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Borel determinacy states that if $G(T,X)$ is a game and $X$ is Borel, then $G(T,X)$ is 
determined.   Proved by Martin in 1975, Borel determinacy is a theorem of ZFC set theory, and 
is, in fact, the best determinacy result in ZFC. However, the proof uses sets of high set theoretic 
type ($\aleph_1$ many power sets of $\omega$).  Friedman proved in 1971 that these sets are 
necessary by showing that the Axiom of Replacement is necessary for any proof of Borel 
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not a theorem of ZC. This paper contains three main sections: Martin's proof of Borel 
Determinacy; a simpler example of Friedman's result, namely, (in ZFC) a coanalytic set of 
Turing degrees that neither contains nor omits a cone; and finally, the Friedman result. 
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CHAPTER 1

Introduction

When he �rst listed his axioms for set theory [Zer08], Zermelo omitted the axiom

which states that the image of a set under any function is a set, the Axiom of Re-

placement. Zermelo's axioms of In�nity and Power set suÆce to prove the existence of

!;P(!);P(P(!)); : : :, but the existence f!;P(!);P(P(!)); : : :g necessitates Replace-

ment. Fraenkel [Fra21, Fra22] and Skolem [Sko23] later added Replacement thus elim-

inating this pathology. This revised list of axioms has been dubbed Zermelo-Fraenkel

set theory (ZF) and is widely accepted as the standard axioms for set theory.

For most mathematicians, the inability of Zermelo's set theory (Z) to form the

above set causes little concern because the overwhelming majority of mathematical

objects can be found within a �nite number of iterations of the power set operation.

Yet for set theorists, Replacement is vital. Von Neumann [vN23] used Replacement

to de�ne the ordinal numbers which became the backbone for the higher type sets

(i.e., sets formed by the unrestricted use of the Power Set operator). However, the

full usage of Replacement remained latent; no proof of a theorem requiring higher

type sets existed. Coincidentally, Zermelo's interest in games was the genesis of such

a theorem.

Besides his innovations in set theory, Zermelo also introduced the modern math-

ematical investigation of �nite games [Zer12] and showed that chess is determined.

That is, either both players have drawing strategies or one player has a winning strat-

egy. Borel [Bor21, Bor24, Bor27], von Neumann [vN28] and Steinhaus [Ste25] con-

tinued the analysis of �nite games which culminated in von Neumann's and Morgen-

stern's monograph [vNM44]. Meanwhile, adumbrating the notion of in�nite games,

Sierpi�nski used game concepts such as strategy and play to prove that every uncount-

able Borel subset of R contains a copy of the Cantor space [Sie24]. But, according to

Ulam [Ula60] and Oxtoby [Oxt71], Mazur pioneered the application of in�nite games

to real analysis.
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In 1928, while considering a problem relating to the Baire Category Theorem,

Mazur imagined a game in which both players made ! many moves. He later de-

scribed this to Banach during a conversation at the Scottish Cafe. The in�nite game,

along with Banach's reference to a solution dated 4 August 1935, became known

as the Banach-Mazur game (number 43 in the Scottish Book [Mau81]). Subsequent

comments to problem 43 contain a variation suggested by Ulam: A subset X of the

unit interval is chosen and two players alternate playing 0 or 1. Player I wins if, and

only if �1

n=0
xn

2n
2 X and Player II wins otherwise. Ulam then asked, for which X does

Player I (or II) have a winning strategy? This question would remain unanswered for

nearly twenty years.

Gale and Stewart [GS53], and independently Mycielski and Zieba [MZ55], partially

answered the question by proving that on the one hand, open and closed games are

determined but on the other, a nondetermined game can be constructed using the

Axiom of Choice (AC). The search for a more robust answer to Ulam's question

prompted the following two re�ning questions:

1. Is determinacy invariant under unions and intersections?

2. For what classes of sets are games determined? GÆ? F�? Borel? Analytic?

GÆ and F� determinacy was proven by Wolfe [Wol55], and independently by Mycielski,

�Swierczkowski, and Zieba [M�SZ56]. Davis proved F�Æ and GÆ� determinacy [Dav64].

Moreover, he proved that determinacy is not invariant under union and intersection,

and thus eliminated the feasibility of a direct proof of Borel Determinacy. Even though

Davis' proof was far from full Borel Determinacy, it remained the best result for almost

ten more years. During this time, determinacy hypotheses gained popularity.

Mycielski and Steinhaus �rst formulated [MS62] the hypothesis that all subsets of

reals are determined, the Axiom of Determinacy (AD). In light of the aforementioned

non-determined game and its heavy dependence on AC, AD blatantly contradicted

AC. Coupled with the paucity of determinacy proofs then available, AD seemed to be

a dubious proposition. What prompted Mycielski to propose AD was its consequences

on subsets of R, collected in [Myc64]. These are: (1) every subset of R is Lebesgue
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measurable [M�S64]; (2) every subset of the Cantor space has the Baire property

(attributed to Banach and proven in [Oxt71], p. 27, using the above Banach-Mazur

game); (3) every uncountable subset of the Cantor space has a perfect subset [Dav64];

and, (4) the Axiom of Countable Choice (CC) [Myc64]. These regularity properties

for subsets of reals precipitated a new program to discover, via consistency results

and large cardinal hypotheses, the full potential of AD. In 1970 Martin [Mar70]

proved that if a measurable cardinal exists, then all analytic games are determined.

Therefore, because every Borel set is analytic, Borel determinacy follows. But the

existence of measurable cardinals is not provable in ZF with AC (ZFC). Consequently,

a ZFC proof of Borel Determinacy remained elusive.

During this period of investigation into the relationship between large cardinals

and AD, an unexpected development occurred. Without a proof of Borel Determi-

nacy, Friedman [Fri71] proved that ZC (Z + AC) was insuÆcient to prove Borel

Determinacy. Thus, a proof of Borel Determinacy, a simple statement about sets of

reals numbers, would require uncountably many iterations of power sets of integers

and would become the �rst known theorem realizing the full potency of the Axiom

of Replacement. Following this development, Paris [Par72] proved that �0
4 games are

determined and concluded that no further determinacy progress was possible using

the methods of analysis.

Fifty years after Replacement's introduction as an axiom of set theory, Martin

proved Borel Determinacy [Mar75]. Re�nements of the proof in [Mar85] revealed a

purely inductive proof and the full use of Replacement in the notion of a covering. A

covering reduces the Borel game to a closed (and hence determined) game; the size

of the covering needed to reduce the game on a Borel set of rank � < !1 was roughly

the size of P�(!).

This paper contains Martin's proof of Borel Determinacy and Friedman's related

metamathematical result, and is accordingly divided into two parts. The �rst part

sets forth preliminary de�nitions and notations and concludes with the proof for Borel

Determinacy. The second part constructs in ZFC a non-determined coanalytic game,

mimicking the Friedman result (a nondetermined Borel game in ZC) which follows.
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Part I

Borel Determinacy
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CHAPTER 2

Preliminaries

In this chapter we establish the de�nitions, notations, and basic results necessary for

our reproduction of Martin's inductive proof of Borel Determinacy in Chapter 3. As

much of this material is standard, we suppress proofs, referring the reader to [Mos80]

and [Kec95] for details.

2.1 Polish spaces

Though many of the results of classical descriptive set theory pertain to R, they

also work in a more general context. Let (X; T ) be a topological space. (X; T ) is

separable if X contains a countable dense subset. If � is a metric on (X; T ), then

(X; T ) is complete if every �-Cauchy sequence converges in X. (X; T ) is Polish if

it is separable and completely metrizable. Thus, R, Rn , RN , C , C n , C N , I (the unit

interval [0; 1]), In (the n-dimensional cube), IN (the Hilbert cube), T (the unit circle),

Tn (the n-dimensional torus), TN (the in�nite dimensional torus) are all Polish.

Two Polish spaces of particular interest are the Baire space and the Cantor space.

Given sets A;B, BA denotes the set of all functions f : A! B. Let ! = f0; 1; 2; : : :g.

With ! having the discrete topology, give !! the product topology to form the Baire

space, N . The Cantor space C or 2! is constructed similarly. It is a theorem that

N is homeomorphic to the irrationals as a subspace of R. The following proposition

shows that either N or C can be found in any Polish space and thus justi�es the use

of N and C as the canonical Polish spaces,

Proposition 2.1.1. For any Polish space X,

1. there is a continuous surjection f : N ! X

2. if X has no isolated points, then there is a continuous injection f : C ! X

Products of Polish spaces can be avoided when convenient by the next proposition

and consequently dimension plays virtually no role in descriptive set theory.
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Proposition 2.1.2. N is homeomorphic to N n, for all n 2 ! and N !.

We shall work almost exclusively with the Baire space throughout this paper.

Subsets of N are called pointsets; sets of subsets of N are called pointclasses.

Given a pointclass �, the dual pointclass is given by �� = fXc : X 2 �g where Xc

denotes the complement of X.

2.2 Borel sets

Suppose X 6= ; and let P(X) denote the power set of X. A � P(X) is a �-algebra of

sets if X 2 A, and A is closed under countable unions, countable intersections, and

complements. For (X; T ) Polish, Y � X is Borel if Y is contained in the smallest

�-algebra of X containing T . The Borel sets of X, denoted B(X), can be put in a

hierarchy as follows. Let !1 be the �rst uncountable ordinal and de�ne by trans�nite

recursion for 1 � � < !1 the following pointclasses:

Y 2 �0
1(X) , Y 2 T ;

Y 2 �0
�
(X) , Y =

[
n

An such thatAn 2 �
0
�n

(X); each�n < �

Y 2 �0
�
(X) , Y c 2 �0

�
(X)

Y 2 �0
�
(X) , Y 2 �0

�
(X) \�0

�
(X)

It is a theorem that B(X) =
S

�<!1
�0

�
(X) =

S
�<!1

�0
�
(X) =

S
�<!1

�0
�
(X):

Moreover, the following diagram illustrates this hierarchy (we suppress the X for

readability)

�0
1 �0

2 �0
�

�0
�

�0
1 �0

2 � � � �0
�

� � � �0
�

� � �

�0
1 �0

2 �0
�

�0
�| {z }

B

where � � � and any class is contained in every class to the right of it. These

containments are proper for uncountable X and thus, all of these classes are distinct.
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In the classical notation, �0
2 is the class of F� sets, �0

2 the GÆ sets, �0
3 the GÆ� sets,

�0
3 the F�Æ sets, etc. Closure properties for these pointclasses are summarized in the

next proposition.

Proposition 2.2.1. For each � � 1, the pointclasses �0
�
, �0

�
, and �0

�
are closed

under �nite intersections, �nite unions, and continuous preimages. Moreover,

1. �0
�
is closed under countable unions,

2. �0
�
is closed under countable intersections, and

3. �0
�
is closed under complements.

Thus, the Borel sets are closed under the Boolean operations, countable unions,

countable intersections, and continuous preimages. The continuous image of a Borel

set, however, need not be Borel. The hierarchy of projective sets extends the Borel

hierarchy to accommodate this.

2.3 Projective sets

For any Polish space X, a set A � X is analytic if there is a continuous function

f : N ! X such that A = f(N ). The complement of an analytic is coanalytic.

De�ne recursively for each n 2 !, the following pointclasses:

Y 2 �1
1(X) , Y is analytic

Y 2 �1
n+1(X) , Y is the continuous image of a�1

n
set

Y 2 �1
n
(X) , Y c 2 �1

n
(X)

Y 2 �1
n
(X) , Y 2 �1

n
(X) \�1

n
(X)

De�ne the projective sets of X P(X) =
S
1

n=1�
1
n
. A famous result of Souslin

relates the projective hierarchy to the Borel hierarchy.

Theorem 2.3.1 (Souslin). For any Polish space X, B(X) = �1
1.
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Thus, we have the following diagram

�1
1 �1

2 �1
n

B = �1
1 �1

2 � � � �1
n

� � �

�1
1 �1

2 �1
n| {z }

P

where each class is contained in every class to the right of it; it is a theorem that each

of these inclusions is proper.

2.4 Sequences and Trees

Let A 6= ;. Given s 2 An, we consider s as a �nite sequence from A of length n

and write s = hs0; : : : ; sn�1i. In the case n = 0, A0 = f;g, where ; here denotes the

empty sequence. We indicate the length of a �nite sequence s by length(s). Given

s 2 An and m � n, s � m = hs0; : : : ; sm�1i, the restriction of s to m. Given �nite

sequences s; t from A, s is an initial segment of t (equivalently, t is an extension

of s) if s = t � m, for some m � length(t). We write s � t to denote that s is an

initial segment of t. Two �nite sequences are compatible if one is an initial segment

of the other. If s and t are incompatible, we write s ? t. Given two �nite sequences

s; t we write ŝ t to denote the concatenation of s and t.

Given x 2 A! and n 2 !, x � n = hx0; : : : ; xn�1i, the restriction of x to n. Given

x 2 A!, we say that s 2 An is an initial segment of x 2 A! if s = x � n. We write

s � x to denote that s is an initial segment of x. Note the di�erence in notation for

�nite versus in�nite sequences: (an) denotes the in�nite sequence fangn2! whereas

hani is the length 1 sequence whose only member is an.

A! can be viewed as the product topology of in�nitely many copies of A, each

having the discrete topology. The standard basis for this topology on A! consists of

the sets Ns = fx 2 A! : s � xg, where s 2 A<!. Note that s � t , Ns � Nt and

s ? t, Ns \Nt = ;.

For a nonempty set A, let A<! =
S

n
An, the set of all �nite sequences from A. A

tree on a set A is a subset T � A<! closed under initial segments. Each s 2 T is called
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a node of T . A tree T pruned if every s 2 T has a proper extension t % s, t 2 T .

A branch of T is a sequence x 2 A! such that x � n 2 T , for all n. The set of all

branches of T is written as [T ] = fx 2 A! : 8n(x � n 2 T )g. The primacy of pruned

trees in descriptive set theory follows from the following foundational proposition.

Proposition 2.4.1. Let A 6= ; and T � A<! a nonempty pruned tree. Then [T ] � A!

is closed.

Proof. Let A; T be as above and let x =2 [T ]. Then there is n 2 ! such that x � n =2 T .

So x 2 Nx�n � [T ]c. Hence, [T ]c is open, and [T ] is therefore closed.

It is a theorem that there is a bijection between pruned trees and closed sets.

Given a closed set F , TF denotes the tree of F .

Finally, for trees S; T (on sets A;B, resp.), a map ' : S ! T is called monotone

if s � t implies '(s) � '(t). For a tree T on A and any s 2 A<!, de�ne Ts = ft 2

A<! : ŝ t 2 Tg, the subtree of T at s; for X � A! de�ne Xs = fx 2 X : s � xg.

2.5 In�nite games of perfect information

An in�nite two-player game of perfect information with rules, or simply game, is

a contest between two players, I and II, played using two sets, A and X, and a

prescribed set of legal moves, or rules. The nonempty set A speci�es those objects

used to play the game, while X � A! determines the winner of the game. A run of

the game begins with Player I making a play by choosing a0 2 A in compliance with

the rules as his �rst move. Player II makes her play by choosing a1 2 A in compliance

with the rules. (We will maintain this convention of referring to Player I as masculine

and Player II as feminine to improve readability.) Player I then chooses a2 2 A as his

second play. Player II responds, and so on. At any time during a run of the game,

each player is able to see all, including the opponent's, previous moves. (Thus it is a

game of perfect information.) Play alternates along these lines for in�nitely many

(! many) moves. The winner of a particular run (an) 2 A! of the game is determined

by the payo� set X � A!. Player I wins if, and only if a 2 X, otherwise Player II

wins.
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More formally, let A be a nonempty set, X � A! be the payo� set, and T � A<!

a nonempty pruned tree. Insisting that each player's moves must occur in T , T serves

as the rules of the game. We denote a game on a set A with rules T and payo� set X

by G(T;X), or if T is understood, we will write G(X). A run (an) 2 A! of the game

G(T;X) (illustrated below) begins with Player I playing a0 2 A such that ha0i 2 T ,

followed by Player II playing a1 2 A such that ha0; a1i 2 T , followed by I playing

a2 2 A such that ha0; a1; a2i 2 T , etc.

I a0 a2

: : :

II a1 a3

I wins if, and only if (an) 2 X. II wins if, and only if (an) 2 Xc.

A strategy for a player in a game is a way of determining the player's next

move from the previous moves. We view a strategy for I in the game G(T;X) as a

nonempty, pruned subtree � � T such that

1. if ha0; a1; : : : ; a2ji 2 �, then for all ha0; a1; : : : ; a2j+1i 2 T , ha0; : : : ; a2j; a2j+1i 2

�;

2. if ha0; a1; : : : ; a2j�1i 2 �, then there is a unique ha0; a1; : : : ; a2ji 2 T such that

ha0; : : : ; a2j�1; a2ji 2 �.

We denote the set of all strategies from a tree T by S(T ). We say that I follows a

strategy � if I begins by playing the unique a0 2 A such that ha0i 2 �, then, regardless

of II's legal response a1 2 A, I plays the unique a2 2 A according to ha0; a1; a2i 2 �,

and so on. A strategy for player II is de�ned mutatis mutandis.

A strategy � for I is winning if [�] � X; that is, if every run (an) of the game

G(T;X) in which I follows � results in (an) 2 X. A winning strategy for II is de�ned

similarly. Clearly, I and II cannot simultaneously have winning strategies in the same

game G(T;X). We say that a game G(T;X) is determined if one of the players has

a winning strategy. For a pointclass �, Det(�) denotes that for every A 2 �, G(A) is

determined.

10



[Tel87] and [Myc92] survey games and their history.
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CHAPTER 3

ZFC ` Det(�1
1)

This chapter contains Martin's proof by induction of Borel Determinacy. We present

Gale and Stewart's result, the determinacy of open and closed games in the �rst

section, followed by Martin's proof in the section.

3.1 The Gale-Stewart Theorem

Given a game G(T;X) and p 2 T , the subgame of X at p is G(Tp; Xp) where Tp; Xp

are as in Section 2.4. If during a run of the game G(T;X) a position p 2 T is reached

with I to play next and such that II has no winning strategy in the game G(Tp; Xp),

then we say that p is not losing for I. We de�ne not losing for II mutatis mutandis.

The following lemma contains the germ of the proof of the Gale-Stewart theorem.

Lemma 3.1.1. Let G(T;X) be a game on a set A. If p is not losing for I, then there

is a 2 A such that for all b 2 A, p^a b̂ is not losing for I.

Proof. Suppose not. Let p = ha0; a1; : : : ; a2j�1i 2 T be not losing for I, and suppose

that for each a 2 A such that p̂ a 2 T , there is b 2 A such that p0 = p̂ â b 2 T and

II has a winning strategy in the game G(Tp0; Xp0). So, for each a 2 A, choose ba 2 A

and a winning strategy �a for II in the game G(Tp0 ; Xp0) where p0 = p̂ â ba. Hence,

II now has a winning strategy in G(Tp; Xp) de�ned as follows: if I plays a2j 2 A, II

responds by playing ba2j 2 A and then follows �a2j to win. Thus, p is losing for I, a

contradiction.

Theorem 3.1.2 (Gale-Stewart). Let T be a non-empty pruned tree on A. Let

X � [T ] be open or closed in [T ]. Then G(T;X) is determined.

Proof. Assume X is closed and that II has no winning strategy in G(T;X). We

construct a strategy � for I as follows: ; is not losing for I since II has no winning

strategy inG(T;X). By Lemma 3.1.1 there is a0 2 A such that for all a1 2 A such that

12



ha0; a1i 2 T , ha0; a1i is not losing for I. Since ha0; a1i is not losing for I, there is a2 2 A

such that for all a3 2 A such that ha0; a1; a2; a3i 2 T , ha0; a1; a2; a3i is not losing for

I, again by Lemma 3.1.1. In general, given p = ha0; a1; : : : ; a2n�1i 2 T which is not

losing for I, choose a2n 2 A so that for any a2n+1 2 A such that p ĥa2n; a2n+1i 2 T ,

p ĥa2n; a2n+1i is not losing for I. It is clear that a subtree � � T formed in this fashion

is a strategy for I. We claim this strategy is winning for I.

Consider a run of the game (an) in which I followed � so that every position of

even length is not losing for I and suppose that (an) =2 X. Then as Xc is open, there

is k such that Nha0;a1;:::;a2k�1i
\ [T ] � Xc and hence, ha0; a1; : : : ; a2k�1i is losing for I as

II can win by playing arbitrarily for the rest of the game. Therefore, � is a winning

strategy for I.

In the case that X is open, assume that I has no winning strategy in G(T;X); use

the above argument to construct a winning strategy for II.

3.2 An Inductive Proof of Borel Determinacy

Martin's proof of Borel determinacy associates to each Borel game G(T;X) an auxil-

iary closed or open game G( ~T ; ~X) in such a way that a winning strategy in G( ~T ; ~X)

gives rise to a winning strategy in G(T;X). As the auxiliary game is determined by

the Gale-Stewart Theorem, so is the Borel game. The notion of a covering makes this

association rigorous.

Let T be a nonempty pruned tree on a set A. Recall that S(T ) denotes the set of

all strategies from T . A covering of T is a triple ( ~T ; �; ') such that

1. ~T is a nonempty pruned tree (on some ~A);

2. � : [ ~T ] ! [T ] is continuous;

3. ' : S( ~T ) ! S(T ) maps strategies for player I (resp. II) in ~T to strategies for

player I (resp. II) in T , in such a way that '(~�) restricted to positions of length

� n depends only on ~� restricted to positions of length � n, for all n.

4. If ~� is a strategy for I (resp. II) in ~T and x 2 [T ] such that x 2 '(~�) then there

is ~x 2 [ ~T ] such that ~x 2 [~�] and �(~x) = x.
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Note that the map � naturally arises from a monotone map �0 : ~T ! T such

that length(�0(s)) = length(s). Condition three is stated informally for simplicity.

Formally, ' is a monotone map on partial strategies ~� � n and '(~�) is de�ne by

'(~�) � n = '(~� � n).

A covering ( ~T ; �; �) of T unravels a set X � [T ] if ��1(X) is clopen. The next

proposition follows immediately from the Gale-Stewart Theorem.

Proposition 3.2.1. Let T be a nonempty pruned tree on a set A and X � [T ]. If

( ~T ; �; �) is a covering of G(T;X) such that ( ~T ; �; �) unravels X, then G(T;X) is

determined.

If ( ~T ; �; ') is a covering such that for k 2 !, T � 2k = ~T � 2k and � � ( ~T � 2k) is

the identity, then ( ~T ; �; ') is a k-covering.

Lemma 3.2.2. Let T be a nonempty pruned tree and X � [T ]. If ( ~T ; �; ') is a

k-covering that unravels X, then ( ~T ; �; ') also unravels Xc.

Proof. If T;X, and ( ~T ; �; ') are as above, then ��1(Xc) = (��1(X))c is also clopen

as � is continuous.

Relaxing the uniqueness condition in the de�nition of a strategy yields the no-

tion of a quasistrategy. A quasistrategy for I in G(T;X) is a nonempty, pruned

subtree � � T such that ha0; a1; : : : ; a2ji 2 � and ha0; a1; : : : ; a2j+1i 2 T implies

ha0; : : : ; a2j; a2j+1i 2 �. Since � is pruned, if ha0; a1; : : : ; a2j�1i 2 �, then there is a

a2j 2 A such that ha0; a1; : : : ; a2j�1; a2ji 2 �.

By modifying our de�nition of not losing, we can isolate the quasistrategy con-

structed in the Gale-Stewart Theorem. Let p 2 T be of arbitrary length. We say

that p is not losing for I if II has no winning strategy in the game G(Tp; Xp). So

if p = ha0; a1; : : : ; a2ni, then G(Tp; Xp) is the subgame at p in which II plays �rst.

Let � be the quasistrategy for I given by � = fp 2 T : p is not losing for Ig: This

special quasistrategy we call the canonical quasistrategy for I in G(T;X). De�ne

the canonical quasistrategy for II mutatis mutandis.

The next lemma is the heart of the inductive proof of Borel Determinacy and

constitutes the bulk of this section.
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Lemma 3.2.3. Let T be a nonempty pruned tree. For every X 2 �0
1([T ]) and for

each k 2 ! there is a k-covering of T that unravels X.

