DYNAMICS OF WHEELED VEHICLES

A MATHEMATICAL MODEL FOR THE TRAVERSAL OF RIGID OBSTACLES BY A PNEUMATIC TIRE

APPENDIX B: DIGITAL IMPLEMENTATION OF SEGMENTED TIRE MODEL

by

N. R. Murphy, Jr.

Metz Reference Room
Civil Engineering Department
B106 C. E. Building
University of Illinois
Urbana, Illinois 61801

August 1969

Sponsored by

U. S. Army Materiel Command

Conducted by

U. S. Army Engineer Waterways Experiment Station
CORPS OF ENGINEERS
Vicksburg, Mississippi

Approved for Public Release; Distribution Unlimited
Destroy this report when no longer needed. Do not return it to the originator.

The findings in this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents.
TECHNICAL REPORT M-68-I

DYNAMICS OF WHEELED VEHICLES

Report I

A MATHEMATICAL MODEL FOR THE TRAVERSAL OF RIGID OBSTACLES BY A PNEUMATIC TIRE

APPENDIX B: DIGITAL IMPLEMENTATION OF SEGMENTED TIRE MODEL

by

N. R. Murphy, Jr.

August 1969

Sponsored by

U. S. Army Materiel Command

Conducted by

U. S. Army Engineer Waterways Experiment Station

CORPS OF ENGINEERS

Vicksburg, Mississippi

ARMY-MRC VICKSBURG, MISS.

Approved for Public Release; Distribution Unlimited

or

approval of U. S. Army Materiel Command.
THE CONTENTS OF THIS REPORT ARE NOT TO BE USED FOR ADVERTISING, PUBLICATION, OR PROMOTIONAL PURPOSES. CITATION OF TRADE NAMES DOES NOT CONSTITUTE AN OFFICIAL ENDORSEMENT OR APPROVAL OF THE USE OF SUCH COMMERCIAL PRODUCTS.
Foreword

The digital implementation of the segmented tire model is an extension of the study reported in the basic report and was developed at the U. S. Army Engineer Waterways Experiment Station (WES) as a part of the vehicle mobility research program under DA Project 1T062103A046, "Trafficability and Mobility Research," Task 03, "Mobility Fundamentals and Model Studies," sponsored by the Directorate of Development and Engineering, U. S. Army Materiel Command.

The study described herein was accomplished by personnel of the Vehicle Dynamics Section (VDS), Mobility Research Branch, Mobility and Environmental Division, under the general supervision of Messrs. W. G. Shockley and S. J. Knight, and under the direct supervision of Dr. D. R. Freitag and Mr. A. J. Green. Mr. N. R. Murphy, Jr., of the VDS and Mr. J. F. Smith of the Mathematics and Analysis Section, Electronic Computer Branch, wrote the computer programs. Mr. Murphy prepared this appendix.

COL Levi A. Brown, CE, was Director of WES during the preparation of this appendix. Mr. F. R. Brown was Technical Director.
<table>
<thead>
<tr>
<th>Contents</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Foreword</td>
<td>v</td>
</tr>
<tr>
<td>Conversion Factors, British to Metric Units of Measurement</td>
<td>ix</td>
</tr>
<tr>
<td>Summary</td>
<td>xi</td>
</tr>
<tr>
<td>Program 1</td>
<td>B1</td>
</tr>
<tr>
<td>Program 2</td>
<td>B3</td>
</tr>
<tr>
<td>Computer calculations</td>
<td>B3</td>
</tr>
<tr>
<td>Notation</td>
<td>B6</td>
</tr>
<tr>
<td>Summary</td>
<td>B7</td>
</tr>
<tr>
<td>Damping</td>
<td>B8</td>
</tr>
<tr>
<td>Figs. B1-B4</td>
<td></td>
</tr>
</tbody>
</table>

vii
Conversion Factors, British to Metric Units of Measurement

British units of measurement used in this report can be converted to metric units as follows:

<table>
<thead>
<tr>
<th>Multiply</th>
<th>By</th>
<th>To Obtain</th>
</tr>
</thead>
<tbody>
<tr>
<td>inches</td>
<td>2.54</td>
<td>centimeters</td>
</tr>
<tr>
<td>pounds</td>
<td>4.444</td>
<td>newtons</td>
</tr>
<tr>
<td>pounds per square inch</td>
<td>0.689476</td>
<td>newtons per square centimeter</td>
</tr>
</tbody>
</table>
Summary

This appendix presents the procedures for digital implementation of the segmented tire model, developed in the basic report for an analog computer. Two procedures are required: (a) determination of the segment spring coefficient from measured load-deflection test results, and (b) computation of the resultant force vector transmitted to the axle. Digital programs for both procedures were written in Fortran IV for a GE-420 system, and are included.
APPENDIX B: DIGITAL IMPLEMENTATION OF
SEGMENTED TIRE MODEL

1. For digital implementation of the segmented tire model, basically two procedures are required: (a) determination of the segment spring coefficient from measured load-deflection test results, and (b) computation of the resultant force vector transmitted to the axle. Therefore, two computer programs have been prepared.

Program 1

2. The first program (fig. B1) is used to compute the average deflection of each segment for a given vertical center-line deflection.* It is written in Fortran IV and programmed to run on a GE-420 system. The only input requirement is a card containing the tire radius in inches, the number of segments for 180 deg (current status of the program limits the maximum number of segments to 60), and the desired maximum vertical center-line deflection in inches multiplied by 10. This maximum deflection serves as a cutoff criterion for the computer and should be a number that does not exceed the tire section height. The actual maximum deflection is multiplied by 10 to ensure an integer value. This is a restriction imposed by the "DO-loop" that successively increments the center-line deflection.

3. A representative computer printout is shown in fig. B2 to illustrate the format of the output and to demonstrate, in conjunction with the following example, how the results are used to determine an appropriate segment spring coefficient:

* Appendix A to this report presents procedures for computing the necessary effective radial deflections.
a. **Problem.** A 9.00-14, 2-PR tire with a 14-in.* radius is inflated to 30-psi pressure; at this pressure it deflects 1 in. under a 760-lb load. Divide the lower half (180 deg) of the tire into 18 equal segments and determine the segment spring coefficient.

b. **Solution.** Prepare an input data card containing the tire radius in inches (14), the number of segments in 180 deg (18), and the maximum vertical center-line deflection in inches multiplied by 10 (say 3 × 10 = 30). Run, using the program in fig. B1. Since the coordinate (1.0, 760) was chosen from the load-deflection curve, examine the computer printout (fig. B2) and find the values of segment deflections for a center-line deflection of 1 in. Two segments on each side of the vertical center line are seen to be influenced at this particular deflection. Compute the segment spring coefficient K from the equation**

$$K = \frac{F}{2 \sum_{i=1}^{2} \Delta_i \cos \phi_i}$$

$$= \frac{760}{2(0.914 \cos 5^\circ + 0.384 \cos 15^\circ)}$$

$$= \frac{760}{2.56}$$

$$= 297 \text{ lb/in.}$$

This value is assigned as the spring coefficient for each segment and will change only if the number of segments or the inflation pressure is changed. Choosing a small deflection, such as 0.2 or 0.4 in., as a basis for determining the spring coefficient would most likely yield a K-value somewhat different from one with a larger value of deflection as a basis. Comparisons of measured load-deflection curves with those computed for K-values obtained from the segmented tire model at various deflections revealed that greater accuracy and consistency were obtained when K was computed from a deflection of 1 in. This deflection is generally in the area of maximum curvature on the load-deflection curve.

