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AN ADAPTIVE SYSTEM FOR PROCESS CONTROL

By C. L. Karr,' E. J. Gentry,2 and D. A. Stanley9

ABSTRACT

Researchers at the U.S. Bureau of Mines (USBM) have developed adaptive process control systems
in which genetic algorithms (GA's) are used to augment fuzzy logic controllers (FLC's). GA's are
search algorithms that rapidly locate near-optimum solutions to a wide spectrum of problems by loosely
modeling the search procedures of natural genetics. FLC's are rule-based systems that efficiently
manipulate a problem environment by modeling the "rule-of-thumb" strategy used in human decision-
making. Together, GA's and FLC's include all of the capabilities necessary to produce powerful, ef-
ficient, and robust adaptive control systems. To perform efficiently, such control systems require a
cont element to manipulate the problem environment, an analysis element to recognize changes in the
problem environment, and an adaptive element to adjust to the changes in the problem environment.
The control system also employs a computer simulation of the problem environment. Details of an
overall adaptive control system are discussed. A specific laboratory acid-base pH system is used to
demonstrate the ideas presented; all results are from the physical laboratory system and not from a
computer simulation.

'Mechanical engineer.
2Computer clerk (now with SEER Technology, Cary, NC).
;Supervisory research chemist.
Tuscaloosa Research Center, U.S. Bureau of Mines, Tuscaloosa, AL.
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INTRODUCTION

The need for efficient process control has never been
more important than it is today because of economic
stresses forced on industry by processes of increased
complexity and by intense competition in a world market.
No industry is immune to the cost savings necessary to
remain competitive; even traditional industries such as
mineral processing (1),4 chemical engineering (2), and
wastewater treatment (3) have been forced to implement
cost-cutting measures. Cost cutting generally requires the
implementation of emerging technology that is often more
application complex than established techniques. The
processes that result from the new tecimology often expe-
rience rapidly changing process dynamics. Such processes
prove difficult to control with conventional strategies,
because these strategies lack an effective means of adapt-
ing to changes in the problem environment. Furthermore,
the mathematical tools employed for process control can
be unduly complex even for simple systems.

Years of research have gone into the development of
both open- and closed-loop controllers, and this research
has yielded an entire field of study, the field of process
control. This field has produced a number of classical
process control techniques that result in very efficient non-
adaptive controllers, including industry standards such as
proportional-integral (PI), proportional-derivative (PD),
and proportional-integral-derivative (PID) controllers.
Details of these control systems have been well document-
ed and can be found in classical control theory texts such
as the one by Coughanowr and Koppel (4).

When used to manipulate systems characterized by rap-
idly changing process dynamics, conventional nonadaptive
feedback controllers have traditionally been tuned for the
worst case scenario to provide satisfactory performance
over all operating conditions (5). This approach often
yields sluggish response times or produces controllers that
generally perform poorly. To accommodate changing
process dynamics yet avoid sluggish response times, i.e., to
perform at an acceptable level, adaptive control systems
are needed that are capable of altering their approach to
process control according to the current state of the
process.

Early attempts at developing adaptive controllers merely
altered conventional nonadaptive control systems. For
instance, conventional PID controllers were made adaptive
using various strategies. Details of two such strategies
appear in articles by Astrom, and others (6) and by Clarke
and Gawthrop (7). Unfortunately, the severe demands
placed on control systems by industrial processes with

'Italic numbers in parentheses refer to items in the list of references
at the end of this report.

rapidly changing dynamics tax adaptive PID controllers to
their limit, thereby pointing to the need for innovative
techniques.

Modern technology in the form of high-speed comput-
ers and artificial intelligence (AI) has opened the door for
the development of control systems that adopt the ap-
proach to adaptive control used by humans, and perform
more efficiently and with more flexibility than other
systems designed to date. Two important tools that have
emerged from the field of Al are expert systems and ge-
netic algorithms. These tools can be used to augment
conventional control systems, but more significantly they
can be used to develop entirely new adaptive control sys-
tem designs.

Expert systems have become increasingly popular as
practical applications of Al. These rule-based systems
have performed as well as humans in several problem do-
mains (8); however, their lack of flexibility in representing
the subjective nature of human decision-making limits
their performance in process control problems. Expert
systems can be provided with the means to model the
uncertainty inherent in human decision-making via fuzzy
set theory (9). Zadeh developed fuzzy set theory in an
attempt to circumvent the complexity associated with more
traditional mathematical tools required in control theory.
In fuzzy set theory, abstract or subjective concepts are
represented with fuzzy linguistic vaiables, terms like "very
high" and "not quite low." Fuzzy linguistic variables have
been incorporated into expert systems to form fuzzy logic
controllers (FLC's) which are being used successfully in an
increasing number of application areas (10-11). Like ex-
pert systems, FLC's include rules to direct the decision-
making process, but they also include mwmbmhip fi& -
lions that convert linguistic variables into the precise
numeric values computers require for the implementation
of a control strategy. The rule set is composed of
production rules (rules of the form IF <condition > THEN
<action>) and can be gleaned from a human expert's
knowledge, which has been gained through the personal
experience of working with the problem environment. The
membership functions are defined to represent the expert's
understanding of the fuzzy linguistic variables and to pro-
vide these fuzzy variables with concrete meaning. It is
often difficult to define suitable membership functions for
control purposes. Genetic algorithms (GA's) offer one
method of easily producing precise membership functions.

