
DESIGN AND IMPLEMENTATION OF LARGE-SCALE

WIRELESS SENSOR NETWORKS

FOR ENVIRONMENTAL MONITORING APPLICATIONS

Jue Yang

Dissertation Prepared for the Degree of

DOCTOR OF PHILOSOPHY

UNIVERSITY OF NORTH TEXAS

May 2010

APPROVED:

Xinrong Li, Major Professor
Yan Huang, Co-Major Professor
Miguel F. Acevedo, Committee Member
Shengli Fu, Committee Member
Kamesh Namuduri, Committee Member
Ian Parberry, Chair of the Department

of Computer Science and Engineering
Costas Tsatsoulis, Dean of the College of

Engineering
Michael Monticino, Dean of the Robert B.

Toulouse Graduate School

Yang, Jue. Design and Implementation of Large-Scale Wireless Sensor Networks for

Environmental Monitoring Applications. Doctor of Philosophy (Computer Science), May 2010, 100

pp., 2 tables, 36 illustrations, bibliography, 79 titles.

Environmental monitoring represents a major application domain for wireless sensor

networks (WSN). However, despite significant advances in recent years, there are still many

challenging issues to be addressed to exploit the full potential of the emerging WSN technology. In

this dissertation, we introduce the design and implementation of low-power wireless sensor

networks for long-term, autonomous, and near-real-time environmental monitoring applications. We

have developed an out-of-box solution consisting of a suite of software, protocols and algorithms to

provide reliable data collection with extremely low power consumption. Two wireless sensor

networks based on the proposed solution have been deployed in remote field stations to monitor

soil moisture along with other environmental parameters. As parts of the ever-growing

environmental monitoring cyberinfrastructure, these networks have been integrated into the Texas

Environmental Observatory system for long-term operation. Environmental measurement and

network performance results are presented to demonstrate the capability, reliability and energy-

efficiency of the network.

Copyright 2010

by

Jue Yang

ii

ACKNOWLEDGMENTS

First of all I would like to deliver my sincere gratitude to my advisor, Dr. Xinrong Li

for his full support and supervision throughout my five years doctoral study. I am grateful

for the tremendous time and energy he spent in steering my research. Indeed, without his

support, I would never have had the chance to conduct research on the promising field of

wireless sensor network, which may become my lifetime career.

I would also like to thank my committee members, Dr. Yan Huang, Dr. Miguel F.

Acevedo, Dr. Shengli Fu and Dr. Kamesh Namuduri for their invaluable suggestions and

advice during the entire process of research and project.

I would say many thanks to all my former and current colleagues in the CRI/TEO

project group. This research is a team effort. I would not be able to accomplish this project

and research without the help from all the great team members. Special thanks is given

to Chengyang Zhang for his fantastic website which allows me to manage and analyze data

with little effort, and to Sanjaya Gurung for his great work in process of system deployment

and maintenance.

I also want to express my gratitude to all Department of Electrical Engineering fac-

ulty and staff with whom I have a good fortune to interact, particularly to Chair of the

Department, Dr. Murali Varanasi who has created a favorable environment for research.

I dedicate this dissertation to my family, who have always been there for me. I feel a

deep sense of gratitude for my parents who have always given me the love and support. This

work is also in memory of my grandpa, a true warrior who has encouraged me to succeed in

achieving high goals.

In case I forgot to mention the names of those people who helped me directly or

indirectly in this work, I would like to thank all of them also.

iii

CONTENTS

ACKNOWLEDGMENTS iii

CHAPTER 1. INTRODUCTION 1

1.1. Wireless Sensor Networks for Environmental Monitoring 2

1.2. Related Works 4

1.3. Motivation and Objectives 9

1.4. Contributions of the Research 11

1.5. Dissertation Organization 12

CHAPTER 2. ENVIRONMENTAL MONITORING CYBERINFRASTRUCTURE 14

2.1. Design Objectives 14

2.2. Overall Architecture 16

2.3. Integration of Wired and Wireless Sensors 18

2.3.1. Datalogger 18

2.3.2. Soil Moisture Monitoring WSN 19

2.3.3. Telecommunication 20

2.3.4. Remote Field Gateway 21

2.3.5. Remote Data Collection Services 21

2.3.6. Remote Status Monitoring Services 23

2.3.7. Power Management 23

CHAPTER 3. WSN NETWORKING PROTOCOLS 25

3.1. Design Requirements of Environmental Monitoring Sensor Networks 25

3.2. Software Architecture 27

iv

3.3. Hybrid MAC Protocol for Reliable Data Collection 29

3.3.1. Related Work 29

3.3.2. Protocol Description 32

3.3.3. Distributed Slot Scheduling Protocol 33

3.3.4. Optimization of Schedules 37

3.4. Time Synchronization Protocol 38

3.4.1. Clock Architecture of Wireless Sensors 38

3.4.2. Delay Analysis in Radio Message Delivery 40

3.4.3. Related Works 43

3.4.4. Modified FTSP 44

3.5. Multihop Routing Protocol 45

3.5.1. Related Works 45

3.5.2. Neighborhood Management 47

3.5.3. Network Formation and Maintenance 48

3.5.4. Parent Selection 50

CHAPTER 4. CLOCK ESTIMATION ALGORITHMS FOR WSN 52

4.1. Sources of Clock Synchronization Error in WSN 53

4.2. Least Squares Estimation for Clock Estimation 54

4.2.1. Linear Least Squares Estimators 54

4.2.2. Sequential Least Squares Estimator 57

4.2.3. Energy-Efficient Fast Initialization Scheme 59

4.2.4. Outlier Detection 62

4.3. Implementation and Computational Complexity 64

4.4. Measurement and Data Collection System 68

4.5. Measurement-based Simulation Results 70

4.5.1. Performance of EESP Algorithm 71

4.5.2. Effects of Sampling Period 71

v

4.5.3. Effects of Window Size and Forgetting Factor 73

4.5.4. Effects of Missing Data 75

4.6. Conclusions 76

CHAPTER 5. SYSTEM DEPLOYMENT AND EVALUATION 77

5.1. WSN Implementation 77

5.2. System Deployment 79

5.3. Environmental Data Analysis 82

5.4. Network Performance Analysis 86

5.5. Energy Consumption Analysis 88

CHAPTER 6. CONCLUSION AND FUTURE WORK 91

BIBLIOGRAPHY 93

vi

CHAPTER 1

INTRODUCTION

The rapid advances in electromechanical (MEMS) sensor technology, growing pop-

ularity of wireless networks and continuing development of embedded computing devices

have lead to the emergence of wireless sensor networks (WSN). It has raised considerable

interest in the research community as it has great potential to revolutionize many science

and engineering domains.

A wireless sensor node, also known as a “mote” is a low-cost, battery-powered em-

bedded computing device containing a short-range radio transceiver, a processing unit or

microcontroller and certain types of analog and digital interfaces, to which a variety of sens-

ing units such as thermistors, photoresistor and accelerometers can be adapted. Through

onboard wireless transceiver, the sensor nodes can communicate with each other and auto-

matically organize themselves into an ad-hoc network, which does not rely on a preexisting

infrastructure, such as base transceiver stations (BTS) in cellular networks or access points

(AP) in wireless local area networks (Wi-Fi). Instead, the network is established and main-

tained dynamically based on the deployment environment, radio connectivity and states of

individual nodes. This ability of self-configuration makes WSN easy to install, expand and

maintain, as well as resilient to the failure of individual nodes. The resulting network is

orders of magnitude more expansive than current computer networks and will extend the

existing Internet deep into the physical environment and make Internet of Things (IOT)

possible.

In recent years, WSNs are being developed for a wide variety of applications including

environmental monitoring [27, 28, 29, 30], home automation [65], remote healthcare and

patient monitoring [63], industrial sensing and diagnostics [67, 69], asset tracking and supply

chain management [64]. In this research, I pay particular attention to the environmental

1

monitoring applications as they represent a major class of WSN applications with enormous

potential benefits for the whole society and may become the killer application for wireless

sensor networks. In what follows, this dissertation explores the advantages of applying WSN

technologies to environmental monitoring systems and then presents the state of the art of

such systems.

1.1. Wireless Sensor Networks for Environmental Monitoring

Sensor networks have been widely envisioned to being able to provide long-term,

near-real-time observations at unprecedented fine spatiotemporal resolution, which makes

it possible for environmental scientists to measure properties that have not been observ-

able previously. The idea of automating the collection of physical data in order to monitor

environments is not new; ecological and environmental scientists have been developing and

utilizing environmental observatories, consisting of a variety of sensors, sophisticated compu-

tational resources and informatics, to observe, model, predict, and ultimately help preserve

the health of the natural environment. Instrumenting the physical world at scale with perva-

sive networks of embedded sensors becomes more important as we recognize that the natural

world is inextricably linked to the human society to form an extremely complex ecosystem.

Traditionally, researchers make regular field trips to collect samples of soil, water, and

plants etc. and analyze samples in laboratory with sophisticated instruments. Such a tech-

nique is still widely used today for the analysis of chemical and biological contaminants, and

as a reference technique to assess the performance of in-situ sensors. With the growing num-

ber of inexpensive, portable and reliable sensors and loggers available in the market, scientists

are also capable of examining samples and investigating environment in-situ. However, this

labor intensive method is unable to assess variables with fast temporal changes and may

even miss readings due to inaccessibility during extreme physical and weather conditions.

More recently, weather stations with data-logging capability have been developed.

Sensors are connected to a data logger with the ability to store data that can be retrieved at

a later stage. Though manual download is still necessary, weather stations provide continuous

2

monitoring for a wealth of physical phenomena with fine-grained time resolution. To improve

the responsiveness of the system, telemetry system using cellular networks such as global

system for mobile communications (GSM) is widely used together with weather stations as

mobile network coverage has been continually enlarged and broadened.

The main disadvantage with the use of weather stations is the issue of cost. In partic-

ular, installation, maintenance and communication costs are prohibiting such systems from

being deployed at scale. For monitoring parameters such as air temperature and humidity

which evolve rapidly over time but usually slowly over space, taking samples at weather

station would be sufficient; however, for parameters exhibiting high space variability such as

soil moisture, continuous monitoring at several locations is necessary. Additionally, weather

stations are usually equipped with energy hungry devices such as cellular modem. When

line power is not obtainable, they must be relying on large capacity batteries and solar pan-

els, and installed at spot with adequate sunlight. Sometimes surrounding trees have to be

cut down in order to provide an open field for the deployment of a weather station. The

selection of deployment location often results biased measurements, for example, inflated air

temperature and understated soil moisture data.

Wireless sensor networks, on the other hand, allow for the collection of data at a

high spatial and temporal resolution at low cost. Although they remain expensive at the

moment as they have not been manufactured in high volume, they are at least one order

of magnitudes cheaper than traditional weather stations connected to cellular networks.

Wireless sensors are also designed to be energy-efficient; a sensor node can operate for

months or even years with two AA batteries. The resulting small form factor presents

minimal intrusiveness to the environment. Combining with their ability of self-organizing,

WSN presents incredible flexibility and can be deployed directly on the area of interests.

A sensor’s intimate connection with its immediate physical environment allows each sensor

to provide localized measurements and detailed information that is hard to obtain through

traditional instrumentation.

3

Of course, due to scarcity of energy, not all sensors can be excited and supported by

a WSN node. Complex signal processing algorithm may not be implementable due to the

lack of computational power and memory space. Moreover, the network formed by wireless

sensors is only a local area network. It still requires other types of networks to gain internet

access. Consequently, the best solution to environmental monitoring would be achieved by

the integration of wireless sensor network, which offers observations with fine grained spatial

resolution, and weather station which provides a more complete set of measurements as well

as telecommunication for remote access.

1.2. Related Works

A number of WSNs have been deployed for monitoring a diversity of environmental

physics [28]. In one of the pioneering project, a wireless sensor network was used to monitor

the microclimates in and around the nesting burrows of seabirds on Great Duck Island (GDI)

in Maine [27]. Wireless motes with an array of sensors to measure, among other things,

temperature, light levels, humidity, and infrared radiation were placed in the burrows before

the nesting season begins. Since virtually no maintenance was needed afterwards, the impact

on the wildlife being monitored would be minimal. The non-intrusive property of WSNs is

of particular benefit in habitat studies where any human presence is likely to be disruptive

or where a species is particularly sensitive to humans.

The habitat monitoring system utilized a tiered architecture. Motes originating mea-

surement samples lied at the lowest level. These sensor nodes, powered by only two AA

batteries, performed sensing and transmitting tasks on the basis of duty cycle. Within each

patch, a single-hop, star-topology network is organized. In such a network, motes were

simply reporting data to a gateway during scheduled communication periods. Data is only

communicated in one direction and there is no dependency on surrounding motes for relay-

ing packets in a multihop manner. The gateways were responsible for gathering data from

their patches and then forwarding data through a local transit network to the remote base

station (BS) which provided Internet connectivity and data logging. Thirty-two motes were

4

deployed for four weeks as of the writing of the paper and they had a calculated life time of

six months based on the analysis of energy budget and power consumption.

Another example is the Volcan Tungurahua project [34] which used a WSN to monitor

volcanic activity by specially-constructed microphones to monitor low-frequency acoustic

signals emanating from the volcanic vent during eruptions. Volcanic measurements are often

sampled continuously at rates of 40 Hz or more, far greater than the low frequencies used

in other environmental monitoring studies. In the project, three Mica2 motes [59] equipped

with infrasonic microphone nodes had been recording signals at 102Hz for over 54 hours.

Data was transmitted to an aggregation node, another Mica2 mote which relayed the data

over a 9 km wireless link to a laptop at the volcano observatory via a long-haul wireless

modem. To establish a common time base for cross-correlating the signals captured by each

infrasound node, a dedicated global positioning system (GPS) node was used to broadcast

time synchronization messages. The small-scale short-term deployment demonstrated the

feasibility of using wireless sensors for volcanic studies; however, a number of challenges

must be tackled for expanding the network size and extending periods of running time.

Careful power management techniques, such as triggering and in-network event detection,

and multiple-hop protocols for time synchronization and data routing must be developed.

There have been several attempts to deploy WSNs in extremely harsh conditions such

as glacier environment. The GlacsWeb [27] project aimed at understanding glacier dynamics

in response to climate change, in particular, how glaciers contribute to sea-level change by

releasing fresh water into the sea. The monitoring system was composed of customized

sensor probes embedded in the ice and till, a base station on the ice surface, and reference

station 2.5 km away from the glacier with access to electricity. Probes were programmed

to wake up every 4 hours and record temperature, strain, pressure, 3-axis orientation and

resistivity. The base station was scheduled to collect measurements from probes once a day

at a set time. It also logged its location with the differential GPS once a week. All data

was then transmitted to the reference station PC by a long range radio modem. A total of

5

8 probes and a base station were deployed in Briksdalsbreen Glacier, Norway. During the

experiment, the base station had experienced power failure as the heavy snow covered the

solar panel. A few months after deployment, only three probes out of eight had been able to

communicate with the base station. A possible cause of the communication failure was the

non ad-hoc design of the system. A multiple hop, self-organizing network would not only

ensure scalability but also reduce power consumption.

PermaSense [31] investigated the use of power efficient, multi-hop networking pro-

tocols for environmental monitoring. In PermaSense, network topology was established

automatically, unlike GlacsWeb which employed predefined topology and communication

schedule. To support ultra low power operation, sleeping cycles of the radio receiver and

consequently synchronization of the wake periods were implemented. However, despite the

great design, the deployment in Swiss Alps was not successfully. The project faced three

major challenges including accurate time synchronization in hostile environment, stable and

reliable multihop routing and efficient power management.

WSNs can be also employed to provide vital hazard warnings as demonstrated in the

Floodnet project [33]. A set of intelligent sensor nodes have been deployed around a stretch

of the River Crouch in Essex, UK. The nodes were powered by solar cells in conjunction with

batteries and established an ad-hoc 802.11 network based on an adaptive routing algorithm.

A special node, the gateway, relayed data back to the base using general packet radio service

(GPRS) cellular network. The focus of the research was on the fundamental tradeoff between

the need for timely data and the need to conserve energy. The goal is the make the system

adaptive so that sampling and reporting rates vary according to different situations. For do-

ing so, adaptive sampling and routing algorithm were developed with an extensive co-design

exercise of environmental experts. Based on a flood predictor model, Floodnet effectively

prioritized the process of data gathering and prolonged the lifetime of the network. It also

demonstrated the potential of using pervasive computer in the environment.

6

Efforts were also made to exploit WSN technology in soil moisture monitoring as soil

has been recognized as the most spatially complex stratum of a terrestrial ecosystem. In [30],

a field trial network monitoring surface soil moisture was deployed in Banksia woodland on

the sandy Gnangara groundwater mound, north of Perth, Western Australia. The measure-

ments were used for managing the groundwater resource and assessing safe water abstraction

levels. The soil moisture sensor network was powered by Mica2 motes with MDA300 sensor

boards [59] and Echo20 soil moisture probes [61]. Like most of aforementioned project, soil

moisture sensors were organized as a star-topology network centered on a BS node which

bridged the WSN and the Internet through a GPRS modem. The communication scheme

was enabled by S-MAC [36] which provides low duty-cycle and reliable data deliver to the

BS. A novelty of the system is its reactivity to the environment. The soil moisture WSN

could react to rain storms: frequent soil moisture readings were collected every 10 minutes

during rain but only a few readings were collected during non-raining days. The reactivity

was done by including a node with a tipping bucket rain gauge sensor. Rainfall events de-

tected by the node would be disseminated to WSN. This distinctive feature demonstrated

how weather station system may interact with WSN and the benefit of such integration as

rain gauges have been widely installed in weather stations.

The project Life Under Your Feet adopted a different approach for soil moisture sam-

pling. Deployed at an urban forest, wireless motes measured and then stored soil moisture

and temperature in situ every minute. Measurements were saved on each mote’s local flash

memory and periodically retrieved using a reliable transfer protocol. According to the flash

memory available in the motes and amount of observations collected, data could be down-

loaded weekly or at least bi-weekly without loss. In this sense, the WSN can be regarded

as a distributed database. The system also showed the need for sophisticated calibration

techniques translating raw sensor measurements to high quality scientific data. The cali-

brated measurement was published through web services interfaces. Scientists could analyze

current and historical data and help manage the sensor network by using analysis tools.

7

Project Measurement

Type

Power

Management

Topology Size Duration

Great Duck

Island

Habitat

Monitoring

Battery , 5.8%

duty cycle

single hop Total 32 nodes Estimated 6

months
Volcan

Tungurahua

Volcano Seismic

Monitoring

Battery , always-

on

single hop 3 54 hours

GlacsWeb temperature,

movement

Battery , 0.1%

duty cycle

single hop 8 a few months

PermaSense Temperature,

water content

Battery, duty

cycle

multihop 13 Less than two

weeks

SensorScope Various Solar panel, 10%

duty cycle

multihop 6 - 20 long term

Floodnet Pressure, water

level

Solar panel,

always-on

multihop N/A N/A

Pinja @ UWA soil moisture,

rainfall

Battery, 1% duty

cycle

multihop 7 longest node: 28

days
Life Under Your

Feet

temperature, soil

moisture

Battery, 1.7%

duty cycle

single hop 10 147 days

Fig. 1.1. Summary of environmental monitoring WSNs.

Perhaps the most successful environment monitoring project that had fully imple-

mented and utilized the features of WSNs is the SensorScope [32] project conducted at

Ecole Polytechnique Federale de Lausanne (EPFL), Switzerland. The goal was to develop

an effective out-of-the-box, with minimal requirements regarding network maintenance sys-

tem for environmental monitoring. An all-purpose sensing station accommodating up to

7 different external sensors was developed, along with a multi-hop data gathering protocol

and a synchronized duty-cycling medium access control (MAC) layer that greatly helps in

reducing the overall energy consumption. To create a fully autonomous system that could

theoretically last forever, SensorScope utilized two layers of rechargeable batteries and solar

panel to power the station. 6 outdoor deployments had been carried out ranging in size from

6 to 97 stations, from the EPFL campus to high mountains.

