Destroy this report when no longer needed. Do not return it to the originator.

The findings in this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents.
CONDITION SURVEY, DYESS AIR FORCE BASE, TEXAS

by

R. D. Jackson

June 1973

Sponsored by Office, Chief of Engineers, U. S. Army

Conducted by U. S. Army Engineer Waterways Experiment Station
Soils and Pavements Laboratory
Vicksburg, Mississippi

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
Foreword

The study reported herein was conducted under the general supervision of the Engineering Design Criteria Branch, Soils and Pavements Laboratory, of the U. S. Army Engineer Waterways Experiment Station (WES), Vicksburg, Mississippi. Personnel involved in the condition survey were Messrs. R. D. Jackson, K. A. O'Connor, and S. R. Rowland, Jr. This report was prepared by Mr. Jackson under the general supervision of Messrs. J. P. Sale, R. G. Ahlvin, R. L. Hutchinson, and P. J. Vedros of the Soils and Pavements Laboratory. Appendix A was obtained from the Air Force.

COL Ernest D. Peixotto, CE, was Director of the WES during the conduct of the study and preparation of the report. Mr. F. R. Brown was Technical Director.
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Foreword</td>
<td>iii</td>
</tr>
<tr>
<td>Conversion Factors, British to Metric Units of Measurement</td>
<td>vii</td>
</tr>
<tr>
<td>Authority</td>
<td>1</td>
</tr>
<tr>
<td>Purpose and Scope</td>
<td>1</td>
</tr>
<tr>
<td>Pertinent Background Data</td>
<td>1</td>
</tr>
<tr>
<td>- Location and topography</td>
<td>1</td>
</tr>
<tr>
<td>- Geology and soils</td>
<td>2</td>
</tr>
<tr>
<td>- Drainage</td>
<td>2</td>
</tr>
<tr>
<td>- Climatic conditions</td>
<td>2</td>
</tr>
<tr>
<td>- General description of airfield</td>
<td>3</td>
</tr>
<tr>
<td>- Previous reports</td>
<td>3</td>
</tr>
<tr>
<td>History of Airfield Pavements</td>
<td>3</td>
</tr>
<tr>
<td>- Design and construction history</td>
<td>3</td>
</tr>
<tr>
<td>- Traffic history</td>
<td>4</td>
</tr>
<tr>
<td>Conditions of Pavement Surfaces</td>
<td>5</td>
</tr>
<tr>
<td>- Pavement inspection procedure</td>
<td>5</td>
</tr>
<tr>
<td>- Runway</td>
<td>6</td>
</tr>
<tr>
<td>- Taxiways</td>
<td>6</td>
</tr>
<tr>
<td>- Aprons</td>
<td>6</td>
</tr>
<tr>
<td>Maintenance</td>
<td>7</td>
</tr>
<tr>
<td>Evaluation</td>
<td>7</td>
</tr>
<tr>
<td>Conclusions</td>
<td>7</td>
</tr>
<tr>
<td>Tables 1-5</td>
<td>7</td>
</tr>
<tr>
<td>Photos 1-7</td>
<td>7</td>
</tr>
<tr>
<td>Plates 1 and 2</td>
<td>7</td>
</tr>
<tr>
<td>Appendix A: DAFB Annual Pavement Maintenance Plan</td>
<td></td>
</tr>
</tbody>
</table>
Conversion Factors, British to Metric Units of Measurement

British units of measurement used in this report can be converted to metric units as follows:

<table>
<thead>
<tr>
<th>Multiply</th>
<th>By</th>
<th>To Obtain</th>
</tr>
</thead>
<tbody>
<tr>
<td>inches</td>
<td>2.54</td>
<td>centimeters</td>
</tr>
<tr>
<td>feet</td>
<td>0.3048</td>
<td>meters</td>
</tr>
<tr>
<td>miles (U. S. statute)</td>
<td>1.609344</td>
<td>kilometers</td>
</tr>
<tr>
<td>square inches</td>
<td>6.4516</td>
<td>square centimeters</td>
</tr>
<tr>
<td>pounds (mass)</td>
<td>0.45359237</td>
<td>kilograms</td>
</tr>
<tr>
<td>pounds (force) per square inch</td>
<td>0.6894757</td>
<td>newtons per square centimeter</td>
</tr>
<tr>
<td>Fahrenheit degrees</td>
<td>*</td>
<td>Celsius or Kelvin degrees</td>
</tr>
</tbody>
</table>

* To obtain Celsius (C) temperature readings from Fahrenheit (F) readings, use the following formula: \(C = \frac{5}{9}(F - 32) \). To obtain Kelvin (K) readings, use: \(K = \frac{5}{9}(F - 32) + 273.15 \).
Authority

Purpose and Scope

2. The purpose of this report is to present the results of a condition survey performed at Dyess Air Force Base (DAFB), Texas, during 11-14 December 1972. The following two major areas of interest were considered in this condition survey:
 a. The structural condition of the primary airfield pavements.
 b. The condition of pavement repairs and the types of maintenance materials that have been used at this airfield.

3. This report is limited to a presentation of visual observations of the pavement conditions, discussion of these observations, and pertinent remarks with regard to the performance of the pavements. No physical tests of the pavements, foundations, or patching materials were performed during this survey.

Pertinent Background Data

Location and topography

4. DAFB is situated in north central Texas, approximately 6 miles* west of Abilene and 2 miles west of the original site of Tye Air Force

* A table of factors for converting British units of measurement to metric units is presented on page vii.
Base. The airfield is located in the physiographic section of the Osage Plains and lies 10-12 miles north of prominent hills that form the Callaban Divide. A vicinity map is shown in plates 1 and 2.

Geology and soils

5. The airfield is located on a relatively flat alluvial plain formed by a combination of outwash from the hills to the south and west and deposits of stream-transported sediments derived from the soft Permian strata in the region. The hills to the south are capped with limestone of the Fredericksburg group of the Lower Cretaceous period. The native subgrade soils are calcareous sandy clays (which are classified as CL material according to the Unified Soil Classification System*), with some gravelly sandy clay (CL) and fat clay (CH).

Drainage

6. The surface drainage of a major portion of the paved areas is collected in a system of ditches and catch basins located between the runway and taxiways and discharged through storm sewers and ditches. In areas where pavement grades or topographic conditions are such that surface runoff flows away from the catch basins, the drainage is handled by a peripheral system of open ditches that encircles the field and drains to the southeast. The water table is located approximately 20 ft below ground surface.