GA's are search techniques based on natural genetics;
they use operations found in natural genetics to guide their
trek through a search space. GA's search large spaces
quickly, requiring only objective function values to guide
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their search, an inviting characteristic since most com-
monly used search techniques require derivative informa-
tion, continuity of the search space, or complete knowl-
edge of the objective function to guide their search.
Furthermore, GA's take a more global view of the search
space than many methods encountered in engineering op-
timization (12). The immense potential of GA's lies in
their ability to perform efficiently across a broad spectrum
of search problems (12-13). They are of interest to re-
searchers striving to design adaptive control systems be-
cause of their proven ability to adjust to environmental
changes, much as living organisms adjust to changes in
their own environment.

Both expert systems and GA's have been used success-
fully to produce efficient process control systems. These
AI-based tools have in fact been used to provide conven-
tional nonadaptive control systems with adaptive capabil-
:ties. The resulting systems have outperformed their non-
adaptive counterparts in some applications.

The virtual explosion in the popularity of expert systems
has seen them utilized in a number of application areas,
and the area of process control has been no exception.
There have been several instances in which an expert
system was successfully used to improve the performance
of a controller. However, the most straightforward and
perhaps the most effective way to utilize an expert system
to produce an adaptive controller is to use a rule-based
system to alter the gain constant associated with a PID
coneoller. Control systems that adopt this approach have
been developed by Krauss and Myron (14-15), who used
an expert system to alter the gain constant in response to
changes in the problem environment.

GA's have also been introduced into the design of
adaptive control systems. Odetayo and McGregor (16)
used a GA to select rules for a control system that was
based on a conventional expert system. Furthermore,
Valenzuela-Rendon (17) developed a fuzzy classifier
system that, in essence, used a GA to learn a rule set for
a controller. Also, researchers like Procyk and Mamdani
(18) have used a derivative-based approach to alter the
rules of an FLC. Galluzzo and others (19) used an in-
dependent set of rules, called metarules, to alter the rule
set of an FLC. All of the above are examples in which the
control system receives substantial feedback concerning

the changes in the problem environment. Often, because
of inadequate sensors, systems must cope with inadequate
feedback.

Researchers at the U.S. Bureau of Mines (USBM) have
addressed the issue of inadequate feedback. This problem
occurs rather frequently in the mineral processing industry,
in which it is often impractical or too costly to measure
all of the variables involved in a process. Thus, USBM
researchers must address the problem of inadequate feed-
back. Thus, researchers have developed an overall ap-
proach to the design of adaptive control systems, based on
GA's, that is effective in systems in which minimal feed-
back concerning the state or condition of the problem
environment is available. Since the control systems that
result must make accommodations for this lack of feed-
back, an overall structure is used that is more suitable
to the tasks of recognizing, quantifying, and adapting to
changes in the problem environment than control systems
of the past have been.

The adaptive control systems developed at the USBM
include three components: a conto element to manipulate
the problem environment, an analysis element to recognize
changes in the problem environment, and an adaptive ele-
ment to adjust to the changes in the problem environment.
Each of these components employs either a GA or an
FLC. When both are employed, they are used in a unique
fashion. Unlike the work reported by Odetayo and Mc-
Gregor (16) wherein a GA was used to alter the rules
associated with an FLC, the USBM-developed approach
uses a GA to alter the membership functions associated
with an FLC. This approach has been shown to be effec-
tive in a number of problem environments (20).

Each of the three components mentioned above are dis-
cussed. Furthermore, a particular problem environment,
a laboratory pH system, is introduced to serve as a forum
for the details of the USBM-developed adaptive controller.
This pH system includes nonlinearities due to the loga-
rithmic scale of pH, and changing process dynamics due
to buffering and to alterations in the concentrations of
the acid and base used to manipulate the system pH. Al-
though the complete control system is still being devel-
oped, results are presented here to demonstrate the effec-
tiveness of using GA's and FLC's for adaptive process
control.

STRUCTURE OF AN ADAPTIVE CONTROLLER

Figure 1 shows a schematic of the USBM's adaptive
control system. At the heart of this control system is the
loop consisting of the control element and the problem
environment. The control element receives information

from the problem environment concerning the status of
the condition variables (those variables on which proper
control actions are based). It then computes a desirable
state for a set of action variables (those variables that can
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be changed by the controller to alter the state of the
problem environment), which force the problem environ-
ment toward a setpoint (the desired state). This is the
basic approach adopted for the design of virtually any
closed-loop control system, yet such a system includes no
mechanism for adaptive control.

The adaptive capabilities of the system shown in fig-
ure 1 occur in the lower loop and are associated with

Problem

environment

PROBLEM ENVIRONMENT

The problem environment is a laboratory pH system
representative of pH systems present in a number of
mineral and chemical industries (1, 21). The fundamental

goal of the control system is to drive the pH to some
setpoint. The pH system contains nonlinearities and
changing process dynamics, and it is an extension of a

information exchange between each of the three individual
elements of the loop. This information exchange includes
several different facets. The analysis element receives
information concerning the condition variables from the
environment and receives information concerning the ac-
tion variables from the control element. The analysis
element uses the information it receives to compute the
changes that have occurred in the problem environment.
It then passes information concerning the computed
changes to the learning element, which uses the informa-
tion to prescribe alterations to the control element. This
information exchange allows for the completion of some
necessary tasks in well defined steps.