Proof. Let T be a nonempty pruned tree, X � [T ] closed, and k 2 !. Let TX be the

tree of the closed set X. So G(T;X) is of the form

I x0 x2

� � �

II x1 x3

where for all I, hx0; : : : ; xii 2 T . I wins if, and only if (xn) 2 X. The k-covering

( ~T ; �; ') that we will de�ne is an auxiliary game in which players I and II play

according to a run of G(T;X) except at the kth turn (moves 2k and 2k + 1) where

they play their usual moves along with some additional objects which simplify the

game G(T;X). The moves described below de�ne ~T .

In ~T both players play as in T for the �rst k � 1 turns:

I x0 x2k�2

� � �

II x1 x2k�1

In his next move in ~T , I plays hx2k;�Ii where hx0; : : : ; x2ki 2 T and �I is a quasis-

trategy for I in Thx0;:::;x2ki. By o�ering this quasistrategy, I obliges that he will play

according to �I for the duration of G(T;X). So we have

I x0 x2k�2 hx2k;�Ii

� � �

II x1 x2k�1

II responds with x2k+1 and either accepting or rejecting I's o�er so that the game
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thus far is

I x0 x2k�2 hx2k;�Ii

� � �

II x1 x2k�1 hx2k+1; �i

II accepts: In this case, II responds by playing hx2k+1; ui where hx0; : : : ; x2k+1i 2

T and u is an even length sequence such that u 2 Thx0;:::;x2k+1i and u 2 (�I)h2k+1i r

(TX)hx0;:::;x2k+1i. Both players continue playing x2k+2; x2k+3; : : : so that all moves are

in T and compatible with u.

II rejects: In this case, II responds by playing hx2k+1;�IIi where hx0; : : : ; x2k+1i 2

T and �II is a quasistrategy for II in (�I)hx2k+1i with �II � (TX)hx0;:::;x2k+1i. In this

case, both players continue playing x2k+2; x2k+3; : : : so that hx2k+2; x2k+3; : : : ; xli 2

�II , for all l � 2k + 2.

Formally, ~T is the set of all �nite sequences of the form:

hx0; : : : ; x2k�1; hx2k;�Ii; hx2k+1; �i; x2k+2; : : : ; xli

such that

1. hx0; : : : ; xii 2 T for all i � l,

2. �I is a quasistrategy for I in Thx0;:::;x2ki,

3. � = h1; ui where u is of even length, u 2 Thx0;:::;x2k+1i, u 2 (�I)h2k+1i r

(TX)hx0;:::;x2k+1i or � = h2;�IIi where �II is a quasistrategy for II in (�I)hx2k+1i

with �II � (TX)hx0;:::;x2k+1i.

Since both players have always have legal moves at each turn, it is clear that ~T is

pruned. Moreover, T 6= ; implies ~T 6= ;.

The map � : ~T ! T is given in the obvious way:

�(hx0; : : : ; x2k�1; hx2k;�Ii; hx2k+1; �i; x2k+2; : : : ; xli) = hx0; : : : ; xli:
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Again, � induces a map from [ ~T ] to [T ] which we also refer to as �; no confusion will

result from this slight abuse of notation.

As � is clearly continuous, ��1(X) 2 �0
1([

~T ]). Moreover, observe that

~x 2 ��1(X) , ~x(2k + 1) is of the form hx2k+1; h2;�IIii

so that ��1(X) is also open in [ ~T ] since for any ~x 2 ��1(X), the cone Nhx0;:::;x2k+1i
�

��1(X) contains x. Thus, ��1(X) 2 �0
1([

~T ]).

To complete the de�nition of ( ~T ; �; '), the k�covering of T , we now de�ne, infor-

mally, ' which maps for each player a strategy ~� in ~T to a strategy � = '(~�) in T in

such a way that if x 2 [�] is a run of a game on T , then there is a run ~x 2 [~�] such

that �(~x) = x. Let ~� � ~T be a strategy. We argue two cases as ~� can be a strategy

for I or II.

Case 1 { ~� is a strategy for I: For the �rst 2k moves, � � 2k� 1 = ~� � 2k� 1.

Next, ~� produces a unique hx2k;�Ii where �I � Thx0;:::;x2ki is a quasistrategy for I; �

corresponds with x2k. II then responds with x2k+1 in T .

Consider now the game on (�I)hx2k+1i having payo� set [(�I)hx2k+1i]rXhx0;:::;x2k+1i
.

As TXhx0;:::;x2k+1i
is a nonempty pruned tree, Xhx0; : : : ; x2k+1i is closed, and thus,

[(�I)hx2k+1i] r Xhx0;:::;x2k+1i
is open. Hence, by the Gale-Stewart Theorem, the game

G((�I)hx2k+1i; [(�I)hx2k+1i] r Xhx0;:::;x2k+1i
) is determined. There are two subcases ac-

cording to which player has a winning strategy in this game.

Subcase 1A: I has a winning strategy inG((�I)hx2k+1i; [(�I)hx2k+1i]rXhx0;:::;x2k+1i
): �

then requires I to follow this strategy. For in this case, after a �nite number of moves, a

position u 2 (�I)hx2k+1i � Thx0;:::;x2k+1i of even length is reached such that u is winning

for I. That is, there is u = hx2k+2; : : : ; x2l�1i such that u 2 (�I)h2k+1irhTX)hx0;:::;x2k+1i.

Thus,

hx0; : : : ; x2k�1; hx2k;�Ii; hx2k+1; h1; uii; x2k+2; : : : ; x2l�1i 2 ~T

and henceforth � requires I to follow ~�. So if x 2 [�] is a run of G(T;X), it is clear

that there is ~x 2 [~�] such that �(~x) = x, namely ~x in which II plays hx2k+1; h1; uii in

her 2k + 1 move.
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Subcase 1B: II has a winning strategy in G((�I)hx2k+1i; [(�I)hx2k+1i]rXhx0;:::;x2k+1i
):

Let �II � (�I)hx2k+1i be her canonical quasistrategy in this game. Provided that in the

game on ~T , II plays hx2k+1;�IIi, I follows � by playing ~�. (For if II plays otherwise,

I now has a winning strategy in this game and can proceed via Subcase 1A.) As long

as II plays hx2k+2; : : : ; x2l�1i 2 (�II)hx0;:::;x2k�1i, I continues to play � by following

~�. However, if at any point II plays hx2k+2; : : : ; x2l�1i =2 (�II)hx0;:::;x2k+1i, then it

follows that hx2k+2; : : : ; x2l�1i is losing for II, consequently winning for I, in the game

G((�I)hx2k+1i; [(�I)hx2k+1i]rXhx0;:::;x2k+1i
) and I can again continue as in Subcase IA.

Case 2 { ~� is a strategy for II: Again, for the �rst 2k moves, � � 2k� 1 = ~� �

2k � 1. Next I plays x2k in G(T;X). De�ne

S = f�I � Thx0;:::;x2ki : �I is a quasistrategy for I g

and

U = fhx2k+1i^u 2 Thx0;:::;x2ki : u has even length and

9�I 2 S(~� requires II to play

hx2k+1; h1; uiiwhen I plays hx2k;�Ii )g

and U = fx 2 [Thx0;:::;x2ki] : 9 hx2k+1i^u 2 U (hx2k+1i^u � x)g. So then, U �

[Thx0;:::;x2ki] is open in [Thx0;:::;x2ki].

Consider now the game G(Thx0;:::;x2ki;U)

I x2k+2

� � �

II x2k+1 x2k+3

where II plays �rst and wins if, and only if hx2k+1; x2k+2; : : :i 2 U . As U is open, this

game is determined by Gale-Stewart, and hence there are two subcases.

Subcase 2A: II has a winning strategy in this game. De�ne a strategy � for II

as follows: II should follow this winning strategy in G(Thx0;:::;x2ki;U) until a position
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hx2k+1i^u 2 U is reached, for some even length u = hx2k+2; : : : ; x2l�1i. By the de�ni-

tion of U , let �I witness that hx2k+1i^u 2 U . So from x2l on, II returns to playing �

in G(T;X) according to ~� on

hx0; : : : ; x2k�1; hx2k;�Ii; hx2k+1; h1; uii; x2k+2; : : : ; xli 2 ~T :

It is then clear that if x 2 [�], there is ~x 2 [~�] such that �(~x) = x. Let �II �

(�I)hx2k+1i \ (TX)hx0;:::;x2k+1i be the quasistrategy for II that ~� produces as II response

to hx2k;�Ii in the game on ~T .

Subcase 2B: I has a winning strategy in this game. Let �I be his canonical

quasistrategy in this game. Since �I is winning for I, [�I ] � [Thx0;:::;x2ki] r U , that

is, �I � Thx0;:::;x2ki r U so that no sequence of �I is in U . Suppose then that I

plays hx2k;�Ii in the game on ~T ; ~� must tell II to respond with something of the

form hx2k+1; h2;�IIii. (Otherwise, if ~� produced something of the form hx2k+1; h1; uii

where u 2 (�I)h2k+1i r (TX)hx0;:::;x2k+1i by the rules of ~T , then by the de�nition of U ,

�I would be a witness that hx2k+1i û 2 U , a contradiction.) Let hx2k+1; h2;�IIii be

II's response to hx2k;�Ii according to ~�. Then II plays x2k+1 in G(T;X) and plays �

according to ~� on

hx0; : : : ; x2k�1; hx2k;�Ii; hx2k+1; h2;�IIii; x2k+2; : : : ; x2li

provided that hx2k+2; : : : ; x2k) 2 �II . If for some l � k + 1, I plays such that

hx2k+2; : : : ; x2ki =2 �II , then hx2k+2; : : : ; x2ki =2 (�I)h2k+1i since �II is a quasistrat-

egy for II in (�I)h2k+1i. Hence, hx2k+2; : : : ; x2ki is losing for I, and we are back in

Subcase 2A.

The following technical lemma is the �nal fact needed to carry out the induction.

Lemma 3.2.4. Let k 2 ! and suppose (Ti+1; �i+1; 'i+1) is a (k+i)-covering of Ti, for

each i 2 !. Then there is a pruned tree T1 and �1;i : [T1] ! [Ti], '1;i : S(T1) !

S(Ti) such that (T1; �1;i; '1;i) is a (k + i)-covering of Ti, �i+1 Æ �1;i+1 = �1;i, and

'i+1 Æ '1;i+1 = 'i.
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Proof. Let k 2 !, and for each i 2 !, let (Ti+1; �i+1; 'i+1) be a (k+ i)-covering of Ti.

De�ne T1 as follows:

s 2 T1 , 9 i 2 ![s 2 Ti ^ length (s) � 2(k + i)]:

Since for each I, Ti is a nonempty pruned tree, it easily follows that so is T1. Moreover,

it is clear that T1 � 2(k + i) = Ti � 2(k + i).

De�ne �1;i : T1 ! Ti as follows:

�1;i(s) =

8<
:s if length(s) � 2(k + i)

(�i+1 Æ �i+2 Æ � � � Æ �j)(s) if 2(k + i) < length (s) � 2(k + j) for some j

It should be clear that �1;i is well-de�ned because in the second case, �1;i(s) is

independent of the choice of j. As each �i is monotone with length(�(s)) = length(s),

it follows from the de�nition that �1;i is also. Moreover, it is clear that for each i,

�1;i = �i+1 Æ �1;i+1.

De�ne '1;i from the set of strategies in T1 to the set of strategies in Ti as follows:

'1;i(�1) � 2(k + i) = �1 � 2(k + i)

and for all j > i,

'1;i(�1) � 2(k + j) = ('i+1 Æ 'i+2 Æ � � � Æ 'j)(�1 � 2(k + j))

Similarly, it is clear that '1;i maps strategies for player I (resp. II) in T1 to

strategies for player I (resp. II) in Ti, in such a way that '1;i(�) restricted to

positions of length � n depends only on � restricted to positions of length � n,

for all n. Moreover, it is clear that for each I, '1;i = 'i+1 Æ '1;i+1. Thus, for

(T1; �1;i; '1;i) to be a (k + i)� covering of Ti, it remains to show that if �1 � T1

is a strategy and xi 2 ['1;i(�1)], then there is x1 2 [�1] such that �1;i(x1) = xi.

We argue the case i = 0; it should be clear that the argument easily generalizes to

any i 2 !.
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Let �1 � T1 be a strategy, and let x0 2 ['1;0(�1)] � T0. As '1;0 = '1 Æ '1;1,

x0 2 ['1('1;1(�1))]. Since (T1; �1; '1) is a k�covering of T0, let x1 2 ['1;1(�1)] be

such that �1(x1) = x0. Moreover, as T1 � 2k = T0 � 2k, for any sequence s having

length(s) � 2k, �1 is the identity. Next, as '1;1 = '2 Æ '1;2, x1 2 ['2('1;2(�1))].

Since (T2; �2; '2) is a (k+1)�covering of T1, let x2 2 ['1;2(�1)] be such that �2(x2) =

x1. Moreover, as T2 � 2(k+ 1) = T1 � 2(k+ 1), for any sequence s having length(s) �

2(k+1), �2 is the identity. In this way, we de�ne for each i 2 !, xi+1 2 ['1;i+1(�1)] �

[Ti+1] such that �i+1(xi+1) = xi. Recall from our de�nition of T1 that T1 � 2(k+ i) =

Ti � 2(k + i). As a result, it is clear that x0; x1; x2; : : : converges to x1 2 [T1] given

by x1 � 2(k + j) = x0 � 2(k + j) for each j � 0. Furthermore, x1 2 [�1] since

�1 � 2(k + j) = '1;j(�1) � 2(k + j) for all j � 0. Finally, it remains to show that

�1;0(x1) = x0. From the de�nition of �1;0 it follows that �1;0(x1) � 2k = x0 � 2k.

For j > 0 we have the following

�1;0(x1 � 2(k + j)) = �1(x1 � 2(k + j)) = �1(x1 � 2(k + j)) = x0 � 2(k + j):

Thus, it follows that �1;0(x1) = x0. It is clear that the above argument is completely

general for any i 2 !.

Theorem 3.2.5 (Martin). If T is a nonempty pruned tree on A and X � [T ] is

Borel, then for each k 2 ! there is a k-covering of T that unravels X.

Proof. Let T be a nonempty pruned tree on some set A and let X � [T ] be Borel.

Suppose X 2 �0
1([T ]) and let k 2 !. By Lemma 3.2.3, there is a k�covering of

T which unravels X. Moreover, Lemma 3.2.2 insures that such a k�covering also

unravels Xc so that the result holds for X 2 �0
1([T ]).

Now suppose that 1 < � < !1 and that for all � < �, if Y 2 �0
�
([T ]) and k 2 !,

then there is a k-covering of T that unravels Y ; by Lemma 3.2.2, the result holds for

all � < �, Y 2 �0
�
([T ]).

Let X 2 �0
�
([T ]). Thus, X =

S
i2!

Xi such that for each I, Xi 2 �0
�i

([T ]) some

�i < �. By the induction hypothesis, let (T1; �1; '1) be a k-covering of T0 = T that

unravels X0; that is, ��11 (X0) 2 �0
1. Moreover, since �1 is continuous, and since
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any pointclass is closed under continuous pre-images, it follows that ��11 (Xi) 2 �0
�i

for each i > 0. Again by the induction hypothesis, there is a (k + 1)-covering of T1,

(T2; �2; '2) that unravels ��11 (X1). Thus, (��12 Æ��11 )(Xi) 2 �
0
�i

([T2]) for all i > 1, and

(��12 Æ ��11 )(Xi) 2 �0
1([T2]) for i = 0; 1. In this fashion, de�ne recursively for each I,

(Ti+1; �i+1; 'i+1) to be a (k+i)-covering of Ti, that unravels (��1
i
Æ��1

i�1Æ� � �Æ�
�1
1 )(Xi).

Now, for each i 2 !, let (T1; �1;i; '1;i) be a (k + i)-covering of Ti, as in Lemma

3.2.4. Then (T1; �1;0; '1;0) unravels Xi for each I. That is, for each I, ��1
1;0(Xi) 2

�0
1([T1]). Thus, ��1

1;0(X) = ��1
1;0(

S
i2!

Xi) =
S

i2!
��1
1;0(Xi) 2 �0

1([T1]). Finally,

using Lemma 3.2.3 and Lemma 3.2.4 again, let ( ~T ; �; ') be a k-covering of T1 that

unravels ��1
1;0(X). Then, ( ~T ; �1;0 Æ �; '1;0 Æ ') is a k-covering of T that unravels

X.

Corollary 3.2.6 (Martin). ZFC ` Det(�1
1)
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Part II

The Metamathematics of Borel Determinacy
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Prior to Martin's proof of Borel Determinacy, Friedman showed ZC 0 Det(�0
!+2)

[Fri71]. Using a earlier result of Martin [Mar68], Friedman established the necessity

of the Axiom of Replacement to any proof of Borel Determinacy.

If there exists an algorithm that computes x from y, then x is recursive in y,

written x �T y. Two reals x and y are Turing equivalent, denoted x �T y, when

x �T y and y �T x. The equivalence classes of reals in �T are called Turing degrees

and we denote the set of Turing degrees by D. For every real x, the degree of xis

denoted by x. Given a pointclass � and A � D, we say that A is a ��subset if

fx 2 !! : x 2 Ag 2 �. Let (D;�) be the partial order induced by x � y, x �T y:

For x 2 D, the cone of x is Cx = fy 2 D : x � yg. If A � D and x 2 D, A contains

the cone of x if, and only if Cx � A and omits the cone of x if Cx � DrA.

Theorem (Martin). Assuming Det(�), every �-subset of D either contains or omits

a cone.

Proof. Let � be a pointclass and assume Det(�). Let A � D be such that A = fx 2

!! : x 2 Ag 2 �. Consider the game G(A)

I a0 a2

: : :

II a1 a3

where ai 2 !. I wins G(A) if, and only if a 2 A; II wins otherwise. By assumption,

G(A) is determined. Suppose ' : !<! ! ! is a winning strategy for I in G(A). Fix

a recursive bijection  : ! ! !<! and de�ne x = ' Æ  . We claim that Cx � A.

Suppose y 2 Cx; thus x �T y. Consider a run a 2 !! of the game G(A) in which

II plays y = (a1; a3; : : :) and I responds by playing (a0; a2; : : :) according to ' so that

a 2 A. Now, y �T a, hence y � a. But also, a �T y as x �T y. So, a � y, and thus

y = a 2 A. A symmetric argument shows that if II has a winning strategy in G(A),

then Cx � DrA.

Thus, producing a set A 2 � of degrees that neither contains nor omits a cone

implies Det(�) is false. Both Friedman's proof of ZC 0 Det(�0
!+2) and our proof
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of ZFC 0 Det(�1
1) use Martin's theorem in this way. Simpler counterexamples to

Det(�1
1) exist, but it is not known at this time whether the literature contains any

incidence of the following proof of ZFC 6j= Det(�1
1).
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CHAPTER 4

ZFC 0 Det(�1
1)

Arguing in ZFC, we produce a �1
1 set of degrees of reals that neither contains nor

omits a cone. Each real in this set is the real coding the theory of a limit stage

of L in which a new real occurs. In the �rst three sections of this chapter, we

establish the existence of an L(�)-de�nable function from ! onto L(�); the reader

familiar with these standard L arguments should skip to the �nal section containing

the construction of the �1
1 set.

4.1 Properties of L

Using the notation of Kunen ([Kun80]), we de�ne the following by trans�nite recursion

on the ordinals

L(0) = ;

L(� + 1) = D(L(�)); for � successor

L(�) =
[
�<�

L(�); for � limit

where D is the de�nable power set operator. Informally, D(A) is the set of subsets

of A de�nable from a �nite number of elements from A by a formula relativized to

A. A formal de�nition of D follows shortly. So L =
S

�2ON L(�). A set x is said

to be constructible if x 2 L. \V = L" abbreviates the sentence 8 x(x 2 L). This

section's goal is the proof of the statement: for every � > ! limit, L(�) j= V = L.

A few L facts are needed. A set is transitive if every element is a subset. For

every ordinal �, L(�) is transitive; it follows then that L is transitive. Given x 2 L,

the rank of x, denoted �(x) is the least � such that x 2 L(�+1). For every ordinal �,

�(�) = �. We write ZF to denote Zermelo-Fraenkel set theory without the Axiom of

Choice. The following is an important theorem in its own right; the proof is standard

and we omit it.

26



Theorem 4.1.1. L j= ZF

We prove in the second section that L is a model of ZF plus Choice (ZFC). The

following lemma catalogs the ranks of some commonly formed sets. We write (x; y)

to denote the ordered pair of x; y and xy denotes the set of all functions from y to x.

Lemma 4.1.2. Let x; y 2 L be such that �(x); �(y) = �, for some � > !. Then

1. �(x \ y); �(xr y) = �,

2. �(fx; yg) = � + 1,

3. �((x; y)) = � + 2,

4. 8 k 2 !, if f : k! x, �(f) = � + 2,

5. 8 k 2 !, �(xk) = � + 3,

6. �(x� y) = �+ 3.

Proof. Let x; y 2 L(� + 1) for some �. As � = 0 is trivial and as the limit case

easily follows from the successor case, suppose � is a successor. Let ';  be such that

x = fz 2 L(�) : 'L(�)(z)g and y = fz 2 L(�) :  L(�)(z)g: Then

x \ y = fz 2 L(�) : L(�) j= (' ^  )(z)g 2 L(� + 1):

Similar reasoning shows xr y 2 L(� + 1).

Since fx; yg = fz 2 L(� + 1) : L(� + 1) j= (z = x _ z = y)g; it follows that

fx; yg 2 L(�+2). Hence, (x; y) = ffxg; fx; ygg 2 L(�+3) and thus, x�y 2 L(�+4).

Now suppose k 2 ! and f : k ! x. Then f = f(i; fi) : i < k ^ fi 2 xg: By

the transitivity of L(� + 1), for each i < k and fi 2 x, we have i; fi 2 L(�). (Note

that this is the point where we use the hypothesis � > ! for convenience.) Thus,

(i; fi) 2 L(� + 2). Hence, f 2 L(� + 3), and xk 2 L(� + 4) for every k.

We now formalize the de�nition of the D operator in order to aid our discussion

of certain absoluteness results, beginning with the satisfaction relation.
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Every formula in the language of set theory (LST) can be rewritten using only

the membership (2) and equality (=) predicates, the logical relations of negation

(:), conjunction (^), and existential quanti�cation (9). Exploiting this fact, our

�rst de�nition inductively captures every k-ary relation on a set A de�nable from a

formula relativized to A in a manner that codes every formula by an integer. Let

A 6= ; and k 2 !. For i; j 2 ! and i; j < k, de�ne

Diag2(A; i; j; k) = fs 2 Ak : s(i) 2 s(j)g;

Diag=(A; i; j; k) = fs 2 Ak : s(i) = s(j)g;

P roj(A;R; k) = fs 2 Ak : 9t 2 R(t � k = s)g:

where t � k denotes the restriction of t to k. De�ne Df(A; n) by recursion on n as

follows:

1. Df(A; n) = ;, if n = 0

2. Df(A; n) = Diag2(A; i; j; k), if n = 2 � 3i � 5j � 7k, where i; j < k

3. Df(A; n) = Diag=(A; i; j; k), if n = 22 � 3i � 5j � 7k, where i; j < k

4. Df(A; n) = Ak r Df(A; i), if n = 23 � 3i � 5j � 7k, where i = 2p � 3q � 5r � 7k for

p = 1; 2; 3; 4; 5 and some q; r, and j = 0

5. Df(A; n) = Df(A; i)\Df(A; j), if n = 24 �3i �5j �7k, where i = 2p �3q �5r �7k; j =

2p
0

� 3q
0

� 5r
0

� 7k for p; p0 = 1; 2; 3; 4; 5 and some q; q0; r; r0

6. Df(A; n) = Proj(A;Df(A; i); k), if n = 25 � 3i � 5j � 7k where i = 2p � 3q � 5r � 7k+1

for p = 1; 2; 3; 4; 5 and some q; r, and j = 0

7. Df(A; n) = ;, if n is not of one of these forms.

A simple induction on n shows that fDf(A; n) : n 2 !g enumerates all relations

on A de�nable by a formula relativized to A. This is possible because, given n, we

can recursively recover both the LST formula 'n and its arity, denoted Ar(n). As

'n involves no parameters of A, the set of formulas is countable.
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At last, we have the following for A 6= ;:

D(A) = fX � A : 9n; k; s; R [n 2 ! ^ k = Ar(n) ^ s 2 Ak�1

^R = Df(A; n) ^X = fx 2 A : s^x 2 Rg]g

where s^x denotes the concatenation of s with x. Our immediate goal is the proof

that D is absolute for L(�), � > ! limit; what we mean by absolute will become clear

in the lemmas to follow. To this end, we begin by establishing the absoluteness of

the Diag2; Diag=; P roj, and Df relations for L(�), � > ! limit.

