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functions by incorporating two changes, for the step length αk a line search is performed and 

replacing the residual, rk (rk=b-Axk) by the gradient of the nonlinear objective function. The PR 

method is equivalent to FR method for exact line searches and when the underlying quadratic 

function is strongly convex. The PR method is basically a variant of FR and primarily differs from 

it in the choice of the parameter βk. On applying the nonlinear Rosenbrock function to the 

MATLAB code for the FR and the PR algorithms we observe that the performance of PR method 

(k=29) is far better than the FR method (k=42). But, we observe that when the MATLAB codes 

are applied to general nonlinear functions, specifically functions whose minimum is a large 

negative number not close to zero and the iterates too are large values far off from zero the PR 

algorithm does not perform well. This problem with the PR method persists even if we run the 

PR algorithm for more iterations or with an initial guess closer to the actual minimum. To 

improve the PR algorithm we suggest finding a better weighing parameter βk, using better line 

search method and/or using specific line search for certain functions and identifying specific 

restart criteria based on the function to be optimized.  
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A COMPARATIVE STUDY OF NON LINEAR CONJUGATE GRADIENT METHODS 

Introduction 

Optimization originated from the study of calculus of variations, a study which started 

with the famous Brachistochrone problem concerning the line of steepest descent. In calculus 

of variations we study optimization of mappings of functions to real numbers. Optimization is 

an iterative process which is initiated by an initial guess and followed by improving the solution 

in subsequent steps and finally terminating the algorithm by some stopping criteria such as 

tolerance or bound on the number of steps. Optimization essentially is the process of 

maximizing or minimizing a given objective function. 

If we optimize the function f(x) subject to certain conditions or constraints then it is 

called constrained optimization. In unconstrained optimization, an objective function f(x) of real 

variables is maximized or minimized without restriction on the underlying variables.  

There are two basic methods to update the current iterate xk, the line search method 

and the trust region method. 

In the line search methods we follow a search direction pk and compute an associated 

step length αk. The updated iterate is given by xk+1= xk + αk pk 

Before we can use the optimization algorithms, we need to bracket the point within a 

given interval at which the function needs to be optimized. This bracketing phase is used to find 

the interval which contains optimum step lengths. This is followed by interpolation to find an 

appropriate step length within the particular interval. 
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The bracketing process consists of starting with an initial guess, x0, and descending 

downhill and computing f(x) at the iterates x1, x2, x3, x4, ……  respectively until we reach some 

iterate xn, for which the value of the objective function f(x) increases for the first time.  

The minimum point is then bracketed in the interval, (xn-2, xn).We subsequently generate 

a telescoping sequence of intervals to a point within a given error tolerance denoted by ϵ to 

find a minimizer. 

 

Background 

For an n⨯n matrix, A and a vector b of dimension n, the sequence {A0b, A1b, A2b, A3b, 

A4b,……., Am-1b} is called a Krylov sequence. A Krylov subspace of order m, generated by matrix 

A and vector b, is a linear subspace spanned by the set {A0b, A1b, A2b, A3b, A4b,……., Am-1b}. 

The Krylov subspace methods are methods for solving large systems of linear equations 

or for finding the eigenvalues of sparse matrix. These methods involve a repeated pre 

multiplication of b by a matrix, A. 

Definition - a sparse matrix is primarily a matrix composed of zeros; these matrices 

usually show up in the solution of partial differential equations. 

Definition - a matrix A is symmetric if A=AT. 

Definition - a symmetric matrix A is said to be positive definite if the quadratic form xT A 

x > 0. 

Some of the Krylov subspace methods are: Arnoldi, Lanczos, GMRES (generalized 

minimum residuals) and conjugate gradients.  
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The Krylov subspace methods provide intuition to solve a large system of linear 

equations because for a non-singular system, Ax=b, suppose 

m (x) = xk -∑ 𝛼𝑘−1
0 j xj 

is the minimum polynomial of b relative to A [6]. 

⇔ (Ak - ∑ 𝛼𝑘−1
0 j Aj ) b=0 

⇔Ak b - ∑ 𝛼𝑘−1
0 j Aj b=0 ⇔ A (Ak-1b –αk-1 Ak-2b - ……..- α1 b) + α0 b =0. 

⇔A [(Ak-1b –αk-1 Ak-2b - ……..- α1 b)/ α0] = b, α0≠0. 

This implies that the solution to the linear system exists within the Krylov subspace 

itself.  

The conjugate gradient method is a Krylov method to solve symmetric positive definite 

system of matrices, i.e., for, Ax=b, where A is an n⨯n matrix, the minimum polynomial of b 

relative to A is  xk -∑ 𝛼𝑘−1
0 j xj, so, the solution lies within the Krylov space. The quadratic 

function, f(x) = (1/2) xT A x-bT x, has the gradient ∇ f(x) = Ax-b and consequently we observe that 

finding the minimizer of the function f is equivalent to solving the linear system Ax=b. 