In general, the analysis element must recognize when a
change in the problem environment has occurred. A
"change," as it is used here, is an alteration to a parameter
in the problem environment other than one of the condi-
tion or action variables of the rule set. Changes in param-
eters other than the condition and action variables cannot
be accounted for by the control element (see figure 1).
Also, the change must affect the response of the problem
environment; otherwise it has no effect on the way in
which the control element must act to efficiently manip-
ulate the problem environment. The analysis element
requires information concerning the condition and ac-
tion variables over some finite time period to recognize
changes in the environment and to compute the new per-
formance characteristics associated with these changes.
The new environment (the problem environment with the
altered parameters) can pose all kinds of difficulties for
the control element, because the control element is no
longer manipulating the environment for which it was de-
signed. Therefore, the algorithm that drives the control
element must be in some way altered. As shown in the
schematic of figure 1, this task is accomplished by the
adaptive element. The most efficient approach for altering
the control element is to utilize information concerning the
past performance of the control system.

This section has described, in abstract terms, the basic
structure of an adaptive controller. In the next section, a
particular problem environment, a pH system, is intro-
duced to serve as a forum for presenting the details of a
stand-alone, comprehensive adaptive controller being de-
veloped by USBM researchers.
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system studied by Galluzzo and others (19). The nonlin-
earities occur because the output of pH sensors is propor-
tional to the logarithm of hydrogen ion concentration.
The changing process dynamics has three separate causes.
First, there is a mechanism for introducing a buffer to the
system that significantly alters the manner in which the pH
responds as acid or base is added. Second, the concentra-
tions of the acid and base that the controller uses to ma-
nipulate th: pH of the system can be altered. Third, the
setpoint of the system, the desired value to which the sys-
tem pH is to be driven, can be altered. The system stud-
ied by Galluzzo and others (19) included a mechanism for
the addition of a buffer. However, the current problem
environment is more difficult to control because of chang-
ing concentrations of the input acid and base, and because
of possible changes in the system setpoint.

A schematic of the pH system under consideration is
shown in figure 2. The system includes a beaker initially
containing a given volume of a solution having some
known pH. There are five valved input streams into the
beaker. Only the valves controlling the two input convl
svenms can be adjusted by the controller. The hydrogen
ion concentration of these two control input streams can
be changed by some "random agent" to be either O.1M
HCI or 0.05M HCl and O.1M NaOH or 0.05M NaOH.
The control element has no knowledge of the changes

made in these concentrations by the random agent; it is
left up to the analysis element to recognize that the
concentrations have changed and to determine what the
new concentrations are. The valves on the other three
input streams are used to manipulate artemal sarns,
which are altered by the same random agent that manipu-
lates the concentration of the control input streams. Thus,
the problem environment can be manipulated by the con-
trol system, or by an external agent. Certainly, the control
system must be able to control the problem environment
despite the changes made by the external agent. Further-
more, the control system has no knowledge of the changes
being made by the external agent. The three external
streams include (1) 0.05M HCI, (2) 0.05M CH3COONa,
and (3) a buffer (a combination of O.1M CH3 COOH and
O.1M CH3COONa). Additionally, the random agent is
capable of changing the desired setpoint to which the
system pH is to be driven. The existence of the random
agent allows for alterations in the system parameters that
dramatically alter the way in which the problem environ-
ment reacts to adjustments made by the controller to the
valves on the control streams. Like the changes in the
concentrations of the control input streams, the magnitude
of the changes to the external streams must be recognized
by the analysis element.

FIgue 2

0.05M HCI

Control External
input input

0.1 MHCI streams streams

LpH::

0.05M NaOH

0.1MNaOH

Acid

Buffer

Base

Schematic of poblan envinmmen, which is a labortory pH system that inhaudes nonlinerites and
chwagng pocess dynamics.



6

In light of the above description of the pH system, the
goal of the control problem is to drive the system pH to
the desired setpoint in the shortest time possible by ad-
justing the valves on the two control input streams. Fur-
thermore, the valves on the input streams are to be fully
closed when the target pH value has been achieved. As a
constraint on the control problem, the valves can only be
adjusted a limited amount (0.5 (mL/s)/s, which is 20 pct
of the maximum flow rate of 2.5 mL/s), thereby, restrict-
ing pressure transients in the associated pumping systems.

The pH system was designed on a swmatll scale so that
experiments can be performed in limited laboratory space.
Titrations were performed in a 1,000-mL beaker using
a magnetic bar to stir the solution. Computer-driven
peristaltic pumps were used for the five input streams.
An industrial pH electrode and transmitter sent signals
through an analog-to-digital board to a 33-MHz 386 per-
sonal computer, which implemented the control system.

CONTROL ELEMENT

In this section, an FLC control element for the pH
system is described. The step-by-step details concern-
ing the development of the FLC are presented in such a
way as to make them easily extensible to other problem
environments.

Like conventional expert systems, FLC's use a set of
production rules that are of the form:

IF <condition> THEN <action>

to arrive at appropriate control operations. The left-hand
side of the rules (the condition side) consists of combina-
tions of the controlled variables; the right-hand side of the
rules (the action side) consists of combinations of the
manipulated variables. Unlike conventional expert sys-
tems, FLC's use rules that utilize fuzzy terms like those
appearing in human rules-of-thumb. For example, a valid
rule for an FLC used to manipulate the pH system is

IF <ph is VERY ACIDIC and ApH is SMALL> THEN
BASEE is LARGE and ACID is ZERO>.

