THREE TOPICS IN DESCRIPTIVE SET THEORY

Vincent Kieftenbeld

Dissertation Prepared for the Degree of

Doctor of Philosophy

UNIVERSITY OF NORTH TEXAS

May 2010

APPROVED:

Su Gao, Major Professor

Stephen C. Jackson, Co-Major Professor

Colleen M. Eddy, Minor Professor

John Krueger, Committee Member

J. Matthew Douglass, Chair, Department of
Mathematics

Michael Monticino, Dean of the Robert B.
Toulouse School of Graduate Studies



Kieftenbeld, Vincent. Three topics in descriptive set theory. Doctor of Philosophy

(Mathematics), May 2010, 78 pp., bibliography, 28 titles.

This dissertation deals with three topics in descriptive set theory. First, the order topology
is a natural topology on ordinals. In Chapter 2, a complete classification of order topologies on
ordinals up to Borel isomorphism is given, answering a question of Benedikt Lowe. Second, a
map between separable metrizable spaces X and Y preserves complete metrizability if Y is
completely metrizable whenever X is; the map is resolvable if the image of every open (closed)
set in X is resolvable in Y. In Chapter 3, it is proven that resolvable maps preserve complete
metrizability, generalizing results of Sierpinski, Vainstein, and Ostrovsky. Third, an equivalence
relation on a Polish space has the Laczkovich—Komjath property if the following holds: for every
sequence of analytic sets such that the limit superior along any infinite set of indices meets
uncountably many equivalence classes, there is an infinite subsequence such that the intersection
of these sets contains a perfect set of pairwise inequivalent elements. In Chapter 4, it is shown
that every coanalytic equivalence relation has the Laczkovich—Komjath property, extending a

theorem of Balcerzak and Glab.



Copyright 2010
by

Vincent Kieftenbeld

il



ACKNOWLEDGMENTS

It is a pleasure to thank all the people who have supported and helped me over the
years. Foremost, I would like to thank my advisors Su Gao and Steve Jackson for their
constant encouragement and patience throughout my studies. Thanks to Benedikt Lowe at
the Universiteit van Amsterdam for his guidance during my initial years in mathematics. I
want to thank John Krueger and Dan Mauldin for useful discussions on some of the topics
in this dissertation.

Although less visible in the text, the contributions of several other people have been
equally important. In the College of Education, Colleen Eddy generously welcomed me
(back) to mathematics education. Her dedication to the education of mathematics teachers
sets an example. Prathiba Natesan introduced me to modern psychometrics, providing a
pérspective of how mathematics can contribute to educational research. Thank you both for
the opportunities you opened for me.

My friends Tushar Das, Christopher and Denise Johnson, Parimah Kazemi, and Prathiba
Natesan are an endless source of cheers and laughter. Without your friendship, these years
in Denton would not been so pleasant. Above all, with their unconditional support over the
past 16 years, Judith Riimke and Pim, David, Astrid, and Laura Fischer contributed more

to this dissertation than anyone (including me) realizes. Thank youl!

1l



CONTENTS
ACKNOWLEDGMENTS

CHAPTER 1. INTRODUCTION
1.1. A Borel Classification of Ordinals
1.2. Resolvable Maps Preserve Complete Metrizability

1.3. The Laczkovich-Komjath Property

CHAPTER 2. A BOREL CLASSIFICATION OF ORDINALS
2.1. Borel Structures on Ordinals
2.2. Borel Isomorphisms

2.3.  The Classification up to Borel Isomorphism

CHAPTER 3. RESOLVABLE MAPS PRESERVE COMPLETE METRIZABILITY
3.1. Absolute Borel Spaces
3.2. Completely Baire Spaces
3.3. Open or Closed Continuous Surjections
3.4. The Difference Hierarchy
3.5. The Finite Levels
3.6.  The Difference Hierarchy of the Rationals
3.7. Continuous Surjections from «* Onto Q

3.8, Resolvable Continous Surjections

CHAPTER 4. THE LACZKOVICH-KOMATH PROPERTY
4.1. Limit Superiors of Sequences of Sets
4.2. Definable Sets and Equivalence Relations
4.3. Coding IT} and Al sets

v

il

> N

(@)



4.4. Canonical Cofinal Sequences
4.5. A Completely Good Pair

4.6. Proof of the Main Theorem

BIBLIOGRAPHY

66
68
74

7



CHAPTER 1

INTRODUCTION

Set theory started with Cantor’s discovery that the reals R are uncountable. In particular,
IN| < |R|. Cantor’s continuum hypothesis (CH) is the statement that for every X C R either
|X| < IN| or |[X| = |R|. Of course, we now know that the continuum hypothesis (CH) is
independent of the usual axioms of mathematics, Zermelo—Fraenkel set theory ZFC. In a
way, modern set theory grew out of the undecidability of CH. At the same time, descriptive
set theory stems from Cantor’s program to settle CH in another direction.

Nowadays, the uncountability of R is often proved using Cantor’s diagonal argument.
However, Cantor originally gave a more topological argument which shows that every nonempty
open set has the cardinality of the continuum. The first real theorem in descriptive set theory

deals with closed sets:

THEOREM 1.1 (Cantor-Bendixson). A closed subset of the real line is either countable or
else has the cardinality of the continuum.

This result illustrates the philosophy of descriptive set theory: statements which are
undecidable in ZFC for arbitrary sets often become decidable for ‘definable’ sets. Here,
‘definable’ is taken to be topologically simple: open and closed sets, and sets build from
these, such as the Borel sets. The following theorem firmly established the field of descriptive

set theory:

THEOREM 1.2 (Alexandrov, Hausdorff). Every Borel set is either countable or else has the
cardinality of the continuum.

An account of the origins of descriptive set theory is given in [14]. An exciting feature
of modern descriptive set theory is that it mixes topology, set theory, and computability

theory. This combination is visible in the following three chapters, which deal with three



different topics in descriptive set theory, broadly defined. The rest of this chapter provides

an overview of the results contained in this dissertation.

1.1. A Borel Classification of Ordinals

Ordinals were introduced by Cantor to keep track of a sequence of derivatives of a set.
Starting with a closed set P C R, Cantor defined its derived set P’ as the set of all limit

points of P. Repeatedly taking the derivative results in an infinite sequence:
PO p@

Cantor noticed that for some sets of reals the intersection (oo, P was nonempty. He set

P =2 P and then continued the process into the transfinite:

P(oo-{-l)’ P(O(H_Q)\ o

Eventually, these considerations led Cantor to introduce the concepts of ordinal numbers and
(a little later) cardinal numbers, both fundamental to modern set theory.

We consider ordinals as topological spaces in Chapter 2. A fundamental problem in
topology is the classification of all topological spaces of a certain class up to some notion
of equivalence. For example, we can consider the classification of all topological spaces up
to homeomorphism or all Polish (i.e., separable, completely metrizable) spaces up to Borel
isomorphism. The order topology is a natural topology on ordinals. A classification of ordinal
topologies up to homeomorphism was known [1], using the Cantor normal form for ordinals.
In Chapter 2 we consider the classification of ordinals up to Borel isomorphism.

It is easy to see that not all countable ordinals are homeomorphic. For example, w is
not compact while w + 1 is; hence, w and w + 1 are not homeomorphic. On the other hand,
every subset of a countable ordinal is Borel (in fact, F},) and therefore all countable ordinals
(in particular, w and w -+ 1) are Borel isomorphic. Hence, Borel isomorphism is a genuinely
more general notion of equivalence than homeomorphism for ordinals.

It turns out that complete invariants for Borel isomorphism are not related to the Cantor

normal form. To state our main result precisely, define for an ordinal a a cardinal x(a) as



follows. Let w(a) = 0 if |a| is singular or countable; otherwise. let x(a) be the largest
cardinal such that |a|- k(a) < a. Of course, in order to be Borel isomorphic, two ordinals «
and [§ must have the same cardinality. We will prove that the cardinality of o together with

k() suffices:

THEOREM 1.3. Two ordinals a and 3 are Borel isomorphic if and only if |a| = |G| and
o(a) = w(8).
In other words, the data |a| and s(«) together form a complete Borel isomorphism

invariant for the order topology of a.

1.2. Resolvable Maps Preserve Complete Metrizability

The earliest results in descriptive set theory were stated specifically for subsets of R™.
However, it was soon realized that the theory could be generalized to arbitrary separable,
completely metrizable spaces. In honor of the many contributions to the field made by Polish
mathematicians, these spaces are now known as Polish spaces.

Polish spaces are the natural setting for analysis and descriptive set theory. It is therefore
of interest to find criteria that will ensure that a separable, fnetrizable space is in fact
completely metrizable. We study one aspect of this problem in Chapter 3. Specifically, we
consider the following question: let X be a Polish space, Y a separable metrizable space,
and f: X — Y a continuous surjection. When is Y completely metrizable?

Some restrictions on the map f are necessary, since there is a continuous surjection from
w* to Q. The need to put restrictions on f leads us to consider Hausdorff’s difference hier-
archy, a transfinite hierarchy of sets defined from the open sets using set-theoretic difference
and intersections. The sets in the differency hierarchy are sometimes called resolvable sets.
The extend of the difference hierarchy is an interesting problem in itself. Lavrentiev proved
that for uncountable Polish spaces the difference hierarchy does not collapse. His proof does

not work for the rationals. We give a direct construction to show the following:

THEOREM 1.4. The difference hierarchy over the open sets of the rationals does not collapse.



Returning to the question of metrizability, we say that amap f: X — Y is open-resolvable
(closed-resolvable) if the image under f of every open (closed) set is resolvable. We say that
f is resolvable if f is either open-resolvable or closed-resolvable. In Chapter 3 we will prove
the following theorem, generalizing earlier results by Sierpiniski [25], Vainstein [27, 28], and

Ostrovsky [23]:

THEOREM 1.5. Let X be a Polish space, Y a separable metrizable space, and f: X — Y a

continuous surjection. If f is resolvable, then Y is Polish.

1.3. The Laczkovich-Komjath Property

An equivalence relation E on a Polish space X is said to be Borel (analytic, coanalytic,
etc.) if E is Borel (analytic, coanalytic, etc.) as a subset of X x X. Definable equivalence
relations have been a topic of intense study in descriptive set theory for the last three decades.
We consider coanalytic equivalence relations and limit superiors of analytic sets in Chapter
4.

Given a sequence (A, )ne, of subsets of a Polish space X, the limit superior of (A, ),c.

relative to an infinite set H € |[w]¥ is defined by

z €limsup A, ©VmIn>m(ne HAzcA,).
neH

Laczkovich raised the following question: if lim sup, .z A, is uncountable for every H € [w]“,
is there an H € [w]* such that [, . A, is uncountable? He and Komjdth proved that this is
true when the sets A, are respectively Borel or analytic subsets of a Polish space. Balcerzak
and Glab [2] extended these results of Laczkovich and Komjath to equivalence relations in

the following way:

DEFINITION 1.6. Let E be an equivalence relation on a Polish space X. We say that E has
the Laczkovich-Komgdth property if for every sequence (A, )ne, of analytic subsets of X such
that lim sup,,c 5 A, meets uncountably many E-equivalence classes for every H € [w]*, there

is an A & [w]¥ such that (), Ay contains a perfect set of pairwise E-inequivalent elements.



Balcerzak and Glab have shown that every F, equivalence relation has the Laczkovich—

Komjath property. In turn, we generalize this to coanalytic equivalence relations:

THEOREM 1.7. Every coanalytic equivalence relation has the Laczkovich-Komjdth property.
Our proof uses the techniques of effective descriptive set theory, which is based on com-

putability theory.
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CHAPTER 2

A BOREL CLASSIFICATION OF ORDINALS

The order topology on a linearly ordered set (X, <) is generated by the subbase of open
rays (z,—) ={y € X:z <y} and («—,y) = {z € X: z < y} for z,y € X. Perhaps the
most familiar example of an order topology is the usual topology on the real line R. The
order topology is also a natural topology on ordinals. When we consider an ordinal as a
topological space we will always assume it has the order topology.

A typical problem in topology is the classification of all spaces in a certain class up to
some notion of equivalence. A complete classification of ordinals up to homeomorphism is
known ([1]; an independent proof was given in [16]). Specifically, given an arbitrary ordinal a
complete homeomorphism invariant for its order topology can be computed from its Cantor
normal form. Recall that every nonzero ordinal « can uniquely be written in Cantor normal
form as

a:wao.ko_i_..._}_wa".k;n"

where o > ag > -+ > a, and 0 < k; < w for 0 <7 < n. Define the limit complexity of o as

le(a) = ay, the coefficient of a as c(a) := ko, and the purity of o as

le(a)

0 if = w9 . ¢(a), and

p(a) =
w®  otherwise.

It turns out that these three data provide a complete homeomorphic invariant for ordinal

topologies, that is, a = J if and only if

(le(a), (). p(a)) = (ic(3). c(8). p(5))

Benedikt Lowe proposed to study the similar classification problem for ordinals up to
Borel isomorphism (see Section 3 for the definition of Borel isomorphism). He asked whether

the Cantor normal form still provides a complete invariant.



ExaMPLE 2.1. It is easy to see that not all countable ordinals are homeomorphic. For
example, w is not compact while w + 1 is; hence, w and w + 1 are not homeomorphic. On
the other hand, every subset of a countable ordinal is Borel (in fact, F,) and therefore all

countable ordinals are Borel isomorphic.

The preceeding example shows that that Borel isomorphism is a genuinely more general
notion of equivalence than homeomorphism. In this chapter we give a complete classification
of all ordinals up to Borel isomorphism. It turns out that the complete invariants are not
related to the Cantor normal form of the ordinals, and are in fact somewhat simpler. To

state our main theorem precisely, define a cardinal x(«a) for any given ordinal « as follows.

DEFINITION 2.2. For an ordinal a, let x(a) = 0 if |a] is singular or countable; otherwise, let

x(a) be the largest cardinal such that |af - k(a) < a.

Of course, ordinals necessarily need to have the same cardinality in order to be Borel
isomorphic. We will show that the cardinality of a together with x(a) constitute a complete

invariant up to Borel isomorphism:

THEOREM 2.3. Two ordinals « and B are Borel isomorphic iff |a| = |3] and x(a) = k(3).
This chapter is organized as follows. In Section 1 we review some preliminaries on the
Borel structures generated by the order topologies on ordinals. In particular we give a char-
acterization of Borelness for subsets of ordinals which will be useful in further research. In
Section 2 we review material on Borel isomorphisms. Finally, we give the proof of Theo-

rem 2.3 in Section 3.

2.1. Borel Structures on Ordinals

The Borel structure of any topological space is the g-algebra generated by the open sets,
that is, the smallest g-algebra that contains all open sets and is closed under complements

and countable unions. All Borel sets appear in a stratified Borel hierarchy, which can be



defined by induction as follows:

=Y = all open sets,
0
IT, = all complements of 0 sets,

Eg, = all countable unions U A,,where A, € Hgn for some a, < a,
neN

Al =30 NT1Il.
The collection of all Borel sets of a topological space X then is defined as
B(X)= == ] m.
a<wi a<w)

The following preposition records the basic facts about the levels of the Borel hierarchy

which are true in any topological space.

PROPOSITION 2.4. In any topological space the following hold:
(i) X9 C I03 and IT,, C 9 for o < 6.
(i) 2 is closed under countable unions and IIC under countable intersections.
(iif) 20 is closed under finite intersections and I under finite unions for all o # 3.
)

(iv) If2 < o < B, then T, C T and IT,, C IT;.

Proor. All of the statements are immediate from the definitions except perhaps the closure
of £¢ under finite intersections for a # 3. To see this, suppose A, B € Eg, say A=, 4n.
B =J,, Bm. where A, € Hgn, B, € H%m and an, fm < a. Then ANB =], (4, N Bpy).
If a > 4, then A,, Bg, both lie in TI{ where § = max{ay,, G, 3}. This is because Hg, C H%
for 2 < o < Jand Y € =Y C TT9. Since ITY is closed under intersections, A, N By, € T2,
and so AN B € =2, If a = 1, the result is immediate from the definition of a topology, and
if o = 2 the result follows from the fact that each A, , Bg, will be IIY, and thus so will be

Ao N B, O

If the underlying space is metrizable, then its Borel hierarchy has the usual additional

properties such as the following.



PROPOSITION 2.5. In any metrizable space the following hold:

(i) =¥ < E% and IT) C II§ for a < B,
(ii) =2 TI2 are closed under finite unions and finite intersections,

(ili) every T2, set is a countable union | J, A, where each A, € II9. O

However, these additional facts are no longer true for ordinal spaces. In general ¢ ¢
9 and ITY ¢ II0. The following observation shows that 39 is not closed under finite
intersections if the underlying space is an ordinal > w,. For its proof, recall the following
standard set-theoretic terminology: a set A C « is unbounded if for every [ < a there is a
v € A such that § < ~; clubif A is closed and unbounded; stationary it ANC # & for every

club C' C a; nonstationary if A is not stationary; and costationary if @ — A is stationary.

PROPOSITION 2.6. There exists an open set U C wq and a closed set F C wq such that UNF

is not 3.
ProorF. Let
U=ws—{w; a:a<uw}

and let ' be the set of all limit ordinals below wy. Clearly, U is open and F is closed.
Suppose U N F is =9, say

new new

where each A, is H(f and each B, is Hg. Since U misses a club in wy, UM F' is nonstationary,
which in turn implies that each A, is bounded in w,. Now that the union |J, .y Ay is also
bounded in wo, let J be an upper bound. Let ag be the least ordinal such that w; - ag > 3.