Theorem [2] - A ε ℝn⨯n be a symmetric positive definite matrix and let b ε ℝn⨯1. If f(x) = 

(1/2)xT A x- xT b, then the minimizer x of  f(x), is the solution of A z=b.  

Proof:  f(x) = (1/2) xT A x- xT A z= (1/2)xT A x-xTA z+(1/2)zT A z-(1/2)zT A z 

                        = (1/2) (x-z)T A(x-z)-(1/2) zT A z; noting that xT A z= zT A x; since,-(1/2)zT A z, is 

a constant, f(x) will be minimized if x=z. 

Definition - a matrix is positive definite if all its principal minors are positive. 

Definition - the unique annihilating polynomial for A ϵ ℂn ⨯ n of minimal degree is called 

the minimum polynomial. 
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Definition - a symmetric matrix A is positive definite or positive semi definite if and only 

if all its eigenvalues are positive or non-negative. 

The conjugate gradient method can be derived from Lanczos method since both 

methods use repeated multiplication by the underlying matrix to generate the Krylov subspace 

method.  

The aim is to minimize the objective function f(x) = (1/2) xT A x- bT x, in n variables that is, 

xϵ ℝn, the partial differential of the above equation with respect to, xi, is   𝜕𝑓
𝜕xi

= −𝑏(𝑖) +

∑ 𝐴(𝑖𝑗)𝑥(𝑗)𝑗  , with the equivalent vector form, ∇f=Ax-b; where ∇f represents the gradient of 

the function f. Now, as the vector x lies in the Krylov subspace, it may turn out to be useful to 

optimize x, over the Krylov subspace. 

The conjugate gradient method is an improvement over the steepest descent method 

but does not perform as well as the Newton’s methods. The conjugate gradient method has the 

following advantages: 

• It solves the quadratic function in n variables in n steps. 

• It does not require the evaluation and storage of the Hessian matrix. 

• It does not require the evaluation of matrix inverse. 

Definition - If A is a real, positive definite, symmetric  n⨯n matrix, then, {p0, p1, p2,…} is a 

mutually conjugate set of vectors, sometimes called A-conjugate with respect to a symmetric 

positive definite matrix, A, if  pi
TA pj=0; i≠j.  In addition if the directions p0, p1, p2,…, pm ε ℝn, m≤ 

n-1 are non-zero and A-conjugate then the set {p0, p1, p2,…, pm }  is linearly Independent. 
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Reason - for αk scalar let ∑ αk pk=0⇔ pj
T A(∑ αk pk) =0 (pre multiplying) 

                                                                   ⇔   αk pk
T A pk =0 (by conjugacy property) 

                                                                   ⇔   αk =0 . 

Hence the set {p0, p1, p2,…, pm } is linearly independent. 

To find the A-conjugate vectors we may make use of the Gram Schmidt 

orthogonalization process from linear algebra to transform the basis of ℝn   into an orthonormal 

basis for ℝn. 

The conjugate gradient method is a technique using the gradient of the objective 

function to find the unconstrained minimizer, that is, the gradient of the objective function is 

used to determine the search direction. In the linear conjugate gradient algorithm the search 

direction at each iteration is a linear combination of the previous search directions and the 

current gradient with the added condition that the search directions are mutually A-conjugate.  

It is noteworthy that conjugate gradient algorithm is a conjugate direction method that 

minimizes a positive definite quadratic function in n variables in at most n steps because at 

most we could have n linearly independent conjugate directions which could form an 

orthogonal basis for ℝn. 

We may use either of the following techniques for finding the descent direction to 

minimize the above quadratic problem, the steepest descent method or the Newton’s method.  

Steepest Descent method - this is a line search method where the algorithm chooses the 

descent direction, pk (where pk =-∇fk) at the current iterate, xk, and the appropriate step length 

is an approximation to the solution of the following one-dimensional minimization problem; 

min f(xk +αpk,) 
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To ensure sufficient decrease in the function value without taking unreasonable short 

steps, the step length αk can be chosen using the Wolfe conditions, the Goldstein condition or 

the Armijo conditions. 

The steepest descent method is advantageous as it does not involve evaluation of the 

second derivative. But it is quite possible that the convergence in the steepest descent may not 

be quick if the ratio of the eigenvalues, λ (max)/ λ (min), also known as condition number, is 

disproportionately large and the resulting surface may be very uneven. As a consequence, it 

may turn out that the direction of the negative gradient rj may not necessarily be a descent 

direction. 