To summarize the above works, I compare their designs based on several key at-

tributes, as shown in Fig. 1.1. The topology in the figure only indicates the internal network

organization of a single WSN. The overall system topology involving multiple base stations

8

or gateways is not considered here. Similarly, the network size only deals with WSN nodes

not including base stations. Power management is usually enabled by duty cycling, i.e. sen-

sor alternating between active and sleep states. While techniques such as adaptive sampling

could effectively reduce data transmissions, they are unable to bring down energy consump-

tion very much without being combined with duty cycling because they are not able to

eliminate idle-listening which is the dominant portion of energy consumption.

1.3. Motivation and Objectives

This research contributes to develop the Texas Environmental Observatory (TEO) [56]

which aims to provide near real-time data on environmental conditions through the devel-

opment of a cyberinfrastructure (CI). In particular, the proposed CI system will expand the

existing weather station systems to include WSNs to monitor watershed soil moisture. The

new WSN-based soil moisture monitoring system is developed to support long-term hydro-

logic monitoring and modeling research. Increasing urbanization brings changes to the land

cover of a given drainage area, which in turn increases the quantity of water flowing overland

and decreases the amount of time to reach peak flow [7], increasing in some cases the risk

of flash floods. Hydrologic models are helpful in predicting how changes in land cover in

rapidly urbanizing areas translate into changes in the stream flow regime. These models

require inputs that are difficult to measure over large areas, especially variables related to

storm events, such as soil moisture antecedent conditions and rainfall amount and intensity.

In addition, the ability to monitor in real time rapidly changing variables before, during, and

after storm events will contribute to the improvement of rainfall estimations from meteorolog-

ical radar data and enhance hydrological model forecasts. Both increased spatial resolution

and real-time monitoring requirements have raised challenges that traditional standalone

weather station systems are difficult to overcome. As discussed in Section 1.1, WSNs are

ideally suited for such applications by exploiting large-scale deployment of low-cost sensor

nodes with flexible structure.

9

Despite significant advances in recent years, there are still many challenging issues

to be addressed to exploit the full potential of the emerging WSN technology. As indi-

cated in Fig. 1.1, most of the deployments are short-term experiments or proof-of-concept

demonstrations, instead of long-term autonomous operation to support ongoing work by do-

main scientists and practitioners. Most of the works utilized infrastructure-based single hop

topology consisting of only a few nodes, in contrast to the promise that WSNs can support

large-scale deployment with self-organization ability. Among the three multihop environ-

mental monitoring project, PermaSense [31] had not been successfully collecting data over a

period of more than two weeks, while the Banksia Soodland project [30] lost seven nodes in

the first 16 days of deployment, with only a one single-hop node operating for 28 days. The

causes of problems may be unique to each of the projects, but they are all rooted from the

same challenges faced by all WSN applications.

A core design challenge in wireless sensor networks is coping with the harsh resource

constraints placed on the individual devices. Many constraints derive from the vision that

these devices will be deployed in vast quantities and therefore must be small and inexpensive.

Embedded processors running at a few MHz with kilobytes of memory must implement

complex, distributed, ad-hoc networking protocols. The most difficult resource constraint

to meet is power consumption. As physical size decreases, so does energy capacity. The

success of SensorScope [32] project mainly benefits from the use of large sensing station with

sufficient energy budget. With an average current consumption of 4mA, a sensing station

would deplete the 2200mAh battery within one month, if without the support of solar panel.

The dependency on complicated energy harvesting modules will inevitably increase the size

as well as cost, require more installation effort and above all, limit its usage in areas without

enough sunlight.

In addition to the inherent constraints, harsh environmental conditions also raise

challenges in designing WSNs for real-world applications. Radio communication reliability,

measurement fidelity and crystal clock accuracy are all subject to environment conditions

10

such as temperature, humidity, and vegetation density. The design should address the system

robustness in all conditions so as to allow WSNs to be used in a wide range of application

scenarios.

The objective of this research aims at taming the above challenges and providing an

out-of-box solution, composed of various software, protocols and algorithms, for long-term,

large-scale environmental monitoring applications. The proposed system is required to meet

the full definition of a WSN and will be evaluated through the development of TEO project.

1.4. Contributions of the Research

This research strives to tackle the aforementioned challenges and make significant

practical contributions in WSN research. The three major contributions of the research are

summarized in this section.

First, this research proposes a publicly available cyberinfrastructure which seamless

integrates wired and wireless sensors for long-term, remote, and near-real-time monitor-

ing. Most of the deployments described in Section 1.2 are stand-alone WSN-only systems,

monitoring very few environmental parameters, instead of being a part of the ever-growing

environmental monitoring cyber infrastructure. As a result, it is difficult to consolidate a

broad range of sensor data systematically to study the cross-correlation among various envi-

ronmental parameters. Thus this dissertation demonstrates how to incorporate both wired

and wireless sensor into a publicly available environmental monitoring CI that supports

computing research and education. Specifically, the datalogger-based weather stations with

numerous wired sensors continue to provide a complete set of environmental data while the

wireless sensor networks measure one or more variables in depth with fine grained spatiotem-

poral resolution.

Second, a suite of WSN software is developed, consisting of various networking pro-

tocols and associated algorithms that are optimized for environmental monitoring applica-

tions. Although many off-the-shelf WSN hardware platforms have been available in the

market for many years, considerable amount of software customization and redevelopment

11

efforts are required to meet application-specific requirements. It is identified in [31] that

the major challenging issues in the development of WSN are communication reliability, time

synchronization stability, and reduction of power consumption. These issues are addressed

throughout the dissertation. In Chapter 3, a stack of networking protocols that provide reli-

able multihop data delivery is proposed. Energy efficiency is achieved by adopting a hybrid

TDMA/CSMA MAC protocol and fine-grained time synchronization. To assure the stability

of time synchronization, I conduct a thorough study on estimation algorithms which com-

pensate for clock offset, skew and drift during outdoor deployment. The underlying driver

of timer module is also devised to meet the requirements of stability and efficiency. To fur-

ther reduce energy consumption, especially when network size scales up, I propose a novel

error-bounded adaptive sampling algorithm which brings down not only the communication

cost but also the sensing overhead.

Last but not least, the design has been empirically evaluated through the deployment

of a soil moisture monitoring system. The above-mentioned challenges in WSNs have been

widely recognized by the research community, and considerable efforts have been put into

the design of protocols in different layers to address them. However, many protocols are only

implemented in simulators instead of real-life application environments. Some protocols are

evaluated by short-term experiments or proof-of-concept demonstrations, instead of long-

term autonomous operation. This dissertation intends to address many practical issues

in real-world application scenarios that are often neglected in the existing literature. The

experience in dealing with all problems encountered in the process of deployment is shared

in this dissertation. The firsthand experience obtained in the process of development and

deployment should help other groups in appreciating and anticipating many issues related

to real-world WSN applications.

1.5. Dissertation Organization

The rest of the dissertation is organized as follows. Chapter 2 presents the overall

framework of the TEO environmental monitoring infrastructure, including the design of

12

sensor network base station, long-haul telecommunication, and a unified framework for sensor

data collection, management, visualization, dissemination, and exchange.

Chapter 3 reveals the design of WSN software and protocol stack. Three major com-

ponents of the protocols stack, namely medium access control protocol, time synchronization

protocol and multihop routing protocol are described.

Chapter 4 discusses clock estimation algorithm for the time synchronization post-

processing. A unified formulation of least squares (LS) time synchronization algorithms to

estimate clock offset, skew, and drift using both batch and sequential estimators is presented.

The implementation, deployment, field testing results are presented in Chapter 5.

At last, the dissertation is concluded with conclusions and a discussion of future work in

Chapter 6.

13

CHAPTER 2

ENVIRONMENTAL MONITORING CYBERINFRASTRUCTURE

Cyberinfrastructure (CI) describes the interconnected systems of advanced data ac-

quisition, data management, data visualization, data dissemination and other computing and

information processing services to support computing research and education. This chapter

introduces a novel cyberinfrastructure that features (1) soil moisture monitoring with flex-

ible spatial coverage and resolution, (2) seamless integrated wired and wireless sensors, (3)

long-term, autonomous, remote, and near-real-time monitoring, (4) publicly available web

services for sensor data visualization and dissemination, and (5) remote system monitoring

and maintenance. Specifically, this research focuses on the overall framework and the in-

tegration of a variety of field devices in the weather stations. The integration is enabled

through the introduction of remote field gateway (RFG). The RFG aggregates data from

both wired and wireless sensors and provides a uniformed remote data collection service.

2.1. Design Objectives

The new environmental monitoring cyberinfrastructure significantly improves the ca-

pability and usability of the traditional observatory system. Some key design objectives are

listed in this section.

Soil moisture monitoring with flexible spatial coverage and resolution: In the existing

system, all sensors are deployed inside a small fence-enclosed area, a situation typical of many

environmental monitoring systems. There is a need to provide flexibility to extend the spatial

coverage and adjust the spatial resolution of soil moisture sensors. The spatial coverage of

the system is limited by the physical limitation of the length of the cable connecting the

sensors to the datalogger. In contrast, the spatial coverage and resolution of wireless sensor

network (WSN) can be conveniently configured to be meaningful to domain scientists.

14

Integration of WSN with existing environmental observatories : Despite their limita-

tions, traditional environmental monitoring systems with various wired sensors are capable

of accomplishing many monitoring tasks, and substantial investments are in place to monitor

temperature, wind speed and direction, rainfall, and solar radiation. Drastically replacing the

existing systems with an immature technology such as the WSN is considered unacceptable

to many domain scientists and practitioners. Therefore, it is important to introduce the new

WSN technology without disrupting the ongoing operation of environmental observatories

through seamless integration of wired and wireless sensors.

Long-term, autonomous, remote, near-real-time environmental monitoring : Many en-

vironmental monitoring systems are deployed in remote areas that are inconvenient to access

for data retrieval and system deployment and management. Traditionally, a stand-alone field

station consists of a datalogger and a variety of sensors. Datalogger is programmed to sample

at a fixed rate and data are stored in its internal memory. The data are retrievable via the

serial port using a computer. Thus, accessing the data requires a visit to the field station,

which is inconvenient and is extremely difficult, if not impossible, during harsh conditions,

for example flood events. In addition, it has been recently recognized that many ecological

and environmental studies need long-term data collection and management. Thus, envi-

ronmental monitoring systems need to be survivable in extreme environmental and weather

conditions for long-term operation with limited human intervention, making energy har-

vesting and energy efficiency major design considerations. Near-real-time data collection is

another important feature to support time-sensitive environmental studies, which necessi-

tates a convenient yet reliable long-haul wireless communication link.

Publicly available web services for sensor data visualization and dissemination: It

is important to make data publicly available to benefit a broad range of entities such as

environmental researchers, local citizens and government policy makers, and K–12 teachers

and students. In addition, the explosive growth of environmental data collected by a variety

15

Gateway/SBC WSN BS

Soil Moisture

Monitoring

WSN
UV

Sensor

Ozone

Sensor

Data Logger

PostgreSQL

DB Server

Local Monitoring System (UNT Campus)

LAN

SWE Data

Repository

Physical

Data Layer

Logical

Data Layer

TEO Web Portal

(www.teo.unt.edu)
Web

Presentation

Layer

User Layer

Sensor Observation Service

Real Time

Environmental

Monitoring

Retrieve

External Data

Publish

Wired Weather

Sensors

Workstation

RS232

ZigBee

RS232
Data Logger

Wireless

Modem

RS232

Central Data Collection

(CDC) Server (UNT Campus)

GPRS

PPP, L2TP

Sync

LAN

OGC

SWE Framework
SensorML /

O&M

K-12

Education

Outreach

Historical

Data

Download

Modeling

Analysis

Synthensis

Real Time System

Monitoring &

Maintenance

CDC Mirror Server

Remote Field Monitoring System (GBC Park, Denton, TX)

Remote Field

Gateway (RFG) Server

RS232

LAN
LAN

Fig. 2.1. Overall framework of the environmental monitoring cyberinfrastructure.

of sensors in long-term operation necessitates a unified framework for data collection, man-

agement, integration, visualization, and dissemination. Such a framework should conform

to standards, such as the sensor web enablement (SWE) standard proposed by the open

geographic consortium (OGC) [8], to enable data exchangeability and interoperability.

Remote system status monitoring and management : For environmental monitoring

systems deployed in remote areas, remote monitoring of system status is extremely useful

for system development, debugging, and maintenance purposes. Thus, various system sta-

tus data need to be carefully defined and collected together with the environmental sensor

data. Furthermore, it is important to remotely adjust system configurations and update and

upgrade software programs.

2.2. Overall Architecture

The new environmental monitoring cyberinfrastructure can be divided into four major

layers as shown in Fig. 2.1, including physical data layer, logical data layer, web presentation

16

layer, and user layer. Such a layered approach makes it possible to implement the system in a

flexible, extensible, and efficient way. At the physical data layer, a variety of sensors are used

to monitor environmental parameters. Sensor data are transmitted from a monitoring site to

a central data collection (CDC) server. To address above objectives, I incorporate a wireless

telemetry system, a single-board computer (SBC) as remote field gateway (RFG) server,

and a WSN for distributed soil moisture monitoring. The RFG server provides effective

control, management, and coordination of two relatively independent sensor systems, i.e., a

traditional datalogger-based wired sensor system and the WSN-based wireless sensor system.

The Linux-based RFG server supports remote login to allow maximum remote manipulation

of the devices in the field such as the SBC, datalogger, and WSN.

At the logical data layer, sensor data collected from the distributed monitoring sta-

tions are stored in a postgreSQL database (DB) server. The CDC server acts as an inter-

mediate component to hide the heterogeneity of different physical layer devices and support

data validation required by the DB server. The CDC server and its mirror server also archive

raw data on local file systems. Daemon programs running on the CDC server pre-process

the data before it is inserted into the database, and periodically perform synchronization

tasks. An SWE-compliant data repository is installed to enable data exchange, accepting

data from both internal DB server and external sources through the OGC web services.

The web presentation layer consists of a web portal, i.e., TEO Online [56], and a

sensor web implementation. The web portal serves as a user-friendly interface for data

visualization, analysis, syndissertation, modeling, and K–12 educational outreach activities.

It also provides useful capabilities for system developers and operators to remotely monitor

system status and remotely update software and system configuration, which greatly simplify

system debugging and maintenance tasks. I also implement sensor observation services

(SOS) at this layer, conforming to the SWE standard to facilitate data exchange. The

standard SensorML/O&M data representation makes it easy to integrate sensor data into

the existing geographic information systems (GIS) web services and exchange the data with

17

RS232

WSN
RS232

RS232

Remote Field

Gateway

(RFG)

Datalogger

BS

Central Data

Collection Server

(CDC)

 Internet

Weather

Station

Sensors

Fig. 2.2. System components of an integrated weather station.

other organizations. The SOS web service will be published to a catalog service in the OGC

SWE framework to make it publicly accessible on the Internet.

Finally, the user layer abstracts a variety of needs for education, outreach, research,

and system development and management purposes.

2.3. Integration of Wired and Wireless Sensors

As illustrated in Fig. 2.2, current infrastructure on a monitoring site typically includes

a datalogger wired with a mixture of environmental sensors, a SBC based RFG, a wireless

telemetry device, and a large-scale WSNs to measure near-real-time soil moisture. Each of

the system components is described in the next sections.

2.3.1. Datalogger

A datalogger is an electronic programmable instrument or device that records envi-

ronmental data over time via its built in or external sensors. It is similar to a larger wireless

sensor node without the transceiver but much more capable in terms of memory storage,

processing power, and interface variety. The following lists the key features of a datalogger.

Large non-volatile memory capacity : Usually a datalogger is programmed to sample

at a fixed rate and all measurements are stored in its internal memory. Researchers have to

make field trip in order to physically access and download the data. Datalogger is designed to

have non-volatile internal memory that could hold up several months’ data so that laborious

field trips can be less frequent.

18

High processing power : Some environmental observations with high temporal vari-

ance, such as wind speed and wind direction, are only meaningful when data is statistically

aggregated. These variables are sampled at relatively high frequency. To reduce memory

utilization, signal processing algorithms are employed to calibrate, aggregate, summarize,

and compress the data points. Only the processed data abstraction will be stored. Most of

modern dataloggers have built-in routines for data processing, which necessitates a powerful

central processing unit (CPU).

Support for various interfaces: Dataloggers normally include a wide variety of ana-

log and digital input/output (I/O) ports and sensor excitations, to interface with numerous

sensors such as air temperature, air pressure, wind speed and wind direction, rainfall, solar ra-

diation, relative humidity, soil moisture, etc. They are often equipped with a high-resolution

analog-to-digital (A/D) conversion with high speed of sample rate. To enable communica-

tion with other external devices, they feature a range of peripheral ports such as RS-232,

USB and Ethernet port.

However, these qualities do not come without a price. Dataloggers generally consumes

more power and are typically powered by a high capacity rechargeable battery, which is

recharged by an AC/DC adapter wherever possible, or by a large size solar panel.

2.3.2. Soil Moisture Monitoring WSN

The soil moisture WSN consists of a range of wireless sensor nodes, distributed over

the monitoring field, sampling soil moisture periodically. In a single-sink configuration,

wireless sensors usually form a data collection tree, rooted at a base station (BS). To establish

a functional WSN, the BS broadcasts routing and synchronization beacons regularly. All the

other nodes synchronize to the BS node and route data to it. The BS node shares the same

type of radio processor board, and is furnished with an RS-232 extension board to interface

to other devices. In addition to aggregating data from the WSN to the host it also acts as

a portal to monitor network performance and configure network parameters. The detailed

discussion of wireless sensor network for soil moisture monitoring is presented in Chapter 3.

19

2.3.3. Telecommunication

The long-haul wireless communication from the field to the CDC server is currently

implemented by using a GPRS modem. GPRS, standing for general packet radio service,

is a packet-oriented mobile data service, available to the subscribers of the global system

for mobile communications (GSM) cellular networks. The GPRS link is maintained by SBC

using the point-to-point (PPP) protocol, a data link protocol commonly used to establish

a direct connection between two nodes over serial cable, telephone line, cellular phone, or

dial-up networks. Upon boot up, SBC automatically dials to the GPRS network and keeps

the link alive during the entire active period. To enable secure system access, the layer

2 tunneling protocol (L2TP) is used to support virtual private network that establishes a

secure point-to-point connection between the RFG server and the CDC server through the

public Internet. To be energy-efficient, the wireless modem is powered off during the system’s

sleep period.

As an alternative, a point-to-point Wi-Fi link can be also utilized to connect the

RFG and the CDC server. Wi-Fi devices such as Nanostation2 [60], provides license-free

communication between a pair of devices with one installed at the remote field site and

the other deployed at base site with internet access. With a high power radio frequency

(RF) amplifier and high gain directional antenna, they are able to communicate in line

of sight (LOS) over tens of miles. The RFG can link to the field site device via local

Ethernet connection, and communicate with CDC server through the long range Wi-Fi link.

Compared to GPRS network which has data throughput around 15-40 Kbps, Wi-Fi provides

much higher data rate at 54 Mbps and more reliable connection. Unlike GPRS, it is also

cost effective since there is no monthly service charge. Wherever a LOS connection can be

established between the field station and an Internet-accessible site, Wi-Fi communication

is preferred to GPRS.

20

2.3.4. Remote Field Gateway

To seamlessly integrate aforementioned devices in the field, I implement an RFG

server using a compact, rugged, ultra-low-power SBC TS-7260 from Technology Systems,

Inc. [11]. The SBC provides a standard set of on-board peripherals and includes software

power consumption control for on-board peripherals, making it ideal for power sensitive

designs, such as solar or battery-powered embedded systems. To minimize energy consump-

tion, the RFG is automatically duty-cycled between the active and power save modes. To

provide contingency power support the SBC is installed with an optional battery backup

board TS-BAT3, which serves as an embedded uninterruptible power supply (UPS). The

devices deployed in the field are commonly equipped with an RS-232 serial port, including

data loggers, wireless modem, and the WSN BS node. Thus, with five serial ports onboard,

SBC is well suited to serve as a gateway server. Other alternative products in the market

typically provide fewer serial ports and have much higher power consumption as compared

with TS-7260.