* A table of factors for converting British units of measurement to metric units is presented on page ix.

** See equation development in paragraph 21 of the main report.
4. The second program (fig. B3) is used to compute the vertical and horizontal components of the resultant force vector transmitted to the axle. It, too, is written in Fortran IV for the GE-420 system. It is a complete, self-contained program that was assembled from a section of a more comprehensive one that represented a multidegree-of-freedom vehicle. Taken out of context, it contains none of the dynamics of the problem, i.e. the influence of the coupled differential equations describing the dynamics of the sprung mass of the system has been removed. Certain modifications were made regarding the input requirements, so the program demonstrates, in a static sense, how the components of the resultant wheel spring force are computed with the segmented tire concept. With other slight modifications, this program can be adapted as a subprogram to describe the tire compliance in other vehicle dynamics programs.

5. The solution is based on a purely geometric approach that treats each discrete axle movement interval in terms of space-oriented coordinates of the terrain and wheel center with respect to a fixed reference frame. The current program will handle up to 100 terrain profile points and up to 24 tire segments equally divided about a vertical axis through the axle of each wheel. Experience has indicated that twelve 10-deg segments, six on each side of the vertical, are sufficient to describe the tire compliance for most terrain conditions and obstacle configurations. The angle to each segment center line is measured from the vertical and is considered positive in a counterclockwise direction.

Computer calculations

6. The following sequence of calculations is used in this second program:

a. Dimension the appropriate space for segment angles, segment spring coefficients, terrain profile points, segment forces, etc.

b. Provide a "degree-to-radian" converter = \pi/180.

c. Read in: Coordinates of wheel center (X1,Y1), tire radius, number of tire segments, number of terrain points, number of positions to be calculated, and X and Y increments.
d. Check for end of data; if no more data, exit computer.

e. Read in and store all segment angles, spring coefficients, and terrain points.

f. Print headings and terrain profile table.

g. Designate a variable name for the number of tire segments; e.g. NNN = NSEG.

h. Determine maximum horizontal projection of tire, i.e. XRET = Xl - WRAD, XFET = Xl + WRAD.

i. Initialize ITR = 2.

j. Change all segment angles from degrees to radians.

k. Compute the coordinates of each (undeflected) tire segment (i) location with respect to the wheel axle:

 \[CX(i) = \sin(DSEG(i) \times \text{WRAD}) \]
 \[CY(i) = -\cos(DSEG(i) \times \text{WRAD}) \]

 (These then remain constant for a given wheel.)

l. Set VVV(1) = 0 VVV(2) = 0.

m. Now determine the coordinates of each (undeflected) segment with respect to the fixed reference system, e.g.

 \[RXY(1,i) = Xl + CX(i) \]
 \[RXY(2,i) = Yl + CY(i) \]

n. At this time compute intersections of the tire segment centers with terrain. For each tire segment:

 (1) Set DMIN = 1.EL0, i.e. some large number definitely greater than tire radius.

 (2) Compute slope of tire segment (i), e.g. SM = CY(i)/CX(i).

 (3) KTR = ITR. This is a counter to account for terrain stations.

 (4) Set X2 = 0, i.e. first terrain point begins at X = 0.

 (5) Recall Y2 from proper storage location; now there is terrain coordinate X2,Y2.

 (6) Recall X3,Y3, i.e. the next forward terrain coordinate.

 (7) Obtain the slope of this line (terrain segment).

 (8) Compare it with the slope of i\text{th} tire segment.

 (9) If slopes are not the same, the lines will intersect; use the point slope method to obtain coordinate of intersection, i.e. XX,YY for i\text{th} tire segment. (This is
coordinate of deflected tire segment with respect to fixed reference system.)

(10) Now determine whether this coordinate falls within the tire circumference.

(11) If not, then increment the terrain segment and recheck as before until a coordinate is determined that falls within the tire circumference.

(12) Compute the radial distance of this intersection from the wheel center and set this distance equal to the variable, DMIN. This represents a new "minimum" length.

(13) Check this length against last minimum value.

(14) If it is smaller, let the coordinates of this deflected tire segment be: \(RXY(1,i) = XX; RXY(2,i) = YY \).

(15) If, however, it is larger, check to see whether forward edge of tire is ahead of the terrain station.

(16) If so, then advance the station by one. Go back to step (1).

(17) If not, go to next tire segment and repeat the procedures described above until all intersections of tire segment centers with terrain segments have been computed.

This operation should locate the positions (with respect to the fixed and moving reference) of each deflected tire segment.

\(\text{o. Now compute the actual deflection of each tire segment beginning as follows:} \)

\[
\begin{align*}
RXY(1,i) &= X_l - RXY(1,i) \\
RXY(2,i) &= Y_l - RXY(2,i)
\end{align*}
\]

These are vertical and horizontal components of new segment length.

\(\text{p. Store these values in a temporary storage AA(1),AA(2).} \)

\(\text{q. Compute the radial distance of each segment using the Pythagorean Theorem, i.e. TMAG(i) = square root of sum of squares of the respective components.} \)

\(\text{r. Obtain the sin and cos of each segment angle as follows:} \)

\[
\begin{align*}
\sin \text{ of the segment angle} &= \frac{AA(1)}{TMAG(i)} \\
\cos \text{ of the segment angle} &= \frac{AA(2)}{TMAG(i)}
\end{align*}
\]

\(\text{s. Compute the radial force in each segment, i.e.} \)
\[TMAG(i) = (WRAD - TMAG(i)) \times SEGK(i) = K5 \]

where \(\delta = WRAD - TMAG(i) \)

t. Compute the horizontal and vertical components of the resultant force vector, e.g.

\[VVV(1) = \sum TMAG(i) \times RX(i,i) \rightarrow \text{horizontal component} \]
\[VVV(2) = \sum TMAG(i) \times RXY(2,i) \rightarrow \text{vertical component} \]

u. Print results.

v. Increment tire center position and repeat procedures.

7. Computation of resultant tire spring force vector is summarized as follows:

a. The points where all tire segment centers (spring locations) intersect the undeflected tire circumference are located.

b. The points where tire segment centers intersect the terrain are located.

c. The radial reduction in length of each tire segment center intersecting the terrain is computed.

d. The force vector for each segment is computed using the displacement of the segment center and the segment spring coefficient.

e. The segment force vectors are summed to yield the vertical and horizontal components of the resultant spring force vector for the wheel.

