estimation method  (MML) applied to the 1-, 2- and 3-PL logistic 

models is different from that used in the Rasch model.  

Summary 

 When the three IRT item parameterization models are compared on the accuracy 

of recovering ability estimates in this simulation study, attention should be given to the 

item properties in the test that generated the item responses of the examinees. With other 

conditions being equal, the IRT item parameterization model that fits the data better 

would have better ability estimates. No model will fit perfectly with actual data in an 

empirical situation. Items in the test may also differ in various item properties. Therefore, 

a range of item difficulty, item discrimination, and pseudo-chance values should be 

chosen to simulate item response data to reflect actual practice.  

Effects of Scoring: Polytomous IRT Models 

 Early IRT models used dichotomously scored items, while modern IRT models 

were developed for polytomous items. When the items in a test have more than two item 

response categories, IRT models for polytomous items should be used in ability 
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estimation. These polytomous IRT models can be classified into two major types 

according to the type of response categories the items have (nominal versus ordinal). 

Nominal response categories do not have a natural order, e.g. questions asked in a 

personality test, and responses to the questions are classified to reflect different 

personality types. Ordinal response categories are ordered along the latent trait 

continuum, e.g. number of steps completed in solving a mathematics problem, or the 

categories in a Likert scale. Higher ability examinees are more probable to respond in 

higher categories and lower ability examinees are more probable to respond in lower 

categories. Bock (1972) developed the Nominal Categories Model for items with nominal 

response categories, and many polytomous IRT models have been developed for items 

with ordinal response categories. They were developed for various types of tests and 

items. In the following section, a summary of Bock�s model will be given, followed by a 

review of the literature on the classifications of the ordinal polytomous models and their 

relationship to Bock�s model. The last part of this section will introduce the polytomous 

IRT models compared in this study.  

Bock�s Nominal Categories Model (NCM)  

 Bock (1972) proposed the most general form of the polytomous IRT model that 

can be used to specify the probability of an examinee�s response in one of several 

mutually exclusive and exhaustive categories as a function of person ability and response 

category characteristics. The response categories are not necessarily ordered. Instead of 

one IRF in a dichotomous model, the polytomous models have a family of item category 

response functions (ICRFs) that are derived to portray the probabilities of responses in 

different categories. The family of ICRFs for Bock�s model is: 
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Where Pik(θ) is the probability of an examinee with ability θ responding in category k of 

item i; aik and cik are the parameters of category k that are analogs to item discrimination 

and difficulty respectively; m is the number of response categories in item i. Each 

category has a ICRF. The number of ICRFs in each item is equal to the number of 

response categories. The model is not fully identified and therefore must be constrained. 

Bock set the sum of the category parameters within each item to zero, i.e. 
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0  for item i. With the constraints set, there is only one set of ICRFs for 

each item.  

Figure 4. Item category characteristic curves in a polytomous IRT model.4 

 

 A category characteristic curve (ICCC) is obtained when an ICRF is plotted 

against θ. The ICCCs of an item with four response categories are shown in Figure 4. The 

ICCCs are non-monotonic with the exception of the highest and the lowest response 

                                                 
4 Adopted from Wright and Masters (1982), 188. 
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categories. The lowest ICCC represents the response category reflecting lowest ability 

level, the probability of response in this category decreases along the ability continuum, 

the ICCC of the category is thus monotonically decreasing. The highest ICCC on the 

other hand, represents the probability of the response category reflecting highest ability 

level. The probability of response in this category increases along the ability continuum, 

and the ICCC of this category is thus monotonically increasing.  At each level of θ, the 

sum of the ICRFs equal to 1, i.e. ( ) 1
1

==∑
=

m

k
jikP θθθ , because the categories are mutually 

exclusive and exhaustive.  

Mellenbergh (1995) demonstrated that Bock�s model could be reformulated in 

terms of (m-1) log odds. He conceptually split the nominal response variable with m 

categories into a series of (m-1) dichotomous response variables. Each one of these 

dichotomous response variables corresponded to the choices between one of the m 

categories to a reference category. Because the response categories are nominal, he 

arbitrarily chose the first category as the reference and set the parameters of that category 

to zero for convenience. The log odds of choosing a category k over the first category is 

thus: 
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The above m-1 dichotomous models together are equivalent to the m ICRFs that 

describes Bock�s polytomous model. It is obvious that Birnbaum�s 2-PL logistic model is 

a special case of the Bock�s model with m = 2, where the probability of answering the 

item correctly, Pi(θ) = Pi2(θ) and the probability of answering the item incorrectly, Qi(θ) = 

Pi1(θ). It follows that:  
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and ai = ai2; bi = -ci2/ai. Conceptually, Mellenbergh has shown that Bock�s model of 

describing polytomous responses to an item can be viewed as a group of dichotomous 

response models. The probabilities of responses in these dichotomous models are still 

governed by logistic distribution functions as in Birnbaum�s logistic models, but the sum 

of the probabilities of the two response categories in those dichotomous models are no 

longer equal to 1 as in Birnbaum�s model. In an up-to-date description of his model, 

Bock (1997) points out that the NCM is �an elaboration of a primitive, formal model for 

choice between two alternatives,� confirming what Mellenbergh had demonstrated. 

Mellenbergh went on to show that Bock�s model could be used to construct various 

models for ordinal item responses, because the ordinal polytomous models can be 

conceptually split into groups of dichotomies. The ordinal models are more restricted 

since the order of the item responses needs to be preserved. The order is preserved by 

using contiguous categories or groups of categories in forming the dichotomies.  

Polytomous IRT Models with Ordinal Response Categories  

 Since so many ordinal polytomous IRT models are available, different studies 

have been conducted to classify them systematically. Three major types were identified 

out of the many ordinal polytomous models. Bas T. Hemker (2001) credited Molenaar 

(1983) for being the first person to compare ordinal polytomous models. Thissen and 

Steinberg (1986) provided a taxonomy of item response models, in which they classified 

polytomous models by the mathematical form of their ICRFs. Two categories of ordinal 

polytomous models are identified that way, namely difference models, and divide-by-

total models. Their attempt was more an empirical approach in classification of 
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polytomous models. On the other hand, classification was also made according to the 

theoretical characteristics of the models. Various characteristics have been used to 

distinguish them. Mellenbergh (1995) used Bock�s model as a starting point and 

distinguished three different order-preserving mechanisms used in splitting the response 

categories into dichotomies. The three mechanisms led to the three types of models for 

ordinal polytomous responses. He called them the adjacent-category models, the 

cumulative probability models and the continuation-ratio models.  

In adjacent category models, he split the ordered polytomous item responses into 

pairs of adjacent categories, i.e. (kth and (k+1)th categories, for k = 1, 2, �, m-1) and 

applied Bock�s model to the log odds of the pairs, as follows:  
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for k = 1, 2, �, m-1. The m-1 log odds describe an ordinal polytomous model. The order 

of the categories is preserved in the way that the categories are split into pairs. Some of 

the ordinal polytomous models in this type are Muraki�s (1992) generalized partial credit 

model (GPCM) (when a�ik = the item discrimination ai for all k and the -c�ik are step 

difficulties.), Masters� (1982) partial credit model (PCM) (when ai equal to 1 for all i and 

the -c�ik are step difficulties), and other extensions in the partial credit model family, e.g. 

Andrich�s (1978) rating scale model (RSM). In those extensions the step difficulties are 

further broken down into linear combinations of an item difficulty and a response 

category parameter.  

In cumulative probability models, the ordered polytomous item responses are split 

into two parts (first k categories and the last m-k categories, for k = 1, 2, �, m-1). The 

categories within each part are collapsed and a cumulative probability is calculated for 
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each part. The cumulative probability of the first k categories P*
ik(θ) = Pi1(θ) + � + Pik(θ) 

for k = 1, 2, �, m-1, and that of the last m-k categories is equal to 1- P*
ik(θ). Bock�s 

model is then applied to the log odds of the pairs of cumulative probabilities, as follows:  
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θ ,  k = 1, 2, �, m-1. 

The m-1 log odds describe another type of ordinal polytomous model. The order of the 

categories is preserved by using contiguous groups of categories. It is obvious that P*
ik(θ) 

is monotonically increasing as k increases, and the log odds associated with P*
ik(θ) is 

always larger than or equal to that associated with P*
i(k+1)(θ) for all k. Two things follow. 

First, the straight lines represented by the linear functions of θ in the model will not 

intersect for any value of θ; it is true only when the lines are parallel to each other. 

Parallel lines imply that the slope parameters a��ik are equal for all k. Second, a straight 

line associated with higher values of k will always be on the right of the lines associated 

with lower values of k. This implies that the intercept parameter c��ik changes 

monotonically as k increases; and thus the category boundaries are in the same order as 

the categories. An example of this type of ordinal polytomous model is the homogeneous 

case of Samejima�s (1969) graded response model (GRM).  

In the continuation-ratio models, ordinal polytomous item responses are split into 

continuation ratios. A continuation ratio is the ratio between the probability of a category 

k to the cumulative probability of categories above k for k = 1, 2, �, m-1. The 

cumulative probability of categories above k is equal to 1- P*
ik(θ). Bock�s model is 

applied to the log odds of the continuation ratio and an ordinal polytomous model is 

obtained, as follows:  
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The order of the categories is preserved by using one contiguous category and a group of 

categories. One of the examples of this type of model is Tutz� (1990, 1997) sequential 

model (SM) (assuming the slope parameters are equal across categories and items, i.e. 

a���ik = a��� for all k and i).  

Although the structure of the three types of models is similar, Mellenbergh 

concluded that the interpretation of the item parameters was different. He suggested that 

item features and the cognitive processes involved in answering the item should 

determine what type of polytomous IRT model should be used. Van Engelenburg (1997), 

on the other hand, argued that item response models should reflect the task features of the 

items. He assumed that the process of solving a polytomous item is made up of 

dichotomous steps, and the task features of the item determine how the steps are linked 

together. The task features he identified included the step process (simultaneous or 

sequential); the continuation rule (try-all or try until fail); and the ordering mechanism 

(fixed or not fixed). A combination of these task features should determine what type of 

polytomous IRT model should be used. For example, if the step process in the items are 

sequential with a fixed ordering mechanism, and the examinees are allowed to try the 

steps until they fail, then the type of polytomous model is the continuation-ratio model.  

Akkermans (1998) carried the reasoning one step further. She argued that the 

interest in IRT is more in scores than in items and that polytomous items should be 

distinguished by the scoring rule applied to the responses. Which polytomous IRT model 

is selected should reflect the scoring rule applied. Three different scoring rules were 

identified in her study, namely graded, parallel, and sequential scoring. Based on the 
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overall judgment of an examinee�s response, graded scoring gives a score within a scale. 

Parallel scoring gives credit to each feature in the collection to be displayed in the 

response. The overall score of the item is the sum of the credit points given. Sequential 

scoring gives credit to a collection of features to be displayed in the response with a fixed 

order. An overall score will be given as soon as a feature in the collection is not displayed 

and further features are not considered. From the definition of the three scoring rules, it 

follows that the three types of ordinal polytomous models should correspond to the rules. 

The continuation-ratio model should be used for responses scored by sequential scoring; 

the cumulative probability model for graded scoring, and adjacent category model for 

parallel scoring. Akkerman gave theoretical and practical reasons for connecting the 

models to the scoring rules, e.g. GRM and PCM should not be applied to sequentially 

scored responses, and SM is the preferred model. Her study simulated two score vectors 

for two completely different item response models and submitted them to a computer for 

comparison. The computer had to match each score vector to the model that generated it. 

The results indicated that the sample size needed for the computer to have a 95% rate of 

correct classification doubled when the two models were from different scoring rules 

instead of the same scoring rule. Her results indicated that scoring model differences can 

affect estimation results!  

Hemker (2001) summarized the research comparing the three types of models. He 

classified the polytomous models by three definitions of item step, namely the 

cumulative, the conditional, and the partial credit. The item steps are the dichotomies that 

describe an ordinal polytomous response model. The definitions are based on the three 

different ways of how the polytomous item score is split up by the item steps. He 
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distinguished the three types of item steps by their item step response functions (ISRFs), 

which is the probability of passing an item step as a function of the ability, θ. The general 

form of ISRF of a parametric logistic polytomous IRT model is: 
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where ai is the item discrimination parameter, and bik is the location parameter. The 

interpretation of bik, however, differs over the three definitions of ISRFs. 

The ISRF of a cumulative item step k is given by ( ) ( ) ( )θθθ kXPCY iikik ≥== , 

where Xi is the score of item i. The item steps are cumulative because the item steps have 

a strict order. If one step is passed, all previous steps are passed; if one step is failed, the 

following steps are failed. The categories are divided into two parts, one for passed and 

the other for failed; it is analogous to Mellenbergh�s cumulative probability model. The 

item is scored similar to Akkermans� graded scoring rule. An example of this type of item 

is a multiple-step mathematics problem. If an examinee fails one step, the rest of the 

answer will be wrong.  

The ISRF of a conditional item step k is given by:  
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The item steps in this type of model have a strict order. They are conditional because an 

item step will not be tried if the step prior to it was failed. For an item step k, only those 

examinees who have a score larger than or equal to k-1 will have a chance to try it, 

because those who scored less than k-1 on the item was either not having a chance to try 

the k-1 item step or having tried but failed the step, therefore, 1−≥ kX i  is the condition 



 27 

for item step k. This type of model is equivalent to Mellenbergh�s continuation ratio 

model. Items in these models are scored using Akkerman�s sequential scoring rule. 

Akkerman gave an example of this kind of scoring for testing psychomotor skills where 

an action is tried until the first success or repeated until the first failure.  

The ISRF of a partial credit item step k is given by: 
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This type of model is equivalent to Mellenbergh�s adjacent category model. Partial credit 

is given to each item step being passed. Since the item steps represent a collection of sub-

tasks or features displayed by the item response and each of them will be given partial 

credit, this type of model is scored according to Akkerman�s parallel scoring rule. 

Examples of this type of item are multiple-choice items with partial credit options, e.g. 

essays using a scoring rubric. A summary of the three types of polytomous IRT models 

with ordinal responses is given in Table 1. 