A formula in which all quanti�ers are bound is called �0. Any formula equivalent

to a �0 formula is absolute for any transitive, well-founded set. Note that each of the

formulas in Lemma 4.1.2 is equivalent to a �0 formula.

Lemma 4.1.3. Let � > ! be limit and A 2 L(�) be such that �(A) = � < �.

1. For all i; j; k 2 !, �(Diag2(A; i; j; k)); �(Diag=(A; i; j; k)) = � + 3.

2. For all relations R on A, if �(R) = �, then �(Proj(A;R; k)) = �.

3. Diag2, Diag=, and Proj are absolute for L(�).

Proof. Let � > ! be limit and A 2 L(�) such that �(A) = �. We prove the �rst claim

for Diag2; the proof for Diag= is similar. Let i; j; k 2 ! with i; j < k. By Lemma

4.1.2, for every s 2 Ak, �(s) = � + 2. Thus,

Diag2(A; i; j; k) = fs 2 Ak : si 2 sjg

= fz 2 L(� + 3) : L(� + 3) j= z : k ! A ^ zi 2 zjg

Hence, �(Diag2(A; i; j; k)) = �+ 3.

For the second claim, let R a relation on A be such that �(R) = � and let k 2 !.

Thus,

Proj(A;R; k) = fs 2 Ak : 9 t 2 R(t � k = s)g

= fz 2 L(�) : L(�) j= z : k ! A ^ 9 y 2 R(y � k = z)g
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So Proj(A;R; k) 2 L(� + 1).

Finally, we prove that Proj is absolute for L(�); the proof is similar for Diag2

and Diag=. First observe that \z 2 Proj(A;R; k)" , z 2 Ak ^ 9 x 2 R(x � k = s),

which is �0. Thus, \z 2 Proj(A;R; k)" is absolute for L(�), as L(�) is transitive.

Now we want to show that for all y; A;R; k 2 L(�),

y = Proj(A;R; k) , L(�) j= y = Proj(A;R; k)

where \y = Proj(A;R; k)" abbreviates 8 z(z 2 y , z 2 Proj(A;R; k)). Let

y; A;R; k 2 L(�). Suppose y = Proj(A;R; k). As universal quanti�cation is down-

ward absolute and as \z 2 Proj(A;R; k)" is absolute for L(�), it follows that

L(�) j= y = Proj(A;R; k). Now suppose L(�) j= y = Proj(A;R; k). We must

show 8 z(z 2 y , z 2 Proj(A;R; k)). Suppose z 2 y. By the transitivity of L(�),

z 2 y 2 L(�). Since L(�) j= y = Proj(A;R; k), we have L(�) j= z 2 Proj(A;R; k),

which is absolute for L(�). Thus, z 2 Proj(A;R; k). Now suppose z 2 Proj(A;R; k).

As R 2 L(�), Proj(A;R; k) 2 L(�); again by the transitivity of L(�), z 2 L(�). Since

L(�) j= y = Proj(A;R; k), we have L(�) j= z 2 y, which is �0 and hence absolute

for L(�). Thus, z 2 y.

The next lemma proves that the Df function is absolute for L(�) for � > ! limit.

Due to the inductive de�nition of Df , \R = Df(A; n)" abbreviates the formula

9 g�(g; R;A; n) where g is a �nite function building up the Df sets such that g(n) =

Df(A; n).

Lemma 4.1.4. For all � > ! limit, A 2 L(�), and n 2 !,

1. if �(A) = �, then �(Df(A; n)) = � + 3, and

2. Df is absolute for L(�)

Proof. Let A 2 L(�) for � > ! limit with �(A) = � for some ! < � < �. We �rst

show by induction on n that Df(A; n) 2 L(� + 4). The case n = 0 is trivial as

Df(A; n) = ;. Suppose now that n > 0 and that for all i < n, Df(A; i) 2 L(� + 4).

Case 1: n = 2 � 3i � 5j � 7k where i; j < n.
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So Df(A; n) = Diag2(A; i; j; k) 2 L(� + 3), by Lemma 4.1.3.

Case 2: n = 22 � 3i � 5j � 7k where i; j < n.

So Df(A; n) = Diag=(A; i; j; k) 2 L(� + 3), by Lemma 4.1.3.

Case 3: n = 23 � 3i � 5j � 7k for j = 0 and some k and where i = 2p � 3q � 5r � 7k for

p = 1; 2; 3; 4; 5 and some q; r.

As i < n, Df(A; i) 2 L(�+3) by the IH. By part 5 of Lemma 4.1.2, Ak 2 L(�+3);

thus, by the �rst part of the same lemma Ak rDf(A; i) = Df(A; n) 2 L(� + 3).

Case 4: n = 24�3i�5j �7k for some k and where i = 2p�3q�5r�7k and j = 2p
0

�3q
0

�5r
0

�7k

for p; p0 = 1; 2; 3; 4; 5 and some q; q0; r; r0.

As i; j < n, Df(A; i); Df(A; j) 2 L(�+ 3) by the IH. By the �rst part of Lemma

4.1.2, Df(A; i) \Df(A; j) = Df(A; n) 2 L(� + 3).

Case 5: n = 25 � 3i � 5j � 7k for j = 0 and some k and where i = 2p � 3q � 5r � 7k+1

for p = 1; 2; 3; 4; 5 and some q; r.

As i < n, Df(A; i) 2 L(�+3) by the IH. Thus, Df(A; n) = Proj(A;Df(A; i); k) 2

L(� + 3) by Lemma 4.1.3.

Case 6: Suppose n is not of the above forms. Then Df(A; n) = ; 2 L(� + 3):

Therefore, Df(A; n) 2 L(� + 3) for every n.

Next, to show the absoluteness of the relation \R = Df(A; n)" for L(�), let

R;A 2 L(�) and let n 2 !. \R = Df(A; n)" abbreviates 9 g �(g; R;A; n) where

�(g; R;A; n) is the formula

g is a function ^ dom g = n+ 1 ^ 8 l 2 dom g[8 i; j; k; p; p0; q; q0; r; r0 2 !

[[(l = 2 � 3i � 5j � 7k ^ i; j < k) ) g(l) = Diag2(A; i; j; k)]

^ [(l = 22 � 3i � 5j � 7k ^ i; j < k) ) g(l) = Diag=(A; i; j; k)]

^ [(l = 23 � 3i � 5j � 7k ^ i = 2p � 3q � 5r � 7k ^ j = 0 ^ 1 � p � 5) ) g(l) = Ak r g(i)]

^ [(l = 24 � 3i � 5j � 7k ^ i = 2p � 3q � 5r � 7k ^ j = 2p
0

� 3q
0

� 5r
0

� 7k ^ 1 � p; p0 � 5)

) g(l) = g(i) \ g(j)]

^ [(l = 25 � 3i � 5j � 7k ^ i = 2p � 3q � 5r � 7k+1 ^ j = 0 ^ 1 � p � 5)

) g(l) = Proj(A; g(i); k)]

^ [(l 6= 2p � 3i � 5j � 7k ^ 1 � p � 5) ) g(l) = ;)]] ^ R = g(n)
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By inspection, � faithfully represents the inductive de�nition of Df . Moreover, �

is absolute for L(�) since it is comprised of subformulas which either are �0 or are

absolute for L(�) by Lemma 4.1.3. First, L(�) j= 9 g �(g; R;A; n) ) 9 g �(g; R;A; n)

is immediate as existential quanti�cation reects upward. Next, suppose g is such

that �(g; R;A; n). As A 2 L(� + 1), Df(A; n) 2 L(� + 4) for every n; so by Lemma

4.1.2 (n;Df(A; n)) 2 L(� + 6) for every n. Thus, g 2 L(� + 7) � L(�). By the

absoluteness of � we have L(�) j= 9 g �(g; R;A; n).

As a consequence of Lemma 4.1.4, we have the following closure property.

Corollary 4.1.5. For � > ! limit, let A;R 2 L(�) be such that �(A); �(R) = �.

Then �(g) = � + 6 where g is from the relation \R = Df(A; n)".

We write \X 2 D(A)" to abbreviate

X � A ^ 9n; k; s; R[n 2 ! ^ k = Ar(n) ^ s 2 Ak�1^

R = Df(A; n) ^ 8 x 2 A(x 2 X , ŝ x 2 R)]

Lemma 4.1.6. \X 2 D(A)" is absolute for L(�) for � > ! limit.

Proof. Let � > ! be limit and let X;A 2 L(�) for some � < �. We want to show

\X 2 D(A)" , L(�) j= \X 2 D(A)".

Suppose that \X 2 D(A)". Thus, X � A and there exist n; k; s; R such that

n 2 !^k = Ar(n)^ s 2 Ak�1^R = Df(A; n)^8 x 2 A(x 2 X , ŝ x 2 R). Replacing

\R = Df(A; n)" with 9 g�(g; R;A; n), let n; k; s; R; g be such that \X 2 D(A)". As

� > !, n; k 2 L(�). Since A 2 L(�), Ak�1 2 L(� + 3) and s 2 L(� + 2) by

Lemma 4.1.2. Lemma 4.1.3 insures that R 2 L(� + 3). Since �(g; R;A; n), we have

g = f(i; Df(A; i)) : i � ng. By Lemma 4.1.4, for all I, Df(A; i) 2 L(� + 3). Thus,

g 2 L(�+6) � L(�). Since each subformula of \X 2 D(A)" is �0, except for � which

is absolute for L(�) by Lemma 4.1.4, we have L(�) j= \X 2 D(A)".

Conversely, suppose L(�) j= \X 2 D(A)". As existential quanti�cation is upward

absolute, X 2 D(A).

32



We can now prove that D is absolute for L(�), � > ! limit. In order to insure the

existence of D(A) for each A, we abbreviate \Y = D(A)" by

8X[X 2 Y ) X 2 D(A)] ^ 8n; k; s[(n 2 ! ^ k = Ar(n) ^ s 2 Ak�1)

) 9R;X[R = Df(A; n) ^ 8x 2 A(x 2 X , ŝ x 2 R) ^X 2 Y ]]

Lemma 4.1.7. For all � > ! limit and A 2 L(�)

1. if �(A) = �, then D(A) 2 L(� + 8), and

2. D is absolute for L(�).

Proof. Let A 2 L(�) for � > ! limit and suppose �(A) = �. Using the de�nition of

D and Corollary 4.1.5 we have

D(A) = fX 2 L(� + 7) :

L(� + 7) j= X � A ^ 9n; k; s; R[n 2 ! ^ k = Ar(n)^

s 2 Ak�1 ^R = Df(A; n) ^ 8 x 2 A(x 2 X , ŝ x 2 R)]g:

Thus, D(A) 2 L(� + 8) � L(�).

In order to show \Y = D(A)" , L(�) j= \Y = D(A)", let Y;A 2 L(�) for some

! < � < �.

Suppose \Y = D(A)". As universal quanti�cation is downward absolute and as

\X 2 D(A)" is absolute for L(�) by Lemma 4.1.6, L(�) j= 8X[X 2 Y ) X 2

D(A)]. For the second conjunction of \Y = D(A)", suppose n; k; s 2 L(�) are

such that L(�) j= n 2 ! ^ k = Ar(n) ^ s 2 Ak�1. As these formulas are �0,

n 2 ! ^ k = Ar(n) ^ s 2 Ak�1. By assumption, Y = D(A). So let g; R;X be such

that �(g; R;A; n) ^ 8 x 2 A(x 2 X , ŝ x 2 R) ^ X 2 Y where � is as in Lemma

4.1.4. As A 2 L(�), Corollary 4.1.5 implies that g 2 L(�). Now R 2
SS

g; by the

transitivity of L(�), R 2 L(�). Similarly, X 2 Y 2 L(�) implies that X 2 L(�).
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Since � is absolute for L(�) by Lemma 4.1.4 and the rest is �0, it follows that

L(�) j= 8n; k; s[(n 2 ! ^ k = Ar(n) ^ s 2 Ak�1)

) 9g;X[�(g) ^ 8x 2 A(x 2 X , ŝ x 2 g(n)) ^X 2 Y ]]

Thus, L(�) j= \Y = D(A)".

Conversely, suppose L(�) j= \Y = D(A)". First, let X 2 Y . Since L(�) is

transitive, X 2 L(�). So by assumption, L(�) j= X 2 D(A). But \X 2 D(A)" is

absolute for L(�). So X 2 D(A), and thus, 8X[X 2 Y ) X 2 D(A)]. For the second

conjunction of Y = D(A), let n; k; s be such that n 2 ! ^ k = Ar(n) ^ s 2 Ak�1. As

� > !, n; k 2 L(�). As A 2 L(�), Lemma 4.1.2 gives s 2 L(�). Since these formulas

are �0, L(�) j= n 2 !^k = Ar(n)^s 2 Ak�1. As existential quanti�cation is upward

absolute and since the following formula is absolute for L(�),

9 g; R;X(�(g; R;A; n) ^ 8x 2 A(x 2 X , ŝ x 2 R) ^X 2 Y )

hence, \Y = D(A)". Therefore, \Y = D(A)" is absolute for L(�).

Consider the map � 7! L(�); we write L � � + 1 = f(�; L(�)) : � � �g. Thus,

\f = L � �+ 1" � � 2 ON^f is a function ^ dom f = � + 1^

8 � 2 dom f [(� = 0 ) f(�) = ;) ^ (� limit ) f(�) =
[
<�

f())^

(� successor ) f(�) = D(f(� � 1)))]

The following proposition is the germ of the proof that � 7! L(�) is absolute for

L(�), � limit.

Proposition 4.1.8. For each � 2 ON, L � � + 1 2 L(� + !).

Proof. By trans�nite induction on �. The case � = 0 follows from L � 1 = f(0; ;)g 2

L(3) � L(� + !). Now suppose � > 0 and that for all � < �, L � � + 1 2 L(� + !).
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If � = � + 1 then L � � + 1 2 L(� + k) for some k 2 !. Since � + 1; L(� + 1) 2

L(� + 2), it follows that f(� + 1; L(� + 1))g 2 L(� + 5). Thus,

L � � + 1 = L � � + 1 [ f(� + 1; L(� + 1))g 2 L(� + k + 5) � L(� + !):

If � is limit, we claim that L � � + 1 2 L(� + 1). It suÆces to show that

[
�<�

L � � + 1 = fz 2 L(�) : L(�) j= 9 �; g(g = L � � + 1 ^ z = (�; g(�)))g

Suppose z 2
S

�<�
L � � + 1. Then for some � < � we have z 2 L � � + 1.

Thus, z = (�; L(�)) 2 L(� + 4) � L(�). By the induction hypothesis, there is

a g 2 L(� + k) � L(�) such that g = L � � + 1 for some k. Now the formula

\g = L � � + 1" is �0, except for the occurrence of the D function. As � is limit, D

is absolute for L(�). Thus, L(�) j= g = L � � + 1, and hence

L(�) j= 9 �; g (g = L � � + 1 ^ z = (�; g(�)))

The reverse inclusion follows from the fact that existential quanti�cation is upward

absolute.

Lemma 4.1.9. For all � > ! limit and � < �, L � � + 1 is absolute for L(�).

Proof. Let � > ! limit and � < �. Letting f = L � � + 1, Proposition 4.1.8 implies

that f 2 L(� + !) � L(�). Moreover, the formula \f = L � � + 1" is �0, except for

the occurrence of the D function, which is absolute for L(�) by Lemma 4.1.7.

Abbreviating 9f [f = L � �+ 1^x 2 f(�)] by \x 2 L(�)" produces the following.

Proposition 4.1.10. \x 2 L(�)" is absolute for L(�), � > ! limit.

Proof. Combine Proposition 4.1.8 and Lemma 4.1.9.

Finally, we reach the goal of this section. Recall that

\V = L" , 8 x(x 2 L) , 8 x 9�(x 2 L(�))
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Theorem 4.1.11. For every limit ordinal � > !, L(�) j= V=L.

Proof. Let x 2 L(�) for some � > ! limit; so x 2 L(�) for some ! < � < �. Letting

f = L � � + 1, it follows that f 2 L(� + !) � L(�) by Proposition 4.1.8. The

absoluteness of \f = L � �+1" for L(�) from Lemma 4.1.9 insures that L(�) j= \f =

L � �+1". As x 2 f(�) is �0 we have L(�) j= 8x9�; f [f = L � �+1^x 2 f(�)].

4.2 Consequences of V=L

In this section, we present a few important consequences of V=L. First, we show

under what circumstances will a set M = L(�) for some � > ! limit. Next, we prove

that there is a parameter-free uniformly L(�)-de�nable well ordering of L(�); hence,

L(�) j= AC. Finally, we de�ne Skolem functions and Skolem hulls and prove some

fundamental absoluteness and de�nability results.

4.2.1 Transitive models of V=L

In this section we show that if M is a transitive set modeling V = L and a �nite frag-

ment of ZFC, then M = L(�) for some limit �. We de�ne 	1 to be the conjunction of

Axioms of Extensionality, In�nity, Pairing, Foundation, and the following sentences:

8x9y[x 2 ON) y = Suc(x)]

8x; n9y[n 2 ! ) y = xn]

8x9y[y = D(x)]

It should be clear that for all � > ! limit, L(�) j= 	1.

Let M be any set. We de�ne the ordinal of M , denoted o(M), to be the least

ordinal not in M . Given � 2 ON we denote the successor of � by Suc(�).

Proposition 4.2.1. For all transitive M such that M j= V=L ^ 	1,

1. o(M) > ! is limit,

2. D is absolute for M , and
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3. M = L(o(M)).

Proof. Let M be a transitive set modeling V=L and 	1. That M is well-founded

follows from M j= Foundation. M j= Infinity ^ 8x9y[x 2 ON ) y = Suc(x)]

implies that o(M) > ! is limit. Also, the transitivity of M implies that any �0

formula is absolute for M ; hence, all of the de�ned functions in Lemma 4.1.2 are

absolute for M .

To show D is absolute for M , let A 2 M . Since M j= 8x9y[y = D(x)], let

Y 2 M be such that M j= Y = D(A); we show that Y = D(A). For the de�nition

of \Y = D(A)", see the comments immediately preceding Lemma 4.1.7. For the �rst

conjunction, suppose X 2 Y . As M is transitive, Y 2 M implies that X 2 M .

This is �0, thus M j= X 2 Y . By assumption, M j= X 2 D(A). We claim that

\X 2 D(A)" is absolute for M ; the argument is similar to the proof of Lemma 4.1.6

To see this, we �rst observe that since M j= 8 x; n9 y[n 2 ! ) y = xn], then for all

n, Df(A; n) 2 M . Since M j= Pairing, the function g from the inductive de�nition

of \R = Df(A; n)" is also in M . The rest follows from the fact that all of the

subformulas in \X 2 D(A)" are �0. Thus, X 2 D(A). For the second conjunction,

let n; k; s be such that n 2 ! ^ k = Ar(n) ^ s 2 Ak�1. As o(M) > !, it follows that

n; k 2 M . Since M j= 8 x; n9 y[n 2 ! ) y = xn], it follows that s 2 M . Moreover,

M j= n 2 ! ^ k = Ar(n) ^ s 2 Ak�1, since this formula is absolute for M . So by

assumption, 9 g; R;X 2 M [�(g; R;A; n) ^ 8 x 2 A[x 2 X , ŝ x 2 R] ^X 2 Y ]. As

� is absolute for M and the rest is �0, it follows that Y = D(A). Similar arguments

show that

Y = D(A) )M j= Y = D(A)

Finally, we show M = L(o(M)). Let o(M) = � for some � > ! limit.

Suppose x 2 M . By assumption, M j= V=L. So let �; f 2 M be such that

M j= f = L � �+ 1^ x 2 f(�). The formula \f = L � �+ 1" is �0, except for the D

function, which we proved is absolute for M . Thus, as M is transitive, \f = L � �+1"

is absolute for M . So f = L � �+ 1 and x 2 f(�). As � 2M it must be that � < �.

Thus, � 2 L(� + 1) � L(�). By Proposition 4.1.8 f 2 L(� + !) � L(�). Hence

x 2 f(�) implies x 2 L(�). Therefore, M � L(�).
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Suppose x 2 L(�). As � > ! is limit, Theorem 4.1.11 gives L(�) j= V=L. So let

�; f 2 L(�) be such that L(�) j= f = L � � + 1 ^ x 2 f(�). Since � < � = o(M),

it follows that � 2 M . By assumption, M j= V=L. So let �; g 2 M be such that

M j= g = L � � + 1^ � 2 g(�). Now � 2 g(�) implies that � � �. We claim that for

all  � �, f() = g() (by induction on ). For  = 0 this is immediate. Suppose

that for all Æ < , f(Æ) = g(Æ). If  is a limit ordinal, then

f() =
[
Æ<

f(Æ) =
[
Æ<

g(Æ) = g():

If  is a successor, it follows that

f() = D(f( � 1)) = D(g( � 1)) = DM(g( � 1)) = g()

as the D function is absolute for M . Thus, f() = g() for all  � �. Consequently,

x 2 f(�) = g(�). Moreover, � � � implies g(�) � g(�). Thus, x 2 g(�) 2 M .

Therefore, L(�) �M and we are done.

4.2.2 AC in L

Another consequence of L(�) j= V = L is a uniformly de�nable well-ordering of L(�)

for � > ! limit. To improve the readability of the formula de�ning this well-order,

we make the following abbreviations and notations.

Concerning the numbering of formulas, it should be clear from our de�nition of

the Df function in Section 4.1 that for every formula '(x0; x1; : : : ; xk�1), there is a

canonical n such that fs 2 Ak : 'A(s0; s1; : : : ; sk�1)g = Df(A; n). As a result, we

write 'n to denote the nth formula in this enumeration. Moreover, this enumeration

is primitive in the sense that if 'm is a subformula of 'n, then m < n. Finally, recall

that the Ar function recovers the arity of the free variables of 'n.

Given x 2 L, recall that �(x) denotes the rank of x; that is, \� = �(x)" , � 2

ON^ x =2 L(�)^ x 2 L(�+ 1). For x 2 L(�+ 1), let n(x) be the least n such that x

is de�nable from the nth formula for some parameter s 2 L(�)k�1 where k = Ar(n).
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Formally, \m = n(x)" if, and only if

m 2 ! ^ 9�[� = �(x)

^ 9 s 2 L(�)Ar(m)�1(x = fz 2 L(�) : 'L(�)
m

(z; s0; : : : ; sAr(m)�1)g)

^ 8 l < m8 s 2 L(�)Ar(l)�1(x 6= fz 2 L(�) : '
L(�)

l
(z; s0; : : : ; sAr(l)�1)g)]:

Given x 2 L(�), let Ar(n(x)) � 1 = ax; let �(x; y; j; f; �) be the formula x � j = y �

j^(x(j); y(j)) 2 f(��1). These are �0 and hence absolute for L(�). Since \x 2 L(�)"

and the satisfaction relation are absolute for L(�), the formulas \� = �(x)" and

\m = n(x)" are absolute for L(�).

We �x a formula � of two free variables. �(x; y) , 9 f; � ��(x; y; f; �) where

��(x; y; f; �) is the formula :

f is a function ^ � 2 ON ^ dom f = � + 1 ^ f(0) = ;^

8� 2 dom f

[(� limit ^ � > 0) ) f(�) =
[
Æ<�

f(Æ)^

� successor ) f(�) = f(x; y) 2 L(�)� L(�) :

(x; y) 2 f(� � 1) _ (x 2 L(� � 1) ^ y =2 L(� � 1))_

(x; y =2 L(� � 1) ^ n(x) < n(y))_

(x; y =2 L(� � 1) ^ n(x) = n(y) ^

9s; t 2 L(� � 1)ax

[x = fz 2 L(� � 1) : '
L(��1)

n(x)
(z; s)g^

8r 2 L(� � 1)ax8j < ax

[�(r; s; j; f; �) ! x 6= fz 2 L(� � 1) : '
L(��1)

n(x)
(z; r)g] ^

y = fz 2 L(� � 1) : '
L(��1)

n(y)
(z; t)g^

8r 2 L(� � 1)ay8j < ay

[�(r; t; j; f; �) ! y 6= fz 2 L(� � 1) : '
L(��1)

n(y)
(z; r)g] ^

9j < ax(�(s; t; j; f; �))])g] ^ (x; y) 2 f(�)
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Proposition 4.2.2. The relation �(x; y) uniformly de�nes a well order �L(�) of L(�)

for � > ! limit.