Notation

8. Symbols used in the second program are defined below:

- \(CX,CY \): Coordinates (with respect to the wheel axle) of points where segment center lines intersect the undeflected tire circumference
- \(DSEG \): Segment angle in degrees; the angle measured from a vertical line through the wheel axle to center line of segment (positive value, counterclockwise)
- \(DTR \): Degree-to-radian conversion factor
- \(HGT \): Elevation of profile
- \(NPOS \): Number of wheel positions to be computed
- \(NSEG,NNN \): Number of tire segments
- \(NTP \): Number of terrain points to be used
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>RXY</td>
<td>Absolute coordinates (with respect to fixed X-Y reference) of the points where segment center lines intersect the undeflected tire circumference</td>
</tr>
<tr>
<td>SEGK</td>
<td>Segment spring coefficient (can vary with each segment)</td>
</tr>
<tr>
<td>ST</td>
<td>Slope of a terrain segment</td>
</tr>
<tr>
<td>STA</td>
<td>Horizontal distance of terrain profile</td>
</tr>
<tr>
<td>TMAG</td>
<td>Radial force of segment</td>
</tr>
<tr>
<td>VVV(1)</td>
<td>Horizontal component of force</td>
</tr>
<tr>
<td>VVV(2)</td>
<td>Vertical component of force</td>
</tr>
<tr>
<td>WRAD</td>
<td>Wheel radius</td>
</tr>
<tr>
<td>XX,YY</td>
<td>Absolute coordinates of the intersection points of the terrain with tire segment</td>
</tr>
<tr>
<td>X1,Y1</td>
<td>Coordinates of wheel center</td>
</tr>
<tr>
<td>X2,Y2</td>
<td>Absolute coordinates of the rear terrain station</td>
</tr>
<tr>
<td>X3,Y3</td>
<td>Absolute coordinates of the adjacent terrain station in increasing X-direction</td>
</tr>
<tr>
<td>XFET,XRET</td>
<td>Forward and rear extremes of tire (horizontal)</td>
</tr>
<tr>
<td>XINCR,YINCR</td>
<td>Increment of axle movement of wheel in X- and Y-directions</td>
</tr>
</tbody>
</table>

Summary

9. The required input information for the second program consists of (a) the coordinates of the tire center, (b) the undeflected tire radius, (c) the number of segments to be used, (d) the number of terrain coordinates, (e) the number of axle positions to be calculated, (f) the X- and Y-increments (i.e. the movements of the axle), (g) each segment angle in degrees, (h) each segment spring constant (may be different for each segment if desired), and (i) the terrain profile coordinates. The tire-center coordinates are the only inputs that do not remain constant. When the program is used in an appropriate vehicle dynamics program that describes the motions of the sprung masses, these coordinates are determined at each time step by the differential equations that describe the dynamics of the vehicle system. The coordinates (X1,Y1) of the tire center are used to compute forward and rear extremes of the tire for each increment of movement. This is accomplished by subtracting or adding the tire radius (WRAD) to the coordinate X1. (See fig. B4.) The program can then be used to compute
the location of the points, relative to the axle, where each segment center intersects the tire circumference. These values never change and are stored in the computer under the identification CX(i) and CY(i).

10. Then for each increment of horizontal axle movement (XINCR), the program proceeds as follows:

The points of the wheel at each segment's center line are located relative to the fixed (X-Y) reference frame and stored as coordinates under the identification RXY(1,i) and RXY(2,i). This gives the complete orientation of each undeflected segment "spring." The program then proceeds into a loop that calculates the intersections of the segment center lines and the terrain profile segments, which are constructed from straight-line connections of the terrain profile points. These intersections are determined by the point-slope method, which compares the slopes of each segment center line (proceeding in a counterclockwise sequence beginning with the rear segment) with the slopes of each terrain segment within the forward extreme of the tire. A check is made in each instance to determine if the intersections occur within the periphery of the undeflected tire. This indicates whether a particular segment is influenced by the terrain and the amount that each segment deflects in a radial direction. The radial deflection that is computed for each segment spring is multiplied by the appropriate spring constant to yield a segment force vector whose magnitude and orientation are known. These individual vectors are summed to yield the vertical and horizontal components of the resultant force vector acting at the axle. The axle is then advanced to the next position and the process is repeated.

Damping

11. No provision has been made to incorporate segment damping forces at this time. The influence of tire damping is currently computed as a gross vertical force from the relative motion between the axle and a point directly beneath the axle.
A PROGRAM TO COMPUTE AVG DEFLECTIONS OF PNEUMATIC TIRE SEGMENTS

DIMENSION AVGDEL(60)

TANF(AZ) = SIN(AZ)/COS(AZ)

PI = 3.1416

READ 10, R, N, IDEFL

PRINT 155

40 PRINT 60

R IS TIRE RADIUS IN IN., N IS NO. OF SEGMENTS FOR 180 DEGREES

IDEFL IS MAX. VERTICAL DEFLECTION AT VRP IN IN. TIMES 10

THETA = PI/N

W = R * THETA

THETA = THETA * 180.0/PI

DO 15 J = 1, IDEFL

PRINT 155

DELTA = J/10.

ARC = R * PHI/THETA

M = 1

ARC = R * PHI

M IS THE NO. OF SEGMENTS INFLUENCED BY DELTA DEFLECTION

AVGDEL(I) = R - SQRT ((W - ARC)/W * (R - R/W * ((R - DELTA)

1 **2) * TANF(PHI)))

C AVGDEL IS AVG DEFLECTION OF SEGMENT

GOTO 14

6 K = B

C NO. OF SEGMENTS FULLY DEPRESSED

IF (B - 1.0) 5, 6, 6

IF (K = 0) 5, 6, 6

IF (M = 1) 5, 6, 6

IF (I = 1) 5, 6, 6

IF (I = 1) 5, 6, 6

AVGDEL(I) = R - SQRT ((W - ARC)/W * (R - R/W * ((R - DELTA)

1 **2) * TANF(PHI) - TANF((1 - 1) * THETA)))

14 PRINT 185

15 PRINT 186

16 PRINT 187, DELTA, N, TTHETA, (AVGDEL(I), I = 1, M)

17 PRINT 189

18 PRINT 189, (AVGDEL(I), I = 1, M)

19 CONTINUE

GOTO 1

10 FORMAT (F10.2, 2I5)

11 FORMAT (1H1)

60 FORMAT (41X, 34HCOMPUTATION OF AVERAGE DEFLECTIONS//)

185 FORMAT (19X, 5HSEG15, 2X, 5HSEG16, 2X, 5HSEG17, 2X, 5HSEG18;

12X, 5HSEG19, 2X, 5HSEG20, 2X, 5HSEG21, 2X, 5HSEG22, 2X, 5HSEG23;

12X, 5HSEG24, 2X, 5HSEG25, 2X, 5HSEG26, 2X, 5HSEG27, 2X, 5HSEG28)