2.3.5. Remote Data Collection Services

The RFG server deployed in the design supports the full-featured Debian GNU/Linux,

which may be customized to meet various low-power embedded computing needs. Thus, it

is convenient to develop remote data collection services by taking advantage of the software

packages that Debian provides, including a complete GNU C/C++ development environ-

ment, many Linux services such as PPP, FTP, Telnet, and MySQL database server, and

various GNU/Linux libraries and utilities.

The RFG server wakes up periodically to carry out data collection services. Upon

boot up, the RFG server executes a series of scripts to initiate various services, including

an event logging daemon, a MySQL database server, an FTP server, an SSH terminal, and

a Telnet terminal. A PPP daemon is also initiated to establish and maintain a PPP link

to the cellular network. The wireless modem is powered on at the same time as the RFG

server. Then, several independent data collection processes are started to poll data from the

21

RFG Server CDC Server

RFG Online for A seconds

RFG boots up;

Query dataloggers;

Query WSN BS node; RFG Online for A secondsQuery WSN BS node;

Set Timer T1 = A sec.
Set Timer T2 = (A) sec;

Synchronize database;

Delete synchronized

entries in RFG.

Synchronize database

Request for more time

Set A = T1 + E;

Set Timer T1 = A sec. RFG Online for A seconds
Set Timer T2 = (A) sec.

Finish Sync S h i tiFinish Sync
Go to Sleep mode.

Synchronization

complete.

Fig. 2.3. Duty cycle negotiation protocol between the RFG server and the
CDC server. The constant τ = RTT + ϵ, where RTT is the estimated round-
trip time and ϵ is an appropriate guard-band time.

WSN BS node and dataloggers through RS-232 ports. The data collected by the RFG server

are inserted into a local MySQL database, instead of being saved in the local file system or

directly sent to the CDC server through the wireless modem. The database server provides

proficient data management that facilitates efficient data search, enables concurrent data

access, minimizes data redundancy, enforces data integrity, and improves data consistency.

With the in situ database, sensor data can be readily retrieved through a uniform interface

and securely warehoused in the field, even in the event of network failures between the RFG

server and the CDC server. After acquiring all data, the RFG server notifies the CDC server

that new data is ready for retrieval. The CDC server then synchronizes its database to the

RFG database.

The duration of the database synchronization process is random in nature due to the

inherent uncertainties in the amount of data to be synchronized and the traffic load condition

in the network. Thus, instead of adopting a fixed-length active period, I implement a simple

duty cycle negotiation protocol between the RFG server and the CDC server to enhance

energy efficiency of the solar-powered remote monitoring system. As shown in Fig. 2.3, the

CDC server may request more time when it is needed. If synchronization is finished before

22

the timer T2 expires, the CDC server sends a Finish Sync command to the RFG server to put

it into sleep immediately. The RFG server and the CDC server are protected from potential

network failures by the timers T1 and T2, respectively; that is, data collection process is

terminated when the timers expire.

2.3.6. Remote Status Monitoring Services

Various system status data are also collected in the same way as sensor data to enable

remote monitoring and management of the monitoring systems deployed in the field. Sensor

nodes of WSN report system status along with sensor measurement data, such as battery

voltage level, network topology data, and network performance statistics. The voltage level

of the rechargeable battery, which powers the SBC, wireless modem, and dataloggers inside

the station, is monitored by a datalogger and the battery voltage data is reported along

with the wired sensor data. The RFG server logs abnormal events in its local file system

and reports to the CDC server immediately as long as it is online. Authorized users can

adjust system configuration such as duty cycle and sampling rate in near-real-time from

the web portal by sending commands to the RFG server through the CDC server. Remote

reprogramming of dataloggers and WSN follows the same steps, but because a large amount

of data that needs to be downloaded from the CDC server to the RFG server, duty cycling

of the RFG server is temporarily disabled. Once the RFG server receives a new program

image, sensor nodes are reprogrammed through an over-the-air programming protocol.

2.3.7. Power Management

All the system components in the field are powered by solar energy with a large

solar panel and a lead-acid rechargeable battery. The required capacities of the rechargeable

battery and the solar panel are determined through power budget analysis. In power budget

analysis, average power consumption of each power load device is determined by measuring

or estimating the average current draw and the time spent in each of its operating modes.

To survive extreme weather conditions in long-term operations, I target at supporting the

system with a fully charged battery for at least a week without recharging. In the system, the

23

Table 2.1
Weather Station Power Consumption Analysis

Device Mode Current Duty Avg. current
draw (mA) cycle (%) draw (mA)

SBC Active 60 8.3 37.8
Sleep 35 91.7

Modem Active 350 8.3 38.2
Idle 10 91.7

WSN BS Active 11 100 11
Datalogger Active 16 1 53.5

Idle 38 99
Total 140.5

battery voltage level is closely monitored as a part of the remote system status monitoring

service as described in the previous section. Near-real-time monitoring of such a system

status data is important in determining battery efficiency and early detection of severe

battery degradation to prevent system failure and the loss of important sensor data.

As discussed in Section 2.1, energy efficiency is one of the major design considerations

of remote environmental monitoring systems. Duty cycling provides an effective way to

achieve energy efficiency. In the current setup, the RFG server wakes up for 50 seconds

every 10 minutes for data collection with a duty cycle of about 8.3%. The wireless modem

is powered off during inactive periods. Table 2.1 shows the current draw and duty cycle of

the devices deployed inside the GBC station, powered by a solar panel with a peak current

of 6.1A and a 35Ah lead-acid rechargeable battery. In practice, a lead-acid battery cannot

be 100% discharged repeatedly. Therefore, it is necessary to de-rate the battery by some

amount, generally 25% [12]. Thus, the battery deployed in the field may support the system

for about 7 days without recharging. In general, the capacity of a solar panel should be at

least 10 times the average power consumption of the load [12]; the solar panel deployed in

the field meets such a requirement.

24

CHAPTER 3

WSN NETWORKING PROTOCOLS

The strength of wireless sensor networks (WSN) lies in their flexible network structure,

made possible by a variety of networking protocols in different layers. Designing efficient

and reliable communication protocols for wireless sensor networks in outdoor monitoring

applications is a challenging task, due to various constraints on the sensor platform and

uncertainty and dynamics of the environment. This chapter begins with analyzing design

requirements of protocols for environmental monitoring applications. Then three major

components of the proposed protocols stack are described, namely medium access control

(MAC) protocol, time synchronization protocol, and multihop routing protocol. Though still

presented in a layered fashion, the protocols are tightly coupled and cross-layer interaction

is pervasive in this design.

3.1. Design Requirements of Environmental Monitoring Sensor Networks

Generally speaking, the purpose of environmental monitoring sensor networks is to

collect authentic measurements of varying environmental conditions over a long period of

time. The following summarizes a set of core design requirements for environmental moni-

toring sensor networks.

Long-term energy-efficient operation: Most of ecological studies require measurements

on long temporal scales ranging from several months to a few years. Without any energy

optimization, a typical battery-powered wireless sensor node can last only for a few days.

Alternative energy sources such as solar power may not be easily acquired, especially in forest

with dense vegetation. While one can employ batteries with larger capacity, it will inevitably

lead to an increased form factor and cost. Therefore, minimizing the power consumption is

the ultimate key to sustaining long term operation in challenging conditions.

25

Reliable data collection: All measurement data should be collected reliably because

any data loss may lead to a distorted observation. On the other hand, environmental vari-

ables typically exhibit high spatial and temporal correlation and hence application layer

protocols may exploit such correlation properties in data compression to reduce the com-

munication load of the network. In such scenarios, reliable data collection is even more

important because any packet loss may affect the usefulness of many other packets.

Near-real-time data collection: Environmental parameters typically vary slowly [29,

28] and thus latency can be traded off for energy efficiency in environmental monitoring

systems. On the other hand, some monitoring systems are used to provide vital hazard

warnings such as flash flood alerts. While real-time constraint is generally hard to satisfy,

near-real-time data collection is achievable while keeping energy consumption low. Here the

term near-real-time pertains to the delay introduced by network transmission, between the

occurrences of consecutive measurements. More specifically, the maximal latency of data

delivery should be less than the sensor sampling period.

Scalability : Environmental monitoring applications vary significant in terms of spa-

tiotemporal sampling resolution and scale, depending on the physical phenomenon under

observation. Thus, environmental monitoring sensor networks need to be scalable to suit a

wide range of application scenarios, especially in large-scale monitoring applications such as

watershed soil moisture monitoring.

Fault Tolerance: Environmental monitoring systems are often deployed in remote

places that are typically harsh and hard to access. Some sensor nodes may fail or be blocked

due to lack of power, physical damage, or environmental interference. The failure of sensor

nodes should not affect the overall task of the sensor network. Thus, in order to accomplish

long-term monitoring in such environments, sensor networks need to be capable of self-

configuration and self-organization upon initial deployment as well as self-healing in the

events of node failures without frequent user intervention. Furthermore, I also consider the

recoverability of the network in case of base station (BS) failure, which is often neglected by

26

����������	
�����
��������

���������	
	�	��

��������
�����������������

���������
���������	 ��

!�"�����	#��

�	�$!�

����
��������� ��������
���������

������$���
�����

�	���%���	�$�&
�	 ����

'���������$���
����	"�(�

���$��$������"�)��	�*

�	 ���$��"���	+��	��

,��-��������

�����

�����,������	�� ����������

	�* �������(���	�*

Fig. 3.1. Architecture of WSN software.

the most of the research in the WSN community. In real-life outdoor applications, BS usually

faces power shortage, electromagnetic interference (EMI) caused by coexistence devices, or

even lightning shock, all of which may cause the BS to reboot or halt. The network should

cope with the abnormal behavior of BS and resume normal operation as soon as BS gets

back.

Load balance: Most of the environmental monitoring sensor networks have the spanning-

tree multi-hop network structure that is rooted in a single sink node. In such networks, sensor

nodes closer to the sink are deemed to have higher energy consumption than those nodes that

are further away from the sink because of the overhead for relaying messages. Therefore, it

is of great importance to balance the load throughout the network to maximize the overall

network lifetime.

3.2. Software Architecture

Fig. 3.1 shows the functional block diagram of sensor node implemented in this re-

search. In general, in environmental monitoring applications, every sensor node periodically

27

carries out three main tasks, including data generation through sensing, data processing,

and data reporting through multihop wireless communications. To accomplish the data gen-

eration task, sensor readings are collected periodically at certain frequency and sensor data

are time-stamped upon sampling, which necessitates global time synchronization in the net-

work. Then, in the data processing task, sensor nodes calibrate, aggregate, summarize, and

compress the data. Lastly, during the data reporting task, data are transmitted to the BS

or sink node through multihop wireless communications. The data reporting task is enabled

by a variety of software services, which implements essential timing, communication, and

networking protocols for energy-efficient multihop data collection in distributed networks.

These functional modules are implemented in TinyOS [58], the de-facto operating

system for WSN. The TinyOS source tree shipped by the mote manufacturer has included

most of the essential drivers for motes and sensor boards. And many networking protocols

and services have been implemented in TinyOS in the literature by the WSN community.

Although TinyOS promises that designers can easily compose new applications and services

by wiring together existing components, implementing a complete working system is not

as easy as bringing building blocks together. For example, I tried to replace the default

MAC protocol CSMA in TinyOS with the more power-efficient S-MAC [36] and combine

it with the default multihop routing protocol. The result turned out to be disappointing:

they failed to form a stable routing tree. The default multihop routing protocol uses active

probing as well as eavesdropping for link quality estimation, which works well with CSMA.

However, S-MAC implements overhearing avoidance mechanism and thus yields inaccurate

and erroneous link quality estimation, which is detrimental to proper routing path selection.

Moreover, it is necessary to restructure or even redesign most of the building components,

especially the networking protocols, to construct a reliably functioning system. It is well

understood that in a resource-constrained platform such as wireless sensor node, the stack of

protocols should be jointly optimized in order to maximize the overall network performance

and to minimize energy consumption. A number of lower-power protocols are available in the

28

literature, but most of them are not optimized for environmental monitoring applications. In

the next three sections, the main components of networking protocol stack as well as other

software services and drivers that have been developed in this research for environmental

monitoring applications are described in detail.

3.3. Hybrid MAC Protocol for Reliable Data Collection

The MAC layer protocol directly interfaces the radio transceiver hardware through the

driver, managing the radio activity, and switching the radio chip among various states. Since

the wireless communication is the most energy-consuming operations that a node performs,

the design of MAC protocol will determine the overall energy efficiency of the system.

3.3.1. Related Work

In wireless sensor networks, MAC protocols achieve energy efficiency by switching

radio transceiver down to a low power mode, for example, standby or sleep mode. In this

case, nodes operate on the basis of a duty-cycle, i.e. they alternate between the active and

the sleep states with a given pattern. Obviously, a sleep scheduling protocol is needed to

coordinate nodes so that neighbors can still communicate together while bring down the

energy waste due to idle listening. According to their degree of dependency on synchroniza-

tion, MAC protocols in WSNs can be categorized as asynchronous, loosely synchronous and

fully synchronized protocols [35]. In general, with a greater degree of synchronization be-

tween nodes, packet delivery is more energy-efficient due to the minimization of idle listening

when there is no communication, better collision avoidance and elimination of overhearing

of neighbor conversations.

Asynchronous MAC protocols such as B-MAC [38] uses low power listening (LPL) to

reduce idle listening. In LPL, sensor nodes independently follow a sleeping schedule based

on target duty cycle and periodically sense channel activity. Before message transmission,

the sender is required to transmit a very long preamble to wake up every node in the neigh-

borhood, including the receiver. Since sensor nodes are not synchronized, the preamble must

be longer than the sleep period so that the receiver is able to detect it. Although B-MAC

29

eliminates the overhead of time synchronization, it spends considerable amount of energy in

sending the long wakeup preamble. On the other hand, as indicated in Fig. 3.1, time syn-

chronization cannot be removed from the system since it is required by other components

as well. Another asynchronous MAC protocol, called Z-MAC [39] employs a distributed slot

assignment protocol called DRAND, to ensure unique slot assignment. Prior to normal op-

eration and when topology changes, DRAND protocol needs to be executed to assign slots.

The large amount of overhead associated with DRAND makes it unsuitable for networks

with frequently changing topology. In addition, Z-MAC is built on top of LPL and B-MAC

so that it inherits the shortcomings of B-MAC as discussed earlier.

In synchronized MAC protocols, regardless of their degree of synchronization, the

entire time space is divided into slots. Sensor nodes can only communicate during their

designated slots and remain silence or even sleep in other slots to conserve energy. Most of

the synchronized MAC protocols implement time-slot scheduling algorithms to coordinate

slot assignments in the time space and adopt CSMA to coordinate the communication during

a particular slot. Loosely synchronous MAC protocols such as S-MAC [36] employ local

time synchronization among neighboring nodes to coordinate packet exchanges. Neighboring

nodes form virtual clusters and the nodes in the same cluster share a common schedule. The

slot is not uniquely assigned but randomly picked. Thus, to transmit a packet, a node

competes for the slot not only with the nodes in the same cluster, but also with nodes from

other clusters. To avoid possible collision, the RTS-CTS procedure [36] is used in every

transmission, which results in a large amount of overhead. For an irrelevant node, which

is neither the sender nor the receiver in the cluster, it still needs to wake up in order to

receive potential incoming packets. Though S-MAC implements an overhearing avoidance

mechanism where a node turns off transceiver when receiving RTS that is not addressed

to it, it is inevitable for the node to overhear the RTS packet and waste energy in turning

transceiver on and off. T-MAC [37] follows the design of S-MAC but outperforms S-MAC

30

Contention

Slots
TDMA Slots

Frame

Fig. 3.2. Time slot structure of a frame in the hybrid MAC protocol.

with variable load by introducing adaptive duty cycling scheme. However, it suffers from

the same problem as S-MAC.

Fully synchronized protocols, similar to TDMA protocols, are known to provide ex-

cellent energy-efficiency due to minimization of idle listening, elimination of overhearing and

collision-free operation. In TRAMA [40] and L-MAC [41], the authors assume the avail-

ability of global time synchronization considering it an orthogonal problem. Both protocols

implement distributed schedule reservation scheme used to establish collision-free operation

by negotiating non-overlapping slot across all nodes within 2-hop radius. On the contrary,

RT-Link [35] assigns the time slots centrally at the base station and achieve global time

synchronization by using out-of-band hardware.

In this research, I develop a fully synchronized MAC protocol that integrates CSMA

and duty-cycle scheduling to achieve high energy efficiency to support long-term, low-rate,

and large-scale sensor network applications. The hybrid MAC protocol, coupled with the

software-based in-band time synchronization protocol, implements a distributed duty-cycle

scheduling algorithm to coordinate sensor nodes’ sleeping. Compared to the other fully

synchronized protocols, this algorithm does not need to guarantee the unique assignment

of slot within 2-hop radius in order to achieve collision-free operation. Consequently, this

protocol greatly reduces the communication overhead of scheduling protocol. Additionally,

it gracefully embeds the slot allocation exchange in the process of upstream parent selection.

Hence, the dedicated communication overhead for slot scheduling is virtually zero.

31

3.3.2. Protocol Description

Similar to most of the synchronized MAC protocols in the literature, the hybrid MAC

protocol proposed in this paper equally divides the entire time axis into non-overlapping

time frames, each of which is then equally divided into a number of non-overlapping time

slots as shown in Fig. 3.2. Two types of time slots are defined in the hybrid MAC protocol,

including contention slots and TDMA slots. During contention slots, all nodes in the network

are active. They are able to receive packets from neighbors, and contend for the medium

to transmit packets. Contention slots are mainly used for broadcasting local information

such as neighbors discovery, route selection and time synchronization stamps dissemination.

However, unicast packets carrying measurement data can also be transmitted in contention

slots with possible packet collision and retransmission. CSMA is the baseline MAC protocol

in contention slots to resolve the contention problem.

TDMA slots are intended for delivering upstream unicast data packets. Unicast

packets have only one destined node and acknowledgements are often required to ensure the

success of delivery. In a spanning tree monitoring network, upstream unicast packets which

are transmitted from a sensor node to its parent node represent most of communication

traffic since the measurement data must be relayed towards the sink. Hence it is crucial

to provide a reliable and collision free environment for such packets. Each TDMA slot

can be exclusively owned by a single node in a neighborhood. During TDMA slots, only

the owner node is allowed to transmit packets. The parent of the owner is also active to

receive and acknowledge packets. Other non-related nodes are normally sleeping with radio

transceiver turned off to conserve energy. However, exception occurs when a node would like

to overhear these conversations to collect neighbor information or synchronize to the network.

Although TDMA slots provide collision-free transmission for unicast packets, CSMA is still

used as the underline MAC protocol to avoid any unexpected collision due to inaccurate

time synchronization, co-channel interference from other types of devices, etc.

32

1

4

2 3

5P1 P2

C1 C2 C3

1

4

2 3

5P1 P2

C1 C2 C3

Collision
1

4

2 3

5P1 P2

C1 C2 C3

(a) (b) (c)

Fig. 3.3. Illustration of collision-free scheduling.

In the current configuration of the hybrid MAC protocol, each frame begins with one

contention slot followed by a number of TDMA slots. Initially a node can only transmit in

the contention slot before any TDMA slots being assigned to it. After synchronizing to the

network and collecting necessary neighborhood information, it will assign a unique TDMA

slot to itself according to a distributed slot scheduling protocol detailed in the next section.

3.3.3. Distributed Slot Scheduling Protocol

The distributed slot scheduling protocol (DSSP) aims at assigning a unique TDMA

slot to a sensor node for collision-free upstream unicast transmission. Collision-free upstream

unicast transmission implies that, during a TDMA slot, the child node is the only sender

in its one-hop neighborhood as well as its parent’s one-hop neighborhood. Most of the

scheduling protocols in the literature, regardless whether they assign slots distributively or

centrally, have to guarantee that there will be only one parent-child pair active in any two-

hop neighborhood. This is a stricter requirement than the former implication and it is not

necessary for collision-free upstream unicast transmission.