Climatic conditions

7. The climate of the area is generally mild and is typical of central Texas. The average monthly temperature has ranged from a low of approximately 33 F in January to a high of 96 F in August, with extreme temperatures having ranged from a low of 3 F to a high of 111 F. Temperature and precipitation data for 1971 are shown in table 1. The amounts of departure from normal for the 1971 temperatures and precipitation were determined using a period of record of 85 years. Total annual precipitation averages approximately 23.3 in.

General description of airfield

8. In December 1972, the airfield facilities consisted of a N-S (16-34) runway, a parallel taxiway, a parking apron, three warm-up aprons, five connecting taxiways, a washrack, and seven maintenance hangar aprons and connecting taxiways. The runway was 300 ft wide and 13,500 ft long; the parking apron was 1,025 ft wide and 9,725 ft long; and the taxiways were 75 ft wide. A layout of the airfield is shown in plate 1. A pavement plan indicating the type pavement on each facility is shown in plate 2.

Previous reports

9. Previous reports concerning the airfield facilities at DAFB are listed below. Pertinent data were extracted from them for use in this condition survey report.

a. Condition survey reports:

b. Pavement evaluation reports:

History of Airfield Pavements

Design and construction history

10. The original construction of the airfield was started in 1953 and completed in 1955. The rigid pavements constructed during this period were 15 and 16 in. thick and were designed in accordance with the
provisions of Chapters 2 and 3, Part XII, Engineering Manual for Military Construction, dated July 1951, to support a landing gear load of 100,000 lb on twin wheels spaced 37.5 in. center to center, with each wheel having a tire contact area of 267 sq in. Extensions to these pavement facilities were constructed during the 2-year period 1956-57. The rigid pavements constructed during this period were 15 to 19 in. thick and were designed (in accordance with the provisions of Interim Design Criteria for Airfield Pavement Subjected to Channelized Traffic, inclosure to OCE letter to all Divisions, subject: "Revisions to Design Criteria for Airfield Pavements," dated 15 June 1955) to support a landing gear load of 100,000 lb on the same gear configuration as that for the pavements constructed during 1953-55. Rigid pavements constructed during 1963-64 were 15 to 27 in. thick and were designed to support a single gear load of 265,000 lb on twin-twin wheels spaced 37-62-37 in., with each wheel having a tire contact area of 267 sq in. The inlay placed in taxiway 2 in 1966 was 19 in. of portland cement concrete (PCC) and was constructed in accordance with the design criteria used for the 1963-64 construction. Details of the construction history of the airfield pavements (extracted from reports referenced in paragraph 9) are presented in table 2. Pavement thicknesses, descriptions, and other details are presented in table 3.

Traffic history

11. Operations by KC-97 and B-47 aircraft at DAFB began in February 1956 and continued until December 1959 and March 1963, respectively. Available traffic records indicate that the following amounts of traffic were applied by B-47 aircraft during the cited periods: February 1956-April 1958, 235 cycles* per month; April 1958-June 1961, 424 cycles per month; and June 1961-March 1963, 179 cycles per month. Gross operating loads of the B-47 aircraft were 178,000 lb during February 1956-December 1958 and 186,000 lb during December 1958-March 1963. Traffic records indicate that an average of 78 cycles per month of KC-97 aircraft traffic were applied at 155,000-lb gross loads.

* A cycle of operation is one takeoff and one landing.
Runway construction was in progress between January 1963 and March 1964, and only the south half of the runway was in use. During this period, 235 cycles per month of C-130 aircraft traffic and 390 cycles per month of other light aircraft traffic were being applied. The B-52 aircraft arrived at DAFB on 23 December 1963. Traffic records for 1964 indicate that an average of 67 cycles per month of B-52 aircraft traffic were applied at reduced gross takeoff weights of 250,000 lb. Additional aircraft traffic prior to the runway reconstruction (January 1963) consisted of 130 cycles per month of C-130 aircraft traffic and 640 cycles per month of other light aircraft traffic. Traffic records for the years 1965-71 indicate that approximately 65 to 75 cycles per month of B-52 aircraft traffic, 75 to 85 cycles per month of KC-135 traffic, 183 cycles per month of C-130 traffic, and 468 cycles of other aircraft traffic were applied. Normal operating loads were approximately 413,000 lb for B-52's, 240,000 lb for KC-135's, 106,000 lb for C-130's, and 75,000-87,000 lb for other aircraft. The 1972 traffic records indicate that the following amounts of traffic per type of aircraft were applied: 331 cycles, B-52's; 7 cycles, C-5A's; 142 cycles, C-141's; 617 cycles, KC-135's, C-135's, and C-133's; and 17,336 cycles, other aircraft, C-130's being the predominate aircraft in this group. Normal operating loads were approximately 413,000 lb for B-52's; 712,000 lb for C-5A's; 310,000 lb for C-141's; 270,000 lb for KC-135's, C-135's, and C-133's; and 150,000 lb for other aircraft. Takeoffs and landings were about equally distributed between the runway ends. Alert exercises were conducted by B-52 and KC-135 aircraft that consisted of taxiing from the north end of the parking apron to the north end of the runway by taxiways 7 and 1, taxiing down the length of the runway, and returning to the parking apron by taxiways 5 and 7.

Conditions of Pavement Surfaces

Pavement Inspection Procedure

12. The following procedure was used in conducting the inspection of the rigid pavements. Representative features were selected for
detailed inspection. The features were then inspected slab* by slab, and the defects were recorded. The locations of the individual pavement features, the inspection starting points, and the directions in which the pavements were inspected (shown by arrows) are indicated in plate 1. The results of the rigid pavement survey for those features that were inspected in detail are presented in table 4. This table shows a quantitative breakdown of the various types of defects and a condition rating for each feature inspected in detail. The procedures used for determining the condition rating of a pavement are given in Appendix III, Department of the Army Technical Manual TM 5-827-3, "Rigid Airfield Pavement Evaluation," dated September 1965.

Runway

13. The PCC pavement features of the runway were in good to excellent condition based on the percentages of slabs containing no major defects. The predominate major defects on the runway were longitudinal cracks. The asphaltic concrete (AC) outside edges of the runway interior were in fair to good condition (see photos 1-5).

Taxiways

14. The primary taxiways, 1, 5, and 7 (features T1A, T2A, T3B, T7A, T8A, T10B, and T11B), were in conditions ranging from good to excellent based on the percentages of the slabs containing major defects. The taxi lane on taxiway 7 had been moved and a 26-in. inlay constructed at the present location of the taxi lane. Using only the 75 ft at the present location for the condition rating of this feature would have resulted in a rating of very good to excellent; however, using the 150-ft width resulted in a condition rating of good. Taxiway 2, which is 16- and 18-in. PCC, was in very good condition. Taxiways 3 and 4, which are AC, were in only fair condition (see photos 6 and 7).