Newton direction - we could also obtain the quadratic approximation by using the 

truncated Taylor series. 

f(xk+p) ≈ f(xk) + {∇f( xk)}T p +(1/2) pT ∇2f(xk)p 

by finding a vector p which minimizes a quadratic model function, m(xk), where m(xk) is 

an approximation to the actual function near the current iterate xk. The basic idea is, given an 

initial guess, we construct a quadratic function which closely approximates the objective 

function and the first and second derivatives at that point. We then use the minimizer of this 

new function we constructed as the initial point for the next iteration. We can employ the 

Newton direction method only if ∇2f(xk) is positive definite since the inverse of the Hessian 

matrix might not even exist. Though the convergence rate of the method is usually quadratic 

the disadvantage of Newton’s method is the need to evaluate and store ∇2f (xk). 
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This issue could be sidestepped by using the specific search directions, {p0, p1, p2…}, with 

the property such that   pi
T A  pj=0; i≠j, in place of the residual, rj. These specific search 

directions are conjugates or A-conjugates as seen before. 

The basic idea is to initiate the process starting from the point x0 with the initial descent 

direction being the steepest descent direction, p0 = - ∇f(x0) with  x1= x0 +  α0 p0, where  α0   = - { 

∇f(x0)}T p0/( p0 )TA p0; we then update the direction at the next step to p1= -∇f(x1)+ β0 p0, where 

β0  is such that it forces  p1
TA p0=0. The next updated iterate is x2= x1+ α1p1. We continue on with 

this process. 

The linear conjugate gradient method is an algorithm to find the numerical solution for 

a symmetric, positive definite system of linear equations. This technique is especially useful in 

solving large linear system of equations. 

The linear conjugate gradient method was proposed by Magnus Hestenes and Eduard 

Stiefel in 1952 [5]. 

The linear conjugate gradient method is an alternative to the Newton’s method in the 

sense that it is an improvement over the Newton’s method since it does not require the second 

derivative to be calculated and also in contrast to the secant updating methods the conjugate 

gradient method does not require the Hessian to be stored in memory.  

The linear conjugate gradient method uses the gradient but unlike the steepest descent 

it updates the gradient at each step by removing the components from the previous search 

directions. The sequence of search directions is thus obtained with the terms being called 

conjugates. These search directions preserve the information about the Hessian matrix as well. 
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The linear conjugate gradient method being an iterative method to solve linear system 

with large and sparse (matrix primarily composed of zeros) positive definite matrices (i.e Aϵ 

ℝn⨯n and xT A x>0) is a viable alternative to Gaussian elimination and is perfect for large 

problems. 

For the quadratic function f(x) = (1/2) xT A x-bT x, where A is a symmetric positive definite 

matrix, ∇ f(x) =Ax-b, then the minimizer of function f is also the solution to Ax=b ; which 

suggests that the methods such as the steepest descent, Newton, quasi Newton or the secant 

updating methods could be applied to get the solution of the corresponding system of linear 

equations. 

An outstanding feature of quadratic optimization is the residual vector is the negative 

gradient, i.e. - ∇f(x) =b-Ax=r. We note that since in particular the minimum over αk occurs when 

the new residual is orthogonal to the search direction, a suitable value for αk could be 

ascertained by analysis alone specifically by having (d/dα) f(xk+1)=0, hence we do not need to 

perform a line search because the new residual depends on the old residual and the search 

direction and we can then solve for α.  

We utilize the above outlined features to obtain the linear conjugate gradient method 

for solving a linear system which is both symmetric and positive definite. 

Definition - a subset of S⊆ ℝn is convex if it contains the line segment between any two 

points x, yϵ S, {αx+ (1-α) y: 0≤α≤1} ⊆S. 

Definition - a function f: S⊆ ℝn →ℝ is convex on a convex set S if for any two points x 

and y in S, f(αx +(1-α)y)≤α f(x)+(1-α) f(y) 
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Definition - a function f is strictly convex if for x ≠ y,  

f(αx +(1-α)y)<α f(x)+(1-α) f(y) , 0≤α≤1. 

The linear conjugate gradient method is quite efficient because only one matrix vector 

multiplication operation is performed at each iteration besides the evaluation of Euclidean dot 

products thereby requiring little memory space. 

Since the linear conjugate gradient method generates Krylov subspace by multiplying by 

matrix A over and over. The linear conjugate gradient method may not have desirable 

convergence if the matrix is ill conditioned. The convergence may also be affected by the 

distribution of the eigenvalues of the matrix of coefficients.  

Definition - The rate of convergence of a descent method is measured by the limiting 

value of the ratio {ln f (xk)} /{ln f (xk+1)}; as k approaches infinity.          This limiting value is 

known as the order of convergence of an algorithm. Specifically, quadratic convergence means 

that the order of convergence is 2. 

We also compare the convergence rates of iterative methods by the formula 

lim 𝑘 → ∞‖x(k+1)−x∗‖
‖𝑥(𝑘)−𝑥∗‖^𝑟

 = C (where C is some finite positive number) 

if r=1 and C<1 then the convergence rate is linear. 

if r>1, the convergence rate is superliner. 