Fig. 3.3 shows a partial sensor network consisting of 5 nodes. Dotted line represents

connectivity and solid line with arrow represents routing path. The number inside the circle

is the assigned TDMA slot number for the node. In this network, C1 and C3 are two-

hop neighbors and should have different slot assignments under the requirement of two-hop

uniqueness, as shown in Fig. 3.3(a). However, even if C1 and C3 share the same slot,

they can still send packets to their respective parents at the same time without worrying

about collision, as shown in Fig. 3.3(b). The packets will collide at C2 but it will not affect

33

anything since C2 is not the receiver and supposed to be sleeping during the slot. However,

if C2 is the parent of C3, C1 and C3 must have different slots to avoid collision, as shown

in Fig. 3.3(c). Therefore, in order to achieve collision-free upstream unicast, a node must be

knowledgeable about the slot allocations of neighbors and neighbors’ children. Compared to

the two-hop uniqueness which requires the slot allocations of neighbors’ all neighbors, this

greatly reduces the communication overhead of scheduling protocol. Additionally, the slot

allocation exchange can be embedded in the process of upstream parent selection hence the

dedicated communication overhead for slot scheduling is virtually zero.

The idea behind the distributed slot scheduling protocol is similar to the RTS-CTS

collision avoidance mechanism in the 802.11 standard. In the proposed protocol, each node

maintains a network allocation table (NAT), similar to the NAV in 802.11. But instead of

keeping the duration field, NAT keeps track of the allocated slot number with its owner ID

and a time-to-live (TTL) field, indicating the reservation duration of the slot. As in NAV,

the TTL values in NAT will decrement across time. An entry will be removed when its

correspondent TTL becomes zero. When a node resets or boots up, it will request for the

slot allocations from its neighbors. Upon receiving the request, neighboring nodes will reply

back with their slot numbers and their children’s slot numbers. This is the only dedicated

communication overhead introduced by the scheduling protocol and the one-time overhead

will be amortized and approach 0 as time goes by. While passive sniffing can also be used

to collect neighborhood information, such an active request method will reduce considerable

amount of time for initialization. After parent selection, the child node picks a slot that

is not in the NAT, i.e., not occupied by any neighbors and their children and requests for

the slot by sending a request (REQ) packet to its parent. The parent node responds with a

reply packet (RPL) if the requested slot is not in its NAT, i.e., not in use. Then the child

node acknowledges (ACK) the slot allocation and concludes this request. This conversation

is conducted during contention slots when all the nodes are awake. Other neighboring nodes

eavesdropping the conversation will update their NAT, which in turn is used to ensure that

34

N1

Enable Channel Access Block Channel Access

C

P

TimeoutN2 Update

NAT

REQ

RPL

ACK

Update

NAT

Update

NAT

Fig. 3.4. Slot reservation process.

when a node negotiates slots with its parent, the slots occupied by their neighbors will not

be reused.

Fig. 3.4 shows the aforementioned process where a child (C) tries to reserve a slot from

the parent (P). The child’s neighbor, N1, will refrain from channel access after eavesdropping

of the REQ from C. N1 sets up a timer with the length equal to the time required for a

complete REQ-RPL-ACK message exchange. N1 regains channel access when it receives

ACK from C and updates NAT, or the timer expires. The P’s neighbor, N2, will also be

blocked from transmission when it receives RPL from P. N2 then updates the occupation

of the newly assigned slot with default TTL in the NAT. It will also set a timeout which

equals to the amount of time for RPL-ACKmessage exchange. It is then allowed to access the

channel after the timeout. The block of channel access for N1 and N2 is to prevent concurrent

slot reservation and assure that the process of reservation is conducted in sequence. Note

that all the neighbors must cancel any pending slot request and regenerate new request since

the NAT has been changed after resuming from channel access.

However, during the process if the parent finds the requested slot has been allocated

to other node, it will refuse the slot assignation and respond with rejection (REJ), as shown

in Fig. 3.5. Since no ACK message will be sent by C, N1 is blocked for channel access until

35

N1

Enable Channel Access

Timeout

Block Channel Access

C

P

N2

REQ

REJ

Update

NAT

Fig. 3.5. Rejected reservation.

N1

Enable Channel Access

Update

NAT

Block Channel Access

C

P

N2

REN

ARN

Update

NAT

Fig. 3.6. Renew reservation.

timeout. N2 will not be affected and free to access the channel. The child will update the

NAT according to the REJ message and start a new request process later.

Each node also needs to record its own TTL. When the TTL approaches zero, a

node has to renew the reservation of time slots by sending a renew request (REN) to its

parent. The parent nodes will then acknowledge the renewal (ARN) and update their NAT.

Neighboring nodes will also update their NATs and extend the allocation duration. The

renewing process is depicted in Fig. 3.6.

36

The aforementioned protocol provides nodes with the latest slot allocations of neigh-

bors and their children and seamlessly embeds the information in the parent selection process.

With the help of such a distributed slot scheduling protocol, a collision-free channel is as-

signed to each node and at the same time an upstream route is established for forwarding

data packets from sensor nodes to the sink node.

3.3.4. Optimization of Schedules

Based on the design requirement, schedules assignation can be optimized for maximal

concurrency, or minimum delay. A maximal concurrency schedule maximizes the set of

concurrent transmitters and minimizes total number of unique time slots in the network so

as to achieve higher throughput. It is similar to graph coloring problem has been proved to

be an NP-Complete problem [42]. However, in a low rate monitoring network, throughput is

not a primary concern and the total number of time slots is sufficiently large than the number

of nodes. Therefore maximal concurrency scheduling is not suitable for this application.

On the other hand, a minimal delay schedule minimizes the multihop end-to-end

delay. In [43], the authors formulate the wakeup scheduling as a graph-theoretical problem

and show that minimizing the end-to-end communication delay in networks with arbitrary

communication flows is in general NP-hard. However, if protocols only target at minimizing

the upstream unicast delay, the complexity can be greatly reduced. [35] introduces a four-

step algorithm to establish a minimal delay schedule. The centrally controlled algorithm

requires gathering network-wise information and thus introduces large amount of overhead.

In addition, topology of a wireless sensor network is usually dynamic due to the loss of

nodes, channel interference or changing physical environment. Frequent rescheduling may

be required to maintain an optimal schedule and result in considerable overhead. Therefore,

current version of the slot scheduling protocol assigns TDMA slots randomly rather than

optimize for minimum delay.

37

3.4. Time Synchronization Protocol

Time synchronization is an essential building block of sensor network systems [62, 67].

As discussed in Chapter 1,the applications envisioned for sensor networks vary from moni-

toring remote habitats and disaster areas to managing asset in warehouse and detecting and

controlling machinery operation. Regardless of what they sense, one essential requirement

is to know the timing of the observations. Therefore, sensor nodes usually maintain a clock

in order to provide the timing information, necessitating global time synchronization in the

network to ensure the clock consistency among distributed sensors [70, 45, 46, 44, 71].

In this research, the time synchronization module not only supports for timing mea-

surement data, but also assists for the coordination of duty-cycle scheduling, as indicated

in Fig. 3.1. In fact, the performance of fully synchronized MAC protocol heavily depends

on the accuracy of time synchronization. Misalignment of slots will lead to large quantity

of retransmissions, or even worse, no successful communication at all. The authors in [35]

utilize a dedicated out-of-band synchronization hardware to achieve global synchronization.

While very high accuracy can be obtained, such a method increases the complexity of the

overall system design and requires a custom-made sensor platform. In this research, I found

that in-band software-based synchronization schemes are completely practical and desirable

accuracy for duty cycle scheduling can be obtained.

Design requirements of time synchronization methods are largely application-specific.

Microsecond accuracy must be achieved for localization and tracking purposes [54], while

synchronization error within the millisecond range is tolerable for coordinating slot schedul-

ing. In particular, the design requirement of time synchronization protocol in this research is

to minimize power consumption and communication overhead while maintaining millisecond

accuracy.

3.4.1. Clock Architecture of Wireless Sensors

It is usually impractical (or too expensive) to equip every sensor node with a real-

time clock. Instead, each sensor node maintains a local clock that is essentially an integer

38

32KHz Crystal

Oscillator

Compare

Match

Interrupt

Clock Prescaler

(1, 1/8, 1/32, ...)

8-bit Timer

Counter Unit

Register (TCNTn)

Output Compare

Unit Register

(OCRn)
=

Software Interrupt

Handler

(hwclock.nc)

32-bit Software

Counter

(timer.nc)

+
Local Clock

Timer Events

Fig. 3.7. Typical clock counter architecture of IRIS with ATmega1281 processor.

counter triggered by an external crystal oscillator. For example, Fig. 3.7 shows a typical

configuration of the clock counter of the IRIS mote [59] with ATmega1281 micro controller

unit (MCU) [74], a widely used low-cost sensor network system [67, 68]. The 32 kHz oscillator

signal is first prescaled by dividing the frequency by a factor of 1, 8, 32, 64, 128, 256, or 1024

to configure hardware timer counter (HTC) resolution. The counter value in HTC will be

incremented by 1 each time it receives a signal pulse. When HTC reaches a predefined value

stored in the output compare unit (OCU), an interrupt will be generated and the software

handler will increase the value of a 32-bit software timer counter (STC) by same amount as

configured in OCU, instead of by 1, to preserve the time resolution of the HTC. HTC will

be automatically cleared to 0 as it raises the interrupt. Thus, the clock time t of a sensor

node is defined as

(1) t = tHTC + tSTC,

where tHTC and tSTC are the current readings of the HTC and STC, respectively. The clock

time t can be converted to a standard time unit based on the HTC’s time resolution.

The timer interrupt handler and software counter are defined in hwclock.nc and

timer.nc, the timer drivers in TinyOS. The drivers also create software timer events for

many operations, such as waking up the MCU, scheduling a task to run and setting up

CSMA backoff, etc.

39

Send Access TX Process TX Preamble TX Data

RX Preamble RX Data

RX_START RX_END RX Process Receive

Propagation

Sender

Receiver

Non-Deterministic

Deterministic

Interrupt Interrupt

MAC Layer

Time-stamping

Application Layer

Time-stamping

MAC Layer

Time-stamping

Application Layer

Time-stamping

Fig. 3.8. Decomposition of message delay over a wireless link.

3.4.2. Delay Analysis in Radio Message Delivery

Synchronizing two sensor nodes requires the pair to exchange their current clock read-

ings. The sender reads its current time and embedded the time-stamp in the synchronization

message. The receiver also need to timestamp the message upon reception and record the

timing information in the message as well before processing it. The message thus contains

a pair of timestamps through which the clock discrepancy between the two nodes can be

analyzed. However, the delivery of synchronization message inevitably experiences variable

delays at both transmitter and receiver due to uncertain send, access, transmission, propa-

gation and reception times [44]. These delays can be magnitudes larger than the required

precision of time synchronization and consequently the pair of timestamps cannot be con-

sidered to be acquired at the same time. Instead, delays need to be carefully analyzed and

compensated for. The decomposition and analysis of the sources of the message delivery de-

lays were introduced in [44, 45, 46]. Fig. 3.8 shows the decomposition of packet delay when

it traverses over a wireless link between two sensor nodes. Although the decomposition

has been well presented in [44], the discussion was based upon former generation of Mica2

motes [59]. As the delays vary across platforms, I reevaluated the decomposition analysis

and modified it according to the latest RF230 [73] radio transceiver.

Delays involved in the process can be classified as deterministic or non-deterministic.

Deterministic delays are only parameterized by a fixed set of predictable factors such as

40

packet length and data rate and thus can be accurately estimated by experiments or simple

calculations. Non-deterministic delays, on the other hand, are subject to change caused by

random events and conditions. These delays are difficult to compensate and will contribute

directly to synchronization error.

Send time: time used by a sender to construct a packet and pass the packet to MAC

layer for processing. The send time is nondeterministic and is depending on the operating

system (OS) system call overhead, the current load of the task scheduler and the processor.

Access time: delay incurred when waiting for channel access. This is specific to the

design and implementation of MAC protocol in use. In this work, the hybrid MAC protocol

will require the sender first to wait for its slot. And then during its transmitting slot, the

sender will also need to perform random back off until the channel is clear. If a packet buffer

or queue is employed, it may also include the waiting time in the queue, which can be as

high as several minutes, depending on the actual throughput of the protocol.

Transmitter processing time: When the channel is clear, the MAC layer will pass the

packet to the transceiver for further processing, such as adding physical layer headers and

encoding the packet. The time used for sending packet from MCU to the radio chip usually

takes several hundred microseconds, which can be calculated based on the interface data

rate and packet length. The processing inside the transceiver typically requires 16µs [73].

Transmitting preamble time: Before transmitting the actual packet, a preamble con-

sisting of four octets must be sent so that the receiver can detect a valid frame. The trans-

mission of preamble takes 128µs [73].

Transmitting data time: The time for transmitting the actual packet over the wireless

link. This delay is mainly deterministic in nature and can be estimated using the packet

size and the radio speed. In the current platform, this time is typically in the order of a few

milliseconds.

41

Propagation time: This is the actual time taken by the packet to traverse in the air

from the sender to the receiver. It depends only on the distance between the two nodes and

the absolute value of this delay is negligible as compared to other sources of packet latency.

Receiving preamble time: The receiver will spend the same amount time on receiving

the preamble as the preamble transmission. It will take extra 8µs to process and detect the

preamble.

RX start interrupt handling time: Upon successful detection of a preamble, the radio

chip at the receiver will raise an interrupt to signal the start of receiving. It will take less

than a few microseconds for the MCU to finish currently executed instruction and respond

to the interrupt. Then the interrupt handler will take over the control of MCU and execute

a few lines of code.

Receiving data time: While the MCU is responding to the receive start interrupt, the

radio chip is busy receiving the data packet over the air. This time also matches with the

transmitting data time, plus 16µs of processing overhead.

RX end interrupt handling time: After receiving the entire packet, the transceiver will

generate an interrupt to notify the MCU for picking up. As with other interrupt handling

time, this latency is non-deterministic but within a few microseconds.

Receiver processing time: It’s the time for the MAC layer to read the received packet

from the radio module. Similar to transmitter processing time, it usually requires several

hundred microseconds.

Receive time: time to process the incoming message and to notify the receiver appli-

cation. Its characteristics are similar to that of send time.

As discussed above, most of the delay uncertainties are introduced in the send time,

access time and receive time. In fact, it is expected that the access time would completely

overshadow other delays in practice. If the time synchronization messages are treated as

normal messages, precise delay estimate is hard to obtain, if ever possible.

42

To alleviate the delay uncertainty, MAC layer time stamping was proposed, firstly

in [46] and then improved in [44]. As depicted in Fig. 3.8, MAC layer time stamping enables

the time synchronization protocol to modify its messages after passing it to the MAC layer.

Note that the implementation the MAC layer time stamping is completely based on operation

procedure of RF230 radio chip. At the sender side, time synchronization module can inject

the latest time stamp into the message right before it will be delivered to the physical layer,

i.e. radio chip. At the receiver side, the module can record time stamps as early as in

the RX start interrupt handler. The MAC layer time-stamping effectively eliminate the

majority of jitters during both transmission and reception. The remaining delays are mostly

deterministic, and within millisecond range.

3.4.3. Related Works

Recently, a number of efficient synchronization protocols have been proposed includ-

ing RBS [45], TPSN [46], and FTSP [44]. With the RBS approach, a beacon message is

broadcasted by a beacon node and two sensor nodes synchronize between themselves by

exchanging their local receiving times of the beacon. Thus, RBS eliminates transmitter-side

uncertainty, although time-stamping at the lower layers of networking protocol stack may

achieve the same effect. Such a method incurs a large communication overhead in large-scale

networks due to pair-wise message exchange. The TPSN approach removes delay uncertain-

ties at both sender and receiver through MAC layer time-stamping and it gains additional

accuracy over RBS by averaging time-stamps of two messages. However, the two-way com-

munication required in this method also results in a high communication overhead. The

FTSP approach performs MAC layer time-stamping and it is able to synchronize multiple

receivers with a single broadcast message. Such a flooding-based method is also insensitive

to topological changes. Hence, a modified version of FTSP is adopted in the design due to

its low overhead characteristic.

43

3.4.4. Modified FTSP

In the new design, similar to FTSP, each node maintains a buffer containing the latest

time stamps for estimating clock skew and offset. The buffer window is also used for outlier

detection to filter out corrupted time measurements. From several experimental studies, it

is observed that FTSP can achieve less than 1ms timing errors in a three-hop network when

the power management functionality is turned off. However, in low-power modes, FTSP

results in errors of several hundred milliseconds. Through carefully examination of the timer

driver shipped with FTSP, it is found that the driver is not able to return consistent time

stamps in low power modes. In TinyOS, timer driver is required to implement two types of

timer interfaces: one-shot timer and repeat timer. A one-shot timer fires only once whereas a

repeat timer fires periodically until being called off. All existing timer drivers rely on a single

hardware clock to handle both types of timers. During the sleep periods, clock is the only

active module thus it dominates the power consumption in sleep mode. In a duty cycling

system, the sleep mode power consumption decides the lower-bound of the average power

consumption. Hence to save energy in low-power modes, existing timer drivers pull down

clock frequency at which repeat timers request when there are no active one-shot timers.

However, to support the one-shot timers, which usually fire in a few milliseconds, the clock

has to run at high frequency, which leads to high central processing unit (CPU) usage and

high power consumption. Unfortunately, switching between high and low frequencies results

in inconsistent time stamps. Therefore, I developed a new two-layer timer driver to replace

the original driver, which employs two individual hardware clocks to tackle the two types of

timer separately. A high speed clock is used to drive one-shot timers, which remains active

for a short period of time in normal mode. On the contrary, a low speed and thus low power

clock runs continuously to support the repeat timers. Two clocks are synchronized from

time to time to ensure consistency in time stamps.

44

3.5. Multihop Routing Protocol

A common characteristic of monitoring systems is, at most of the time, the data

are flowing into a sink, the base station (BS) node. The BS node is usually equipped with

another type of network interface, such as Wi-Fi, Ethernet adapters, or cellular modem. It

functions as a gateway between the wireless sensor network and the Internet. Consequently,

the network architecture could be described as a spanning tree structure rooted at the BS

node. Any node that is one hop further away from the BS will need to pass data off to its

parent node in the tree to report its readings. The multihop routing protocol is responsible for

discovering neighbors, selecting parent nodes for routing and constructing and maintaining

network topology.

3.5.1. Related Works

According to the operating modes, routing protocols can be classified as proactive or

reactive [24]. Proactive protocols periodically monitor peer connectivity to ensure the ready

availability of routing path for all nodes. Sensor nodes proactively announce their routing

states to their neighbors, update routing paths to reflect topology changes, and transmit

data according to a routing table. On the other hand, reactive protocols establish paths

only upon request, e.g. in response to a query, or an event. No routing tables will be

maintained and sensors remain idle in terms of routing behavior if no transmission of data.

To query for some data, sensors forward each routing request to peers until it arrives at the

destination. The requestee will respond over the reverse communication path.

Ad hoc on-demand distance vector (AODV) routing [48] is the default routing protocol

for Zigbee networks [51], a popular wireless sensor network standard. As a reactive protocol,

AODV protocol originates path requests on demand. Route requests are broadcasted to

the entire network through multihop flooding. All intermediate relays compete with each

other to become part of the best path. They increment the hop count of the packets and

rebroadcast the request; meanwhile they set the sender as the next hop to the originator.

Upon receipt of a request, the destined node establishes a path in reverse: they propagate

45

their reply using the previous sensor as the next relay to the originator. More than one

request per source may be picked up by the requestee. Usually, the first request traverses

the fastest path. The destined node can reinforce multiple paths to an originator. The needy

node then begins using the route that has the least number of hops through other nodes.