Proof. Let � > ! be limit. � induces a well-order �L(�) of L(�) in the following way.

Given two elements of L(�), �rst compare by rank using the usual well-order of the

ordinals. If they have the same rank, then compare by formula using the canonical

enumeration of formulas and the usual well-order on the integers. If two sets of the

same rank are de�nable by the same formula, then compare the set of parameters

de�ning each set using the lexicographic order on the set of k-tuples. This ordering is

necessarily a linear order such that every nonempty subset of L(�) has a �L(�)-least

element. It remains verify the absoluteness of � for L(�).

Let x; y 2 L(�). From Corollary 4.1.5 and Proposition 4.1.10, we have the ab-

soluteness for L(�) of the forumlas \R 2 Df(A; n)" and \x 2 L(�)". It follows

that ��(x; y; f; �) is absolute for L(�). Thus, �L(�)(x; y) ) �(x; y) is immediate, as

existential quanti�cation is upward absolute.

Now suppose �(x; y). Let f; � be such that ��(x; y; f; �). Without loss of generality

we assume that � < �. (If � > �, then let �0 = maxf�(x); �(y)g + 1 so that �0 < �.

Thus, ��(x; y; f 0; �0) follows by taking f 0 = f � �0.) Since � 2 L(� + 1) � L(�)

it remains to show that f 2 L(�). Reasoning similarly as in Proposition 4.1.8,

it should be clear that f 2 L(� + !). As �� is absolute for L(�), it follows that

L(�) j= �(x; y).

Hereafter, when we write �L(�) we mean the L(�)-de�nable well order of L(�)

induced by �. As all of L can be well ordered by �, we can now complete Theorem

4.1.1.

Theorem 4.2.3. L j= ZFC

4.2.3 Skolem functions and Skolem hulls

Given formula 'n(v1; : : : ; vk) with free variables among v1; : : : ; vk, a Skolem function

for 'n over A is a function f : Ak ! A such that
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1. if 'n is 9 u'i(u; v1; : : : ; vk) and there is y 2 A such that 'i(y; x1; : : : ; xk), then

f(x1; : : : ; xk) is the �A-least such y, or

2. if 'n is 9 u'i(u; v1; : : : ; vk) and there is not y 2 A such that 'i(y; x1; : : : ; xk),

then f(x1; : : : ; xk) = ;, or

3. if 'n is not of the form 9 u'i(u; v1; : : : ; vk) or if k = 0, then

f(x1; : : : ; xk) = ;.

Recall from Section 4.1 that Proj codes the existential formulas. That is, Df(A; n) =

Proj(A;Df(A; i); k), if n = 25 � 3i � 5j � 7k where i = 2p � 3q � 5r � 7k+1 for p = 1; 2; 3; 4; 5

and some q; r, and j = 0. So we have \fn(x1; : : : ; xk) = y" , �(n; x1; : : : ; xk; y)

where � abbreviates the formula

9 i; j; k; p; q; r 2 !

[(n = 25 � 3i � 5j � 7k ^ i = 2p � 3q � 5r � 7k+1 ^ j = 0 ^ k > 0 ^ p < 6)^

(('i(x1; : : : ; xk; y) ^ 8 z[�(z; y) ) :'i(x1; : : : ; xk; z)])_

8 z(:'i(x1; : : : ; xk; z) ^ y = ;))]_

:9 i; j; k; p; q; r 2 !

[(n = 25 � 3i � 5j � 7k ^ i = 2p � 3q � 5r � 7k+1 ^ j = 0 ^ k � 0 ^ p < 6)

^ y = ;]

As � is L(�)-de�nable for � > ! limit and since the satisfaction relation is absolute

for L(�), the relation \fn(x1; : : : ; xk) = y" is L(�)-de�nable. Furthermore, any �nite

set of Skolem functions f1; : : : ; fN is L(�)-de�nable.
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Suppose N 2 ! and f1; : : : ; fN are the Skolem functions for A corresponding to

the formulas '1; : : : ; 'N . Consider the following subset H � A :

H0 = !

Hl+1 = Hl [

 
N[
i=1

ffi(x1; : : : ; xki) : x1; : : : ; xki 2 Hlg

!

H =
[
l2!

Hl

H is the Skolem hull of ! inside A under f1; : : : ; fN . It should be clear that the

formulas '1; : : : ; 'N corresponding to the Skolem functions f1; : : : ; fN are absolute

for H;A. This is critical since a hull H need not be transitive so that even �0

formulas are not absolute for H;A. As we can close H under f1; : : : ; fN for any N ,

by choosing N large enough, we can make any �nite number of formulas absolute for

H;A. Note that given an LST-formula ', we write p'q to denote the G�odel number

of ' according to our enumeration given by the Df function on page 28.

Lemma 4.2.4. Let � > ! be a limit ordinal. Suppose H the Skolem hull of !

inside L(�) under f1; : : : ; fN where N > pV = L ^ 	1q. Then, for 1 � n � N ,

\fn(x1; : : : ; xk) = y" is absolute for H;L(�).

Proof. Let �;N;H, and n be as above and let x1; : : : ; xk; y 2 H where k = Ar(n).

In order to show H j= �(n; x1; : : : ; xk; y) , L(�) j= �(n; x1; : : : ; xk; y) we concentrate

on that part of �, denoted here by  (i; x1; : : : ; xk; y),

('i(x1; : : : ; xk; y) ^ 8 z[�(z; y) ) :'i(x1; : : : ; xk; z)])_

8 z[:'i(x1; : : : ; xk; z) ^ y = ;]

as the absoluteness of the rest of � easily follows.

First suppose H j=  (i; x1; : : : ; xk; y) where i < n. In order to show that L(�)

models the �rst half of the disjunction, observe �rst that 'i is absolute for H;L(�)

since H is closed under the ith Skolem function. Thus, '
L(�)

i
(x1; : : : ; xk; y). Now

suppose z 2 L(�) is such that �L(�)(z; y). If z 2 H, then �H(z; y) as � is absolute
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for H;L(�). Thus, by assumption :'H
i

(x1; : : : ; xk; z), hence :'
L(�)

i
(x1; : : : ; xk; z).

So suppose z =2 H and suppose for contradiction that '
L(�)
i

(x1; : : : ; xk; z). Now,

�L(�)(z; y) implies that y must not be the �L(�)-least element of L(�) such that

'
L(�)
i

(x1; : : : ; xk; z0): Let z0 2 L(�) be �L(�)-least such that '
L(�)
i

(x1; : : : ; xk; z0): Since

H is closed under the ith Skolem function, z0 2 H, and hence,

H j= 'i(x1; : : : ; xk; z0) ^ 8 z[�(z; z0) ) :'i(x1; : : : ; xk; z)]

contradicting the hypothesis H j=  (i; x1; : : : ; xk; y). Thus, :'
L(�)

i
(x1; : : : ; xk; z).

For the second part of the disjunction, suppose that z 2 L(�) is such that

'
L(�)

i
(x1; : : : ; xk; y). So 'H

i
(x1; : : : ; xk; y) follows by the absoluteness of 'i for H;L(�).

As ; 2 H, \y = ;" is absolute for H;L(�); hence, L(�) j= 8 z[:'i(x1; : : : ; xk; z)^ y =

;]. So H j=  (i; x1; : : : ; xk; y) ) L(�) j=  (i; x1; : : : ; xk; y).

L(�) j=  (i; x1; : : : ; xk; y) ) H j=  (i; x1; : : : ; xk; y) follows from H � L(�) and

since universal quanti�cation is upward absolute.

Next, we show there is an L(�)-de�nable surjection F : ! ! H. Let (n1; : : : ; nk)

be a �nite sequence of integers and let fpkgk2! be the usual enumeration of the primes.

We say that the code of (n1; : : : ; nk) is

hn1; : : : ; nki = 2n1+1 � 3n2+1 � � � � � pnk+1
k

It is clear that the coding function h�i : !<k ! ! is injective. Furthermore, h�i is a

recursive function as is the decoding function that maps a k-tuple to its code. Thus,

we will use h�i freely in future formulas with the understanding that it can be replaced

by a formula that is absolute for L(�), � > ! limit.
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De�ne F : ! ! H recursively as follows:

F (n) =

8>>>>>><
>>>>>>:

c if n = h0; ci;

fi(x1; : : : ; xki) if n = hl + 1; i; c1; : : : ; ckii for 1 � i � N and

for each 1 � j � ki, xj = F (cj) for xj 2 Hl;

; if n is not one of the above forms.

Clearly, F is surjective. Moreover, \F (n) = x" is L(�)-de�nable as a relation by the

formula �(n; x):

9 g[g is a function ^ dom g = n + 1

8m � n[8 l; c � n[(l = 0 ^m = hl; ci) ) g(m) = c]^

8 l; i; c1; : : : ; cki � n; 8 x1; : : : ; xki

[(l > 0 ^ 8 j [1 � j � ki ) g(cj) = xj]

^m = hl; i; c1; : : : ; cki) ) �(i; x1; : : : ; xki; g(m))]^

8 l; i; c1; : : : ; cki � n; 8 x1; : : : ; xki

[((l > 0 ^ 9 j [1 � j � ki ^ g(cj) 6= xj] ^m = hl; i; c1; : : : ; cki)

_ (l > 0 ^m = hl; ii) _m = hli _m = 0; 1) ) g(m) = ;]

^ g(n) = x]

where � is as in Lemma 4.2.4. We claim that \F (n) = x" is absolute for H, L(�).

Upon examination �(n; x), we see that we need to close the hull under the Skolem

functions corresponding to the formulas insuring that the following are absolute for

H;L(�): ordered pairing; given an ordered pair (z0; z1), each coordinate z0; z1 exists;

and given a �nite function g, every image g(n) exists. De�ne 	2 to be the conjunction

of 	1 and the sentences that insure the absoluteness of the above formulas.

Lemma 4.2.5. Let � > ! be a limit ordinal. Suppose H is the Skolem hull of ! inside

L(�) under f1; : : : ; fN where N > pV = L ^ 	2q. Then, for 1 � n � N , �(n; x) is

absolute for H;L(�).
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Proof. Similar to Lemma 4.1.4. Let � be limit. The absoluteness of � for H;L(�)

follows from the absoluteness of � for H;L(�) from Lemma 4.2.4.

4.3 The theory of L(�)

A structure (in the language of set theory) is an ordered pair (A;E) such that A is

a nonempty set and E is a binary relation on A. For a structure (A;E), the theory

of (A;E) is the set of all sentences that are true in (A;E); that is, Th(A;E) = fn 2

! : (A;E) j= 'ng. When E is understood, we simply write Th(A). We show in this

section that if x 2 !! \ L is such that �(x) = �, then Th(L(�+ !)) 2 L(�+ ! + 2).

Suppose x 2 !! \ L, �(x) = �. A priori, x may have parameters, that is in�nite

ordinals, �guring in its de�nition. Our �rst two lemmas of this section shows that we

can eliminate the parameters. Note that we write Lim(�) to abbreviate the formula

\� is a limit ordinal."

Lemma 4.3.1. Let � = �+! and let �0 be the largest limit ordinal less than �. Then,

1. for all l 2 !, �0 + l is L(�)- de�nable without parameters, and

2. for all y 2 L(�) and l 2 !, if y is L(�0 + l)-de�nable without parameters, then

y is L(�)-de�nable without parameters.

Proof. We prove the �rst claim by induction on l. For l = 0, consider '(�) �

Lim (�) ^ 8�[Lim (�) ) (� � �)] Clearly, '(�) is parameter-free and L(�) j= '(�0).

Suppose now that the result holds for �0 + l; let  (�) be the parameter-free formula

such that L(�) j=  (�0 + l). Consider '(�) � 9 �[ (�) ^ � = � + 1]: Clearly, ' is

parameter-free and L(�) j= '(�0 + l + 1).

For the second claim, let  (�) be the parameter-free formula de�ning �0 + l over

L(�). De�ne a new formula �'(z; �) to be the formula '(z) having all unbound

quanti�ers bound by L(�). Then, it is clear that

y = fz 2 L(�) : L(�) j= 9�[ (�) ^ \z 2 L(�)" ^ �'(z; �)]g

as \z 2 L(�)" is absolute for L(�) by Proposition 4.1.10.
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Lemma 4.3.2. Suppose x 2 !!\L is such that x 2 L(�+1)rL(�) and let � = �+!.

Then there is a parameter-free L(�)-de�nable y 2 !! \ L such that y =2 L(�).

Proof. Let x; �; � be as above. De�ne S � L(�) as follows:

S = f(n; b1; : : : ; bk) : n 2 !^ b1; : : : ; bk 2 L(�)^fz 2 ! : 'L(�)
n

(z; b1; : : : ; bk)g =2 L(�)g

As x witnesses that S 6= ;, let ~a = (n; a1; : : : ; ak) be the �L(�)-least element of S.

We claim that for some l 2 !, y = fz 2 ! : '
L(�)
n (z; a1; : : : ; ak)g =2 L(�) is L(� + l)-

de�nable; thus, by Lemma 4.3.1, y is L(�)-de�nable without parameters, and we are

done.

To prove the claim, let �(�) be the parameter-free formula from Lemma 4.3.1 de�n-

ing � over L(�). Let  (�;~b; v) be the formula 8m 2 ![m 2 v , '
L(�)
n (m; b1; : : : ; bk)].

Let �(z) be the formula

9 �;~b; v[�(�) ^ 'L(�)
n

(z; b1; : : : ; bk) ^  (�;~b; v) ^ v =2 L(�)^

8~c; w[(�(~c;~b) ^  (�;~c; w)) ) w 2 L(�)]]

where � is as in Proposition 4.2.2. Recall that \v 2 L(�)" abbreviates the formula

9f [f = L � � + 1 ^ v 2 f(�)]. The formula \�(~c;~b)" abbreviates a similar exis-

tential formula (see Section 4.2). Next, recall that '
L(�)

b0
(z; b1; : : : ; bn) � 9R[R =

Df(L(�); b0) ^ b1^ � � � b̂n ẑ 2 R]. Recall that the absoluteness of these formulas for

L(�) required going up a �nite number of levels beyond L(�). Thus, for some k 2 !,

y = fz 2 ! : L(� + k) j= �(z)g.

Hereafter, � is used to designate the parameter-free real y from Lemma 4.3.2 so

that y = fn 2 ! : L(�) j= �(n)g. Clearly, y is di�erent for each �.

In order to achieve our goal Th(L(�)) 2 L(�+ 2), we need an L(�)-de�nable map

from ! onto L(�), � < !1. From the previous section, we have � de�ning a surjection

of ! onto a Skolem hull H so it might seem natural to use Proposition 4.2.1 to get

H = L(�), except that H need not be transitive. Yet this is easily remedied by
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the Mostowski Collapsing Lemma. Briey put, the Lemma states that every well-

founded extensional structure is isomorphic to a unique 2-structure. Moreover, the

isomorphism is unique. Once we close H under a suÆcient number of functions, we

collapse H to a transitive M . To insure M = L(�), we de�ne 	3 to be the conjunction

of 	2 and 9 z8n 2 ![n 2 z , �(n)] where � is as in Lemma 4.3.2.

Proposition 4.3.3. Suppose x 2 !! \ L is such that x 2 L(� + 1) r L(�) and

let � = � + !. Let H be the Skolem hull of ! inside L(�) under f1; : : : ; fN where

N > pV = L ^ 	3q and let M be the transitive collapse of H. Then, M = L(�).

Proof. Let x; �; �;H;N;M be as above. Let y = fn 2 ! : �L(�)(n)g be such that

y 2 L(�)r L(�) as in Lemma 4.3.2. We observe that as H �= M , every formula that

is absolute for H;L(�) is also absolute for M;L(�). As M j= V = L ^ 	1, it follows

from Proposition 4.2.1 that M = L(�) for some limit �. Clearly, � � � as H � L(�).

By the absoluteness of � for M;L(�), it follows that y 2 M . As y =2 L(�), we have

� � �. If � is a successor, then � limit implies � + ! = � � �. If � is limit, then

� + 1 � � and thus � + ! � �.

Corollary 4.3.4. Suppose x 2 !! \ L is such that x 2 L(� + 1) r L(�) and let

� = � + !. Then, there is an L(�)-de�nable surjection G : ! ! L(�).

Proof. Use the formula �(n; x).

Theorem 4.3.5. Suppose x 2 !! \ L is such that x 2 L(� + 1) r L(�) and let

� = � + !. Then Th(L(�)) 2 L(�+ 2).

Proof. Let x; �; � be as above. By de�nition, Th(L(�)) = fn 2 ! : L(�) j= 'ng.

Rather than explicitly writing the formula that de�nes Th(L(�)) over L(� + 1), we

observe that by using the L(�)-de�nable map G : ! ! L(�), we can refer to any set

in L(�) by its code. So even though the satisfaction relation over L(�) amounts to a

formula involving the Df function and other sets in L(�), we can replace each such

reference by an integer. Thus, each n 2 ! such that L(�) j= 'n is de�nable over L(�),

and hence Th(L(�)) is de�nable over L(�+ 1). Hence, Th(L(�)) 2 L(�+ 2).
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4.4 A non-determined �1
1 set

We conclude this chapter with our construction of a �1
1 set of Turing degrees which

neither contains nor omits a cone. Readers familiar with e�ective descriptive set

theory will recognize this set as being �1
1. In the �rst part of this �nal section, we

give a brief sketch of the rudiments of e�ective descriptive set theory (see [Mar77]

or [Mos80] for details) in order to motivate this change from boldface to lightface

notation. We then de�ne our set of reals which codes the theories of structures that

ful�ll the conditions of Theorem 4.3.5 and proceed to prove that this set is �1
1. This

set of reals gives rise to a set of degrees which we prove neither contains or omits a

cone, and thus, by Martin's theorem, this set must be non-determined.

Recall from Sections 2.2 and 2.3 the Borel and projective hierarchies. Because

they are topological in nature, these hierarchies constitute the domain of classical

descriptive set theory; for uncountable Polish spaces, the classical results are rich

and deep. Yet when de�ned on the countable Polish space !, the Borel and projective

hierarchies collapse as every subset of ! is open. By replacing the topological notion

of open set with that of a semirecursive set, a nontrivial Borel and projective hierarchy

that retains much of the classical character emerges. Descriptive set theory on ! from

this approach is generally referred to as e�ective descriptive set theory. De�ning

the relationship between classical and e�ective descriptive set theory requires a brief

sketch of recursion theory.

Though the de�nitions of recursive and semirecursive functions can be rigorously

developed (see [End77] and [Sho67]), we omit these rudiments for the sake of pro-

ceeding directly to the main result and approach these de�nitions intuitively. A

function F : !k ! ! is semirecursive if there is an algorithm such that given

(n1; : : : ; nk) 2 !k, the algorithm eventually halts and produces F (n1; : : : ; nk) ,

(n1; : : : ; nk) 2 dom F. A relation R is semirecursive if there is an algorithm which

when applied to the inputs (n1; : : : ; nk) gives an output i� R(n1; : : : ; nk); that is,

the algorithm will eventually produce a 'yes' or 1 i� (n1; : : : ; nk) 2 R. A function

F : !k ! ! is recursive if there is an algorithm which accepts (n1; : : : ; nk) 2 dom F

48



as input and eventually produces F (n1; : : : ; nk). In other words, a function is recur-

sive if its graph is semirecursive. A relation R � !k is recursive i� its characteristic

function is recursive; that is, given (n1; : : : ; nk) 2 !k, the algorithm produces a 'yes'

or 1 i� R(n1; : : : ; nk) and a 'no' or 0 i� :R(n1; : : : ; nk).

A relation P is arithmetical if it has an explicit de�nition

P (x) , Q1x1 : : : QnxnR(x; x1; : : : ; xn)

where R is a recursive relation and each Qixi is an existential or universal integer

quanti�er. Blocks of like quanti�ers can be contracted so that the Qixi's can be

considered alternating from 9 to 8. For n � 1, an arithmetical relation is �0
n

(resp.

�0
n
) if, and only if its explicit de�nition has n integer quanti�ers, the �rst being

existential (resp. universal). If a relation P is both �0
n

and �0
n
, P is said to be �0

n
.

So the recursive relations are precisely the �0
1 relations. Closure properties of the

arithmetical pointclasses are listed in the following theorem, stated without proof.

Theorem 4.4.1. 1. If P is �0
m

or �0
m
, then P is �0

n
and �0

n
for all n > m.

2. If P is �0
n
(or resp. �0

n
), then :P is �0

n
(or resp. �0

n
).

3. For each n � 1, both �0
n
and �0

n
are closed under recursive substitution, union,

intersection, and bounded existential or universal integer quanti�cation.

4. For each n � 1, �0
n
is closed under existential integer quanti�cation.

5. For each n � 1, �0
n
is closed under universal integer quanti�cation.

6. For each n � 1, there is P 2 �0
n
such that P =2 �0

n
and there is P 2 �0

n
such

that P =2 �0
n
.

The upshot of Theorem 4.4.1 is that the �nite levels of Borel hierarchy illustration

from Section 2.2 correspond to the arithmetical hierarchy; the boldface notation is

simply changed to lightface. (We will have more to say later about the direct rela-

tionship between boldface and lightface notation.) Also, just as the Borel hierarchy

extends well beyond the �nite levels by taking unions at limit stages, the arithmetical
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hierarchy is extended by the hyperarithmetical hierarchy. Though we will encounter

these sets in the results to follow, we will develop only the theory germane to our

result.

Replacing the integer quanti�ers with real number quanti�ers yields the lightface

version of the projective hierarchy, the analytical hierarchy. A relation P is analytical

if it has an explicit de�nition

P (x) , Q1x1 : : : QnxnR(x; x1; : : : ; xn)

where R is a recursive relation and each Qixi is an existential or universal real number

quanti�er. Blocks of like quanti�ers can be contracted so that the Qixi's can be

considered alternating from 9 to 8. For n � 1, a analytical relation is �1
n

(resp. �1
n
)

i� its explicit de�nition has n real number quanti�ers, the �rst being existential (resp.

universal). If a relation P is both �1
n

and �1
n
, P is said to be �1

n
. Closure properties

of the analytical pointclasses are listed in the following theorem, stated without proof.

Theorem 4.4.2. 1. If P is �1
m

or �1
m
, then P is �1

n
and �1

n
for all n > m.

2. If P is �1
n
(or resp. �1

n
), then :P is �1

n
(or resp. �1

n
).

3. For each n � 1, both �1
n
and �1

n
are closed under recursive substitution, union,

intersection, and existential or universal integer quanti�cation.

4. For each n � 1, �1
n
is closed under existential real number quanti�cation.

5. For each n � 1, �1
n
is closed under universal real number quanti�cation.

6. For each n � 1, there is P 2 �1
n
such that P =2 �1

n
and there is P 2 �1

n
such

that P =2 �1
n
.

The upshot of Theorem 4.4.2 is that the Projective hierarchy illustration from

Section 2.3 corresponds to the analytical hierarchy; the boldface notation is simply

changed to lightface.

To complete our comments about e�ective descriptive set theory, we have the fol-

lowing de�nition. Given a lightface pointclass � and a real z 2 !!, the relativization
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�(z) of � to z is the pointclass containing all � sets computable using z as an oracle.

That is, the algorithm has z sitting on a tape and can reference it �nitely many times

for any calculation. With this in hand, we can �nally state the relationship between

the lightface and boldface hierarchies: for any pointclass �,

� =
[
z2N

�(z)

In the spirit of the pointclass hierarchies we have de�ned, a similar hierarchy can

be de�ned for the formulas in the language of set theory. Let ' be a formula in

LST. Then ' is �0 (or equivalently, �0 or �0) if it does not contain any unbounded

quanti�ers. That is, every quanti�er in ' is of the form 9 x 2 y or 8 x 2 y. For each

n � 0, ' is �n+1 if ' is of the form 9 x (x) for some �n formula  . For each n � 0,

' is �n+1 if ' is of the form 8 x (x) for some �n formula  . For each n � 0, '

is �n+1 if ' is both �n+1 and �n+1. Closure properties for each of these collections

of formulas are similar to those of the arithmetical hierarchy; we refer the reader to

Theorem 4.4.1 for details.

Let (!;E) be a structure. We code (!;E) by a real x 2 2! in the following way:

x(k) =

8<
:1; if k = hn;mi and nEm;

0; otherwise.

We will often refer to a structure and its code interchangeably. For this reason, we

write (!;E) = (!;Ex) where x is the real coding (!;E). For a structure (!;Ex), the

following lemma details the relationship between the arithmetical hierarchy and the

formula hierarchy.