This rule says that if the solution is very acidic and is not
changing rapidly, the flow rate of the base should be made
to be large and the flow rate of the acid should be made
to be zero.

The fact that FLC's use fuzzy terms gives rise to
another fundamental difference with conventional expert
systems: FLC's provide a mechanism for a particular
value of a condition variable to be described by more than
one fuzzy term. For instance, a system pH of 5 can be

Fiuw 3

pH Membership Ru
ApH functions s

described by both the fuzzy terms "very acidic" and "mildly
acidic." This is appropriate because the line between these
two descriptive terms is not definite; a subjective decision
is required. FLC's use fuzzy membership functions to
allow particular values of the condition variables to be
described, to some degree, by each of the fuzzy terms.
Therefore, more than one rule is qualified, or eligible, to
enact its action at any given time, i.e., to "fire."

Since more than one rule can have its condition met at
any given time, FLC's must include a mechanism for
determining a single control action. Typically, a weighted
average of the actions prescribed by the appropriate rules
is calculated. The emphasis placed on each rule's action
is based on the confidence that exists in the condition
portion of each of the rules (the degree to which a con-
crete value is described by a fuzzy term). The weights
used in this averaging technique come directly from the
fuzzy membership functions that provide the fuzzy terms
with meaning.

Figure 3 shows a schematic of the structure of a control
element composed of an FLC. The FLC receives definite
values of the condition variables, uses fuzzy membership
functions to characterize the definite values with fuzzy
terms (it "fuzzifies" or makes less precise the variable
values), employs a rule set, and computes one definitive
action to be taken on the problem environment by calcu-
lating a weighted average (it "defuzzifies" or defines the
prescribed actions). This process is clarified in the follow-
ing paragraphs as the membership functions and the rule
set used in the pH system are set forth.

le ; Defuzzification - ACID
et _ (BASE

Stuwure of control element. The con&ul element receives values of pH and ApH from the problem
envirnmen, "Mozies" these vlues with membership functions, employs a rude set, and uses a COA
method for "dcjiwijlcadn, thaeby resulting in a single vahw for the manipulated vaiables.
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The initial phase of FLC development is common to the
development of any control system: the appropriate con-
dition and action variables must be determined. There are
numerous condition variables that could be considered in
the pH system (pH of solution in the tank, flow rates of
the input streams, concentrations of input solutions, vol-
ume in the tank, and m any others). However, it is impor-
tant to limit the number of condition variables used be-
cause the size of a rule set increases multiplicatively with
the number of condition variables.

Fortunately, the effect of some of the potential con-
dition variables can be accounted for by the adaptive ca-
pabilities of the control system. After a period of experi-
mentation (an inevitable requirement for the development
of a quality FLC), two condition variables were selected:
the current value of pH in the beaker and the absolute
value of the current time-rate-of-change of the pH in the
tank (ApH). The fact that this particular pH system with
all of its changing dynamics can be controlled when but
two condition variables are considered demonstrates the
power of an adaptive control system.

The determination of the action variables is relatively
straightforward, because there are basically only two things
that can be altered by the control element: the valve
setting (and thus the flow rate) associated with each of the
two control input streams. Therefore, the two action
variables of the input streams were the flow rates for the
acid (QACID) and the base (QBASE). The selection of the
action variables differs from the selection of the condition
variables in that the number of action variables has no
effect on the number of rules required by an FLC. There-
fore, no improvements in computational efficiency are
achieved by limiting the number of action variables
considered.

Next, fuzzy linguistic variables are selected to represent
the condition and action variables. After further experi-
mentation, seven terms were selected to describe pH, two
terms were selected to describe ApH, and five terms were
selected to describe both QAaD and QBASE. The specific
linguistic terms used to describe the pertinent variables in
the pH system follow:

pH

Very Acidic (VA)
Acidic (A)
Mildly Acidic (MA)
Neutral (N)
Mildly Basic (MB)
Basic (B)
Very Basic (VB)

ApH

Small (S)
Medium (M)
Large (L)

QAcID and BASE

Zero (Z)
Very Small (VS)
Small (S)
Medium (M)
Large (L)

These fuzzy terms are subjective, but the developer of the
pH FLC has some concept of what they mean in the con-
text of the physical system to be controlled.

The developer's conception of the linguistic terms is
described by the membership functions that must be de-
fined to give the terms meaning. The initial membership
functions used in the FLC appear in figure 4. These mem-
bership functions are later altered by the adaptive element,
via a GA, in response to changes occurring in the pH sys-
tem. As will be seen, alterations in these functions can
dramatically change the performance of the FLC.

Although the laboratory pH system is complex, an
effective pH FLC can be written that contains only 14
rules. The 14 rules are necessary because there are 7
fuzzy terms describing the pH and 2 fuzzy terms describing
ApH (7 x 2 = 14 rules to describe all possible combina-
tions that could exist in the pH system as described by the
fuzzy terms represented by the membership functions
shown). The entire rule set for the pH FLC is shown in
figure 5.