Aprons

15. The 16-in. PCC of the parking apron (features A1B and A2B) was in very good structural condition. The predominate major defect noted was longitudinal cracking. Approximately 4.5 percent of the slabs

* A slab is the smallest unit, containing no joints, of a given pavement feature.
contained this defect. Warm-up apron A was in excellent condition, since
no major defects and only one minor defect were noted. Warm-up apron C
and its extension were in good structural condition. The maintenance
hangar aprons surveyed were in conditions ranging from fair to very good
based on the percentages of slabs containing major defects.

Maintenance

16. Maintenance of the airfield pavements at DAFB has generally
consisted of spall patching, joint sealing, seal coating, and replacing
some PCC slabs. The annual pavement maintenance plan for the airfield
is presented as Appendix A. Listed below are contract maintenance costs
since 1959:

<table>
<thead>
<tr>
<th>Fiscal Year</th>
<th>Amount</th>
<th>Fiscal Year</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>1959</td>
<td>$225,000</td>
<td>1967</td>
<td>$135,000</td>
</tr>
<tr>
<td>1962</td>
<td>60,000</td>
<td>1968</td>
<td>10,000</td>
</tr>
<tr>
<td>1963</td>
<td>25,000</td>
<td>1969</td>
<td>10,000</td>
</tr>
<tr>
<td>1964</td>
<td>250,000</td>
<td>1971</td>
<td>153,000</td>
</tr>
<tr>
<td>1965</td>
<td>75,000</td>
<td>1972</td>
<td>325,000</td>
</tr>
<tr>
<td>1966</td>
<td>78,000</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Evaluation

17. A summary of the pavement evaluation is presented in table 5.
Previously published pavement evaluations were updated to eliminate air-
craft that are no longer in the Air Force inventory and to include air-
craft that have been added to the inventory since the last pavement
evaluation. The evaluation is based on the pavement thickness, flexural
strength (PCC), base and subbase thickness and strength, strength of the
subgrade (CBR or k value), and the structural condition of the pavement.

Conclusions

18. The following statements summarize the findings of the in-
spection at DAFB:
a. The runway pavements were in good to excellent condition. The 16-in. PCC at the north end (feature R4B) was in only good condition. The other features were in either very good or excellent condition.

b. Considerable damage to the pavement of taxiway 7 (16-in. PCC) as a result of channelized traffic of B-52 aircraft necessitated the moving of the taxi lane and replacing the 16-in. pavement in one paving lane with 26-in. PCC pavement.

c. Joint seal materials were in good condition in some areas and in poor condition in other areas.

d. PCC and AC patching materials had been used to repair spalled PCC slabs, and both materials were performing adequately.
Table 1

Temperature and Precipitation Data

<table>
<thead>
<tr>
<th>Month</th>
<th>1971 Average Temperature, F</th>
<th>Departure from Normal, F</th>
<th>1971 Precipitation, in.</th>
<th>Departure from Normal, in.</th>
</tr>
</thead>
<tbody>
<tr>
<td>January</td>
<td>46.4</td>
<td>1.8</td>
<td>0.01</td>
<td>-0.87</td>
</tr>
<tr>
<td>February</td>
<td>48.7</td>
<td>0.3</td>
<td>0.57</td>
<td>-0.52</td>
</tr>
<tr>
<td>March</td>
<td>55.1</td>
<td>0.1</td>
<td>0.04</td>
<td>-1.00</td>
</tr>
<tr>
<td>April</td>
<td>64.5</td>
<td>0.2</td>
<td>2.44</td>
<td>0.17</td>
</tr>
<tr>
<td>May</td>
<td>72.4</td>
<td>0.7</td>
<td>2.17</td>
<td>-2.16</td>
</tr>
<tr>
<td>June</td>
<td>80.4</td>
<td>0.1</td>
<td>1.78</td>
<td>-0.89</td>
</tr>
<tr>
<td>July</td>
<td>84.4</td>
<td>1.2</td>
<td>1.85</td>
<td>-0.43</td>
</tr>
<tr>
<td>August</td>
<td>76.9</td>
<td>-6.1</td>
<td>6.92</td>
<td>5.45</td>
</tr>
<tr>
<td>September</td>
<td>73.3</td>
<td>-2.6</td>
<td>5.33</td>
<td>3.26</td>
</tr>
<tr>
<td>October</td>
<td>66.0</td>
<td>-0.2</td>
<td>2.43</td>
<td>-0.42</td>
</tr>
<tr>
<td>November</td>
<td>55.0</td>
<td>2.0</td>
<td>0.76</td>
<td>-0.35</td>
</tr>
<tr>
<td>December</td>
<td>48.9</td>
<td>2.8</td>
<td>1.81</td>
<td>0.55</td>
</tr>
<tr>
<td>Annual</td>
<td>64.3</td>
<td>0.0</td>
<td>26.11</td>
<td>2.79</td>
</tr>
</tbody>
</table>

Note: Highest temperature in 1971 was 103 F on July 5; lowest temperature in 1971 was 3 F on February 8.
Table 2
Airfield Construction History