Lemma 4.4.3. If '(y1; : : : ; yk) is a �n (resp. �n) formula and n1; : : : ; nk 2 !, then

fx 2 2! : (!;Ex) j= '(n1; : : : ; nk)g 2 �0
n
(resp. �0

n
)

Proof. By induction on the complexity of '.
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If '(y1; y2) is an atomic formula, then for n;m 2 !,

fx 2 2! : (!;Ex) j= '(n;m)g = fx 2 2! : nExmg

= fx 2 2! : x(hn;mi) = 1g 2 �0
1:

Now suppose '(y1; : : : ; yk) is a �n+1 formula and that n1; : : : ; nk 2 !. Also,

suppose that for every �n(�n) formula  (y1; : : : ; yk) and all n1; : : : ; nk 2 !,

fx 2 2! : (!;Ex) j=  (n1; : : : ; nk)g 2 �0
n
(�0

n
):

Case 1: '(y1; : : : ; yk) is of the form  (y1; : : : ; yk) ^ �(y1; : : : ; yk)

Then fx 2 2! : (!;Ex) j= '(n1; : : : ; nk)g =

fx 2 2! : (!;Ex) j=  (n1; : : : ; nk)g \ fx 2 2! : (!;Ex) j= �(n1; : : : ; nk)g

which is �0
n+1(�

0
n+1) since it is the intersection of two �0

n+1(�
0
n+1) sets.

Case 2: '(y1; : : : ; yk) is of the form : (y1; : : : ; yk)

Then fx 2 2! : (!;Ex) j= '(n1; : : : ; nk)g =

2! r fx 2 2! : (!;Ex) j=  (n1; : : : ; nk)g

which is �0
n
(�0

n
) � �0

n+1(�
0
n+1) since it is the complement of a �0

n
(�0

n
) set.

Case 3: '(y1; : : : ; yk) is of the form 9y0 2 !  (y0; y1; : : : ; yk)

Then fx 2 2! : (!;Ex) j= '(n1; : : : ; nk)g =

fx 2 2! : (!;Ex) j= 9n0 2 !  (n0; n1; : : : ; nk)g =

fx 2 2! : 9n0 2 ![(!;Ex) j=  (n0; n1; : : : ; nk)]g:

which is �0
n+1(�

0
n+1) by de�nition.

A structure (A;E) is well-founded if there are no in�nite descending E-chains.
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For a structure (A;E) we de�ne the �rst order de�nable over (A;E) sets by

FODO(A;E) = fx � A : 9n 2 !8 y 2 A(y 2 x, (A;E) j= 'n(y))g:

Let (A0; E0) be the following �xed structure: A0 = fn 2 ! : n is oddg, E0 is a

recursive relation and (A0; E0) �= (V (!);2) by some �xed isomorphism so that each

odd integer codes a hereditarily �nite set. Moreover, there is a recursive procedure

so that given any n 2 A0, we can recover the formula de�ning that element of V (!).

To distinguish between an actual integer (ie: an odd integer coding an element of !)

and an integer as an element of the structure, we use the symbol �n to denote the code

of that element of A0 which is satis�ed in (A0; E0) to be the integer n.

Given a structure (!;Ex), we code its theory Th(!;Ex) by a real y 2 2! as follows:

y(k) =

8<
:1; if (!;Ex) j= 'k;

0; otherwise.

We will not distinguish between Th(!;Ex) and its code y, unless absolutely necessary.

Fix an integer N > pV = L^	3q (see Prop. 4.3.3) and de�ne T � 2! as follows:

y 2 T , 9 x 2 2! [x codes a structure (!;Ex) ^ y = Th(!;Ex)

^ (!;Ex) j= '1; : : : ; 'N ^ Ex � A0 = E0

^ 8n 2 ! r A0 9 i 2 ![n = 2i ^ n is the unique element of (!;Ex)

such that (!;Ex) j= 'i(n) ^ i is the least such that (!;Ex) j= 'i(n)]

^ y 2 FODO(FODO(!;Ex);2) ^ (!;Ex) is well-founded]

We will show that all of the formulas inside the quanti�er, except for the well-

foundedness condition which is �1
1, de�ne relatively simple (�0

!
) sets. But the real

number quanti�er 9x 2 2! seems to make T 2 �1
2. Our �rst lemma shows that the

real quanti�er 9 x 2 2! can be replaced by an existential integer quanti�er.

Lemma 4.4.4. For all y 2 T , if x is such that y = Th(!;Ex), then x �T y.
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Proof. Let y 2 T and let x 2 2! be such that y = Th(!;Ex). We seek a recursive f

such that for all k 2 !, f(k; y) = x(k).

Let k 2 !. If there do not exist n;m 2 ! such that k = hn;mi, then f(k; y) = 0.

Now suppose n;m 2 ! are such that k = hn;mi. Note that given ' in LST, we let

p'q denote the G�odel number of '.

Case 1: n = 2i + 1 and m = 2j + 1 for some i; j 2 !.

f(k; y) = 1 if nE0m and 0 otherwise.

Case 2: n = 2i + 1 and m = 2j for some i; j 2 !.

Since there is a recursive procedure that accepts n as input and produces the

formula de�ning the corresponding element of V (!) coded by n, let Pn be this formula

de�ning n in (A0; E0). Then f(k; y) = y(p9 uPn(u) ^ 9 v j(v) ^ u 2 vq).

Case 3: n = 2i and m = 2j + 1 for some i; j 2 !.

Then f(k; y) = 0.

Case 4: n = 2i and m = 2j for some i; j 2 !.

Let f(k; y) = y(p9 u'i(u) ^ 9 v j(v) ^ u 2 vq).

It is clear that for all k, f(k; y) = x(k) and that f is recursive.

Since there is one algorithm that produces the code of a structure from its theory,

we henceforth �x an index e of this algorithm. Given y 2 2!, we will write (!;Ef
y

e
)

to represent the structure having y = Th(!;Ef
y

e
). Thus, T (y) can be reformulated as

T (y) , e codes a total function ^ f y
e

codes a structure(!;Ef
y

e
) ^ : : :

replacing every occurrence of x with f y
e
. Before we embark on the proof that T 2 �1

1,

we isolate here for the reader's bene�t a delicate part of that proof.

Lemma 4.4.5. If '(y0; : : : ; yk) is a �n (resp. �n) formula and n0; : : : ; nk 2 !, then

fy 2 2! : (!;Ef
y

e
) j= Extensionality^

(FODO(!;Ef
y

e
);2) j= '(n0; : : : ; nk)g 2 �0

n
(resp.�0

n
):

Proof. Let ' be �n, n0; : : : ; nk 2 !, and suppose y 2 2!. (The proof for �n formulas
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is similar.) We consider each element of p 2 FODO(!;Ef
y

e
) as �nite sequence of

integers p0; p1; : : : ; pk where

p = fz 2 A : (!;Ef
y

e
) j= 'p0(z; p1; : : : ; pk)g:

coding this �nite sequence of integers in the usual way: p = hp0; p1; : : : ; pki. Thus,

with the integers coding the elements of FODO(!;Ef
y

e
), we think of '(n0; : : : ; nk) as

a tree T on !. All non-terminal nodes of a given rank in T correspond to a block of

existential or universal quanti�ers. Consequently, as 'n is �n, T has rank n. Each

terminal node of T corresponds to a quanti�er-free statement built up from the logical

connectives and atomic statements involving the �nite number of integers along the

node. So the lemma easily follows if we can show that for all p; q 2 FODO(!;Ef
y

e
),

we can verify recursively in Th(!;Ef
y

e
) that (FODO(!;Ef

y

e
);2) j= \p = q" and

(FODO(!;Ef
y

e
);2) j= \p 2 q".

Let p; q 2 ! code elements of FODO(!;Ef
y

e
), say p = hp0; p1; : : : ; pki and q =

hq0; q1; : : : ; qli for some k; l 2 !. That is,

p = fz : '
(!;E

f
y
e
)

p0 (z; p1; : : : ; pk)g and q = fz : '
(!;E

f
y
e
)

q0 (z; q1; : : : ; ql)g:

So, (FODO(!;Ef
y

e
);2) j= \p = q" ,

(!;Ef
y

e
) j= 8 z['p0(z; p1; : : : ; pk) , 'q0(z; q1; : : : ; ql)]

Next, (FODO(!;Ef
y

e
);2) j= \p 2 q" ,

(!;Ef
y

e
) j= 9 y 8 z [(z 2 y , 'p0(z; p1; : : : ; pk)) ^ 'q0(y; q1; : : : ; ql)]

In either case, as (!;Ef
y

e
) models Extensionality, it is clear that

(FODO(!;Ef
y

e
);2) j= \p = q" and (FODO(!;Ef

y

e
);2) j= \p 2 q"

are recursive in Th(!;Ef
y

e
).
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The next proof contains the only instance of a hyperarithmetic sets in this chap-

ter. Despite the absence of any formal de�nition of a hyperarithmetic set, it will

nevertheless be clear that these sets is not arithmetical.

Proposition 4.4.6. T 2 �1
1.

Proof. Let y 2 2!. The formula \e codes a total function" can be replaced by

8 k 2 !9m 2 !(f y
e
(k) = m):

Thus, fy 2 2! : 8 k 2 !9m 2 !(f y
e
(k) = m)g 2 �0

2. It is clear that the formula

\f y
e

codes a structure (!;Ef
y

e
)" merely asserts that f y

e
2 2! and hence is �0

1. Similarly,

the formula \(!;Ef
y

e
) j= '1; : : : ; 'N" can be replaced with 8 i � N [y(i) = 1]: Thus,

fy 2 2! : (!;Ef
y

e
) j= '1; : : : ; 'Ng 2 �0

1: Next, the formula \Ef
y

e
� A0 = E0" can be

replaced with

8n;m; k 2 ![(n;m odd ^ k = hn;mi) ) (f y
e
(k) = 1 , nE0m)]:

Since E0 is recursive by de�nition, fy 2 2! : Ef
y

e
� A0 = E0g 2 �0

1.

Now the formula

8n 2 ! r A0 9 i 2 ![n = 2i

^ \n is the unique element of (!;Ef
y

e
) such that (!;Ef

y

e
) j= 'i(n)"

^ \i is the least such i"]

abbreviates

8n9 i[n is even ) (n = 2i

^ (!;Ef
y

e
) j= 'i(n) ^ 8m 2 ![(!;Ef

y

e
) j= 'i(m) ) n = m]

^ 8 j < i[(!;Ef
y

e
) 6j= 'j(n)])]

By Lemma 4.4.3, each instance of (!;Ef
y

e
) j= 'i(n) is �0

i0
where 'i is a �i0 formula.
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Thus, as n ranges over !, i0 increases without bound. Hence,

fy 2 2! : 8n9 i[n is even ) (n = 2i

^ (!;Ef
y

e
) j= 'i(n) ^ 8m 2 ![(!;Ef

y

e
) j= 'i(m) ) n = m]

^ 8 j < i[(!;Ef
y

e
) 6j= 'j(n)])]g 2 �0

!

By similar reasoning, the formula

\y = Th(!;Ef
y

e
)" , 8n 2 ![n 2 y , (!;Ef

y

e
) j= 'n]

also de�nes a �0
!

set of reals.

We claim next that fy 2 2! : y 2 FODO(FODO(!;Ef
y

e
);2)g 2 �0

!
. First, we

observe that

\y 2 FODO(FODO(!;Ef
y

e
);2)" ,

9n; n1 : : : ; nk8m[y(m) = 1 , (FODO(!;Ef
y

e
);2) j= 'n(m;n1; : : : ; nk)]

It suÆces to show that if 'n(y0; y1; : : : ; yk) is a �n0 formula and n0; : : : ; nk 2 !, then

fy 2 2! : (FODO(!;Ef
y

e
);2) j= 'n(n0; : : : ; nk)g 2 �0

n0
:

Thus, as n ranges over !, n0 increases without bound and the claim easily follows.

Finally, the formula \(!;Ef
y

e
) is well-founded" can be replaced by the formula

8� 2 !![8n 2 ![�(n+ 1)Ef
y

e
�(n)] ) 9n 2 ![�(n+ 1) = �(n)]]

which is clearly �1
1. As �1

1 is closed under intersections, T 2 �1
1.

Our next result shows that every structure whose theory is in T is isomorphic to a

limit stage of the L hierarchy. Recall that the ordinal of a set M is o(M) = M \ON.

Lemma 4.4.7. For all y 2 T , there is a unique limit ordinal � such that if y =

Th(!;Ex) for some x then (!;Ex) �= (L(�);2).
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Proof. Let y 2 T and let x be such that y = Th(!;Ex). Since (!;Ex) is a well-

founded structure, we can collapse (!;Ex) to a transitive structure (M;2) �= (!;Ex).

So (M;2) is a transitive, well-founded modeling V=L and 	1. Thus, � = o(M) is

limit by Proposition 4.2.1. Hence (M;2) �= (L(�);2).

Henceforth, for y 2 T , we write �y to denote the unique limit ordinal such that

(!;Ex) �= (L(�);2) where y = Th(!;Ex).

For x 2 2!, J(x) denotes the (Turing) jump of x. We view J(x) as the complete

�0
1(x) set of integers. It is immediate that for any real x, x <T J(x). For each n,

de�ne inductively Jn(x), the nth jump of x as J0(x) = x and Jn+1(x) = J(Jn(x)).

Note that we always consider the jump of any real as another real by associating J(x)

with its characteristic function.

Proposition 4.4.8. For all y1; y2 2 T , if �y1 < �y2, then for all n, Jn(y1) �T y2.

Proof. Let y1; y2 2 T and let x1; x2 2 2! be such that y1 = Th(!;Ex1
) and y2 =

Th(!;Ex2
). Let �y1 < �y2 be limit ordinals such that (!;Ex1

) �= (L(�y1);2) and

(!;Ex2
) �= (L(�y2);2). As �y1 < �y2 , it follows that L(�y1) 2 L(�y2) so that for some

least i 2 !, (!;Ex2
) j= 'i(2i) , (L(�y2);2) j= 'i(L(�y1)). We prove the result by

induction on n.

Suppose �rst that n = 0. To see that Jn(y1) = y1 �T y2, we observe that for any

k 2 !, y1(k) = y2(p9 z('i(z) ^ (z; Ex2
� z) j= 'k)q).

Now suppose that n > 0 and let k 2 ! be �xed. Since y1 2 T , we have y1 2

FODO(FODO(!;Ex1
)). That is, Th(L(�y1);2) 2 L(�y1 + 2) � L(�y2) since �y2 is

limit. So let j 2 ! be the least such that

(!;Ex2
) j= 'j(2j) , (L(�y2);2) j= 'j(Th(L(�y1);2)):

So then, we observe that (Jn(y1))(k) = y2(p (k)q) where  (k) is the formula

9 z; y['i(z) ^ k codes a �n formula ^ 'j(y) ^ '0
k
(y)]

with '0
k

is the formula 'k(y) with all instances of the 2 relation replaced with Ex1
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and all existential quanti�ers replaced with existential number quanti�ers. So then

Jn(y1) �T y2.

Now we de�ne A � D as follows: x 2 A, 9y 2 T (x �T y).

Lemma 4.4.9. A is �1
1.

Proof. Replace \x 2 A" with 9 y 2 T 9 e1; e2 2 !(x = fe1(y) ^ y = fe2(x)).

Proposition 4.4.10. For all x 2 A, there is a unique � such that if x �T y for some

y 2 T , then �y = �.

Proof. Let x 2 A and let y 2 T be such that x �T y. So there is x0 2 2! such that

y = Th(!;Ex0). Let �y be the unique limit ordinal such that (!;Ex0) �= (L(�y);2) as

in Lemma 4.4.7. Now suppose y0 2 T is such that x �T y
0. Furthermore, suppose for

a contradiction that �y < �y0. By Proposition 4.4.8, J(y) �T y
0. But then,

y �T J(y) �T y
0 �T x �T y

and hence, J(y) �T y, a contradiction. A symmetric argument shows that �y0 <

�y ) y0 �T J(y0), again, a contradiction. Thus, �y = �y0 .

Henceforth, for x 2 A, we denote the unique limit ordinal from Proposition 4.4.10

by �x. As a corollary, we have the following:

Corollary 4.4.11. For all x1;x2 2 A, if x1 <T x2, then �x1 < �x2.

Given x 2 D, we de�ne J(x), the jump of x, as J(x) = fy : y �T J(x)g. Our

next proposition is analogous to Proposition 4.4.8.

Proposition 4.4.12. For all x1;x2 2 A, if x2 �T x1, then for all n, Jn(x1) �T x2.

Proof. Let x1;x2 2 A be such that x2 �T x1. Let �x1 be the unique limit ordinal (as

in Proposition 4.4.10) such that for all y1 2 T such that y1 � x1,

(L(�y1);2) �= (L(�x1);2):
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De�ne �x2 mutatis mutandis. Since x2 �T x1, it follows from Corollary 4.4.11 that

�x1 < �x2. Thus, for all n 2 !, Jn(x1) �T x2, by Proposition 4.4.8.

A set of degrees A contains a cone if there is x 2 D such that Cx � A. That is,

for all y such that x � y, y 2 A. The next theorem show that A does not contain

any cone.

Theorem 4.4.13. For all x 2 D there is y such that x �T y and y =2 A.

Proof. Let x 2 A and let y = J(x). Suppose for a contradiction that y 2 A. Let

�x; �y be the unique limit ordinals from Proposition 4.4.10. There are three cases.

Case 1: �x = �y.

Because x �T y, it follows that y �T J(x) �T J(y), a contradiction.

Case 2: �y < �x.

By Proposition 4.4.8, J(y) �T x. Hence, y �T J(y) �T x �T y. Thus y �T J(y),

again, a contradiction.

Case 3: �x < �y

By Proposition 4.4.8, J(J(x)) �T y. Hence, y �T J(x) �T J(J(x)) �T y. Thus

y �T J(y), again, a contradiction.

Hence, y =2 A.

A set of degrees A omits a cone if there is x 2 D such that Cx � DrA. That

is, for all y 2 A, x � y. The next theorem show that A does not omit any cone.

Theorem 4.4.14. For all x 2 D there is y 2 A such that x �T y.

Proof. Let x 2 D, for some x 2 !! \ L. So for some � < !L1 , �(x) = �. Let

� = �(x) + !. We de�ne an isomorphism � : (L(�);2) ! (!;Ex1
) for some x1 2 2!

so that y = Th(!;Ex1
) 2 T , and thus y 2 A. Because L(�x) 2 L(�y), it follows that

x �T y using the argument from Proposition 4.4.8. Hence x � y.

First, de�ne � � V (!) to be the �xed isomorphism from (V (!);2) to (A0; E0).

If a 2 L(�) r V (!), let �(a) = 2i where I is the least such that (L(�);2) j= 'i(a)

and for any a0 2 L(�) r V (!), (L(�);2) 6j= 'i(a
0). Let Ex1

be the relation induced

by � on !, and let x1 2 2! be the characteristic function of Ex1
. It is clear that

(L(�);2) �= (!;Ex1
) via � and that y = Th(!;Ex1

) 2 T .
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Theorem 4.4.15. ZFC 0 Det(�1
1)

Proof. Use A and the contrapositive of Martin's Theorem.
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CHAPTER 5

ZC 0 Det(�0
!+2)

This �nal chapter is devoted to the main metamathematical result concerning Borel

Determinacy. We argue in ZC set theory (ZFC - Replacement) the existence of a

Borel set of Turing degrees that neither contains nor omits a cone. We will structure

the argument similar to that of Chapter 4.

5.1 Properties of L!+!

Because Borel Determinacy is a theorem of ZFC, L is an insuÆcient model for the

results of this chapter. Instead, we will work exclusively in the ZC model L!+!.

Recall that for a given structure (A;E), FODO(A;E) = fx � A : 9n 2 !8 y 2

A(y 2 x , (A;E) j= 'n(y))g. De�ne a structure (L!+!;2) by trans�nite recursion

on � as follows:

L!+!(0) = V(!)

L!+!(� + 1) = FODO((L!+!(�);2)) \V(! + !); for � successor

L!+!(�) =
[
�<�

L!+!(�); for � limit

L!+! =
[

�2ON

L!+!(�)

Note that L!+! is similar to L in that for each �, L!+!(�) is transitive. Thus,

L!+! is transitive. Yet, unlike L, L!+!(0) is the entire �nite part of the structure.

Moreover, there is the liability of L!+! � V(! + !). One important consequence of

this, which we will overcome, is that L!+! contains no ordinal � ! + !, and hence

ZC 6j= Replacement. The other consequence is contained in our �rst lemma.

Lemma 5.1.1. There is � 2 ON such that L!+!(� + 1) = L!+!(�).
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Proof. Suppose not. Thus, for each � 2 ON there is x� 2 L!+! such that x� 2

L!+!(�+1)rL!+!(�). But then, as L!+! � V (!+!), it would follow that V (!+!)

is a proper class, a contradiction.

We will occasionally need to calculate the V�rank of a set x, denoted �V(x). The

next lemma is nearly identical to Lemma 4.1.2, and we omit the proof.

Lemma 5.1.2. Let x; y be such that �V(x) = � and �V(y) = � for some �; � > !.

Then,

1. �V(
S
x) = �,

2. �V(P(x)) = �+ 1,

3. �V(fxg) = � + 1,

4. �V(fx; yg) = � + � + 1,

5. �V(hx; yi) = �+ � + 2,

6. �V(x� y) = � + � + 3

The next proposition veri�es that L!+! is a transitive model of Z (ZF - Replace-

ment); we will show in section 5.2.2 that L!+! j= ZC.

Proposition 5.1.3. L!+! j= Z.

Proof. Let �0 2 ON be as in Lemma 5.1.1. Hence, L!+! = L!+!(�0).

Extensionality: Follows since L!+! is transitive.

Foundation: Follows from L!+! � V (! + !).

In�nity: ! 2 L!+!(! + 1).

Now note that since ! + ! is limit, V (! + !) is closed under the operations of

Pairing, Union, and Power Set.

Pairing: For any x; y 2 L!+!(�0),

fz 2 L!+!(�0) : z = x _ z = yg 2 L!+!(�0 + 1) = L!+!:
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Union: For any x 2 L!+!(�0),

fz 2 L!+!(�0) : 9w 2 x(z 2 w)g 2 L!+!(�0 + 1) = L!+!:

Power Set: For any x 2 L!+!(�0),

fz 2 L!+!(�0) : z � xg 2 L!+!(�0 + 1) = L!+!:

Comprehension: Fix a formula '(v0; : : : ; vn) of n + 1 free variables and let

z; w1; : : : ; wn 2 L!+! = L!+!(�0). Let y = fx 2 z : 'L
!+!

(x; w1; : : : ; wn)g. Now as

L!+!(�0) is transitive, if x 2 z, x 2 L!+!(�0). Evidently then,

y = fx 2 L!+!(�0) : L!+! j= x 2 z ^ '(x; w1; : : : ; wn)g 2 L!+!(�0 + 1) = L!+!

In order to show L!+! also models Choice, we need to show that \V = L!+!"

holds in L!+!. The real crux of the problem is that L!+! only contains ordinals

< !+!, not enough to carry out all of the construction of L!+!. Using the concepts

of coded hierarchies and pure ordinals, we will show that L!+! contains sets that look

like each L!+!(�) built up from sets which look like the ordinals. The bulk of this

section is devoted to de�nitions and absoluteness results necessary to develop these

two concepts. Arguments that are similar to those in Chapter 4 will be suppressed.

As in Section 4.4, we �x the following: a structure (A0; E0) such that A0 = fi 2

! : i is oddg, E0 is a recursive binary relation on A0, and an isomorphism � such that

(A0; E0)
�

�= (V(!);2). In order to distinguish between an integer n and the coded

object of (A0; E0) that stands for n, we write �n for that element of (A0; E0) that is

satis�ed in (A0; E0) to be the integer n.

Rather than repeat the arguments from Section 4.1 that enumerated the formulas

of LST, we assume a �xed primitive recursive total one-one onto G�odel enumeration

of the formulas of LST. 'n denotes the nth formula according to this enumeration;

p'q denotes the G�odel number of the formula '.
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We say that x = (A;<) is a linear order if A 6= ;, A \ V(!) = ;, and < is

transitive and connected binary relation on A. We write LO(x) for \x is a linear

order"; if x = (A;<), we write A = Field(x).