Now consider the copy of w; consisting of ordinals in the interval I = (wy-ag, w1-ag+w ).
Our assumption implies that the limit ordinals in I can be written as |, (B, NI). It follows
that the limit ordinals in w; can be written as Un C,, where each C,, is Hg. Since the limit
ordinals in wy form a club, one of the C,, must be stationary. We claim that a stationary IT)

subset of w; must contain a tail, and this is a contradiction.



Suppose G = (.. Gn is a stationary ITS in w;, with all G, open. Each G, is also

new
stationary, and therefore it contains a tail. Since cof(w;) > w, a countable intersection of

tails is still a tail. Hence, G contains a tail. OJ

The Borel structures on ordinals have been studied before, see for example [20, 24]. We
summarize the known results as well as present the techniques used in the study of this topic.

For the convenience of the reader we include some proofs of previously known results here.

LEMMA 2.7 (Rao-Rao [24]). Every Borel subset of a limit ordinal either contains or misses

a club.

Proor. Clearly, every subset of a limit ordinal of cofinality w either contains or misses a
club. In case of uncountable cofinality, a countable intersection of clubs is still a club. Hence,
the collection of all sets which contain or miss a club is a o-algebra containing all closed sets

and therefore contains all the Borel sets. O

In particular, a stationary and costationary subset of a limit ordinal is not Borel. A subset
of wy is Borel if and only if it either contains or misses a club [24]. Another characterization
of Borel subsets of w; was also given in [24], and was completely generalized by Mauldin [20]

as follows.

THEOREM 2.8 (Mauldin [20]). Every Borel subset of an ordinal can be expressed as a union
of countably many sets, each of which is the intersection of an open set and a closed set. [

Mauldin’s theorem shows that the Borel hierarchy on any ordinal collapses at a rather
low level: every Borel subset of an ordinal is in fact AJ. In view of Proposition 2.6 this is
optimal.

Below we give another characterization of Borelness of subsets of ordinals. We state the
result in a way that encompasses the results in [20] and [24], and provide a self-contained
proof. It should be noted, however, that the main ideas and techniques used in the proof
are the same as those presented in [20] and [24]. We will use the following lemma repeatedly

throughout this chapter; its proof is a straigtforward induction on €.

10



LEMMA 2.9. Let X be an arbitrary topological space. Suppose X = |J,.; Ui, where {U;}ier
1s a family of pairwise disjoint open subsets. Let &€ < wy and B C X. Then B 1s Eg (or Hg)
if and only if for everyi € I. BNU; is Eg (respectively Hg} in U;. H

The following theorem characterizes Borel subsets of ordinals.

THEOREM 2.10. Let o be an ordinal. Then the following are equivalent:
(1) B C « is Borel.
(2) B =U,en(Un N F,). where each U, is open and each F, is closed.
(3) For every limit ordinal 3 < o, B contains or misses a club in (.
(4)

4) For every limit ordinal § < o and every club C in (3, B contains or misses a club

of C.

Proor. The implication (1) = (4) is immediate from Lemma 2.7. The implications (2) =
(1) and (4) = (3) are trivial. It suffices to show (3) = (2). We use induction on a. For
the base case and the successor case there is nothing to do. Assume « is a limit ordinal. By
condition (3) B contains or misses a club in . For definiteness assume that B misses a club
C in o. In this case let oy, i < 1 = cof(«a), enumerate the elements of C in the increasing
order. Without loss of generality we may assume ag = 0. Then let U; = (ay, aipu1) for i < n.
Thus we get that o — C = |J,_, U;. Note that condition (3) is still true for each interval Uj.
Since each U; is a copy of an ordinal < «, the inductive hypothesis gives that BN U, is a

union of countably many sets, each of which is the intersection of an open set with a closed

set. Now Lemma 2.9 implies that
B=Bn(a-C)= | J(.NF,)
neN

for relatively open U, in o — C and relatively closed F,, in a — C. Let C,, be the closure of
Foina Ui=a—-CandV, = U, NU_;. Then each V,, is open in «, C, is closed in a,

F,=C,nU_; and

B=|JU.nF)=|JU.nC.nU) = | J(VanCp).

neN neN neN

11



This finishes the proof of the case that B misses a club C in a. Suppose alternatively B
contains a club C in a, then B — C continues to satisfy (3) and the same argument shows

that B — C is a union of the form in (2). It follows that B is of the same form since

B=(B-C)UC. O

As another application of the same technique we note that every Borel subset of w; is

A,
ProproSITION 2.11. Ewery Borel subset of wy is Ag.

PrOOF. It suffices to show that every Borel subset of w; is £3. In view of Theorem 2.10 it
is enough to show that the intersection of an open set U and a closed set Fis 2. If U N F
is bounded, then this intersection is countable and easily seen to be £3. Assume U N F
is unbounded. In particular, both U and F are unbounded. If w; — U is bounded, then
the bounded part of U N F is relatively 9, the unbounded part is relatively closed, thus
relatively 237 hence by Lemma 2.9, U N F' is Eg in w.

If w; — U is unbounded, write U = | J I, where the [, are maximal disjoint open intervals.
Each I, is homeomorphic to a countable ordinal, hence U N F is IT in L, thus in U. Hence,

U N F is the intersection of an open and a I set in w;, hence TTY. O
p 2 15 2

In view of the collapse of the Borel hierarchy our basic Lemma 2.9 can be restated as
the following convenient fact for subsets of ordinals. For obvious reasons we will refer to it

as the gluing lemma.

LEMMA 2.12 (The gluing lemma). Let a be an ordinal. {U;}ier a family of pairwise disjoint
open sets wn o, and C the closed set such that o — C = Uie] U;. Then B C o« — C s Borel

in a if and only if BN U; is Borel in U; for every i € I. O

2.2, Borel Isomorphisms

We now turn to a review of Borel isomorphisms between topological spaces. Let X and

Y be arbitrary topological spaces. A map f: X — Y is called Borel measurable or simply

12



Borel if the pre-image f~1(U) of any open subset U of YV is a Borel subset of X. This easily
implies that the pre-image f~'(U) of any Borel subset of Y is Borel in X.

A Borel isomorphism is a bijection f such that both f and f~! are Borel. If there is a
Borel isomorphism from X onto Y, then we say that X and Y are Borel isomorphic. We
denote this by X =5 Y. Recall that if X and Y are both Polish spaces, then X =5 Y if and
only if there is a Borel injection from X into Y and a Borel injection from Y into X. Here a
Borel injection is merely an injective Borel map. The proof is a repetition of the proof of the
classical Cantor-Bernstein theorem. However, the reason it runs smoothly in this context is
because of the important theorem of Luzin—Suslin that a Borel injection from a Polish space
to another preserves Borelness of subsets; every Borel injection between Polish spaces is a
Borel embedding.

In our context the following definition is needed. A Borel injection f: X — Y is called a
Borel embedding if the image of a Borel set under f is Borel. Now the proof of the classical
Cantor-Bernstein theorem can be repeated to show that if there exist Borel embeddings

f: X —=Yand g: Y — X, then X and Y are Borel isomorphic.

PROPOSITION 2.13. Let X and Y be topological spaces. If there erist Borel embeddings
fi X =Y andg:Y — X, then X and Y are Borel isomorphic. U

We adopt the notation f: X —g Y to denote that f is a Borel embedding from X into
Y, and write X —pg Y or simply X — Y if there exists [: X —5 Y.

The following simple observations on Borel isomorphism and embeddability of ordinals
will be useful. Let a < [ be ordinals. Note that the canonical injection (that is, the identity
map) from « into 5 is a Borel embedding (in fact a homeomorphic one). It follows that for
a < [f we have a =g 7 if and only if § — a. The following lemma is our main tool to show

that J Borel embeds into a0 < 3.

LEMMA 2.14. Let a < 3 be ordinals. {U;}ier and {V;}jes be pairwise disjoint open sets
in a and in [ respectively, and C and D be closed subsets of o and 3 respectively with

a—-C=U,,Uiand 5—D = Ujej Vi. Suppose that there is a k € I such that ¢ D —p Uy

13



and there is an injection w: J — I —{k} such that for every j € J there is @;: V; —p Ury).

Then (G Borel embeds into o — C, thus into a, and 7 =g a.

PROOF. Let ¢: § — a — C be the piecewise defined map from 7 and the v,’s. Clearly, ¢ is
injective. If B C J is Borel, then BN D is Borel in D and B NV} is Borel for each j € J.
Hence, ¢“B is Borel in each U;. By the gluing lemma, ¢“B is Borel in a — C. Similarly, if
B C a— C is Borel, then ¢~ (B NUy) is Borel in D and for any [ € J — {k}, 7' (BNU)) is

Borel in V;-1(;), hence ¢~ B is Borel in 3 again by the gluing lemma. O

Under the hypotheses of the above lemma a particularly easy way to guarantee D — U,
for some k is to make sure that ot(D) < ot(Ug). Note that the lemma is still meaningful
even if the ordinals are the same. Specifically, if & > w and C C k- « is closed with order

type < k, then the lemma gives that k- a — C Zg k- a.

2.3. The Classification up to Borel Isomorphism

In this section we classify all ordinals up to Borel isomorphism. Recall the following

definition from the introduction:

DEFINITION 2.15. For an ordinal a, let k(a) = 0 if |a] is singular or countable; otherwise,

let k(o) be the largest cardinal such that |a - k(a) < a.

We will show that o =g F iff |a] = |3] and k() = &(0).

Since all countable ordinals are Borel isomorphic and « 2p [ whenever |a| # |5], we
can restrict ourselves to ordinals o and /3 such that K < a < 3 < k™ for some uncountable
cardinal k. As remarked before, in order to show that o =g ([ it suffices to find a Borel
embedding of 4 into a. We split the proof of Theorem 2.3 into three parts. First, we show
that all ordinals greater than or equal to x - cof(x) are Borel isomorphic to - cof(x). Second,
we show that for singular cardinals k, k- cof(x) is Borel isomorphic to k. Finally, we identify

the Borel isomorphism types between x and x> = k- for regular .

For the first part, we need the following lemma.

LEMMA 2.16. [fw < a <&k, then k-a° =g k- a.

14



PROOF. We first show k-a? — k- a-2. Let C = {k-£: & <a’}. Then Cis a club in & - a?

and # - o — C consists of |a?| = |a| many maximal disjoint open intervals each of which is

a copy of the ordinal k. We refer to these maximal open intervals as x-blocks.
Fork-a-2welet D={k -a+kr-&: & <a} Then k-a 2— D consists of a copy of

k- «a and |o

many x-blocks. Now since ot(C) < k- a, C can be Borel embedded into the
copy of k- a. Since there are the same number of x-blocks in the remaining parts of the two
ordinals, they can be paired off. Lemma 2.14 gives the desired Borel embedding.

Second, we show (k-a)-2 — k-a. Let C7 = {k-§: € < a}andlet Cr = {k-a+r-€: € < a}.
Since ot(Cy) = ot(Cy) = a < k, we can embed C) into the first x-block of % - a, and Cs
into the second s-block of k- a. Now we are in a position to apply Lemma 2.14 again, since
there are again the same number |a - 2| = |a| of x-blocks in the remaining part of the two

ordinals. O

THEOREM 2.17. If k- cof(k) < a < kT, then a =g k- cof(k).

PROOF. We prove by induction that o can be partitioned into countably many Borel subsets
Ag, A1, ... such that each A, embeds into - cof(x). This gives a Borel embedding of « into
# - cof (k) - w, which embeds into « - cof(k)? and hence in - cof(k) by the preceding lemma.

The statement is certainly true for @ = k - cof(k). The successor case is also easy. We
assume « is a limit ordinal. Let C' = {zg: § < cof(a)} be a club in a, with zo = 0.
Since cof(a) < & (because @ < k7), C can be embedded into x and thus in & - cof(k).
For each 3 < cof(a) let Ig = (xg,254.1). The I3's are pairwise disjoint open subsets of a
such that o — C = U6<COf(O) I5. Also for each 3 < cof(a), I5 is a copy of an ordinal < «a.
Thus by the inductive hypothesis, for every 7 < cof(a) there is a pairwise disjoint family

{45, n € N} such that Iy = | every Aj  is Borel in I and there is a Borel

/
n<w “F4,n

embedding wg,: Ay, — K- cof(k).

Define A;, := Ugor(a) Apn- Since each A, NIz = Ay, is Borel in I5, A is Borel in

T

a by the gluing lemma. Also for every n < w, A, = (Jg_cof(a) Asn 15 Borel embeddable in
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k- cof(k) - cof(k), and thus A/, embeds into - cof(x) by the preceding lemma. Then Aq = C,

Aps1 = Al is the required decomposition of a. U

hus between any cardinal x and its successor k™ there are no new isomorphism types

after k- cof(k). For singular k, there is in fact only one isomorphism type:
THEOREM 2.18. If Kk is singular and k < a < k™, then a =g k.

PRrOOF. In view of Theorem 2.17 it suffices to prove that x - cof(k) &g k. Fix a club-in-&

sequence (A¢: ¢ < cof(k)) of cardinals such that cof(x)* < A: < k. Let

C={r-&: &<cof(r)} U U {k- &+ X ¢ <cof(k)}.
£<cof(x)
This is a club in x - cof(k) of order type cof(k)?. Again x - cof(k) — C can be written as a
union of | cof(k)?| = cof(k) many maximal disjoint open intervals, or blocks, each of which is
a copy of some A;. Moreover, for each ( < cof(k) there are exactly cof(x) many A--blocks.
On the other hand, D = {\;: { < cof(k)} is a club in x of order type cof(k), and k — D
is the union of cof(x) many blocks each of which is a copy of some \.. However, for each
¢ < cof(k) there is exactly one Ac-block in k — D, which we denote by Be.
We now define a Borel embedding from « - cof(k) into k in view of Lemma 2.14. First
note that C' embed into By since A > cof(k)?. Then for each ¢ < cof(k) we let all cof(x)
many Ac-blocks in k- cof(x) embed into the Aeyy-block By ., of k. This is possible since

Acs1 > A, cof(k) is a cardinal. O

Finally, we consider ordinals between x and x? when x is a regular uncountable cardinal.

Any such ordinal can be written as k-a+ fwith0 <a<kand 0< 3 < k- a.
LEMMA 2.19. If B <k-a, thenk o+ =g k-a.

ProoOF. This is immediate when [ is finite, so assume [ is infinite. In this case k- o + 3 =
K-a+ 1+ [ is the disjoint union of the open sets [0,x-a+1) and (k- . k-a -+ /3). In other

words, k- a + J is homeomorphic to the direct sum (k- o + 1) & 4. Replacing [ with the
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Borel isomorphic [ + 1, we are allowed to transpose the disjoint open parts:
(k-a+l)@f=p(k-a+l)a(B+)=(B+1)®(k-a+1).

Finally, (f+1)@® (k- a+1)2f+1+k-a+l=k-a+1=gk a. O

We can therefore restrict our attention to ordinals of the form x-a for 0 < o < k. It
follows immediately from Lemma 2.14 that k-« =g k- whenever |a| = |5]. To motivate the
converse, suppose towards a contradiction that § is a Borel isomorphism between w; - 2 and
wi. The larger ordinal wy - 2 consists of two copies By, B of wy (and a limit point), while the
smaller ordinal wy has only one block. Each of the copies is Borel in w; - 2 and therefore so
are their images 6“B; and 0“B;. By Lemma 2.7, both images either contain or omit a club.
Since 6“B; and 0“B, are disjoint, and any two clubs meet, one of the images, say #“B; must
omit a club C. This closed set splits w; into open blocks. One can construct a stationary
and costationary S C Bj such that 8“S contains at most one point in each block. Hence,
g“S is Borel in wy by the gluing lemma, but S is not Borel in B; and hence not in wy - 2,
a contradiction. The argument in the proof of the following theorem is a generalization of

this idea.

THEOREM 2.20. Let x be a regular uncountable cardinal and let o < 3 < k. If |a| # |5

?

then k- a2 k- 3.

PrOOF. We may assume without loss of generality that o] < |8|. Let Co = {k-&: £ < a}
and Dy = {k-&: € < f). It follows from Lemma 2.14 that k- a &5 k- a — Cy and

o

K- =p kK- 3— Dy Thus it suffices to show that k- a — Cy 25 k-3 — Dy.
Toward a contradiction we assume that #: x- 37— Dy — k- a— Cy is a Borel isomorphism.
As before x - a — Cy consists of |a| many s-blocks, which we denote in increasing order by A.

for ¢ < . Similarly k- F — Dy consists of |3| many s-blocks. which we denote in increasing

order by B for £ < /.

Cramm 2.21. There is a § < 3 such that for every ( < a. A. NO“Be is nonstationary in A..

17



PRrooF. Note that the x-blocks A., Be are open. For every { < f3, 0“B; is Borel in & - o,
thus for every ¢ < a, A N#“Be is Borel in & - @ and thus in A;. But A¢ is a copy of the
regular k, hence A.N0“B; must either contain or miss a club in A, by Lemma 2;7‘ Since two
clubs necessarily meet, for every ¢ < a there can be at most one { < 3 such that A, N6“B;
contains a club in A;. Because |a| < ||, there must be a £ < 3 such that for every ¢ < a,

Ac N 0"Be is nonstationary in A.. ‘ O

CLAIM 2.22. There is a stationary S C Be such that 6%S C A for some { < a.

PROOF. For each ( < a let Bee = B: M 07 (A¢). Then Be = |J._, Bec. Since B is a
copy of k and a < k, it follows from the regularity of x that B¢ is not the union of |a]
many nonstationary sets. Hence, there must be a { < o such that B is stationary. This

stationary set S = Bg - has the required property. 0J

We now have a stationary set S C B, such that 6“S is entirely contained in A.. Since
¢“B¢ is nonstationary on every s-block of & - «, 0“S is nonstationary in A.. Note that both
Be and A¢ are copies of the regular cardinal k.

