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Code Division Multiple Access 

(CDMA) Overview 

• Multiple access schemes 
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Relative Average Inter-cell 

Interference Model 
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Relative Actual Inter-cell 

Interference Model 

• Interference matrix F cannot be calculated in advance 

• Instead, a new interference matrix U is computed as follows 

• For a user k in cell j, the relative actual interference offered by this user to cell i is 
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• Hence, the total relative actual inter-cell interference at cell i caused by 

every user in the network is 
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Actual Interference Matrix U 

•Example: for a new call in cell 2, compute row matrix U[2,i] for i = 

1,…,M using equation D 

]2M  ......  23  22  21[2 iU

• Update 2nd row of interference matrix U by adding the above row 

matrix to it. 
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Capacity 

• The capacity of a CDMA network is determined by maintaining a 

lower bound on the bit energy to interference density ratio, given by 
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 W = Spread signal bandwidth 

 R = bits/sec (information rate) 

 α = voice activity factor 

 ni = users in cell i 

  N0 = background noise spectral  

density 

F 

   ,...,1for                                     

  1
/

11/

0

Mi

c
NE

RW
In eff

b

ii

















• Let τ be that threshold above which the bit error rate must be maintained, 

then by rewriting Eq. F 
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Global Call Admission Control (CAC) 

• A CAC algorithm decides whether or not a 
network shall accept a call. 

 

• Designing a CAC algorithm for CDMA is harder 
than designing for TDMA or FDMA. 

 Self interference. 

 Affects the entire network. 

 

• A global CAC algorithm takes the entire network 
in account for every call making decision. 

 



Mobility Model 

• Call arrival process is a Poisson process with rate: λ 

• Call dwell time is a random variable with exponential 

distribution having mean: 1/μ 

• Probability that a call in cell i goes to cell j after 

completing its dwell time: qij 

• Probability that a call in progress in cell i remains in cell i 

after completing its dwell time: qii 

• Probability that a call will leave the network after 

completing its dwell time: qi 

 



Mobility Model – Handoff Calls 

• Handoff calls (vji): calls that have moved from cell 

j to an adjacent cell i. 
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• Bj : Call blocking probability for cell j 

• Aj : Set of cells adjacent to cell i 

• ρj  :  Total offered traffic to cell j 
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Global CAC Algorithm 

• A new call is accepted if the following set of equations still 
hold upon acceptance. 
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Simulator – Call Arrival and Admission Module 

(Global CAC) 

For Cells(i) = 1 to M
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Simulator – Call Removal Module (Global CAC) 
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Performance Measurements 

• Network throughput: Number of calls per unit time that are 

admitted and stay in the network till termination. 

• Blocking probability: For a cell, it is the ratio of rejected 

calls to total offered traffic to that cell. 
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Local Call Admission Control 

• A local CAC algorithm considers only a single 
cell for making a call admittance decision even 
though its design may look at the network as a 
whole. 

 

• A simple approach: Find N, the maximum number 
of users that are allowed in a cell, which is the 
same for all the cells in the network. 

• Disadvantage: Inefficient 



Traditional CAC Algorithm 
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• A traditional CAC algorithm is formulated that calculates 

N, the maximum number of calls allowed in each cell. The 

optimization problem is given by 

• Define network throughput 
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Our Optimized Local CAC 

Algorithm 
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• Solve a constrained optimization problem that maximizes 

the network throughput with signal-to-interference ratio 

constraints as lower bounds. 

 



Simulator – Call Arrival and Admission Module 

(Local CAC) 
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Simulator – Call Removal Module (Local CAC) 
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Global CAC vs Local CAC 

Global 

• Call admission based on 

all the calls present in the 

network. 

• Slower. 

• Inherently optimized. 

• Adaptable. 

• Complexity: O(M). 

 

Local 

• Call admission based on 
calls present in the cell 
under consideration only. 

• Faster 

• Optimized only for a 
given traffic distribution 
profile. 

• Cannot compensate for 
big fluctuation in traffic. 

• Complexity: O(1) 



Simulations 

• Network configuration 

• COST-231 propagation model 

• Carrier frequency = 1800 MHz 

• Average base station height = 30 meters 

• Average mobile height = 1.5 meters 

• Path loss coefficient, m = 4 

• Shadow fading standard deviation, σs = 6 dB 

• Processing gain, W/R = 21.1 dB 

• Bit energy to interference ratio threshold, τ = 9.2 dB 

• Interference to background noise ratio, I0/N0 = 10 dB 

• Voice activity factor, α = 0.375 

 



Simulations – Network Parameters 

• Non-uniform traffic distribution 

• Group A (cells 5, 13, 14, 23) : 14 calls/time 

• Group B (cells 2, 8, 9, 19) : 14 calls/time 

• Rest of the cells : 3 calls/time 

• Ceff  = 38.25 

• No mobility probabilities 

• qij = 0 

• qii = 0.3 

• qi = 0.7 

Ai qij qii qi 

3 0.020 0.240 0.700 

4 0.015 0.240 0.700 

5 0.012 0.240 0.700 

6 0.010 0.240 0.700 

Ai qij qii qi 

3 0.100 0.000 0.700 

4 0.075 0.000 0.700 

5 0.060 0.000 0.700 

6 0.050 0.000 0.700 

Low mobility probabilities High mobility probabilities 



Maximum users admitted per cell 

for average and actual interference 

for the three mobility cases. 

 



Network throughput for average and 

actual interference for the three 

mobility cases. 



Blocking probability for average 

and actual interference for the 

three mobility cases. 



Results Global CAC 
 

• Network throughput is always a little higher for average 
interference in all the three mobility cases. 

 

• Blocking probabilities are a little higher for actual 
interference for all three mobility cases.  

 

• Blocking probability is around 10% in all the three 
mobility cases for the cells with high demand. 

 

• Throughput is highest and blocking probability is lowest 
for the high mobility case. 

 

 

 



Erlang traffic and maximum number of 

calls allowed to be admitted per cell for 

all three mobility cases. 

High mobility has an 

equalizing effect on non-

uniform traffic 

distribution. 



Network throughput for our 

optimized local CAC for all 

three mobility cases. 



Theoretical and simulated network 

throughput for our optimized local 

CAC and traditional CAC for all three 

mobility cases. 



Theoretical and simulated 

blocking probability for our 

optimized local CAC and 

traditional CAC for all three 

mobility cases. 



Results Local CAC 

• Our optimized local CAC algorithm adapts in 

response to the traffic demand due to users’ 

mobility. 

• Our local CAC network throughput is higher than 

traditional CAC throughput by nearly 13%. 

• Our local CAC algorithm strikes a good balance 

between the blocking probabilities of the low and 

high traffic cells. 



Network throughput for our 

optimized local and global 

CAC algorithms. 



Blocking probability for our 

optimized local and global 

CAC algorithms. 



Summary 

• High mobility results in highest throughput 
because it equalizes non-uniform traffic. 

• Our optimized local CAC algorithm performance 
is better than traditional CAC algorithm. 

• Our optimized local CAC algorithm performance 
is just as good as a global for a given traffic 
distribution. 

 

 