<table>
<thead>
<tr>
<th>Pavement Facility</th>
<th>Pavement Thickness, in.</th>
<th>Type</th>
<th>Construction Year(s)</th>
<th>Agency</th>
</tr>
</thead>
<tbody>
<tr>
<td>N-S runway</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sta 190+00 to 200+00</td>
<td>16</td>
<td>PCC</td>
<td>1954</td>
<td>CE</td>
</tr>
<tr>
<td>Sta 200+00 to 292+00</td>
<td>4</td>
<td>AC</td>
<td>1953-55</td>
<td>CE</td>
</tr>
<tr>
<td>Sta 292+00 to 302+00</td>
<td>16</td>
<td>PCC</td>
<td>1954</td>
<td>CE</td>
</tr>
<tr>
<td>Sta 167+00 to 172+00</td>
<td>16 and 19</td>
<td></td>
<td>1956-57</td>
<td>CE</td>
</tr>
<tr>
<td>Sta 172+00 to 177+25</td>
<td>16</td>
<td>PCC</td>
<td>1957</td>
<td>CE</td>
</tr>
<tr>
<td>Sta 177+25 to 190+00</td>
<td>15</td>
<td>PCC</td>
<td>1957</td>
<td>CE</td>
</tr>
<tr>
<td>Taxiway 3</td>
<td>4</td>
<td>AC</td>
<td>1955</td>
<td>CE</td>
</tr>
<tr>
<td>Taxiway 4</td>
<td>4</td>
<td>AC</td>
<td>1955</td>
<td>CE</td>
</tr>
<tr>
<td>Taxiway 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sta 2+70 to 10+00, center</td>
<td>4</td>
<td>AC</td>
<td>1955</td>
<td>CE</td>
</tr>
<tr>
<td>25 ft replaced</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sta 0+00 to 2+70</td>
<td>16</td>
<td>PCC</td>
<td>1956-57</td>
<td>CE</td>
</tr>
<tr>
<td>Sta 2+70 to 10+00</td>
<td>18</td>
<td>PCC*</td>
<td>1966</td>
<td>AF</td>
</tr>
<tr>
<td>Taxiway 5</td>
<td>4</td>
<td>AC</td>
<td>1955</td>
<td>CE</td>
</tr>
<tr>
<td>Taxiway 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sta 158+8.76 to 171+15</td>
<td>19</td>
<td>PCC</td>
<td>1956-57</td>
<td>CE</td>
</tr>
<tr>
<td>Sta 171+15 to 193+90</td>
<td>16-19</td>
<td>PCC</td>
<td>1956-57</td>
<td>CE</td>
</tr>
<tr>
<td>Parking apron and taxiway 7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sta 193+90 to 260+00</td>
<td>16</td>
<td>PCC</td>
<td>1954-55</td>
<td>CE</td>
</tr>
<tr>
<td>Sta 260+00 to 292+00</td>
<td>16</td>
<td>PCC</td>
<td>1954-55</td>
<td>CE</td>
</tr>
<tr>
<td>Sta 292+00 to 298+15</td>
<td>16</td>
<td>PCC</td>
<td>1954-55</td>
<td>CE</td>
</tr>
<tr>
<td>Warm-up apron A</td>
<td>16</td>
<td>PCC</td>
<td>1955</td>
<td>CE</td>
</tr>
<tr>
<td>Warm-up apron B</td>
<td>16</td>
<td>PCC</td>
<td>1955</td>
<td>CE</td>
</tr>
<tr>
<td>Warm-up apron C</td>
<td>18</td>
<td>PCC</td>
<td>1956</td>
<td>CE</td>
</tr>
<tr>
<td>Blast pads</td>
<td>2</td>
<td>AC</td>
<td>1956-57</td>
<td>CE</td>
</tr>
<tr>
<td>N-S runway</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sta 167+00 to 177+00, west side</td>
<td>15</td>
<td>PCC**</td>
<td>1963-64</td>
<td>CE</td>
</tr>
<tr>
<td>Sta 172+00 to 177+00, east side</td>
<td>15</td>
<td>PCC**</td>
<td>1963-64</td>
<td>CE</td>
</tr>
</tbody>
</table>

(Continued)

Note: CE denotes Corps of Engineers; AF denotes Air Force.
* Inlay.
** New construction.
<table>
<thead>
<tr>
<th>Pavement Facility</th>
<th>Pavement Thickness, in.</th>
<th>Type</th>
<th>Construction Year(s)</th>
<th>Agency</th>
</tr>
</thead>
<tbody>
<tr>
<td>N-S runway (Continued)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sta 177+00 to 292+00, each side</td>
<td>4</td>
<td>AC**</td>
<td>1963-64</td>
<td>CE</td>
</tr>
<tr>
<td>Sta 175+00 to 177+00, center 50 ft</td>
<td>26-22-26</td>
<td>PCC*</td>
<td>1963-64</td>
<td>CE</td>
</tr>
<tr>
<td>Sta 177+00 to 200+00, center 50 ft</td>
<td>26-18-26</td>
<td>PCC*</td>
<td>1963-64</td>
<td>CE</td>
</tr>
<tr>
<td>Sta 200+00 to 292+00, center 75 ft</td>
<td>18</td>
<td>PCC*</td>
<td>1963-64</td>
<td>CE</td>
</tr>
<tr>
<td>Sta 200+90 to 292+00, each side between widening and inlay</td>
<td>3/4-4</td>
<td>AC</td>
<td>1963-64</td>
<td>CE</td>
</tr>
<tr>
<td>Sta 292+00 to 298+25, east side, 50-ft widening</td>
<td>15</td>
<td>PCC**</td>
<td>1963-64</td>
<td>CE</td>
</tr>
<tr>
<td>Sta 292+00 to 302+00, west side, 50-ft widening</td>
<td>15</td>
<td>PCC**</td>
<td>1963-64</td>
<td>CE</td>
</tr>
<tr>
<td>Taxiway 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sta 165+66.26 to 193+90, center 25 ft</td>
<td>27</td>
<td>PCC*</td>
<td>1963-64</td>
<td>CE</td>
</tr>
<tr>
<td>Taxiway 5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sta 298+15 to 310+71.24</td>
<td>23</td>
<td>PCC†</td>
<td>1963-64</td>
<td>CE</td>
</tr>
<tr>
<td>Taxiway 7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sta 193+90 to 298+15, 25-ft-wide section</td>
<td>26</td>
<td>PCC*</td>
<td>1963-64</td>
<td>CE</td>
</tr>
<tr>
<td>Warm-up apron A</td>
<td>23</td>
<td>PCC†</td>
<td>1963-64</td>
<td>CE</td>
</tr>
<tr>
<td>Warm-up apron C addition</td>
<td>18</td>
<td>PCC**</td>
<td>1963-64</td>
<td>CE</td>
</tr>
<tr>
<td>N-S runway</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sta 167+75 to 172+00</td>
<td>23</td>
<td>PCC**</td>
<td>1963-64</td>
<td>CE</td>
</tr>
<tr>
<td>Sta 298+25 to 302+00</td>
<td>23</td>
<td>PCC**</td>
<td>1963-64</td>
<td>CE</td>
</tr>
<tr>
<td>Addition to washrack</td>
<td>15</td>
<td>PCC**</td>
<td>1963-64</td>
<td>CE</td>
</tr>
</tbody>
</table>

* Inlay.
** New construction.
† Reconstruction.
<table>
<thead>
<tr>
<th>Table 3: SUMMARY OF PHYSICAL PROPERTY DATA</th>
</tr>
</thead>
<tbody>
<tr>
<td>FACILITY</td>
</tr>
<tr>
<td>--------------</td>
</tr>
<tr>
<td>FACILITY NUMBER AND IDENTIFICATION</td>
</tr>
<tr>
<td>RLA N-S runway</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>RBA N-S runway</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>RDA N-S runway</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>RDA N-S runway</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>RDA N-S runway</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>RDA N-S runway</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>
Table 3 (Continued)