Let C be a club in A such that SN C = @. Then A; — C can be written as the
disjoint union of maximal open intervals, say Ac — C' = ;e Ui = U,er (735 Yis1)- Note that

9“8 g UiEr: Ul

Cram 2.23. There is an S1 € S which is stationary and costationary in Be such that

6“S; NU; is Borel in U; for every i € k.

Proor. For any # € S. denote by block(z) € » the index of the block that #(x) is in, that
is, 0(r) € Uplock(e)- We will construct a club D such that for .y € D NS with z # v,
block(z) # block(y). Then Sy := D N S is a stationary set such that |0“SqNU;| < 1. This
trivially implies that ¢“Sq M U; is Borel in U; for every i € k. Furthermore, let S; C Sy be
any stationary and costationary subset. Then #“S; N U; is Borel in U, for every i € k.

To construct this club D, we define a function g: B¢ — B¢ and then let D be the

set of closure points of g, that is, D = {a € B¢: V3 < a (9(f) < o)}. Let & € B¢ be
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arbitrary. Let B = {block(z): = € S A 2 < z}. Since & is regular, B is bounded in x. Let
g(x) = sup{a’ € B N S: block(z') € B}. Since « is regular and @ is one-to-one, g(z) € Be.
To see this works, suppose z,y € S = DN S with z < y. Since y € D, g(z) < y. Thus,
block(y) ¢ {block(z): z <z Az € S}, a set which includes block(z). O

Since 6451 N U; is Borel in U; for every ¢ < k, 0“Sy is Borel in | J,_,_ U; by the gluing

1<K
lemma, and hence 6“S; is Borel in A, and also in k- a. But S is not Borel in B¢ by
Lemma 2.7 and thus not Borel in k- 3. This contradicts the assumption that € is a Borel

embedding. O

This completes the proof of Theorem 2.3: if s is singular or countable, all ordinals
between k and kT are Borel isomorphic by Theorems 2.17 and 2.18, and if & is regular and
uncountable, the Borel isomorphism types are precisely - A for cardinals 1 < A < k by

Theorems 2.17 and 2.20.
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CHAPTER 3

RESOLVABLE MAPS PRESERVE COMPLETE METRIZABILITY

A Polish space is a separable, completely metrizable space. Polish spaces are abundant
in mathematics. Familiar examples are separable Banach spaces (e.g. R", RN, /), the Baire
space w*, and the Cantor space 2. These spaces are the natural setting for analysis and
descriptive set theory. It is therefore of interest to find criteria which imply that a separable
metrizable space is in fact completely metrizable.

Consider a continuous surjection f: X — Y between separable metrizable spaces X and
Y. We say that f preserves complete metrizability if Y is completely metrizable whenever
X 1is completely metrizable. A natural question to ask is which maps preserve complete
metrizability.

Some restrictions need to be imposed on the map f: X — Y, since there exist continuous
surjections from Polish spaces onto separable metrizable, but not completely metrizable

spaces.

EXAMPLE 3.1. Enumerate Q as o, g1, ... and define f: w* — Q by f(z) = gy(). Clearly, f

is a continuous surjection which does not preserve metrizability.

In fact, Michael and Stone [21] proved that if there is a continuous surjection from w*
onto a metrizable space X . then there also is a quotient map from w* onto X. In other
words, quotient maps need not preserve complete metrizability.

On the positive side, Sierpinski [25] (see also Hausdorff [11]) showed that open maps pre-
serve complete metrizability. Similarly, Vainstein [27, 28] proved that closed maps preserve
complete metrizability. We provide alternative proofs of these theorems (see Theorems 3.16
and 3.17). There has been much work on other kinds of maps. Recently, Ostrovsky [23]

obtained the following result: if the image of every open set or every closed set is the union



of an open and a closed set, then the map preserves complete metrizability. He raised the
question whether the same is true when the images are the intersection of an open set and
a closed set. In this chapter we will answer Ostrovsky’s question in the affirmative by prov-
ing a generalization of his result (see Theorem 3.44). In some technical sense (to be made
precise), this theorem is the best possible result along these lines.

The chapter is organized as follows. In Section 3.1 we review the well-known fact that the
range of a continuous surjection which sends open (closed) sets to Borel sets is an absolute
Borel space (see Proposition 3.4), in particular a coanalytic space. In Section 3.2 we prove
Hurewicz’s classical results that complete Baireness and complete metrizability coincide for
coanalytic spaces (see Theorem 3.14), and that a coanalytic space is completely Baire if and
only if it contains no closed subspace homeomorphic to @ (see Theorem 3.8). This provides
a useful criterion for proving that a maps preserves complete metrizability. In Section 3.3
we use this criterion to derive Sierpinski’s and Vainstein’s results (see Theorems 3.16 and
3.17).

In order to prove our main result, we study Hausdorff’s difference hierarchy. In Section 3.4
we review its basic structure. In Section 3.5 we explictly link the finite levels of the difference
hierarchy to Ostrovsky’s question. In Section 3.6 we characterize the nonresolvable subsets
of Q and prove that the difference hierarchy over the open sets is proper. Finally, we turn
to our main result. In Section 3.7 we show that there cannot be a continuous surjection
f+w* — Q which maps clopen sets to resolvable sets. In Section 3.8 we prove that every
resolvable continuous surjection preserves complete metrizability (see Theorem 3.44).

While preparing the results contained in Sections 3.6, 3.7, and 3.8 for publication, we
obtained a preprint by Holicky and Pol [12] who independently proved a result corresponding

to Theorem 3.44.

3.1. Absolute Borel Spaces

A metrizable space X is an absolute Borel space if for every metrizable space Y and
every homeomorphic embedding j: X — Y, j(X) is a Borel subset of Y. Every completely

‘metrizable space is absolute Gg. To see this, let X be a completely metrizable space, ¥ a

[N}
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metrizable space, and j: X — Y a homeomorphic embedding. Then j(X) is a completely
metrizable subspace of a metric space Y, and hence is G in Y. Conversely, if a metrizable
space X is absolute G. then X is completely metrizable. To see this, fix a compatible metric
d on X and let X be the completion of X with respect to d. The map j: X — X given
by j7(2) = (2)new is a homeomorphic embedding. By assumption, X is Gs in X, and G
subspaces of completely metrizable spaces are completely metrizable.

The following lemma provides several conditions equivalent to absolute Borelness for

separable metrizable spaces.

LEMMA 3.2. Let (X, d) be a separable metric space and X its completion. The following are

equivalent:

(i) X is an absolute Borel space;
(ii) X is Borel in X ;

(iv

)
)
(iii) There is a Polish space Z and a continuous bijection 0: Z — X ;
) There is a Polish space Z and a Borel bijection 0: Z — X.

)

(v

There is a separable absolute Borel space Z and a Borel bijection §: Z — X .

Proor. The implications (i)=-(ii) and (iii)=(iv)=(v) are obvious. For (ii)=-(iii), note that
X is Polish and X C X. By the change of topology technique, there is a finer Polish topology
7 on X so that X is 7-clopen. Thus 7 | X is Polish. Let Z be X equipped with 7 [ X and
¢: Z — X be the identity map. Then @ is continuous. We next show (iv)=-(i). For this let
Y be a metric space and j: X — ¥~ a homeomorphic embedding. Let ¥ be the completion of
Y and S the closure of j(X) in V. Since X is second countable, so are J(X) and S; therefore
S is a Polish space. Now jofl: Z — S is a Borel injection from a Polish space Z into S
with image j(X'). It follows from the Luzin-Suslin theorem that j(X) is Borel in S. Since S
is closed in Y, it follows that j(X) is Borel in ¥ and hence in Y. We have established the
equivalence of (i) through (iv). To finish the proof. it suffices to show (v)=-(iv). Assume

Z is a separable absolute Borel space and §: Z — X a Borel bijection. Applying (i)=(iv)

[N]
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for Z, we obtain a Polish space W and a Borel bijection  : W — Z. Then # o n is a Borel

bijection from W onto X. O

We say that a map f: X — Y is open-Borel if f(U) is Borel in Y for every open U C X.
We will show that continuous images of Polish spaces under open-Borel maps are absolute
Borel spaces. We will make use of the Effros Borel structure. For a Polish space X, let
F*(X) denote the set of all nonempty closed subsets of X. The Effros Borel structure on

F*(X) is the o-algebra generated by the sets

{FeF(X): FNU # @},

where U C X is open. Beer [3] has shown that F*(X) with the Effros Borel structure is
a standard Borel space, i.e. there is a Polish topology on F*(X) whose Borel structure is

precisely the Effros Borel structure. The following selection theorem is a basic fact about

F*(X) with the Effros Borel space.

THEOREM 3.3 (Kuratowski-Ryll-Nardzewski). There is a Borel function o: F*(X) — X
such that o(F') € F for every F € F*(X). O

In fact, Kuratowski-Ryll-Nardzewski proved a stronger result, see [15, Theorem 12.13].

PROPOSITION 3.4. Let X be a Polish space, Y a separable metrizable space, and f: X —Y
a continuous surjection. If the image under f of every open set in X is Borel in'Y, then Y

15 an absolute Borel space.

Proor. Let E be the equivalence relation on X defined by x; E x5 iff f(zy) = f(xo).
Since f is continuous, everv FE-equivalence class is closed. The condition is equivalent to
the statement that the E-saturation of every open set is Borel, since [Ulg = f~H(f(U)).
Consider the map 6: X — F*(X) defined by §(z) = [z]g = f~'(f(z)). Then @ is Borel since

for any nonempty open U C X,

(x)NU #£ @ < z€[Ulg.



Let o: F*(X) — X be the Borel selector function given by the Kuratowski-Ryll-Nardzewski
theorem. Then oof: X — X is a Borel selector for E. Let A = c00(X). Then A is a Borel
transversal for E; it is Borel since z € A iff 0 0 §(z) = x. Thus A is a separable absolute
Borel space and f | A: A — Y is a continuous bijection. It follows that Y is an absolute

Borel space. O

We say that a map f: X — Y is closed-Borel if f(U) is Borel in Y for every closed
U C X. To prove Proposition 3.4 for closed-Borel maps, we use the following result of
Engelking [6]: for every Polish space X there is a closed continuous surjection from w* onto

X.

ProproOSITION 3.5. Let X be a Polish space, Y a separable metrizable space, and f: X —Y
a continuous surjection. If the image under f of every closed set in X is Borel in'Y, then

Y is an absolute Borel space.

PROOF. Let g: w¥ — X be a closed continuous surjection from w* onto X. The composition
fog:w®” — Y is continuous, and the image under fog of every closed (in particular, clopen)
set in w* is Borel in Y. This implies that the image under f o g of every open set in w*
is Borel in V', since every open set in w* is a countable union of clopen sets. Applying

Proposition 3.4 to f o g, we conclude that Y is an absolute Borel space. ]

‘We have thus shown that the continuous image of a Polish space under an open-Borel or

closed-Borel map is an absolute Borel space.

3.2. Completely Baire Spaces

A topological space is Baire iff every open set is nonmeager in itself. The Baire Category
Theorem is the statement that completely metrizable spaces and locally compact Hausdorff
spaces are Baire; the rationals Q are an example of a separable metrizable space which is
not Baire. It is easy to see that an open subspace of a Baire space is a Baire space in the
subspace topology. However, a closed subspace of a Baire space is not necessarily Baire.

When every closed subspace of X is Baire, we say that X is completely Baire. Clearly, every
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completely Baire space is Baire. For an example of a Baire space which is not completely

Baire, consider
X={(r,y)eR*: (y=0andzcQ)or (0<z<landO<y<1)}

with the subspace topology inherited from R”?. The space has a closed subset homeomorphic
to @, so it is not completely Baire. It is easy to check that X is Baire. The following theorem

gives several characterizations of complete Baireness for separable metrizable spaces.

THEOREM 3.6 (Hurewicz [13]). Let X be a separable metrizable space. The following are

equivalent:

(a) X is completely Baire.
(b) Every closed subset of X is nonmeager in itself.

(c) Buvery Gs subset of X is nonmeager in itself.

PRrOOF. The implications (c) = (a) = (b) are clear. We show that (b) = (c), and therefore
(a), (b), and (c) are all equivalent. Assume that there is a G set Y which is meager in itself.
We claim that Y is meager in itself. Without loss of generality we may assume that ¥ = X.
Write YV = | J

new Yn, where each Y, is closed nowhere dense in V.

Cramv 3.7. Y 1s meager in X.

PROOF. SinceY C | J _ Y, it suffices to check that each Y, is nowhere dense in Y. Suppose

new

that W C Y is open in ¥ such that W C Y, for some n. Then
WNYCY,NY =Y,,

contradicting the assumption that Y, is nowhere dense in Y. i

Now to show that X is meager in itself. it suffices to show that X — Y is meager in X.
Since Y is G, we can write

Y= (U,

new

[N]
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for U, C X open. Now

X-Y=X-(U=|J&X -0

new new

Since each U, is open dense (dense because it contains a dense subset V'), each X — U, is
closed nowhere dense. This shows that X — Y is meager, and completes the proof of (b) =

(c). O

Fréchet and Sierpinski (c.f. [15, Exercise 7.12]) have proved that every countable perfect
space is homeomorphic to Q. A separable metrizable space which contains a closed subspace
homeomorphic to @ is certainly not completely Baire. In fact, this turns out to be the

canonical obstruction to being completely Baire.

THEOREM 3.8 (Hurewicz [13]). A separable metrizable space X is completely Baire if and

only if X does not contain a countable perfect subset (i.e. a closed subspace homeomorphic

to Q).

PrOOF. The forward direction is trivial, since a closed subspace homeomorphic to Q is not
Baire. We prove the backward direction by contraposition. Suppose X is not completely
Baire. Then X has a closed subset that is meager in itself. Without loss of generality we

may assume that X is the closed subset that is meager in itself. Let

X = U E,

new

where each F), is closed nowhere dense. We construct (pg)seo<e and (U)ee, <o such that the

following properties hold:

(1) pS E US?
(ii) diam(U,) < 27 h(s),

Cfs”‘n g Us”'n g LTS:

(iii)
(1\7) 1.Hﬂn—roo Ps~n = Ds,
)

(v) iflh(s)=n+1,then U, N(FRUFR U---UF,)

I
Q

26



Without loss of generality we may assume diam(X) < 1. Let Uy = X and py € X be
arbitrary. Suppose p, and Us are defined for some s € w<* with Ih(s) = k. Since (J,,- Fm
is dense (because FyU- - U F}, is closed nowhere dense) and p, € Us, we may find a sequence

gn € UsNU, sy Fm so that lim g, = ps. Let pg-p, = gn, and let Us~,, be an open set such that
Ps~n € Us’“n g Us"n g Us

diam(Usny,) < 27V and U, N (FyU---U F},) = @. This finishes the construction.
Now let @ = {ps: s € w<“}. Then Q is countable and has no isolated points. It suffices to
verify that D is closed. Suppose (,,)new 1S a sequence in @ with lim,, . 2, = 7. Consider

the tree

T={sew™: 3tDs3Inz,=np}

We consider two cases.

Case 1: T’is finitely splitting at every node. In this case, by Kénig’s lemma, T has an
infinite branch. That is to say, there is a subsequence of z, and z € w* such that z, = p,y,
for some increasing sequence [, € w. It follows that for any k the subsequence of z,, given
by p.p, where l,, > k + 2 satisfies that for s =2 [ k+ 1, z, € U, C X - (FoU---U Fy).
It follows that z,c & Fo U ---U Fy for all k. But (), (X — (FoU---UFy)) = &, so thisis a
contradiction.

Case 2: T is infinitely splitting at some node, i.e., there is an s € 7" such that s"n € T
for infinitely many n. It follows that for an subsequence of (2, )ne. Wwe have z,, € Us~,,, . By
the construction of the open sets U,-~,, any sequence (t,)ne. With ¢, € Us~,, converges to ps.

Thus, we know that lim,,_. . x,, = p,. and thus p, = .. This shows that z,. € Q. O

The above proof can be slightly modified to work for any first countable, I'egulér space X.
Note that for a first countable, regular space a countable perfect subset is in fact separable
metrizable and therefore homeomorphic to @. Debs [4], apparently unaware that Hurewicz's
original proof can be easily adapted, gave a proof of this using Choquet games. The Dutch
mathematician Van Douwen [5] also published a proof of this result; at that time Van Douwen

was at the University of North Texas.
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Every separable, metrizable, completely metrizable space (i.e., every Polish space) is
completely Baire, but the converse is not true in general. Hurewicz [13] gives the following
example, using the Axiom of Choice (AC). Recall that using AC one can construct an

uncountable set A C R such that A does not contain any perfect subset.

THEOREM 3.9 (Bernstein, AC). There exists an uncountable set A C R such that neither A

nor R — A contains a perfect subset.

PROOF. Let P, (a < 2%) enumerate all perfect subsets of R. Each P, is uncountable,
and in fact has cardinality 2. Define two sets A, and B, by induction on a < 2% Set
Ag = By = @. For a general o suppose Az and By have been defined for every § < a such

that

Apgl,|Bg| < 2% and As C A,, Bs C B, whenever 8 < v < a. Since |B,| = 2%, there
exist p,q¢ € Po — Ugo(4s U Bp). Define A, = s, 45 U {p} and B, = s, Bs U {q}.

Finally, let A = {J, % Aq and B = |J B,. Then both A and B are uncountable sets

a<2Ro

which do not contain a perfect subset. U

A set as in Theorem 3.9 is called a Bernstein set. In particular, neither A nor R — A is

analytic, since any uncountable analytic set contains a perfect subset.