Suppose LO(x). If x = (A;<) and y 2 A is such that for all z 2 A, z � y then

y is the zero of (A;<) and we write \y = 0x". If y; z 2 A and z < y and there does

not exist a 2 A such that z < a and a < y, then y is the successor of z and we write

\y = Sucx(z)". If y 2 A is such that for all z < y, there is a 2 A such that z < a < y,

then y is a limit element of x and we write \Limx(y)".

Given A 6= ;, de�ne the set of all �nite sequences of A, Seq(A) =

fy : y is a function ^ 9 k 2 !(k 6= 0 ^ dom (y) = k ^ range (y) � A)g:

For a 2 Seq(A), we write len(a) = k to denote the length of the sequence and we

write a � i for some i � len(a) to denote the restriction of a to I. If a; b 2 Seq(A),

then a b̂ is the concatenation of a and b. ; denotes the empty sequence, and it

is the only sequence of length 0.

Suppose LO(x) and a; b 2 Seq(Field(x)). We write a <x

lex
b if a preceeds b in the

lexicographic order on Seq(Field(x)) induced by <x. The next lemma establishes the

absoluteness of <x

lex
for limit stages of L!+! and for other transitive structures that

model enough of Z. Note that we use the sentence Q1 to keep track of how much Z we

are using for absoluteness. We will maintain this convention throughout the rest of

this section, as it will become vital in later arguments (Cf. Prop. 4.2.1, Lemma 4.2.4,

Lemma 4.2.5, and Prop. 4.3.3). For the remainder of this chapter, our absoluteness

proofs will be brief, relying on the work we did in Chapter 4 for the details.

Lemma 5.1.4. There is a formula P1(x; a; b) and a sentence Q1 such that

1. for all � limit, (L!+!(�);2) j= Q1, and

2. for all transitive A such that (A;2) j= Q1 and for all x; a; b 2 A,

(A;2) j= P1(x; a; b) , a <x

lex
b and

(A;2) j= 8 x9w8 z[z 2 w, z = (a; b) ^ P1(x; a; b)].
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Proof. Let � be limit. We �rst de�ne P1(x; a; b) and argue the L!+!(�) case, then we

will de�ne the sentence Q1. It will be clear the L!+!(�) j= Q1, and that if (A;2) is

any transitive structure modeling Q1, then the second result follows.

De�ne P1(x; a; b) =

LO(x) ^ a; b 2 Seq(Field(x))^

[a = ; _ 9 i � len(a)[a � i = b � i ^ ai <x bi] _ (len(a) < len(b) ^ a = b � len(a))]

First note that L!+!(�) is transitive and models Extensionality, Pairing, Union, and

In�nity. Consequently, given x 2 L!+!(�) and any k 2 !, xk 2 L!+!(�). Upon

inspection of the de�nition of P1 it should be clear that it is �0, and hence absolute

for L!+!(�) by transitivity. Moreover, as � is limit, for every x 2 L!+!(�), f(a; b) :

a <x

lex
bg 2 L!+!(�).

De�ne Q1 to be the conjunction of the Axioms of Pairing, Extensionality, Union,

In�nity, and the instance of Comprehension insuring the existence of f(a; b) : a <x

lex

bg. It should be clear from the above argument that if (A;2) is a transitive structure

modeling Q1, the second result follows.

We say that x = (A;E) is a coded structure if A is a non-empty set and E is a

binary relation on A. We write CS(x) for \x is a coded structure"; if x = (A;E), we

write A = Field(x).

Suppose CS(x) for some x = (A;E). If n 2 ! and y = (a0; a1; : : : ; ak) 2 Seq(A),

then we write Satx(n; y) if y satis�es 'n in the coded structure x; that is,

Satx(n; y) , x j= 'n(a0; a1; : : : ; ak)

Note that the Sat relation is the analog of the Df relation from Section 4.1. The

following lemma is similar to Lemma 4.1.4 and Corollary 4.1.5.

Lemma 5.1.5. There is a formula P2(x; n; y) and a sentence Q2 such that

1. for all � limit, (L!+!(�);2) j= Q2, and
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2. for all transitive A such that (A;2) j= Q2 and for all x; n; y 2 A,

(A;2) j= P2(x; n; y) , Satx(n; y) and

(A;2) j= 8 x9w8 z[z 2 w, z = (n; y) ^ P2(x; n; y)].

Proof. Let � be limit. We �rst de�ne P2(x; n; y) and argue the L!+!(�) case, then

we will de�ne the sentence Q2. It will be clear the L!+!(�) j= Q2, and that if (A;2)

is any transitive structure modeling Q2, then the second result follows.

De�ne P2(x; n; y) =

CS(x) ^ n 2 ! ^ y 2 Seq(Field(x)) ^ y = (a0; : : : ; ak) ^ 0 � k^

x = (A;E) ^ (A;E) j= 'n(a0; : : : ; ak)

where \(A;E) j= 'n(a0; : : : ; ak)" is replaced with a formula similar to the formula �

in Lemma 4.1.4. By reasoning similar to that in Lemma 4.1.4, it should be clear that

the �nite function building up the satisfaction relation can be found in L!+!(�) as �

is limit. The rest of P2 is clearly �0, and hence is absolute for L!+!(�). Moreover,

as � is limit, for every x 2 L!+!(�), f(n; y) : Satx(n; y)g 2 L!+!(�).

De�ne Q2 to be the conjunction ofQ1 and the instances of Comprehension insuring

the existence of the above �nite function and the existence of f(n; y) : Satx(n; y)g.

It should be clear from the above argument that if (A;2) is a transitive structure

modeling Q2, the second result follows.

If A 6= ; and E;< are binary relations on A such that LO((A;<)) and CS((A;E))

and if F : A! !, then we say that (A;E;<; F ) is a structured linear order. Note

that F serves the purpose of keeping track of the V(! + k) rank of the sets in L!+!.

If x = (A;E;<; F ) is a structured linear order, we write SLO(x) and A = Field(x).

Suppose SLO(x) for some x = (A;E;<; F ); suppose also that n 2 ! and that

(b0; : : : ; bm) 2 Seq(A) and a = (n) (̂b0; : : : ; bm). Then for k 6= 0 we write Defnx(a; k)

if, and only if

Y = fb : Sat(A;E)(n; (b; b0; : : : ; bm))g

meets the following conditions:
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1. k � 1 2 Range(F � Y ) � f0; 1; 2; : : : ; k � 1g,

2. for all c 2 A, Y 6= fb : bEcg,

3. for all a0 = (j; c0; : : : ; cr) where j 2 ! and (c0; : : : ; cr) 2 Seq(A),

if Y = fb : Sat(A;E)(j; (b; co; : : : ; cr))g, then a <
(A;<)

lex
a0.

So, Defnx(a; k) is the subset of V(! + k) de�ned by a = (n; a0; : : : ; am) where a is

the \least" (in the sense of being de�ned �rst by the least formula n, then by the

least parameter (a0; : : : ; am)) in the structured linear order x.

Lemma 5.1.6. There is a formula P3(x; a; k) and a sentence Q3 such that

1. for all � limit, (L!+!(�);2) j= Q3, and

2. for all transitive A such that (A;2) j= Q3 and for all x; a; k 2 A,

(A;2) j= P3(x; a; k) , Defnx(a; k) and

(A;2) j= 8 x9w8 z[z 2 w, z = (a; k) ^ P3(x; a; k)].

Proof. Let � be limit. We argue similarly as in Lemmas 5.1.4 and 5.1.5.

De�ne P3(x; a; k) =

SLO(x) ^ k > 0^9n;m 2 !9 a0; : : : ; am 2 Field(x)[a = (n; a0; : : : ; am)^

8 b[Sat(Ax;Ex)(n; (b; a0; : : : ; am)) ) 9 l < k(Fx(b) = l)]^

9 b[Sat(Ax;Ex)(n; (b; a0; : : : ; am)) ^ Fx(b) = k � 1]^

8 c 2 Field(x)9 b[(bExc ^ :Sat(Ax;Ex)(n; (b; a0; : : : ; am)))_

(:bExc ^ Sat(Ax;Ex)(n; (b; a0; : : : ; am)))]^

8 j 2 !8 a0 2 Seq(Field(x))[(j )̂ (a0) <
(Ax;Ex)

lex
a

) 9 b[(Sat(Ax;Ex)(j; (b)̂ (a0)) ^ :Sat(Ax;Ex)(n; (b; a0; : : : ; am)))_

(:Sat(Ax;Ex)(j; (b)̂ (a0)) ^ Sat(Ax;Ex)(n; (b; a0; : : : ; am)))]]

The absoluteness of P3 for L!+!(�) follows from the same reasoning as in Lemma

4.1.6.
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De�ne Q3 to be the conjunction of the sentence Q2 and the instance of Comprehen-

sion that insures the existence of the set f(a; k) : Defnx(a; k)g for every x 2 L!+!(�).

It should be clear that for any transitive structure (A;2) that models Q3, the second

result follows.

Up to this point, our development of L!+! has di�ered little from that of L, except

for keeping track of the V(! + k) rank of the sets involved. Now, our discussion

diverges, due to the lack of enough ordinals in L!+!. Without the ordinals � ! + !,

we cannot construct the actual L!+!(�) sets inside L!+!. Instead, we need construct

sets isomorphic, or nearly isomorphic, to the L!+!(�).

Suppose LO(x). We say that f is a coded hierarchy on x (equivalently, f codes

a hierarchy on x) if f is a function, dom(f) = Field(x), and

8 y 2 Field(x)[SLO(y) ^ Field(f(y)) � A0 [ Seq(V (!) [ x)]

and f is recursively de�ned as follows:

1. if y = 0x, then f(y) = (A0; E0;2� A0; 0); that is, for all a 2 A, F (a) = 0,

2. if z = Sucx(y) then f(z) = (A;E;<; F ) where

A = Field(f(y)) [ f(f1g; y; n)̂ b0^ � � � b̂m (̂f2g) :

Defnf(y)((n; b0; : : : ; bm); k) for some kg

E = Ef(y) [ f(a; s) : a 2 Field(f(y)) ^ s 2 Ar Field(f(y))^

s = (f1g; y; n)̂ b0^� � � b̂m (̂f2g) ^ Satf(y)(n; (a; b0; : : : ; bm))g

<=<f(y) [ f(a; s) : a 2 Field(f(y)) ^ s 2 Ar Field(f(y))g

[ f(a; s) : a; s 2 Ar Field(f(y)) ^ a = (f1g; y; n)̂ b0^� � � b̂l (̂f2g)

^ s = (f1g; y;m)̂ c0^� � � b̂r (̂f2g) ^ (n; b0; : : : ; bl) <
f(y)

lex
(m; c0; : : : ; cl)g

And, for all a 2 A, if a 2 Field(f(y)), then F (a) = Ff(y)(a); otherwise, if

a 2 A r Field(f(y)), say a = (f1g; y; n)̂ b0^� � � b̂l (̂f2g), then F (a) = k where

Defnf(y)((n; b0; : : : ; bm); k).
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3. if Limx(y), then f(y) = (A;E;<; F ) where

A =
[
z<xy

Field(f(z)) E =
[
z<xy

Ef(z)

< =
[
z<xy

<f(z) F =
[
z<xy

Ff(z)

If f codes a hierarchy on x, we write Chyx(f). Note that we did not insist that x be

a well order. Because of the lack of ordinals in L!+!, we will rely sets in L!+! that on

one hand resemble ordinals enough to build these coded hierarchies, but on the other

may potentially contain an ill founded part. Note also we have unique readability of

the �nite sequences that constitute the �eld of a given structured linear order.

Lemma 5.1.7. There is a formula P4(x; f) and a sentence Q4 such that

1. for all � limit, (L!+!(�);2) j= Q4, and

2. for all transitive A such that (A;2) j= Q4 and for all x; f 2 A,

(A;2) j= P4(x; f) , Chyx(f)

Proof. Let � be limit. Rather than write out the cumbersome formula P4(x; f) which

says f codes a hierarchy on x, we simply observe that P4 is similar to the \f =

L � � + 1" formula on page 34 from Chapter 4. De�ne Q4 to be the conjunction

of Q3 along with the instances of Comprehension insuring the existence of the sets

of ordered pairs in the de�nition of a coded hierarchy. Again, � limit implies that

L!+!(�) j= Q4. Moreover, is (A;2) is any transitive structure modeling Q4, then P4

is absolute for (A;2).

Our next lemmas contain the machinery to prove the L!+! analog of Proposition

4.1.8.

If LO(x) is such that for all y � Field(x), if y 6= ; implies that there is a 2 y

such that for all b 2 y, b �x a, then x is a well order; we write WO(x) to denote

that x is a well order. Given a well order x, if � is the unique ordinal such that

(Field(x); <x) �= (�;2), then we write x �= �. If WO(x) and a 2 Field(x), we write
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xa to denote the initial segment a of x. For a 2 Field(x), if len(a) = �, we write

x� to denote the initial segment of x of length �.

Using the closure properties of V from Lemma 5.1.2, our next lemma shows that

given a well order in V(! + !), we can code a unique hierarchy f 2 V(! + !) that

imitates the construction of the levels of L!+!.

Lemma 5.1.8. For all x 2 V(!+!) such thatWO(x), there is a unique f 2 V(!+!)

such that Chyx(f). Moreover, for all a 2 Field(x),

1. there is a unique isomorphism ga such that if xa �= �,

(Aa; Ea)
ga
�= (L!+!(�);2)

2. WO(Aa; <a)

3. for all c 2 Aa, Fa(c) is the least n such that ga(c) 2 V(! + n).

Proof. Let x 2 V(! + !) be such that WO(x) and len(x) = �. De�ne f such that

Chyx(f) in the obvious way. A simple trans�nite induction shows that if �f is such

that Chyx( �f), then �f = f .

To prove f 2 V(! + !), we will show that there is l 2 ! such that for all

a 2 Field(x), f(a) 2 V(!+ l); it then follows that f 2 V(!+ l+3) � V(!+!). The

key observation is that since for some k 2 !, x 2 V(!+ k), then for all a 2 Field(x),

xa 2 V(! + k). For a 2 Field(x) such that len(a) = �, we write f(a) = (A�; E�; <�

; F�). Suppose � � �.

If � = 0, then f(a) = (A0; E0;2� A0; 0). As A0; E0;2� A0; 0 � V(!), it follows

that f(0) 2 V(! + 4). Because x0 2 V(! + k), (x0; f(0)) 2 V(! + k + 4).

If � > 0, and � is a successor, then we claim that f(a) 2 V(!+k+12). Examining

the de�nition of Chy, we see that A� � A0 [ Seq(V(!) [ x�). Since V(!) [ x� 2

V(!+k) it follows that A0 [Seq(V(!)[x�) 2 V(!+k+ 4). As A� � V(!+k+ 4),

we have that A� 2 V(! + k + 5). Now, E�; <�� A� � A� 2 V(! + k + 8), thus

E�; <�2 V(! + k + 9). Finally, F� 2 !
A� 2 V(! + k + 9). So since A�; E�; <�; F� 2

V(! + k + 9), we have f(a) 2 V(! + k + 12).
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If � > 0 and is a limit, we observe that the coordinates of f(a) involve taking

unions, which does not increase V-rank. So the limit case follows from the successor

case, and is the end of the �rst claim.

Now let a 2 Field(x).

Claim 1: For each a 2 Field(x), we will de�ne the maps ga : (A�; E�) !

(L!+!(�);2) by trans�nite recursion and show that these maps are isomorphisms.

If a = 0x, then we let g0 be the �xed isomorphism � (p. 64) from (A0; E0) to

(V(!);2) .

Now suppose that a = Sucx(b) and the isomorphism gb has been de�ned appro-

priately. Let s 2 Aa. Recall that

Aa = Ab [ f(f1g; b; n)̂ b0^� � � b̂m (̂f2g) :

Defnf(b)((n; b0; : : : ; bm); k) for some nonzero k 2 !g

If s 2 Ab, then ga(s) = gb(s). Otherwise, let s = (f1g; b; n)̂ b0^� � � b̂m (̂f2g) be such

that Defnf(b)((n; b0; : : : ; bm); k) for some nonzero k 2 !. De�ne

ga(s) = fz 2 V(! + (k � 1)) : (L!+!(�);2) j= 'n(z; b0; : : : ; bm)g

Observe that this map is well-de�ned because of the unique readability of sequences.

Evidently, ga is a surjection. Moreover, the de�nition of Defn insures that ga is

injective. To show that ga is an isomorphism, we must show that ga preserves the Ea

relation. Let t; s 2 Aa be such that tEas. If t; s 2 Ab, then we are done since gb is an

isomorphism. Otherwise, t 2 Ab and s 2 AarAb where s = (f1g; b; n)̂ b0^� � � b̂m (̂f2g)

and Satf(b)(n; (t; b0; : : : ; bm)). Since (Ab; Eb)
gb�= (L!+!(�);2), we have that

Satf(b)(n; (t; b0; : : : ; bm)) , (L!+!(�);2) j= 'n(gb(t); b0; : : : ; bm)

Thus, ga(t) 2 ga(s). Similar reasoning shows that ga(t) 2 ga(s) ) tEas. Hence, for

all successor a 2 Field(x), ga is an isomorphism.

Now suppose that Limx(a) and that for all b <x a, the isomorphism gb has been
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de�ned appropriately. Since Aa =
S

b<xa
Ab, if s 2 Aa, then there is a <x-least

b 2 Field(x) such that s 2 Ab. De�ne ga : Aa ! L!+!(�) where � =
S

b<xa
�b as

follows: ga(s) = gb(s) where b is the <x-least b 2 Field(x) such that s 2 Ab. As each

gb is an isomorphism, so is ga.

Claim 2: Let a 2 Field(x). We will show that WO(Aa; <a).

If a = 0x, then (A0; <0) = (A0;2� A0), a well order, as this is the usual ordering

of the integers.

Now suppose that a 6= 0x and that for all b <x a, WO(Aa; <a). Let S � Aa

be nonempty. If a = Sucx(b) and S \ Ab 6= ;, then we are done as we can choose

a <a-least element of S using the well order <b. If S � Aa r Ab, then we observe

that <b induces a well ordering <b

lex
of Seq(V(!)[ xb). Using this well order, choose

the <b

lex
-least element of of S; clearly then, this is the <a-least element of S. Now

suppose Limx(a) so that Aa =
S

b<xa
Ab and <a=

S
b<xa

<b. Thus, for all s 2 S,

there is b <x a such that s 2 Ab; that is, fb 2 Field(x) : 9 s 2 S(s 2 Ab)g 6= ;. Since

WO(x), choose a <x-least element of this set, say b0, and then use <b0
to choose a

least element of S.

Claim 3: We will show that for all a 2 Field(x) and for all c 2 Aa, Fa(c) is the

least k 2 ! such that ga(c) 2 V(! + k). Let a 2 Field(x) and let c 2 Aa. If a = 0x,

then c 2 A0. From the de�nition of g0, g0(c) 2 L!+!(0) = V(!). As Fa = 0, then

Fa(c) = 0 is the least k such that ga(c) 2 V(! + k).

Suppose now that a 6= 0x, and suppose that for all b <x a that the result holds.

If a = Sucx(b), and c 2 Ab, then Fa(c) = Fb(c), and we are done by the induction

hypothesis. Otherwise, c 2 AarAb and is of the form (f1g; b; n)̂ b0^� � � b̂m (̂f2g) such

that Defnf(b)((n; b0; : : : ; bm); k) for some nonzero k 2 !. By de�nition, Fa(c) = k,

and ga(c) = fz 2 V(! + (k � 1)) : (L!+!(�);2) j= 'n(z; b0; : : : ; bm)g and thus,

ga(c) 2 V(!+ k). Recall from the de�nition of Defn that k� 1 is an element of the

range of F restricted to the set de�ned by (n; b0; : : : ; bm). This implies that for some

z 2 ga(c), z 2 V(!+ (k� 1)) witnessing that k is the least such k. The case Limx(a)

follows from the successor case.

Fix the following notation: given a structured linear order x, we write Rk

x
= fb 2
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Field(x) : Fx(b) � kg.

Proposition 5.1.9. Suppose x 2 L!+!(�) is such that LO(x) and x �= �, for some

�; � 2 ON. Then, there exists f 2 L!+!(� + � + !) such that Chyx(f). Moreover,

for each a 2 Field(x) and each k 2 !, there is an isomorphism gk
a
2 L!+!(�+�+!)

such that if xa �= ,

(Aa \ R
k

x
; Ea � (Aa \ R

k

x
))

g
k
a�= (L!+!() \V(! + k);2)

and L!+!() \V(! + k) 2 L!+!(� + � + !).

Proof. Let x 2 L!+!(�) be a linear order such that x �= �. Fix n such that �V(x) =

!+n. By Lemma 5.1.8, there is a unique f 2 V(!+!) such that Chyx(f). We show

by induction on � that f 2 L!+!(� + � + !).

Suppose � = 0. Because A0; E0;2� A0; 0 2 L!+!(1), it follows that (A0; E0;2�

A0; 0) 2 L!+!(4). Thus, f 2 L!+!(� + 7) � L!+!(� + �+ !).

Now suppose � > 0 and for all  < �, 9 g 2 L!+!(� +  +!) such that Chyx (g).

Suppose � =  + 1. Thus, for some k, there is g 2 L!+!(� +  + k) such that g

codes a hierarchy on x. To see that the L!+! ranks of the sets Ax; Ex; <x; Fx are

bounded, note that the proof for Lemma 4.1.4 also works is L!+!. Moreover, the

V-ranks of these sets are also bounded using Lemma 5.1.2. Thus, since x 2 L!+!(�)

and (Ax; Ex; <x; Fx) 2 L!+!(� +  + l) for some l, it follows that

f = g [ f(x; (Ax; Ex; <x; Fx))g 2 L
!+!(� +  + k + l + 4) � L!+!(� + � + !):

Now suppose � is limit. It suÆces to show that for some k

f(x) =

 [
<�

A ;
[
<�

E;
[
<�

<;
[
<�

F

!
2 L!+!(� + � + k):
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Observe that

[
<�

A = fz 2L!+!(� + �) : L!+!(� + �) j=

9 y; g[y is an initial segment ofx ^ Chyy(g) ^ z 2 Field(f(y))]g

by the induction hypothesis and Lemma 5.1.7 which guarantees the absoluteness of

\Chyy(g)" for limit stages of L!+!. The sets Ex; <x; Fx follow similarly. Moreover,

Lemma 5.1.8 insures that V-ranks of these four of these sets are bounded. Using

reasoning similar to the limit case of Proposition 4.1.8, each of the four sets can be

shown to be in L!+!(� + � + k) for some k.

Now let a 2 Field(x) be such that xa �= . We show by induction on k that there

is an isomorphism gk
a
2 L!+!(� + � + !) such that

(Aa \ R
k

x
; Ea � (Aa \ R

k

x
))

g
k
a�= (L!+!() \V(! + k);2)

and that L!+!() \V(! + k) 2 L!+!(� + �+ !).

Let k = 0. Then (Aa\R
0
x
; Ea � (Aa\R

0
x
)) = (A0; E0) and (L!+!()\V(!+0);2) =

(L!+!(0);2) = (V(!);2). So let g0
a

= � where � is the �xed recursive isomorphism

from (A0; E0) to (V(!);2) (p. 64). Clearly, both g0
a

and L!+!(0) are elements of

L!+!(1) � L!+!(� + � + !).

Now let k > 0 and suppose for induction that there is an isomorphism gk
a
2

L!+!(� + �+ !) such that (Aa \R
k

x
; Ea � (Aa \R

k

x
))

g
k
a�= (L!+!()\V(!+ k);2) and

that L!+!() \V(! + k) 2 L!+!(� + � + !). Given s 2 Aa \ R
k+1
x

de�ne the map

gk+1
a

: (Aa \ R
k+1
x

; Ea � (Aa \ R
k+1
x

)) ! (L!+!() \V(! + k + 1);2) by

gk+1
a

(s) =

8<
:g

k

a
(s); if s 2 Rk

x
;

fz 2 L!+!() \V(! + k) : 9 t 2 Aa(Fa(t) = k ^ tEas)g; otherwise

Evidently, gk+1
a

is an isomorphism. Also, since Aa; Ea; Fa; L
!+!() \ V(! + k) 2

L!+!(� + �+ !), it follows that for each s 2 Aa \R
k+1
x

, gk+1
a

(s) 2 L!+!(� + �+ !).