One criterion to measure the convergence is to consider a descent method good if it 

could find the minimum of a symmetric positive definite quadratic function in a finite number 

of steps. 
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The usual stopping criterion is when the relative change ‖x(k+1)−x(k)‖
‖𝑥(𝑘)‖

 does not vary 

sufficiently, which implies that the approximate solution is not changing sufficiently on 

performing more iteration. This then signals the termination of the iterative process. 

 

Convergence 

The Krylov method: conjugate gradient, gives the solution to Ax=b, where A is n⨯n 

matrix and b is an n vector, in at most n steps. But, in actual implementation, it might turn out 

that, n, is a very large number. To avoid facing the problem of encountering a large n, we may 

use a preconditioned matrix, M-1Ax= M-1b. Here we note that preconditioning means changing 

the variables to get a new equation whose coefficient matrix has better eigenvalue distribution. 

This is helpful in arriving at a relatively close approximation to the minimizer in just a 

few iterations. Although we note that the convergence is also dependent on the distribution of 

eigenvalues in the system. 

Definition - a matrix P is called a preconditioner of another matrix A, if the condition 

number of the matrix P-1A is smaller than the condition number of matrix A. 

We could improve the convergence of the conjugate gradient method by 

preconditioning the linear system. A preconditioner matrix M of a matrix A is such that the 

condition number of M-1 A is less than the condition number of matrix A.  

Linear stationary Iterative methods split the matrix A, A=M-N. The iteration function,      

x(k) =H x(k-1)+d  where H=M-1 N , d=M-1 b and the Jacobian matrix(i.e. H) are effective methods to 

find an easily invertible  matrix M and to replace the system Ax=b by M-1Ax= M-1b [4]. We could 

obtain desirable convergence by restricting the spectral radius, ρ (M-1 N) < 1. The idea is to 
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precondition the matrix, A, by pre multiplying it by the inverse of a matrix P for some system 

Px=y which can be easily solved and where P-1 approximates A-1 where the matrix   P-1A, has a 

smaller condition number relative to A.  

Various descent methods differ from each other in their respective convergence rates. 

The convergence of non-stationary conjugate methods is more tricky and complicated. 

We require that a preconditioned system has better spectral properties. An ideal 

preconditioning matrix M must fulfill the following properties: 

• It must be a good approximation to the original matrix under consideration and 

must not be expensive to construct from the point of number of operations 

involved. 

• The preconditioned system must be easier to solve compared to the original 

system.  

For a linear system Ax=b, if a preconditioner M is used to solve the preconditioned 

system, M-1Ax= M-1b, then M is called a left preconditioner.    

In this case, using the Krylov subspace method, we would construct an orthonormal 

basis for the Krylov subspace. K (M-1A, r0) = span {r0, M-1A r0,….. , ( M-1A)n-1 r0}; with r0= M-1(b-A 

x0). M is called a right preconditioner, if it solves: AM-1y=b where y= M x [2]. 

Definition - If an n⨯n matrix A the condition number with respect to the matrix norm   II 

.II is ƙ (A) =IIAII IIA-1II 

Definition - A matrix is ill-conditioned if it has a large condition number and the matrix is 

singular if it is infinite. 

Definition - a matrix is symmetric iff vTAW=WTAv. 
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We note that though the introduction of the preconditioner increases the convergence 

rate but it also increases the number of evaluations per iteration. 

Some of the most common types of preconditioners are listed [4]: 

• Jacobi - M is taken to be a diagonal matrix with entries equal to the 

corresponding entries in A. 

• Block Jacobi – the indices 1, 2, 3,…., n are partitioned into mutually disjoint 

subsets, with, mij= aij if i and j belong to the same subset otherwise, mij,=0.This 

can be achieved by partitioning along lines or planes in a grid. 

• Gauss-Seidel method - this method is an improvement over Jacobi in the sense 

that it incorporates the new evaluations immediately in the computation process 

besides requiring less storage. Here we split A= (D-L)-U, where –L and –U contain 

the entries above and below the main diagonal of A and D is diagonal.  

• Successive Over Relaxation(SOR) - this method is an improvement over Gauss-

Seidel. It uses a real number ω≠0 as relaxation or correction parameter and we 

write A= [ω-1 D-L]-[(ω-1 -1) D+U]. 

• Symmetric Successive Over Relaxation (SSOR) - we split matrix A, as  A= L+D+LT, 

where D is diagonal matrix and L is lower triangular matrix and then express, M= 

(D+L) D-1(D+L)T. 

• Polynomial – we try to find a polynomial matrix of low degree with nicer 

properties and we approximate A-1 by taking M-1as a polynomial in A. 
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• Approximate Inverse – here we use the optimization algorithms to minimize the 

residual, ‖I-A M-1‖, in some norm with restriction to have a pre-determined 

pattern for the non-zero entries. 

• Incomplete Cholesky factorization – here we compute the approximate Cholesky 

factorization, A≈ LLT, with the non-zero entries of L restricted to positions as 

those in the lower triangle in A. This method is suitable for the conjugate 

gradients.  