THEOREM 3.10 (Hurewicz, AC). There ezists a separable, metrizable, completely Baire space

which is not completely metrizable.

PrOOF. Consider X = R— A, where A is a Bernstein set. Clearly, X is separable metrizable.
We claim that X is completely Baire, but not completely metrizable. To see that it is not
completely metrizable, we argue as follows. If X were completely metrizable. then it is
Polish, and therefore a Gy subset of R: it follows that A would be an F, subset of R, a
contradiction. It only remains to check that X is completely Baire. We use Theorem 3.8.
Assume that X contains a countable perfect subset P. Then Clg(P) is a perfect subset of R,
and therefore it has cardinality 2%°. It follows that Clg(P) — P is an uncountable G5 subset,
and therefore it contains a perfect subset of R. Since A does not contain any perfect subset

of R, we have that X N (Clg(P) — P) # @. Let 29 € X N (Clg(F) — P). Then on the one

[N]
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hand, z, is a limit point of P (in the topology of R, and so also in the topology of X), and

on the other hand, x¢ € X — P, where P is closed in X, a contradiction. ]

We have seen that
completely metrizable = completely Baire = Baire

and that these implications cannot be reversed. However, Hurewicz has shown that for defin-
able subsets of Polish spaces, being completely Baire does imply being completely metrizable:
if A is a coanalytic subset of a Polish space, then A is completely Baire iff A is completely
metrizable. The proof is a modification of the construction in the proof of Theorem 3.8. We

need the following definition.

DEFINITION 3.11. Let M, N C X be subsets of a separable metrizable space X. We say
that M is closed with respect to N iff M NN C M.

Since this is not a standard notion, let us compare it to A N N being relatively closed in
N. If M is closed with respect to N, then M N NNN CMNN C MNON. Hence, M NN is
relatively closed in N. When M C N, the two notions coincide, but in genéral the converse
is not true. For example, take M = [0,1) and N = [1,2). Since M NN = &, M NN is

relatively closed in N. However, M NN = {1} € M, so M is not closed with respect to N.

DEFINITION 3.12. We say that M is F, with respect to N iff M is the countable union of

sets closed with respect to N. We write M = F, (wrt N) in this case.

Note that if M is F,, in X, then M = F, (wrt N) for any N C X. Also. a countable union
Unew My with each M, = F, (wrt N) is again F, (wrt V), and so is a finite intersection

My -0 M,. The following is the main technical lemma.

LEMMA 3.13. Let X be a separable metrizable space. M, N C X arbitrary subsets. and
U C X an open subset. If M NU £ F, (wrt N), then there is a p € N N U such that
MnV £ F, (wrt N) for every basic nbhd V of p.

[N]
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PROOF. Suppose towards a contradiction for every p € N NU we can pick a basic nbhd V
such that M NV = F, (wrt N). Since X is second countable, there are only countably many

such nbhds. Enumerate these as 14, Vs, ..., andlet V =, __ V. Note that NNU C V and

new

MNV=|JMnV,=F, (wrt N).

new

Since U is open, U is Fy, in X, thus U = F,, (wrt N). Thus, UNM NV = F, (wrt N). Now,
UnM=UnMOV)U((UNM)—-(UNMNV)).

We claim that
(UNM)—UnNMNV)=F, (wrt N).

Write U = |, ¢, Fn, Where each F), is closed in X. Then

UNM)=(UNMAV)=UNM-MnV)) =] FnM - (MOV)).

new

Now

FaN(M=(MNV)CENX-V)=F,N(X-V)CX-V.

Since U NN C V, we have

FEFNAM—-(MnV))NnN = 2.
This proves the claim. O

We remark that if M NV 2 F, (wrt N) for every nbhd V of p, then p € M. For suppose

p & M, then there is a nbhd V of p such that M NV = @, thus M NV = F, (wrt N).

THEOREM 3.14 (Hurewicz [13]). Let N C X be a coanalytic subset of a separable metrizable

space X. If N is not Gs, then N contains a countable perfect set.

PRrOOF. Since M = X — N is analytic, there is a Suslin scheme (A, )sc. <o of closed sets such

that

M = U ﬂA.’r!n-

TEWY NEw
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For s € w=¥, let

M = U ﬂ Amrn

sCzx new

We will recursively define points p,, integers i, and nonempty open sets U, for s € w<* with
the following properties:

(i) ps € NNU,,

(ii) for every nbhd V of p,, M;

tsq ’iSO’sl ;»--aiso,sl,,,.,sk

NV # F, (wrt N).

<l\r sngUsngU

)
)

(iii) diam(U,) < 27 10(),
)

(V) limy, o0 Psmn, = Ps;

First, note that since N is not G5 in X, M is not F, in X. This implies that M # F,(wrt N).

To see this, suppose M = |, M, with M, NN C M,. Then
My=M,NX=M,N(MUN)=M,NMUM,NNCMUM=M.

Thus, M = J . M, is F, in X, a contradiction.

new

We start the construction. Without loss of generality we may assume that diam(X) < 1.
By Lemma 3.13 with U = X, there is a p € N such that for every basic nbhd V of p,
MnNV # F,(wrt N). Let Uy = X and pgy = p. Let us explicitly do the second step in the

construction. By (ii), for each n € w,
M N B(pz,27") # F, (wrt N),
where B(pg,1/n) is a basic nbhd of py with radius < 27". For each n € w, because

MNB(pg.27™") = | JM; N B(pe.27"),

iEw

there must be an index 7,, such that
M, N B(pg,27") £ F, (wrt N).

Apply Lemma 3.13 with U = B(pg,2™") for each n € w to find a p, € NN B(pg,27") such
that for every basic nbhd V' of p,,, M; NV Z£ F,(wrt N). Note that we have p = lim,,_.o. p,.

Let U, = B(pg.27 ™). The general step in the construction is similar.



Let Q = {ps: s € w<¥}. Clearly, @ C N is countable and has no isolated points. It
suffices to verify that @ is closed in N. Suppose (Z,)new 1S & sequence in Q with lim,, o z,, =

Too € IN. As in the proof of Theorem 3.8, consider the tree
T={s€w: 3t DsInz,=p}

and the following two cases.

Case 1: T is finitely splitting at every node. In this case, by Konig’s lemma, 7" has an
infinite branch. This means that there is a subsequence (Zn,)icw Of (Zn)new and a z € w®
such that d(zn,,p.1k,) < 27 for some increasing sequence k; € w. Note that by (ii), each

ps € M (see the remark after Lemma 3.13). It follows that d(z,,, 2z | k;) <

iso 97;50,61 a"'7i50351 seea Sk

27" and p. g, — ZToo as @ — 00. Writing 2 = (2q, 21, . .. ), we have

pszi S ]\{ = Aizoaizo,qa---vizo~,21,-~~yzki :

CA

i iZO’izO»zlY""i20=zl=-~)z}c-

izo7iz0,21;-~-;7:z0,sl,..,,zk )

Since each A, is closed, we have
Too € ﬂ A iz ey sy oy, = M =X — N,
kew

a contradiction.

The argument in the second case is identical to that in the proof of Theorem 3.8. We
repeat it here for the convenience of the reader.

Case 2: T is infinitely splitting at some node, i.e., there is an s € T" such that s™n € T
for infinitely many n. It follows that for an subsequence of (2, )ne, Wwe have z, € Uy, . By
the construction of the open sets Us~,, any sequence (t,)ne. with t, € U,~, converges to p,.

Thus, we know that lim,_... z,, = ps, and thus p, = 7. This shows that 2, € Q. U

An alternative proof of this theorem can be found in [15] (Theorem 21.18). It was
shown to follow from a general separation result of Kechris-Louveau-Woodin. Hurewicz’s
Theorem 3.14 in particular applies to all absolute Borel spaces. We state the following

theorem as a summary.

THEOREM 3.15. Let X be a separable absolute Borel space. Then the following are equivalent:
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(i) X s Polish.

(ii) X s completely metrizable.
(ili) X s absolute Gjs.

(iv) X 1is completely Baire.

(v) X does not contain a countable perfect subset. O

3.3. Open or Closed Continuous Surjections

In this section we use Hurewicz’s criterion to give alternative proofs of the theorems of
Sierpinski [25] and Vainstein [27, 28]. Recall that a map f: X — Y is open if f(U) is open
in Y for every open U C X. Similarly, f: X — Y is closed if f(U) is closed in Y for every

closed U € X. Both open and closed continuous surjections preserve complete metrizability.

THEOREM 3.16 (Sierpinski [25]). Let X be a Polish space, Y a separable metrizable space,

and f: X =Y a continuous surjection. If f is open, then Y is Polish.

PRrROOF. In view of Hurewicz’s theorem and Proposition 3.4, it suffices to show that Y is
completely Baire, or equivalently, that Y does not contain a countable perfect subset.

For this assume @ C Y is a countable perfect subset of Y. Let P = f~}(Q). Then
P C X isclosed and f [ P: P — () is continuous and open. Now P is a Baire space and @
is countable, and it follows that there exists y € @ so that f~*(y) has a nonempty interior
U. Now f(U) = {y}, implying that y is isolated, a contradiction to the assumption that @

is perfect. O

Another proof can be found in [8, Theorem 2.2.9]. Using the strong Choquet property,
Sierpinski’s theorem also follows easily from Choquet’s characterization of Polish spaces (see
8, Exercise 4.1.5] or [15, Theorem 8.19]). In fact [25] only dealt with the case of Euclidean
spaces, and Hausdorff (responding to a request of Kuratowski) gave a proof of the general
case in [11]. This is why the theorem is sometimes attributed to Hausdorff.

The following theorem was announced in [27] and proved in [28]. Later, Engelking [7]
gave another proof. We use Hurewicz’s criterion again; the proof starts out the same as the

previous proof.
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THEOREM 3.17 (Vainstein [27, 28]). Let X be Polish, Y a separable metrizable space. and

f: X =Y a continuous surjection. If f is closed, then' Y s Polish.

ProoF. In view of Hurewicz’s theorem and Proposition 3.4, it suffices to show that Y is
completely Baire, or equivalently, that Y does not contain a countable perfect subset.

For this assume ) C Y is a countable perfect subset of Y. Let P = f~1(Q). Then
PC Xisclosedand f | P: P — @ is continuous and closed. Now P is a Baire space and
is countable, and it follows that there exists y € @ so that f~!(y) has a nonempty interior.
Let

W= Int f7(q)
qeq
Then W is nonempty open in P and f [ (P —W): (P — W) — @ is closed.

Cram 3.18. f [ (P —W) is onto Q.

PROOF. Assume that ¢ € @Q is not in f(P — W). Then Int f7'(¢) = f~*(¢) and thus
f7'(g) is clopen. In particular, P — f~'(q) is closed. Since f is closed, we have that
f(P—f"Yq)) = Q—{q} is closed. This means that ¢ is isolated in @, a contradiction to

the assumption that @ is perfect. O

Now let Py =P, Wo =W, P =FP,— Wy, fo=1f1| Fo, and f; = f | P;. By repeating
the above argument we may define P,, W, and f, for any ordinal o as follows. When «
1s a successor ordinal the definition is similar to above. When « is a limit ordinal, we let

P,=0N s<a P and fo = f | P,. Then P, is closed and f,: Py — @ is closed.
Cram 3.19. f, [ P, is onto Q.

PrROOF. Let ¢ € ¢ and consider Fry f~*(g) := f~*(¢) —Int f~!(g). We claim that Fry f~*(q)
1s compact. From this it follows that f; Y(g) (8 < a) is a decreasing sequence of compact

subsets of X, and hence



To see that F:= Fry f~1(q) is compact, let (2 )new be a sequence in F. Since [ is continuous,
there is a sequence (yn)new in X — f71(q) such that d(z,,yn) < 27™ and d(f(yn),q) < 2™
Hence, (yn)new has an accumulation point y € f~*(g). This implies that y is an accumulation

point of (2, )ne. and that y € F. Thus, F is compact. O

We have thus shown that for all ordinal « the set P, is closed, f,: P, — @ a continuous
closed surjection, and W, is nonempty open in P,. In particular, we obtain a decreasing
wi-sequence of closed subsets (P, )a<,, of P, which contradicts the second countability of

P. U

We remark that the following inverse of Sierpinski’s theorem is false:

Let X,Y be separable metrizable spaces and f: X — Y an open contin-

uous surjection. If Y is Polish, then X is Polish.

For a counterexample, consider X = R x Q, Y = R, and f: X — Y the projection to the
first coordinate. Then f is an open continuous surjection, Y is Polish, X is absolute Borel
but not completely Baire (since it obviously contains a countable perfect subset), and hence
not Polish.

Extending the results of Sierpiniski and Vaingtein, Ostrovsky [23] proved the following

theorem:

THEOREM 3.20 (Ostrovsky [23]). Let X be a Polish space, Y a separable metrizable space,
and f: X — Y a continuous surjection. If the image under f of every open set or every
closed set in X is the union of an open and a closed set in'Y . then Y is Polish. O

He raised the question whether the same is true when the images are the intersection of
an open set and a closed set. We will answer this question in Section 3.8. For this, we need

several facts about the difference hierarchy, which we study in the next three sections.
3.4. The Difference Hierarchy

An intersection of an open set and a closed set can also be written as the difference of
two open sets: a union of an open set and a closed set is the complement of such a difference.

Indeed. sets of these forms constitute the second level of the difference hierarchy introduced
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by Hausdorff. More complicated combinations of open and closed sets occur at higher levels
(see Section 3.5). The sets in the difference hierarchy are also known as resolvable sets. In
this section, we review the structure of the difference hierarchy.

Every ordinal 8 can be uniquely written as § = A +n, where A < ¢ is a limit ordinal and
n € w. By definition, the parity of 0 is the parity of n. Let # > 1 be an ordinal and (A, )n<¢
an increasing sequence of subsets of a set X. Define the set Dy((Ay)n<o) by

z € Dg((Ay)n<g) &z € U A, and the least 77 < @ with
n<é

z € A, has parity opposite to that of ¢

For example, Di(Ag) = Ag, Dao(Ag, A1) = Ay — Ag, and D3(Ag, Ay, Ag) = (Ay — Ay) U A
Of course, we do allow transfinite sequences:

D n<w U < 4271-0—1 42n)

n<w

and

Dw—l»l((fln)ngw) = ‘40 U U <A271+2 - A2n—|—1) U Aw - U An

n<w n<w

LEMMA 3.21. Let (Ay)n<o be a sequence of subsets of X. Then

X - DG((AU,)W<9) = D9+1((A,7)n<9,X).

ProOF. If = & Dy((A,)n<p), then either z & | , (and hence z € X — |, _, A,) or else

77<€ n<@ *

the least 7 < 6 such that © € A, has the same parity as 0, i.e. the parity opposite of § + 1.
In both cases © € Dgi1((Ay)y<p. X). Conversely, if z € Dyi1((Ay)p<s. X), then the least
n < @ such that x € A, has parity opposite to that of ¢ + 1. i.e. the same parity as ¢. Hence,

FQDQ(( 77)77<9> O

Let X be a topological space. For 1 < &,60 < wq, let
DdEg)(X) = {Dg((Ap)n<a): An € ES(X) for all n < 6}

and

Do(Z)(X) = {AC X: X — A< Do(2)}.



When the ambient space is understood, we also write D@(Eg) and 59(22) The previous
lemma gives us the following picture:

B¢ =Di(Z) Dy(=)) Dy(=Y) Dy(=¢)

I =Di(Z) Da(S))  De(B¢)  Dy(Z9)
where 6 < 7 and every class is contained in every class to the right of it. The difference
hierarchy over Eg is
DH(Z)(X) = | Do(Z9)(X).

f<wn

PROPOSITION 3.22. For a metrizable space X, DH(ZZ)(X) C A (X)

PROOF. We have Dy(2¢) C B¢, and Dg(SF) € Des1(52). Therefore, if A € Dy(S)(X),
then A € Eg_l_l and

X — A€ Dg(SY)(X) € Dora(SY)(X) € T
Hence, A € A{,,(X) = B¢, (X) NTIE,,(X).. O

Hausdorff and Kuratowski showed that the reverse inclusion holds for Polish spaces, i.e.
in these spaces the sets in DH(E?) are exactly the A2+1 sets. Following the proof of this

result found in [15, p. 176 — 177], we start by analyzing DH(Z?).
LEMMA 3.23. Let A C X be a subset of a metrizable space X. Then A € DH(ZY) if and

only if

A= U(Fﬁ_Hn)

n<d

for some 8 < wy and some decreasing sequence

Fo2 Hy2 F1 2 Hy

1V
U
o
U
s
[V

of closed subsets of X.



PROOF. Suppose A = Un<9(F,7 — H,) for § = X+ 1. Let 0" = A+ 2n and define A, ¢ o =
X — Foepr and Ayeqopsr = X — Hygeop. Then A = Dg-((Ag)e<or). Conversely, if A =
Dg+((Ay)n<o+) we may assume 0* = )\ + 2n and define F,, H, for n < § = A+ n by the same

formulas as before. Then A = J, _o(F, — H,). O

Let X be a separable metrizable space, A C X an arbitrary subset, and F' C X a closed

subset. The boundary of AN F in F is given by

Op(A) = (ANF)N((X — A) N F).

Clearly, Op(A) is closed and Op(9p(A)) C dr(A). Define by transfinite recursion a sequence
(F,,) as follows:

FO = X)
F77+1 = aFn (A))

Fy=()F, for\alimit ordinal

n<A
Since (F,) is a decreasing sequence of closed sets in a separable space, there is a least § < w;

such that Fy = Fpyi. We call (F,))n<q the boundary sequence of A.