Unused entries in the routing tables are recycled after a time. When a link fails, a routing

error is passed back to a transmitting node, and the process repeats. The established path

is preserved until it expires implicitly or errors occur.

Reactive routing protocols have been the protocols of choice in mobile ad hoc net-

works, as they respond quickly to topology change, which may be very frequent due to

node mobility. Due to their simplicity, and inherent support for data on demand, they have

been the predominant design choice in mobile sensor networks. However, for environmental

monitoring networks involving only stationary sensors to collect readings over time, proactive

protocols are more efficient as the routing maintenance overhead could be distributed among

a large number of data reporting through the same routes. Clustering protocols are examples

of proactive routing. In a cluster-based architecture, nodes are organized into clusters. Each

cluster elects a node as the cluster head for inter-cluster communication while other nodes

mainly perform sensing task and can only communicate with the cluster head. Hierarchical

routing is an efficient way to lower energy consumption within a cluster. By performing data

aggregation and fusion, the number of transmitted packets to the BS is greatly decreased.

Low energy adaptive clustering hierarchy (LEACH) is a typical cluster-based protocol,

which includes distributed cluster formation. LEACH randomly selects a few sensor nodes

as cluster heads (CHs) and rotates this role to evenly distribute the energy load among the

sensors in the network. The operation of LEACH is separated into two phases, the setup

phase and the steady state phase. In the setup phase, the clusters are organized and CHs are

selected. During the steady state phase, the sensor nodes can begin sensing and transmitting

data to the cluster-heads. The cluster-head node, after receiving all the data, aggregates it

46

before sending it to the base-station to increase energy efficiency. After a certain time, the

network goes back into the setup phase again and enters another round of selecting new CH.

Although clustering protocols such as LEACH are able to increase the network life-

time, they suffer from a serious limitation. They generally assume that all nodes can have

sufficient and adjustable radio frequency (RF) transmission power and thus literally, all

nodes are all within one-hop range. Therefore, it is not applicable to networks deployed

in large regions. Their potentials could be fully utilized in a densely deployed sensor field,

where nodes are located close to each other and have highly-correlated data.

Another family of proactive routing protocols is tree-based routing. Tree-based rout-

ing protocols organize the network into a spanning tree structure, rooted at the BS node.

They effectively keep routing information and provide routing path in a simple manner, well

suited for applications that collect data from all sensor nodes. Also, it is applicable for

data fusion as parent nodes can aggregate data from their children nodes. In this research,

I develop a tree-based routing protocol for multihop data collection. Combined with the

hybrid MAC protocol described in previous section, the protocol provides energy-efficient

and reliable data delivery, which is the essential requirement of the WSN.

3.5.2. Neighborhood Management

For proper operation, nodes manage a neighborhood table in which they store the

information about the nodes they can hear from (literally their neighbors). There are two

methods for neighbor nodes discovery. An active method for nodes to acquire such knowl-

edge is to let them regularly broadcast probe messages, containing their ID, hop count and

any other relevant information; all receivers of such packets may then add the sender to their

table. Another method is to let nodes discover their neighborhood by overhearing packets

introduced by other protocols. While this passive method reduces some control overhead, it

will make the network layer protocol dependent on the messages generated by other proto-

cols. Neighboring node discovery may fail if other protocols are unaware of such properties.

Moreover, the information embedded in those packets is limited and reduce the performance

47

Node ID

of Children

Child TTL

RSS (Out)

RSSI (In)

Hop Count

State

TTL

Slot #

Fig. 3.9. Organization of a neighborhood table.

and functionality of the multihop protocol. Therefore the active probing is used in the proto-

col design. Periodically, each node will announce its state, hop count, slot number as well as

received signal strength (RSS) from its neighbors. The neighborhood table maintains all the

fields in the probe packets along with a TTL field. TTL will be updated upon receiving and

successfully sending a packet, and decreased regularly or upon an unacknowledged trans-

mission to the neighbor. Neighbors with low or zero TTL will be considered as dead and

replaced by new nodes. The organization of a neighborhood table is portrayed in Fig. 3.9.

To determine the link quality of neighbors, each node is required to maintain estimates

of both inbound (reception) RSS and outbound (transmission) RSS. Empirical studies [50]

show that there are highly irregular links in real deployments of wireless sensor networks.

Approximately 5% to 15% of all links are asymmetric links and asymmetric links vary sig-

nificantly in different directions and distances. In addition, wireless sensor nodes may be

programmed with different levels of transmission power or installed with antennas of unequal

gains. All of the hardware, software and environmental factors may lead to asymmetric link

and necessitate the link quality in both directions. In this design, bidirectional RSS esti-

mates are kept in the neighborhood table and the less of them will be returned upon request

for link quality.

3.5.3. Network Formation and Maintenance

A key attribute of a sensor network is its ability to self-organize. Every node has the

intelligence to discover neighbors, measure radio signal strength and link quality with respect

48

Standby Ready

ConnectedHibernate

Standby

Timer Expired

Channel

Activity

Time Out

Slot Reserved,

Parent Selected

Link Broken,

Parent Changed

Hibernate

Timer

Expired

No Available

Parent

Always

Sleep

Always

active

Always

active

Duty

Cycling

Fig. 3.10. The finite state machine used in a non-BS node.

to each neighbor, and establish a path to the BS node automatically in dynamic application

environments. Thus, during the normal operation, the exact location of a sensor node in the

spanning tree structure may change due to the varying radio propagation conditions.

Fig. 3.10 depicts the overall process how a new node joins an established network. An

established network is defined as a subset of nodes, which have synchronized to the global

clock and selected parents and slots for data reporting. Initially the subset contains only

the BS Node. As mentioned in the previous section, nodes actively broadcast their current

states at predefined interval in the contention slots. A node can easily identify the subset of

nodes already in the network by searching its neighbors with READY state.

For a non-BS node, after power-up or reboot, it begins with the STANDBY state

in which it is actively eavesdropping for channel activities to detect the existence of a net-

work. The purpose of overhearing is to gather neighbor information such as slot occupation,

neighbor link quality, and global clock stamp. This state lasts for a defined amount of time,

generally longer than several super frames. To speed up the process, a node can also explic-

itly request for a certain type of information by broadcasting the requests. Then the node

remains active and moves to READY state for the next step. However, if the node could

not detect any channel activity during this period, the node will go into HIBERNATE state

49

and switch to sleep mode in order to conserve energy. The HIBERNATE state is very useful

especially when the BS node fails. To join in the network, an offline node has to select one

of its neighbors as the parent. The parent selection algorithm is described in later section.

After reserving a TDMA slot successfully from the parent, the new node is CONNECTED

to network and start duty cycle operation as described in previous sections.

The above process does not form a static network but a dynamic, self-healing net-

work. A good link may become broken due to environmental conditions, new obstacles,

unanticipated interferers and loss of individual nodes. When a node fails to report data to

or receive any packet from its parent for several consecutive super frames, it will stop duty

cycle and go back to READY state and try to reselect a parent.

3.5.4. Parent Selection

In order to join in the routing tree, a non-resident node is required to look for a

parent as its next hop router for relaying data. The process begins with selecting a parent

among neighboring nodes according to a parent selection algorithm detailed below. Once

the parent is targeted, the joining node will reserve a TDMA slot from the parent based on

the slot reservation protocol, as described in Section 3.3. In addition to updating its NAT

table at the MAC layer, when accepting the slot reservation, the parent node will also set

the ChildTTL field of the child node in the neighborhood table, as shown in Fig. 3.9. The

nodes with ChildTTL greater than zero are recognized as children nodes. As with other

TTL counter, ChildTTL will decrement across time. The parent will stop listening in the

child’s slot if the associated ChildTTL becomes zero. The ChildTTL will be also reset when

a child renews its slot.

Many distance-vector based parent selection algorithms are available in the litera-

ture [47], which uses different cost metrics to guide routing. The cost of a node is an

abstract measure of distance. In this protocol, the cost is parameterized by hop count, RSS,

TTL, and duty cycle. When scheduled to run, the routing algorithm scans the neighbor list

and find a potential parent with good link quality determined by the RSS and TTL, and

50

relatively low duty cycle. Among the parent candidates, the neighbor with lowest hop count

is selected as the potential parent. If two or more candidates have the same hop count,

the one with the lowest duty cycle will be selected so as to balance the routing load and

maximize network lifetime.

51

CHAPTER 4

CLOCK ESTIMATION ALGORITHMS FOR WSN

Time synchronization in wireless sensor networks (WSN) has been studied extensively

in recent years. However, the existing literatures are mostly focused on the time-stamp ex-

change protocol aspect of time synchronization whereas little emphasis has been put on the

post-processing algorithmic aspect, especially from practical implementation perspectives.

As introduced in Section 3.4, time synchronization in sensor networks generally begins with

a message exchange protocol with which the nodes exchange their local time information.

Then, the nodes calibrate their clocks to a common reference using some clock estimation

algorithms. Reference broadcast synchronization (RBS) method [45], timing synchroniza-

tion protocol for sensor networks (TPSN) [46], and flooding time synchronization protocol

(FTSP) [44] are among the most widely cited time synchronization methods, or time synchro-

nization protocols to be more accurate. In their original design, simple time synchronization

algorithms are employed without in-depth analysis. In this chapter, I intend to fill the gap in

the literature with a comprehensive study of clock estimation algorithms. More specifically, a

unified formulation of least squares (LS) clock estimation algorithms to estimate clock offset,

skew, and drift (see Section 4.1 for definition) using both batch and sequential estimators

is presented. The simple algorithms used in RBS, TPSN, and FTSP are special cases of

the ones presented in this research. For example, TPSN only accounts for clock offset and

its algorithm can be viewed as a 0th-order batch estimator. Both RBS and FTSP utilize

a 1st-order batch estimator to estimate clock offset and skew. However, it is important to

note that, as discussed in the following sections, most of the algorithms presented in this

chapter can be used together with the protocols of RBS, TPSN, and FTSP directly or with

some minor adjustments.

52

Through extensive measurement and implementation experience, I have identified a

number of key issues in the implementation of clock estimation methods, especially for con-

tinuous monitoring applications. In this chapter, I propose a suite of algorithms to address

such issues, including a scaled signal model to achieve numerical stability in an ill-conditioned

problem, sequential estimators for the scaled signal model to reduce computational complex-

ity, a fast initialization scheme to improve energy efficiency, and outlier detection algorithms

to improve robustness in long-term autonomous operations. The proposed algorithms are im-

plemented in an actual WSN platform to demonstrate their practicality and to study their

computational complexity empirically. Performance of the algorithms is studied through

extensive measurement-based simulations with the measurement data collected in typical

application scenarios.

4.1. Sources of Clock Synchronization Error in WSN

In sensor networks, each node has a clock counter that starts independently. The

difference between the initial starting times is known as clock offset. Two oscillators may

not run at an exactly same frequency, causing clock skew between two nodes. Oscillators

suffer from aging effects and are affected by environmental variables, such as mechanical

vibration, magnetic fields, and especially temperature [79]. Thus, the frequency of two

oscillators may vary differently, causing clock drift between two nodes. If the clock offset θo,

skew θs and drift θd coefficients between two nodes are known, time synchronization between

a local time t and a reference time τ , which may or may not be the global or standard time,

can be achieved through a 2nd-order polynomial time conversion formula,

(2) t = θo + θsτ + θdτ
2.

The choice of converting τ to t or t to τ is an application-specific design requirement; in

some applications, both conversions may be required.

In continuous monitoring applications, duty cycling is often used to achieve energy-

efficiency, which makes it desirable to reduce synchronization frequency. In order to maintain

53

synchronization over a long synchronization period, it may be necessary to estimate clock

drift in addition to clock offset and skew, especially in harsh environmental conditions where

oscillator frequency drifts significantly. In this chapter, various LS algorithms are derived

to estimate clock offset, skew, and drift for the one-way broadcast-based synchronization

model as employed in the RBS and FTSP approaches and study their performance based on

measurement data.

4.2. Least Squares Estimation for Clock Estimation

This research adopts a simple broadcast-based model for time synchronization; that

is, a reference node broadcasts a time-stamped synchronization message periodically and a

client node time-stamps the received messages. The client node synchronizes its time t to

the reference node’s time τ based on a sequence of the time-stamp measurement data sets

{τ [i], t[i] : 1 ≤ i ≤ n}. In this section, several LS estimation algorithms are derived for

such a synchronization model. The derivation is generalized for the p-th order polynomial

estimator to suit both of the estimation of only clock offset and skew and the estimation of

all three parameters.

4.2.1. Linear Least Squares Estimators

The signal model for the p-th order polynomial estimator at time n with w time-stamp

measurement data sets, i.e., with a window size of w, can be defined as

(3) x[n] = H[n]θ + v[n],

where the observation data x[n], the observation matrix H[n], and the observation noise v[n]

at time n are defined as

x[n] = [t[n− w + 1] · · · t[n]]T ,

H[n] = [h[n− w + 1] · · ·h[n]]T

54

=


1 τ [n− w + 1] · · · τ p[n− w + 1]

1 τ [n− w + 2] · · · τ p[n− w + 2]

...
...

...
...

1 τ [n] · · · τ p[n]


,

v[n] = [v[n− w + 1] · · · v[n]]T .

In practice, statistical characteristics of the observation noises are typically unknown a pri-

ori. Thus, the LS estimation method is desirable for such time synchronization problems,

especially comparing to other model-based methods such as maximum likelihood (ML) and

minimum mean squared error (MMSE) estimators. Derivation of LS estimators (LSE) does

not rely on any probabilistic assumption of the observation noises and it is optimal in the

sense that it is the best linear unbiased estimator (BLUE) for linear signal models where the

observation noises are uncorrelated and have a zero mean and equal variances [76].

As discussed in Section 4.1, the time-stamp data τ [i] and t[i] are 32-bit integer values.

Thus, when p > 1, using the data directly in determining H[n] results in numerical overflow

errors in computers. Converting the data to a standard time unit such as seconds cannot

completely eliminate such overflow errors in practical implementation. Furthermore, given

the form of H[n] in (3), computation of (HT [n]H[n])−1 directly or through Gaussian elimina-

tion to determine the LSE (similar to (8)) is an ill-conditioned problem, although well-posed.

It is well known that if the elements of a matrix vary greatly in size, it is likely that large

loss-of-significance errors will be introduced and the propagation of rounding errors will be

worse [72]. To avoid such a problem, the matrix is generally scaled so that its elements vary

less.

Following the discussion in [72], here I propose a scaling method to systematically

address the numerical instability issue in clock estimation. Specifically, the data τ [i] and

t[i], n−w+ 1 ≤ i ≤ n, are scaled with τ [n] and t[n], respectively, resulting in an equivalent

55

scaled signal model,

(4) x̃[n] = H̃[n]β + ṽ[n],

where

x̃[n] =
1

t[n]
x[n] = [

t[n− w + 1]

t[n]
· · · 1]T ,

H̃[n] = [h̃[n− w + 1] · · · h̃[n]]T = H[n]S[n],

β =
1

t[n]
S−1[n]θ,

ṽ[n] =
1

t[n]
v[n],

and the scaling matrix S[n] is a diagonal matrix and h̃[i], n−w+1 ≤ i ≤ n, are the vectors

of h[i] scaled by S[n],

S[n] = diag{1 1

τ [n]
· · · 1

τ p[n]
},(5)

h̃T [i] = hT [i]S[n] = [1
τ [i]

τ [n]
· · · (τ [i]

τ [n]
)p].(6)

Then, by minimizing the LS error criterion

(7) J̃ [n] = (x̃[n]− H̃[n]β)T (x̃[n]− H̃[n]β),

the standard linear LSE at time n can be derived for the scaled signal model as

(8) β̂[n] = (H̃T [n]H̃[n])−1H̃T [n]x̃[n].

With such an estimator, a set of w observation data samples {τ [i], t[i] : n− w + 1 ≤ i ≤ n}

are collected first and then processed all at once at time n. Thus, the estimator (8) is widely

known as batch estimator, especially in contrast to the sequential estimator presented in the

next section. With sequential estimators, at time n, only the new observation data sample

{τ [n], t[n]} is processed to update the estimator derived at time n − 1, without processing

56

any of the previous data {τ [i], t[i] : i < n}; that is, the observation data sample is processed

sequentially in time.

4.2.2. Sequential Least Squares Estimator

The sequential LSE for the unscaled signal model (3) can be found in [76]. Some

simulation results of such an estimator can be found in [71], where the numerical stability

issue in practical implementation is not considered. In this research the sequential LSE is

derived for the scaled signal model (4), which can be directly employed in implementation

of clock estimation algorithms. Benefits of the sequential estimator, as compared to the

batch estimator (8), are widely known, including reduced computational complexity, lower

memory requirement, and faster computation in real-time applications [76].

The sequential LSE for the scaled signal model (4) can be derived directly from the

unscaled sequential LSE by incorporating scaling updates at every time steps. For the scaled

signal model (4), the sequential estimator recursively determines the LSE of the unknown

parameter β̂[n] and a covariance matrix (following the derivation in [76])

(9) Σ̃[n] = (H̃T [n]W[n]H̃[n])−1,

where W[n] is a diagonal weighting matrix,

(10) W[n] = diag{1
λ

1

λ2
· · · 1

λn
}.

The parameter λ is a forgetting factor, 0 < λ < 1, which is commonly used in sequential LS

algorithms. By using the forgetting factor, previous data samples are exponentially down-

weighted, effectively limiting the influence of the earlier data and allowing the estimator to

react more quickly to model changes [76].

It is important to note that by using the sequential estimator, the estimation of β̂[n],

Σ̃[n], and the minimum LS error J̃min[n] is based on x̃[n] and H̃[n] with a window size w = n,

i.e., the data τ [i] and t[i], 1 ≤ i ≤ n, scaled by τ [n] and t[n] as in (4). To determine β̂[n], Σ̃[n],

and J̃min[n] recursively with the sequential estimator, we need to determine the estimators

57

of the unknown parameter β̂n[n − 1], the covariance Σ̃n[n − 1], and the minimum LS error

J̃min,n[n − 1] at time n − 1 that are derived based on the data τ [i] and t[i], 1 ≤ i ≤ n − 1,

but scaled by τ [n] and t[n]. It can be easily verified that

β̂n[n− 1] =
1

t[n]
S−1[n]θ̂[n− 1](11)

=
t[n− 1]

t[n]
Sn[n− 1]β̂[n− 1],

Σ̃n[n− 1] = S−1[n]Σ[n− 1]S−1[n](12)

= Sn[n− 1]Σ̃[n− 1]Sn[n− 1],

J̃min,n[n− 1] = (
t[n− 1]

t[n]
)2J̃min[n− 1],

where

Σ[n] = (HT [n]W[n]H[n])−1,

Sn[n− 1] = S−1[n]S[n− 1]

= diag{1 τ [n]

τ [n− 1]
· · · (τ [n]

τ [n− 1]
)p}.

Thus, following the derivation for the unscaled signal model in [76], the sequential

estimator for the scaled signal model (4) can be summarized as follows:

Scaling Update:

β̂n[n− 1] =
t[n− 1]

t[n]
Sn[n− 1]β̂[n− 1],(13)

Σ̃n[n− 1] = Sn[n− 1]Σ̃[n− 1]Sn[n− 1],

J̃min,n[n− 1] = (
t[n− 1]

t[n]
)2J̃min[n− 1].

Estimator Update:

(14) β̂[n] = β̂n[n− 1] + K̃[n](1− h̃T [n]β̂n[n− 1]),

58

where

K̃[n] =
Σ̃n[n− 1]h̃[n]

λn + h̃T [n]Σ̃n[n− 1]h̃[n]
,

h̃[n] = [1 1 · · · 1]T .

Covariance Update:

(15) Σ̃[n] = (I− K̃[n]h̃T [n])Σ̃n[n− 1].

Minimum LS Error Update:

(16) J̃min[n] = J̃min,n[n− 1] +
(1− h̃T [n]β̂n[n− 1])2

λn + h̃T [n]Σ̃n[n− 1]h̃[n]
.