Now, the only aspect of the initial FLC design that is
left is the technique for determining one value at which to
set the flow rates of the input acid and base streams. The
popular center-of-area (COA) method (22) is used. This
method provides a convenient way to compute a weighted
average of the different control actions prescribed by the
rules that are eligible to fire. The COA method results in
the selection of a single control action to be taken on the
problem environment.

There is one detail associated with the pH system being
considered that warrants special mention. There is a limit
on the allowable change in the flow rates of the input
streams; i.e., the flow rates cannot change by more than
0.5 (mL/s)/s. However, the membership functions de-
scribing the action variables used in the COA method
(shown in figure 4) allow for values of QaaD and Q.ASE
to range between 0.0 and 2.5 mL/s. The constraint is
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Figue 4
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imposed by computing the value of the flow rates using the
COA me hod. If this value exceeds the constrained flow
rate, the flow rate is changed by the maximum allowable
value of 0.5 mL/s (for either increases or decreases in
flow rate).

The preceding has been a general description of the
makeup of a pH FLC. The following is a step-by-step
procedure for the implementation of an FLC as outlined
in a paper by Karr (20):

1. Determine the condition variables to be considered.
2. Determine the action variables to be considered.
3. Descril-e the fuzzy sets for both the condition and

action variables.
4. Establish a set of fuzzy production rules that cover

all of the possible conditions that could exist in the
problem environment.

5. Define the fuzzy membership functions.
6. Compare the set of conditions existing in the prob-

lem environment to the production rules, and use a
weighted average to select a single action to be taken on
the problem environment (recall that the weights are
proportional to the minimum degree of membership for
the conditions associated with each rule).
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7. Continue with step 6 as long as necessary. The pro-
cedure is repeated until a specified time limit is reached,
or until the system is at its setpoint. An efficient FLC will
maintain equilibrium once the setpoint has been reached.

To those readers who are unfamiliar with the operation
of FLC's, this approach may seem awkward. However, it
allows for the development of powerful control systems.
Figure 6 demonstrates the ability of the FLC to effectively

drive the system pH to a setpoint of 7, as long as the
process dynamics are not altered. However, it is apparent
from this figure that when the process dynamics are al-
tered (in this case, they are altered by adding a buffer) an
adaptive controller becomes essential. In figure 6, it is
important to realize that the nonadaptive controller would
eventually drive the buffered system to the setpoint of 7,
but this task can be accomplished in much less time.

ANALYSIS ELEMENT

The analysis element must recognize changes in param-
eters associated with the problem environment that are not
taken into account by the rules of the control element. In
the pH system, these parameters include (1) the concen-

trations of the acid and base of the input control streams,
(2) the flow rates of the acid, the base, and the buffer that
are altered by an external agent, and (3) the system set-
point. Changes to any of these parameters can dramatical-
ly alter the way in which the system pH reacts to additions
of acid or base, thus forming a new problem environment.
Recall that the FLC used for the control element includes
none of these parameters in its 14 rules. Therefore, some
mechanism for altering the prescribed actions must be
included in the control system. However, before the con-
trol element can be altered, the control system must

Fiue 6

13

12

11

10

9
a

c. 1

6
5
4

recognize that the problem environment has been changed
and compute the nature and magnitude of the changes.

The direct way to recognize changes occurring in the
problem environment is to receive feedback directly from
a set of transducers, in much the same way information
concerning the condition variables is received. In such a
case, no analysis element is necessary. However, the req-
uisite feedback is not always available, and it is this situ-
ation that presents the control system with a need for an
analysis element.

In general, recognizing changes in the parameters as-
sociated with the problem environment requires the con-
trol system to store information concerning the past per-
formance of the problem environment. This information
is most effectively acquired through either a data base or
a computer model. Storing such an extensive data base
can be cumbersome and requires extensive computer
memory. Therefore, the more practical approach is to use
a computer model to predict the response of the problem
environment and compare the predicted response with the
actual response at specified times.

Fortunately, the dynamics of the pH system are well
understood for buffered reactions and can be modeled
using a single cubic equation (23) that can be solved for
[H30+] ion concentrations, to directly yield the pH of the
solution:

x 3 + Ax 2 + Bx + C = 0,

where

I I I I I
25 50 75 100 125 152

TIME, s

Effectiveness of FLG The FLC is able to effectively drive
the system pH to the setpoint of 7 as long as the process
dynamics remain constant. However, when the process
dynamics are altered (in this case a buffer was added), an
adaptive controller is needed

x = [H3 0+],

A = ka + [CH3COONa] + [NaOH]
- [HCI],

B = ka[NaOH] - ka[HCI] - ka[CH 300H]

C = -kakw

KEY

Buffer added
No buffer

-
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ka = 1.8 x 10-, equilibrium constant for
CH3COOH,

kW = 1.0 x 10-14, equilibrium constant for
H2O,

and bracketed
terms ([]) = molar concentrations.

Further details of the computer model appear in a paper
by Karr and Gentry (24).

Figure 7 shows a schematic of an analysis element. In
the approach represented by the schematic, a computer
model represents the actual problem environment. The
response of the physical pH system is compared with the
response of the pH system as predicted by the computer
model. When these respons differ by some threshold
over a substantial period of time, the parameters of the
pH system have changed and the model must be updated.
Certainly, the threshold and the "substantial" period of
time depend on the problem environment. For the pH
system considered, when the pH predicted by the model
differed from the actual pH of the physical system by
1 unit of measure or more for a period of 5 s, the pH
system parameters were considered to have changed.