SUMMARY OF PHYSICAL PROPERTY DATA

<table>
<thead>
<tr>
<th>FACILITY</th>
<th>OVERLAY PAVEMENT</th>
<th>PAVEMENT</th>
<th>BASE</th>
<th>SUBGRADE</th>
<th>GENERAL CONDITION OF AREA CONSIDERED</th>
</tr>
</thead>
<tbody>
<tr>
<td>Facility Number and Identification</td>
<td>Length</td>
<td>Width</td>
<td>Thickness</td>
<td>Description</td>
<td>Flex. Str.</td>
</tr>
<tr>
<td>B14B</td>
<td>300</td>
<td>200</td>
<td>16</td>
<td>Portland cement concrete</td>
<td>740</td>
</tr>
<tr>
<td>B15A</td>
<td>500</td>
<td>200</td>
<td>19</td>
<td>Portland cement concrete</td>
<td>800</td>
</tr>
<tr>
<td>T16A</td>
<td>773.5</td>
<td>64.7</td>
<td>6</td>
<td>Clayey-sandy gravel (GC) and clayey gravelly sand (SC)</td>
<td>750</td>
</tr>
<tr>
<td>T17A</td>
<td>677.4</td>
<td>62.1</td>
<td>7</td>
<td>Clayey-sandy gravel (GC) and clayey gravelly sand (SC)</td>
<td>750</td>
</tr>
<tr>
<td>T18A</td>
<td>3,275</td>
<td>25</td>
<td>6</td>
<td>Clayey-sandy gravel (GC) and clayey gravelly sand (SC)</td>
<td>750</td>
</tr>
<tr>
<td>T19A</td>
<td>270</td>
<td>75</td>
<td>15</td>
<td>Portland cement concrete</td>
<td>740</td>
</tr>
<tr>
<td>T20A</td>
<td>730</td>
<td>25</td>
<td>16</td>
<td>Portland cement concrete</td>
<td>740</td>
</tr>
<tr>
<td>T21A</td>
<td>1,000</td>
<td>25</td>
<td>6</td>
<td>Crushed limestone Subbase 1</td>
<td>80</td>
</tr>
<tr>
<td>T22A</td>
<td>10,425</td>
<td>25</td>
<td>16</td>
<td>Portland cement concrete</td>
<td>780</td>
</tr>
<tr>
<td>T23A</td>
<td>1,256.24</td>
<td>25</td>
<td>15</td>
<td>Portland cement concrete</td>
<td>1,000</td>
</tr>
<tr>
<td>T24A</td>
<td>1,115</td>
<td>25</td>
<td>16</td>
<td>Portland cement concrete</td>
<td>740</td>
</tr>
<tr>
<td>T25A</td>
<td>1,000</td>
<td>25</td>
<td>16</td>
<td>Portland cement concrete</td>
<td>740</td>
</tr>
<tr>
<td>T26A</td>
<td>6,615</td>
<td>25</td>
<td>16</td>
<td>Portland cement concrete</td>
<td>740</td>
</tr>
<tr>
<td>T27A</td>
<td>1,115</td>
<td>25</td>
<td>16</td>
<td>Portland cement concrete</td>
<td>740</td>
</tr>
<tr>
<td>T28A</td>
<td>Varies</td>
<td>25</td>
<td>16</td>
<td>Portland cement concrete</td>
<td>740</td>
</tr>
<tr>
<td>T29A</td>
<td>Varies</td>
<td>25</td>
<td>16</td>
<td>Portland cement concrete</td>
<td>740</td>
</tr>
<tr>
<td>FACILITY NUMBER AND IDENTIFICATION</td>
<td>FACILITY OVERLAY PAVEMENT</td>
<td>PAVEMENT</td>
<td>BASE</td>
<td>SUBGRADE</td>
<td>GENERAL CONDITION OF AREA CONSIDERED</td>
</tr>
<tr>
<td>-----------------------------------</td>
<td>---------------------------</td>
<td>----------</td>
<td>------</td>
<td>----------</td>
<td>-------------------------------------</td>
</tr>
<tr>
<td>A6B Warm-up apron C addition</td>
<td>18 Portland cement concrete</td>
<td>750 6 Sandy gravel (GW-GM) and (GM-GC) cement treated</td>
<td>Lean and sandy clay (CL) with some fat clay (CH) top 6" lime treated</td>
<td>100 Good</td>
<td></td>
</tr>
<tr>
<td>A7C Calibration hardstand</td>
<td>16 Portland cement concrete</td>
<td>700 6 Clayey-sandy gravel (GC) and clayey gravelly sand (SC)</td>
<td>Fat clay (CH) with sandy clay (CL)</td>
<td>125 Fair to Poor</td>
<td></td>
</tr>
<tr>
<td>A8B Washrack</td>
<td>15 Portland cement concrete</td>
<td>700 6 Clayey-sandy gravel (GC) and clayey gravelly sand (SC)</td>
<td>Fat clay (CH) with sandy clay (CL)</td>
<td>125 Poor to Fair</td>
<td></td>
</tr>
<tr>
<td>A8B Washrack addition</td>
<td>15 Portland cement concrete</td>
<td>700 6 Clayey-sandy gravel (GC) and clayey gravelly sand (SC)</td>
<td>Lean and sandy clay (CL) with some fat clay (CH) top 6" lime treated</td>
<td>100 Good</td>
<td></td>
</tr>
<tr>
<td>A12B Maintenance hangar aprons (1-5) and access taxiways</td>
<td>15 Portland cement concrete</td>
<td>700 6 Clayey-sandy gravel (GC) and clayey gravelly sand (SC)</td>
<td>Fat clay (CH) with sandy clay (CL)</td>
<td>125 Good</td>
<td></td>
</tr>
<tr>
<td>A11B Maintenance hangar apron (6 and 7) and access taxiways</td>
<td>15 Portland cement concrete</td>
<td>700 6 Clayey-sandy gravel (GC) and clayey gravelly sand (SC)</td>
<td>Lean clay (CL) with clayey sand (SC)</td>
<td>100 Very Good</td>
<td></td>
</tr>
<tr>
<td>R16X Blast pad, north end</td>
<td>2 Asphaltic concrete</td>
<td>14 Crushed limestone Select material</td>
<td>Fat clay (CH) with fatty clays (CL)</td>
<td>125 Fair</td>
<td></td>
</tr>
<tr>
<td>R17X Overrun, north end</td>
<td>6 Double bituminous surface treatment</td>
<td>10 Stabilized aggregate Subbase</td>
<td>Lime stabilized subgrade</td>
<td>Fair</td>
<td></td>
</tr>
<tr>
<td>R18X Blast pad, south end</td>
<td>2 Asphaltic concrete</td>
<td>8 Crushed limestone Select material</td>
<td>Lean clay (CL) with clayey sands (SC)</td>
<td>100 Fair</td>
<td></td>
</tr>
<tr>
<td>R19X Overrun, south end</td>
<td>6 Double bituminous surface treatment</td>
<td>4 Stabilized aggregate Subbase</td>
<td>Lime stabilized subgrade</td>
<td>Fair</td>
<td></td>
</tr>
</tbody>
</table>
Table 4