 

The Linear Conjugate Gradient Method 

This is an iterative method for solving a linear system of equations Ax=b; where A is an 

n⨯n symmetric positive definite matrix. The idea of linear conjugate gradient method is to 

obtain the new search direction which is orthogonal to all the previous search directions. This is 

achieved by restricting the search directions to a set of conjugates which are linearly 

independent which in turn guarantees that after n steps we would have the exact solution since 

n linearly independent vectors span ℝn.  

We recall that solving the above system is equivalent to minimizing the quadratic 

function, f(x) = (1/2) xT Ax-xTb. The equivalence between the linear system and the convex 

minimization problem allows us to visualize the linear conjugate gradient method both as an 

algorithm for solving linear systems and as a technique for minimizing convex quadratic 

functions. 

An outstanding feature of the linear conjugate gradient method is the ability to 

generate a set of vectors with the conjugacy property. The importance of conjugacy lies in the 
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fact that function f could be minimized in n steps by successively minimizing it along the 

individual directions in a conjugate set. Also, the gradient of function f given by                          

f(x) = (1/2) xTAx - bTx, equals the residual of the linear system Ax=b, that is, ∇ f(x) =Ax-b =r. In 

particular the residual vectors, rk=A xk -b are orthogonal, that is, rk T rj =0∀k>j. 

Theorem [9] - Suppose the k th iterate generated by the conjugate gradient method is 

not the solution x*.Then rk 
T ri=0 for 0≦ i ≦ k-1. 

span { r0, r1, r2,……,……… ,rk-1} = span {A0b, A1b, A2b, A3b,…., Ak-1b} 

span { p0, p1, p2,……,……… ,pk-1}= span {A0b, A1b, A2b, A3b,…., Ak-1b} 

pk
T A pi=0; 0≦ I ≦k-1. Therefore the sequence {xk} converges to x* in at most n steps. 

Theorem [2] - The conjugate gradient algorithm converges in n steps.                                         

Proof - We know that rn, is orthogonal to r0, r1, r2… rn-1 and from the above Krylov space 

properties, evidently r0, r1, r2,……,……… , rn-1 being linearly independent ; form a basis for ℝn. Also 

since rn, is orthogonal to the preceding residuals, r0, r1, r2,……,……… , rn-1 we have that rn=0.  

The linear conjugate gradient method can be modified to solve nonlinear optimization 

problems. 

 

Basic Properties of Linear Conjugate Gradient Method 

The conjugate gradient method is a conjugate direction method with additional 

property that in generating the set of conjugate vectors, it can compute a new vector pk by 

using only the previous vector pk-1. Thus it requires little storage. Also, the method does not 

require the calculation of second partial derivatives. 
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In the conjugate gradient method the direction pk ,at each iteration is chosen to be a 

linear combination of the negative residual –rk ,which is the steepest descent direction for the 

function f and the preceding direction pk-1, given by, pk =- rk + βk pk-1 with the requirement that 

the A-conjugacy property of the vectors, pk and pk-1 help in determining the scalar, βk . 

The first search direction p0 is chosen to be the steepest descent direction at the initial 

point x0.While executing the conjugate direction method one dimensional minimizations is 

performed successively along each of the search directions. 

Since αk=min f(xk+α pk) and we minimize over α, we note that the matrix A appears in 

computations only while updating  αk  and βk . Consequently, we could replace αk by using the 

line search methods. In a similar approach, for each βk, where βk= (∇fk+1)T  A ∇fk+1/(∇fk+1)T  A ∇fk; 

we rearrange the formula so that the matrix, A does not show up in the formula. Then at each 

iteration, the computation will depend only on the objective function and the gradient of the 

function. 

We look into ways to modify the conjugate gradient algorithm such that we do not 

require the Hessian to be evaluated at each iteration but at the same time the gradient and the 

value of the objective function is available. 

 

MATLAB Code for Linear Conjugate Gradient Algorithm 

function x=cg_2(A, b , x, tol) 

%x = [2.00; 1.00]; 

%b = [1.00; 2.00];  

%A = [4.00, 1.00; 1.00, 3.00];  
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r = (A * x(:,1)) - b; 

p = -1. * r(:,1); 

k = 1;  

while (r(:,k) ~= 0) & (k < tol) %tol is the max number of k values that the iteration can go 

upto 

    alpha = (r(:,k)' * r(:,k)) / (p(:,k)' * A * p(:,k));%(:,k) 

%is the k th col  

    x = [x , (x(:,k) + alpha * p(:,k))];%this calculates the k+1 th iteration and appends that 

value as the k+1 th column 

    r = [r , (r(:,k) + alpha * A * p(:,k) )]; 

    beta = (r(:,k+1)' * r(:,k+1)) / (r(:,k)' *  

r(:,k));%here beta is being updated at each step 

p = [p , ( (-1.*r(:,k+1)) + (beta * p(:,k)) )];     

    k = k+1;     

end  

display(r); display(x); 

end 

 

Nonlinear Conjugate Gradient Method 

The linear conjugate gradient method can be modified to solve nonlinear optimization 

problem also. We recall that the linear conjugate gradient method can be viewed as the 

minimization algorithm for convex quadratic function f, given by, min f(x) = (1/2)xTAx- bTx .  
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Intuitively we could apply the conjugate gradient algorithm to nonlinear functions as 

well by visualizing the quadratic function,  

f(x) = (1/2)xTAx -bTx  as a Taylor series approximation of the objective function as the 

end behavior of the nonlinear functions near the solution is similar to that of the quadratic 

functions. 