Consequently, gk+1
a

= f(s; gk+1
a

(s)) : s 2 Aa \ R
k+1
x
g 2 L!+!(� + � + !). Finally,
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observe that

L!+!() \V(! + k + 1) = fz 2 L!+!() \V(! + k) : 9 s 2 Aa(z = gk+1
a

(s))g

so that L!+!() \V(! + k + 1) 2 L!+!(� + �+ !).

In Chapter 4, we dealt with certain structures isomorphic to L(�) for some � limit.

In light of Proposition 5.1.9, we will need to give up little ground. If � is an ordinal

such that for all � < �, � + � < �, then we say that � is additively closed.

We say that L!+!(�) is pure if ! < � and for all � < �,

1. L!+!(�) 6= L!+!(� + 1)

2. there is x 2 L!+!(�) such that LO(x) and x �= �.

So pure L!+!(�) contain well orders that are copies of every ordinal less than �.

Lemma 5.1.11 will show that for pure L!+!(�), if � is additively closed and L!+!(�) j=

WO(x) and x is not a well order, then the length of the well-founded part of x must

be at least �. The proof requires the following lemma.

Lemma 5.1.10. Let M be a transitive nonempty structure and let x 2 M be such

that :WO(x), but M j= WO(x). If ~x is the maximal well-founded initial segment of

x, then ~x =2M .

Proof. Let M;x; ~x be as above and suppose ~x 2 M . By assumption, x r ~x 6= ;.

Let a 2 x be such that M j= a is the least element ofx r ~x. But then, ~x [ fag is a

well-order, contradicting the maximality of ~x.

Lemma 5.1.11. Suppose � is additively closed and L!+!(�) is pure. If x is such that

(L!+!(�);2) j= WO(x), then either WO(x) or for all � < �, there is a 2 Field(x)

such that (�;2) �= (fb : b <x ag; <x� fb : b <x ag).

Proof. Let L!+!(�) be pure for some additively closed �, and let x 2 L!+!(�) be

such that L!+!(�) j= WO(x). Suppose x is not a well order. Let � < �, and suppose
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for a contradiction that � is the order type of ~x, the maximal well ordered initial

segment of x. Thus, ~x 6= x, by assumption. Since L!+!(�) is pure, let y 2 L!+!(�)

be such that LO(y) and y �= �. Choose  < � such that ~x; y 2 L!+!(), and build

an isomorphism h : ~x ! y in the usual way. Clearly, h 2 L!+!( + � + !), thus

~x 2 L!+!( + � + !), contradicting Lemma 5.1.10.

Proposition 5.1.12. Suppose � additively closed, L!+!(�) is pure, (L!+!(�);2) j=

WO(x), and L!+!(�) 6= L!+!(� + 1). Then there exists f 2 L!+!(�) such that

Chyx(f) if there is � < � such that x �= �.

Proof. ((): Follows from Lemma 5.1.9.

()): For some � < �, let f 2 L!+!(�) be such that Chyx(f). Suppose for a

contradiction that there does not exist � < � such that x �= �; that is, :WO(x). By

Lemma 5.1.11, the maximal well-founded initial segment of x, denoted ~x, must have

at least length �. Now consider S � x:

S = fa 2 Field(x) : 9 k9 b 2 Range(gk
a
)8 c <x a8 p(b =2 Range(g

p

c
))g

where the gk
a

are as in Lemma 5.1.9. Observe from the proof of Lemma 5.1.9 that

as f 2 L!+!(�), for each k and each a 2 Field(x), gk
a
2 L!+!(� + !). Thus,

S 2 L!+!(� + ! + 1) � L!+!(�). Moreover, it is clear that ~x � S. We now have two

cases:

Case 1: ~x �= �. First note that S \ ~x 6= ;. (Otherwise, ~x = S 2 L!+!(�),

contradicting Lemma 5.1.10.) Since L!+!(�) j= WO(x), let a 2 S be the <x-least

such that a =2 ~x. By de�nition of S, let k 2 ! and b 2 Range(gk
a
) be such that for all

c <x a and p 2 !, b =2 Range(gp
c
). On the one hand, b 2 Range(gk

a
) � L!+!(�+!) �

L!+!(�). But, on the other, for all c 2 ~x and all p 2 !, b =2 Range(gp
c
) �= (L!+!(c)\

V(! + p)). So ~x �= � implies that b =2 L!+!(�), a contradiction.

Case 2: length(~x) > �. So there is a well-founded initial segment of x of length

� + 1, also denoted ~x. Since ~x � S, let k 2 ! and b 2 Range(gk
a�+1

) be as in

the de�nition of S. On the one hand, all of the gk
a
2 L!+!(�) by Lemma 5.1.9;

in particular, b 2 Range(gk
a�+1

) � L!+!(� + !) � L!+!(�). But on the other, b 2
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Range(gk
a�+1

) �= L!+!(�+1)\V(!+k) and by de�nition of S, b =2 L!+!()\V(!+j)

for all  < �+ 1 and all j 2 !. Hence, b =2 L!+!(�), a contradiction.

We can now formulate our statement \V = L!+!". This statement must insure

the existence of the gk
a

isomorphisms from Proposition 5.1.9. Note in the following

formula that the predicate P (s; w) refers to the �xed recursive isomorphism � from

page 64. So we have \V = L!+!" ,

8 x9 y; f [Chyy(f)^WO(y) ^ 8 a 2 Field(y)8 k 2 !9 gk
a

[gk
a

is a function ^ dom(gk
a
) = Aa^

8 s 2 dom(gk
a
)[s 2 Aa ^ Fa(s) � k^

8 l � k[((l = 0 ^ Fa(s) = l) ) 9w(P (s; w) ^ gk
a
(s) = w))^

((l > 0 ^ Fa(s) = l) ) 9w(z 2 w,

9 t 2 Aa(Fa(t) = l � 1 ^ gl�1
a

(t) = z ^ tEas)))]]]

^ 9 a 2 Field(y)9 k 2 !(x 2 Range(gk
a
))]

Theorem 5.1.13. For every additively closed �, if L!+!(�) is pure and L!+!(�) 6=

L!+!(�+ 1), then L!+!(�) j= V = L!+!.

Proof. Immediate from Proposition 5.1.12

5.2 Consequences of V = L!+!

Our goal for this section is the same as in Section 4.2.

5.2.1 Transitive models of V = L!+!

Recall from Section 4.2.1 the following de�nition: given a structure M , de�ne the

ordinal of M , denoted o(M), to be the least ordinal not in M . Clearly, this de�nition

of o(M) no longer suÆces as o(L!+!) = ! + !. So we rede�ne o(M) as follows: let

o(M) be the least ordinal not witnessed by some well-order in M . To insure that

o(M) is addditively closed, let Q5 be the conjunction of the sentence Q4 and the

sentence 8 x; n9 y[(WO(x) ^ n 2 !) ) WO(y) ^ y = x � n]. Note that when we
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write \y = x � n" we mean y = f(i; a) : 0 � i < n ^ a 2 Field(x)g with the reverse

lexicographic ordering.

Proposition 5.2.1. For all transitive A such that A j= V = L!+! ^ Q5 and for all

x 2 A, [A j= 9 f(Chyx(f))^WO(x)] )WO(x), then 9�(� is additively closed ^A =

L!+!(�)).

Proof. Let A be as above and let � = o(A). First, to show that � is additively closed,

let � < �. By de�nition, there is x 2 A of order type �. As A j= Q5, let y 2 A be

such that y = x�2. So y is a well order of order type ��2. Thus, ��2 < � = o(A).

We claim that A = L!+!(o(A)). Suppose x 2 A. As A j= V = L!+!, there

exist y; f 2 A such that A j= Chyy(f) ^ x 2 f(y). As [A j= 9 f(Chyx(f))] )

WO(x), we have WO(y). Moreover, as A j= Q4, it follows from Lemma 5.1.7 that

Chyy(f). Proposition 5.1.8 guarantees, for each a 2 Field(y), the existence of unique

isomorphisms gya : (Aya
; Eya

) ! (L!+!(�ya);2). So it follows that x 2 L!+!(�ya), for

some �ya < o(A). Thus, A � L!+!(o(A)). The reverse inclusion follows by similar

reasoning.

5.2.2 AC in L!+!

Theorem 5.2.2. There is a formula P5(x; y) such that for pure L!+!(�), � additively

closed, and L!+!(�) 6= L!+!(� + 1) we have WO((L!+!(�); R)) where R = f(a; b) :

L!+!(�) j= P5(a; b)g.

Proof. Rather than write out P5 (it is similar to �(x; y) from page 39), we simply

de�ne the R.

R = f(gk
y
(a); gp

y
(b)) :9 x; y; f [WO(x) ^ f 2 L!+!(�) ^ Chyx(f)^

y 2 Field(x) ^ a; b 2 Ay ^ a <y b ^ Fy(a) = k ^ Fy(b) = p]g

Note that the gk
y
; gp

y
depend on x; f as in Lemma 5.1.9.

Corollary 5.2.3. L!+! j= ZC
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5.2.3 Skolem functions and Skolem hulls

Let L!+!(�) be pure, � additively closed, L!+!(�) 6= L!+!(� + 1), and recall from

Section 4.2.3 the de�nition of a Skolem function for 'n over a structure A. In light of

the uniformly L!+!(�)-de�nable well-ordering of L!+!(�) given in Theorem 5.2.2, it

should be clear that a formula analogous to �(n; x1; : : : ; xk; y) � \fn(x1; : : : ; xk) = y"

(p. 41) can be de�ned for L!+!(�). (This uses the recursive enumeration of all

LST formulas (p. 64) and the satisfaction relation for L!+!(�) from Lemma 5.1.5.)

Consequently, any �nite set of Skolem functions over L!+!(�) is L!+!(�)-de�nable.

Given x � L!+!(�) and a �nite set of Skolem functions f1; : : : ; fN over L!+!(�), we

form the Skolem hullH of x inside L!+!(�) under f1; : : : ; fN similarly to the de�nition

of H on page 42 by replacing ! with x.

Given a set x � L!+!(�), de�ne the transitive closure of x, denoted TC(x), by

recursion on n

[0

x = x[n+1

x =
[�[n

x
�

TC(x) =
[n[n

x : n 2 !
o

In the following lemma, we form the Skolem hull of TC(x) inside L!+!(�) under a

�nite set of Skolem functions f1; : : : ; fN . Note that by choosing N large enough (N >

pV = L!+! ^ Q5q), we have the L!+!(�) analog of Lemma 4.2.4, the absoluteness

for H;L!+!(�) of the formula � de�ning the Skolem functions. Having de�ned H, we

can de�ne the function G, the analog of our surjection F : ! ! H. However, in this

case, we de�ne G : !�TC(x) ! H, and insist that it need only be a partial function.

In the de�nition of G, we use the same coding of �nite sequences of integers (p. 43.)

Lemma 5.2.4. Let L!+!(�) be pure, � additively closed, L!+!(�) 6= L!+!(� + 1),

and x 2 L!+!(� + 1) where x = fa : L!+!(�) j= '(a)g. Then, there is a transitive

A � L!+!(�) such that

1. (A;2) j= Q5 ^V = L!+!
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2. TC(x) � A ^ 8 a 2 x[(A;2) j= '(a) , (L!+!(�);2) j= '(a)]

3. (A;2) j= 8 x[9 f(Chyx(f)) )WO(x)]

4. for all y 2 A, (A;2) j= WO(x) , (L!+!(�);2) j= WO(x) and (A;2) j=

9 f(Chyy(f)) , (L!+!(�);2) j= 9 f(Chyy(f))

5. there is a partial onto function G : !�TC(x)<! ! A and a formula P6(a; b; c; x)

such that G(a; b) = c, (L!+!(�);2) j= P6(a; b; c; x)

Proof. Let � and x 2 L!+!(�) be as above, say x = fa : L!+!(�) j= '(a)g. Form the

Skolem hull H � L!+!(�) of TC(x) under the Skolem functions f1; : : : ; fN for the

�nite number of formulas needed. Now de�ne the partial function G : !�TC(x)<! !

H recursively as follows:

G(a;~b) =

8>>>>>><
>>>>>>:

~bi if a = ha0; a1i, a0 = 0, and a1 = 1;

fi(x1; : : : ; xl) if a = ha0; : : : ; ali, a0 = k, l = Ar(k), and xi = G(a;~b)

for 1 � i � N and

; if a is not one of the above forms.

By inspection, G is onto. The formula P6(a; b; c; x) is de�ned similar to the formula

�(n; x) from Lemma 4.2.5 and is absolute for H;L!+!(�).

Finally, collapse H to A � L!+!(�) via the isomorphism � : H ! A given by

�(z) = f�(y) : y 2 zg. Note �rst that � is L!+!(�)-de�nable. Next, A is evidently

transitive and preserves TC(x). Thus, our choice of N large insures that 1, 2, and 3

are satis�ed. Moreover, this isomorphism clearly preserves well-orderings so that 4 is

satis�ed. As H
�

�= A, G is onto A and the absoluteness of P6 is preserved, satisfying

5.

Lemma 5.2.5. Let L!+!(�) be pure, � additively closed, L!+!(�) 6= L!+!(� + 1).

Then there is a partial function G and P6 such that 5. holds in Lemma 5.2.4 and

A = L!+!(�).
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Proof. Let � be as above. Because L!+!(�) 6= L!+!(� + 1), there is w 2 L!+!(� +

1) r L!+!(�), not necessarily parameter-free. Using the well-ordering given by the

formula P5 in Lemma 5.2.2, order the set of tuples of parameters that de�ne a new

set in L!+!(�+1)rL!+!(�), then de�ne a parameter-free x � L!+!(�), x =2 L!+!(�)

via x = fa : L!+!(�) j= '(a)g by choosing the least tuple of parameters. Note that

x is L!+!(�)-de�nable arguing similarly as in Lemma 4.3.2.

Now let A � L!+!(�) be as in Lemma 5.2.4. Note that since A j= V = L!+!,

A = L!+!(�), for some additively closed �, by Proposition 5.2.1. By the absoluteness

of ' for A;L!+!(�), x 2 L!+!(� + 1). But also, x =2 L!+!(�), so � � �. Thus,

L!+!(�) � L!+!(�), and hence, � � �. Now suppose z 2 A = L!+!(�). Since

A j= V = L!+!, A j= 9 f; y(Chyy(f)^z 2 f(y)). AsH �= A, H j= 9 f; y(Chyy(f)^z 2

f(y)). Let f; y 2 H � L!+!(�) be as such. By 3. of Lemma 5.2.4, H j= WO(y). So

by 4. of Lemma 5.2.4, L!+!(�) j= WO(y). Similarly, L!+!(�) j= 9 f(Chyy(f)). So

L!+!(�) j= 9 f; y(Chyy(f) ^ z 2 f(y)). Thus, z 2 L!+!(�).

Up to this point, all of our results have been predicated on the purity of the

L!+!(�). The next proposition shows that if a new set gets constructed at L!+!(�+1),

then L!+!(�+ 1) is pure.

Proposition 5.2.6. Let L!+!(�) be pure, � additively closed, L!+!(�) 6= L!+!(�+1).

Then L!+!(�+ 1) is pure.

Proof. Let � be as above. As L!+!(�) is pure, it is enough to show that there is a

well order (A;R) 2 L!+!(�) of order type �.

Since L!+!(�) 6= L!+!(�+ 1), there is y 2 L!+!(�+ 1)rL!+!(�). We �rst claim

that there is a parameter-free x 2 L!+!(�+ 1)r L!+!(�). Fix k 2 !, the least arity

of a tuple of parameters from L!+!(�) that de�ne some x 2 L!+!(� + 1)r L!+!(�)

(y witnesses the existence of at least one such tuple), and �x n 2 ! the least forumla

'n that de�nes some x 2 L!+!(� + 1) r L!+!(�) from some k-tuple of parameters.

Now de�ne y = fz 2 L!+!(�) :  (z)g, where  (z) is the formula

9~b[~b is a k-tuple ^ 'n(z;~b)^

:9w8 p(p 2 w, 'n(p;~b)) ^ 8~c(P5(~c;~b) ) 9w8 p(p 2 w, 'n(p;~c)))]
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and P5 is as in Theorem 5.2.2. Clearly, y is a parameter-free L!+!(�)-de�nable subset

of L!+!(�) and y =2 L!+!(�). So by Lemma 5.2.4 form the hull H � L!+!(�) of TC(y)

under a �nite number of Skolem functions, and let A � L!+!(�) be the transitive

collapse of H. By Lemma 5.2.5, A = L!+!(�). Let G : !�TC(y) ! A be the partial

surjection guaranteed by Lemma 5.2.5, and let P6 be the formula also from Lemma

5.2.5. Let B = Dom(G) and de�ne a binary relation R on B by

(n1; x1)R(n2; x2) , L!+!(�) j= P5(G(n1; x1); G(n2; x2))

Clearly, (B;R) 2 L!+!(�). Moreover, (B;R) has order type at least �. If (B;R) has

order type < �, then the initial segment of (B;R) of length � proves the proposition.

The next proposition shows that everything is pure.

Proposition 5.2.7. If L!+!(�) 6= L!+!(�+1) for ! < �, then L!+!(�) and L!+!(�+

1) are pure.

Proof. Let � > ! be such that L!+!(�) 6= L!+!(�+1). If � is additively closed, then

the purity of L!+!(� + 1) follows from Proposition 5.2.6. If � not additively closed,

then let � < � be the largest additively closed limit ordinal below �. So � = (� �n)+

for some  < �. Since L!+!(�+ 1) is pure, L!+!(�+ 1) contains well orders of length

� and . Build a well order of length � in the usual way. Clearly, this well-order is

in L!+!(�).

The following proposition insures that the L!+! construction ends at a suÆciently

large ordinal.

Proposition 5.2.8. If L!+!(�) 6= L!+!(�+ 1), then L!+!(� � !) 6= L!+!(� � ! + 1).

Proof. Suppose L!+!(�) 6= L!+!(� + 1), but L!+!(� � !) = L!+!(� � ! + 1). By

Proposition 5.2.7, there is a well order of length � in L!+!(� + 1). So we have y 2

L!+!(��!) a well order of length (��!)+1. As (L!+!(��!);2) j= Z, Proposition 5.1.9

holds in L!+!(� �!). So there must be f 2 L!+!(� �!) such that Chyy(f). That is, f
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codes the entire model since L!+!(��!) = L!+!(��!+1). So, TC(f) 2 L!+!(��!) and

thus, L!+!(� �!) must satisfy that every set has smaller cardinality than TC(f). But

as L!+!(� �!) models the power set axiom and Cantor's theorem holds in L!+!(� �!),

this is a contradiction.

5.3 The theory of L!+!(�)

Our �rst lemma shows that there is an L!+!(�)-de�nable map from ! onto L!+!(�)

Lemma 5.3.1. Let x 2 !! \ L!+!. Then there is a limit � such that L!+!(�) 6=

L!+!(� + 1) and a formula P7(n; x; a) such that L!+!(�) j= 8 x9!n 2 !(P7(x; n; a))

for some a 2 L!+!(�).

Proof.

The next lemma shows that we can eliminate the parameter from the formula P7.

Lemma 5.3.2. Let x 2 !! \ L!+!. Then there is a limit � such that L!+!(�) 6=

L!+!(�+ 1) and a formula P8(n; x) such that L!+!(�) j= 8 x9!n 2 !(P8(x; n)).

Proof.

Recall that given a structure A, Th(A) denotes the theory of A, the set of all

sentences true in A.

Lemma 5.3.3. Suppose P9(n; x) is a formula such that (L!+!(�);2) j= 8 x9!n 2

!(P9(x; n)). Then Th(L!+!(�)) 2 L!+!(�+ 2).

Proof.

Given a structure (A;E), n 2 ! and x 2 A, we write Def((A;E); n; x) if 'n is

a formula of exactly one free variable, and x is the unique element of A such that

(A;E) j= 'n(x), and furthermore n is the least integer with this property that x is

the unique element of A such that (A;E) j= 'n(x).

Theorem 5.3.4. For every x 2 !! \ L!+!, there is a limit ordinal � and formulas

 1(v0; v1);  2(v0; v1);  3(v0; v1) whose free variables are shown such that
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1. x 2 L!+!(�),

2. for all y 2 L!+!(�), there is n 2 ! such that Def((L!+!(�);2); n; y), for � < �,

3. Th(L!+!(�);2) 2 L!+!(�+ 2)

4. (L!+!;2) j=  1(v0; v1) , �(v0) < �(v1),

5. (L!+!;2) j=  2(v0; v1) , �(v0) = �(v1), and

6. (L!+!;2) j=  3(v0; v1) , v1 = �V(v0).

5.4 The non-determined �0
!+2 set

We conclude our �nal chapter with the construction of a �0
!+2 set of degrees which

neither contains nor omits a cone. The reals in these degrees are the theories of

structures called towered structures which are similar to those in Section 4.4 except

that a towered structure retreats from full well-foundedness to �0
!

well-foundedness

(clause 11 of the de�nition to follow). Note that the formulas  1;  2;  3 occurring in

the following de�nition are as in Theorem 5.3.4.

De�nition 1. Given A � !, A 6= ; and a binary relation E on A, let

<= f(x; y) 2 A� A :  
(A;E)
1 (x; y)g;

�= f(x; y) 2 A� A :  
(A;E)
2 (x; y)g;

F = f(x; n) 2 A� ! :  
(A;E)
3 (x; n)g:

Then (A;E) is a towered structure provided that:

1. � is an equivalence relation on A,

2. < is a strict linear order preserving � and having no maximal element

3. A0 = fi 2 A : 8 j 2 A(j � i)g and E0 = E � A0,

4. 8 x 2 A 9 !n 2 ![(x 2 A0 ) F (x) = �0) ^ F (x) = �n],
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5. 8 x 2 ArA09n 2 ![F (x) = �n^(8 y 2 A 9m 2 ! (yEx) F (y) = �m^m <I n))]

where <I is the usual order on !,

6. 8 x; y 2 A [xEy ) x < y],

7. (A;E) models Extensionality where the 2 relation is interpreted as E,

8. 8 i 2 Ar A0 [Def((A;E); i
2
; i)],

9. 8 x; z 2 A[z 2 FODO(Ix; E � Ix) , (z � Ix ^

9 j[(j < x _ j � x) ^ z = fk : kEjg])], where Ix = fi : i < xg,

10. Th(A;E) 2 FODO(FODO((A;E));2), and

11. for every �0
!
relation Q(n; f), if 9n 2 A(:Q(n; Th(A;E)) then

9n 2 A [:Q(n; Th(A;E)) ^ 8m < n(Q(m; Th(A;E)))]

Now de�ne T as follows:

T (y) , 9 x[x is a towered structure ^ y = Th(x)]:

At �rst, the initial existential real quanti�er seems to make T 2 �1
1. The next lemma

shows that we can eliminate this quanti�er.

Lemma 5.4.1. For all y 2 T , if x 2 2! is such that y = Th(!;Ex) for some towered

structure (!;Ex), then x �T y.

Proof. The proof is similar to the proof of Lemma 4.4.4. Clauses 3 and 9 in the

de�nition of a towered structure provide the necessary de�nability conditions.

Again, as in Lemma 4.4.4, it is clear that there is one algorithm for all towered

structures (!;Ex) that computes x from Th(!;Ex). We �x an index of this algorithm,

say e. So, we reformulate T : T (y) , f y
e

codes a towered structure ^ y = Th(f y
e
).

Lemma 5.4.2. T 2 �0
!+2
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Proof. Let y 2 2!. We show that

T (y) , T1(y) ^ T2(y)

, y = Th(f y
e
) ^ f y

e
codes a towered structure 2 �0

!+2

by showing that T1 2 �0
!
(y) and T2 2 �0

!+2(y).

To see that T1 2 �0
!
(y), observe that

\y 2 Th(f y
e
)" , 8 k[k 2 y , (!;Ef

y

e
) j= 'k]

Let k 2 !. \k 2 y" is evidently �0
1(y). Recall Lemma 4.4.3 which insures that if 'k

is �n(k)(�n(k)), then fx 2 2! : (!;Ex) j= 'kg 2 �0
n(k)(�

0
n(k)). Thus it follows that

(!;Ef
y

e
) j= 'k 2 �0

n(k)(y)(�0
n(k)(y)). Thus, as k ranges over !, n(k) increases without

bound. Hence, T1 2 �0
!
(y).

Next, we claim that T2(y) 2 �0
!+2(y). Speci�cally, clauses 1-9 are arithmetic,

clause 10 is �0
!
(y) and clause 11 is �0

!+2(y).