SUMMARY OF DATA - RIGID PAVEMENT CONDITION SURVEY

<table>
<thead>
<tr>
<th>FEATURE</th>
<th>SLAB SIZE FT</th>
<th>APPROX NO. OF SLABS</th>
<th>SLAB THICK. IN.</th>
<th>NO. OF SLABS CONTAINING INDICATED DEFECTS</th>
<th>% OF SLABS NO DEFECTS</th>
<th>% OF SLABS MAJOR DEFECTS</th>
<th>CONDITION</th>
</tr>
</thead>
<tbody>
<tr>
<td>R1A</td>
<td>N-S runway; 1st 500 ft, north end</td>
<td>25 by 25</td>
<td>240</td>
<td>15</td>
<td>3</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>R1A</td>
<td>N-S runway; 2nd 500 ft, north end</td>
<td>25 by 25</td>
<td>224</td>
<td>16</td>
<td>3</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>R16</td>
<td>N-S runway interior sta 177+00 to 200+00</td>
<td>25 by 25</td>
<td>736</td>
<td>15</td>
<td>26</td>
<td>6</td>
<td>4</td>
</tr>
<tr>
<td>R18</td>
<td>N-S runway interior</td>
<td>25 by 25</td>
<td>1,004</td>
<td>15</td>
<td>2</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>R1A</td>
<td>N-S runway; 2nd 500 ft, south end</td>
<td>25 by 25</td>
<td>240</td>
<td>15</td>
<td>5</td>
<td>7</td>
<td>6</td>
</tr>
<tr>
<td>R1A</td>
<td>N-S runway; 1st 500 ft, south end</td>
<td>25 by 25</td>
<td>240</td>
<td>16</td>
<td>6</td>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td>T1A</td>
<td>Taxiway 1</td>
<td>25 by 25</td>
<td>496</td>
<td>19</td>
<td>22</td>
<td>13</td>
<td>1</td>
</tr>
<tr>
<td>T2A</td>
<td>Taxiway 2</td>
<td>25 by 25</td>
<td>80</td>
<td>16</td>
<td>3</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>T7A</td>
<td>Taxiway 7</td>
<td>25 by 25</td>
<td>240</td>
<td>16</td>
<td>201</td>
<td>54</td>
<td>13</td>
</tr>
</tbody>
</table>

REMARKS:

LEGEND:

- I LONGITUDINAL CRACK
- TRANSVERSE CRACK
- \ DIAGONAL CRACK
- A CORNER BREAK
- * SHATTERED SLAB
- K KEYED JOINT FAILURE
- S SHRINKAGE CRACK
- * SHRINKAGE CRACK
- M MAP CRACKING
- P POP-OUT
- O UNCONTROLLED SINKING
- D "D" CRACKING
- J CUSHION SETTLEMENT
- C CONTRACTION CRACK
- J SPALL ON TRANSVERSE JOINT
- J SPALL ON LONGITUDINAL JOINT
- C CORNER SPALL

WES FORM NO. 2004
JUN 1972 (1 of 3 sheets)
<table>
<thead>
<tr>
<th>FEATURE</th>
<th>NO.</th>
<th>DESIGNATION</th>
<th>SLAB SIZE FT</th>
<th>APPROX. NO. OF SLABS</th>
<th>SLABS THICK IN.</th>
<th>NO. OF SLABS CONTAINING INDICATED DEFECTS</th>
<th>% OF SLABS NO DEFECTS</th>
<th>% OF SLABS NO MAJOR DEFECTS</th>
<th>CONDITION</th>
</tr>
</thead>
<tbody>
<tr>
<td>T6A</td>
<td>25</td>
<td>Taxiway 5</td>
<td>25 by 25</td>
<td>213</td>
<td>23</td>
<td>1</td>
<td>99.5</td>
<td>100</td>
<td>Excellent</td>
</tr>
<tr>
<td>A1B</td>
<td>25</td>
<td>Parking apron A</td>
<td>25 by 25</td>
<td>6336</td>
<td>16</td>
<td>218 63 62 12 7 113 17 15 24</td>
<td>90.5</td>
<td>94.5</td>
<td>Very good</td>
</tr>
<tr>
<td>A2B</td>
<td>25</td>
<td>Parking apron B</td>
<td>25 by 25</td>
<td>6468</td>
<td>16</td>
<td>341 75 79 14 2 230 11 8 32 5</td>
<td>88.8</td>
<td>92.5</td>
<td>Very good</td>
</tr>
<tr>
<td>A3B</td>
<td>25</td>
<td>Warm-up apron A</td>
<td>25 by 25</td>
<td>230</td>
<td>23</td>
<td>1</td>
<td>99.5</td>
<td>100</td>
<td>Excellent</td>
</tr>
<tr>
<td>A4B</td>
<td>25</td>
<td>Warm-up apron B</td>
<td>25 by 25</td>
<td>126</td>
<td>16</td>
<td>14 6 8 2 1</td>
<td>72.2</td>
<td>76.1</td>
<td>Fair</td>
</tr>
<tr>
<td>A5B</td>
<td>25</td>
<td>Warm-up apron C</td>
<td>25 by 25</td>
<td>214</td>
<td>18</td>
<td>15 5 9 1 10</td>
<td>81.7</td>
<td>85.9</td>
<td>Good</td>
</tr>
<tr>
<td>A6B</td>
<td>25</td>
<td>Washrack</td>
<td>25 by 25</td>
<td>66</td>
<td>15</td>
<td>23 6 4 1 8</td>
<td>53.0</td>
<td>53.0</td>
<td>Poor to failed</td>
</tr>
<tr>
<td>A10B</td>
<td>25</td>
<td>Maintenance hangar apron 2</td>
<td>25 by 25</td>
<td>215</td>
<td>15</td>
<td>30 9 8 8 8 1 1 1 1</td>
<td>78.1</td>
<td>80.9</td>
<td>Good</td>
</tr>
<tr>
<td>A10B</td>
<td>25</td>
<td>Maintenance hangar apron 3</td>
<td>25 by 25</td>
<td>97</td>
<td>15</td>
<td>15 4 2 1 20 1 3 3</td>
<td>65.9</td>
<td>77.3</td>
<td>Fair</td>
</tr>
<tr>
<td>A10B</td>
<td>25</td>
<td>Maintenance hangar apron 4</td>
<td>25 by 25</td>
<td>297</td>
<td>15</td>
<td>23 10 5 5 5 1 2 7 7</td>
<td>83.1</td>
<td>86.1</td>
<td>Good</td>
</tr>
</tbody>
</table>