 

Fletcher Reeves Method 

Fletcher Reeves (FR) extends the linear CG method to nonlinear functions by 

incorporating two changes: 

• For the step length αk, (which minimizes f along the search direction pk), we 

perform a line search that identifies the approximate minimum of the nonlinear 

function f along the search direction pk. 

Note - to find the appropriate step length effecting sufficient decrease we could choose 

from various method such as the Armijo, the Goldstein or the Wolfe’s conditions.  

• The residual rk (rk=b-Axk), which is the gradient of function f has to be replaced 

by the gradient of the nonlinear objective function. 

Note - If f is a strongly convex quadratic function and αk is the exact minimizer of the 

function f, then the FR algorithm becomes specifically the linear conjugate gradient algorithm.  

Definition [8] - A continuously differentiable function f is called strongly convex on ℝn if 

there exists some constant μ > 0 such that ∀x, y ϵ ℝn, 

f(y) –f(x) ≧  < f´ (x), y-x > +(1/2) μ ‖y-x‖2 

  

17 



MATLAB Code for Fletcher Reeves Algorithm 

function [fmin,xmin,ymin,k,finalX,finalY,finalZ] = FR_20Jan2013( f,x0,y0 )%RHS input 

%finalX and finalY return variables were added to obtain the x and y 

%cordinates. these two are vectors 

%FR [x,y,fmin,n] = FR( f,x0,y0 )  

%as example FR_11('z^2+z^3',5) 

%x0: initial guess  

tol=10^-4; % our tolerance 

x(1)=x0;y(1)=y0;%matlab starts vectors at index 1 

%f is a function of x and y, k:number of steps limited to 200 

gradf=[diff(f,sym('x'));diff(f,sym('y'))]; %the gradient of f 

%p(1)=-subs(subs(f,'x',x0),'y',y0) %by this we mean p0=-gradf(x0) 

p(:,1)=-subs(subs(gradf,'x',x0),'y',y0); %by this we mean p0=-gradf(x0) 

%:,1 inside p means the first col in all the rows in the matrix 

k=1;%matlab starts counting at 1 

finalX = x(1) ; %initialize the vector  

finalY = y(1) ; 

finalZ = subs(subs(f,'x',x(1)),'y',y(1)); 

while and(norm(subs(subs(gradf,'x',x(k)),'y',y(k)))>tol,k<500) 

    rho=0.5;c=0.1; 

    alp=armijo(f,rho,c,x(k),y(k),gradf,p(:,k)); % alp is updated using the other function 

    x(k+1)=x(k)+alp*p(1,k); 
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%updating x(k);p(1,k)means row 1 &col k 

    y(k+1)=y(k)+alp*p(2,k); 

%updating y(k);p(2,k)means row 2 &col k    

bet(k+1)=subs(subs(gradf,'x',x(k+1)),'y',y(k+1))'*subs(subs(gradf,'x',x(k+1)),'y',y(k+1))/((s

ubs(subs(gradf,'x',x(k)),'y',y(k))'*subs(subs(gradf,'x',x(k)),'y',y(k)))); 

    p(:,k+1)=-subs(subs(gradf,'x',x(k+1)),'y',y(k+1))+bet(k+1)*p(:,k); 

%p(:,k+1)takes existing matrix and adds a col        

    finalX = [finalX; x(k+1)];  

%each calculated value is appended into the  

    finalY = [finalY; y(k+1)]; 

    finalZ= [finalZ; subs(subs(f,'x',x(k+1)),'y',y(k+1))];     

    k=k+1 

end  

    k=k 

    fmin=subs(subs(f,'x',x(k)),'y',y(k)) 

    xmin=x(k) 

    ymin=y(k) 

    finalX = [finalX; xmin]; %each calculated value is append into the  

    finalY = [finalY; ymin];     

    finalZ = [finalZ; fmin];%vertical descent down along the Z direction 

%axis([x(k)-10 x(k)+10 y(k)-20 y(k)+20]);trying to set the axis to an area 

%near the final solution 
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plot3(finalX,finalY,finalZ);%plot of the iterarates x,y and z i.e the path to the solution 

hold on 

    %plot(finalX,finalY);this was for the 2D projection that we are not 

    %using now 

   [X,Y]= meshgrid(x(k)-10:1:x(k)+10,y(k)-20:1:y(k)+20);% 

    % Z=subs(subs(f,'x','X.'),'y','Y.'); 