Table 1  

Summary of the Three Types of Ordinal Polytomous IRT Models 
 

Model Type 
(Mellenbergh) 

 
Scoring Rule 
(Akkerman) 

 
Item Step  
(Hemker) 

 
Model 

Represented 
 

Adjacent category Parallel Partial credit PCM 
 

Cumulative probability Graded Cumulative GRM 
 

Continuation ratio Sequential Conditional SM 
Note. PCM = partial credit model; GRM = graded response model; SM = sequential model. 

Ordinal polytomous IRT models compared in this study 

 In this study, three ordinal polytomous IRT models were compared to five other 

IRT models. They were the partial credit model, the generalized partial credit model and 
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the multiple-choice model (Samejima, 1979, Thissen and Steinberg, 1984, 1997). A brief 

introduction to the three models is described next. 

 Partial credit model (PCM). 

 Masters (1982) extended the Rasch dichotomous model to include polytomous 

items. He assumed that response categories were ordered by the levels of proficiency they 

represent. He conceptualized a multiple-step item; in which each step represented the 

difference in proficiency levels between two adjacent categories. Partial credit was given 

to each step completed. The resulting PCM is an adjacent category model. If mi is the 

number of steps in an item, the response categories of the item can be represented by the 

partial credit assigned to them, i.e. 0 to mi. The model is described by mi log odds: 
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The ISRF of each step is a response function in the 1-PL logistic model. The one 

parameter in the model is the item category location parameter bik. It follows that 
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and the probability of an examinee with ability θ responding in category k can be 

described by:  
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The above equation describes the ICRF for responses in category k of a PCM. It is 

assumed that one credit is given to each step completed. A response in category k will be 

awarded a partial credit of k out of the possible full credit mi. The categories are ordered 

either according to the levels of proficiency demonstrated in the categories or by the 

sequential order of the item steps needed to be completed. When PCM is applied to 

multiple-choice items, the former is assumed.  

The location parameter bik can be broken down further to indicate the item 

location and category threshold, i.e. bik = bi + dik.  The difference in levels of proficiency 

between the adjacent kth and (k+1)th categories is called the kth step difficulty or threshold 

dik. The thresholds dik is also equal to a value on the ability continuum (θ � bi) where two 
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adjacent ICCCs intersect. An examinee with ability θ = bik will have an equal probability 

of choosing either of the adjacent categories, and therefore, the threshold dik is just like 

the boundary between those two categories. In PCM, thresholds need not be ordered. 

Harder steps could be followed by easier steps or vice versa. The configuration of the 

thresholds, however, could have an effect on the discrimination of the item since the 

same amount of credit is given to each item step completed despite its difficulty.  

 Generalized partial credit model (GPCM).  

 Muraki (1992) generalized the partial credit model by adding a slope parameter to 

the model. The slope parameter is analogous to item discrimination in the 2-PL 

dichotomous model. In GPCM, the slope parameter is constant across the categories 

within each item, but could be different between items. In dichotomous 2-PL, or 3-PL 

IRT models, the slope parameter alone is fully responsible for providing item 

discrimination. In GPCM, the slope parameter in combination with the configuration of 

item thresholds determines the discrimination of an item. The ICRFs of GPCM are very 

similar to those of PCM, given as: 
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where ai is the slope parameter, i.e. item discrimination, of item i, and D = 1.7 is the 

scalar constant that transforms the ability scale into the same metric as the normal ogive 

model. The ICRFs of GPCM can be derived with similar derivation in the last section 

starting with the log odds: 
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Without presumption of order in the categories, the left hand side of the equation can be: 
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Therefore, for a nominal categories model to be constrained to a more restricted general 

partial credit model, it follows that ( )( ) ( )( ) ( )ikikiikkiik baccaa −=−+− −− θθ 11 , and the 

relationship between the parameters in the two models can be expressed as: 
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It confirms the observations of Thissen and Steinberg (1984) and Bock (1997). 

 Multiple-choice model. 

 In Bock�s nominal category model, the category with lowest aik (most negative) 

will have an ICCC that decreases monotonically from the left tail value of 1 to a right tail 

value of 0, while the other ICCCs are with a left tail decreasing to 0. When it is applied to 

multiple choice items, the ICCCs imply that all examinees with low ability will select the 

same incorrect category (the one with lowest aik). Empirical studies have shown that 

often this is not the case (Levine and Drasgow, 1983). The non-modeled discrepancy is 

caused by examinees selecting different categories as their answer by purely guessing.  

Samejima (1979) introduced a latent category to allow nonzero left tails for all 

ICCCs. Thissen and Steinberg (1984) called that latent category the �don�t know� (DK) 

category. The DK category that Samejima suggested is described by a response 

distribution function of the ability parameter θ: 
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where DK is treated as one extra nominal response category to the item, and ai0, ci0 are 

the parameter for that category. It is assumed that examinees in the DK category select 

one of the item categories at random. Therefore, the probability of a specific item 

category being selected by a DK examinee is 1/m, where m is the number of item 

categories. With this assumption, Samejima suggested a multiple-choice model described 

by the following ICRFs: 
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θ , for k = 1, 2, �, m. 

 Thissen and Steinberg (1984) argued that it is implausible to assume the DK 

examinees would select their answer randomly. They believed that the DK examinees 

would be drawn to different options at differential rates. They introduced another 

parameter dik, and used it instead of the constant 1/m to represent the probability of a DK 

examinee choosing category k. It is obvious that dik for all ks lie in the interval (0,1) and 

the sum of dik within an item is 1, i.e. 1
1

=∑
=

m

k
ikd . The dual constraint on dik is imposed by 

expressing them in terms of a set of psuedo-parameters d*
ik, where 
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The psuedo-parameters are undetermined and the constraint 0
1

* =∑
=

m

k
ikd is imposed to 

make them identifiable.  The ICRFs of the multiple-choice model become:  
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It is this multiple-choice model that is compared to other models in the present study.  
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Summary  

In the literature, it has been shown that Bock�s nominal category model is the 

most general polytomous IRT model, and its relationships to the dichotomous models and 

different types of ordinal polytomous IRT models have been investigated. As shown in 

Akkerman�s (1998) study, model differences in polytomous IRT models have a 

theoretical basis and are practical. How items are scored determines what IRT model 

should be used for ability estimation. When the wrong type of IRT model is applied, 

specification error is made and bias is introduced in examinee ability estimation. 

Mellenbergh (1995) has shown that differences between the three types of models 

disappear when the items are scored dichotomously.  

In this study, tests with multiple-choice items scored dichotomously and 

polytomously are compared. It is assumed that all the items are scored according to the 

parallel scoring rule, therefore, only the partial credit type of ordinal polytomous IRT 

models will be used for comparison. Thissen & Steinberg�s multiple-choice model was 

included for modeling the effect of guessing in a polytomous model. Bock�s model was 

included to investigate how much bias is present when the ordinal nature of the response 

categories is not specified.   

 
Ability Estimation 

 Different approaches and techniques are applied in item response theory to 

estimate ability. The ability parameter can be estimated jointly with the item parameters 

or estimated with known item parameters, which have been previously estimated. If the 

ability parameter is not estimated jointly with the item parameters, the item parameters 

are first estimated from the item responses with the influence of the ability parameter 
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taken away; the ability parameter is either eliminated through conditioning or integrated 

out through marginalization. Techniques used in parameter estimation include the 

maximum likelihood procedure (Baker, 1992); logistic regression (Reynolds, Perkins and 

Brutten, 1994); minimum chi-quadrant (Zwinderman and van der Wollenberg, 1990), and 

Bayesian modal estimation procedure (Mislevy, 1986; Baker, 1992). The maximum 

likelihood procedure with Bayesian estimates (MAP, EAP) was used in this study; 

therefore, a review of maximum likelihood and Bayesian estimation methods in the 

literature will be given in the following section.   

Maximum Likelihood method 

 Likelihood is a probabilistic function of modeled observations; a specific item 

response vector in the case of IRT models. When local independence is assumed, the 

likelihood function is the product of the probabilities associated with individual item 

responses in a vector. Since the probability of an item response is a function of ability 

and item parameters, the likelihood function is also a function of those parameters. For 

example, the likelihood function of examinee j�s response to n items using Birnbaum�s 2-

PL logistic model is ( ) ( )∏
=

=
n

i
iiji baxfL

1

,,,, θθ bax j , where x = (x1, x2, �, xn) is the 

response vector of examinee j to the n items (xi = 1 or 0 for all i), a = (a1, a2, �, an) and b 

= (b1, b2, �, bn) are the item parameter vectors and  f is the item response function of the 

2-PL logistic model. Therefore, L is the probability of obtaining a response vector x given 

the parameters θj, a, and b. Maximum likelihood estimation is used to find the value of 

the parameters that maximize the value of L.  

Since the likelihood function L involves a product of functions, it is easier to work 

with a logarithm of L instead of L itself. A logarithm is a monotonic function; therefore, 
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ln L is maximized when L reaches its maximum. A logarithm of the likelihood function is 

used to find a solution in practice. Estimators of the parameters are obtained from the 

solution of the first derivative equation 0ln =
∂

∂
θ

L  (likelihood equation), which is the 

condition for a local maximum to occur. If there is more than one local maximum, the 

largest should be chosen. For the entire response data set of N examinees tested on n 

dichotomous scored items, the likelihood function is given by: 
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And after taking logarithms on both sides of the equation,  
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The maximum likelihood estimates of the ability parameters θ1, θ2,�, θN are obtained by 

solving the simultaneous equations: 

( ) 0,...,,,...,,ln 2121 =
∂
∂

NN
j

L θθθ
θ

xxx ,  for j = 1, 2, �, N. 

A solution for the likelihood equation is possible using the Newton-Raphson 

algorithm, when the likelihood function is twice differentiable, i.e. the second derivative 

of the likelihood function is available. The Newton-Raphson algorithm starts with an 

initial value for the estimate of the parameter in the model. The number of items correct 

is usually used for the ability estimates, and CTT item statistics, e.g. proportion correct 

and biserial correlation are used for item estimates. In each iteration, a new estimate for 

the parameters is generated based on the estimate obtained from the previous iteration. 
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For example, if [ ]
tjθ� is the ability estimate of the examinee j at the tth iteration, the ability 

estimate for the (t+1)th iteration is:  
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The differences between the new and old estimates ( [ ] [ ]
tjtj θθ ��

1
−

+
) are calculated for each 

iteration. The iterations continue until the difference is smaller than a pre-set minimal 

value, then the estimate has converged and is the maximum likelihood estimate of the 

parameter. Baker (1992) gave very detailed derivations for estimation equations with the 

Newton-Raphson algorithm applied to different dichotomous models. Three types of 

maximum likelihood estimation are often used to estimate parameters in IRT, namely 

Joint Maximum Likehood (JML), Conditional Maximum Likehood (CML), and Marginal 

Maximum Likelihood (MML). 

Joint Maximum Likelihood Estimation (JML). 

 The JML estimation method was developed by Birnbaum (1968). He used an 

iterative two-stage procedure for jointly estimating item and ability parameters. Each 

iteration was carried out in two stages. Iterations started by estimating the ability 

parameters with the initial values of the item parameters known; then the final values in 

the estimation were treated as known ability parameters to estimate the item parameters. 

This two-stage procedure was repeated until both the estimates of the ability and item 

parameters converged. 

 The JML method was straightforward, but several problems associated with the 

method limited its use. First of all, parameter estimation in JML is inconsistent. When the 

item and ability parameters are estimated jointly, the item parameters are structural 
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parameters, which are fixed by the length of the test, and the ability parameters are 

incidental parameters, because the number of ability parameters increases as the sample 

size increases. Neyman and Scott (1948) have shown that large numbers of incidental 

parameters adversely affects the consistency of the estimation of structural parameters. 

This implies that the estimates of the item parameters will not converge to their true 

values when the sample size of examinees increases to a large number. Moreover, the 

item parameter estimates in JML are biased. De Gruijter (1990) found that the bias of 

parameter estimates, i.e. the difference between the true value of the parameter and the 

estimate, depended on the expected total score distribution. As the test increases in 

length, the bias will become less important, because the ability parameter can be 

estimated more precisely. Large sample sizes and lengthy tests are required to minimize 

bias in parameter estimates in the JML procedure, thus making it less popular, especially 

in small-scale studies. The JML method cannot apply to items and examinees with zero 

or perfect scores. An examinee with a zero score will have an ability estimate of - ∞ , 

while an examinee with a perfect score will have an estimate of + ∞ . Similarly, an item 

that all examinees fail will have an item difficulty estimate of + ∞ , while an item that 

everybody answered correctly will have an item difficulty estimate of -∞ .  

Conditional Maximum Likelihood Estimation (CML). 

 In JML, the item parameter estimates could be inconsistent and biased because 

they are estimated jointly with the ability parameter. The CML estimation technique 

(Andersen, 1972), in contrast, provided consistent and efficient parameter estimates by 

factoring out the unknown ability parameters from the likelihood equations. It required 

sufficient statistics for the ability and item parameters, which were only available in the 
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1-PL logistic model. The number of items correct (count) is a sufficient statistic for the 

ability parameter and the number of correct responses to an item is a sufficient statistic 

for the item difficulty parameter. The likelihood function L(x│θ) is replaced by L(x│r) in 

CML, where x is a response vector containing the response patterns of each examinee in 

the sample, and r is a vector containing the number correct of each examinee. It can be 

shown that L(x│r) = L(x│θ)/ L(r│θ), which is independent of θ because the terms in the 

numerator and denominator cancel out each other.  

 While CML has the advantage of separately estimating the ability and item 

parameters, it has some limitations. First, no parameter estimates can be obtained for zero 

or perfect scores. Second, examinees that have the same number of items correct but 

different response patterns will be given the same ability estimate. Third, CML has 

problems in estimating parameters for a long test, complicated patterns of missing data, 

and polytomous items with many response categories.  

Marginal Maximum Likelihood Estimation (MML). 