REMARKS:

LEGEND:
- **I** - LONGITUDINAL CRACK
- **** - TRANSVERSE CRACK
- **** - DIAGONAL CRACK
- **Δ** - CORNER BREAK
- ***** - SHATTERED SLAB
- **K** - KEYED JOINT FAILURE
- **\(\)** - SHRINKAGE CRACK
- **\(\)** - SCALING
- **\(\)** - SPALL ON TRANSVERSE JOINT
- **J** - SPALL ON LONGITUDINAL JOINT
- **D** - CORNER SPALL
- **O** - SETTLEMENT
- **C** - MAP CRACKING
- **M** - PUMPING JOINT
- **P** - POP-OUT
- **O** - UNCONTROLLED CONTRACTION CRACK
- **D** - "D" CRACKING
Table 4 (Continued)

SUMMARY OF DATA - RIGID PAVEMENT CONDITION SURVEY

<table>
<thead>
<tr>
<th>DATE:</th>
<th>AIRFIELD:</th>
</tr>
</thead>
<tbody>
<tr>
<td>December 1972</td>
<td>Dyess AFB, Texas</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>FEATURE</th>
<th>NO.</th>
<th>DESIGNATION</th>
<th>SLAB SIZE</th>
<th>APPROX NO. OF SLABS</th>
<th>PAVE. THICK. IN.</th>
<th>NO. OF SLABS CONTAINING INDICATED DEFECTS</th>
<th>% OF SLABS NO DEFECTS</th>
<th>% OF SLABS NO MAJOR DEFECTS</th>
<th>CONDITION</th>
</tr>
</thead>
<tbody>
<tr>
<td>A10B Maintenance hangar apron 5</td>
<td>85 by 25</td>
<td>392</td>
<td>15</td>
<td>24</td>
<td>10</td>
<td>4</td>
<td>1</td>
<td>4</td>
<td>7</td>
</tr>
<tr>
<td>A11B Maintenance hangar apron 6</td>
<td>25 by 25</td>
<td>347</td>
<td>15</td>
<td>11</td>
<td>13</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>5</td>
</tr>
</tbody>
</table>

REMARKS:

LEGEND:
- **1** LONGITUDINAL CRACK
- **2** TRANSVERSE CRACK
- **** DIAGONAL CRACK
- **A** CORNER BREAK
- **** SHATTERED SLAB
- **K** KEYED JOINT FAILURE
- **M** MAP CRACKING
- **O** PUMPING JOINT
- **P** POP-OUT
- **C** UNCONTROLLED CONTRACTION CRACK
- **D** "D" CRACKING

CONDITION:
- Very good
Table 5
SUMMARY OF PAVEMENT EVALUATION

NAME OF AIRFIELD: Dyess AFB
DATE OF EVALUATION
MONTH: Dec
YR: 1972

<table>
<thead>
<tr>
<th>FEATURE</th>
<th>NO.</th>
<th>DESIGNATION</th>
<th>PAVEMENT OPERATIONAL USE</th>
<th>LOAD-CARRYING CAPACITY IN LB OF GROSS PLANE LOAD FOR INDICATED LANDING GEAR TYPES AND CONFIGURATIONS</th>
<th>TRICYCLE ARRANGEMENT</th>
<th>REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NO.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| 01A | | N-S runway, sta 167+00 to 172+00
Taxiway 1, sta 159+28.76 to 165+66.26 and sta 165+66.26 to 177+15 | Capacity | 155,000+ | 85,000+ | 155,000+ | 220,000+ | 200,000+ | 290,000+ | 330,000+ | 380,000+ | 800,000+ | 420,000 |
| 02A | | N-S runway; sta 167+75 to 172+00
and sta 298+05 to 302+00
Taxiway 5, sta 298+05 to 310+71.24 | Capacity | 155,000+ | 85,000+ | 155,000+ | 220,000+ | 200,000+ | 330,000+ | 330,000+ | 380,000+ | 400,000+ | 510,000 |
| 03B | | N-S runway interior; 2nd 500 ft, N end | Capacity | 155,000+ | 85,000+ | 155,000+ | 220,000+ | 200,000+ | 265,000 | 330,000 | 380,000+ | 800,000+ | 350,000 |
| 05B | | N-S runway inlay, sta 175+00 to 177+00 | Capacity | 155,000+ | 85,000+ | 155,000+ | 220,000+ | 200,000+ | 330,000+ | 330,000+ | 380,000+ | 800,000+ | 350,000 |
| 06C | | Runway inlay, sta 177+00 to 192+00 | Capacity | 155,000+ | 85,000+ | 155,000+ | 220,000+ | 200,000+ | 330,000+ | 330,000+ | 380,000+ | 800,000+ | 350,000 |
| 01B | | N-S runway, 2nd 500 ft, S end
Parking apron
Outside edges of taxiway 7 | Capacity | 155,000 | 85,000+ | 155,000+ | 210,000 | 200,000+ | 235,000 | 290,000 | 380,000+ | 800,000+ | 310,000 |
| 02B | | N-S runway; 1st 500 ft, S end | Capacity | 155,000 | 85,000+ | 155,000+ | 210,000 | 200,000+ | 195,000 | 250,000 | 330,000 | 800,000+ | 290,000 |
| 03A | | Taxiway 1 inlay, sta 165+66.26 to 192+00 | Capacity | 155,000+ | 85,000+ | 155,000+ | 220,000+ | 200,000+ | 330,000+ | 330,000+ | 380,000+ | 800,000+ | 600,000+ |