It is easy to verify that clauses 1-7 are �0
n
(y) for some n. Given i 2 !, it should

be clear from Lemma 5.4.1 that Def((A;E); i
2
; i) is �0

1(y), because we can consult

y to verify whether or not pDef((A;E); i
2
; i)q 2 y. Consequently, clause 8 is �0

1(y).

As for clause 9, let x; z 2 !. Recall that Ix = fm :  1(m; x)g. The formula \z 2

FODO(Ix; Ef
y

e
� Ix)" abbreviates the formula 9n; z1; : : : ; zk 8m[m 2 z , ((Ix; Ef

y

e
�

Ix) j= 'n(m; z1; : : : ; zk))]. Now there is a recursive procedure that, given a formula

'n, produces the relativization of 'n to (Ix; Ef
y

e
� Ix). Namely, replace each instance

of the 2 relation in 'n with the Ef
y

e
relation, and replace every unbound quanti�er

9 l with 9 l[ 1(l; x) ^ : : :]. Thus, z 2 FODO(Ix; Ef
y

e
� Ix) is �0

2(y). It easy to verify

that \z � Ix" is �0
1(y) and that 9 j[(j < x _ j � x) ^ z = fk : kEf

y

e
jg] is �0

2(y).

Consequently, clause 9 is �0
3(y).

Next, we claim that clause 10 is �0
!
. Observe that the formula

9n; z1; : : : ; zm8 k[k 2 y , (FODO((A;Ef
y

e
));2) j= 'n(k; z1: : : : ; zm)]
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faithfully represents clause 10. Let n; k 2 ! and z1; : : : ; zm 2 FODO((A;Ef
y

e
));2).

From our above argument for clause 9, it should be clear that each incidence of zi 2

FODO((A;Ef
y

e
));2) is arithmetic in y. Using the reasoning found in Lemma 4.4.5,

we claim that if 'n is �p(n)(�p(n)), then (FODO((A;Ef
y

e
));2) j= 'n(k; z1: : : : ; zm) is

�0
p(n)(y)(�0

p(n)(y)). Thus, 8 k[k 2 y , (FODO((A;Ef
y

e
));2) j= 'n(k; z1: : : : ; zm)] is

�0
p(n)+1(y). As n ranges over !, p(n) increases without bound. Thus, clause 10 is

�0
!
(y).

Finally, we claim that clause 11 is �0
!+2. Observe that the formula

8 k[k codes a �0
!

relation ^ [9n(:'k(n; Th(A;E))) )

9n(:'k(n; Th(A;E)) ^ 8m < n('k(m; Th(A;E))))]]

faithfully represents clause 11. Counting quanti�ers, it is easy to see that this is

�0
!+2.

Recall that at this point in Section 4.4, we have Lemma 4.4.7 which assigns a

unique limit ordinal to each structure. This is possible because of each structure's

well-foundedness, a luxury we lack in towered structures. We must therefore use

some other way to compare structures. Our next proposition is the main idea in that

direction and shows that if two towered structures are \close" enough, then either

they are isomorphic or one is isomorphic to an initial segment of the other. Note that

for x; y 2 !!, the join of x and y, denoted x� y, is given by:

(x� y)(k) =

8<
:x(n) if k = 2n;

y(n) if k = 2n + 1.

Proposition 5.4.3. If (A1; E1); (A2; E2) are towered structures such that

Th(A1; E1) �T J(Th(A2; E2)) and Th(A2; E2) �T J(Th(A1; E1));

then either

1. (A1; E1) �= (A2; E2), or
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2. (A1; E1) �= (Ix; E2 � x) for some x 2 A2 where Ix = fy 2 A2 : y <2 xg, or

3. (A2; E2) �= (Ix; E1 � x) for some x 2 A1 where Ix = fy 2 A1 : y <1 xg.

Proof. Let (A1; E1); (A2; E2) be towered structures as above where <i;�i; Fi refer to

(Ai; Ei) and Ti = Th(Ai; Ei) for i = 1; 2. We build a partial map from (A1; E1) to

(A2; E2) inductively on the V(!+k) rank of the elements of A1; A2. Then we prove by

induction on the rank of the elements of A1; A2 that either the map is an isomorphism

or the map is an isomorphism from one structure to an initial segment of the other.

De�ne P (n; i; j) by recursion on n as follows:

P (0; i; j) , i 2 A0 ^ i = j

P (n+ 1; i; j) , F1(i) = F2(j) = n+ 1^

8a[aE1i) 9 b; k (bE2j ^ P (k; a; b) ^ F1(a) = F2(b) = �k)]^

8b[bE2j ) 9 a; k (aE1i ^ P (k; a; b) ^ F1(a) = F2(b) = �k)]

It is clear that for each k, P (k; a; b) uniformly de�nes a �0
2k(T1 � T2) relation.

Consequently, uniformly for each k, P (k; a; b) 2 �0
2k+1(T1) and P (k; a; b) 2 �0

2k+1(T2).

Next, we show by induction on n that for each i 2 A1, there is at most one

j 2 A2 such that P (n; i; j). The case n = 0 is trivial because (A1 \ A
0; E1 � E0) =

(A2 \ A
0; E2 � E0). Now suppose that for all k � n and for all i 2 A1 there is at

most one j 2 A2 such that P (k; i; j). Let i 2 A1, j; j
0 2 A2 be such that P (n+ 1; i; j)

and P (n + 1; i; j 0). We claim that j = j 0. Suppose b 2 A2 is such that bE2j. By

Clause 5 of the de�nition of a towered structure, F2(b) = �k for some k � n. By the

de�nition of P , there is a 2 A1 such that aE1i and P (k; a; b). Since P (n+ 1; i; j 0), for

some b0 2 A2, b
0E2j

0 and P (k; a; b0). But by the induction hypothesis, b = b0. Thus,

bE2j
0. A symmetric argument shows that 8 b[bE2j

0 ) bE2j]. Since (A2; E2) models

Extensionality, we must have j = j 0. A similar argument shows that for each j 2 A2,

there is at most one i 2 A1 such that P (n; i; j). Consequently, P de�nes a partial

isomorphism from A1 to A2. Let � be the partial isomorphism from A1 to A2 induced

by the predicate P (n; i; j).
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Now consider the following K � A1:

i 2 K , i 2 dom�^

8 j; a; b [(�(i) = a ^ i �1 j) ) (j 2 dom� ^ (�(j) = b) a �2 b))]^

8 j; a; b [(�(i) = a ^ a �2 b) ) (b 2 range � ^ (�(j) = b) i �1 j))]^

8 j; a; b [(�(i) = a ^ b <2 a) ) (b 2 range � ^ (�(j) = b) j <1 i))]

We claim that K 2 �0
!
(T1). Observe that

\i 2 dom�" , 9n; j P (n; i; j) , 8n[ 3(i; n) ) 9 j P (n; i; j)]

\j 2 range�" , 9n; i P (n; i; j) , 8n[ 3(j; n) ) 9 i P (n; i; j)]

It follows that dom (�); range (�) 2 �0
!
(T1). The presence of the universal quanti�ers

makes K 2 �0
!
(T1).

We use K to argue by cases that either � is an isomorphism between (A1; E1) and

(A2; E2), or � is a partial isomorphism between one towered structure and an initial

segment of the other. Recall that for x 2 Ai, Ix = fz 2 Ai : z <i xg, i = 1; 2.

Case 1: A1 rK = ; and 8 a 2 A2 9n; i P (n; i; a).

Then dom (�) = A1 and range (�) = A2. Hence, (A1; E1) �= (A2; E2) via �.

Case 2: A1 rK = ; and 9 a 2 A2 8n; i (:P (n; i; a)).

Again dom (�) = A1. Let L = fa 2 A2 : 8n; i (:P (n; i; a))g. First, we claim that

L �T J!(T2). Let a 2 A1 be given. We can compute F1(a) recursively in T1, say

F1(a) = n. Then for any a 2 A2, we can verify 8i (i <1 x ) :P (n; i; a)) recursively

in J2n+1(T2). Thus, L �T J
!(T2).

Now L 6= ; by assumption. Thus, by clause 11 of the de�nition of a towered

structure, there is y 2 A2 such that 8n; i (:P (n; i; y))^8 a <2 y (9n; i P (n; i; a)). We

claim that (A1; E1)
�

�= (Iy; E2 � Iy). Suppose a 2 A2 is such that 9n; i P (n; i; a). Note

that i 2 K by the assumption that A1 = K. Thus, if a �2 y, then there would be

r 2 ! and d 2 A1 such that d �1 i and P (r; d; y), violating the de�nition of y. Similar

reasoning shows that if y <2 a then there exist r 2 ! and d 2 A1 such that d <1 i

such that P (r; d; y), again, a contradiction. Consequently, 8 a 2 A2(9n; i P (n; i; a) )
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a <2 y), and thus range (�) = Iy.

Case 3: A1 rK 6= ;.

So there is x 2 A1rK. Because K 2 �0
!
(T1), there is a <1-least such x by Clause

11 of the de�nition of a towered structure. Let x be as such. Note that x =2 A0 as

A0 � K. Now consider L = fa 2 A2 : 8n; i (i <1 x) (:P (n; i; a)))g: There are two

cases: L = ; and L 6= ;.

If L = ;, then (Ix; E1 � Ix) �= (A2; E2) via ��1.

Suppose now that L 6= ;; we will show that x 2 K, a contradiction. Let

y 2 L be the <2-least element of L; again, clause 11 of the de�nition of a tow-

ered structure insures that such a y exists. Hence, 8n; i (i <1 x ) :P (n; i; y)) and

8a <2 y 9n; i (i <1 x ^ P (n; i; a)): Thus, (Ix; E1 � Ix) �= (Iy; E2 � Iy) via �. To

show x 2 K, it is enough to show that 8 i �1 x(9n; a (P (n; i; a) ^ a �2 y)) and

8 a �2 y(9n; i (P (n; i; a) ^ i �1 x)). Let i 2 A1 be such that i �1 x; let n 2 !

be such that F1(i) = n+ 1. By clause 6 of the de�nition of a towered structure,

fj 2 A1 : jE1ig 2 FODO(Ix; E1 � Ix): So let '(z0; z1; : : : ; zl) be a formula and let

j1; : : : ; jl 2 A1 be such that

fj : jE1ig = fj : (Ix; E1 � Ix) j= '(j; j1; : : : ; jl)g:

Since � is an isomorphism between (Ix; E1 � Ix) and (Iy; E2 � Iy), let a 2 A2 be the

unique element such that

fb : bE2ag , fb : (Iy; E2 � Iy) j= '(b; �(j1); : : : ; �(jl))g

again, by Clause 6 of the de�nition of a towered structure. Moreover, as i =2 Ix, it

follows that a =2 Iy and thus, a �2 y. Since a 2 FODO(Iy; E2 � Iy) by clause 6 of the

de�nition of a towered structure, a �2 y. Hence, P (n+1; i; a). A symmetric argument

shows that 8 a �2 y(9n; i (P (n; i; a) ^ i �1 x)). Thus, x 2 K, a contradiction. Thus,

L = ;.

The next proposition is in the same spirit as Proposition 4.4.8.
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Proposition 5.4.4. If (A1; E1); (A2; E2) are towered structures such that for some

y 2 A2, (A1; E1) �= (Iy; E2 � Iy), then J(Th(A1; E1)) <T Th(A2; E2):

Proof. Let (A1; E1),(A2:E2) be towered structures as above where <i;�i refer to

(Ai; Ei) and Ti = Th(Ai; Ei) for i = 1; 2. Let x 2 A2 be such that (A1; E1) �= (Ix; E2 �

Ix). We observe �rst that since <2 has no largest element, for any a 2 A2, we have

fb 2 A2 : a <2 bg 6= ;. So let y1 2 A2 be any <2-least element of fy 2 A2 : x <2 yg; we

are assured that such a y1 exists by clause 11 of the de�nition of a towered structure.

By the same reasoning, let y2 2 A2 be any <2-least element of fy 2 A2 : y1 <2 yg.

Now de�ne y � A2 as follows:

zE2y , 9 k[z = �k ^ (Ix; E2 � Ix) j= 'k]:

First, since (A1; E1) �= (Ix; E2 � Ix) and since (A1; E1) and (A2; E2) are identical on

A0, it is clear that y is recursively isomorphic to T1. Moreover, it follows from clause

10 of the de�nition of a towered structure that y �2 y2.

Next, note that as x; y 2 A2 r A0, there exist i; j 2 ! such that

Def((A2; E2); i; x) and Def((A2; E2); j; y);

by clause 9 of the de�nition of a towered structure. Let i; j be as such. Finally, we

observe that (J2(T1))(k) = T2(p kq) where  k is the sentence

9 z1; z2['i(z1) ^ k codes a �0
2 formula of on free variable ^ 'j(z2) ^ '

0

k
(z2)]

where '0
k
(v0) is the formula 'k(v0) modi�ed as follows: every 9 a is replaced with

9 a(\a is an integer : : :); likewise, every 8 b is replaced with 8 a(\a is an integer : : :);

every instance of \n 2 y" is replaced with nE1y; and every instance of \n =2 y is

replaced with :nE1y. Thus, J2(T1) �T T2. Since J(T1) <T J2(T1), it follows that

J(T1) <T T2.

We can now improve Proposition 5.4.3 with Proposition 5.4.4; if two towered

structures are \close" enough, they are identical.
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Proposition 5.4.5. If (A1; E1); (A2; E2) are towered structures such that

Th(A1; E1) �T J(Th(A2; E2)) and Th(A2; E2) �T J(Th(A1; E1));

then (A1; E1) = (A2; E2).

Proof. Let (A1; E1) and (A2; E2) be as above where Ti = Th(Ai; Ei) for i = 1; 2. By

Proposition 5.4.3, it follows either that (A1; E1) and (A2; E2) are isomorphic or that

one is isomorphic to an initial segment of the other. If (A1; E1) �= (Ix; E2 � Ix) for

some x 2 A2, then by assumptions and by Proposition 5.4.4 we would have T2 �T

J(T1) <T T2, clearly a contradiction. A symmetric argument shows that if (A2; E2)

is isomorphic to an initial segment of (A1; E1), a similar contradiction is reached.

Thus, we must have (A1; E1) �= (A2; E2) for some isomorphism �, and consequently,

T1 = T2. We claim that � must be the identity map. Both structures are clearly

isomorphic on the odd integers, because they both are (A0; E0) on the odd integers.

Now suppose n = 2j and m = 2k for some j; k 2 ! and that �(n) = m. Suppose

j < k. By Clause 9 of the de�nition of a towered structure, Def((A1; E1); j; n) and

Def((A2; E2); k;m). But, � an isomorphism implies that m is also de�nable from j

in (A2; E2), contradicting the minimality of k from the de�nition of Def . A similar

contradiction occurs if j > k. It follows that j = k and hence, for all k, �(2k) = 2k.

Thus, � is the identity map.

Lemma 5.4.6. If Y � 2! is such that Y 2 �0
!+2, then Y \ L!+! 2 �0

!+2.

Proof. Standard absoluteness argument.

Corollary 5.4.7. T \ L!+! 2 L!+! and T \ L!+! 2 �0
!+2.

Proof. Follows immediately from Lemmas 5.4.2 and 5.4.6.

The next theorem is analogous to Theorem 4.4.14 : T does not omit any cone.

Theorem 5.4.8. For all x 2 2! \ L!+!, there is x0 2 T \ L!+! such that x �T x
0.
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Proof. Let x 2 2!\L!+!. Choose � to be a limit ordinal in accordance with Theorem

5.3.4. We will show that there is a towered structure (A;E) such that (A;E) �=

(L!+!(�);2). First, we de�ne a map g from L!+!(�) to !. There are two cases.

Case 1: L!+!(�) \ V (!). Take g � V (!) to be the �xed isomorphism from

(V (!);2) to (A0; E0).

Case 2: L!+!(�)rV (!). Suppose y 2 L!+!(�)rV (!). Then by Theorem 5.3.4,

there is n 2 ! such that Def((L!+!(�)); n; y). So de�ne g(y) = 2n.

Now let A = Range(g) and let E be the relation on induced by g on A. Then

it is clear that (A;E)
g

�= (L!+!(�);2). As (L!+!(�);2) easily ful�lls clauses 1-10

of the de�nition of a towered structure, so does (A;E). Moreover, < is a well-

founded relation on (L!+!(�);2). Thus, (A;E) ful�lls clause 11 of the de�nition of a

towered structure, and hence is a towered structure. Letting x0 = Th(A;E), we have

x0 2 T \ L!+! such that x �T x
0.

The next theorem is analogous to Theorem 4.4.13 : T does not contain any cone.

Theorem 5.4.9. For all x 2 2! \ L!+!, there is x0 such that x �T x0 and for all

y 2 2!, if y =T x
0, then x0 2 (2! r T ) \ L!+!.

Proof. Let x 2 2! \ L!+!. Then by Theorem 5.4.8, there is z 2 T \ L!+! such that

x �T z. We claim that J(z), the jump of z, proves the theorem. Since z 2 T , let

(A;E) be a towered structure such that z = Th(A;E). It is clear that J(z) 2 L!+!,

as z 2 L!+!. Moreover, for all y =T J(z), y 2 L!+!. Now suppose that y 2 T is such

that y =T J(z). That is, let (A0; E 0) be a towered structure such that y = Th(A0; E 0).

Now y �T J(z), so that y = Th(A0; E 0) �T J(Th(A;E)). But also, z �T J(J(z)),

thus, Th(A;E) �T J(Th(A0; E 0). So by Proposition 5.4.5, (A;E) = (A0; E 0) and

hence z = Th(A;E) = Th(A0; E 0) = y =T J(z), clearly a contradiction.

We now de�ne A � D as follows: x 2 A, 9 y 2 T (x �T y).

Lemma 5.4.10. A \ L!+! 2 L!+! and A \ L!+! 2 �0
!+2.

Proof. Follows from Corollary 5.4.7.

Theorem 5.4.11. A does not contain any cone.
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Proof. Follows from Theorem 5.4.9

Theorem 5.4.12. A does not omit any cone.

Proof. Follows directly from Theorem 5.4.8

Theorem 5.4.13. ZC 0 Det(�0
!+2)

Proof. Take A and the contrapositive of Martin's Theorem.

95



BIBLIOGRAPHY

[Bar77] Jon Barwise (ed.), Handbook of mathematical logic, Studies in Logic and

the Foundations of Mathematics, North-Holland, Amsterdam, 1977.

[Bor21] Emile F. Borel, La th�eorie du jeu et les �equations int�egrales �a noyau

sym�etrique, C. R. Acad. Sci. Paris 173 (1921), 1304{1308.

[Bor24] , Sur les jeux o�u interviennent l'hasard et l'habilet�e des joueurs,

Theorie des probabilities, Hermann, Paris, 1924, pp. 204{224.

[Bor27] , Sur les syst�emes de formes lin�eaires �a d�eterminant sym�etrique

gauche et la th�eorie g�en�erale du jeu, C. R. Acad. Sci Paris 184 (1927),

52{54.

[Dav64] Morton Davis, In�nite games of perfect information, Ann. Math. Studies

52 (1964), 85{101.

[End77] Herbert B. Enderton, Elements of recursion theory, in Barwise [Bar77],

pp. 527{566.

[Fra21] Abraham Fraenkel, �Uber die Zermelosche Begr�undung der Mengenlehre,

Jahresbericht der Deutschen Mathematiker-Vereinigung (1921), no. 30, 97{

98.

[Fra22] , Zu den Grundlagen der Cantor-Zermeloschen Mengenlehre, Ann.

Math. 86 (1922), 230{237.

[Fri71] Harvey Friedman, Higher set theory and mathematical practice, Ann. Math.

Log. 2 (1971), no. 3, 325{357.

[GS53] David Gale and Frank M. Stewart, In�nite games with perfect information,

Ann. Math. Studies 2 (1953), no. 3, 245{266.

[Kec95] Alexander S. Kechris, Classical descriptive set theory, Graduate Texts in

Mathematics, vol. 156, Springer-Verlag, New York, 1995.

96



[Kun80] Kenneth Kunen, Set theory, North Holland Publishing Co., Amsterdam,

1980.

[Mar68] Donald A. Martin, The axiom of determinateness and reduction principles

in the analytical hierarchy, Bull. Amer. Math. Soc. 74 (1968), no. 4, 687{

689.

[Mar70] , Measurable cardinals and analytic games, Fund. Math. 66 (1970),

no. 4, 287{291.

[Mar75] , Borel determinacy, Ann. Math. 102 (1975), no. 2, 363{371.

[Mar77] , Descriptive set theory : Projective sets, in Barwise [Bar77], pp. 783{

815.

[Mar85] , A purely inductive proof of borel determinacy, Proc. Symp. Pure

Math. 42 (1985), 303{308.

[Mau81] R. Daniel Mauldin, The Scottish book, Birkh�auser, Boston, 1981.

[Mos80] Yiannis N. Moschovakis, Descriptive set theory, North Holland Publishing

Co., Amsterdam, 1980.

[MS62] Jan Mycielski and Hugo Steinhaus, A mathematical axiom contradicting the

axiom of choice, Bull. Acad. Polon. Sci., Math. 10 (1962), 1{3.

[M�S64] Jan Mycielski and Stanis law �Swierczkowski, On the lebesgue measurability

and the axiom of determinateness, Fund. Math. 54 (1964), 67{71.

[M�SZ56] Jan Mycielski, Stanis law �Swierczkowski, and A. Zieba, On in�nite positional

games, Bull. Acad. Polon. Sci. (1956), no. 4, 485{488.

[Myc64] Jan Mycielski, On the axiom of determinateness, Fund. Math. 53 (1964),

205{224.

97



[Myc92] , Games with perfect information, Handbook of Game Theory with

Economic Applications (Robert J. Aumann and Sergiu Hart, eds.), Hand-

books in Economics, vol. 11, North-Holland, Amsterdam, 1992, pp. 41{70.

[MZ55] Jan Mycielski and A. Zieba, On in�nite games, Bull. Acad. Polon. Sci. 3

(1955), 133{136.

[Oxt71] John C. Oxtoby, Measure and category, Graduate Texts in Mathematics,

vol. 2, Springer-Verlag, Berlin, 1971.

[Par72] Je�rey B. Paris, ZF ` �0
4 determinateness, Jour. Sym. Log. 37 (1972),

no. 4, 661{667.

[Sho67] Joseph R. Shoen�eld, Mathematical logic, Addison-Wesley, Reading, 1967.

[Sie24] Wac law Sierpinski, Sur la puissance des ensembles measurables, (b), Fund.

Math. 5 (1924), 166{171.

[Sko23] Thoralf Skolem, Einige Bemerkungen zur axiomatischen Begr�undung der

Mengenlehre, Matematikerkongressen i Helsingfors den 4-7 Juli 1922,

Den femte skandinaviska matematikerkongressen, Redog�orelse (Helsinki),

Akademiska-Bokhandeln, 1923, pp. 217{232.

[Ste25] Hugo Steinhaus, De�nicje potrzebne do teorii gier i po�scigu, Zlota My�sl

Akademicka (Lw�ow) 1 (1925), no. 1, 13{14 (Polish), English translation

available.

[Ste60] , De�nitions for a theory of games and pursuit, Naval Research Lo-

gistics Quarterly 7 (1960), 105{108 (English).

[Tel87] Rastislav Telg�arsky, Topological games: On the 50th anniversary of the

banach-mazur game, Rocky Mountain Journal of Mathematics 17 (1987),

no. 2, 227{276.

[Ula60] Stanis law M. Ulam, A collection of mathematical problems, Interscience,

New York, 1960.

98



[vN23] John von Neumann, Zur Einf�uhrung der trans�niten Zahlen, Acta Litter-

arum ac Scientiarum Regiae Universitatis Hungaricae Francisco-Josephinae,

Sectio Scientiarum Mathematicarum 1 (1923), 199{208.

[vN28] , Zur Theorie der Gesellschaftsspiele, Ann. Math. 100 (1928), 295{

320.

[vNM44] John von Neumann and Oskar Morgenstern, The theory of games and eco-

nomic behavior, third ed., Princeton, 1944.

[Wol55] Philip Wolfe, The strict determinateness of certain in�nite games, Pac.

Jour. Math. 5 (1955), 891{897.

[Zer08] Ernst Zermelo, Untersuchungen �uber die Grundlagen der Mengenlehre, Ann.

Math. 65 (1908), 261{281.

[Zer12] , Uber eine Anwendungen der Mengen lehre auf die Theorie des

Schachspiels, Proc. Fifth Congress of Math. 2 (1912), 501{504.

99