PROPOSITION 3.24. Let X be a separable metrizable space, A C X an arbitrary subset, and

(Fy)n<o the boundary sequence of A. If Fy = @, then

A= U(Fn—Hn)a

n<g

where H, = (X — A)N F,). and hence A € DH(ZY)(X).

PROOF. Assume r € A. Let nn < ¢ be such that x € F, — F,.,. If @ € H,, then z €
(X —A)NnF,N(ANF,) C F,, which is impossible. Hence, z € F,, — H,. Conversely, if
r € F,— H,forsomen <fbutzgA thenzre (X-A)NF C(X-A)NEF, =H, a

contradiction. O

Note that A is dense, codense in Fy. In other words, in a separable metrizable space X

either A € DH(ZY)(X) or else A is dense, codense in some closed subset of X
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PROPOSITION 3.25. Let X be a Polish space, A C X an arbitrary subset, and (F}),<qo the

boundary sequence of A. If A € AY(X), then Fy = @ and therefore A € DH(Z9)(X).

PROOF. Suppose Fy # @. Then Fy C X is a Polish space and A N Fy is AY(Fy). The
boundary of AN Fy in Fy is Op,(A) = Fypp1 = Fp = ANFyN (X — A)N Fy. Hence, AN Fy

and Fy — A are two disjoint dense G sets, a contradiction. O

The preceeding propositions show that for Polish spaces, Ag = DH(E(I)}. Using the

change of topology technique, this implies the general result.

THEOREM 3.26 (Hausdorff, Kuratowski). For a Polish space X,
AL (X) = | De(39)(X)
f<w:
PROOF. Let (X,7) be a Polish space. Assume A € A (X, 7). Then there are A, €
Ag(X, 7) with A = lim, A, by [15, Theorem 22.17]. By [15, Theorem 22.18], there is a
finer Polish topology o 2 7 so that A, € A%X,0) and 0 C ZE(X, 7). Then A € AY(X,0)
by [15, Theorem 22.17] and thus A € DH(X?)(X,0). Since ¢ C Z¢(X,7), we have 4 €

DH(Z)(X, 7). O

Lavrentiev showed that in uncountable Polish spaces the difference hierarchy over Eg is
proper, i.e. De(Eg) = D@(Eg) for every 0 < wy. Recall that aset U C X x Y is universal for
a pointclass I'if U € I'(X xY') and for every ACY, A T'(V) iff A= U, for some z € X.

ProposITION 3.27 (Lavrentiev). Let X be a separable metrizable space. There exists a
unwersal set U C 2¥ x X for De(Eg)(X). O
The usual diagonal argument now shows that DQ(EE) = f?g(Eg) in anv uncountable

Polish space, as follows.

THEOREM 3.28 (Lavrentiev). Let X be an uncountable Polish space. Then the difference

hierarchy DH( Eg)(X ) is proper.

PRrROOF. Since X is an uncountable Polish space, we may assume 2 C X [15, Theorem 6.2,

p. 31]. Suppose DQ(E?)(X) = Dg(Z?)(X) for some 1 < 0 < w;. This then implies that

39



Dy(Z2)(2°) = Bg(Zg)(Q”). Let U C 2¢ x 2¢ be universal for Dg(¢)(2*). Define A C 2¢
by z € A< (z.z) € U. Since U € Dy(59)(2¥ x 2¥), A € Dg(E)(2%) = Dy(X2)(2°). By

universality of U, there is an x € 2% such that A = U,. But then
(z,x)eUszel,oreAs (r,2) €U,

a contradiction. O

Therefore, we have the following picture for Polish spaces:

TP =Di(Z)) DoY) Dy(%) D, (%)

0o_ 3 150 A 50 5 (50

Hg = Dl(Eg) DZ(Zg) Dé(zg) Dn(zg)
where § < 7 and every class is properly contained in every class to the right of it. We
address the question whether the difference hierarchy over the open sets is proper in arbitrary
separable, metrizable spaces in Section 3.6. Finally, two observations on the difference

hierarchy of a subspace.
LEMMA 3.29. Let X CY be separable metrizable spaces. Then
Do(Z2)(X) = Dg(SH(Y) 1 X ={ANX: A€ Dg(ZH)(X)}.
In particular, if Y is Polish. then
DH(S)(X) = AL, (Y) [ X

ProOF. The first equality follows immediately from the fact that Eg(X) = Zg(}’) rX.
Assume Y is a Polish space. If A € DH(Z{)(X), then A = BN X for some B € DH(ZE)(Y)
and B € A ;(Y) by Proposition 3.22. Conversely. if A = BN X for some B € AL (Y),
then B € DH(ZY)(Y) by Theorem 3.26. Hence, A € DH(Z{)(Y) | X = DH(Z)(X). O

3.5. The Finite Levels

Fix an ambient separable metrizable space X. The difference of two open sets can

always be written as the intersection of an open set and a closed set. Hence, if A €
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Df)n (4407 . ,A2n~1>, then

s

A= JOincy,

i=1
where O; = Aq_q is open and C; = X — Ay, is closed. In this section we will show that
conversely every set of the form | J_, (O;NC;), where each O, is open and each C; is closed. is
an element of Dy, (X9). This explicitly connects the finite levels of the Hausdorff difference
hierarchy to Ostrovsky’s question.

We need two lemmas on the complexity of finite unions. The pointclass D, (2?) is not
closed under arbitrary finite unions. For example, when Aqg C A; C By C B; are properly
nested open sets, A = A; — Ay and B = By — By are both DQ(E?), but their union A U B
is properly D4(2%). However, the union of an open set and a set in Dy, (27) is always an

element of Doy, (29).
LEMMA 3.30. Let O be open and B € Dy,(29). Then O U B € Dy, 1(29).

PROOF. Let B = Don(By,...,Bo,_1), where By C --- C By, ; are open. Define sets
Co, ey an by

CO = O N Bo,
C} = By, and

C;=0UB;_; for 2 <i<2n.

Clearly, Cy C --- C (Y, is an increasing sequence of open sets. We verify that

OUB = Doyy1(Cy, ..., Cop) = CoU U(sz — Cyiq).

i=1

Suppose * € OU B. If z € O, then either € Cy (when z € By) or z € Cy —
(when =z &€ By). If v € B— O, then © € Bgyy — By for some 0 < ¢ < n. Hence,
z € Cog — Coyyq. Conversely, suppose © € Dope1(Co. ..., Cay). If 2 € Cy, then z € O.
Otherwise, x € Cy — Ug_q for some 1 < ¢ < n. If 1 = 1, then possibly z € O. In all other

cases, T € Bo;_1 — Bg;_o. O
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The previous lemma shows that the union of a set in Dl(Z?), ie. an open set, and a set
in Dop(2Y) is an element of Dy, (2Y). Similarly, the union of a set in Dy(3Y) and a set in

Dy (29) is always an element of Dy, o(X9).

LEMMA 3.31. Let A € Dy(2) and B € Dy, (29). Then AU B € Doy io(29).

PrROOF. Let A = A; — Ay and B = Do, (By, ..., Bay—1), where Ag C A; and By C -+ C

Bs,,—1 are open. Define sets Cy, ..., Cs,y1 as follows. Let
Co = By N Ay,
Cl == Bl N Al-

For 1 <i<mn, let

Coi = (Ba; N Ag) U B0 U (Bai—1 N Ay)

7

Coit1 = (Baiy1 N A1) U Bo_1.
Finally, let

CZn = BZn—Q U AO) and
Cons1 = Bop—1 U Ay

Each C; is open and Cy C - -+ C Cyypp1. We now verify that AU B = Doy, 0(Co, ..., Copia).
First, suppose x € AU B and consider the following two cases.

Case 1: Assume 2 € A=A — Ag. If x € By, then z € C; — Cy. If ¥ € By — By, then
2 €Cs—Cs Ifx € Bygj1 — By_1for 1 <i<mn,then x € Corq — Co. Finally, if x & Boy,_o,
then z € Copy1 — Coyy.

Case 2: Assume 2 € B— A. Let # € By_1 — Boyo for 1 < i < n. Either € A; or
r €Ay Iz g A thenz € Coq — Co. If 2 € Ay, then 2 € Cojq — Coio.

This shows that AUB C Do, 9(Cy, . .., Coyun). For the converse. suppose x € Co;q1 —Cy
for1 <i<n. Ifz & By 1 — Bsj_o, then z € B. Suppose x € A; N Byiyy. If 2 & By, then
x € B. Assume z € By;. Then x & Ay, otherwise x € Cy. Thus, # € A. The reasoning

when ¢ = 0 or ¢ = n is similar. O



We can now connect finite unions and intersections of open and closed sets to the finite

levels of the difference hierarchy.

PropoOSITION 3.32. Let A C X.
(1) A € Dy () if and only if A= UL, (0; N Cy), where each O; is open and each C;
is closed.
(il) A € Don(29) if and only if A= (r,(0; N C}), where each O; is open and each C
is closed.
(ili) A € Dapia(2Y) if and only if A = O UL, (0; N Cy), where each O; is open and
each C; 1s closed.
(iv) A € Dypyr(T0) if and only if A= C N UL, (0; N C;), where each O; is open and

each C; 1s closed.

PRrROOF. Statements (ii) and (iv) follow from (i) and (iii) by DeMorgan’s laws. The forward

directions of (i) and (iii) are clear. We prove the backward direction of (i) by induction on

n; the backward direction of (iii) follows from Lemma 3.30 in a similar way.
IA=0nC, then A = Dy(ON (X —C),0). Assume that every set of the form

UL, (0: N C) s an element of Dy, (29). If A = (I (O; N Cy), then A is the union of a set
in Dy(XY) and a set in Dy, (Y. Hence, A € Dopyo(Z9) by Lemma 3.31. O

Therefore, the sets on levels 2n, 2n+1, 2n+2 of the difference hierarchy can be represented

as follows:

U?:l(Oi N Ci) ou U?:l(O’i N Ci) U?ill(Oi N Ci)

MmO UG) CNNLGUC) NL(0:UE)
3.6. The Difference Hierarchy of the Rationals
We have seen that DH(ZY)(X) € AJ(X) in an arbitrary metrizable space X. Moreover,
if X is Polish, then DH(ZY)(X) = AJ(X) by the Hausdorfl-Kuratowski Theorem 3.26.
This equality does not necessarily hold in an arbitrarv separable metrizable space. For

example,. consider the rationals Q. Since Q) is countable, every subset of Q is F,, and therefore



every subset is AS. However, not every subset of Q is resolvable; the following proposition

characterizes the nonresolvable subsets of Q.

PROPOSITION 3.33. Let A C Q. The following are equivalent:

(i} A ts not resolvable;
(ii) A is not relatively A, i.e., there is no AY subset B of R such that BNQ = A;

)

)
(iil) A is dense, codense in a closed F C Q;
(iv) A is dense, codense in a perfect F' C Q;
)

(v) A is dense, codense in a homeomorphic copy of Q (inside Q).

ProOOF. The equivalence of (i) and (ii) is Lemma 3.29. In fact, if A is resolvable in Q, then
its representation in the difference hierarchy of QQ can be lifted to the difference hierarchy of
R to obtain a set B C R resolvable in R so that BN Q = A. Since B is Aj, A is relatively
AY. Conversely, if B C Ris AJ and BNQ = A, then B is resovable, and the restriction
to Q of its representation in the difference hierarchy of R gives a representation of A in the
difference hierarchy of Q.

(i) = (ili) is a consequence of the proof of the Hausdorff-Kuratowski Theorem 3.26.
Suppose A C Q. Let (F),),<¢ be the boundary sequence of A. If Fy = &, then A is resolvable
by Proposition 3.24. Otherwise, A is dense, codense in Fy = Fyi1 = 0p,(A).

(iii) = (iv) Assume A is dense, codense in a closed set F¥ C Q. Suppose z € F is an
isolated point. Then {z} is open in F, hence z € A because A is dense. Similarly, z € F— A
because A is codense. This is a contradiction.

(iv) = (v) If F C Q is perfect, then F is homeomorphic to @ by the Fréchet—Sierpiniski
result (c.f. [15, Exercise 7.12]).

(v) = (ii) We may assume that A is dense, codense in Q itself. Suppose A = BN Q
where B is a Aj subset of R. Then B and R — B are both dense G5 in R. But B and R — B

are disjoint, a contradiction to the fact that R is a Baire space. O

In Section 3.4 we have seen that the difference hierarchy over Eg in an uncountable

Polish space is proper (see Lavrentiev’s Theorem 3.28). Since Q is countable, Lavrentiev's
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theorem does not apply to Q. We will use a direction construction to show that the difference
hierarchy over the open sets in QQ is indeed proper.

Denote the relatively open interval Q N (1/2"%1,1/2") by I,,. By the Fréchet—Sierpiniski
theorem, I, is homeomorphic to Q. Also, note that if O C X is open and A = Dy((A4,)n<q) €
Dg(Z9)(X), then O N A is still an element of Dy(X9)(X), since O N A = Dg((O N Ap)nes).

LEMMA 3.34. Let (Ap)new be a sequence of subsets of Q such that A, C I, and A, €
Dg(Z9(I,) for everyn € w. Then A= . An € Do(Z%)(Q).

new

PROOF. By Lemma 3.29, for every n € w thereis an B,, € Dy(27)(Q) such that A, = I,N5,.
Since I,, is open, I,, N By, is an element of Dy(X9)(Q), say I, N B, = Do((By)n<s), where
(Bp)n<s is an increasing sequence of open sets for each n € w. Replacing each B with
I, N By, we may assume that By N By" = & whenever n 7 m or 7 # & Let Cp = Upew By.
Clearly, (Cy)n<p is an increasing sequence of open sets. We verify that A = Dg((C))y<p)-

Suppose * € A = . An, say x € A, C I,. Then there is some n < ¢ with parity

new
opposite to that of # such that z € By and x ¢ B for any £ < 1. Obviously, € C,,.
Since By" is disjoint from Bj whenever n # m or n # &, we have z ¢ C¢ for £ < 7. Hence,
z € Dp((Cy)n<a)-

Conversely, if x € Dg((Cp)n<p), then there is some 7 < ¢ with parity opposite to that

of ¢ such that z € C) and = ¢ C; for any £ < 7. Then z € B} for some n € w, and since

z ¢ B for all £ <n, we have x € Dg((B")p<g) = In N By = Ay O

Using Lemma 3.34, we can stitch together sets of increasing complexity to create a set
on the next level in the difference hierarchy. We first present the easier case when we want
to construct such a set at a limit level.

Let T' be any pointclass. We say that a set A is genuinely I if Ae T —T.

PROPOSITION 3.35. Let A < w; be a limit ordinal and (A, )n<o a cofinal sequence in A.
Assume (By)new 18 a sequence of sets such that B, is genuinely len(E(f)(In). Then A =

Unew Br is genuinely Dy(Z9)(Q).



PROOF. Since Dy, (29)(I,) C DA(29)(I,,), we have A € D)(2%)(Q) by Lemma 3.34. Sup-
pose that @ — A = D,((A4,),<») for some increasing sequence (A,),<x of open subsets of Q.
Since 0 € Q— A, there is an even ordinal n < X such that 0 € A1 —A,. Since A,.; is open,
there is an € > 0 such that (0,¢) C A, ;. This implies that (0,g) C Ap for all § > n+1. Let
N be large enough so that By C (0,e) and Ay > n+ 1. We have Iy N (Agr1 — Ag) = @ for

all § > n+ 1. Now,

BNZINQA:INO U Aa-l-—]_ACE:INm U ACE+1—AC¥‘

a<X even a<n+1 even

Thus, By € Dpt1(Iy), a contradiction. O

The argument for the successor case is very similar but slightly different to the argument

for the limit case.

PROPOSITION 3.36. Let 0 < w;. Assume (Bp)new @5 a sequence of sets such that B, €

Des1(29)(I1,) and B, € Do(29)(1,)UDe(Z9)(I,). Then A =, ., By is genuinely Dg.1(S9)(Q).

new

PROOF. As in Proposition 3.35, we have A € Dy.1(Z9)(Q) by Lemma 3.34. Suppose Q —
A = Dy 1((Ay)n<o) for some increasing sequence (A;),<¢ of open subsets of Q. Note that
0¢ A=,c, An, because A, C I, = QN (1/2""1 1/2"). Hence, 0 € Dg.1((A,)y<q). Let
¢ < 0 be least such that 0 € A. The parity of £ is equal to the parity of §. Since A¢ is open,
there is an € > 0 such that (0,e) C A¢. Let N be large enough so that Iy C (0,e). Since
the sequence (A;)n<¢ is increasing, Iy C A, for all 7 > . We now consider two cases.
Case 1: ¢ < . We will show that By € DQ(EQ)(]N) for some ¢ < 6, which is a
contradiction. Since & and € have the same parity. there is a  of the opposite parity strictly

between £ and ¢. Now,
@ — BN - ]N ﬂ A — [N ﬂ D9+1<<A77>77§9)
and we only need to show that

Iy D9+1(<An>n§8) =IynN DQ((A77)77<C)~

H>
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Since ¢ and ¢ + 1 have the same parity,

I]\T N D(((A17)77<C) g [J\T M D9+1<(A77)'r]§9)'

Conversely, if z € Iy M Dgy1((Ay)n<e), then the least o < ¢ such that z € A, must be less
than or equal to ¢, since Iy C A¢. Thus, we have x € D¢((Ay)n<c).