190 FORMAT (17X, 14F7.3/)
<table>
<thead>
<tr>
<th>CL NO</th>
<th>THETA</th>
<th>AVERAGE SEGMENT DEFLECTION IN INCHES</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.10</td>
<td>18 10.00</td>
<td>0.041</td>
</tr>
<tr>
<td>0.20</td>
<td>18 10.00</td>
<td>0.115</td>
</tr>
<tr>
<td>0.30</td>
<td>18 10.00</td>
<td>0.210</td>
</tr>
<tr>
<td>0.40</td>
<td>18 10.00</td>
<td>0.311</td>
</tr>
<tr>
<td>0.50</td>
<td>18 10.00</td>
<td>0.411</td>
</tr>
<tr>
<td>0.60</td>
<td>18 10.00</td>
<td>0.512</td>
</tr>
<tr>
<td>0.70</td>
<td>18 10.00</td>
<td>0.612</td>
</tr>
<tr>
<td>0.80</td>
<td>18 10.00</td>
<td>0.713</td>
</tr>
<tr>
<td>0.90</td>
<td>18 10.00</td>
<td>0.813</td>
</tr>
<tr>
<td>1.00</td>
<td>18 10.00</td>
<td>0.916</td>
</tr>
<tr>
<td>1.10</td>
<td>18 10.00</td>
<td>1.014</td>
</tr>
<tr>
<td>1.20</td>
<td>18 10.00</td>
<td>1.115</td>
</tr>
<tr>
<td>1.30</td>
<td>18 10.00</td>
<td>1.216</td>
</tr>
<tr>
<td>1.40</td>
<td>18 10.00</td>
<td>1.316</td>
</tr>
<tr>
<td>1.50</td>
<td>18 10.00</td>
<td>1.417</td>
</tr>
<tr>
<td>1.60</td>
<td>18 10.00</td>
<td>1.517</td>
</tr>
<tr>
<td>1.70</td>
<td>18 10.00</td>
<td>1.618</td>
</tr>
<tr>
<td>1.80</td>
<td>18 10.00</td>
<td>1.718</td>
</tr>
<tr>
<td>1.90</td>
<td>18 10.00</td>
<td>1.819</td>
</tr>
<tr>
<td>2.00</td>
<td>18 10.00</td>
<td>1.919</td>
</tr>
<tr>
<td>2.10</td>
<td>18 10.00</td>
<td>2.020</td>
</tr>
<tr>
<td>2.20</td>
<td>18 10.00</td>
<td>2.120</td>
</tr>
<tr>
<td>2.30</td>
<td>18 10.00</td>
<td>2.221</td>
</tr>
<tr>
<td>2.40</td>
<td>18 10.00</td>
<td>2.321</td>
</tr>
<tr>
<td>2.50</td>
<td>18 10.00</td>
<td>2.422</td>
</tr>
<tr>
<td>2.60</td>
<td>18 10.00</td>
<td>2.522</td>
</tr>
<tr>
<td>2.70</td>
<td>18 10.00</td>
<td>2.623</td>
</tr>
<tr>
<td>2.80</td>
<td>18 10.00</td>
<td>2.723</td>
</tr>
<tr>
<td>2.90</td>
<td>18 10.00</td>
<td>2.824</td>
</tr>
<tr>
<td>3.00</td>
<td>18 10.00</td>
<td>2.924</td>
</tr>
</tbody>
</table>

Fig. B2. Printout of computations of average deflections.
TITLE INGRAIN TCI 04-02-02-010 7 FEBRUARY 1969 PAGE # 1 FORM: 7954

COMMENT:

1. THIS CODE IS TAKEN FROM A VEHICLE DYNAMICS PROGRAM WHICH IS NOW

2. BEING USED AT WES.

3. THE PROGRAM PRESENTED HERE CONTAINS NONE OF THE DYNAMICS OF THE

4. PROBLEM, BUT IS INTENDED ONLY TO DEMONSTRATE STATICALLY HOW THE

5. RESULTANT WHEEL SPIN FORCE IS COMPUTED USING THE SEGMENTED WHEEL

6. CONCEPT.

7. DIMENSION DSEG(24), SEGK(24), KTR(100), NTP(100), TRAC(24), RXY(2,24)

8. DIMENSION CV(0,100), CV(1,0,100), CV(2,0,100)

9. DIMENSION 0,1,0.0,0.8,0.8

10. DIMENSION 0,1,0.0,0.8,0.8

11. DIMENSION DTR

12. DIMENSION 0,1,0.0,0.8,0.8

13. DIMENSION DTR

14. DIMENSION 0,1,0.0,0.8,0.8

15. DIMENSION DTR

16. DIMENSION DTR

17. IF (DTR)50,40,40

18. FORMAT(2F10,2,1OX,2F10,2)

19. IF (DTR)50,40,40

20. FORMAT(2F10,2,1OX,2F10,2)

21. IF (DTR)50,40,40

22. IF (DTR)50,40,40

23. CONTINUE

24. CONTINUE

25. CONTINUE

26. CONTINUE

27. CONTINUE

28. CONTINUE

29. CONTINUE

30. CONTINUE

31. CONTINUE

32. CONTINUE

33. CONTINUE

34. CONTINUE

35. CONTINUE

36. CONTINUE

37. CONTINUE

38. CONTINUE

39. CONTINUE

40. CONTINUE

41. CONTINUE

42. CONTINUE

43. CONTINUE

44. CONTINUE

45. CONTINUE

46. CONTINUE

47. CONTINUE

48. CONTINUE

49. CONTINUE

50. CONTINUE

51. CONTINUE

52. CONTINUE

53. CONTINUE

54. CONTINUE

55. CONTINUE

56. CONTINUE

57. CONTINUE

58. CONTINUE

59. CONTINUE

60. CONTINUE

61. CONTINUE

62. CONTINUE

63. CONTINUE

64. CONTINUE

65. CONTINUE

66. CONTINUE

67. CONTINUE

68. CONTINUE

69. CONTINUE

70. CONTINUE

71. CONTINUE

72. CONTINUE

73. CONTINUE

74. CONTINUE

75. CONTINUE

76. CONTINUE

77. CONTINUE

78. CONTINUE

79. CONTINUE

80. CONTINUE

81. CONTINUE

82. CONTINUE

83. CONTINUE

84. CONTINUE

85. CONTINUE

86. CONTINUE

87. CONTINUE

88. CONTINUE

89. CONTINUE

90. CONTINUE

91. CONTINUE

92. CONTINUE

93. CONTINUE

94. CONTINUE

95. CONTINUE

96. CONTINUE

97. CONTINUE

98. CONTINUE

99. CONTINUE

100. CONTINUE

101. CONTINUE

102. CONTINUE

103. CONTINUE

104. CONTINUE

105. CONTINUE

106. CONTINUE

107. CONTINUE

108. CONTINUE

109. CONTINUE

110. CONTINUE

111. CONTINUE

112. CONTINUE

113. CONTINUE

114. CONTINUE

115. CONTINUE

116. CONTINUE

117. CONTINUE

118. CONTINUE

119. CONTINUE

120. CONTINUE

121. CONTINUE

122. CONTINUE

123. CONTINUE

124. CONTINUE

125. CONTINUE

126. CONTINUE

127. CONTINUE

128. CONTINUE

129. CONTINUE

130. CONTINUE

131. CONTINUE

132. CONTINUE

133. CONTINUE

134. CONTINUE

135. CONTINUE

136. CONTINUE

137. CONTINUE

138. CONTINUE

139. CONTINUE

140. CONTINUE

141. CONTINUE

142. CONTINUE

143. CONTINUE

144. CONTINUE

145. CONTINUE

146. CONTINUE

147. CONTINUE

148. CONTINUE

149. CONTINUE

150. CONTINUE

151. CONTINUE

152. CONTINUE

153. CONTINUE

154. CONTINUE

155. CONTINUE

156. CONTINUE

157. CONTINUE

158. CONTINUE

159. CONTINUE

160. CONTINUE

161. CONTINUE

162. CONTINUE

163. CONTINUE

164. CONTINUE

165. CONTINUE

166. CONTINUE

167. CONTINUE

168. CONTINUE

169. CONTINUE

170. CONTINUE

171. CONTINUE

172. CONTINUE

173. CONTINUE

174. CONTINUE

175. CONTINUE

176. CONTINUE

177. CONTINUE

178. CONTINUE

179. CONTINUE

180. CONTINUE

181. CONTINUE

182. CONTINUE

183. CONTINUE

184. CONTINUE

185. CONTINUE

186. CONTINUE

187. CONTINUE

188. CONTINUE

189. CONTINUE

190. CONTINUE

191. CONTINUE

192. CONTINUE

193. CONTINUE

194. CONTINUE

195. CONTINUE

196. CONTINUE

197. CONTINUE

198. CONTINUE

199. CONTINUE

200. CONTINUE

201. CONTINUE

202. CONTINUE

203. CONTINUE

204. CONTINUE

205. CONTINUE

206. CONTINUE

207. CONTINUE

208. CONTINUE

209. CONTINUE

210. CONTINUE

211. CONTINUE

212. CONTINUE

213. CONTINUE

214. CONTINUE

215. CONTINUE

216. CONTINUE

217. CONTINUE

218. CONTINUE

219. CONTINUE

220. CONTINUE

221. CONTINUE

222. CONTINUE

223. CONTINUE

224. CONTINUE

225. CONTINUE

226. CONTINUE

227. CONTINUE

228. CONTINUE

229. CONTINUE

230. CONTINUE

231. CONTINUE

232. CONTINUE

233. CONTINUE

234. CONTINUE

Fig. 18. Program for computing vertical and horizontal components of the resultant force vector transmitted to the axle.
Fig. B4. Schematic diagram depicting space coordinates of digital segmented tire program.
<table>
<thead>
<tr>
<th>Address</th>
<th>No. of Copies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Commanding General, U. S. Army Materiel Command</td>
<td></td>
</tr>
<tr>
<td>ATTN: AMCRD-DM</td>
<td>1</td>
</tr>
<tr>
<td>AMCRD-TV</td>
<td>2</td>
</tr>
<tr>
<td>AMCRD-G</td>
<td>1</td>
</tr>
<tr>
<td>Washington, D. C.</td>
<td></td>
</tr>
<tr>
<td>Commanding Officer, USA Terrestrial Sciences Research Center</td>
<td>1</td>
</tr>
<tr>
<td>ATTN: Library</td>
<td></td>
</tr>
<tr>
<td>Hanover, N. H.</td>
<td></td>
</tr>
<tr>
<td>Commanding Officer, U. S. Army Mobility Equipment Research and Development Center</td>
<td>2</td>
</tr>
<tr>
<td>ATTN: Technical Documents Center, Building 315</td>
<td></td>
</tr>
<tr>
<td>Fort Belvoir, Va.</td>
<td></td>
</tr>
<tr>
<td>Commanding Officer, USA Electronics Command</td>
<td>1</td>
</tr>
<tr>
<td>Meteorological Support Activity</td>
<td></td>
</tr>
<tr>
<td>Fort Huachuca, Ariz.</td>
<td></td>
</tr>
<tr>
<td>Commanding Officer, USA Electronics Research and Development Laboratories</td>
<td>1</td>
</tr>
<tr>
<td>ATTN: SELRA/ADT</td>
<td></td>
</tr>
<tr>
<td>Fort Monmouth, N. J.</td>
<td></td>
</tr>
<tr>