 While CML permits item parameter estimation free from the condition of ability 

parameters, it requires a sufficient statistic for the ability parameter. That condition limits 

its application to the 1-PL logistic models. Bock & Lieberman (1970) introduced an 

approach to handle the unknown ability parameters. Instead of using the likelihood 

function conditioned on an examinee�s ability θ, i.e. L(x│θ), they suggested the 

unconditional likelihood function L(x), which is the probability of observing the pattern x 

from an examinee of unknown ability drawn at random from a population. The observed 

response data is regarded as a random sample from a population. If the population has an 
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ability distribution described by a continuous density function g(θ), the unconditional 

likelihood function is given by the definite integral,  

( ) ( ) ( ) θθθ dgLL ⋅= ∫
∞

∞−
xx . 

L(x) is a function of the item parameters only because the ability parameter θ has been 

integrated out. The definite integral generally cannot be expressed in closed form, thus a 

procedure called Gaussian quadrature is used to find the value of the integral.  

Since the unconditional likelihood function is an expected value over a population 

rather than an observed value, estimation procedures are different from that used in the 

JML estimation method. The original approach that Bock and Lieberman (1970) 

introduced posed a formidable computational task, and thus was not practical for lengthy 

tests. In a subsequent reformulation of the MML approach, Bock and Aitken (1981) 

introduced the EM algorithm as a procedure for MML estimation. The EM algorithm has 

two stages, namely the expectation and the maximization stage. In the expectation stage, 

expected values of the frequencies at quadrature points and expected frequencies of 

examinees passing the items are computed. These expected values are then submitted to 

the estimation equations for maximum likelihood estimation in the maximization stage. 

The E and M stages repeat until the estimates converge. The Newton-Gauss method is 

used to solve the maximum likelihood equation.  

MML has some advantages over other maximum likelihood methods. It is 

applicable to all IRT models and efficient for any test length. It provides estimates for 

perfect scores and thus no loss of information by trimming items and examinees with 

perfect scores. The estimates of item standard error in MML are good approximations of 

expected sampling variance of the estimates. Despite these advantages, MML has some 
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limitations. First, MML estimation is computationally involved and sophisticated. 

Second, an ability distribution must be assumed. It is assumed to be normal if the prior 

ability distribution is not known. The effect of departure from normality, however, seems 

minimal and the population ability distribution actually can be estimated from data. 

Third, Baker (1992) pointed out that MML with EM algorithm resolved the problem of 

inconsistent item parameter estimates in JML, but the problem of deviant ability 

estimates in some data sets remained unsolved. There is simply no way to estimate 

parameters for aberrant response patterns. It is this last limitation that led to the use of 

Bayesian estimates in MML (Bock and Aitkin, 1981; Mislevy, 1986).  

Bayesian estimation 

Bayesian parameter estimation procedures are based on Bayes� theorem, which 

states the relationship between the conditional and the unconditional probabilities of the 

occurrence of an event. Specifically, Bayes� theorem can be expressed as: 

( ) ( ) ( )APABPBAP ⋅∝ , 

where P(A|B) and P(B|A) are conditional probabilities and P(A) is the unconditional 

probability of occurrence of event A. The likelihood function L(x| θ) is a conditional 

probability. It follows from the Bayes� theorem that: 

( ) ( )θθθ PLP ⋅∝ xx)( . 

P(θ|x), the probability of θ under the condition of item response vector x, can be 

understood as the distribution of ability estimates according to the item responses, i.e. the 

density function of the posterior ability distribution. The unconditional probability P(θ) is 

the distribution of the ability prior to estimation, i.e. density function of the prior ability 
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distribution. The posterior ability distribution is therefore proportional to the product of 

the likelihood function and the prior ability distribution.  

Bayesian estimation procedure makes use of this relationship and the information 

from the prior ability distribution in the estimation of the ability parameters. The prior 

ability distribution is informative if the variance of the distribution is small. A large 

variance, however, would make a prior distribution uninformative. An uninformative 

prior distribution would have less impact on ability parameter estimation. Informative 

prior distributions, on the other hand, will shrink the ability estimates toward the mean of 

the prior distribution and thus prevent the ability estimates from diverging to 

unreasonable values in the estimation process. This characteristic of Bayesian estimation 

helps to solve the problem of deviant estimates in maximum likelihood estimation, and 

provides a means for estimating aberrant response patterns, e.g. all zero or all perfect 

responses to items in a test. Two Bayesian estimates are commonly applied in MML, i.e. 

maximum a posteriori (MAP) and expected a posteriori (EAP). 

 Maximum a posteriori (MAP) estimates. 

 MAP is the value of ability estimate θ that maximizes the logarithm of the density 

function of the posterior ability distribution: 

( ) ( ) ( )[ ] ( ) ( )θθθθθ PLPLP lnlnlnln +=⋅= xxx . 

MAP estimate is also called Bayesian modal estimate. It is obtained by the solution of the 

likelihood equation using the Newton-Raphson procedure: 
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Since marginal Bayesian modal estimation can be considered an extension of MML, the 

estimation procedure utilizes the EM algorithm as described before. The two-stage 
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procedure is repeated until a convergence criterion is met. The criterion is typically 

specified as a number of EM cycles. The Bayesian modal estimation procedure always 

converges and thus ability estimates are available, even for examinees with zero total 

score or a perfect score.  

 Expected a posteriori (EAP) estimates.  

 EAP is the mean of the posterior ability distribution of an examinee, i.e. the 

expected value of θ in the posterior ability distribution. It is given by: 
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The above equation involves integrations. In practice, the integrations can be 

approximated by the Gauss-Hermite quadrature. The approximation is obtained by  
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The equation is not iterative and EAP estimates are obtained directly. Bock and Aitkin 

(1981) introduced EAP as part of the MML estimation procedure.  

Summary 

 In the present study, ability estimates are obtained using different item 

parameterization and scoring models. The ability estimates are compared to see which 

combination of item parameterization and scoring model provides the best estimation of 

the examinees� ability. It is important for the same estimation approach be used in all the 

models under comparison. In the literature, MML was recommended among the three 

maximum likelihood methods. Caution was also taken in choosing the IRT computer 
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software that used MML for parameter estimation. The software used for parameter 

estimation in this study is MULTILOG (Thissen, 1991). MML in combination with 

Bayesian MAP and EAP estimation were used for parameter estimation in the item 

calibration and scoring runs. MULTILOG provides analysis for all the models, 

dichotomous and polytomous, covered in the present study. The dichotomous models are 

treated as special cases of some polytomous models covered by the software.   
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     CHAPTER 3 

METHODS AND PROCEDURES 
 

Data Simulation and Design 

This study employed a 7× 4× 3 factorial design with seven item parameterization 

and scoring models, four prior ability distributions (normal, skewed to the right, skewed 

to the left, bimodal), and three kinds of threshold distances (equal, unequal-low, unequal-

high). The seven models being compared were the 1-, 2-, 3-PL dichotomous logistic 

model, the Generalized Partial Credit Model with item discrimination ai set to a constant 

(GPCM-1), the Generalized Partial Credit Model (GPCM), the Multiple Choice Model 

(MCM), and the Nominal Categories Model (NCM). The 84 combinations for the three 

factors are listed in Table 2.  

Table 2 

Combinations for Study Design 
 

Normal Skewed to right Skewed to left Bimodal 

 
 

ET UL UH ET UL UH ET UL UH ET UL UH 
 

1-PL Cne1 Cnl1 Cnh1 Cre1 Crl1 Crh1 Cle1 Cll1 Clh1 Cbe1 Cbl1 Cbh1 
 

2-PL Cne2 Cnl2 Cnh2 Cre2 Crl2 Crh2 Cle2 Cll2 Clh2 Cbe2 Cbl2 Cbh2 
 

3-PL Cne3 Cnl3 Cnh3 Cre3 Crl3 Crh3 Cle3 Cll3 Clh3 Cbe3 Cbl3 Cbh3 
 

GPCM-1 Cne4 Cnl4 Cnh4 Cre4 Crl4 Crh4 Cle4 Cll4 Clh4 Cbe4 Cbl4 Cbh4 
 

GPCM Cne5 Cnl5 Cnh5 Cre5 Crl5 Crh5 Cle1 Cll5 Clh5 Cbe5 Cbl5 Cbh5 
 

MCM Cne6 Cnl6 Cnh6 Cre6 Crl6 Crh6 Cle6 Cll6 Clh6 Cbe6 Cbl6 Cbh6 
 

NCM Cne7 Cnl7 Cnh7 Cre7 Crl7 Crh7 Cle7 Cll7 Clh7 Cbe7 Cbl7 Cbh7 
Note. ET= equal threshold distances, UL= unequal threshold-low, UH= unequal threshold-high. 
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With each combination of prior ability distribution and threshold distances, a set 

of polytomous item responses of 1,000 subjects to 30 items was simulated using a 

computer program described in later section. Therefore, twelve different sets of 

polytomous item responses were generated. Those sets of item response data were then 

analyzed given the seven IRT parameterization and scoring models using computer 

programs described in the next section for estimation of item parameters and ability 

estimates. For each combination of the three factors, ability estimates were computed. A 

total of 84 different sets of ability estimates were computed, one set for each combination 

in Table 2.  

 
Number of Replications in Monte Carlo Estimation 

In order to obtain stable ability estimates on each individual in the sample of 

1,000 examinees, 50 replications of the data simulation and ability estimation described 

in the above paragraph were completed to produce a total of 4,200 (84× 50) different sets 

of ability estimates. The number of replications used in simulation studies of IRT models 

in the past varied from as few as 5 to as many as 100 replications (Kamata, 1998; 

Boughton, Klinger and Gierl, 2001). Kamata, who varied the number of replications in 

his study from 3 to 100 across six levels, and Yang (1995), have both shown that 

estimates of parameters were stable after 50 replications. Therefore, this study employed 

50 replications for each combination of conditions based on suggestions from these 

Monte Carlo studies. In each of the 50 replications of data simulation, the random seed 

(seed1 in the SAS program in Appendix A) that was used to create the random sample of 

original ability estimates for the 1,000 examinees was kept constant and the random seed 

(seed3 in the same program in Appendix A) that was used in generating the item response 
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data was changed in each replication, so that the 50 item response data sets were different 

but with the same sample of examinees. For each combination of conditions, the mean of 

the 50 ability estimates of each examinee generated in the 50 replications was calculated 

and served as the estimate of the ability parameter for that person under those specific 

conditions. The sampling error of the mean was also calculated and a 95% confidence 

interval was computed around the mean. Therefore, for each of the 84 combinations of 

conditions, 1,000 confidence intervals were formed.   

 
Criteria for Evaluation 

Two criteria were used to determine how close the estimated ability estimates 

were to the original ability estimates. First, each of the 1,000 original ability estimates 

was examined to determine how many of them fell in the 95% C.I.s of the corresponding 

bootstrap ability estimates. The number of original ability estimates that fell in the C.I.s 

for each combination of conditions was recorded. The rate of recovery, i.e. the number of 

recovered original ability estimates divided by 1,000, served as an indicator of how well 

the different models recovered an examinee�s ability estimate under the different research 

design combinations. Therefore, 84 of such recovery rates, one for each study design 

combination, were generated in each data simulation and analysis cycle.  

Second, a root mean square error (RMSE) of ability estimation was calculated 

across samples for each of the study design combination. The RMSE indicated the bias 

and variance of ability estimation, and thus served as an indicator of precision. The 

RMSE was calculated as: 

RMSE(Cxyz) = 
( )

∑
=

−n

j

jj

n1

2� θθ
 



 47 

For        n = number of examinees;  

≡jθ  original ability score of the jth examinee 

 ≡jθ�  mean of the ability estimates of the jth examinee from 50 replications 

Where Cxyz is the research design combination of �x prior distribution�, �y threshold 

distance configuration� and �z IRT model�, and therefore 84 RMSE were calculated in 

each data simulation and analysis cycle. A flowchart illustrating one cycle of data 

simulation and analysis is listed in Appendix B followed by the computer programs used 

in each phase of the cycle.  

 
Sample Size and Power Analysis for Hypothesis Testing 

 In order to answer the research questions, six three-way ANOVAs were run to test 

the stated hypotheses. Eighteen cycles of the data simulation and analysis process 

described in the previous section were conducted to generate 1,552 (84× 18) recovery 

rates and RMSE. The number of cycles was chosen in reference to the F test for the 

hypothesis with most levels involved, which was the three-way interaction effect of the 

hypothesis comparing the four different polytomous models under the combinations of 

four levels of prior distributions, and three levels of threshold configurations (4× 4× 3), 

because it involved the largest number of cells. According to Cohen�s (1988) power table 

for F test at level of significance, α = .05, and degree of freedom for the numerator, df = 

15, and a medium effect size (f = .25), a cell size of 18 will give the F test a power 

approximately equal to .76; but if df = 24 and the other conditions remain unchanged, the 

power of the test increases to .89. The F test was chosen with reference df = 18, and 

therefore the power of the F test will be around .80. From one cycle to the other, the 
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random number seed (seed1), which was kept constant within each cycle, was changed, 

so that the samples of 1,000 examinees were different from those in the other cycles.  

 
Construction of Test Items 

 The parameters of the test items used in the present study were chosen to reflect 

typical item discrimination and difficulty of real test data. The item parameters were 

generated to model partial credit items. Thirty discrimination parameters ranged from .75 

to 2 were randomly assigned to the thirty items representing adequate but varied 

discriminations. Different levels of difficulty were implemented in the test by having 10 

easy, 10 moderate and 10 difficult items. The thresholds of the easy items were all 

negative, those of the difficult items were all positive, and those of the moderate items 

were symmetric around values close to zero. The values of the thresholds in the 30 items 

were ranging from �2.25 to 2.25 to ensure enough range for measuring all the ability 

levels in the simulated samples. Since the number of response categories in each item 

was set to four, there were three thresholds in each item, namely b1, b2, and b3. Three 

different configurations of thresholds were generated by varying the distances between 

the thresholds, i.e. equally distributed, shorter on the lower end, or shorter on the higher 

end. The three different configurations of thresholds were acquired by changing the value 

of the middle threshold. For the condition of equal threshold distances, the value of the 

middle threshold, b2 was set to the mean of b1 and b3. For threshold distances shorter at 

the lower end, the value of the middle threshold, b�
2 was set to the mean of b1 and b2. For 

the third condition, the value of the middle threshold, b�
2 was set to the mean of b2 and b3. 