It is important to note that no matrix inversions are required in the sequential al-

gorithm, which significantly reduces computational complexity as compared to the batch

estimator (8). To initialize the sequential algorithm, β̂[0] may be determined with a batch

estimator using initial w data samples while J̃min[0] and Σ̃[0] may be initialized with 0

and a large diagonal matrix, for example, 105I, respectively. We may also initialize with

β̂[0] = 0 [76]. After a burn-in period n0, the estimator will converge with little biasing

effect of the initial values. In long-term monitoring applications, the time index n increases

indefinitely and thus λn in K̃[n] in (14) decreases indefinitely, causing numerical instability.

Therefore, it is necessary to reinitialize the sequential algorithm periodically after n becomes

too large, e.g., 103, by resetting n to 1, β̂[0] to the current estimate, J̃min[0] to 0, and Σ̃[0]

to 105I.

4.2.3. Energy-Efficient Fast Initialization Scheme

An initialization stage is required in both of the batch and sequential estimators; that

is, with a window size of w, the batch estimator requires a collection of w data samples to

start the estimation process while the sequential estimator requires an additional n0 data

samples for the burn-in period. In continuous monitoring applications, large data sampling

59

interval will make the initialization process very long. For example, assuming a duty-cycling

period T of 15 minutes with 14 minutes of sleep period Ts and 1 minute of active period Ta,

if the initialization stage is 10 data samples’ long, sensor nodes need to stay awake for 150

minutes initially before starting duty-cycling with a synchronized time. Such a requirement

puts a major burden on the energy resource of sensor nodes that are often powered by battery

or solar cells in harsh environmental conditions. In this section, a novel initialization scheme

is proposed to speed up the initialization process and significantly improve energy efficiency.

In designing the new scheme, it is important to note that data sampling for time

synchronization does not need to be strictly periodic. The key idea of the new scheme

is to use a small initial sampling period, then exponentially expand the sampling period

until it reaches the regular duty-cycling period. Such a scheme makes it possible to start

duty-cycling during the initialization stage to significantly reduce energy consumption. More

specifically, a small initial sampling period T0, e.g. 1 s, is employed at the beginning to collect

w + n0 data samples for initial estimation and burning-in. Then, the estimation algorithm

continues with the sampling period increased by a times, e.g., 2 or 3 times. After the new

sampling period is used to collect n1 samples, it is increased again by a times to collect n1

additional samples while the estimation algorithm continues. Such an exponential expansion

of the sampling interval continues until the sampling period reaches the regular duty-cycling

period and sensor node starts to follow the regular duty-cycling schedule. By gradually

increasing the sampling period, sensor nodes are able to maintain synchronized time with

adequate accuracy during the initialization stage. Thus, sensor nodes can start duty-cycling

as soon as the current sampling period Ti is greater than the required active period Ta for

data sampling; for example, stay active for Ta time units, then sleep for Ti − Ta time units.

The proposed method is referred to as the exponential expansion of sampling period (EESP)

initialization scheme and the parameter a as the exponential expansion parameter.

60

Using the EESP initialization scheme, the time required to reach the regular duty-

cycling schedule is

(17) Tinit = (w + n0)T0 + n1T0
am+1 − a

a− 1
,

where

m = round(loga(T/a))

with the function round(·) denotes the rounding operation. If Ta > T0, the total active time

can be determined as

(18) Ttat = (w + n0)T0 + n1T0
am1+1 − a

a− 1
+ n1(m−m1)Ta,

where

m1 = ⌊loga(Ta/T0)⌋

with the symbol ⌊·⌋ denotes the flooring operation; if Ta ≤ T0,

(19) Ttat = (w + n0)T0 + n1Ta
am+1 − a

a− 1
,

To better appreciate the benefits of the new initialization scheme, consider a simple

example. Assume in a continuous monitoring application, T = 15 minutes, Ta = 1 minute,

(w + n0) = 10, T0 = 1 s, a = 3, n1 = 5. Then, Tinit = 30.4 minutes and Ttat = 13.4 minutes

with the EESP scheme and 150 minutes without it. More comparison results are shown in

Fig. 4.1. The advantage of the EESP scheme is more significant for the larger values of T

and (w + n0). Therefore, the EESP scheme is strongly desirable for sequential estimators,

especially when the burn-in period n0 is large; with the EESP scheme, the extra cost of

sequential estimators due to a long burn-in period, as compared to batch estimators, tend

to be negligible in practice.

61

0 5 10 15 20 25 30
10

−1

10
0

10
1

10
2

10
3

T (minutes)

tim
e

(m
in

ut
es

)

T
init

 and T
tat

 without EESP, (w+n
0
)=30

T
init

 and T
tat

 without EESP, (w+n
0
)=20

T
init

 and T
tat

 without EESP, (w+n
0
)=10

T
init

 with EESP, a=2

T
init

 with EESP, a=3

T
tat

 with EESP, a=2

T
tat

 with EESP, a=3

Fig. 4.1. Comparison of Tinit and Ttat with and without EESP.

4.2.4. Outlier Detection

The synchronization message inevitably experiences variable delays at both trans-

mitter and receiver due to uncertain send, access, transmission, propagation and reception

times [44]. Due to the random nature of such delays, outliers may occur inevitably in time-

stamp measurements. Outliers may also occur due to undetected hardware and software

bugs that are impossible to avoid completely in implementation. Reading of the clock time

needs to be an atomic operation, which must complete without anything else being able to

change the value during the operation [78]. However, the clock time is a summation of two

counters’ readings as in (1), which is extremely difficult to implement as an atomic opera-

tion. Simply disabling interrupt does not solve such a problem; extra safeguard measures

are needed to address all possible scenarios, which is an extremely difficult task in practice.

In addition, reading hardware timer counter (HTC) shortly after wake-up may also give an

incorrect result in some hardware platforms [74].

The outlier issue in time-stamp data must be effectively addressed, especially in duty

cycling protocols. An incorrect time-stamp may result in misalignment of duty cycling

62

schedule, causing failure of entire network. Many outlier detection methods are available in

the statistics literature, including methods based on global distribution, local distribution,

distance, and deviation [75]. In this section a few simple distance-based algorithms that can

be used together with the LSE in the preceding sections is presented.

An iterative minimum residual (IMR) algorithm is proposed in [77] to detect and

reject outliers by iteratively searching for the minimum residual estimator among the LSE

derived from different combinations of the data. With the IMR algorithm, outliers are

eliminated one-by-one in an iterative way. For example, given a set of w data, first the batch

LSE is derived based on all of the data. Second, w batch LSE is derived based on all possible

combinations of the data, taking w − 1 data at a time. Then, determine the best estimator

in terms of minimum root-mean-square (RMS) LS residual error. The data not employed in

the derivation of the best estimator is eliminated from the data set. This process continues

iteratively with the reduced set of data until a certain criterion is met; for example, iterations

have been conducted for a predefined number or the change in the minimum RMS residual

error is less than a predefined tolerance δ, comparing to the previous iteration. Such an IMR

algorithm can be used in the initialization stage of both batch and sequential estimators to

reject outliers in the very first w data samples.

Starting from the (w+1)-th data, only the latest data may be examined sequentially

for outlier detection as explained in the following. With the LSE at time n, β̂[n], an estimate

of t[n+ 1] may be determined for a given τ [n+ 1] from

(20) t̂[n+ 1] = t[n]h̃T
n [n+ 1]β̂[n],

where h̃n[n+ 1] is the vector h[n+ 1] scaled by S[n],

h̃T
n [n+ 1] = hT [n+ 1]S[n]

= [1
τ [n+ 1]

τ [n]
· · · (τ [n+ 1]

τ [n]
)p].

63

The prediction error at time n+ 1 for the scaled signal model is then defined as

(21) ϵ[n+ 1] = t[n+ 1]− t̂[n+ 1].

The data {τ [n+ 1], t[n+ 1]} is considered an outlier if

(22) |ϵ[n+ 1]| ≥ min{ϵu, max{ϵl, ϵth[n]}},

where the threshold ϵth[n] may be defined as three times or more of the RMS residual

error at time n, ϵrms[n], while ϵl and ϵu are the empirical lower and upper bounds of the

residual errors, respectively, employed to improve the robustness of the algorithm in practical

implementation. When batch estimators are used, the RMS residual error can be determined

at every time step as

(23) ϵrms[n] = t[n]

√
1

w
J̃min[n].

With the forgetting factor λ, the equivalent LS error criterion of sequential estimators is

weighted by the diagonal weighting matrix (10) [76]. Thus, the RMS residual error of the

sequential estimator can be determined as

(24) ϵrms[n] = t[n]

√
λn(1− λ)

1− λn
J̃min[n].

In summary, a pseudo code of the LS clock estimation algorithm is provided in Al-

gorithm 1, which integrates the batch and sequential LSE, EESP, and outlier detection

algorithms presented in this chapter.

4.3. Implementation and Computational Complexity

In order to study the practicality of the algorithms presented in this chapter, I imple-

mented the LS clock estimation algorithms together with a modified version of FTSP [44]

in the IRIS motes [59]. In particular, I employ the medium access control (MAC) layer

time-stamping method and the timing message exchange protocol of FTSP, but replace the

64

Algorithm 1 The LS clock estimation algorithm with EESP and outlier detection at client
node at time n

1: Sample the current time-stamp data {τ [n], t[n]}.
2: if n < w then
3: Do nothing here.
4: end if
5: if n = w then
6: Use IMR algorithm to detect and eliminate outlier.
7: Determine a batch estimator β̂[n].
8: end if
9: if n > w then
10: Use (22) to detect outlier sequentially.
11: if {τ [n], t[n]} is outlier then
12: Eliminate {τ [n], t[n]} from data sequence.
13: else
14: Determine a sequential estimator β̂[n].
15: end if
16: end if
17: Use EESP to determine a new sampling interval.

native clock offset and skew estimation algorithm with the batch and sequential estimators

described in Section 4.2. The experimental results presented in this section is obtained in

a simple experimental setup consisting of a pair of motes, a parent node and a child node.

The two nodes, placed 5m apart in an outdoor experimental site, run the modified FTSP

protocol to synchronize the child’s time to the parent’s. A third data collection node, de-

ployed near the pair, sends a clock inquiry message every 30 seconds; both parent and child

time-stamp the arrival time of the message and report the time-stamps to the data collection

node. The differences between the time stamps of each query, namely the clock estimation

errors between the parent and child nodes, are calculated and stored in the data collection

node’s flash memory for postprocessing.

The compiler (i.e., avr-gcc) for the ATmega1281 microcontroller (MCU) on IRIS

only supports 32-bit single-precision floating-point computation. In the IEEE 754 standard,

a single-precision binary floating-point number has 23-bit fraction component; however, the

time stamps are 32-bit integers and the conversion from integer to single-precision floating-

point number results in severe precision loss, especially when time stamps are large numbers.

65

0 2 4 6 8

x 10
7

0

0.2

0.4

0.6

0.8

1

A
bs

ol
ut

e
E

rr
or

(m
s)

Time Stamps

Single Precision
Double Precision

Fig. 4.2. Estimation errors of the 1st-order batch estimator, implemented in
the IRIS mote.

To address such a problem, I implemented 64-bit double-precision floating-point operations

in the IRIS platform. It should be noted that the more powerful (but less energy efficient)

Imote2 mote [59] does not suffer from the precision loss problem as it has a built-in floating-

point co-processor. Fig. 4.2 shows the estimation errors of the 1st-order batch estimator

with both single- and double-precision floating-point computations, implemented in IRIS.

With a synchronization sampling period of 1min, the time stamps grow from 0 to 9× 107 in

6 hours. It can be clearly observed that the increasing trend of estimation errors with the

single-precision implementation. The 2nd-order estimators even fail to yield any valid result

due to the divide-by-zero errors when implemented in single-precision floating-point.

To assess the computational complexity of the LS clock estimation algorithms, I have

transplanted the code segments of the algorithms from TinyOS to C and evaluated the execu-

tion time of the C program in AVR studio, which is an integrated development environment

(IDE) for writing and debugging programs for Atmel MCUs including ATmega1281. The C

program is first compiled with the avr-gcc compiler and the machine code is then executed on

66

5 10 15 20 25 30
0

20

40

60

80

100

120

140

160

180

E
xe

cu
tio

n
T

im
e

(m
s)

window size

1st batch
2nd batch
1st seq
2nd seq

Fig. 4.3. Execution time of the LS clock estimation algorithms measured in
AVR simulator.

the AVR simulator, which is a part of AVR studio. Unlike the high-level network simulators

such as NS2 and TOSSIM that are insufficient to measure the execution time of a task or

a code block, AVR simulator is able to simulate the program instruction-by-instruction and

the clock cycle of each instruction can be precisely recorded. When simulating the program,

I set up a watch timer at a breakpoint before entering the function of an algorithm. After the

simulator exits the function block and stops at another breakpoint, the watch timer records

the execution time between the breakpoints.

Fig. 4.3 compares the computation time of the four estimators. From the results, we

can observe that the computation time of batch estimators is a linear function of window

size whereas the execution time of sequential estimators is constant, independent of the

forgetting factor (and window size), since only one time stamp is processed at a time with

such estimators. On the other hand, the computation time of the 2nd-order estimators is only

slightly higher than the 1st-order estimators. Computational complexity of an algorithm is

directly related to its energy efficiency, which is one of the major design considerations of

67

resource-constrained WSN. The energy cost of each estimator can be obtained by multiplying

the execution time by the average power consumption of a specific MCU, which is typically

provided by manufacturers in terms of average current draw and operating voltage of the

MCU.

In the next two sections, a comprehensive performance evaluation of the LS clock

estimation algorithms using extensive measurement-based simulation results is present.

4.4. Measurement and Data Collection System

To study the behavior of the clock of typical sensor nodes, I have conducted extensive

measurements using a simple experimental setup. The sensor network platforms used in this

research are the IRIS (and MICAz) motes from Crossbow Technology, which are the most

widely used low-cost sensor network platforms nowadays [26, 67, 68]. The measurement data

are used in various simulations to evaluate the performance of clock estimation algorithms

in realistic scenarios.

The measurement and data collection system consists of three sensor nodes, among

which one node periodically broadcasts beacon messages while the other two nodes receive the

messages and record their arrival time. In the implementation, the MAC-layer time-stamping

technique is employed to eliminate the uncertainty in the reception time. All sensor nodes

are stationary during measurement. Time-stamp data are saved in the local flash memory;

data are retrieved through serial port after measurement. The time-stamp data are indexed

by the sequence number of the beacon messages. In the post-processing stage, the time

synchronization process between two sensor nodes is simulated using the time-stamp data

collected using the measurement system; that is, the time-stamp data from one receiving

node is used as the time τ of the reference node and the data from the other receiving node as

the time t of the client node. Then, a clock estimation algorithm can be applied to the data

to synchronize the time of the client node to the reference node’s as presented in Section 4.2.

Such a measurement-based simulation method can be used to conveniently evaluate the

performance of clock estimation algorithms employed in a wide range of broadcast-based

68

time synchronization methods such as RBS and FTSP. Furthermore, such a measurement-

based simulation method is especially useful when comparing the performance of different

algorithms since the same set of measurement data can be used repeatedly for all algorithms,

which ensures the fairness of the comparison.

As discussed in Section 4.1, the highest HTC time resolution may be achieved in the

IRIS mote by setting the prescaling factor to 1, with which a time synchronization accuracy

in the order of a few microseconds can be achieved. However, energy consumption of sensor

nodes in sleep mode is directly related to the HTC time resolution since the 8-bit HTC

interrupts faster with a higher time resolution. Thus, there is a trade-off between time syn-

chronization accuracy and energy-efficiency. Targeting at low-power continuous monitoring

applications such as environmental monitoring, here a prescaling factor of 8 that results in a

HTC time resolution of 0.25ms is employed. In the measurement system, the broadcasting

period of the beacon messages, i.e., the sampling period of the measurement system, is set

to 4 s. Thus, with a 128 kB flash memory on each node, I am able to collect about 105 data

samples continuously for up to 11 hours. With such a sequence of measurement data, a

new data sequence of lower sampling rate can be constructed in the post-processing stage

through proper decimation.

Frequency drifts and aging effects of oscillators are affected by environmental con-

ditions [79]. Thus, here I consider three typical scenarios, including indoor same condition

(ISC), outdoor same condition (OSC), and outdoor different condition (ODC). In the ISC, all

sensor nodes are placed inside an air-conditioned building. In the OSC, all sensor nodes are

placed directly under the sun without any shade. In the ODC, sensor nodes are placed in an

environment where surrounding trees form different dynamic shading patterns for the nodes

with the sun movement. Outdoor measurements are started in the afternoon to capture data

during both daytime and nighttime. To ensure the quality of the measurement data, all ex-

periments are repeated several times with different combinations of motes, selecting 3 motes

from a pool of about 20, and the data from the repeated measurements are cross-checked

69

1000 2000 3000 4000 5000
−80

−60

−40

−20

0

20

40

60

80

beacon index

re
si

du
al

 e
rr

or
 (

m
s)

ISC
OSC
ODC

Fig. 4.4. Residual errors of three measurement data sequences after linear
regression with a straight line.

carefully for consistency. Through such a process, I indeed found and eliminated some ab-

normal data sets caused by hardware anomalies in some of the motes. Sample measurement

data are shown in Fig. 4.4. To better present the nonlinear clock drifting effect, the figure

only plots the residual errors of each data sequence after linear regression with a straight

line. The ODC scenario shows highest drifting effect as expected. Also, outliers are evident

in the data, which is quite common in motes as discussed in Section 4.2.4.

4.5. Measurement-based Simulation Results

In this section, I study the performance of the proposed clock estimation algorithms

through a number of measurement-based simulation results. The parameters of EESP and

outlier detection algorithms are tuned through extensive simulations; for example, burn-in

period n0 = 30, exponential expansion parameter a = 3, the number of samples collected

with each intermediate sampling period n1 = 5, initial sampling period T0 = 4 s (which

is determined by the measurement system configuration), outlier detection lower bound

70

ϵl = 8ms and upper bound ϵu = 48ms. In addition, in the simulations, I use window

size w = 10, forgetting factor λ = 0.8, and regular sampling period T = 5 minutes, if

not otherwise specified. Various clock estimation algorithms are compared in terms of their

root-mean-squared prediction error (RMSE) performance, which is determined as the root-

mean-squared (RMS) value of the prediction errors, defined in (21), over the measurement

data sequence.

4.5.1. Performance of EESP Algorithm

To study the effectiveness of the EESP algorithm, I conduct a series of simulations

in all three measurement scenarios. The RMSE performances of the LS estimators in the

initialization stage are presented in Fig. 4.5. From the results we can clearly observe that

all estimators are quite insensitive to the parameter a, although a faster expansion tends

to introduce larger estimation errors as expected intuitively. For example, even with 7

times expansion of the sampling period at each step, all estimators achieve less than 1ms

RMSE, which may well be an adequate performance to enable duty-cycling in many practical

applications.

It is interesting to note that the 1st-order estimators have better performance than

the 2nd-order ones. Such an observation is due to the fact that clock drifting effects are

negligible within a short period of time; only over a long time period, clock drifting effects

are significant. On average, sampling intervals are very small during the initialization stage.

Thus, samples within a short window (e.g., w = 10 in the simulations) are more accurately

modeled with the 1st-order polynomial model. In addition, the performances of batch and

sequential estimators are comparable; the slight difference between them is because of the

use of a fixed window size in batch estimators and a forgetting factor in sequential estimators

to down-weight the previous data samples.

4.5.2. Effects of Sampling Period

Sampling period is an important system configuration parameter in practical imple-

mentations, especially with duty-cycling. In duty-cycling protocols, the sampling period

71

2 3 4 5 6 7
0

0.5

1

R
M

S
E

 (
m

s)

exponential expansion parameter a

2 3 4 5 6 7
0

0.5

1

R
M

S
E

 (
m

s)
2 3 4 5 6 7

0

0.5

1

R
M

S
E

 (
m

s)

batch,p=1
batch,p=2
sequential,p=1
sequential,p=2

ISC Scenario

OSC Scenario

ODC Scenario

Fig. 4.5. Performance of the EESP algorithm versus parameter a.