When the above approach is adopted, the problem of
computing the new system parameters becomes a curve-
fitting problem. The parameters associated with the com-
puter model produce a particular response to changes in

the action variables. The parameters must be selected so
that the response of the model matches the response of
the actual problem environment. As in the area of process
control, curve fitting has received a great deal of attention
through the years. There are a number of traditional
curve-fitting techniques, and the details of these techniques
can be found in texts on numerical analysis such as the
one by Press and others (25). However, the best choice of
an appropriate curve fitting technique is problem depend-
ant, and since the objective of this report is to present Al-
based techniques for process control, a novel approach to
curve fitting is used.

Karr and others (26) have demonstrated the effective-
ness of using a GA to perform curve fitting. Basically,
curve fitting is a search problem: the parameters that
produce a particular system response must be located.
GA's are efficient search algorithms that require a mini-
mum of information from the problem domain. Further-
more, GA's have a demonstrated capability in the area of
model parameter identification (27).

A simple GA that ha3 given good results in a variety of
engineering problems uses three operators: reproduction,
crossover, and mutation. These operators are implement-
ed by performing the basic tasks of copying bit strings
(strings made up of 1's and 0's), exchanging portions of
strings, and generating random numbers. Before looking
at the operators, consider the overall processing of a GA
in light of a curve-fitting problem such as the problem of
locating the parameters appearing in the previous cubic
equation.

Figw 7

Error GA for new
-- Threshold parameters

To leading
element

pH pr

Model
_A

Schematc of analysis element shows that the response of the prublen environment (the pH system) is compared with a

model's predicted response. When the difference is larger than a threshold wue, new system parameters are computed

pH system
ep systm
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The operation of a GA begins with the creation of an
initial generation of N strings each of length m. Each bit
string represents one possible combination of the unknown
parameters associated with the curve-fitting problem.
Representing a parameter set as a bit string is akin to the
way in which genetic information concerning an organism's
composition is contained in a chromosome (the strings)
composed of genes (the individual bits). These strings are
then decoded, yielding the numerical value of each of the
parameters. The parameters are sent to some conceptual
framework that yields a measure of the quality of the
solution. In the analysis element, this framework is a
model of the pH system. The parameter set is then evalu-
ated according to some objective function (fitness func-
tion), which is simply a measure of how good the solution
is; i.e., how well the parameter set allows the model to
predict the actual response of the pH system. Then, a new
population of strings is produced via the three genetic
operators. This process of producing new generations is
continued until some stopping criterion is met. In the
analysis element, the stopping criterion is generally based
on the time available for the control element to prescribe
a new control action.

As stated above, the three genetic operators can be
used to produce a powerful GA. Reproduction is a proc-
ess by which strings with large fitness values (parameter
sets that allow for the accurate modeling of the response
of the pH system) receive correspondingly large numbers
of copies in the new population. For example, in "expect-
ed number control" reproduction, those strings with high
fitness values f; are given a proportionately higher prob-
ability of reproduction selection, p., according to the
following distribution:

Pselect = f-- ()
- .fj (2)

where f, is the value of fitness function associated with an
individual string and the denominator represents the sum-
mation of the fitness of all of the strings in the current
population. Once the strings are reproduced for possible
use in the next generation, they are placed in a mating
pool (a file or location in computer memory) where they
await the action of the other two operators.

The second operator is crossover, which causes a sys-
tematic exchange of information between high-quality
strings. Crossover proceeds in three steps. First, two
newly reproduced strings are selected from the mating
pool of strings that were formed through reproduction.
Second, a position along the two strings is selected at
random. For example, the following binary coded strings
A and B of length 10 are shown aligned for crossover:

A = 110 1010000.
B = 001 0111111.

Notice how crossing site three has been selected in this
particular exam ple through random choice, although any
of the other eight positions were just as likely to have been
selected. The third step is to exchange all characters fol-
lowing the crossing site. A' and B' are two new strings
following this crossing:

A' = 110 0111111.
B' = 001 1010000.

String A' is made up of the first part of string A and the
tail of string B. Likewise, string B' is made up of the first
part of string B and the tail of string A. Although cross-
over has a random element, it should not be thought of as
a random walk through the search space. When combined
with reproduction, it is an effective means of exchanging
information and combining portions of high-quality
solutions.

Reproduction and crossover give GA's most of their
search power. The third operator, mutation, enhances a
GA's ability to find near-optimum solutions to the search
problem. Mutation is the occasional alteration of a value
at a particular string position, or more to the point, it is an
insurance policy against the permanent loss of any simple
bit. This loss occurs when a generation is created void of
a particular character at a given string position. For ex-
ample, a generation may exist that does not have a 1 in
the third string position when, because of the chosen cod-
ing, a 1 in the third position may be critical to obtaining a
quality solution. Under these conditions, neither repro-
duction nor crossover will ever allow for the production of
a 1 in this third position in subsequent generations.
However, mutation causes a 0 in the third position to oc-
casionally be changed to a 1. Thus, the critical piece of
information can be reinstated into the population. Al-
though mutation can serve a vital role in a GA, it occurs
with a small probability (on the order of one mutation per
1,000 string positions) and is secondary to reproduction
and crossover.