<td>Chief of Research and Development</td>
<td>1</td>
</tr>
<tr>
<td>ATTN: Chief, Combat Materiel Division</td>
<td></td>
</tr>
<tr>
<td>Department of the Army</td>
<td></td>
</tr>
<tr>
<td>Washington, D. C.</td>
<td></td>
</tr>
<tr>
<td>Chief of Research and Development</td>
<td>1</td>
</tr>
<tr>
<td>ATTN: CRDES, Department of the Army</td>
<td></td>
</tr>
<tr>
<td>Washington, D. C.</td>
<td></td>
</tr>
<tr>
<td>Chief of Research and Development</td>
<td>3 copies of Form 1473</td>
</tr>
<tr>
<td>Headquarters, Department of the Army</td>
<td></td>
</tr>
<tr>
<td>ATTN: Director of Army Technical Information</td>
<td></td>
</tr>
<tr>
<td>Washington, D. C.</td>
<td></td>
</tr>
<tr>
<td>Defense Intelligence Agency</td>
<td>1</td>
</tr>
<tr>
<td>ATTN: DIAAP-4B</td>
<td></td>
</tr>
<tr>
<td>Washington, D. C.</td>
<td></td>
</tr>
<tr>
<td>Special Assistant for Environmental Services</td>
<td>1</td>
</tr>
<tr>
<td>Joint Chiefs of Staff</td>
<td></td>
</tr>
<tr>
<td>Washington, D. C.</td>
<td></td>
</tr>
<tr>
<td>Address</td>
<td>No. of Copies</td>
</tr>
<tr>
<td>---</td>
<td>--------------</td>
</tr>
<tr>
<td>Director, OSD/ARPA Regional Field Office ARMISH-MAAG (RFO-I) APO New York 09205</td>
<td>1</td>
</tr>
<tr>
<td>Commanding Officer, U. S. Army Arctic Test Center APO Seattle, Wash.</td>
<td>1</td>
</tr>
<tr>
<td>Chief of Engineers ATTN: ENGME-RD ENGAS-I ENGMC-ER ENGINE-R0 (for Engineer Standardization Program) Department of the Army Washington, D. C.</td>
<td>1 2 2 4</td>
</tr>
<tr>
<td>War Plans Division, Engineer Strategic Studies Group Office, Chief of Engineers, U. S. Army Erskin Hall, Army Map Service Washington, D. C.</td>
<td>1</td>
</tr>
<tr>
<td>Commander, U. S. Army Combat Development Command Engineer Agency ATTN: CSGEN-M Fort Belvoir, Va.</td>
<td>1</td>
</tr>
<tr>
<td>The Librarian, U. S. Army Engineer School Library Thayer Hall Fort Belvoir, Va.</td>
<td>2</td>
</tr>
<tr>
<td>USA Engr School ATTN: Heavy Construction Section, Department of Engineering Pavements and Materials Group Fort Belvoir, Va.</td>
<td>1</td>
</tr>
<tr>
<td>Commanding General, XVIII Airborne Corps ATTN: Corps Engineer Fort Bragg, N. C.</td>
<td>2</td>
</tr>
<tr>
<td>Senior Engineer Instructor, Office of Military Instruction United States Corps of Cadets West Point, N. Y.</td>
<td>1</td>
</tr>
<tr>
<td>U. S. Continental Army Command Intelligence Center ATTN: Library, IPO Fort Bragg, N. C.</td>
<td>2</td>
</tr>
<tr>
<td>Address</td>
<td>No. of Copies</td>
</tr>
<tr>
<td>---</td>
<td>---------------</td>
</tr>
<tr>
<td>President, U. S. Army Armor Board</td>
<td>1</td>
</tr>
<tr>
<td>Fort Knox, Ky.</td>
<td></td>
</tr>
<tr>
<td>President, U. S. Army Artillery Board</td>
<td>1</td>
</tr>
<tr>
<td>Fort Sill, Okla.</td>
<td></td>
</tr>
<tr>
<td>President, U. S. Army Infantry Board</td>
<td>1</td>
</tr>
<tr>
<td>Fort Benning, Ga.</td>
<td></td>
</tr>
<tr>
<td>Commanding General, U. S. Army Weapons Command</td>
<td>1</td>
</tr>
<tr>
<td>ATTN: AMSWE-RDR</td>
<td></td>
</tr>
<tr>
<td>Rock Island, Ill.</td>
<td></td>
</tr>
<tr>
<td>Commanding General, U. S. Army Tank-Automotive Command</td>
<td>2</td>
</tr>
<tr>
<td>ATTN: AMSTA-BSL</td>
<td></td>
</tr>
<tr>
<td>Commander, U. S. Army Forces Southern Command</td>
<td>1</td>
</tr>
<tr>
<td>ATTN: Engineer</td>
<td></td>
</tr>
<tr>
<td>Fort Amador, Canal Zone</td>
<td></td>
</tr>
<tr>
<td>Commanding General, U. S. Continental Army Command</td>
<td>2</td>
</tr>
<tr>
<td>Engineer Division, DCSLOG</td>
<td></td>
</tr>
<tr>
<td>ATTN: ATLOG-E-MB</td>
<td></td>
</tr>
<tr>
<td>Fort Monroe, Va.</td>
<td></td>
</tr>
<tr>
<td>Commanding General, U. S. Continental Army Command</td>
<td>1</td>
</tr>
<tr>
<td>ATTN: ATTIT-RD</td>
<td></td>
</tr>
<tr>
<td>Fort Monroe, Va.</td>
<td></td>
</tr>
<tr>
<td>Commandant, Command and General Staff College</td>
<td>1</td>
</tr>
<tr>
<td>ATTN: Archives</td>
<td></td>
</tr>
<tr>
<td>Fort Leavenworth, Kans.</td>
<td></td>
</tr>
<tr>
<td>Commanding General, U. S. Army Tank-Automotive Command</td>
<td>2</td>
</tr>
<tr>
<td>Land Locomotion Division</td>
<td></td>
</tr>
<tr>
<td>ATTN: AMSTA-UL</td>
<td></td>
</tr>
<tr>
<td>Commander, U. S. Army Picatinny Arsenal</td>
<td>1</td>
</tr>
<tr>
<td>ATTN: SMUPA-VCl, Mr. D. Sen</td>
<td></td>
</tr>
<tr>
<td>Dover, N. J.</td>
<td></td>
</tr>
<tr>
<td>Commanding Officer, Yuma Proving Ground</td>
<td>1</td>
</tr>
<tr>
<td>ATTN: STEYP-TGM</td>
<td></td>
</tr>
<tr>
<td>Yuma, Ariz.</td>
<td></td>
</tr>
<tr>
<td>Address</td>
<td>No. of Copies</td>
</tr>
<tr>
<td>--</td>
<td>--------------</td>
</tr>
<tr>
<td>Technical Library, Branch No. 4</td>
<td>1</td>
</tr>
<tr>
<td>U. S. Army Limited War Laboratory</td>
<td></td>
</tr>
<tr>
<td>Aberdeen Proving Ground, Md.</td>
<td></td>
</tr>
<tr>
<td>Automotive Engineering Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>ATTN: STEAP-DP-LU</td>
<td></td>
</tr>
<tr>
<td>Aberdeen Proving Ground, Md.</td>
<td></td>
</tr>
<tr>
<td>Director, Development and Proof Services</td>
<td>1</td>
</tr>
<tr>
<td>ATTN: STEAP-DS-TU</td>
<td></td>
</tr>
<tr>
<td>Aberdeen Proving Ground, Md.</td>
<td></td>
</tr>
<tr>
<td>Commanding Officer</td>
<td>2</td>
</tr>
<tr>
<td>ATTN: Tech Library, Bldg 313</td>
<td></td>
</tr>
<tr>
<td>Aberdeen Proving Ground, Md.</td>
<td></td>
</tr>
<tr>