Case 2: ¢ = §. We will show that Iy — By = Dg((Ap)n<s), i.e., By € Do(Z0)(Iy),
which is a contradiction. Suppose z € Iy — By. Since By = InNDg11((A4,)n<p), this implies
that the least @ < 8 such that z € A, has parity equal to 8 + 1, that is, parity opposite to
that of 6. (Note that since Iy C Ay, there always is an o < ¢ such that z € Ay). Thus,
© € D((Ay)nes).

Conversely, suppose z € Iy N Dy((Ay)n<g). Then there is an o < @ such that z € A,,
x & Ap for § < a, and a has parity opposite to that of 8, that is, o has the same parity as

¢ + 1. This implies that & Dy 1((Ay)n<e). Thus, z € By.

Using transfinite induction, we can now prove that for all § < wy,

Do(29)(Q) # Ds(E9)(Q).
THEOREM 3.37. The difference hierarchy over the open sets of the rationals is proper.

Proor. The induction basis is the observation that

Dy(29)(Q) = Z(Q) # I(Q) = Di(Z)(Q).

Noting that each 7,, is homeomorphic to @, the limit case follows from Proposition 3.35. For
the successor case, let A be a genuinely Dy(Z9)(Q) set. Without loss of generality we may
assume that 4 C (0,1). Let B be (0,1) — A, translated to the interval (1,2). Now, AU B
is neither Dg(Z2)(Q) nor Dy(TY)(Q), while AU B € Dyy1(Z9)(Q). The successor case now

follows from Proposition 3.36. O

COROLLARY 3.38 (Gao). Let X be a separable metrizable space with uncountable completion

X. Then the difference hierarchy over the open sets is proper.

s
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Proor. If X is Polish, this is Lavrentiev’'s Theorem 3.28. Assume X is not Polish. Let
D C X be a countable dense subset of X. By Hurewicz’s Theorem 3.14, D contains a closed
subspace homeomorphic to Q. Using Lemma 3.29, DH(Z9)(D) is proper by Theorem 3.37.
This implies that DH(2Y)(X) is proper. O

The question whether the difference hierarchy over Eg is proper when £ > 1 remains

open.

3.7. Continuous Surjections from w* Onto Q

A map f: X — Y is clopen-resovable iff f(U) is resolvable in YV for every clopen set
U C X. In this section we will show that there cannot be a Clobpen—resolvable continuous
surjection from a closed subset P C w* onto Q.

First, we review some standard notation and terminology. For any s = (sq,...,s;) € w<*
let N, denote the set {z € w¥: s C z}. If n € w, then we denote the sequence (sg, ..., Sk, n)
by s7n. A tree on w is a set T C w=¥ of finite sequences of natural numbers such that
if (to,....tn) € T, then (to,...,tn) € T for all m < n. The body of a tree T is the set
T ={zcew:Vnecw(x|neTl)} A tree T is pruned if NyN[T] # @ for any s € T.
When P C w” is closed, there is a unique pruned tree 7' on w such that P = [T (c.f. [15,
Sections 2.A and 2.B}). For notational simplicity, when P C w* and f: P — Q, we write
f(Ng) for f(N,NP).

Let P C w” be a closed set and f: P — Q a continuous surjection. Using the unique
pruned tree 7' with P = [T'], we identify a sufficient condition such that the image f(U) of

some clopen set U C P is nonresolvable.
LEMMA 3.39. Let P = [T] be the body of a pruned tree T onw and f: P — Q a continuous
surjection. Suppose there is an s € T and a nonempty open set O C Q such that

(1) f(Ng~p) is nowhere dense in O for alln € w, and
(ii) f(Ne) = Upen f(Ngmy) is dense in O.

Then there is a clopen U C P such that f(U) is not resolvable.
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Proor. To prove the lemma it suffices to define a clopen U C P such that f(U) is dense,
codense in O. Since O is homeomorphic to Q, f(U) will then be nonresolvable by Propo-
sition 3.33. We recursively define a sequence N, (n € w) of basic clopen sets and take

U= Un N,,. In the construction, we use the following observation.

Cram 3.40. If S C w is cofinite, then | J,cq f(Ns~yp) is dense in O.

PROOF. Assume w — S = {ng,...,n} and let B C O be a basic open set. Since f(Ny~p,)
is nowhere dense in O, there is a nonempty open By € B such that f(Ng,,) N By = .
Similarly, there is a nonempty open By C By such that f(Ng,,) N By = &, etc. We thus
get a nonempty open By C O such that for all ¢ = 0,...,k, f(Ngp,) N By = @. Since

Unew f(Ng~p) is dense in O, for some n € w, f(Ns~p,) N By # &. Hence, n € S. O

Enumerate all basic open sets contained in O as By, By, . ... Let Ih(s) = k be the length of
5. At stage 0, pick zg, yo 2 s such that f(zg), f(yo) € Bo and f(zo) # f(vo). Let po = zo(k)
and go = yo(k). Then let Ny C N, be a basic clopen nbhd of zy such that f(yg) € f(No).
It is possible to pick such an Ny since f is continuous. Note that f(Ny) C f(Ne~p,) is

nowhere dense in O. By the claim, the set | Ng~pn) is still dense in O.

MFP0,90 f<

At stage 1 we first pick an z; D s such that 1 (k) # po, go and f(z1) € B1—{f(z0), f(v0)}.
Next pick y1 2 s such that y1(k) # po. go and f(y1) € Br — f(No) — {f(z1)}. Let py = z1(k)
and g1 = y1(k). Then let Ny C N,~,, be a basic clopen nbhd of z; such that f(yo), f(y1) €
f(Ny). Now f(yo), f(v1) € f(Ng) U f(Ny) and f(Ng) U f(N7) is still nowhere dense in O.
Again the set Um/:,p(h woingy § (Nemm) is still dense in O.

In general, at stage n, pick x, 2 s such that z,(k) # z(k). y:(k) for all 0 < i < n
and f(zn) € By — {f(2). fy): 0 < i < n}. Pick y, 2 s such that y,(k) # z;(k), y:(k)
for all 0 <7 < nand f(yn) € By — Upyen f(Ni) = {f(@n)}. Then let N, © Ny~ 1) be
a basic clopen nbhd of z,, such that f(y;) € f(N,) for all 0 < i < n. We actually have
fly)) € f(No)U---U f(N,) for 0 <7 <n, and that f(Ng) U U f(N,) is nowhere dense in

0.

=
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This finishes the definition of the sequence of basic clopen sets N, for n € w. Let
U = U, o NVn By the construction, U is clopen. Also, f(U) is dense in O, since f(z,,) € f(U)
for each n € w, and f(z,) € B,. Similarly, f(U) is codense in O, since f(y,) € f(U) but
fyn) € Bn. O

The following lemma is more general but the proof is the same as above. We state it

without proof.

LeMMA 3.41. Let T be a pruned tree, P = [T], and f: P — Q be a continuous surjection.

Suppose there are s, t, € T, n € w, and a nonempty open set O C Q such that

(0) sCty foralln e w, Ny, NN, =@ forn#m, and NyNP =], N, N P,
(1) f(N,) is nowhere dense in O for alln € w, and
(2) f(Ng) =, f(]N,) is dense in O.

Then there is a clopen U C P such that f(U) is not resolvable. O
We now show that there cannot be a clopen-resolvable continuous surjection f: P — Q,

because we can always find nodes as in the lemma above.

PROPOSITION 3.42. Let P C w* be closed and f: P — Q be a continuous surjection. Then

there is a clopen U C P such that f(U) is not resolvable.

ProOF. Let T" C w=* be the unique pruned tree with P = [T]. We describe a search
algorithm to find s,t, € T (n € w) and O C Q satisfying the assumptions of Lemma 3.41.
The search will be conducted by induction on the lengths of the nodes in 7" and produces a
sequence T2 Ty D 17 O ... of subtrees of T', where some of the nodes have been labeled

with nonempty open subsets of Q. We will maintain the following properties for all [ € w:

(i) T; € T contains all labeled nodes,

)
(ii) [11] is clopen in [T,
(iii) if s € 77 is labeled with O, then f(N, N [T;]) is dense in O, and
)

(iv) if s € T; with 1h(s) = [ is labeled. then no nodes t 2 s are labeled.

50



When considering a particular length [, we will define for each s € 7; with lh(s) =1 a
pruned tree S, C T; such that [Si] € N, N [T}] and [S4] is clopen in [T}, label certain nodes
in S with nonempty open sets O C Q, and take T;,; to be the union of all the subtrees S.

To start, let Ty = 7" with the root labeled with Q. Assume a partially labeled tree T; C
has been defined satisfying conditions (i) through (iv). For each s € T} with Ih(s) = [ define
Ss C T as follows. If s is not labeled with any open set, then we do nothing: let S, be the
unique pruned tree with [S;] = N, N [T}] and label no extensions of s by open sets. Assume
that s has been labeled with a nonempty open set O C Q. Let t,, € 7} (n € w) be such that
ty 2 sforalln ew, N, NN, =@ for n#m, and NN [T = J,[Ny,] N [T;]. Such ¢, exist

since Ny N [1}} is clopen in [I']. One of the following four cases must occur:

Case 1(a). For all n € w, f(Ny, N[T}]) is nowhere dense in O. We have found the desired
s,tn € T and O C Q, since by applying Lemma 3.41 a clopen subset U C [T;] can be found
with f(U N [1;]) nonresolvable, and U N [T}] is indeed clopen in P = [T

Case 1(b). There is exactly one k € w for which f(Ny, N[71]) is somewhere dense in O but
not dense in O, and for all n # k, f(IV;,) is nowhere dense in O. Pick a nonempty open
O' C O such that f(N;, )N O = @. Now each f(N;, N [T}]) is nowhere dense in O', while

f(Ns 1 [T7]) is dense in O, so again we have found the required s,t, and O'.
The search algorithm terminates with success in Cases 1(a) and 1(b).

Case 2. There is exactly one k € w such that f(N\, ) is dense in O, and for all n = k, f(N,,)
is nowhere dense in O. In this case let S be the unique pruned tree with [S.] = N;, 0 [T}]

and label ¢, with O.

Case 3. There are at least two distinct &y, ky € w such that each of f(IN,, N [T7]) and
f (‘7\7% N [7}]) is respectively dense in some nonempty open Op,0Oy C O. For notational

simplicity, and without loss of generality, we may assume k; = 1 and by = 2. By shrinking

Oy and O, if necessary, we may also assume that O; and O, are disjoint clopen sets in Q.

-
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Now let S¢ be the unique pruned tree with
(8] = (Ny N[N F7H00) U (N, N [T 0 £74(02))

Then [Sy] is clopen in [T}], and #;,t, € S,. We then label ¢; and ¢, with O; and O,

respectively.

We claim that this search algorithm always terminates in Case 1(a) or 1(b) after finitely
many steps. Suppose this is not the case. Then we obtain a pruned tree T, = (), 7} which
contains all labeled nodes. If below every labeled node in T there is a split as in Case 3,
then T, has uncountably (in fact, 2%0) many branches. Since f([Ts]) € Q is countable,
there are distinct branches x # y € [T..] such that f(z) = f(y). Let s C z,y be the longest
labeled node, t; and ¢ are labeled nodes such that s C ¢} C z and s € t3 C y. Then Case
3 occurs when s is considered, and t; and to are respectively labeled with disjoint clopen
sets O; and O,. Let | = lh(s). By our construction f(z) € f(Ny, N[T.1]) € O; and
fly) € f(Ny, N [T121]) € Os. Since O; N Oy = @, f(z) # f(y), a contradiction. Hence,
there is an s € T, with label O such that all labeled nodes in T, extending s are obtained
from Case 2. Therefore, there is x € [T] such that z [ n has label O for infinitely many
n € w. By our construction, f(Ng,) is dense in O for every n € w. On the other hand, f is
continuous; thus, we could pick a nbhd O' C O of f(x) strictly smaller than O and an Ny,

such that f(Ngp,,) € O Then f(Ngp,) is not dense in O, a contradiction. O
3.8. Resolvable Continous Surjections
We now derive the main theorem of this chapter from Proposition 3.42. The arguments

in the following proofs are essentially the same as those in [23].

LEMMA 3.43. Let Y be a separable metrizable space and f: w* — Y a clopen-resolvable
continuous surjection. Suppose @ C Y is a countable perfect set and P = f~YQ). Then

f I PP — (@ is a clopen-resolvable continuous surjection.

PrOOF. Suppose U C P is clopen in P. We need to show that f(U) is resolvable in

(). For every z € U, pick a basic clopen nbhd U, = N, C «* for some s C z with

(&4
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2-1) = diam U, < d(z, P — U), where d is the usual metric on w*. Similarly, for every

x € P — U, pick a basic clopen nbhd U, C w* with diam U, < d(z,U). Finally, for every
r € w¥ — P, pick a basic clopen nbhd U, with U, C w* — P. The collection {U,: z € w*} is
an open cover of w*, and has a countable subcover since w* is second countable, in particular
Lindelof. Let Uy, Uy, ... enumerate the elements of this countable subcover. For each n € w
let Vi = Up — Uy Um. Since each U, is clopen, we get that each V}, is clopen. Thus

{Vi: n € w} is an open refinement of {U/,: z € w¥} consisting of disjoint clopen sets such

that each V, is a subset of some U,. Let
V= J{Vi: VanU # 2}

Then V is clopen in w® and VN P = U. Hence, f(U) = QN f(V). Since f(V) is resolvable
inY, f(U) is resolvable in @. O

We say that f: X — Y is open-resolvableif f(U) is resolvable in Y for every open U C X.
Similarly, f: X — Y is closed-resolvable it f(U) is resolvable in ¥ for every closed U C X.

Finally, we say that f is resolvable if f is either open-resolvable or closed-resolvable.

THEOREM 3.44. Resolvable maps preserve complete metrizability.

PROOF. Let X be a Polish space, Y a separable metrizable space, and f: X — Y aresolvable
continuous surjection. Suppose towards a contradiction that Y is not completely metrizable.
By Propositions 3.4 and 3.5, and Hurewicz’s Theorem 3.14, ¥ contains a countable perfect
subset ) C Y homeomorphic to Q.

Assume first that f is open-resolvable. We use a classical result of Hausdorff [11] that
there is a continuous open surjection g: w¥ — X. The composition f o g is now clopen-
resolvable, and by Lemma 3.43 sois fog [ P: P — @, where P = (f o g)"(Q). This
contradicts Proposition 3.42. If f is closed-resolvable, we use a continuous closed surjection
g: w* — X given by the theorem of Engelking [6] (c.f. proof of Proposition 3.5) and obtain

a contradiction in a similar fashion. U



We note that not every map which preserves complete metrizability is necessarily resolv-
able. Consider any Polish space (X, o) and any Borel set B C X which is not resolvable,
that is, B ¢ Ag. There is a finer Polish topology 7 2 ¢ on X such that B is clopen in 7
[15, Theorem 13.1]. The identity map between (X, 7) and (X, o) is a continuous surjection

between completely metrizable spaces but is not resolvable.



CHAPTER 4
THE LACZKOVICH-KOMATH PROPERTY

Let (An)new be a sequence of sets and K € [w]* an infinite subset of w. The limit
superior limsup, cx A, is the set of all elements which belong to A, for infinitely many
n € K. Laczkovich [18] showed that for every sequence (A, )ne. of Borel sets in a Polish
space, if lim sup,, ., A, is uncountable for every K € [w]*, then there exists a K € [w]¥ such
that [, cx An is uncountable. Komjath [17] generalized this result to the case where the
sets (Ap)new are analytic. Note that by the perfect set property of analytic sets, if (Mner Arn

is uncountable, then it contains a perfect set. Balcerzak and Glab [2] extended these results

to F, equivalence relations in the following way.

DEFINITION 4.1. An equivalence relation F on a Polish space X is has the Laczkovich-
Komjdth property if for every sequence (Ajp)ne. of analytic subsets of X such that lim sup,,c 5 An
meets uncountably many E-equivalence classes for every K € [w]®, there exists a K € [w]¥

such that [1),c; An contains a perfect set of pairwise E-inequivalent elements.

In this terminology, Komjath has shown that the identity relation = has the Laczkovich—
Komjéth property. Balcerzak and Glagb [2] proved that every F, equivalence relation has the
Laczkovich-Komjath property. In this chapter, we generalize this to coanalytic equivalence

relations:

THEOREM 4.2. Every coanalytic equivalence relation on a Polish space has the Laczkovich—

Komjath property.

A fundamental result on coanalvtic equivalence relations is Silver’s theorem: a coanalytic
equivalence relation either has only countably many equivalence classes, or else there exists
a perfect set of pairwise inequivalent elements. Silver’s original proof [26] used forcing.

Harrington (unpublished) later gave a simpler (forcing) proof using effective descriptive set
\ g I g it
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theory, which nowadays is usually cast in terms of the Gandy-Harrington topology. We will
use similar methods and assume familiarity with effective descriptive set theory throughout
this chapter. An introduction to effective descriptive set theory is given in [19]. where
the reader can also find the topological version of Harrington’s proof. The review in [10]
provides details on the Gandy-Harrington topology and strong Choquet games. Instead of
strong Choquet games, we will make use of the set of low elements, which is a Polish space
in the Gandy-Harrington topology. We will summarize the technical facts we use later on.
Further details can be found in [8], which also provides another source on effective descriptive
set theory.

This chapter is organized as follows. We review the original results of Laczkovich and
Komjath on limit superiors of sequences of sets in Section 4.1. In Section 4.2 we briefly
consider their results in the context of definable sets, and then introduce the generalization
of Laczkovich’s and Komjéth’s work to definable equivalence relations. The rest of the
chapter is devoted to the proof of Theorem 4.2. In Section 4.3 we review a well-known
coding mechanism for I} and Al sets, mainly to fix notation and establish the uniformity
of a diagonal intersection operator. In Section 4.4, we provide details on canonical cofinal
sequences as developed in [9]. We use these sequences in Section 4.5 to prove our main
technical result. Finally, we prove Theorem 4.2 in Section 4.6, where we also derive a

parametric version of the theorem, corresponding to a result of Balcerzak and Glab [2].