The item parameters of the 30 items are listed in Appendix C.  
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Data Simulation Computer Program 

 The SAS data simulation program was adopted and modified from the 

unpublished dissertation of Susan Chen (1999). The first part of the program used the 

random number function RANOR (for the other three ability distributions, other random 

number generating functions are used, see Appendix A) to generate a set of 1,000 random 

numbers to represent the ability parameters for the different IRT item parameterization 

and scoring models. The ability parameters generated by RANOR were normally 

distributed with the mean equal to zero and standard deviation equal to one. The 1,000 

random numbers were then submitted to the second part of the program as the known 

ability estimates of 1,000 examinees to generate response patterns for 30 items. The SAS 

program did two things. First, it generated the probability of response in each of the four 

item categories of an item for each examinee. The probabilities were generated according 

to the ICRFs of the general partial credit model, the most general form of partial credit 

models. The probability of each item category was conceptually represented by a line 

segment with the length equal to the magnitude of the probability. The four probabilities 

were concatenated to form a 0 to 1 interval, (the sum of the probabilities equal to 1). 

Second, another 1,000 uniformly distributed random numbers between 0 and 1 were used 

to generate the item responses. For each examinee, a random number between 0 and 1 

was generated and compared to the interval formed by the four probabilities. The number 

must fall into one of the four line segments, and the category represented by that line 

segment was the item response of that examinee for that item. Since an examinee with 

higher ability estimate will have a higher probability in choosing higher categories and 

the random number chosen is from a uniform distribution, a higher ability examinee has 
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higher chance to get a proportionally higher response categories in this transformation. 

The SAS sub-routines were repeated for each item and each examinee. A dichotomous 

response data set was obtained by setting to 1 the category in the polytomous response 

data set whose ICCC was monotonic increasing, and the other three categories to 0.     

 
Item Parameterization and Ability Estimation Programs 

The commercial computer software package MULTILOG developed by David 

Thissen (1991) was used in the present study to estimate parameters for different item 

parameterization and scoring models. The package employs MML in the item parameter 

estimation phase, maximum likelihood and Bayesian estimation in the scoring phase. It 

provides estimation for the three normal and logistic dichotomous models and many 

polytomous models. The program files of individual models are listed in Table 3 and 

some examples of the programs are listed in Appendix D.  

Table 3 

Computer Programs Used for Different Item Parameterization and Scoring Models 
 

Scoring format 
Item 

Parameterization 
 

Dichotomous Ordinal Polytomous Nominal Polytomous 

1-parameter L1.cmd 
L1s.cmd 

Pc.cmd 
Pcs.cmd  

2-parameter L2.cmd 
L2s.cmd 

Gp.cmd 
Gps.cmd 

Nc.cmd 
Ncs.cmd 

3-parameter L3.cmd 
L3s.cmd 

Mc.cmd 
Mcs.cmd  
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    CHAPTER 4 

RESULTS 

 
Overview 

The recovery rate of original ability estimates (Thetarec) and the root mean 

squared error (RMSE) for the ability estimates were tabulated for each study design 

combination (a portion of the table from one data simulation and analysis cycle is listed 

in Appendix E). Five grouping variables were created to facilitate comparisons posed by 

the research questions. The five grouping variables were the scoring format (ScorFor) [1 

= dichomtomous, 2 = polytomous], the item parameterization (ItemPar) [1 = 1-PL, 2 = 2-

PL, 3 = 3PL], the polytomous IRT models compared in the study (PolyMod) [1 = GPCM-

1, 2 = GPCM, 3 = MCM, 4 = NCM], the prior ability distribution (Thetadis) [1 = normal, 

2 = skewed to the right, 3 = skewed to the left, 4 = bimodal], and the item threshold 

configuration (Threconf) [1 = evenly distributed, 2 = closer at the low end, 3 = closer at 

the high end]. A total of 1,512 recovery rates and RMSEs respectively were acquired 

through the analysis of the simulated item response data sets using seven different IRT 

models. The minimum recovery rate was .049, and the maximum was .945; where a zero 

recovery rate represented non-recovery and 1 represented prefect recovery. The RMSE 

recorded a minimum value of .029384 and a maximum value of .372022, where lower 

RMSE represented higher accuracy in ability estimation. In view of the range of the 

original ability estimates, mostly (over 95%) within the range of �4 to 4, the differences 

in the RMSEs across the models were not as dramatic as what the recovery rates 

indicated shown. Descriptive information for these two variables in different groups by 

the five grouping variables was summarized in Table 4 and Table 5.  
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Table 4 

Descriptive Information of the Recovery Rates across Different Groups 
 
 

Group 
Size 

Mean Standard 
Deviation 

Minimum  Maximum 

Scoring Format 1,512 .50500 .22121 .049 .945 

   Dichotomous 648 .34240 .12795 .049 .650 

   Polytomous 864 .62695 .19661 .086 .945 

Item Parameterization 1,296 .47747 .22449 .049 .945 

   One typea (1-PL) 432 .63704 .23816 .271 .945 

   Two typesb (2-PL) 432 .45351 .14767 .134 .806 

   Three typesc (3-PL) 432 .34186 .16843 .049 .894 

Polytomous Models 864 .62695 .19661 .086 .945 

   GPCM-1 216 .86056 .08908 .339 .945 

   GPCM 216 .52787 .12414 .291 .806 

   MCM 216 .44919 .15859 .086 .894 

   NCM 216 .67018 .09141 .417 .913 

Prior Ability Distribution 1,512 .50500 .22121 .049 .945 

   Bimodal 378 .50215 .20854 .251 .945 

   Skewed to the left 378 .48772 .22980 .106 .898 

   Normal 378 .48484 .24397 .049 .925 

   Skewed to the right 378 .54529 .19482 .209 .923 

Thresholds Configuration 1,512 .50500 .22121 .049 .945 

   Equal Distances 504 .51631 .22376 .082 .945 

   Unequal-High end 504 .49305 .22704 .049 .931 

   Unequal-Low end 504 .50564 .21237 .086 .925 
a item difficulty; b item difficulty and discrimination, c item difficulty, discrimination and guessing 
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Table 5 

Descriptive Information of the RMSE across Different Groups 
 
 

Group 
Size 

Mean Standard 
Deviation 

Minimum  Maximum 

Scoring Format 1,512 .134138 .0837995 .029384 .372022 

   Dichotomous 648 .212244 .0697662 .111041 .372022 

   Polytomous 864 .075560 .0250993 .029384 .211636 

Item Parameterization 1,296 .144302 .0860949 .029384 .372022 

   One typea  432 .094320 .0497234 .029384 .196774 

   Two typesb 432 .142517 .0619508 .047906 .265009 

   Three typesc 432 .196066 .1037707 .043347 .372022 

Polytomous Models 864 .075560 .0250993 .029384 .211636 

   GPCM-1 216 .047900 .0118312 .029384 .090294 

   GPCM 216 .083270 .0110293 .047906 .123693 

   MCM 216 .097910 .0241639 .043347 .211636 

   NCM 216 .073160 .0186354 .036222 .103875 

Prior Ability Distribution 1,512 .134138 .0837995 .029384 .372022 

   Bimodal 378 .120133 .0828093 .029384 .307099 

   Skewed to the left 378 .135304 .0621354 .042988 .268961 

   Normal 378 .136334 .0917573 .034395 .372022 

   Skewed to the right 378 .144781 .0932271 .040336 .360555 

Thresholds Configuration 1,512 .134138 .0837995 .026384 .372022 

   Equal Distances 504 .132676 .0841862 .026384 .352136 

   Unequal-High end 504 .138665 .0894819 .031623 .372022 

   Unequal-Low end 504 .131073 .0772566 .032879 .342053 
a item difficulty; b item difficulty and discrimination, c item difficulty, discrimination and guessing 
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The two criteria, recovery rate and root mean squared error, were expected to be 

correlated to a certain extent. While both criteria are measuring the accuracy of the 

models� ability estimation, they refer to different aspects. They were correlated to 

examine their strength of association. A Pearson correlation coefficient of -.730 was 

obtained for the two criteria. The negative sign indicates that the two criteria vary in 

opposite directions. High recovery rate or low RMSE indicates high accuracy in ability 

estimation. One criterion explains about 50% of the variance in the other. Despite their 

shared variance, each criterion offers unique information on the accuracy of the ability 

estimation.  

It is apparent from the wide range of recovery rates and RMSEs that the different 

IRT models vary greatly in their ability to recover the original ability estimates. The 

group means and standard deviations alone do not reveal how the two criteria varied by 

different combinations of grouping variables. Three-way ANOVAs were performed to 

examine the effects of the five factors, namely scoring format, item parameterization, 

different polytomous models, prior ability distribution, and thresholds configurations, on 

the two criteria of ability estimation accuracy. The results of the analyses are summarized 

in the following section by research question. ANOVA was chosen instead of MANOVA 

because the primary interest of the present study was on how the factors affected the two 

criteria individually, not on their combined measure of accuracy. 

 
Research Question 1 

How do dichotomous and polytomous IRT models differ in accuracy of 

recovering ability estimates in different combinations of prior ability distributions and 

item category threshold distance configurations?  
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Two three-way ANOVAs were conducted with Scorfor (S), Thetadis (P), 

Threconf (T) as independent variables, and Thetarec and RMSE as dependent variables, 

respectively. The results for these analyses are summarized in Tables 6 and 7, and the 

discussion addressed the research question. 

Table 6 

Three-Way Fixed Effects ANOVA on Recovery Rate (S, P, T) 
Source* 

 
SS 

 
Df 

 
MS 

 
F 
 

p 
 

η2 

 
Power� 

 
S 29.983 1 29.983 59.211 .000 .406 1.000 

P 1.349 3 .450 17.326 .000 .018 1.000 

T .161 2 .08066 3.109 .045 .002 .599 

S×P 2.680 3 .893 34.431 .000 .036 1.000 

S×T .512 2 .256 9.867 .000 .007 .984 

P×T .337 6 .05619 2.166 .044 .005 .775 

S×P×T .653 6 .109 4.193 .000 .009 .980 

Error 38.605 1488 .02594     

Total 73.937 1511      

*S = Scoring Format, P = Prior Ability Distribution, T = Threshold Configuration 
� Computed using level of significance = .05 

 The independent variables together explained about 48% (model R square was 

.478) of the variance in the recovery rate in this ANOVA. From Table 6, the three-way 

interaction effect is statistically significant at the level of .0005 with a small effect size 

(η2 = .009, f = .10) according to Cohen (1988)5. Since the three-way interaction was 

                                                 
5 Cohen (1988) defined f as the ratio between variance of group means and pooled variance of the 
dependence variable. The relationship between f and η2 is given by f2 = η2 / (1 - η2). Cohen gave f = .1, .25, 
and .4 as general reference for small, medium and large effect for F tests in ANOVA. 
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statistically significant, the other effects could not be interpreted unambiguously. Simple 

interaction tests of scoring format (2) ×  prior ability distribution (4) at the three levels of 

threshold configuration were used to explain results. The two-way interaction S×P was 

statistically significant at the level of .05 at all levels of the threshold configuration, (F(3, 

496) = 11.68, p < .0005; F(3, 496) = 3.25, p = .022; and F(3, 496) = 26.53, p < .0005; for 

�equal threshold distances�, �unequal-close at the lower end�, and �unequal-close at the 

higher end� respectively). Therefore, simple-simple main effects of scoring format were 

examined within each combination of threshold configurations and prior ability 

distributions. They were all statistically significant (p < .0005) except within the 

combination of an �unequal-close at the lower end� threshold configuration and �skewed 

to the right� prior ability distribution (F(1, 124) = .578, p = .448). Comparisons of the 

individual cell means for the statistically significant effects showed that the cell means of 

the polytomous models (scorfor = 2) were much higher than those of the dichotomous 

models (scorfor = 1). The effect sizes ranged from η2 = .178 to .689, or f = .47 to 1.49, 

and they were large effects by Cohen�s standard. This result indicated that the 

polytomous models had much higher recovery rates than the dichotomous models. The 

only exception was when a group of predominantly lower ability examinees were tested 

on items with categories other than the most completed answer being close to their levels 

of difficulty at the lower end of the ability continuum.  

 The simple-simple main effects of prior ability distribution were also tested 

within each combination of threshold configurations and scoring formats. With each 

combination of threshold configurations and dichotomous scoring, the tests were all 

statistically significant (with p-value < .0005 in each case) with large effect sizes 
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(ranging from η2 = .294 to .375 or f = .65 to .77). Post hoc tests revealed that the effects 

came from the difference between �skewed to the right� prior and the other prior 

distributions, and between the bimodal prior to the other priors. The �skewed to the right� 

prior group had the highest recovery rates, the bimodal prior group in the middle, and the 

other two prior groups had the lowest. With polytomous scoring, the test was statistically 

significant (F(3, 284) = 7.698, p < .0005) only when the threshold configuration of the 

items were �unequal-closer at the lower end� and the effect size was much smaller (η2 = 

.075, or f = .28). Post hoc tests showed that the �skewed to the left� prior group had 

statistically significantly (at the level of .05) higher mean recovery rate than the other 

three prior groups.  

Table 7 

Three-Way Fixed Effects ANOVA on RMSE (S, P, T) 
Source* 

 
SS 

 
Df 

 
MS 

 
F 
 

p 
 

η2 

 
Power� 

 
S 6.918 1 6.918 3009.755 .000 .652 1.000 

P .121 3 .04046 17.605 .000 .011 1.000 

T .02261 2 .01131 4.919 .007 .002 .808 

S×P .101 3 .03355 14.598 .000 .010 1.000 

S×T .03495 2 .01748 7.603 .001 .003 .946 

P×T .0009136 6 .0001523 .066 .999 .000 .066 

S×P×T .0005335 6 .00008892 .039 1.000 .000 .059 

Error 3.420 1488 .002299     

Total 10.611 1511      

*S = Scoring Format, P = Prior Ability Distribution, T = Threshold Configuration 
� Computed using level of significance = .05 
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 The same group of independent variables together explained about 68% (model 

R2 = .678) of the variance in RMSE in this ANOVA. The major contributor to the 

explained variance was the main effect of scoring format. However, two of the three two-

way interaction effects were statistically significant at the level of .001, with small effect 

sizes (η2 = .010 and .003). Therefore, the main effects could not be interpreted 

unambiguously. Tests were performed for the simple main effects of scoring format 

within each level of prior ability distribution and threshold configuration. The tests were 

all statistically significant (with p < 0.0005 in all tests) and had very large effect sizes 

(ranging from η2 = .574 to .773 or f = 1.16 to 1.85). Comparison of the cell means 

indicated that polytomous models had much smaller RMSE in ability estimation than the 

dichotomous models at all levels of the other two independent variables.  