<td>Commanding Officer, U. S. Army General Equipment Test Activity</td>
<td>1</td>
</tr>
<tr>
<td>Fort Lee, Va.</td>
<td></td>
</tr>
<tr>
<td>Chief, Crops Division, U. S. Army Biological Laboratories</td>
<td>1</td>
</tr>
<tr>
<td>Fort Detrick, Md.</td>
<td></td>
</tr>
<tr>
<td>Commanding Officer, U. S. Army Combat Developments</td>
<td>1</td>
</tr>
<tr>
<td>Command Transportation Agency</td>
<td></td>
</tr>
<tr>
<td>ATTN: Mr. Earl S. Brown</td>
<td></td>
</tr>
<tr>
<td>Fort Eustis, Va.</td>
<td></td>
</tr>
<tr>
<td>Asst. Chief of Staff for Force Development</td>
<td>1</td>
</tr>
<tr>
<td>Hqs, Department of the Army, ATTN: FOR DS SSS</td>
<td></td>
</tr>
<tr>
<td>Washington, D. C.</td>
<td></td>
</tr>
<tr>
<td>United States Army Attaché, American Embassy</td>
<td>2</td>
</tr>
<tr>
<td>U. S. Navy 100, Box 36</td>
<td></td>
</tr>
<tr>
<td>Fleet Post Office</td>
<td></td>
</tr>
<tr>
<td>New York, N. Y.</td>
<td></td>
</tr>
<tr>
<td>Office of Naval Research</td>
<td>1</td>
</tr>
<tr>
<td>ATTN: Geography Branch</td>
<td></td>
</tr>
<tr>
<td>Department of the Navy</td>
<td></td>
</tr>
<tr>
<td>Washington, D. C.</td>
<td></td>
</tr>
<tr>
<td>Commanding Officer, PHIBCB Two</td>
<td>1</td>
</tr>
<tr>
<td>U. S. Naval Amphibious Base</td>
<td></td>
</tr>
<tr>
<td>Little Creek, Norfolk, Va.</td>
<td></td>
</tr>
<tr>
<td>U. S. Naval Academy</td>
<td>2</td>
</tr>
<tr>
<td>ATTN: Library, Serials Division</td>
<td></td>
</tr>
<tr>
<td>Annapolis, Md. 21402</td>
<td></td>
</tr>
<tr>
<td>Address</td>
<td>No. of Copies</td>
</tr>
<tr>
<td>--</td>
<td>--------------</td>
</tr>
<tr>
<td>Commanding Officer, PHIBCB One</td>
<td>1</td>
</tr>
<tr>
<td>U. S. Naval Amphibious Base</td>
<td></td>
</tr>
<tr>
<td>Coronado, San Diego, Calif.</td>
<td></td>
</tr>
<tr>
<td>Commanding Officer and Director</td>
<td>1</td>
</tr>
<tr>
<td>Naval Civil Engineering Laboratory</td>
<td></td>
</tr>
<tr>
<td>Port Hueneme, Calif.</td>
<td></td>
</tr>
<tr>
<td>Director, Naval Warfare Research Center</td>
<td>1</td>
</tr>
<tr>
<td>Stanford Research Institute</td>
<td></td>
</tr>
<tr>
<td>Menlo Park, Calif.</td>
<td></td>
</tr>
<tr>
<td>Commander, Naval Facilities Engineering Command</td>
<td>2</td>
</tr>
<tr>
<td>Navy Department, Code 03</td>
<td></td>
</tr>
<tr>
<td>Washington, D. C.</td>
<td></td>
</tr>
<tr>
<td>Commanding Officer, U. S. Naval Photographic Interpretation Center</td>
<td>1</td>
</tr>
<tr>
<td>Washington, D. C.</td>
<td></td>
</tr>
<tr>
<td>Chief, Combat Service Support Division</td>
<td>1</td>
</tr>
<tr>
<td>Marine Corps Landing Force Development Center</td>
<td></td>
</tr>
<tr>
<td>Marine Corps Schools</td>
<td></td>
</tr>
<tr>
<td>Quantico, Va.</td>
<td></td>
</tr>
<tr>
<td>Commander, 3800th AB Wing, AU</td>
<td>1</td>
</tr>
<tr>
<td>ATTN: BDCE-ED</td>
<td></td>
</tr>
<tr>
<td>Maxwell AFB, Ala.</td>
<td></td>
</tr>
<tr>
<td>Headquarters, USAF</td>
<td>1</td>
</tr>
<tr>
<td>(AFRSTC) Astronautics Division</td>
<td></td>
</tr>
<tr>
<td>DCS/Research and Development</td>
<td></td>
</tr>
<tr>
<td>Washington, D. C.</td>
<td></td>
</tr>
<tr>
<td>Commander, U. S. Strike Command</td>
<td>1</td>
</tr>
<tr>
<td>ATTN: J4-E</td>
<td></td>
</tr>
<tr>
<td>McDill AFB, Fla.</td>
<td></td>
</tr>
<tr>
<td>Chief, Concepts and Evaluation Group</td>
<td>1</td>
</tr>
<tr>
<td>U. S. Strike Command</td>
<td></td>
</tr>
<tr>
<td>McDill AFB, Fla.</td>
<td></td>
</tr>
<tr>
<td>Commander, ADTC</td>
<td>1</td>
</tr>
<tr>
<td>ATTN: ADBPS-12</td>
<td></td>
</tr>
<tr>
<td>Eglin AFB, Fla.</td>
<td></td>
</tr>
<tr>
<td>Dr. Nicholas C. Costes, Space Sciences Laboratory, Code RSSL-N</td>
<td>1</td>
</tr>
<tr>
<td>Marshall Spaceflight Center</td>
<td></td>
</tr>
<tr>
<td>Huntsville, Ala.</td>
<td></td>
</tr>
<tr>
<td>Address</td>
<td>No. of Copies</td>
</tr>
<tr>
<td>--</td>
<td>--------------</td>
</tr>
<tr>
<td>Headquarters, Air Force Systems Command</td>
<td>2</td>
</tr>
<tr>
<td>Directorate of Civil Engineering (SCOC)</td>
<td></td>
</tr>
<tr>
<td>Andrews AFB, Washington, D. C.</td>
<td></td>
</tr>
<tr>
<td>Headquarters, Tactical Air Command</td>
<td>2</td>
</tr>
<tr>
<td>ATTN: DEPL</td>
<td></td>
</tr>
<tr>
<td>Langley AFB, Va.</td>
<td></td>
</tr>
<tr>
<td>Headquarters, U. S. Air Force</td>
<td>2</td>
</tr>
<tr>
<td>Director of Civil Engineering (AFOCE-KA)</td>
<td></td>
</tr>
<tr>
<td>Washington, D. C.</td>
<td></td>
</tr>
<tr>
<td>Headquarters, USAF</td>
<td>1</td>
</tr>
<tr>
<td>Base Structures Branch, Directorate of Civil Engineering</td>
<td></td>
</tr>
<tr>
<td>ATTN: AFOCE-GC</td>
<td></td>
</tr>
<tr>
<td>Washington, D. C.</td>
<td></td>
</tr>
<tr>
<td>Commander, Hqs, Military Airlift Command</td>
<td>1</td>
</tr>
<tr>
<td>ATTN: MAMCE/FS</td>
<td></td>
</tr>
<tr>
<td>Scott AFB, Ill.</td>
<td></td>
</tr>
<tr>
<td>Commander, ASD (ASNMS-20)</td>
<td>1</td>
</tr>
<tr>
<td>Wright-Patterson AFB, Ohio</td>
<td></td>
</tr>
<tr>
<td>Air Force Weapons Laboratory</td>
<td>2</td>
</tr>
<tr>
<td>ATTN: Civil Engineering Branch, WLDC</td>
<td></td>
</tr>
<tr>
<td>Kirtland AFB, N. Mex.</td>
<td></td>
</tr>
<tr>
<td>Terrestrial Sciences Lab (CRJT)</td>
<td>1</td>
</tr>
<tr>
<td>Air Force Cambridge Res Lab, L. G. Hanscom Field</td>
<td></td>
</tr>
<tr>
<td>Bedford, Mass.</td>
<td></td>
</tr>
<tr>
<td>Library, Division of Public Documents</td>
<td>1</td>
</tr>
<tr>