2 4 6 8 10 12
0

2

4

R
M

S
E

 (
m

s)

sampling period T (minutes)

2 4 6 8 10 12
0

2

4

R
M

S
E

 (
m

s)

2 4 6 8 10 12
0

2

4

R
M

S
E

 (
m

s)

 batch,p=1
batch,p=2
sequential,p=1
sequential,p=2

ISC Scenario

OSC Scenario

ODC Scenario

Fig. 4.6. Performance of the LSE versus sampling period.

72

determines how often a sensor node needs to wake up for synchronization purposes, which

directly relates to the energy efficiency of the system. Performances of the estimators versus

sampling period are shown in Fig. 4.6. In the ISC scenario, the performance of all four esti-

mators are very close to each other and the sampling period does not have significant effect.

However, in outdoor scenarios, especially in ODC, performances of all four estimators deteri-

orate steadily as sampling period increases. Such an observation is easily justified intuitively,

considering that there are very minimum clock drifting effects in controlled indoor environ-

ments while in random outdoor deployments, clock frequency drifts much more significantly,

especially over a long period of time. Thus, there is a trade-off between time synchronization

accuracy and energy efficiency; in practice, the sampling period may be maximized subject

to a design requirement of time synchronization accuracy.

From the results, we can also observe that the 2nd-order estimators have better

performance than the 1st-order estimators when the sampling period is larger, especially in

the ODC scenario, justifying the use of the higher order estimators.

4.5.3. Effects of Window Size and Forgetting Factor

To study the effects of window size and forgetting factor, I present the RMSE per-

formances of the 2nd-order estimators in Fig. 4.7 and Fig. 4.8. Similar to the preceding

discussion, we can observe that in the ISC scenario, the performance of the estimators tends

to improve, although slightly, as window size or forgetting factor increases because of the

inherent linearity of the clock behavior. However, a smaller window size or forgetting factor

is preferred in outdoor scenarios.

By comparing Fig. 4.7 and Fig. 4.8, we can also conclude that when the sampling

period is smaller, consecutive data samples are more closely correlated and thus a little larger

window size is preferred; for example, the best overall performance is achieved with w = 5

and λ = 0.7 when T = 5 minutes, but with w = 10 and λ = 0.8 when T = 1 minute.

73

5 10 15 20 25 30
0

1

2

R
M

S
E

 (
m

s)

window size

ISC
OSC
ODC

0.7 0.75 0.8 0.85 0.9 0.95
0

1

2

R
M

S
E

 (
m

s)

λ

batch,p=2

sequential,p=2

Fig. 4.7. Performance of the 2nd-order LSE with T = 5 minutes.

5 10 15 20 25 30
0

0.2

0.4

R
M

S
E

 (
m

s)

window size

ISC
OSC
ODC

0.7 0.75 0.8 0.85 0.9 0.95
0

0.2

0.4

R
M

S
E

 (
m

s)

λ

batch,p=2

sequential,p=2

Fig. 4.8. Performance of the 2nd-order LSE with T = 1 minute.

74

0 5 10 15 20
0

1

2

3

R
M

S
E

 (
m

s)

 w=5
w=10
w=15
w=20

0 5 10 15 20
0

1

2

3

R
M

S
E

 (
m

s)

missing data rate (%)

λ=0.7

λ=0.8

λ=0.9

λ=0.95

batch,p=2

sequential,p=2

Fig. 4.9. Performance of the 2nd-order LSE with different missing data rate
when T = 5 minutes.

4.5.4. Effects of Missing Data

To study the robustness of the proposed algorithms in realistic lossy communication

conditions, I conduct a series of simulations of the 2nd-order estimators in the ODC scenario

by varying the missing data rate. When the data is missing at time n, the latest estimator

at time n − 1 will be used to predict the time at the next time step n + 1. From the

results shown in Fig. 4.9 and Fig. 4.10, we can clearly observe that the estimators are

remarkably robust in missing data conditions. For example, even with a missing data rate

of 20%, the performance degradation is quite insignificant in all simulation configurations.

In addition, even with missing data, a smaller window size or forgetting factor is preferred

when the sampling period is relatively large, e.g., T = 5 minutes, as shown in Fig. 4.10.

Better performance can be achieved with a larger window size or forgetting factor when the

sampling period is smaller, e.g., T = 1 minute, as shown in Fig. 4.10.

75

0 5 10 15 20
0.1

0.2

0.3

0.4

R
M

S
E

 (
m

s)

w=5
w=10
w=15
w=20

0 5 10 15 20
0.1

0.2

0.3

0.4

R
M

S
E

 (
m

s)

missing data rate (%)

λ=0.7

λ=0.8

λ=0.9

λ=0.95

batch,p=2

sequential,p=2

Fig. 4.10. Performance of the 2nd-order LSE with different missing data rate
when T = 1 minutes.

4.6. Conclusions

In this chapter, a set of LSE and related algorithms are derived for clock estimation in

continuous monitoring sensor network systems. The measurement-based simulation method

employed in this research makes it convenient to study the performance of clock estimation

algorithms in realistic scenarios. Simulation results have demonstrated the effectiveness of

the proposed algorithms. In particular, I conclude that 1) the 2nd-order estimators are

preferred in outdoor random deployment scenarios due to significant clock drifting effects

that are inherently nonlinear over a long period of time, 2) the sequential estimators are able

to achieve comparable performances to the batch estimators with reduced computational

cost, and 3) small sampling period, and small window size and forgetting factor are preferred

in outdoor conditions, especially when the sampling period is large.

76

CHAPTER 5

SYSTEM DEPLOYMENT AND EVALUATION

Unlike many existing works which evaluate the designs through simulations or short-

term experiments, this research has implemented the proposed protocols and algorithms in

realistic wireless sensor network (WSN) platform and incorporated the WSN system into

a publicly available cyberinfrastructure, supporting long-term hydrologic monitoring and

modeling research. This chapter details the implementation of the WSN-based soil moisture

monitoring system, and shares the experience in the process of deployment and maintenance.

Field results demonstrating the energy efficiency, reliability and autonomy are presented.

The results are in fact part of the system status data, which are also collected together with

the environmental sensor data, to facilitate remote infrastructure monitoring and mainte-

nance.

5.1. WSN Implementation

I implemented the networking protocols and several sensing tasks on the IRIS mote

from Crossbow Technology [59]. The IRIS mote provides a highly integrated, cost-effective

hardware solution for low-power WSN applications. Based on the IRIS platform, Crossbow

Technology also provides a series of interface boards and sensors boards to support difference

functionalities. Three types of nodes are used in the system, namely base station node, sensor

node and relay node. The base station (BS) node is an IRIS mote installed on an extension

board MIB510 [59], which interfaces with the remote field gateway (RFG) server through the

RS-232 serial port in the weather station. The data collected by other nodes are periodically

transmitted to the BS node through multihop communications. Then, the BS node transmits

aggregated data to the RFG server through serial port. Sensor nodes are made of an IRIS

mote and an MDA300 data acquisition board. The MDA300 has 7 single-ended 12bit A/D

77

Fig. 5.1. Wireless sensor nodes in a soil sampling site.

channels for sampling external analog sensors, and 2.5V reference voltage for precise sensor

excitation, which is crucial to ensure the fidelity of measurements. To support soil moisture

monitoring, each MDA300 board is wired with one or several EC-5 probes [61], deployed at

different depths at the designated soil sites. Since the soil sites are relatively far away from

each other and from the weather station, I use bare IRIS motes as the relay nodes in order

to increase the network coverage and connect all sampling sites.

To survive extreme weather conditions, the motes are installed in weatherproof boxes,

and the boxes are installed 4 feet above the ground on top of metal poles to avoid flooding

water. To improve wireless signal propagation, I have replaced the built-in antenna with

high-gain (7dBi) external antenna. Fig. 5.1 illustrates three sensor nodes working in a

soil sampling site. Each of the nodes encompasses an IRIS mote and an MDA300 board

interfacing with three EC-5 probes, buried under the ground at different depths.

78

5.2. System Deployment

The Greenbelt Corridor (GBC) weather station in Denton, Texas, has been opera-

tional since 1999 with temperature, solar radiation, rain gauge, wind speed and direction,

and soil moisture sensors, all of which are connected by wire to a datalogger and are de-

ployed inside a small fence-enclosed area. However, the weather station can only provide a

single observation point thus data collected by the station is not sufficient to characterize the

physical and chemical conditions of the entire area of interests. To support long-term hydro-

logic monitoring and modeling in the floodplain area, the weather station system has been

upgraded and integrated into a full-featured environmental monitoring cyberinfrastructure.

In March 2008, I expanded the GBC station by deploying a wireless modem, a single

board computer (SBC), and a small pilot WSN consisting of 8 motes, to implement the

integrated system shown in Fig. 2.2 in Chapter 2. All the 8 nodes were located around the

weather station within one-hop range. At that time, I have yet completely implemented

the protocol stack described in Chapter 3, but utilized a simple single-hop transmission

protocol. The deployment mainly focused on system integration; it allowed us to extensively

evaluate all the composing modules while avoiding the added complexity of multi-hopping.

The original system design and initial results were published in [25].

One year later, in March 2009, I relocated the previous 8 nodes and expanded the

WSN to a deployment consisting of 16 motes (in two sets of eight motes each) along a cross-

sectional transect. This network topology provides an opportunity to collect a duplicated set

of soil moisture variation along a cross sectional transect from the river bank (higher elevation

and sandy soil) to the weather station (lower elevation and clay soil). Characterizing soil

moisture variation with respect to elevation and soil type is vital to understanding vegetation

distribution along the floodplain as well as responses to flooding. The new WSN employed

the first version of the proposed multihop networking protocols. However, there were still

some time synchronization issues which considerably affected both the system reliability and

energy efficiency [26].

79

Fig. 5.2. Wireless sensor network topology in GBC site.

Later that same year, four soil sites are identified with different vegetation and soil

types based on the soil water dynamic that may have ecological significance, with the col-

laboration of Department of Environmental Science, University of North Texas (UNT) and

city of Denton. I once again expanded the WSN by deploying 3 nodes at each soil site. In

addition to the 4 soil sites and the exiting transect, I also added a few routing nodes to

link among these nodes. In total there are 35 WSN nodes in the GBC area including 1 BS

node, 6 relay nodes and 28 sensor nodes. Current network topology and near-real-time data

are available at [56]. A snapshot of the topology is displayed in Fig. 5.2. Routing paths

are represented by the blue lines. Sensors are not deployed at regular grid points, mainly

because of the irregular layout of trails, trenches, trees, dense bushes, etc. in the field. In

December 2009, I released a stable version of the protocol stack which solved the synchro-

nization problem, improved the parent selection algorithm and introduced load-balancing

mechanism. However, the system has been frequently offline due to breakdown of the base

station. The longest non-interrupted operation for WSN in GBC lasted for a month.

80

0 20 40 60 80 100 120
−90

−85

−80

−75

R
S

S
(d

B
m

)

0 20 40 60 80 100 120
0

50

100

P
R

R
(%

)

Distance(meter)

Fig. 5.3. Signal quality measurements over distance.

Prior to the second deployment, I conducted a site survey to measure the one-hop

radio communication range between motes in the field that features densely populated trees

and grasses. Radio propagation characteristics of the environment vary significantly over

time due to seasonal variation of the vegetation in the area. From the measurement results

collected in the summer, as shown in Fig. 5.3, it is observed that with a maximal transmission

power of 3 dBm, IRIS motes are able to transmit on average 50 m with 95% packet reception

rate (PRR) and -88dBm received signal strength (RSS). Thus, motes are deployed with a

maximum one-hop distance of about 50 m.

In addition to the GBC site, I have deployed a second weather station with a large-

scale WSN in Pecan Creek Waste Water Treatment Plant (PCWWTP), Denton, TX. In

contrast to GBC area, the site features mostly grassland with a few bushes. This environment

enables us to evaluate the WSN with a more regular topology. As with GBC station, the

PCWWTP site has been part of the environmental cyberinfrastructure as well. One can

81

Fig. 5.4. Wireless sensor network topology in PCWWTP site.

find its current network topology and near-real-time data at [56]. As shown in Fig. 5.4,

the wireless sensor nodes are arranged in a grid pattern with spacing interval of 45 meters.

An inner cycle of 8 sensor nodes were deployed surrounding the base station, in order to

balance the data relaying load. The operation in PCWWTP is more successful thanks to

the availability of AC power at the base station. Only one node died in the second month

of deployment while other nodes had worked for almost 3 months.

5.3. Environmental Data Analysis

Fig. 5.5 shows a subset of data collected by the three motes at the soil site near the

Trinity River in GBC area. The three nodes, namely #18, #19, and #20, have been sampling

water content every 10 minute, at soil depths of 6”, 15” and 30”, respectively. Temperature

and humidity readings measured by the onboard MDA300 sensors have also been collected

together with the soil moisture data. The daily variation of weather condition was well

observed by the sensors on motes. We can clearly observe the negative correlation between

temperature and humidity. The soil moisture variation along the depth dimension can be

82

40

60

80

T
em

pe
ra

tu
re

(° F
)

3/24 14:00 3/25 23:30 3/27 09:00 3/28 19:00 3/30 04:00 3/31 14:00 4/01 23:30

30

40

50

60

Sampling Time

R
el

at
iv

e
hu

m
id

ity
(%

)

20

25

30

35

40

S
oi

l M
oi

st
ur

e(
%

)

#18 at 6"
#19 at 15"
#20 at 30"

Fig. 5.5. Measurement data collected in soil site I.

characterized from the figure. In general the temporal change of soil moisture becomes less

significant as the depth increases. The data segment starts from March 24, 2010 to April 1,

2010, compromising 3612 data points from all three sensor nodes. Among the measurement

samples, 53 data points were lost, resulting in 98.53% data reception percentage. Considering

that the soil sites are located at the very end of the network, usually more than three hops

away from the BS, the data receive rate is reasonable and in line with expectation. A more

detailed reliability analysis is given in next section. The missing data in the figure have been

interpolated from nearby values.

On the late afternoon of March 24, 2010, the GBC area experienced light rainfall

and a sharp drop of temperature, as shown in Fig. 5.5. Fig. 5.6 zooms in the soil moisture

curves around the raining event and also displays the precipitation and solar radiation data

captured by the datalogger at the same period of time. As the weather began to overcast,

the solar radiation reading started to decline, followed by a jump of precipitation monitored

83

14:15 18:15 22:30 02:45 07:00 11:15 15:15 19:30
0

0.05

0.1

P
re

ci
pi

ta
tio

n(
In

ch
)

14:15 18:15 22:30 02:45 07:00 11:15 15:15 19:30
20

25

30

35

40

S
oi

l M
oi

st
ur

e(
%

)

#18 at 6"
#19 at 15"
#20 at 30"

14:15 18:15 22:30 02:45 07:00 11:15 15:15 19:30
0

200

400

600

Sampling Time

S
ol

ar
 R

ad
ia

tio
n(

W
at

t)

Fig. 5.6. Correlation of soil moisture and precipitation.

by the rain gauge. The surface soil moisture (at 6”) reacted first and bounced up by nearly

7%. As the water percolated down through the soil, the soil moisture reading at 15” began

to rise. The surface soil water volume peaked as soon as the rain started, and maintained at

high level during the rain, but started to drop a few hours after the rain. On the contrary,

the middle layer soil moisture responded rather slowly to the event, not peaked until almost

ten hours after the rain. Probably due to the due to the small amounts, the soil moisture at

deepest layer (30”) was not affected by the rain at all. The next day was sunny, as indicated

by the solar radiation readings. As the land began to dry out, the soil moisture readings at

all levels had been gradually decreasing.

Fig. 5.7 demonstrates the responses of surface soil moisture at different locations to

the rain event. In particular, the #21 sensor node is located at soil site IV, which was

completely flooded and became a swamp. The soil water readings thus were always high

and non-responsive to the precipitation. Sensor #3, #10, #11 are deployed in lowland and

84

14:15 22:30 07:00 15:15

30

40

#18

S
oi

l M
oi

st
ur

e(
%

)

14:15 22:30 07:00 15:15

30

40

#21

S
oi

l M
oi

st
ur

e(
%

)

14:15 22:30 07:00 15:15

30

40

#3

S
oi

l M
oi

st
ur

e(
%

)

14:15 22:30 07:00 15:15

30

40

#4

S
oi

l M
oi

st
ur

e(
%

)
14:15 22:30 07:00 15:15

30

40

#5

S
oi

l M
oi

st
ur

e(
%

)

14:15 22:30 07:00 15:15

30

40

#8

S
oi

l M
oi

st
ur

e(
%

)

14:15 22:30 07:00 15:15

30

40

#9

S
oi

l M
oi

st
ur

e(
%

)

14:15 22:30 07:00 15:15

30

40

#10
S

oi
l M

oi
st

ur
e(

%
)

14:15 22:30 07:00 15:15

30

40

#11

S
oi

l M
oi

st
ur

e(
%

)

14:15 22:30 07:00 15:15

30

40

#14

S
oi

l M
oi

st
ur

e(
%

)

Fig. 5.7. Spatial response to the rain event.

thus subject to standing water. Soil moisture at these locations hiked in the rain and would

stay at high level for long time. The remaining sensors are located in places with dense

vegetation, i.e. under big trees or inside bushes. Hence smaller increases of soil moisture are

observed. The different shapes of soil moisture curves reveal spatial variation characteristics

of the soil moisture condition in that area, which is an invaluable input to the hydrologic

modeling research.

85

Table 5.1
Statistics of Sensor Network Status Data

Node Distance Hop Duty Receive Delay
ID to BS (ft) count cycle (%) rate (%) (sec)
2 103 1 1.03 99.39 15.65
4 126 1.06 1.36 99.47 21.84
32 141 1.16 2.15 99.16 16.86
8 179 1.99 0.85 99.62 31.17
10 243 2.04 0.65 99.47 31.6
33 280 2.04 1.46 99.25 35.25
12 299 2.07 0.78 99.32 28.37
15 386 2.05 1.09 99.54 32.77
34 423 2.51 1.17 99.24 36.06
18 471 2.08 0.9 99.54 31.81
26 565 2.93 1.29 98.87 36.86
35 698 3.45 1.14 98.68 46.51
29 823 3.78 1.78 99.06 49.67

200 400 600 800
1

1.5

2

2.5

3

3.5

4

A
ve

ra
ge

 H
op

 C
ou

nt

Distance to the BS (ft)

Fig. 5.8. Average hop count versus distance to the BS.

5.4. Network Performance Analysis

Table 5.1 shows a few statistics of a subset of sensors’ status data collected from field

tests during the month long stable operation in GBC station. The distance between each

node and BS is determined using global positioning system (GPS) coordinate measurements.

The hop count measurements are the averaged values during the test period as the sensor

86

200 400 600 800

99

99.5

100

D
at

a
D

el
iv

er
 R

at
e

(%
)

Distance to the BS (ft)

Fig. 5.9. Reliability of data delivery.

network is able to reorganize autonomously in the face of environmental and network changes.

From the hop count measurements (between each node and BS) we can clearly observe

the tendency of higher hop counts for the nodes with larger distance to the BS, as shown

in Fig. 5.8. The reception rate shown in the table is the percentage of the data that are

successfully received by BS from each sensor node while each node originates one data sample

in every 10 min. This result can also be viewed in Fig. 5.9. From the results, we can observe

that though the data deliver rate tends to drop by a small amount, the network achieves

close to 99% deliver rate for every sensor.

In the current implementation, each frame of 20s consists of one contention slot of 40

ms and 399 TDMA slots of 40 ms each. With the duty cycle scheduling algorithm, motes

are only active during a few TDMA slots to report and relay sensor data and during the

contention slot to synchronize time, manage neighbor list, and update parent information.