The simple main effect of the prior ability distribution was also tested within the 

two levels of scoring format. For the dichotomous models, the simple main effect was 

statistically significant (F(3, 644) = 8.308, p < 0.0005) with a small effect size (η2 = .037, 

or f = .20). Comparison of cell means revealed two homogenous subsets in the four prior 

distribution groups. The �skewed to the left� and bimodal prior groups had smaller 

RMSEs compared to the normal and �skewed to the right� prior groups. For the 

polytomous models, the simple main effect was statistically significant (F(3, 860) = 66.7, 

p < .0005) with a large effect size (η2 = .187, or f = .48). Comparison of cell means 

indicated that the bimodal prior group had the lowest RMSE, with the normal prior group 

in the middle, and the two skewed prior groups with the highest RMSE.  

The simple main effect of the threshold configuration was tested for dichotomous 

and polytomous models. It was not significant when the scoring format was polytomous. 
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With dichotomous scoring, it was statistically significant (F(2, 645) = 5.011, p = .007) 

with a small effect size (η2 = .015, or f = .12). The effect came from the difference 

between the �unequal-close at the lower end� group and the �unequal-close at the higher 

end� group. The former had a lower RMSE. The result indicated that polytomous scoring 

out-performed the dichotomous scoring in the accuracy of ability estimation, indicated by 

lower RMSE under all combinations of the research conditions. The prior distribution of 

the ability estimates had effect on the RMSE. The bimodal prior had the lowest RMSE.  

To answer the first research question, the analysis indicated that polytomous 

scoring provided more accurate ability estimation, both in terms of higher recovery rate 

and lower RMSE, than the dichotomous scoring under all combinations of prior ability 

distribution and threshold configuration. Further tests were conducted to investigate the 

effect of the combinations within dichotomous and polytomous scoring models. Figures 5 

to 8 visualized the effects that the combinations of the two factors had on the recovery 

rate and RMSE.  

For dichotomous models, the threshold configuration did not have much effect on 

the accuracy of ability estimation, as expected, but the different prior ability distributions 

did affect the recovery rate and RMSE differently. Figures 5 and 6 show how the four 

prior groups differed from each other. The normal prior group performed almost 

identically for both criteria with the lowest recovery rate and highest RMSE. The bimodal 

and the �skewed to the right� prior group did better on both criteria, but the latter did 

much better in recovery rate.  
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Figure 5. Marginal means of recovery rate by prior distribution (dichotomous model). 
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Figure 6. Marginal means of RMSE by prior distribution (dichotomous model). 
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For the polytomous models, the threshold configuration did not have much effect 

on the RMSE, but affected the recovery rate and had statistically significant interaction 

(F(6, 852) = 4.829, p < .0005) with a small to medium effect size (η2 = .033, or f = .18) 

with prior ability distribution. It is apparent from Figure 7 that the four prior groups had 

very similar recovery rates when the threshold distances were equal, but their recovery 

rates diverged when the threshold distances were unequal. The dispersion of the group 

means was larger when the threshold distances were closer at the lower end (about .2) 

than when they were closer at the higher end (about .1). Furthermore, the ascending order 

of the recovery rates of the four prior groups (skewed to the left, normal, bimodal and 

skewed to the right) was the same as that in the dichotomous models only when the 

threshold distances were closer at the higher end. The order reversed when the threshold 

distances were equal or closer at the lower end. In the case of the RMSE, the threshold 

configuration had no effect, and the four prior groups differed slightly. 

Figure 7. Marginal means of recovery rate by prior distribution (polytomous model). 
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Figure 8. Marginal means of RMSE by prior distribution (polytomous model). 
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Research Question 2 

How do different IRT item parameterization models (i.e. modeling difficulty only; 

both difficulty & discrimination; and difficulty, discrimination & guessing) differ in 

accuracy of recovering ability estimates in different combinations of prior ability 

distributions and item category threshold distance configurations?  

Two three-way ANOVAs were conducted with ItemPar (I), Thetadis (P), 

Threconf (T) as independent variables, and Thetarec and RMSE as dependent variables, 

respectively. The results for these analyses are summarized in Tables 8 and 9. 
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Table 8 

Three-Way Fixed Effects ANOVA on Recovery Rate (I, P, T) 
Source* 

 
SS 

 
Df 

 
MS 

 
F 
 

p 
 

η2 

 
Power� 

 
I 
 

19.192 2 9.596 292.289 .000 .294 1.000 

P 
 

1.151 3 .384 11.690 .000 .018 1.000 

T 
 

.07475 2 .03737 1.138 .321 .001 .252 

I×P 
 

1.861 6 .310 9.449 .000 .029 1.000 

I×T 
 

.747 4 .187 5.691 .000 .011 .981 

P×T 
 

.273 6 .04557 1.388 .216 .004 .548 

I×P×T 
 

.596 12 .04970 1.514 .112 .009 .819 

Error 41.367 1260 .03283     

Total 65.264 1295      

*I = Item Parameterization, P = Prior Ability Distribution, T = Threshold Configuration 
� Computed using level of significance = .05 

 

 The independent variables explained about 37% (model R2 = 3.66) of the variance 

in the recovery rates. Most of the variance explained came from the main effect of the 

item parameterization. However, in Table 8, the F tests on two of the two-way interaction 

effects were statistically significant with a small effect size. Therefore, tests on the simple 

main effects of item parameterization within different levels of the other two grouping 

variables were conducted. The tests were statistically significant (p < .0005) for all three 

threshold configurations and four prior ability distributions with larger effect sizes 

(ranging from η2 = .208 to .572 or f = .51 to 1.16). The recovery rates of the models with 

different item parameterizations differed greatly. The models with only item difficulty 

(includes 1-PL dichotomous model and the GPCM-1 model) had the highest recovery 
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rate, the models with item difficulty and discrimination had the medium recovery rate, 

and the models with item difficulty, discrimination and guessing had the lowest recovery 

rate. The same order was maintained under all levels of the other two variables.  

 The simple main effect of the prior ability distribution was not significant for the 

three-parameter models. It was statistically significant at the level of .05 (F(3, 428) = 

2.949, p = 0.033) with a small effect size (η2 = .020, or f = .14) for the one-parameter 

models. Comparison of the cell means revealed that the �skewed to the right� prior group 

had the highest recovery rate, but the difference between the four prior groups were 

small. For the two-parameter models, the test for simple main effect was statistically 

significant (F(3, 428) = 47.606, p < .0005) with a large effect size (η2 = .250, or f = .58). 

Comparison of cell means revealed that the �skewed to the right� prior had a much higher 

recovery rate than the other three prior groups, whose recovery rates were similar. The 

magnitude of the recovery rates for the three prior groups reversed its order from that of 

the three groups within the one-parameter models. Although the simple main effects of 

threshold configuration were statistically significant at the level of .05 within the two-

parameter and three-parameter models, the effect sizes were small. Comparison of cell 

means revealed that the differences among them were small and the recovery rate of 

�unequal-close at the high end� group was slightly lower than the other two.     
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Table 9 

Three-Way Fixed Effects ANOVA on RMSE (I, P, T) 
Source* 

 
SS 

 
Df 

 
MS 

 
F 
 

p 
 

η2 

 
Power� 

 
I 
 

2.238 2 1.119 197.722 .000 .233 1.000 

P 
 

.08907 3 .02969 5.246 .001 .009 1.000 

T 
 

.01727 2 .0086356 1.526 .218 .002 .326 

I×P 
 

.117 6 .01954 .0453 .002 .012 .947 

I×T 
 

.004854 4 .001214 .214 .930 .001 .097 

P×T 
 

.0009978 6 .0001663 .029 1.000 .000 .057 

I×P×T 
 

.0003369 12 .00002808 .005 1.000 .000 .052 

Error 7.131 1260 .00566     

Total 9.599 1295      

*I = Item Parameterization, P = Prior Ability Distribution, T = Threshold Configuration 
� Computed using level of significance = .05 

 The model R2 of the ANOVA was .257, and most of the effect came from item 

parameterization (η2 = .233, or f = .55). The interaction effect of item parameterization 

and prior ability distribution was statistically significant with a small effect size. The tests 

of simple main effects showed that the three levels of item parameterization statistically 

significantly (with p < .0005 in each test) differed from each other in RMSE for all prior 

groups. They differed most within the �skewed to the right� prior groups (η2 = .330, or f 

= .70), but less within the normal prior groups (η2 = .160, or f = .35). In all cases the one-

parameter models had the lowest RMSE, and the three-parameter models had the highest 

RMSE. The simple main effects of prior ability distribution within different 

parameterization models were statistically significant at the level of .05 with small effect 

sizes (ranging from η2 = .021 to .056 or f = .15 to .24). The bimodal prior group gave the 
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lowest RMSE within one- and two-parameter models, and a close second within the 

three-parameter models. The �skewed to the right� prior group had the highest RMSE 

within the two- and three-parameter models. However, the differences in RMSEs 

between the four different prior groups were small. Although the main effects and all the 

interaction effects involving the threshold configuration were not significant at the level 

of .05, examination of cell means revealed that the �unequal-close at the high end� group 

always had a RMSE slightly higher than the other threshold configuration groups.  

 To answer the second research question, the ANOVA indicated that under all 

combinations of prior ability distributions and threshold configurations, the 1-PL models 

(with only item difficulty) had the most accurate ability estimation, and the 3-PL models 

(with three types of parameters) were less accurate in ability estimation among the three 

different item parameterization models. Within each category of item parameterization, 

the effect of prior ability distribution and threshold configuration was assessed. Figures 9 

to 14 show how the recovery rates and RMSEs differed across these two variables within 

each category of item parameterization. The effect of threshold configuration was similar 

in all three categories of item parameterization. The ability estimation using items with 

�unequal-close at high end� configuration were less accurate, indicated by lower recovery 

rates and higher RMSEs, than the other two kinds of configurations. The effect of prior 

ability distribution was not clear. The �skewed to the right� prior group had the highest 

recovery rate within 1-PL and 2-PL models, lowest within the 3-PL models; but had the 

highest RMSE with 2-PL and 3-PL models, second lowest within the 1-PL models. On 

the other hand, the bimodal prior group provided the lowest RMSE all the time, and also 
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had the highest recovery rate within the 3-PL models. A similar pattern for the effect of 

prior ability distribution was observed within the dichotomous and polytomous models.  

Figure 9. Marginal means of recovery rate by prior distribution (1-PL model). 
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Figure 10. Marginal means of RMSE by prior distribution (1-PL model). 
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Figure 11. Marginal means of recovery rate by prior distribution (2-PL model). 
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Figure 12. Marginal means of RMSE by prior distribution (2-PL model). 
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Figure 13. Marginal means of recovery rate by prior distribution (3-PL model). 
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Figure 14. Marginal means of RMSE by prior distribution (3-PL model). 
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Research Question 3 

How do the polytomous IRT models differ in accuracy of recovering ability 

estimates in different combinations of prior ability distributions and item category 

threshold distance configurations? 

Two 3-way ANOVAs were conducted with PolyMod (Po), Thetadis (P), Threconf 

(T) as independent variables, and with Thetarec and RMSE as dependent variables. The 

results for these analyses are summarized in Tables 10 and 12. 

Table 10 

Three-Way Fixed Effects ANOVA on Recovery Rate (Po, P,T) 
Source* 

 
SS 

 
Df 

 
MS 

 
F 
 

p 
 

η2 

 
Power� 

 
Po 
 

21.137 3 7.046 1259.247 .000 .634 1.000 

P 
 

.153 3 .05094 9.104 .000 .005 .996 

T 
 

.238 2 .119 21.284 .000 .007 1.000 

Po×P 
 

3.368 9 .374 66.884 .000 .101 1.000 

Po×T 
 

1.505 6 .251 44.827 .000 .045 1.000 

P×T 
 

1.084 6 .181 32.301 .000 .033 1.000 

Po×P×T 
 

1.309 18 .07272 12.997 .000 .039 1.000 

Error 4.566 816 .005595     

Total 33.361 863      

*Po = Polytomous Models, P = Prior Ability Distribution, T = Threshold Configuration 
� Computed using level of significance = .05 

 The model effect of this ANOVA was high (R2 = .863). About 86% of the 

variance of the recovery rate could be explained by the three independent variables. Most 

of the model effect came from the differences among the four polytomous models. Since 

the three-way interaction effect was statistically significant (F(18, 816) = 12.997, p < 
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.0005), tests for the simple interaction effects were conducted. The simple interaction 

effects Po×P were statistically significant ((F(9, 272) = 26.268, p < .0005; F(9, 272) = 

41.954.25, p < .0005; and F(9, 272) = 19.044, p < .0005) with large effect sizes (ranging 

from η2 = .387 to .581 or f = .79 to 1.18) within all three categories of threshold 

configuration. The interaction effect was strongest within the �unequal-close at the high 

end� group, and weakest within the �unequal-close to the low end� group.  