<td>U. S. Government Printing Office</td>
<td></td>
</tr>
<tr>
<td>Washington, D. C.</td>
<td></td>
</tr>
<tr>
<td>Library of Congress, Documents Expediting Project</td>
<td>3</td>
</tr>
<tr>
<td>Washington, D. C.</td>
<td></td>
</tr>
<tr>
<td>Defense Documentation Center</td>
<td>20</td>
</tr>
<tr>
<td>ATTN: Mr. Myer Kahn</td>
<td></td>
</tr>
<tr>
<td>Cameron Station</td>
<td></td>
</tr>
<tr>
<td>Alexandria, Va.</td>
<td></td>
</tr>
<tr>
<td>National Tillage Machinery Laboratory</td>
<td>1</td>
</tr>
<tr>
<td>U. S. Department of Agriculture</td>
<td></td>
</tr>
<tr>
<td>Auburn, Ala.</td>
<td></td>
</tr>
<tr>
<td>Address</td>
<td>No. of Copies</td>
</tr>
<tr>
<td>--</td>
<td>--------------</td>
</tr>
<tr>
<td>Chief, World Soil Geography Unit, Soil Conservation Service</td>
<td>1</td>
</tr>
<tr>
<td>USDA, Room 233A Federal Center Bldg Hyattsville, Md.</td>
<td></td>
</tr>
<tr>
<td>Director, Pacific Southwest Forest and Range Experiment Station</td>
<td>1</td>
</tr>
<tr>
<td>U. S. Geological Survey</td>
<td>2</td>
</tr>
<tr>
<td>Chief, Source Material Unit, Branch of Military Geology Washington, D. C.</td>
<td></td>
</tr>
<tr>
<td>Coastal Studies Institute</td>
<td>1</td>
</tr>
<tr>
<td>Louisiana State University</td>
<td></td>
</tr>
<tr>
<td>Baton Rouge, La.</td>
<td></td>
</tr>
<tr>
<td>Librarian, Bureau of Public Roads</td>
<td>1</td>
</tr>
<tr>
<td>U. S. Department of Commerce</td>
<td></td>
</tr>
<tr>
<td>Washington, D. C.</td>
<td></td>
</tr>
<tr>
<td>New York University</td>
<td>1</td>
</tr>
<tr>
<td>ATTN: Engineering Library</td>
<td></td>
</tr>
<tr>
<td>University Heights, Bronx, N. Y.</td>
<td></td>
</tr>
<tr>
<td>Professor L. C. Stuart</td>
<td>1</td>
</tr>
<tr>
<td>University of Michigan</td>
<td></td>
</tr>
<tr>
<td>Ann Arbor, Mich.</td>
<td></td>
</tr>
<tr>
<td>University of Arkansas, College of Engineering</td>
<td>1</td>
</tr>
<tr>
<td>ATTN: Mr. Henry H. Hicks, Jr. Fayetteville, Ark.</td>
<td></td>
</tr>
<tr>
<td>Stanford Research Institute</td>
<td>1</td>
</tr>
<tr>
<td>ATTN: Mr. Gordon S. Wiley</td>
<td></td>
</tr>
<tr>
<td>Menlo Park, Calif.</td>
<td></td>
</tr>
<tr>
<td>Address</td>
<td>No. of Copies</td>
</tr>
<tr>
<td>--</td>
<td>---------------</td>
</tr>
<tr>
<td>Engineering Societies Library</td>
<td>1</td>
</tr>
<tr>
<td>New York, N. Y.</td>
<td></td>
</tr>
<tr>
<td>Highway Research Board</td>
<td>1</td>
</tr>
<tr>
<td>Washington, D. C.</td>
<td></td>
</tr>
<tr>
<td>Research Analysis Corporation</td>
<td>1</td>
</tr>
<tr>
<td>ATTN: Library</td>
<td></td>
</tr>
<tr>
<td>McLean, Va. 22101</td>
<td></td>
</tr>
<tr>
<td>Davidson Laboratory, Stevens Institute of Technology</td>
<td>1</td>
</tr>
<tr>
<td>ATTN: Dr. I. R. Ehrlich</td>
<td></td>
</tr>
<tr>
<td>Hoboken, N. J.</td>
<td></td>
</tr>
<tr>
<td>Center for Research and Engineering Science</td>
<td>1</td>
</tr>
<tr>
<td>University of Kansas</td>
<td></td>
</tr>
<tr>
<td>Lawrence, Kansas</td>
<td></td>
</tr>
<tr>
<td>Mr. David Sloss, Civil Engineering Department</td>
<td>1</td>
</tr>
<tr>
<td>University of Detroit</td>
<td></td>
</tr>
<tr>
<td>Detroit, Mich. 48221</td>
<td></td>
</tr>
<tr>
<td>Institute of Transportation and Traffic Engineering Library</td>
<td>1</td>
</tr>
<tr>
<td>University of California</td>
<td></td>
</tr>
<tr>
<td>Richmond, Calif. 94804</td>
<td></td>
</tr>
<tr>
<td>Wilson, Nuttall, Raimond Engineers, Inc.</td>
<td>1</td>
</tr>
<tr>
<td>ATTN: Library</td>
<td></td>
</tr>
<tr>
<td>Chestertown, Md.</td>
<td></td>
</tr>
<tr>
<td>Cornell Aeronautical Laboratory, Inc.</td>
<td>1</td>
</tr>
<tr>
<td>P. O. Box 235</td>
<td></td>
</tr>
<tr>
<td>Buffalo, N. Y. 14221</td>
<td></td>
</tr>
<tr>
<td>Technical Library</td>
<td>1</td>
</tr>
<tr>
<td>USACDC Institute of Land Combat</td>
<td></td>
</tr>
<tr>
<td>301 Taylor Drive</td>
<td></td>
</tr>
<tr>
<td>Alexandria, Va. 22314</td>
<td></td>
</tr>
<tr>
<td>Address</td>
<td>No. of Copies</td>
</tr>
<tr>
<td>-------------------------</td>
<td>---------------</td>
</tr>
<tr>
<td>Dr. A. A. Warlam</td>
<td>1</td>
</tr>
<tr>
<td>Prof. K. B. Woods</td>
<td>1</td>
</tr>
<tr>
<td>Mr. Robert Horonjeff</td>
<td>1</td>
</tr>
<tr>
<td>Mr. C. J. Nuttall</td>
<td>1</td>
</tr>
<tr>
<td>Mr. R. B. Fadum</td>
<td>1</td>
</tr>
<tr>
<td>Dr. N. M. Newmark</td>
<td>1</td>
</tr>
<tr>
<td>Dr. Gerald Pickett</td>
<td>1</td>
</tr>
<tr>
<td>Dr. M. J. Hvorslev</td>
<td>1</td>
</tr>
<tr>
<td>Dr. Arthur Casagrande</td>
<td>1</td>
</tr>
</tbody>
</table>
This appendix presents the procedures for digital implementation of the segmented tire model, developed in the basic report for an analog computer. Two procedures are required: (a) determination of the segment spring coefficient from measured load-deflection test results, and (b) computation of the resultant force vector transmitted to the axle. Digital programs for both procedures were written in Fortran IV for a GE-420 system, and are included.
<table>
<thead>
<tr>
<th>KEY WORDS</th>
<th>LINK A</th>
<th>LINK B</th>
<th>LINK C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mathematical models</td>
<td>Role</td>
<td>WT</td>
<td>Role</td>
</tr>
<tr>
<td>Obstacles</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tires</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vehicle dynamics</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>