4.1. Limit Superiors of Sequences of Sets

The limit superior of a sequence (A, )ne. of sets is the collection of all points which are

elements of infinitely manv A4,,. In other words. the limit superior is defined by
J o n . 9,

r € imsup 4, & Ym3n > m(r € A,).
new

For any H C w. let [H]* denote the collection of all infinite subsets of H. Then

limsup A, = U F[ Ay

new Helwlw neH

56



This formula inspired Laczkovich to raise the following question: if limsup,, 4, is large
(say, uncountable), is there always an H € [w]” such that [, .y An is large as well (say,

infinite)? The following example shows this is not the case.

ExAMPLE 4.3 (Laczkovich). Let (A, )ne. enumerate the following sequence of closed inter-

le z}
j

with ¢ < j < w. Then limsup, ., A, = [0, 1] has cardinality 2™ but ‘ﬂne H Anf < 1 for every

H e [w”.

vals contained in the unit interval [0, 1}:

Hence, we need to change the question. By definition,

limsup 4, = L{J] ﬂ A,
KelH

neH wnek

Laczkovich asked the following reformulated question: if limsup,cy Ay is large for every
H € [w]”, is there then always an H € [w]* such that (), o5 An is large? O6f course, we need

to make precise what we mean by large. We do this in the following definition.
p A g

DEFINITION 4.4. For cardinals k > A, let LK(k, A) denote the following combinatorial state-

ment: for every sequence (A, )ne. of sets such that

lim sup A,
neH

> K

for every H € [w]*, there exists an H € [w]* such that

|
M Ani >\

neH

Laczkovich provided the following two straightforward observations.

PRrROPOSITION 4.5 (Laczkovich). vm € w (LK(m.m)).

PrROOF. Let m be a natural number and (A4, )., a sequence of sets such that lim sup, .5 A,

has cardinality at least m for every H € [w]*. Suppose every intersection [ _; A, has

=
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cardinality less than m. Pick an H such that the cardinality of [, .5 A, is maximal. We

claim that lim sup,c g An =) A, from which the proposition follows.

neH -
Certainly. (\,cy An C limsup,.y A,. In order to see that the other inclusion holds,
suppose z € limsup,cx A, Then there is a K € [H]* such that [, A, Clearly,

Mnex An 2 (Npen An- Since the cardinality of (), oy An is maximal, (o An = ey 4n-

Hence, = € (),,c;y An. This is a contradiction. U

The following example of Laczkovich’s shows that LK(Ng, Ng) is false.

ExAaMPLE 4.6. The sets A4, = {1,...,n} are a counterexample to LK(Rg,R). Clearly,
for every H € [w]” the limit superior limsup, .y A, = w is infinite, but the intersection

(Mner An = Aminc) is finite.

On the positive side, LK(N;,Rg) does hold. To prove this, we introduce the following

terminology.

DEFINITION 4.7. Let (A, )neo be a sequence of sets. A set Y is good with respect to H € [w]”
if and only if Y N limsup,, .z A, is uncountable for every K € [H]*. We call a sequence

(An)new good if and only if [, . A, is w-good.

Note that if Y is H-good, then ¥ is K-good for any K € [H]¥. The following lemma is

the key combinatorial fact about good sets.

LeEmMA 4.8 (Laczkovich). IfY =, o, Y @s H-good, then there is a k € w and a H' € [H]*
such that Y, is H'-good.

PROOF. Suppose towards a contradiction that for every k € w and every H' € [H]* there is
an K € [H]* such that ¥, Nlimsup,,., An is countable. We can then pick a K € [H]* such
that Y7 N limsup, cx, A, is countable. Similarly, when K; € [H]* has been chosen, we can
choose a Ki € [K;]¥ such that Yi.; N limsup,,. k.., 18 countable. Finally, pick a strictly
increasing sequence n; € K. Then K = {ny.no,...} is almost contained in every K, which

implies that for every ¢ € w, limsup, . A, C limsup, 5, 4, Hence, Y; Nlimsup, 5 A, is



countable for every ¢ € w. Therefore,

U<Y77 Nlimsup 4,) = (U Y;) Nlimsup A, =Y Nlimsup 4,

nek nekK nek

€W €W

is countable, a contradiction. O

We are ready for the proof of the theorem:

THEOREM 4.9 (Laczkovich). LK(R, Rg).

PrROOF. Assume (A, )ne. 1s a good sequence. By the lemma, there is a kg € w and a
Hy € [w]* such that Ay, is Ho-good. Pick zg € Ay, Nlimsup, .y, An, and then Ky € [Hl¥
such that zo € Ar, N[ ),.c K, An- Note that Ay, is Kq-good.
Suppose kg < -+ < ki, zo,...,2;, and K; € [w]* are given such that
(1) oo, € Agy N+ N Ay, NNk, An
(ii) ﬂ;zl Ay, is Ki-good, i.e.
U Anndgn--nAg)
n>k;neK;
is K;-good.
By the lemma, there is a ki1 > ki, kiy € K, and a H;q € [K;]¥ such that Ag, N---N
Ay, N Ay, 1s Hipi-good. We can pick ;41 # xo,...,2; and K1 € [H1]* such that
i1 € Ay N N A, 0 () An.
neKi
Note that zg,...,z; are in this set as well by the first assumption. In this way we get two

sequences (Ay, Jnew and (z,,),e. such that
{TO: ce -,In} - Ako M- ‘A‘kn
for every n € w. Hence, [, __ Ay, is infinite. O

Clearly. LK(Ry, Rq) implies LK(x,Rg) for all x > Ry. A reasonable next goal to prove

would be LK(Ry,N;). However, this fails when the continuum hypothesis (CH) holds.

THEOREM 4.10 (Laczkovich). CH F =LK(X;, &y).



ProoF. The continuum hypothesis implies the existence of a Sierpinski set: an uncountable
set S C [0,1] such that S N N is countable for every N C [0,1] with Lebesgue measure
p(N) = 0. Note that S meets every set of full measure in uncountably many points (To see
this, if F" has full measure, then [0, 1] — F has measure 0. Thus, SN [0,1] — F is countable,

and S N F is uncountable). Let

on_q

i 2k—2 2k—1
B, = , .
n ;\AL_J1< 211 ’ 271 )

Then p((,,c Br) = 0 for every H € [w]*. Moreover,
(o]
p(limsup By) = u(ﬂ U By,) = lim pu( U B,) =1.
neH k=1neHn>k hoe neH n>k ’
Let S be a Sierpinski set and put A, = SN B,. Since limsup, .y B, has full Lebesgue

measure,

limsup 4,, = imsup(S N B,) = S Nlimsup B,

neH neH ) neH _
is uncountable. At the same time, (), _; By has Lebesgue measure 0, and therefore
(4= [)(SNB.)=5N[] B
neHd neH neH
is countable. O

On the other hand, Komjath derived LK(N;,X;) by strengthening ZFC with Martin’s
axiom MA(X;). Only the following consequence of MA(R;) is used. A family & of sets is

called centered if Ay M ---N A, is infinite for all A;,..., A4, € &.

LemMMA 4.11 (Solovay). Assume MA(Ry). If & is a centered family of subsets of w with
|7 | < Ry, then there is an H € [w]* such that H C* A for every A € . O
THEOREM 4.12 (Komjath). MA(R{) F LK(R{, RN).

PROOF. Let (A, )new be a good sequence. For v € |, Ay let H,={ncw:z € A,}.

new

Cramv 4.13. There exists an uncountable set S C |, o, An such that {H,: x € S} is cen-

tered, i.e. Hy, (-0 Hy, is infinite for all zg, ..., 1, € S.
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PROOF. Suppose towards a contradiction that there does not exists an uncountable centered

family. Choose a maximal centered family
{H,. z €S}

By assumption S is countable. Hence, we can get an H € [w]* such that H C* H, N---NH,,

for all zg,...,z, € §. We claim that

limsup A,, C 5,
neH

which is a contradiction, because the limit superior is uncountable.

Suppose z € S. Since S is a maximal centered family, there are zg, ..., z, € S such that
H, NHy, M- N Hy,

is finite. Since H C* H,, N --- N H,, , we have H, N H is finite, too. Thus, there are only

finitely many n € H such that z € A, that is, z & lim sup,,cy An. O

Let S be an uncountable set such that {H,: = € S} is centered by the claim. By Solovay’s
Lemma, there is an H € [w]*¥ such that H C* H, for every = € S. Hence,

S=|J{zeS:HF-H. C{0,1,...,k}}

kcw

Since an uncountable set is not a countable union of countable sets, there is an k € w such

that 8" :=={z € S: H—-H, C{0,1,..., k}} is uncountable. Now note that

K 3

sc (] 4

neH n>k

and hence K :={n € H:n > k} is the required set so that [ A,, is uncountable. O

nek
4.2. Definable Sets and Equivalence Relations

We have seen that CH F —=LK(X{,R;). This leaves open the possibility that in ZFC, for
some # > N; we do have LK(k,R;) for some x > ®;. However, Komjath has shown that by
adding k Cohen reals to a model of GCH we get =LK(x, N;).

In summary, consider the combinatorial statement LK(Ry, Ny). Theorem 4.10 shows that

it is consistently false, while Theorem 4.12 shows it is consistently true. In other words,
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LK(RXy,N;) is independent of ZFC. In order to avoid this obstacle, we could restrict our
attention to definable sets of Polish spaces. In particular, we may require the sets (Ay)new

to be Borel, analytic, or coanalytic subsets of a Polish space.

DEFINITION 4.14. For a pointclass T, let LKp(x, A) denote the statement LK(k, \) restricted

to sequences (A, )new with each 4, € T.

Denote the pointclasses of the Borel, analytic, and coanalytic sets by B, A, and CA,
respectively. Laczkovich [18] proved LKg(Ry,R;) and Komjéth [17] generalized this to
LKA (Ng,8y). Besides a direct construction to prove this, Komjéath also gave a forcing argu-
ment to derive LK4 (Ny, ®1) from Theorem 4.12. His proofs can be found in [17]. We note
here that our main result subsumes LK4 (X1, Ry), providing yet another proof. Komjéth did

show that we cannot take the sets (A, )neo to be coanalytic.

THEOREM 4.15 (Komjath). V =Lt =LKga (Ry, Ry).

PRrOOF. The axiom of constructibility V. = L implies the existance of a Lusin set: an
uncountable set 7" C R such that every nowhere dense subset of 7" is countable. Moreover, T’
is a continuous image of a coanalytic set, T' = f(.5). By the Novikoff-Kondo uniformization
theorem, we can assume that f is injective on S. For n € w let B,, denote the set of reals
with 1 a nth binary digit after the “decimal” point, 4, = SN f~}(B,). For H € [w]*,
(Mner An is nowhere dense. The complement of lim sup,,c g An is nonmeager. By the Lusin

property,

is countable and

limsup A, =T Nlimsup B,
neH nefd

1s uncountable. OJ

We now consider a generalization of Laczkovich’s original question in another direction.
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DEFINITION 4.16. Let E be an equivalence relation on a Polish space. We say that E has the
Laczkovich-Komgath property if for every sequence (A, )ne, such that limsup,, .y A, meets
uncountably many E-equivalence classes for every H € [w]”, there is an H € [w]* such that

(Vner An contains a perfect set of pairwise E-inequivalent elements.

In this terminology, Laczkovich and Komjath showed that the equality relation = has the

Laczkovich-Komjath property. Balcerzak and Glab [2] proved the following generalization:

THEOREM 4.17 (Balcerzak—-Glab). Every F, equivalence relation has the Laczkovich-Komjdth
property.
We will generalize their result to coanalytic equivalence relations. The rest of this chapter

is devoted to the proof of this generalization, stated earlier as Theorem 4.2.

4.3. Coding I3 and Al sets

In this section we review a well-known coding mechanism for I} and Al sets, mainly
to fix notation. A good introduction can be found in [10, Section 3.2], where the notion of
uniformity is also discussed. We will need the uniformity of a diagonal intersection operation.
Since this operation is not canonical, we provide a little more of the details.

A product space is any X = Xg X -+ - x X,, (with the product topology), where each factor
is either w or w*. For every product space X there is a UX C w x X such that U* & II! and
for any A C X, A € T1] if and onlj if 3n(A = UX). Such a set U~ is called a universal IT}
set. A II} code for A C X is any n € w such that A = U;*. There exists a collection {U*X}
of universal II; sets with the following additional property: for any m € w and any product

space X there is a recursive function S™* : w™ ! — w such that
(67 k’l) Tt k‘l’nl?'r) 6 Uu) X =4 (S"%X (67 k’lv MR /‘jm): I) E DY‘X .

Such a collection is called a good universal system. For the rest of this chapter, fix a good
universal system {U? } for II1. This good universal system can be used to code Al subsets,
as we now describe. This coding is always relative to a particular product space X. When

there is no danger of confusion, we will drop the superscript in U*. For every k € w, fix a
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recursive bijection (ni,...,ny) = (ni,...,ng) between w* and w. Define
((m,n),z) € Uy < (m,z) € U,
((m,n),z) e Uy & (n,z) € U.

Then Uy, Uy € I1]. By the reduction property for I1] sets, there are I1} sets UZ, Uy C w x X

such that Uy UU; = UgUU; and U NUf = @. Let P=Uj and S = (w x X) — Uf. Let
(m,n) € C<Vre X(({m,n),z) e UV ((m,n),z)els).

i

Then C € I1] and for alln € O, P, = S, := Dy

A A codefor A C X is any n € C such that A = D, In that case, (n), is a I} code for
A and (n); is a I code for X — A. Conversely, if m,n € w are I} codes for 4 and X — A,
respectively, then (m,n) is a Al code for A. Tt is important that the set C' of Al codes is

I1} and that set-theoretic operations are effective in the codes, in the following way.

EXAMPLE 4.18. Given Aj codes m,n € C for A, B C X, we can effectively compute a Al

code for A — B. To see this, define

(m,n,xz) € Zg<= x € Dy ANz & Dy,

(myn,z) € Zy = ax &€ Dy Ve D,
Clearly, Zo, Z1 € II7. Let eq, e; be their respective II1 codes. Then for i = 0, 1,
(m.n,z) € Z; & (e;,m,n,z) € U e (%% (e, m,n),z) € UX.
Also, Zy = (w? x X) — Z;. Thus.
(S**(eg,m,n). S** (e, m.n))
is a A] code for A — B.

A similar property (often called uniformity) holds for all basic set-theoretic operations.

We will need the uniformity of a diagonal intersection operator, which we define next. Recall
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that when H, K € [w]*¥, we write H C* K to denote that H is almost contained in K, i.e.

K — H is finite.

DEFINITION 4.19. For a (finite or infinite) sequence (K,) of infinite subsets of w with K, C*
K, forn > m, define AK,, by m € AK,, if and only if there exists mg < m; < --- < mp =m
such that mg is the least element of Kg, m is the least element of KqN K7 such that m; > mg,

., my 18 the least element of Ky M --- N K} such that my > my_1.

Note that AK, C* K, for all m. To obtain the desired uniformity for this diagonal
intersection operation, we need to assume that the sequence of A} codes for (K,,) is effective.

One way to formalize this is to let n € C* if and only if

(i) neCv,

(i) D¢ is infinite,

(iii) Vm(m € D¥ = (m); € C¥), and
)

(iv) Vidlm(m € DY A (m)o = 7).

Informally, n € C* if and only if n is a Al code for an infinite subset of w of the form

{(t,m) : i € w,my € C}. Clearly, C* € I13.

LEMMA 4.20. There is a function Diag: w — w which is Al on C* such that whenever
n € C* is a code for an infinite Al subset {(i,n;) : i € w,n; € C} of w, Diag(n) is a A} code
for ADz .

PROOF. It suffices to find TI} codes eq and e; for ADy and w— ADY | respectively, because

(€. €1) will then be a Aj code for AD% . We need the following three auxiliary functions:

(i) There is a recursive function u: w — w such that whenever n = (ng,...,ng) is a
finite sequence of A} codes, u(n) is a Aj code for Dy N ---N Dy .
(ii) There is a recursive function 7: w X w — w such that whenever n € C*, i(n,j) is

the (unique) m € w such that (j,m) € D¥.
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(iii) There is a A} on the codes function p: w X w — w such that whenever n is a A}
code for an infinite subset of w, p(n,j) is the least element of D¥ greater than or

equal to 7.

Now define

(n,m) € Zg=neC" NI {mg,...,mg) (Mg < -+ < My Amyg =mA
mg = p(u({(i(n,0))),0) Amy = u(u((i(n,0),i(n, 1)), me + 1)A
e Amg = pl(u((i(n, 0), ... i(n, k), me—y + 1)).

Then Zy € II]. Pick a II] code ey for Zy. Similarly, we can write down a II} definition for

Zy = C* — Zy and pick a IT} code e;. The rest of the argument is as in the Example. O

Now that we have established the uniformity of this diagonal intersection operator, we
will use it implicitly. Finally, for codes h, k € C¥, we write h C* k if and only if the set
coded by h is almost contained in the set coded by k. Writing out the definitions, we see

that h C* k is A] on the set C“ of codes.

4.4. Canonical Cofinal Sequences

For w € 2%, define a binary relation <,, on a subset of w by
m <, n < w((m,n)) = 1.
The domain of <, is the set
dom(<,) ={n €w: Im € wim <, nor n <, m)}.