Simple-simple main effects of PolyMod were tested within each combination of 

prior ability distribution and threshold configuration. All combinations were statistically 

significant (p < .0005) with large effect sizes (ranging from η2 = .299 to .994 or f = .65 to 

12.87). The large range of effect sizes indicated that the four different polytomous 

models differed on accuracy of ability estimation, and the differences changed from one 

combination of threshold configuration and prior abiltiy distribution to the other. Table 

11 summarized the effect sizes of the simple-simple main effects of PolyMod. It is 

apparent that the effect sizes were large; most of them were larger than .95, i.e. the 

recovery rates of the four polytomous models were different from each other in most 

cases. Post hoc analyses were conducted to compare the four cell means in each of the 

twelve combinations of conditions. Cell means that were not statistically significantly 

different at the level of .05 were put together in a homogeneous subset. Therefore, cell 

means of the models between homogenous subsets were statistically significantly 

different from each other at the level of .05. In the last column of Table 11, polytomous 

models in a homogenous subset were put together inside a bracket, and commas separate 

the homogenous subsets of models. The cell means of the models within and between 

homogenous subsets are listed in descending order. A clear pattern (1, 4, 2, 3) emerged 
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when the homogenous subsets were compared across the twelve combinations of 

conditions. GPCM-1 had the highest recovery rate in all cases, most of the time 

statistically significantly higher than the other three models. NCM had the second best 

recovery rate except in three cases, and in two of those cases it was very close to the 

second best. MCM had the lowest recovery rate most of the time except when the 

threshold configuration was �unequal-close at the high end.� The same order (GPCM-1, 

NCM, GPCM, MCM) was maintained when the threshold configuration was �equal 

distances� or �unequal-close at the low end�, with only one pair of models reversing their 

Table 11 

Simple-Simple Main effect (PolyMod) on Recovery Rate and Homogeneous Subsets 
Threconf Thetadis Effect size (η2) Homogeneous subsets* 

Equal distances bimodal .993 1, 4, (2, 3) � 

Equal distances skewed (left) .952 1, 4, (3, 2) 

Equal distances normal .413 (1, 4), (2, 3) 

Equal distances skewed (right) .982 1, 4, 2, 3 

Unequal-high bimodal .990 1, 4, 3, 2 

Unequal-high skewed (left) .967 1, 3, 4, 2 

Unequal-high normal .299 (1, 3, 4), 2 

Unequal-high skewed (right) .985 1, 4, 2, 3 

Unequal-low bimodal .994 1, 4, 2, 3 

Unequal-low skewed (left) .968 1, (2, 4), 3 

Unequal-low normal .715 (1, 4), 2, 3 

Unequal-low skewed (right) .979 1, 4, 2, 3 

*the means of the models in a homogenous subset are not significantly different at the level of .05. 
�1 = GPCM-1, 2 = GPCM, 3 = MCM, 4 = NCM; models inside a bracket are in same homogenous group. 
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order when the prior distribution was �skewed to the left�. The models with reversed 

order were in the same homogeneous subset. It seems that the �unequal-close to the high 

end� threshold configuration enhanced the recovery rate of MCM and jeopardized that of 

the GPCM. With the prior ability distributions, it seems that three of the prior groups did 

not affect the order, but �skewed to left� prior group did change the order.    

Table 12 

Three-Way Fixed Effects ANOVA on RMSE (Po, P, T) 
Source* 

 
SS 

 
Df 

 
MS 

 
F 
 

p 
 

η2 

 
Power� 

 
Po 
 

.287 3 .09574 975.535 .000 .528 1.000 

P 
 

.103 3 .03421 348.553 .000 .189 1.000 

T 
 

.002908 2 .001454 14.813 .000 .005 .999 

Po×P 
 

.05696 9 6.329 64.493 .000 .105 1.000 

Po×T 
 

.01182 6 .001970 20.078 .000 .022 1.000 

P×T 
 

.001277 6 .0002128 2.168 .044 .002 .774 

Po×P×T 
 

.0007763 18 .00004313 .439 .979 .001 .321 

Error .08008 816 .00009814     

Total .544 863      

*Po = Polytomous Models, P = Prior Ability Distribution, T = Threshold Configuration 
� Computed using level of significance = .05 

 The model effect of the ANOVA on RMSE was high (R2 = .853) and most of the 

effect came from the main effect of the independent variable PolyMod. The main effects 

can not be interpreted unambiguously because two-way interaction effects were 

statistically significant at the level of .05 in the analysis. Tests were therefore conducted 

to investigate simple main effects. The simple main effects of PolyMod were statistically 

significant (p < .0005) with effect sizes η2 = .111, .129, and .082 or f = .35, .38 and .30. 
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Post hoc comparisons indicated that the order of the four models by magnitude of their 

RMSE remained unchanged across the three levels of threshold configuration, 

specifically the order was GPCM-1, NCM, GPCM, MCM with RMSE ascending. It also 

showed that the order of the four prior ability distribution groups by the magnitude of 

RMSE remained the same across the levels of threshold configuration. The order was 

bimodal, normal, skewed to the right, and skewed to the left with ascending RMSE. 

 To answer the third research question, the analysis indicated that the four 

polytomous IRT models used in the present study differed in accuracy of ability 

estimation. The tests of simple effects and post hoc tests revealed that the four models 

basically maintained the same order of accuracy in terms of higher recovery rate and 

lower RMSE, with different combinations of threshold configurations and prior 

distributions, although the magnitudes of the differences between models varied from one 

combination of conditions to the other. Figures 15 to 18 show the recovery rates and the 

RMSEs of the four models across the categories of threshold configuration and across 

different prior groups.  

Figure 15. Marginal means of recovery rate by polytomous model (within Threconf). 
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Figure 16. Marginal means of recovery rate by polytomous model (within Thetadis). 
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Figure 17. Marginal means of RMSE by polytomous model (within Threconf). 
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Figure 18. Marginal means of RMSE by polytomous model (within Thetadis). 
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Examination of the interaction effects in the four figures revealed that they were 

mostly ordinal. Ordinal interactions indicate that the order of the groups within a 

grouping variable remains unchanged, while the magnitudes of the differences between 

the group means varied from one pair of groups to the other. The order of the four models 

with ascending RMSEs, and descending recovery rates was GPCM-1, NCM, GPCM, and 

MCM. The order only changed when the threshold configuration was �unequal-close at 

the high end,� or when the prior ability distribution was normal.  
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CHAPTER FIVE 

CONCLUSIONS AND RECOMMENDATIONS 

 
 The findings concerning the effects of scoring format and item parameterization, 

in combination with prior ability distribution and item threshold configuration, on the 

accuracy of ability estimation will be discussed in the first part of this chapter. Some 

conclusions will be drawn from the discussion and the practical educational importance 

of the findings will be addressed. Recommendations for future study will be made in the 

second part of this chapter. 

 
Conclusions 

Findings of the Present Study 

1. The two criteria of ability estimation accuracy, recovery rate and RMSE, were 

negatively correlated as expected. In most of the hypotheses tested in this study, 

the effect sizes on recovery rate were larger than that of the RMSE. 

2. Polytomous scoring models provided more accurate ability estimation, both in 

terms of higher recovery rate and lower RMSE, than the dichotomous scoring 

models under all combinations of prior ability distribution and threshold 

configuration.  

3. Under all combinations of prior ability distributions and threshold configurations, 

the 1-PL models (with only item difficulty) had the most accurate ability 

estimation, and the 3-PL models (with three types of parameters) were less 

accurate in ability estimation among the three different types of item 

parameterization models. 
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4. Four polytomous IRT models used in the present study differed in accuracy of 

ability estimation. The four models basically maintained the same order of 

accuracy under all the combinations of threshold configuration and prior 

distribution. The order was GPCM-1, NCM, GPCM, and MCM with ascending 

RMSEs and descending recovery rates. 

5. Threshold configuration indicated small effect on RMSE. When the threshold 

configuration was �unequal-close at the high end�, RMSE was slightly lower than 

the RMSE obtained under the other two threshold configurations. Threshold 

configuration had a much larger effect on recovery rates. For dichotomous 

models, the �unequal-close at the high end� group had recovery rates slightly 

lower than the other two groups. For polytomous models, different threshold 

configurations had different effects on different prior groups. For the bimodal and 

the �skewed to the right� prior group, the �unequal-close at the low end� had the 

lowest recovery rate, and the �unequal-close at the high end� had the highest.� 

For the �skewed to the left� prior group, the order was reversed. The threshold 

configuration had little effect when the prior distribution was normal.  

6. Prior ability distribution affected recovery rates and RMSEs in all combinations 

of the research conditions. However, no conclusive pattern of its effect was 

identified. The �skewed to the right� prior had the highest recovery rate and 

highest RMSE most of the time, while bimodal prior had the lowest RMSE most 

of the time. 
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Recovery Rate and Root Mean Squared Error   

 In the present study, the accuracy of IRT models in ability estimation was 

compared using the recovery rate of original ability estimates and RMSE. Both criteria 

were obtained by comparing two sets of ability estimates. One set was the original ability 

estimates of 1,000 examinees that were used to generate the simulated item response 

data, and the other set was the means of fifty ability estimates for each of the 1,000 

examinees obtained as the output when applying an IRT model to fifty simulated item 

response data sets from the same 1,000 examinees. The first set of estimates was used as 

known ability estimates and the second set as the bootstrap estimators of the known 

ability estimates in the present study. RMSE was a measure of the average deviation of 

the 1,000 bootstrap estimators from the 1,000 known ability estimates. The recovery rate, 

was the percentage of the 1,000 known ability estimates captured by the 95% confident 

interval constructed around their respective estimators, which was obtained by checking 

each of the 1,000 pairs of known ability estimates and their respective estimators. 

Therefore, while both criteria assessed the overall accuracy of ability estimates, the 

recovery rate was more sensitive to individual deviations. This explains why the recovery 

rate had larger effect sizes than the RMSE. Since individual deviations are important in 

the overall accuracy of an IRT model�s ability estimation, the recovery rates were more 

informative than the RMSEs on the accuracy of the IRT model�s ability estimation.  

Scoring Format 

 This study has demonstrated that polytomous models have better accuracy in 

ability estimation, both in terms of higher recovery rates and lower RMSEs, in all 

combinations of prior distribution and threshold configuration. Dichotomous models had 
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less information about examinees� ability by ignoring their differences in choosing 

different categories other than the most completed answer. It has been discussed in the 

literature review that a polytomous model can be viewed as a sequence of dichotomous 

models and thus is more refined as a measuring tool of the latent construct under 

investigation. This study not only pointed out that two scoring formats will give different 

ability estimates when applied to multiple-choice items, but also gave reference to the 

magnitude of the difference of the ability estimates. The recovery rate for polytomous 

scoring almost doubled that of dichotomous scoring (63% versus 34%) when averaged 

over all research conditions. The average RMSE for polytomous scoring was about one 

third of that for dichotomous scoring (.075 versus .212). These differences are not small 

and should not be ignored. This finding has important implications for educational 

testing.  

 Large-scale assessments and achievement tests are predominantly constructed of 

multiple-choice items scored dichotomously (correct, incorrect). In view of the large 

difference in ability estimation that this study has found between dichotomous scoring 

and polytomous scoring models, the scoring format of tests should be changed to improve 

the accuracy of ability estimation. Tests are used to guide educational decision-making 

and the accuracy of their outcomes should be a priority. Moreover, the use of multiple-

choice items versus constructed response items (e.g. Bennett, R. E. & Ward, W.C. Eds., 

1993) has been an ongoing debate on for a long time. Many issues were discussed, but 

the objectivity and reliability of the scoring rubrics is paramount. Scoring multiple-choice 

items is relatively inexpensive and highly reliable in comparison to scoring constructed 

response items. However, concerns have been raised about the inability of multiple-
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choice items to test students on multi-level or multi-step questions. Multiple-choice items 

with well-constructed response categories, scored polytomously with partial credits, 

would be a legitimate option to consider. The ordinal nature of the response categories 

could be used to test multi-level or multi-step tasks. 

Item parameterization 

The three categories of item parameterization were expected to give different 

ability estimates, but it was unexpected to have the IRT models with one type of 

parameter (1-PL) having the highest recovery rates and lowest RMSEs across all 

combinations of research conditions. Because the item response data used in the study 

was simulated with known item parameters, in which the item discrimination parameters 

varied from .8 to 2 (see Appendix C), the 2-PL models should fit the data better than 1-

PL models. Two factors may be possible explanations for the unexpected outcome. First, 

Multilog software analyzes 1-PL dichotomous models as a special case of the graded 

response model in which item discrimination is not set free as a parameter to be 

estimated. In the item calibration stage of the program, the item discrimination is not set 

to 1 but to a constant value estimated from all 30 items in the test. The constant value will 

change from test to test, but remains unchanged across the items within the same test. 

The constant value probably served as the �average item discrimination� for all 30 items 

in the test, and may have enhanced the fit of the IRT model to the item response data. 

Second, the 2-PL dichotomous model has 30 extra parameters to be estimated and 

therefore has more chances to accumulate error.  

For polytomous scoring models, GPCM-1 out-performed GPCM. This finding 

seems to contradict Muraki� study (1992), in which he compared the partial credit model 
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and general partial credit model using simulated and real data. His results demonstrated 

that the general partial credit model yielded a better fit to the data than the partial credit 

model. Present study indicated that the partial credit model (GPCM-1) yielded more 

accurate ability estimates than the general partial credit model (GPCM). However, 

GPCM-1 only yielded more accurate ability estimates, not better model fit than GPCM. 

Similar factors working in the dichotomous 1-PL model are present in GPCM-1. Multilog 

software analyzes the partial credit model as a constrained case of the nominal categories 

model. The only difference between the GPCM-1 and GPCM was that an �average item 

discrimination� was estimated for all 30 items in GPCM-1 with item discrimination free 

to vary from item to item in GPCM. The �average item discrimination� may have 

enhanced the fit of the GPCM-1 model. GPCM had a slightly better fit than GPCM-1 in 

this study; but it was not enough to compensate for the increase in the number of 

parameters estimated.  

 The 3-PL models were expected to be less accurate in ability estimation in this 

study because the guessing factor was not modeled in the simulated item response data (a 

limitation of this study). The Multilog software analyzed the dichotomous 3-PL model as 

a special case of the multiple-choice model with the number of categories equal to two. 

The multiple-choice model in this study used .25 as an initial value in the calibration run 

to estimate the pseudo-chance parameter for each item, however, there was no guessing 

effect in the item response data. The 3-PL models had more parameters to be estimated 

and yield a worse fit to the item response data. These findings demonstrated that an IRT 

model with a better model fit to the data may give less accurate ability estimation, 
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especially when the IRT model can not compensate for the increased number of 

parameters to be estimated.  

