This paper introduces several extractive approaches for automatic image tagging, relying exclusively on information mined from texts. Through evaluations on two datasets, the authors show that their methods exceed competitive baselines by a large margin, and compare favorably with the state-of-the-art that uses both textual and image features.
The UNT College of Engineering strives to educate and train engineers and technologists who have the vision to recognize and solve the problems of society. The college comprises six degree-granting departments of instruction and research.
This paper introduces several extractive approaches for automatic image tagging, relying exclusively on information mined from texts. Through evaluations on two datasets, the authors show that their methods exceed competitive baselines by a large margin, and compare favorably with the state-of-the-art that uses both textual and image features.
This paper is part of the following collection of related materials.
UNT Scholarly Works
Materials from the UNT community's research, creative, and scholarly activities and UNT's Open Access Repository. Access to some items in this collection may be restricted.