Let LO denote the set of all w € 2“ such that <, is a linear order, and let LO™ denote the set
of all w € LO such that <, has a least element and every n € dom(<,,) has an immediate
successor nZ . For w € LO, let |<,| denote the order type of <. The next lemma shows
that in a uniform way, we can effectively obtain a canonical cofinal sequence in <, given

w € LO™.
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LemMMA 4.21 (Gao—Jackson-Laczkovich-Mauldin [9]). There is a A7 function
Cof: {(w,n.j) € LO* x w?: n € dom(<y)} — w

such that
(i) ifw € LO*, n € dom(<y) and j € w, then Cof(w, n. j) € dom(<,,) and Cof(w,n, j) <y
n, unless n is the <,-least element; |
(ii) ifw € LO" andn € dom(<,,) has an immediate predecessor in <., then Cof(w,n, j)5 =
n for all j € w;
(ili) of w € LO*, n € dom(<y) is not <,-least and n does not have an immediate
predecessor in <., then
(a) if j < 7', then Cof(w,n,j) <y, Cof(w,n,j'), and
(b) for any g € dom(<,,) with g <, n there is a j € w such that ¢ <,, Cof(w,n, 7).
O
We also need a variation of this lemma for II} norms, whose proof uses the same ideas.
Recall that a II3-norm on a pointset P € I} is a function ¢ from P into the ordinals On

such that there exist binary relations <, and <J in 17 with the foﬂowing properties:

z <Ly Pla)A(=Py) Vel) < ely),

T <oy e Plz) A(=P(y)Velz) < oly).

Recall that WO denotes the set of all w € LO such that <, is a well-order. Every I pointset

admits a II{-norm ¢: P — W where

%CK = supq|<,|: w € WO is recursive },

see for example [22, Section 4B].

LEMMA 4.22. Let ¢ be a IIj-norm on a 11} set P Cw. There is a 117 function Cof: w — w

such that

(i) forall j € w, Cof(j) € P;



(ii) if j < j'. then Cof(j) <z, Cot(j');

(iii) for any g € P, there is an j € w such that ¢ <}, Cof(j) unless q is < -mazimal.

PROOF. We define the function Cof by induction on j. Let pg = Cof(0) be the least integer
in P. Assume we have defined p; = Cof(j). Let p;41 = Cof(j + 1) be the smallest integer
in P such that p; < pj;1 and p; <7, pji1. Since n = p;4; if and only if n € P and p; < n
and p; <i, n and Vm(p; < m < n = m <} p;), this defines a I} function. To see that (3)
holds, let ¢ € P be a nonmaximal element. Since the sequence (p;);e. is strictly increasing
in the natural order < on w, there is a least integer j such that p; < ¢ < p;.,. Because p;.4

is the least integer larger than p; such that p; <7, p;i1, we caunot have p; <7 ¢. Hence,

q <, pj <, Pj+1- ' U
4.5. A Completely Good Pair

Suppose E is a I1} equivalence relation on w®. A key idea in Harrington’s proof of Silver’s

dichotomy is to consider the set
W = {z € w¥: there is no A} set D such that z € D C [z]g}.

A computation shows that W is ©]. Moreover, when E has uncountably many equiva-
lence classes, W # @ and every nonempty L} subset X C W meets uncountably many
E-equivalence classes. In fact, a nonempty ¥} subset X C w” meets uncountably many E-
equivalence classes if and only if X NV # @. We will establish the following corresponding

result in our context.

PROPOSITION 4.23. Let E be a 11 equivalence relation on w® and (An)ne. a sequence of
uniformly £7 subsets of w®. If limsup, . A, meets uncountably many E-equivalence classes
for every K € [w]®, then there exists a nonempty 27 set V C w* and a Al set H € [w]* such
that for every nonempty ©7 set X CV and every A set K € [H]* the set X Nlim sup,,cx Ay
meets uncountably many E-equivalence classes.

We call such a pair (V, H) completely good. The rest of this section is devoted to the

proof of Proposition 4.23 and a further refinement. In contrast with Harrington's proof, we
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need a recursive construction of transfinite length in which we remove all possible bad pairs

one by one.

DEFINITION 4.24. We say that n = (y, k) € w is a bad pair if the following properties hold:
(i) y € C*" and k € C¥,
(i) DY € [w]*, and
(iii) D;’w Mlim sup,,. D A, meets only countably many E-equivalence classes, i.e. Dg’w N

W nlimsup,cpe Ay = 2.

It is clear from this definition that the set P C w of all bad pairs is II;. Let ¢: P — wX

be a II{-norm on P. Define a well-order on P by
m <y n < p(m) <pn)V(e(m) =¢(n) Am <n)
and let <, be the I13 relation given by
m <gn & P(m) A (=P(n) V ¢(m) < ¢(n))

Denote by C¢ the set of all n € C¥ such that D¥ € [w]*. Then C% is II;. Given an
h e Cg

o

k C* h. Set R(h, (y, k)) if and only if (y, k) is the next bad pair relative to h.

we define the next bad pair relative to h to be the <g-least (y, k) € P such that

LEMMA 4.25. The relation R C w x w s II}.  Moreover, R is a Al function on the set

B={hecw: heCsA3In(R(h,n))}

Proor. We have R(h, (y, k)) if and only if

he Con(yk) € PhE S h AWK € wyk) £, & K) = K ¢ h).

This is a I3 definition. If R(h,n) holds, then n is the unique such integer. Thus, for h € B,

—R(h,n) < Im(R(h,m) An # m), which is II.. Hence, R is A] on B. | O

Initial segments of the recursive construction can be coded by reals. as follows. Recall

that WO, = {w € WO: |<,| = a} and for a < w¥, we have WO, € Al
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DEFINITION 4.26. Let o < w. A real z € w” is a-adequate if z = (w,v, h), where w € 2¢,

v € wY, and h € w¥, and the following conditions are satisfied:

(ii) if n & dom(<,,), then v(n) = h(n) = 0,
the <,-least element is the <,-least element,
if n € dom(<,) is a <,-successor (say n =mZ_), then the following holds:

(a) n = (y, k) is the next bad pair relative to h(m) such that (y, k) € dom(<,,) | n,
(b) vw(n) is a canonical code for D:f{:n) - Dy,
(c) h(n) = k.

(v) if n € dom(<,) is a <,-limit, then with v’ the canonical code for

m Diuj(Cof(wA,n,j))

JEw

and A’ the canonical code for A, Dy oot the following holds:

w,n,7))?
(a) n = (y, k) is the next pair relative to k' such that (y, k) & dom(<,,) | n,
(b) v(n) is the canonical code for D% — D", and

(c) h(n) = k.

Some comments on these conditions: (1) says that z represents the construction up to
stage o, (2) is needed only to ensure that there can be at most one a-adéquate real for

every a < wik

, (3), (4a), and (ba) state that <, represents the order in which the bad
pairs are picked in our construction and that we pick a new bad pair at each stage, and
conditions (4b.c) and (5b.c) require v(n) and h(n) to be codes for the correct sets whenever

n € dom(<, ). We call a real adeguate if it is a-adequate for some a < WPk,
LEMMA 4.27. The set of all adequate reals is 113.

PRrROOF. Replace condition (1) above with condition (1) w € WO, which is IT;. Condition

(2) is arithmetical. Condition (3) is equivalent both to

n € dom(<y) A Vm(m € dom(<y) = n <y m) = Ym(n < m)



and to

n € dom(<y) A Ym(m € dom(<y) = n <y m) = Vm(m £, n)

which shows that (3) is both Il and If, i.e. A}. For (4), n is a <y-successor, n = (m)f_,

and (4b, c) are arithmetical predicates, while (42) is II3. Thus, (4) is II}. Similarly, (5) is
I O
LEMMA 4.28. Every adequate real is Al.

PROOF. Assume z = (w, v, h) is a-adequate for some a < wP. Conditions (1), (2) and (3)
are A}. Conditions (4) and (5) are I}, because (4a) and (5a) contain a predicate R(n,h),
i.e. n is the next bad pair relative to h (where h = h(m) in 4a and h = k' in 5a). However,
since z is given, we know that this h is an element of B = {h € w: h € C< A In(R(h,n))}.
By Lemma 4.25, R is A7 on B. Thus, conditions (4) and (5) are Al O

LEMMA 4.29. For each a < wS™, if there is an a-adequate real, then this is the unique Al

real z, € WY which is a-adequate.
ProoF. This is immediate from the definition of a-adequate and the previous lemma. [

Finally, we define V' C w* and H € [w]¥ as follows. Let x € V if and only if
Vz € Aj(z = (w,v, h) adequate = Vn(n € dom(<,) = z € S{‘(;)))
and n € H if and only if
3z € Aj(z = (w,v, h) is adequate A
Vj < n(Cof(j) € dom(<y) = n € A, h(Cof(4))).
Equivalently by Lemma 4.29. n € H if and only if
Vz € Aj(z = (w,v, h) is adequate A
Vi < n(Cof(j) € d6111(<u,) =n € Ao, h(Cof(y))).

LeEMMA 4.30. V € Z1 and H € Al Moreover, V # @.
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ProOF. By Kleene's restricted quantification theorem (see for example [22, Theorem 4D.3]),
V € B} (Note that if the construction stops below wEE then V is actually Al. We will
not need that fact.) Similarly, the first definition of H is II3 and the second definition is
3i. Therefore, H € [w]* is Al. We show that V # &. Suppose towards a contradiction
that V = @. Then for every x € w* there is an a < w¥ and a k € w such that for
Za = (Wa,Va, ha), We have k € dom(<,,) and z & D () For k € dom(<y,), denote by
Ya(k) the code for the set removed at that stage. By assumption,

U U D

a<wfk kedom(<w, )

Since H C* Dy ) for every k € dom(<y, ),

limsup 4,, C limsup A,.

neH nEDh (k)

In particular for every k € dom(<y, ),

Dy, ()ﬂhmsupA CDy (k)ﬂhmsupA

neH GD(’:}a\k)

Hence,
limsup A, = U U Dy () N hm sup A,
H
ne a<wP¥ kedom(<wy,)
U U Dy o N lilg u§u1p Ay

o<wcK kedom(<uwg ) e ha e

meets only countably many F-equivalence classes, a contradiction. Thus, V # &. ]

We now verify that the pair (V, H) is indeed completely good. In the proof of the next
lemma we use the following observation. Let z = (w, v, h) be an adequate real. If m <, n
then m,n € P and ¢(m) < ¢(n). This is the case, because whenever (y, k) is a bad pair

such that k C* h(n), also k C* h(m), since h(n) C* h(m).

LEMMA 4.31. If X CV is a nonempty £1 set and K € [H]* a A} set, then X Nlim sup,,c An

meets uncountably many E-classes.



PROOF. Suppose X N limsup,,; A, meets only countably many E-equivalence classes, i.e.
X Nlimsup,cx A NW = @. By T separation, there is a Aj set ¥ C w* such that X C Y
and Y Nlimsup,,cx A, MW = @. Let y, k be a code for Y, K, respectively. Clearly, (y, k) is
a bad pair.

First, suppose the construction halted at stage a < w®. Let z = (w,v,h) be the
unique a-adequate real. The construction stops only if there does not exists a next bad
pair which we have not picked already. Since (y, k) is a bad pair such that & C* h(n) for
every n € dom(<y,), there must be an n € dom(<,,) such that n = (y, k), i.e. we picked
(y, k) at that stage (otherwise, we can extend the construction by picking it now). But then

Yy N Dy = @, which implies VNY =@ andso VN X = 2.

Second, suppose the construction continued all the way up to w?K. Then there exists
an o < w such that o > ¢o({y,k)). Let 2 = (w,v, h) be a-adequate. By the observation
above, the pair (y, k) was considered, hence n € dom(<,,, ) such that n = (y, k). Again, this

implies VNX =@. O

This finishes the proof of Proposition 4.23. We now derive a further refinement. A
second key element of Harrington’s proof is that E is meager on W x W, when W is given
the (subspace) Gandy—Harrington topology 7gu- This is the topology on w" generated by
the 1 sets. Although w* with the Gandy-Harrington topology is not metrizable, it is
strong Choquet and this enables one to redo the familiar construction of a perfect set of
inequivalent elements, using a winning strategy for the second player. While this approach
would also work in our case, we will use the set X of low elements instead. This makes
the construction in the proof of the main theorem more transparent, at the cost of some
technicalities which we now summarize. Let Xjpw = {7 € w*: 0o ) = ) We will use
the following facts about W, X,., and 7ag:

(1) W and Xjo, are both nonempty 1 sets,
(il) Xjow 1s dense in 7gg and (X, 7au) 1s a Polish space. and
(ii) a nonempty X1 set A C w¥ meets uncountably many E-equivalence classes if and

only if ANW # @ if and only if ANW N Xjow # &
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Proofs of these facts can be found in [8].

PROPOSITION 4.32. Let E be a II7 equivalence relation on w* and (Ap)new @ Sequence of
uniformly 7 subsets of w*. If imsup, ¢ x An meets uncountably many E-equivalence classes
for every K € [w]®, then there exists a completely good pair (V, H) such that V is a Polish

space in the Gandy-Harrington topology Tau and E is meager on V x V' (with the product

topology Tau X TaH ).

PROOF. Let (V, H) be the completely good pair given by Proposition 4.23. Using the facts
stated above, it is easy to see that (V NW N Xy, H) is a completely good pair with the

required additional properties. 0

4.6. Proof of the Main Theorem

We now prove an effective version of Theorem 4.2. By the usual relativization and transfer

arguments, this implies our main result.

THEOREM 4.33. Let E be a I} equivalence relation on w* and (An)new @ Sequence of uni-
formly £} subsets of w*. If limsup, . x A, meets uncountably many E-equivalence classes for
every K € [w]”, then there ezists a K € [w]* such that (), . An contains a perfect set of

pairwise E-inequivalent elements.

PRrROOF. Let (V, H) be the completely good pair given by Proposition 4.32. Since F is meager
on V x V in the Gandy-Harrington topology 7gn, we can fix an increasing sequence (F),)new

of 7gu-closed nowhere dense sets such that £ C |, . F,,. We may assume that the diagonal

new
{(z,z): x € V} is contained in Fy. We will recursively define a strictly increasing sequence
Jo < j1 < --- of natural numbers and a Cantor scheme (X)seo<w of nonempty 1 subsets of

V such that for all s,t € 2<%,

(1) Xgng, X1 € Xy, XN X = @, and diam(X,) < 2710

(i) if s #t € 2", then X, x X; N F,, = @, and

(ii) if s € 2", then X, C A; N--- N A4,
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Once this construction is completed, let K = {jg, j1,... } and

P=|J () Xom

cE2 new
It is easy to see that P C [, ., An is nonempty perfect set of pairwise E-inequivalent
elements.

Without loss of generality we may assume that Ay = w*. Start the construction with
Jjo=0and Xg = w"“. Suppose we have defined natural numbers j, < - -+ < j, and nonempty
Y1 sets Xy C AjyN---N A, for s € 2" satisfying the requirements above. By intersecting
with sufficiently small basic open neigbhorhoods, we can split each X into disjoint nonempty
31 sets X g and X,~; satisfying requirement (1). Since F), is closed nowhere dense, given

any pair s # t € 2" we can shrink X, and X, so that X, x X; N F,, = @. After finitely

many iterations, we have defined X for s € 2"*! satisfying requirements (1) and (2).

CLAM 4.34. There is an j > j, such that X; N A; # @ for all s € 2™+,

PROOF. Suppose towards a contradiction that for every j > j, there is an s € 2"%! such
that X, N A; = &. Define a binary relation R C w x 2" by R(j,s) & X, N A; = @. Since
R is T3, there is a Al uniformizing function f:w — 2" By the pigeonhole principle,
there is an s € 2" such that {j € w: f(j) = s} N H is infinite. Pick such an s € 2"
Then K = {j €w:j € Hand f(j) = s} is A}, K € [H*, and X, N J,cx An = @. This
implies that X, Nlim sup,,¢ A, = @, contradicting the fact that (V, H) is a completely good
pair. O

To complete this step in the construction, let j,.1 = j and intersect each X, with A

In+1"

This finishes the proof of Theorem 4.33. d

The following parametric version of the Laczkovich—-Komjath property was also consid-

ered by Balcerzak and Glab.

DEFINITION 4.35. An equivalence relation F on a Polish space Y has the parametric Laczkovich—
Komjdth property if for every uncountable Polish space X and every sequence (An)neo of

analytic subsets of X XY if lim sup, . A, () meets uncountably many E-equivalence classes

\\l
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for every z € X and K € [w]*, then there exists a K € [w]* and a perfect set P C X such

- that (), cx An(x) meets perfectly many F-equivalence classes for each z € P.

THEOREM 4.36 (Balcerzak—Glab [2]). If E has the Laczkovich-Komgdth property and for

every analytic set A C X x X, the set
{z € X: A, meets uncountably many E-equivalence classes}

is analytic, then E has the parametric Lackovich—-Komjdth property. O

PROPOSITION 4.37. Every coanalytic equivalence relation on a Polish space has the para-

metric Laczkovic—Komjath property.

PROOF. Let E be a coanalytic equivalence relation on a Polish space X and A C X x X an
analytic subset. Without loss of generality we may assume E is a II equivalence relation
on X =w” and A C w” x w* is ¥1. Since A is ©!, each section A, is X1 as well. Hence, A,

meets uncountably many E-equivalence classes if and only if A, N W # @&. Thus,
{z € w¥: A, meets uncountably many F-equivalence classes}

is ¥1. Hence, F has the parametric Laczkovich-Komjéth property by Theorem 4.2 and
Theorem 4.36. l
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