At this point, an analysis element has been forged in
which a GA, as described above, is used to compute the
model parameters necessary to accurately predict the re-
sponse of the laboratory pH system. When using a GA
for a search problem, there are basically two decisions that
must be made: (1) how to code the possible solutions to
the search problem as bit strings and (2) how to evaluate
the merit of the possible solutions. The parameters that
must be coded in this instance are the concentrations of
the input acid and base, and the flow rates of the three
external streams. It has been reported that binary codings
(the use of bit strings) produce the most efficient genetic
searches (12). For this reason, binary coding was used for
the 200-bit strings representing the appropriate model
parameters. The first 40 bits of the strings were used to
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represent the concentration of the acid on the control
input stream, the second 40 bits were used to represent
the concentration of the base on the control input stream,
the third 40 bits were used to represent the flow rate of
the acid of the external streams, and the final 80 bits were
used to represent the flow rates of the buffer and the base
of the external streams, respectively. The 40 bits associ-
ated with each individual parameter were read as a binary
number, converted to decimal numbers (000 = 0, 001 = 1,
010 = 2, 011 = 3, etc.), and mapped between minimum
and maximum values according to the following:

C -Cmin + b (Cm - Cmi , (3)
(2" - 1)

where b is the binary value, m is the number of bits used
to represent the particular parameter (40), and C. and
C. are minimum and maximum values associated with
each parameter that is being coded.

Now that an appropriate coding has been determined,
the second issue must be addressed: evaluation of the
merit of each string (a possible choice of the model pa-
rameters). This task of defining a fitness function to
evaluate string merit is always application specific. To
select model parameters that accurately mimic the re-
sponse of the laboratory pH system, an effective fitness
function is

i m1006
f = E I PHmodel - PHactual -

i=0s
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With this definition of the fitness function, the problem
becomes a minimization problem: the GA must minimize
f, which, as it has been defined, represents the difference
between the response predicted by the model and the re-
sponse of the laboratory system.

Figure 8 demonstrates the ability of a GA to locate the
parameters needed by the computer model to compute the
response of the physical pH system. This figure includes
information concerning the performance of the GA in
locating these parameters. The GA was able to locate the
correct parameters after only 3,000 function evaluations,
where a function evaluation consisted of simulating the pH
system for 100 s. Locating the correct parameters took
approximately 400 s on a 386 personal computer. The
physical system often mandates that a control action be
taken in less than 400 s. In this case, the time the GA is
allotted to update the model parameters can be restricted.
In such situations, the model simply must operate with
inaccurate parameters until the analysis element is again
employed. However, the magnitude of this problem will
be diminished as computers become ever faster. And the
problem as it now stands is not a major hinderance to the
performance of the control system.

50

0

25 50
TIME, s

75 100

1,000 2.000 3,000 4.000 5.000

FUNCTION EVALUATIONS

Pufomnwce of GA. A, A GA is able to locate the pwwn-
etes associated with the problem ennironent that allow a
computer model to accwutelypredict the response of the pH
system; B it took the GA approximately 4000function eval-
uations, when afunction evaluation consisted of simulating
the pH system over 10 s.

The purpose of the analysis element is to recognize
changes in the parameters associated with the problem
environment that are not accounted for by the control
element and to compute the new values of these param-
eters. Once new parameters (and thus the new response
characteristics of the problem environment) have been
determined, the adaptive controller must alter the control
element.

- KEY

........... pH model
- pH system

- -
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ADAPTIVE ELEMENT

The adaptive element is responsible for altering the
control element in response to changes in the problem
environment. Recall that the relevant changes occurring
in the pH system include (1) changes in the concentrations
of the acid and base of the control input stream, (2)
random additions of acid, base, and buffer from the ex-
ternal streams, and (3) changes in the system setpoint. As
set forth in a previous section, none of the parameters
associated with the above changes are included in the rule
set of the FLC that serves as the control element. There-
fore, the only way to account for these conditions (outside
of completely revamping the system) is to alter the mem-
bership functions employed by the FLC. However, in oth-
er control systems, there are alternative approaches to
implementing adaptive capabilities.

In this report, a means for producing an adaptive FLC
is adopted that is different from the approach used by
other researchers who alter the rule set used by their FLC.
In the approach adopted here, the membership functions
(the definition of the fuzzy terms in the rule set) are
altered. This approach is more consistent with the way
humans control complex systems. Quite often, the rules-
of-thumb humans use to manipulate a problem environ-
ment remain the same despite even dramatic changes to
that environment; only the conditions under which the
rules are applied are altered. This is basically the ap-
proach that is being taken when the fuzzy membership
functions are altered.

The approach developed and implemented by the
USBM for using a GA to alter the membership functions
associated with an FLC has been well documented (20,
24). To implement this approach, the parameters needed
to describe the fuzzy membership functions must be coded
as bit strings, and the effectiveness of various FLC's must
be described with an objective function. As a brief aside,
realize that these are the same two issues that must be
addressed in any GA application. The parameters that
must be coded in the quest for efficient membership func-
tions are the points that define the trapezoids used to
describe each of the fuzzy linguistic variables (as defined
by the membership functions appearing in figure 4).
When the symmetry associated with the pH system (for ex-
ample, VERY ACIDIC and VERY BASIC are symmetrical
about the neutral point) is considered, there are 32 points
that must be defined by the GA. Seven bits were allotted
for the representation of each parameter thereby produc-
ing strings that are 224 bits long. Each 7-bit group was
decoded using the mapping equation presented in the sec-
tion on the analysis element thereby yielding the 32 pa-
rameters needed to completely define a set of membership
functions.