Comparison of Polytomous Models 

 In the present study, polytomous models were not only compared to the 

dichotomous models but also among themselves. Three of the four polytomous models, 

GPCM-1, GPCM, MCM had been compared as part of the 1-PL, 2-PL, and 3-PL models 

under the item parameterization study. When only the polytomous models were being 

compared, the order of accuracy of those three models remained the same as it was in the 

item parameterization study. The fourth model, NCM, was included in the study to 

compare the ability estimation of nominal and ordinal polytomous models. It was 

discussed in the literature review that NCM is the most general polytomous model, and 

the other ordinal polytomous models can be derived from NCM by putting certain 

constraints on the item parameters to preserve the order of the categories. In Multilog, 

GPCM-1 and GPCM are obtained by imposing constraints on the parameters ak and ck of 

the NCM through the application of T-matrixes (polynomial and triangle). The two 

constrained versions of NCM were expected to be more accurate in their ability 

estimation than the general NCM, because the item categories of the test used to simulate 

item response data were ordinal. However, the findings of this study indicated that for 

most of the combinations of threshold configuration and prior ability distribution, NCM 

out-performed GPCM, although both were out-performed by GPCM-1. This finding 

indicated that constraints on parameters may not help to improve the model fit. It also 

indicated that polytomous scoring models would give better ability estimation even for 
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multiple-choice items with nominal response categories, because NCM provided ability 

estimation as good as, if not better than, ordinal polytomous models.  

Prior Ability Distribution 

 The present study indicated that prior ability distribution had an effect on the 

accuracy of ability estimation. It also revealed that prior ability distribution interacted 

with other factors in the study, e.g. scoring format, item parameterization, and threshold 

configuration. The differences in group means for the four prior groups varied greatly 

from one combination of research conditions to the other. No clear overall pattern for the 

variation was indicated, however some patterns within some combinations were 

identified. Furthermore, caution needs to be taken in the interpretation of this finding, 

because prior ability distribution was assumed to be normal by Multilog software in the 

item calibration and scoring programs. According to Thissen (1991), there is little or no 

theory available to evaluate a population-distribution fitting procedure, so it is difficult to 

assess the effect of prior distribution on the item calibration and test scoring in IRT. 

Although Thissen introduced the Johnson family of distributions as a possible tool to 

characterize the population density in MML estimation, he warned against routine use of 

it because it was a �relatively untested scheme in an area fraught with difficulties.� In 

Multilog software, all prior ability distributions are assumed to be normal, and Gaussian 

quadratures are used to approximate the distribution in MML estimation. Therefore, the 

normal prior group should be used as a reference point in the interpretation of the mean 

differences of the four prior groups in different combinations of the research conditions. 

 Although a clear overall pattern cannot be identified for the effect of prior ability 

distribution on the accuracy of ability estimation, the differences of group means for the 
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prior groups in the present study have practical and educational importance. In education 

testing, the population distribution of the latent construct is often unknown and assumed 

to be normal. In practice, however, the sample of examinees is more often from a 

population with an ability distribution different from normal. Three of the four prior 

groups represented in this study simulated such kinds of populations; specifically they 

represented predominantly high ability groups, predominantly low ability groups and 

groups with diversified or even polarized ability. The present study indicated the effect 

on the accuracy of ability estimation (i.e. enhanced or reduced in comparison to the 

normally distributed group) when the sample of examinees represented one of the three 

kinds of populations described above.    

Threshold Configuration     

 When the items are scored dichotomously, the unequal distance and equal 

distance threshold configurations will not affect the response data because all categories 

other than the complete answer will be scored as zero. The small differences in the 

findings were due to random error from the simulation process. For the polytomous 

models, when threshold configuration categories were examined across item 

parameterization and individual models, the same pattern emerged. The three categories 

were in the same order (�unequal-close at the low end�, �equal threshold�, and �unequal-

at the high end�) with descending recovery rates and ascending RMSE, if the mean 

differences were statistically significant. However, the effect sizes for those effects were 

small. The mean differences amounted to less than 10% in recovery rate and hundredths 

difference in RMSE. The values for threshold are usually unknown before item 

calibration, but it is important to realize that the distance between thresholds has an effect 
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on the accuracy of ability estimation. If a partial credit is given to an easy step as well as 

a hard step, it impacts how different levels of ability in the examinees are estimated.  

 When the effects of threshold configurations were examined across the four prior 

distribution groups, the RMSEs of the three categories showed no significant difference. 

In contrast, the recovery rates of the three categories differed significantly across the four 

prior groups. When the prior was normal, there was no significant difference among the 

three group means. When the prior was �skewed to the left�, the three categories 

followed the same order as in other combinations of research conditions, however, the 

�unequal-high end� category had a much lower recovery rate than the other two. When 

the prior was �skewed to the right� and �bimodal�, the order of the three categories 

reversed, i.e. �unequal-at the high end�, �equal threshold�, and �unequal-at the low end� 

with descending recovery rates. The effect sizes of the mean differences were large. The 

reversal of order happened because of the presence of a higher density of low ability 

examinees in the �bimodal� and �skewed to the right� prior groups. The presence of a 

larger low ability group reduced the recovery rate when the item thresholds were close at 

the low end, which decreased the power of the lower categories in discriminating low 

ability examinees. The fact that �skewed to the left� prior group had a lowest recovery 

when the threshold configuration was �unequal-close at the high end� could be explained 

by similar reason. In summary, the effect of threshold configuration indicated that the 

accuracy of ability estimation would reduce if multiple-choice items with categories close 

to each other at one end of the ability continuum were administrated to a group with 

higher population density at the same end of the continuum. 

 



 87 

Recommendations 

Future studies are recommended in three areas. First, the effect of prior ability 

distribution on the accuracy of ability estimation cannot be assessed unambiguously until 

a new approach for appropriately characterizing population density is developed. Second, 

the effect of threshold configuration has not been fully assessed. Threshold 

configurations other than the three examined in this study should be applied and varied 

systematically throughout a set of items, and the effects of those variations should be 

examined. Third, while most large-scale assessments and achievement tests in the past 

were constructed of multiple-choice items scored dichotomously, tests with multiple item 

formats have become popular in recent years. These tests often include multiple-choice 

items mixed with a variety of constructed-response items (e.g. short answer, matching, 

multiple-steps, short essay, etc.). Examples of mixed item format tests are the National 

Assessment of Educational Progress (NAEP) (Calderone, King & Horkay, 1997), the 

Test of English as a Foreign Language (TOEFL) (Tang & Eignor, 1997), and state 

assessments administered in states such as Massachusetts, North Carolina, and 

Wisconsin. If tests that combine multiple-choice items and constructed-response items 

are unidimensional, a single ability estimate per examinee is generated according to all 

item responses. There are different approaches to handling mixed model estimates for a 

test in order to produce a common score scale. Weighted combinations of the two parts 

(testlets) are widely applied. The selection of weights, however, poses a problem. 

Lukhele, Thissen, and Wainer (1994) pointed out that the composite ability scores may 

have lower reliability than the component ability scores; if the weights applied to create 

the composite score are ill chosen. Rosa, Swygert, Nelson, and Thissen (2001) developed 
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a technique based on IRT to use the item response data to determine the relative weights 

of the components.  

Multiple item formats call for mixed scoring IRT models. The approach typically 

taken calibrates all of the items jointly using suitable IRT models for each item. 

Dichotomous models are used for the multiple-choice items and polytomous models for 

constructed-response items. A likelihood function of response patterns for each 

combination of summed scores for the two components is then constructed. A single 

ability score for each combination of summed scores is estimated using a likelihood 

function. A scale-scoring table is then constructed to list the ability score for all the 

possible combinations of summed scores for the two components. Examinees obtain their 

ability estimates from the scale-scoring table according to the summed scores, which 

came from the two parts of the test. It is meaningful to compare the ability estimates 

obtained from a mixed scoring model to those from dichotomous and polytomous models 

that have only one item type, e.g. all multiple choice items. 
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APPENDIX A 

 
SAS Program for Data Simulation 

/******************************************************************/ 
/*      This program is to generate response patterns             */ 
/*      based on Muraki's generalized partial credit model.       */ 
/*      The possible responses for item i are 0 to (ncat-1).      */ 
/******************************************************************/ 
 
 
options ps=52 ls=72; 
%let ne=1000;  /*no. of examinees*/ 
%let ni=30;   /*no. of items*/ 
%let thlist=th(i,1) th(i,2) th(i,3);/*threshold input format*/ 
%let ncb=3;/*no. of thresholds*/ 
%let ncat=4;/*no. of categories*/ 
%let ipmfl='h:\diss_sim\etip.dat'; /* item paramenter input path*/ 
%let ipmfmt=a(i) 8.2 (&thlist) (&ncb*8.2);/*item parameter input 
format*/ 
%let outfl='h:\diss_sim\ner.dat';  /*generated data output path*/ 
%let seed1=6734;                /* seed number for normal dist.. */ 
%let seed3=3422;                /*seed number for r*/ 
%let putfmt=@1 id 4.0 @6 z 7.3 @14 (r1-r&ni) (&ni*1.0); 
/******************************************************************/ 
 
 
data know (keep=z);  /* created normally distributed sample */ 
     do i=1 to &ne;  /* of the examinees’ ability estimates */   
       z=rannor(&seed1); 
       output; 
     end; 
 
filename ipm &ipmfl;  /* read in the input parameter file */ 
data iparm; 
     array th(&ni, &ncb); 
     array a(&ni); 
     do i=1 to &ni; 
          infile ipm; 
          input &ipmfmt; 
     end; 
 
filename resp &outfl;  /* set up the output file format */ 
data respdat (keep= z r1-r&ni e1 den pbc1-pbc&ncat r tot); 
     if _n_=1 then set iparm; set know; 
     array sd(&ni, &ncb); 
     array a(&ni); 
     array pbc(&ncat); 
     array rr(*) r1-r&ni; 
         do i=1 to &ni;   
            rr(i)=0.0; 
         end; 
         do i=1 to &ni;  /* calculate the probabilities of an  */ 
            den=1.0;  /* examinee choosing each of the four */ 
            do j=1 to &ncb; /* categories for each items.         */ 
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               e1=0.0; 
               do k=1 to j; 
                  e1=e1+a(i)*(z-sd(i,k)); 
 
               end; 
               pbc(j+1)=exp(e1); 
               den=den+exp(e1); 
            end; 
            pbc(1)=1/den; 
            do j=2 to &ncat; 
                pbc(j)=pbc(j)/den; 
            end; 
            tot=0.0; 
            r=ranuni(&seed3);  /* converts the probabilities to */ 
            do k=1 to &ncat;  /* item responses using a sample */ 
              tot=tot+pbc(k);  /* of random numbers within (0,1)*/  
              if r>tot then rr(i)=k; 
         end; 
 
        end; 
        id=_n_;    /* set up for next examinee */ 
        file resp; 
        put &putfmt; 
proc univariate normal vardef=n; var z; 
proc chart; 
  hbar z; 
run; 
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SAS Program for Generating Prior Ability Distribution 

/******************************************************************/ 
/*       This program is to generate random numbers with          */ 
/*       with different density functions of distribution         */ 
/*       to be used as the prior distribution of ability in       */ 
/*       a simulated item responses data set.                     */  
/******************************************************************/ 
 
options ps=52 ls=72; 
%let seed1=6734;  
 
/* generate a bimodal prior distribution  */ 
data theta1 (keep=x); 
     do i=1 to 500;  /* created a normally distributed half*/ 
       x1=rannor(&seed1); /* sample shifted 1.5 sd to the left. */ 
       x=x1-1.5;    
       output; 
     end;  
data theta2 (keep=x);  /* created a normally distributed half*/ 
     do i=1 to 500;  /* sample shifted 1.5 sd to the right.*/ 
       x1=rannor(&seed1); 
       x=x1+1.5; 
       output; 
     end; 
data theta  (keep=x x_std);  /* two half samples combined to form a*/ 
    set theta1 theta2;  /* bimodal sample centered at zero.   */ 
 x_std=x; 
run; 
proc standard data=theta mean=0 std=1 out=thetaz;  /* standardization*/ 
 var x_std; 
run; 
proc univariate normal vardef=n; var x_std; 
proc chart; 
  hbar x_std; 
run; 
     
/* generate a positively skewed prior distribution using  
the density function of beta distribution. (beta distribution has two 
parameter α and β, where α>1 and β>1. The shape of the distribution is 
obtained by manipulating the values of the two parameters (Novick & 
Jackson, 1974, 112). */ 
 
data thetas (keep=y y_std); 
     do i=1 to 1000; 
        x1=RANGAM(&seed1,1.8); /* α = 1.8 */ 
        x2=RANGAM(&seed1,5);  /* β = 5   */ 
        y=x1/(x1+x2);    /* the beta density function */ 
        y_std=y; 
        output; 
     end; 
run; 
proc standard data=thetas mean=0 std=1 out=thetasz; /*standardization*/ 
 var y_std; 
run; 
proc univariate normal vardef=n; var y_std; 
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proc chart; 
  hbar y_std; 
run; 
 
        
/* generate a negatively skewed prior distribution using  
the density function of beta distribution  */ 
 
data thetas1 (keep=y y_std); 
     do i=1 to 1000; 
        x1=RANGAM(&seed1,5);  /* α = 5   */ 
        x2=RANGAM(&seed1,1.8); /* β = 1.8 */ 
        y=x1/(x1+x2);  
        y_std=y; 
        output; 
     end; 
run; 
proc standard data=thetas1 mean=0 std=1 out=thetas1z;  
 var y_std; 
run; 
proc univariate normal vardef=n; var y_std; 
proc chart; 
  hbar y_std; 

run;  
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APPENDIX C 

 
Parameters of Items in the Constructed Tests for Data Simulation 

 
Item 

 
ai 

 
bi1 

 
b�

i2 

 
bi2 

 
b�

i2 

 
bi3 

1 1.60 -2.25 -2.000 -1.75 -1.500 -1.25 
2 .80 -2.25 -1.900 -1.55 -1.200 -.85 
3 2.00 -2.20 -1.975 -1.75 -1.525 -1.30 
4 1.50 -2.00 -1.800 -1.60 -1.400 -1.20 
5 1.70 -1.65 -1.425 -1.20 -0.975 -.75 
6 1.80 -2.10 -1.850 -1.60 -1.350 -1.10 
7 1.20 -1.90 -1.600 -1.30 -1.000 -.70 
8 .90 -1.55 -1.325 -1.10 -.925 -.75 
9 1.70 -1.80 -1.600 -1.40 -1.200 -1.00 
10 1.20 -2.05 -1.775 -1.50 -1.225 -.95 
11 .90 -.65 -.325 .00 .325 .65 
12 1.90 -.60 -.250 .10 .450 .80 
13 1.40 -.55 -.275 .00 .275 .55 
14 1.80 -.45 -.250 -.05 .150 .35 
15 1.30 -.50 -.250 .00 .250 .50 
16 1.60 -.50 -.225 .05 .325 .60 
17 1.10 -.45 -.225 .00 .225 .45 
18 1.80 -.40 -.200 .00 .200 .40 
19 1.20 -.30 -.050 .20 .450 .70 
20 1.80 -.35 -.175 .00 .175 .35 
21 1.70 1.30 1.525 1.75 1.975 2.20 
22 1.30 .85 1.200 1.55 1.900 2.25 
23 .90 .50 .700 .90 1.100 1.30 
24 1.00 1.15 1.400 1.65 1.900 2.15 
25 1.60 .80 1.100 1.40 1.700 2.00 
26 1.60 1.00 1.225 1.45 1.675 1.90 
27 1.90 .75 .975 1.20 1.425 1.65 
28 1.10 1.05 1.275 1.50 1.725 1.95 
29 2.00 .75 1.025 1.30 1.575 1.85 
30 1.80 .95 1.225 1.50 1.775 2.05 
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APPENDIX D 

Ability Estimation Programs 

 
Multilog Command Programs For Different IRT Models 
 
 1-PL logistic model (L1.cmd & L1s.cmd). 