Note: + sign denotes allowable gross loading greater than maximum gross weight of any existing aircraft having indicated gear configuration.
<table>
<thead>
<tr>
<th>NAME OF AIRFIELD: Dyess AFB</th>
<th>LOAD-CARRYING CAPACITY IN LB OF GROSS PLANE LOAD FOR INDICATED LANDING GEAR TYPES AND CONFIGURATIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>DATE OF EVALUATION</td>
<td>MONTH: Dec YR: 1972</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>FEATURE</th>
<th>PAVEMENT OPERATIONAL USE</th>
<th>TRICYCLE ARRANGEMENT</th>
<th>BICYCLE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>SINGLE 100 PSI TIRE PRESSURE</td>
<td>SINGLE 130-SQ.-IN. CONTACT AREA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 2 3 4 5 6 7 8 9 10</td>
<td></td>
</tr>
<tr>
<td>T4C Taxiway 2 (PCC)</td>
<td>Capacity</td>
<td>155,000+ 85,000+</td>
<td>155,000+ 220,000+ 200,000+ 330,000+</td>
</tr>
<tr>
<td>T5C Taxiway 2 (PCC)</td>
<td>Capacity</td>
<td>155,000+ 85,000+</td>
<td>155,000+ 220,000+ 200,000+ 330,000+</td>
</tr>
<tr>
<td>T6C Taxiway 2 (AC portion) and taxiway 3</td>
<td>Capacity</td>
<td>155,000+ 85,000+</td>
<td>155,000+ 220,000+ 200,000+ 330,000+</td>
</tr>
<tr>
<td>T7A Taxiway 7 inlay</td>
<td>Capacity</td>
<td>155,000+ 85,000+</td>
<td>155,000+ 220,000+ 200,000+ 330,000+</td>
</tr>
<tr>
<td>T9C Taxiways 4 and 6</td>
<td>Capacity</td>
<td>155,000+ 85,000+</td>
<td>155,000+ 220,000+ 200,000+ 330,000+</td>
</tr>
<tr>
<td>A1B Parking apron A</td>
<td>Capacity</td>
<td>155,000+ 85,000+</td>
<td>155,000+ 220,000+ 200,000+ 330,000+</td>
</tr>
<tr>
<td>A2B Warm-up apron A</td>
<td>Capacity</td>
<td>155,000+ 85,000+</td>
<td>155,000+ 220,000+ 200,000+ 330,000+</td>
</tr>
<tr>
<td>A3B Warm-up apron C</td>
<td>Capacity</td>
<td>155,000+ 85,000+</td>
<td>155,000+ 220,000+ 200,000+ 330,000+</td>
</tr>
<tr>
<td>A4B Warm-up apron C</td>
<td>Capacity</td>
<td>155,000+ 85,000+</td>
<td>155,000+ 220,000+ 200,000+ 330,000+</td>
</tr>
<tr>
<td>A5B Warm-up apron C</td>
<td>Capacity</td>
<td>155,000+ 85,000+</td>
<td>155,000+ 220,000+ 200,000+ 330,000+</td>
</tr>
<tr>
<td>A6B Warm-up apron C</td>
<td>Capacity</td>
<td>155,000+ 85,000+</td>
<td>155,000+ 220,000+ 200,000+ 330,000+</td>
</tr>
<tr>
<td>A7C Warm-up apron C</td>
<td>Capacity</td>
<td>155,000+ 85,000+</td>
<td>155,000+ 220,000+ 200,000+ 330,000+</td>
</tr>
<tr>
<td>A8B Warm-up apron C</td>
<td>Capacity</td>
<td>155,000+ 85,000+</td>
<td>155,000+ 220,000+ 200,000+ 330,000+</td>
</tr>
<tr>
<td>A9B Warm-up apron C</td>
<td>Capacity</td>
<td>155,000+ 85,000+</td>
<td>155,000+ 220,000+ 200,000+ 330,000+</td>
</tr>
<tr>
<td>A10B Warm-up apron C</td>
<td>Capacity</td>
<td>155,000+ 85,000+</td>
<td>155,000+ 220,000+ 200,000+ 330,000+</td>
</tr>
<tr>
<td>A11B Warm-up apron C</td>
<td>Capacity</td>
<td>155,000+ 85,000+</td>
<td>155,000+ 220,000+ 200,000+ 330,000+</td>
</tr>
<tr>
<td>A12B Warm-up apron C</td>
<td>Capacity</td>
<td>155,000+ 85,000+</td>
<td>155,000+ 220,000+ 200,000+ 330,000+</td>
</tr>
</tbody>
</table>

WES FORM NO. 999 EDITION OF AUG 1960 IS OBSOLETE.
Photo 1. AC portion of runway near north end, east side

Photo 2. AC portion of runway, 5000 ft from north end, west side
Photo 3. AC portion of runway, 5000 ft from north end, east side

Photo 4. AC portion of runway, 6000 ft from south end, east side
Photo 5. AC portion of runway, 4000 ft from south end, west side

Photo 6. General view of taxiway 3
Photo 7. General view of taxiway 4
<table>
<thead>
<tr>
<th>Fac No.</th>
<th>Description</th>
<th>Pavement Type</th>
<th>Year Const.</th>
<th>Dist. Condition</th>
<th>Inspection Requirements</th>
<th>Priority</th>
<th>Maint & Repair History</th>
<th>Present or Proposed Maint & Repair</th>
</tr>
</thead>
</table>

* Work covered by FY 63 MIP project to widen runway to 300' and replace 75' width of flexible pavement with rigid, heavy keel, was completed in 1965.
* Work covered by Project DVS 259-3, to replace rigid pavement with new rigid, heavy, between stations 177400 and 200400 was completed in 1964.
* Work covered by O&M Project DVS 258-3 to replace part center slab (25' wide) with new rigid, heavy keel was completed in 1964.
* Project DVS 723-5 to replace 51' width of flexible pavement with rigid keel was completed by contract in 1966. (Continued)
<table>
<thead>
<tr>
<th>FAC No.</th>
<th>Description</th>
<th>Pavement Type</th>
<th>Year</th>
<th>Exist. Condition</th>
<th>Inspection Requirements</th>
<th>Maintain Prior.</th>
<th>Maintain & Repair History</th>
<th>Present or Proposed Maintain & Repair</th>
</tr>
</thead>
<tbody>
<tr>
<td>513</td>
<td>Runway Overruns - (North) (1000' X 300' ex end) 25' - North (South) 16" - South</td>
<td>Flex</td>
<td>1956</td>
<td>Satis.</td>
<td>Daily & Monthly</td>
<td>1-C</td>
<td>Min by MCB, 1964-5</td>
<td>Min by in-house through FY 78.</td>
</tr>
</tbody>
</table>

* Work covered by FY 63 MCP project to widen runway to 300' and replace 75' width of flexible pavement with rigid, heavy seal was completed in 1964.
* All flex pavement was replaced in 1964 with rigid, heavy under FY 63 MCP.
** To prevent tire damage by shattered slabs, this 25' was moved 50' east (to present location). The center 25' slab width was replaced in 1964 with rigid, heavy keel to support B-52 operations.
§ Overruns have been widened from 200' to 300' by FY 63 MCP.
§§ This pad has been enlarged by FY 63 MCP to accommodate two B-52 aircraft.
Shoulder stabil. (Except on T/W 3 and T/W 6 have been widened from 25' to 90' by FY 63 MCP.)