The fitness function must indicate the objective of the
control system. In the pH system, the objective is to drive
the system pH to a desired setpoint in the shortest time
possible, and to keep it there. The fitness function used in
this application is

i-1006
f = E I setpoint - pH|, (

'i-o6

where the summation is performed over a 100-s time
period as simulated using the mathematical model of the
system, which has been updated by the analysis element.
This simulation is initiated from the current state of the
laboratory system, i.e., the current values of pH, QACID,
and QasE.

The performance of a control system that uses a GA to
alter the membership functions of an FLC is demonstrated
for three different situations. First, the pH system is
perturbed by the addition of an acid, a base, and a buffer.
In this case, the process dynamics are dramatically altered
because of the addition of the buffer. Second, the desired
setpoint is altered. This actually represents a change in
the objective of the controller. Third, the concentrations
of the acid and base that the FLC uses to control pH are
changed (those from the control input streams), which
causes the system to handle differently. For example, if
the 0.1M HCI is the control input, the pH falls a certain
amount when this acid is added. However, all other fac-
tors being the same, the pH will not fall as much when the
same volume of the 0.05M HCI is added. These three sce-
narios provide a challenging test bed for any control
system.

Consider first a situation where a buffer is added to the
pH system randomly. The adaptive pH GA-FLC alters
the membership functions it uses to enact its production
rules (which do not change) although the process dynamics
are altered when the buffer is added. This approach is
similar to the subconscious actions of a human controller;
humans change their definition of the linguistic terms
being used in conjunction with their informal rule-of-
thumb approach. Figure 9 compares the performance of
the adaptive GA-FLC with a nonadaptive FLC that does
not employ a GA. The adaptive controller is able to
achieve the objective much more efficiently than the
nonadaptive FLC because the adaptive controller is flexible
enough to accommodate the changing process dynamics.

Next, consider a situation where the setpoint is changed
by a random agent. An example of such a change appears
in the mineral processing industry, wherein the beaker of
the pH system may represent a holding tank in which a

(5)
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mineral is being separated. If the mineral of interest is
changed (if two different processes occur in the same
holding tank because of streamlining of plant operations),
the pH of the system may need altering for efficient sep-
aration. As in the above examples, the adaptive pH GA-
FLC must alter its membership functions in response to an
"environmental" change. Realize that declaring a new
setpoint is actually changing the objective of the FLC.
Changing the objective of the controller often requires a
modification of the FLC rule set. However, the technique
of using a GA to alter a set of membership functions is
powerful enough to allow the FLC to maintain a suitable
level of control over the pH system by altering only the
meaning of the fuzzy linguistic variables despite the de-
manding environment in which it must operate. Figure 10
compares the performance of an adaptive GA-FLC with a

nonadaptive FLC. As in the previous example, the
adaptive pH GA-FLC outperforms the nonadaptive FLC.

Finally, consider a very disruptive change to the pH
system, a case where the concentration of the acid and
base that the FLC is using to manipulate the pH system is
altered. This is perhaps the most severe change in process
dynamics that could be implemented. The response of the
system is now completely different: additions of acid or
base induce changes in the pH of the system that are far
different from the changes in pH that the very same addi-
tions of acid or base induced before their concentrations
were changed. Figure 11 compares the performance of
the adaptive pH GA-FLC with the performance of a non-
adaptive FLC. The adaptive GA-FLC is able to maintain
a high degree of control over the pH system despite the
dramatic changes in the environment.

SUMMARY AND CONCLUSIONS

Scientists at the USBM have developed an AI-based
strategy for adaptive process control. This strategy uses
GA's to fashion three components necessary for a robust,
comprehensive adaptive process control system: (1) a
control element to manipulate the problem environment,
(2) an analysis element to recognize changes in the prob-
lem environment, and (3) a learning element to adjust to
changes in the problem environment. In this report, the
strategy has been applied to the development of an adapt-
ive controller for a laboratory pH system in which the
process dynamics change in several different ways. Ini-
tially, the overall makeup of an adaptive control system
was described. Next, the pH problem environment was in-
troduced. Finally, the basic structure of each of the three
individual components was developed, and results were
provided demonstrating the merit of using GA's to com-
pose the three components.

The results presented in this report demonstrate much
of the power of adaptive control systems based on GA's
and FLC's. These adaptive control systems are able to
recognize when the physical system has changed, to

quantify the changes in the physical system, and to
maintain a high degree of control over the physical system
despite drastic changes in the system characteristics.
Based on the results presented, it is concluded that
adaptive GA-FLC's allow industrial pH systems to be
controlled via on-line changes to the membership functions
used in the rule base associated with the control system.

Adaptive control systems are becoming vital to the ef-
ficient operation of today's industrial plants because of the
rapidly changing process dynamics brought about by in-
creased competition and changing economic factors. If the
efficiency of such control systems is going to increase,
researchers must focus on the synergism of techniques
from various fields of study. In this light, the field of AI
contains a vast number of untapped resources. Specif-
ically, GA's and FLC's demonstrate characteristics that
allow for the production of control systems that mimic the
approach adopted by humans to the task of process con-
trol. And, in the final analysis, humans actually perform
the task of adaptive control quite well, as does the
adaptive control system presented in this report.
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