    IJ=size(X);%getting the matrix dimension for the mesh grid 

    Z=zeros(size(X));%initializing Z 

    for i=1:IJ(1) 

        for j=1:IJ(2) 

            Z(i,j)=subs(subs(f,'x',X(i,j)),'y',Y(i,j));%evaluating the function on the grid 

        end 

    end 

    mesh(X,Y,Z)%plotting the surface 

    title('Subrats Pics'),xlabel('x'),ylabel('y') 

end 

 

function [alp]=armijo(f,rho,c,xk,yk,gradf,p)%alp0 is the initial step size, 

%rho is (0,1),xk is the current iterate 

%c is in (0,1); 

%DEBUG - put gradf_val back in and compare with the p values, to try and 
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%see why our alphas are so small/silly 

gradf_val=subs(subs(gradf,'x',xk),'y',yk); 

alp=0.5;% initial step 

fkk=subs(subs(f,'x',xk+alp*p(1)),'y',yk+alp*p(2));%fkk is the potential new min 

fk=subs(subs(f,'x',xk),'y',yk); 

    while and(fkk>fk+c*alp*(gradf_val)'*p, alp>10^-6); 

    alp=rho*alp; 

    fkk=subs(subs(f,'x',xk+alp*p(1)),'y',yk+alp*p(2));%fkk is the potential new min 

    end 

end 

 

Fletcher Reeves algorithm applied to nonlinear Rosenbrock function: 

f(x,y) =100(y-x2)2+(1-x)2 +.01 

FR (‘100*(y-x2)2+ (1-x)2 +.01',0,0 ) 

Initial guess x0 =0, y0=0  

 k =    42(number of iterations) 

fmin =    0.0100 

xmin =    0.9999 

ymin =    0.9999 

ans =    0.0100 
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Fletcher Reeves algorithm applied to nonlinear function [7]: 

f(x,y) = (x2/4)+(y2/10)-0.8 x – y - 0.3 x y-3 

FR (‘(x2/4) + (y2/10)-0.8*x-y-0.3*x*y-3’,0,0) 

Initial guess x0 =0, y0=0  

k =   115 

fmin =  -58.4000 

xmin =   45.9966 

ymin =   73.9945 

 

Fletcher Reeves algorithm applied to nonlinear function [7]: 

f(x,y) = (x2/4)+(y2/11)-0.8 x – y - 0.3 x y-3 

FR ('(x2/4) + (y2/11)-0.8*x-y-0.3*x*y-3',0,0) 

Initial guess x0 =0, y0=0  

k =   389 

fmin = -606.0000 

xmin =  489.9623 

ymin =  813.9374 

 

The outstanding features of the FR method are: 

• Suitability for large nonlinear problems because of the only requirements at each 

iteration being, evaluation of objective function and the gradient. 
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• No need to perform matrix operations (matrix-vector or matrix-matrix 

multiplication) for each step computation. 

• Requirement of very little storage space. 

The Polak Ribiere(PR) is another nonlinear conjugate gradient method similar/ 

equivalent to FR for exact line searches and when the underlying quadratic function is strongly 

convex. Recalling the identities from Krylov spaces; if the kth iterate from the CG method is not 

the solution, then the successive gradients being orthogonal (i.e. rk 
T * rj =0 ∀ j<k) we have                   

β PR
k+1 =  β FR

k+1.  

PR is basically a variant of FR and primarily differs from it in the choice of the parameter 

βk.   

But when we apply the FR and the PR to nonlinear functions using inexact line search, 

we find that the PR algorithm is more stable and efficient (this is highlighted in our examples 

when we input nonlinear Rosenbrock function into the MATLAB code for FR and PR algorithms 

we find that PR performs the task in fewer steps and with better approximation). 

We could also have other choices for βk+1, as well but in particular for quadratic 

functions with the exact line search, using the Hestenes-Stiefel (HS) formula, 

β HS
k+1= (∇fk+1)T[∇fk+1-∇fk]/( ∇fk+1-∇fk)T  pk  

gives an algorithm that is quite similar to the PR. 

If the line search method is not accurate it is better to use the Hestenes- Stiefel to 

generate the βk. 
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Extension to Non-Quadratic Functions: Restart 

A modification that the nonlinear conjugate gradient method makes to linear conjugate 

gradient method is that it restarts the iterations after every n steps. The restart is needed 

because the Hessian keeps changing at each iteration and we may not obtain convergence after 

n steps. The restart is executed by choosing the descent direction as the steepest descent step, 

which is achieved by setting βk=0. This re initialization deletes the unnecessary information 

from memory thereby increasing the efficiency of the algorithm. This is also the basic difference 

between the PR and the FR algorithms. 