Other than these active periods, motes remain in the sleep mode and consume much less

power than in the active mode. As shown in Table 5.1, the average duty cycle of each node is

roughly around 1% except for a few dedicated routing nodes with higher duty cycle such as

the node #32. The routing nodes are used for extending network coverage and taking higher

87

1 1.5 2 2.5 3 3.5 4
15

20

25

30

35

40

45

50

Average Hop Count

A
ve

ra
ge

 P
ac

ke
t D

el
iv

er
 (

S
ec

on
ds

)

Fig. 5.10. End-to-end data delivery delay versus hop count.

communication loads than normal sensor nodes. The duty cycle determines the average

power consumption, as demonstrated in next section.

The last column shows the average end-to-end delay for the data delivery. The data

indicates that the delay increases linearly with the hop count, as depicted in the scatter plot

Fig. 5.10. Current version of the slot scheduling protocol assigns TDMA slots randomly

rather than optimizing for minimum delay. Minimal delay scheduling can be formulated as

a graph-theoretical problem [35] and in general it is difficult to solve without introducing

significant overhead. Nevertheless, less than ten minutes delay can be tolerated in the

application, as indicated in Section 3.1.

5.5. Energy Consumption Analysis

From experimental measurements, a bare IRIS mote draws around 18 mA in the

active mode. However, in order to examine sensor status in the field, two light-emitting

diodes (LEDs) are employed to indicate packet transmission and duty cycling, adding 6mA

current draw in the active mode. In the sleep mode, the radio transceiver is disabled and the

central processing unit (CPU) wakes up occasionally to handle hardware interrupt routines

and software events, such as timer services and counter updates, in order to maintain network

stack and remain synchronized. With all peripheral devices except the hardware clock turned

88

0 5 10 15 20 25
0

5

10

15

20

25

C
ur

re
nt

 D
ra

w
 (

m
A

)

Time (second)

TDMA Slot

Time Frame (20 Seconds)

Contention Slot

Fig. 5.11. Measurement of the current draw and duty cycle of a mote.

off a minimum of 70µA in sleep mode can be achieved. The use of the MDA300 data

acquisition board introduces extra 0.45mA current consumption, in both active and sleep

modes. Consequently, as shown in Fig. 5.11, a sensor node consumes 24mA when working

actively in contention and TDMA slots, and about 0.6mA power when sleeping rest of the

time. The average current draw of a sensor node is about 0.84 mA with 1% duty cycle.

Thus, with two fresh 2200 mAh AA-size batteries, a sensor node can sustain for about 3

months.

Fig. 5.12 reveals the energy consumption by showing battery measurements from

4 nodes in PCWWTP site. The system was deployed on December 11, 2009. Sensors

were powered by two freshly-charged 2200mAh nickel-metal hydride (NiMH) batteries. The

system was operational for nearly 3 months until most sensor died in early March, 2010. A

few sensors including #3 still had remaining power functioning until March 16, 2010.

89

12/11/09 12/27/09 01/13/10 01/30/10 02/15/10 03/04/10
2.2

2.3

2.4

2.5

2.6

2.7

Date

B
at

te
ry

 V
ol

ta
ge

 (
V

ol
t)

#3
#5
#10
#15

Fig. 5.12. Battery measurements in Pecan Creek site.

90

CHAPTER 6

CONCLUSION AND FUTURE WORK

Environmental monitoring represents a major application domain for wireless sensor

networks (WSN). However, despite significant advances in recent years, there are still many

challenging issues to be addressed to exploit the full potential of the emerging WSN technol-

ogy. This research strives to solve the challenges faced in many WSN researches and make

significant practical contributions to WSN community. Specifically, this dissertation explores

the design, implementation and deployment of a suite of software, protocols and algorithms

for energy-efficient multi-hop wireless networks with near-real-time delay constraints. The

proposed solution will be very useful for all low data rate monitoring applications including

environmental monitoring.

Two wireless sensor networks have been deployed in remote field stations to monitor

soil moisture along with other environmental parameters. Performance of the networks built

upon the proposed solution meets the design requirements prescribed for the soil moisture

monitoring application. As parts of the ever-growing environmental monitoring cyberinfras-

tructure, these networks have been integrated into the Texas Environmental Observatory

(TEO) system for long-term operation. Future works include implementing end-to-end ac-

knowledgement and end-to-end retransmission mechanisms to further increase its reliability,

and optimizing slot allocation to reduce delay with minimum overhead.

As network size scales up, the duty-cycle will be inevitably boosted in order to obtain

sufficient throughput for accommodating increasing amount of data packets. To address the

issue, I propose a novel error-bounded adaptive sampling algorithm which brings down not

only the communication cost but also the sensing overhead. Reducing the data originated

from sensor nodes reduces not only the energy consumption of source nodes, but also the

91

processing and communication loads at all intermediate nodes in multihop networks. I am

currently in the process of algorithm evaluation and simulation.

92

BIBLIOGRAPHY

[1] D. Culler, D. Estrin, and M. Srivastava, “Overview of sensor networks”, IEEE Computer,

pp. 41–49, Aug. 2004.

[2] “MoteLab: Harvard Sensor Network Testbed”, http://motelab.eecs.harvard.edu.

[3] “ExScal: Extreme Scale Wireless Sensor Networking”, http://cast.cse.ohio-

state.edu/exscal.

[4] “Kansei: Sensor Testbed for At-Scale Experiments”, http://ceti.cse.ohio-

state.edu/kansei.

[5] “CitySense: An Open, Urban-Scale Sensor Network Testbed”, http://www.citysense.net.

[6] “SCADDS: Scalable Coordination Architectures for Deeply Distributed Systems”,

http://www.isi.edu/scadds/testbeds.

[7] S. Cheng and R. Wang, “An approach for evaluating the hydrological effects of urban-

ization and its application”, Hydrological Processes, 16:1403–1418, 2002

[8] Open Geographic Consortium Inc., “Sensor Web Enablement WG.”,

http://www.opengeospatial.org.

[9] B. Harrington, Y. Huang, J. Yang, and X. Li, “Energy efficient map interpolation for

sensor fields using Kriging”, IEEE Trans. on Mobile Computing, accepted for publication,

in press.

[10] W. Stallings, Wireless Communications & Networks, 2nd Edition, Prentice Hall, 2004.

[11] Technologic Systems Inc., “ARM Single Board Computers for Embedded Systems”,

http://www.embeddedarm.com.

[12] NovaLynx Corporation, “Power Budget Calculations”, http://www.novalynx.com.

[13] UAH VAST, “SensorML”, http://vast.uah.edu/SensorML.

[14] Google Inc., “Keyhole Markup Language”, http://code.google.com/apis/kml.

93

[15] 52north.org, “52North Sensor Web”, http://52north.org.

[16] Google Inc., “Google Maps API”, http://code.google.com/apis/maps.

[17] Sun Microsystems Inc., “Metro Web Services”, http://java.sun.com/webservices.

[18] Wikipedia.org, “Faceted search”, http://en.wikipedia.org/wiki/Faceted browser.

[19] F. C. Delicato, P. F. Pires, L. Pinnez, L. Fernando, and L. F. R. da Costa, “A flexible

web service based architecture for wireless sensor networks”, Proc. of 23rd Int’l Conf.

on Distributed Computing Systems Workshops, May. 2003.

[20] J. Zhang, Q. Hart, M. Gertz, C. Rueda, and J. Bergamini, “Sensor data dissemination

systems using Web-based standards: a case study of publishing data in support of evap-

otranspiration models in California”, Civil Engineering and Environmental Systems, vol.

26, issue 1, pp. 35-52, Mar. 2009.

[21] R. M. Garcia, P. Carvalhal, M. J. Ferreira, L. F. Silva, H. Almeida, C. Santos, and J.

A. Afonso, “A Flexible framework for data exchange and presentation between wireless

sensor networks and personal devices”, The Int’l Conf. on “Computer as a Tool”, Sep.

2009.

[22] A. Sleman and R. Moeller, “Integration of wireless sensor network services into other

home and industrial networks using device profile for web services (DPWS)”, The 3rd

Int’l Conf. on Information and Communication Technologies: From Theory to Applica-

tions (ICTTA), Apr. 2008.

[23] Y. Kawahara, N. Kawanishi, M. Ozawa, H. Morikawa, and T. Asami, “Designing a

framework for scalable coordination of wireless sensor networks, context information

and web services”, The 27th Int’l Conf. on Distributed Computing Systems Workshops

(ICDCSW), Jun. 2007.

[24] Feng Zhao, Leonidas Guibas, Wireless Sensor Networks: An Information Processing

Approach, Morgan Kaufmann Publishers Inc., San Francisco, CA, 2004

94

[25] Jue Yang, Chengyang Zhang, Xinrong Li, Yan Huang, Shengli Fu, and Miguel Acevedo,

“An environmental monitoring system with integrated wired and wireless sensors”, Inter-

national Conference on Wireless Algorithms, Systems and Applications (WASA), Dallas,

TX, Oct. 2008.

[26] Jue Yang, Chengyang Zhang, Xinrong Li, Yan Huang, Shengli Fu, and Miguel Acevedo,

“Integration of wireless sensor networks in environmental monitoring cyber infrastruc-

ture”, Wireless Networks, Springer/ACM, DOI: 10.1007/s11276-009-0190-1, Jun. 2009.

[27] A. Mainwaring, D. Culler, J. Polastre, R. Szewczyk, and J. Anderson, “Wireless sensor

networks for habitat monitoring”, WSNA ’02: Proceedings of the 1st ACM international

workshop on Wireless sensor networks and applications, pp. 88–97, New York, NY, USA,

ACM, 2002.

[28] K. Martinez, J. K. Hart, and R. Ong, “Environmental sensor networks”, IEEE Com-

puter, pp. 50–56, Aug. 2004.

[29] R. Musaloiu-E, A. Terzis, K. Szlavecz, A. Szalay, J. Cogan, and J.Gray, “Life under your

feet: A wireless soil ecology sensor network”, Proc. of the Third Workshop on Embedded

Networked Sensors (EmNets), May. 2006.

[30] R. Cardell-Oliver, K. Smettem, M. Kranz, and K. Mayer, “A reactive soil moisture sen-

sor network: Design and field evaluation”, Int’l Journal of Distributed Sensor Networks,

pp. 149-162, vol. 1, no. 2, Apr.-Jun. 2005.

[31] Igor Talzi, Andreas Hasler, Stephan Gruber and Christian Tschudin, “PermaSense: In-

vestigating Permafrost with a WSN in the Swiss Alps”, Proceedings of the 4th Workshop

on Embedded Networked Sensors (EmNets’07), pp. 8–12, Jun. 2007.

[32] Barrenetxea, G., Ingelrest, F., Schaefer, G., Vetterli, M., et al., “SensorScope: Out-of-

the-Box Environmental Monitoring”, The 7th ACM/IEEE International Conference on

Information Processing in Sensor Networks (IPSN 2008), pp. 332–343, 2008.

[33] De Roure, D., “Floodnet: a new flood warning system”, Royal Academy of Engineering

Quarterly, 23, pp. 48-51, 2005.

95

[34] G. Werner-Allen, J. Johnson, M. Ruiz, J. Lees, and M. Welsh, “Monitoring volcanic

eruptions with a wireless sensor network”, Proc. Second European Workshop on Wireless

Sensor Networks (EWSN’05), Jan. 2005.

[35] Rowe A, Mangharam R, Rajkumar R, “RT-Link: a time-synchronized link protocol for

energy-constrained multi-hop wireless networks”, Third IEEE international conference

on sensors, mesh and ad hoc communications and networks (IEEE SECON), 2006.

[36] W. Ye, J. Heidemann, D. Estrin, “An energy-efficient MAC protocol for wireless sensor

networks”, Proc. 21st Int. Annu. Joint Conf. of the IEEE Computer and Communica-

tions Societies (INFOCOM), vol.3, pp. 1567–1576, Jun. 2002.

[37] T. van Dam and K. Langendoen, “An adaptive energy-efficient MAC protocol for wire-

less sensor networks”, Proc. of the Int’l Conf. on Embedded Networked Sensor Systems

(SenSys), 2003.

[38] J. Polastre, J. Hill, and D. Culler, “Versatile low power media access for wireless sensor

networks”, Proc. of the Int’l Conf. on Embedded Networked Sensor Systems (SenSys),

2004.

[39] I. Rhee, A. Warrier, M. Aia, and J. Min, “Z-MAC: A hybrid MAC for wireless sen-

sor networks”, Proc. of the Int’l Conference on Embedded Networked Sensor Systems

(SenSys), 2005.

[40] V. Rajendran, K. Obraczka, and J. J. Garcia-Luna-Aceves, “Energy-efficient, collision-

free medium access control for wireless sensor networks”, Proc. of the Int’l Conf. on

Embedded Networked Sensor Systems (SenSys), 2003.

[41] L.F.W. van Hoesel and P.J.M. Havinga, “A lightweight medium access protocol for

wireless sensor networks”, 1st International Conference on Networked Sensing Systems,

2004.

[42] Hari Balakrishnan et al., “The distance-2 matching problem and its relationship to the

mac-layer capacity of ad hoc wireless networks”, IEEE Journal on Selected Areas in

Comm., 22(6):1069–1079, Aug. 2004.

96

[43] G. Lu, N. Sandagopan, B. Krishnamachari, and A. Goel, “Delay Efficient Sleep Sched-

uling in Wireless Sensor Networks”, IEEE Infocom 2005, Mar. 2005.

[44] M. Maroti, B. Kusy, G. Simon, and A. Ledeczi, “The flooding time synchronization

protocol”, Proc. ACM Conf. Embedded Networked Sensor Systems (SenSys), Nov. 2004.

[45] J. Elson, L. Girod, and D. Estrin, “Fine-grained network time synchronization using

reference broadcasts”, Proc. of the 5th Symposium on Operating Systems Design and

Implementation (OSDI), Dec. 2002.

[46] S. Ganeriwal, R. Kumar, and M. B. Srivastava, “Timing-sync protocol for sensor net-

works”, Proc. Int. Conf. Embedded Networked Sensor Systems (SenSys), Nov. 2003.

[47] A. Woo, T. Tong, and D. Culler, “Taming the underlying challenges of reliable multi-

hop routing in sensor networks”, Proc. Int. Conf. Embedded Networked Sensor Systems

(SenSys), Nov. 2003.

[48] Perkins, C., Belding-Royer, E., Das, S., “Ad hoc on-demand distance vector (AODV)

routing”, IETF RFC 3561, Jul. 2003.

[49] W. Heinzelman, A. Chandrakasan and H. Balakrishnan, “Energy-Efficient Communi-

cation Protocol for Wireless Microsensor Networks”, Proceedings of the 33rd Hawaii

International Conference on System Sciences, Jan. 2000.

[50] Ganesan, D., Krishnamachari, B., Woo, A., Culler, D., Estrin, D., Wicker, S., “Com-

plex behavior at scale: An experimental study of low-power wireless sensor networks”,

University of California, Los Angeles, Technical Report UCLA/CSD-TR-02-0013, 2002.

[51] Zigbee Alliance, “Zigbee Alliance”, http://www.zigbee.org.

[52] J. N. Al-Karaki and A. E. Kamal, “Routing techniques in wireless sensor networks: a

survey”. Wireless Communications, IEEE, 11(6):6-28, Dec. 2004.

[53] Y. Xu, J. Heidemann, D. Estrin, “Geography-informed Energy Conservation for Ad-hoc

Routing”, In Proceedings of the Seventh Annual ACM/IEEE International Conference

on Mobile Computing and Networking, pp. 70–84, 2001.

97

[54] Simon, G. et al. “Sensor Network-Based Countersniper System”, the Second ACM Con-

ference on Embedded Networked Sensor Systems (SenSys), Nov. 2004.

[55] N. Bulusu, J. Heidemann, D. Estrin, “GPS-less low cost outdoor localization for very

small devices”, Computer Science Department, University of Southern California, Tech-

nical report 00-729, Apr. 2000.

[56] Texas Environmental Observatory, “TEO Online”, http://www.teo.unt.edu.

[57] University of North Texas, “Environmental Conditions Online of DFW MetroPLEX

(ECOPLEX)”, http://www.ecoplex.unt.edu.

[58] TinyOS Community Forum, “TinyOS: An open-source OS for the networked sensor

regime”, http://www.tinyos.net.

[59] Crossbow Technology Inc., “Crossbow Technology : Wireless Sensor Network”,

http://www.xbow.com.

[60] Ubiquiti Networks Inc. “NanoStation”, http://www.ubnt.com.

[61] Decagon Devices Inc., “Decagon Soil Moinsture Systems”,

http://www.decagon.com/soil moisture.

[62] I.F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, “A survey on sensor

networks”, IEEE Communications Magazine, Aug. 2002.

[63] Milenkovi, A., C. Otto and E. Jovanov, “Wireless sensor networks for personal health

monitoring: Issues and an implementation”, Computer Communications, vol. 29, pp.

2521-2533, 2006.

[64] Zhuang, L.Q., Liu, W., Zhang, J.B., Zhang, D.H., Kamajaya, I., “Distributed asset

tracking using wireless sensor network”, IEEE International Conference on Emerging

Technologies and Factory Automation (ETFA), pp.1165-1168, Sep. 2008.

[65] K. Gill, S.-H. Yang, F. Yao, and X. Lu, “A ZigBee-based home automation system”,

IEEE Trans. on Consumer Electronics, vol. 55, no. 2, pp. 422-430, May. 2009.

98

[66] S.-H. Hong, B. Kim, and D.-S. Eom, “A base-station centric data gathering routing

protocol in sensor networks useful in home automation applications”, IEEE Trans. on

Consumer Electronics, vol. 53, no. 3, pp. 945-951, Aug. 2007.

[67] V.C. Gungor and G.P. Hancke, “Industrial wireless sensor networks: challenges, design

principles, and technical approaches”, IEEE Trans. on Industrial Electronics, vol. 56,

no. 10, pp. 4258-4265, Oct. 2009.

[68] K.A. Agha, M.-H. Bertin, T. Dang, A. Guitton, P. Minet, T. Val, and J.-B. Viollet,

“Which wireless technology for industrial wireless sensor networks? The development of

OCARI technology”, IEEE Trans. on Industrial Electronics, vol. 56, no. 10, pp. 4266-

4278, Oct. 2009.

[69] B. Lu and V.C. Gungor, “Online and Remote Motor Energy Monitoring and Fault

Diagnostics Using Wireless Sensor Networks”, IEEE Trans. on Industrial Electronics,

vol. 56, no. 10, pp. 4651-4659, Oct. 2009.

[70] D.-S. Kim, S.-Y. Lee, K.-H. Won, D.-J. Chung, and J.-H. Kim, “Time-synchronized

forwarding protocol for remote control of home appliances based on wireless sensor net-

work”, IEEE Trans. on Consumer Electronics, vol. 53, no. 4, pp. 1427-1433, Nov. 2007.

[71] S. Raje and Q. Liang, “Time synchronization in network-centric sensor networks”, Proc.

of IEEE Radio and Wireless Symposium, 2007.

[72] K. E. Atkinson, An introduction to Numerical Analysis, 2nd edition, John Wiley & Sons,

Inc., 1988.

[73] Atmel Corporation, “AT86RF230, Rev. E”, http://www.atmel.com.

[74] Atmel Corporation, “ATmega640/1280/1281/2560/2561 Preliminary, Rev. L”,

http://www.atmel.com.

[75] J. Han and M Kamber, Data Mining: Concepts and Techniques, 2nd edition, Elsevier

Inc., 2006.

[76] S. M. Kay, Fundamentals of Statistical Signal Processing: Estimation Theory, Prentice

Hall PTR, 1993.

99

[77] X. Li, “An iterative NLOS mitigation algorithm for location estimation in sensor net-

works”, Proc. of The 15th IST Mobile & Wireless Communications Summit, Jun. 2006.

[78] A. Silberschatz, P. B. Galvin, and G. Gagne, Operating System Concepts, 7th edition,

John Wiley & Sons, Inc., 2005.

[79] Symmetricom Inc., “Stochastic model estimation of network time variance”, White Pa-

per, 2003, http://www.ntp-systems.com.

100