MML PARAMETER ESTIMATION FOR THE 1PL MODEL 
>PROBLEM RANDOME IN NITEMS=30 NGROUPS=1 NE=1000, NCHAR=8;                        
>TEST ALL L1;  
>SAVE;                                                                   
>END;                                                                            
           2 
01 
111111111111111111111111111111 
N 
(4X,8A1,T45,30A1)   

ESTIMATION OF ABILITY  1PL MODEL 
>PROBLEM SCORE IND NITEMS=30 NGROUPS=1 NE=1000 NCHAR=8;                        
>TEST ALL L1; 
>SAVE;  
>START ALL;  
Y 
                                                                   
>END;                                                                            
           2 
01 
111111111111111111111111111111 
N 
(4X,8A1,T45,30A1)       

2-PL logistic model (L2.cmd & L2s.cmd). 

MML PARAMETER ESTIMATION FOR THE 2PL MODEL 
>PROBLEM RANDOME IN NITEMS=30 NGROUPS=1 NE=1000, NCHAR=8;                        
>TEST ALL L2;   
>SAVE;                                                                  
>END;                                                                            
           2 
01 
111111111111111111111111111111 
N 
(4X,8A1,T45,30A1)  

 
ESTIMATION OF ABILITY 2PL MODEL 
>PROBLEM SCORE IND NITEMS=30 NGROUPS=1 NE=1000 NCHAR=8;                        
>TEST ALL L2; 
>SAVE; 
>START ALL;  
Y 
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>END;                                                                            
           2 
01 
111111111111111111111111111111 
N 
(4X,8A1,T45,30A1)                                                                    

 
3-PL logistic model (L3.cmd & L3s.cmd). 

MML PARAMETER ESTIMATION, 3PL logistic  
>PROBLEM RANDOM IN NITEMS=30 NGROUPS=1 NE=1000 NC=8;                         
>TEST ALL L3; 
>SAVE; 
>PRIORS ALL DK=1 PA=(-1.4,1.0); 
>END;                                                                            
           2 
01 
111111111111111111111111111111 
N 
(4X,8A1,T45,30A1)   

ESTIMATION OF ABILITY, 3PL logistic 
>PROBLEM SCORE IND NITEMS=30 NGROUPS=1 NE=1000 NC=8;                         
>TEST ALL L3; 
>SAVE; 
>PRIORS ALL DK=1 PA=(-1.4,1.0); 
>START ALL;  
Y 
 
>END;                                                                            
           2 
01 
111111111111111111111111111111 
N 
(4X,8A1,T45,30A1)                                                                    

 
Partial credit model (pc.cmd & pcs.cmd). 

MML PARAMETER ESTIMATION, General PARTIAL CREDIT MODEL 
>PRO RA IN NI=30 NG=1 NE=1000 NCHARS=8;                                                 
>TEST ALL NO NC=(4(0)30) HI=(4(0)30);                                                  
>SAVE;                                         
>TMATRIX ALL AK POLY;  
>EQUAL ALL AK=1;                                                                        
>FIX ALL AK=(2,3) VALUE=0.0;                                                         
>TMATRIX ALL CK TRIANGLE;                                                        
>END;                                                                            
           4 
1234 
111111111111111111111111111111 
222222222222222222222222222222 
333333333333333333333333333333 
444444444444444444444444444444 
(4X,8A1,1X,30A1)   
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ESTIMATION OF ABILITY partial credit model 
>PRO SCORE IND NE=1000 NG=1 NI=30 NCHARS=8;                                 
>TEST ALL NO NC=(4(0)30)HI=(4(0)30); 
>TMATRIX ALL AK POLY; 
>EQUAL ALL AK=1; 
>FIX ALL AK=(2,3) VALUE=0.0; 
>TMATRIX ALL CK TRIANGLE; 
>SAVE;            
>START ALL;  
Y 
 
>END;                                                                     
                                                                                
           4 
1234 
1111111111111111111111111111111111 
2222222222222222222222222222222222 
3333333333333333333333333333333333 
4444444444444444444444444444444444 
(4X,8A1,1X,30A1)                                                           

                                                                                                       

General Partial credit model (gp.cmd & gps.cmd). 

MML PARAMETER ESTIMATION, General PARTIAL CREDIT MODEL             
>PRO RA IN NI=30 NG=1 NE=1000 NCHARS=8;                                                 
>TEST ALL NO NC=(4(0)30) HI=(4(0)30);                                                  
>SAVE;                                         
>TMATRIX ALL AK POLY;  
>FIX ALL AK=(2,3) VALUE=0.0;                                                         
>TMATRIX ALL CK TRIANGLE;                                                        
>END;                                                                            
           4 
1234 
111111111111111111111111111111 
222222222222222222222222222222 
333333333333333333333333333333 
444444444444444444444444444444 
(4X,8A1,1X,30A1)   

ESTIMATION OF ABILITY general partial credit model 
>PRO SCORE IND NE=1000 NG=1 NI=30 NCHARS=8;                                 
>TEST ALL NO NC=(4(0)30)HI=(4(0)30); 
>TMATRIX ALL AK POLY; 
>FIX ALL AK=(2,3) VALUE=0.0; 
>TMATRIX ALL CK TRIANGLE; 
>SAVE;            
>START ALL;  
Y 
 
>END;                                                                     
                                                                                
           4 
1234 
1111111111111111111111111111111111 
2222222222222222222222222222222222 
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3333333333333333333333333333333333 
4444444444444444444444444444444444 
(4X,8A1,1X,30A1)                                                           
 

Multiple choice model (mc.cmd & mcs.cmd). 

MML PARAMETER ESTIMATION multiple choice model                                    
>PRO RA IN NI=30 NG=1 NE=1000 NC=8;                                                     
>TEST ALL BS NC=(5(0)30) HI=(5(0)30);                                            
>EQUAL ALL DK=(1,2,3);   
>SAVE;                                                    
>END;                                                                            
           4 
1234 
222222222222222222222222222222 
333333333333333333333333333333 
444444444444444444444444444444 
555555555555555555555555555555 
(4X,8A1,1X,30A1)    
 
Estimation of ability multiple choice model 
>PRO SCORE IND NI=30 NG=1 NE=1000 NC=8;                                                 
>TEST ALL BS NC=(5(0)30) HI=(5(0)30);                                            
>EQUAL ALL DK=(1,2,3); 
>SAVE; 
>START ALL; 
Y 
 
 
>END;                                                                            
           4 
1234 
222222222222222222222222222222 
333333333333333333333333333333 
444444444444444444444444444444 
555555555555555555555555555555 
(4X,8A1,1X,30A1)                                                                
   

 

 Nominal categories model (nc.cmd & ncs.cmd). 
 
MML PARAMETER ESTIMATION, Nominal categories model 
>PRO RA IN NI=30 NG=1 NE=1000 NC=8;                                                     
>TEST ALL NO NC=(4(0)30) HI=(4(0)30);                                              
>SAVE;                                                                           
>END;                                                                            
           4 
1234 
111111111111111111111111111111 
222222222222222222222222222222 
333333333333333333333333333333 
444444444444444444444444444444 
(4X,8A1,1X,30A1)       
 
ESTIMATION OF ABILITY NOMINAL CATEGORIES MODEL 
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>PRO SCORE IND NE=1000 NG=1 NI=30 NCHARS=8;                                 
>TEST ALL NO NC=(4(0)30)HI=(4(0)30); 
>SAVE;            
>START ALL;  
Y 
 
>END;                                                                     
                                                                                
           4 
1234 
1111111111111111111111111111111111 
2222222222222222222222222222222222 
3333333333333333333333333333333333 
4444444444444444444444444444444444 
(4X,8A1,1X,30A1)          
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APPENDIX E 

Ability Estimation Result 

 
Cxyz ScorFor ItemPar PolyMod Thetadis Threconf Thetarec RMSE 

l1eb6734 1 1  1 1 .374 .120083 
l1el6734 1 1  2 1 .445 .134239 
l1en6734 1 1  3 1 .282 .168582 
l1er6734 1 1  4 1 .483 .196774 
l1hb6734 1 1  1 2 .357 .123329 
l1hl6734 1 1  2 2 .408 .125419 
l1hn6734 1 1  3 2 .281 .154952 
l1hr6734 1 1  4 2 .475 .185338 
l1lb6734 1 1  1 3 .386 .118448 
l1ll6734 1 1  2 3 .452 .184065 
l1ln6734 1 1  3 3 .271 .185284 
l1lr6734 1 1  4 3 .511 .250619 
l2eb6734 1 2  1 1 .406 .215963 
l2el6734 1 2  2 1 .231 .197889 
l2en6734 1 2  3 1 .181 .197282 
l2er6734 1 2  4 1 .575 .265009 
l2hb6734 1 2  1 2 .379 .229717 
l2hl6734 1 2  2 2 .206 .173263 
l2hn6734 1 2  3 2 .134 .175585 
l2hr6734 1 2  4 2 .496 .238663 
l2lb6734 1 2  1 3 .427 .207196 
l2ll6734 1 2  2 3 .247 .282400 
l2ln6734 1 2  3 3 .216 .232357 
l2lr6734 1 2  4 3 .625 .352136 
l3eb6734 1 3  1 1 .303 .338231 
l3el6734 1 3  2 1 .159 .298060 
l3en6734 1 3  3 1 .082 .244724 
l3er6734 1 3  4 1 .347 .372022 
l3hb6734 1 3  1 2 .264 .352136 
l3hl6734 1 3  2 2 .130 .269314 
l3hn6734 1 3  3 2 .049 .221427 
l3hr6734 1 3  4 2 .305 .334664 
l3lb6734 1 3  1 3 .316 .322800 
l3ll6734 1 3  2 3 .170 .030671 
l3ln6734 1 3  3 3 .095 .050289 
l3lr6734 1 3  4 3 .406 .082000 
pceb6734 2 1 1 1 1 .942 .052792 
pcel6734 2 1 1 2 1 .868 .032619 
pcen6734 2 1 1 3 1 .481 .053787 
pcer6734 2 1 1 4 1 .907 .090294 
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pchb6734 2 1 1 1 2 .926 .050398 
pchl6734 2 1 1 2 2 .832 .035270 
pchn6734 2 1 1 3 2 .339 .051565 
pchr6734 2 1 1 4 2 .914 .072581 
pclb6734 2 1 1 1 3 .899 .058129 
pcll6734 2 1 1 2 3 .842 .069556 
pcln6734 2 1 1 3 3 .664 .082171 
pclr6734 2 1 1 4 3 .856 .103344 
gpeb6734 2 2 2 1 1 .473 .082583 
gpel6734 2 2 2 2 1 .570 .082207 
gpen6734 2 2 2 3 1 .417 .087601 
gper6734 2 2 2 4 1 .682 .118743 
gphb6734 2 2 2 1 2 .450 .090956 
gphl6734 2 2 2 2 2 .374 .071708 
gphn6734 2 2 2 3 2 .327 .084054 
gphr6734 2 2 2 4 2 .690 .095300 
gplb6734 2 2 2 1 3 .482 .085206 
gpll6734 2 2 2 2 3 .714 .079391 
gpln6734 2 2 2 3 3 .532 .131681 
gplr6734 2 2 2 4 3 .520 .070314 
mceb6734 2 3 3 1 1 .405 .107517 
mcel6734 2 3 3 2 1 .569 .069065 
mcen6734 2 3 3 3 1 .823 .126293 
mcer6734 2 3 3 4 1 .300 .069101 
mchb6734 2 3 3 1 2 .522 .095802 
mchl6734 2 3 3 2 2 .598 .091203 
mchn6734 2 3 3 3 2 .843 .136272 
mchr6734 2 3 3 4 2 .376 .076864 
mclb6734 2 3 3 1 3 .307 .117686 
mcll6734 2 3 3 2 3 .510 .044744 
mcln6734 2 3 3 3 3 .687 .089566 
mclr6734 2 3 3 4 3 .250 .085475 
nceb6734 2  4 1 1 .757 .088034 
ncel6734 2  4 2 1 .608 .048177 
ncen6734 2  4 3 1 .561 .091684 
ncer6734 2  4 4 1 .685 .094715 
nchb6734 2  4 1 2 .722 .089878 
nchl6734 2  4 2 2 .518 .050794 
nchn6734 2  4 3 2 .417 .091635 
nchr6734 2  4 4 2 .716 .078492 
nclb6734 2  4 1 3 .717 .089247 
ncll6734 2  4 2 3 .671 .120083 
ncln6734 2  4 3 3 .703 .134239 
nclr6734 2  4 4 3 .599 .168582 
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