Also, if the algorithm is converging for a function, f, which is not quadratic anywhere but 

only convex and quadratic in the neighborhood of the solution, then, it is certain that the 

iterates will enter the neighborhood of the solution at some point. At this point the algorithm 

will be restarted and would behave as the linear conjugate gradient method [9]. 

Also, in case, if the function, f, is not quadratic in neighborhood of the solution, the 

Taylor’s theorem: 

Theorem [9] - Suppose that f: ℝn→ℝ is continuously differentiable and that       pϵ ℝn. 

Then we have, 

f(x+p) = f(x)+ ∇f(x+tp)T for some t ϵ (0,1).Moreover, if f is twice continuously 

differentiable, we have that , 

∇f(x+tp) = ∇f(x) +∫∇2f(x+tp)p dt (the limits of integration are t=0 to t=1 And that,  

f(x+p) = f(x)+ ∇f(x)T p+(1/2) pT ∇2f(x+tp)p, for some t ϵ (0,1). 

tells us that a smooth function f can be approximated by a quadratic function. 
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One of the most popular algorithm restart strategy is executed when the consecutive 

gradients are not orthogonal and is determined by the relation, 

 (∣∇fk
T *∇fk-1∣/ ‖∇fk‖)≧ v, where  v is typically 0.1 [9] 

If the FR algorithm generates a bad search direction and very small step length, it is 

quite probable that the steps that follow the updated search directions and step lengths are 

just as under achieving. 

As we know, cos θk= (-(∇fk)T 
* pk ) /II∇fkII*II pk II 

where θk  is the angle between the search direction, pk, and the steepest descent 

direction -∇fk. 

In particular if θk is such that cos θk ≈ 0, for some iterate k, and the immediate next step 

turns out to be tiny, that is, xk+1≈ xk then it is an indicator that the algorithm is stuck in a 

sequence of under achieving iterations. Consequently the FR algorithm will take a large number 

of tiny steps to get a close approximation to the solution.  

In contrast the PR method is quite efficient in comparison to FR. If the search direction, 

pk , satisfies the condition, cos θk≈ 0,and,in case the immediate next step is too small, then 

plugging , ∇fk≈  ∇fk+1, in 

 βk+1
PR

 =(∇fk+1)T[∇fk+1-∇fk]/II∇fk II2 

⇒ βk+1≈ 0,then as the updated descent direction pk+1, is  

pk+1=-∇fk+1 + βk+1
PR

  * pk   , the updated search direction, pk+1=-∇fk+1 which is almost the 

steepest descent direction, -∇fk+1.This is an example of the restart that the PR method 

undertakes on encountering a bad search direction with insignificant reduction in function 

value [9]. 
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Here in the formula for βk , i.e. βk=(∇fk+1)TApk/((∇pk)TApk); replacing 

 Apk   by (∇fk+1 -∇fk)/ αk ; where αk=-(∇fk)T pk /((pk)T Apk) 

Now since, xk+1= xk+αk pk. Pre multiplying with A gives, Axk+1= A xk +Aαk pk 

⇔ ∇fk+1=∇fk+ αk A pk (as ∇fk+1 =A xk -b) 

⇔ A pk = (∇fk+1-∇fk)/ αk; plugging back this value, 

βk =(∇fk+1)T[∇fk+1-∇fk]/(pk)T [∇fk+1-∇fk] 

      = (∇fk+1)T[∇fk+1-∇fk]/(pk)T [∇fk+1- ∇fk] 

But by conjugacy property [1]  

 (pk)T ∇fk+1=0; and pk=-∇ fk+βk-1* pk-1 ; 

⇔ (∇fk)T pk=-(∇fk)T* ∇ fk+βk-1*(∇fk)T 
* pk-1; 

      =-(∇fk)T* ∇ fk 

Hence, βk+1= ((∇fk+1)T*[∇fk+1-∇fk])/((∇fk)T* ∇fk);    

This is the formula for Polak Ribiere [1]. 

Thus we see that the PR method differs from the FR conjugate gradient method in the 

choice of the parameter. 

Also, it is noteworthy that the two algorithms are identical when the function is convex 

and quadratic and the exact line search method is used. In contrast when the two algorithms 

are applied to general nonlinear functions with inexact line search methods then the PR 

algorithm is more stable and efficient. 

It is worth noting that it is not always the case that the PR algorithm is more efficient 

than the FR method. Also PR method requires storing one extra vector in comparison to FR 

method. 
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MATLAB Code for Polak Ribiere Algorithm 

function [fmin,xmin,ymin,k,finalX,finalY,finalZ] = FR_20Jan2013Copy( f,x0,y0 )%RHS 

input 

%THIS IS THE POLAK RIBIERE 

%finalX and finalY return variables were added to obtain the x and y 

%cordinates. these two are vectors 

%FR [x,y,fmin,n] = FR( f,x0,y0 )  

%as example FR_11('z^2+z^3',5) 

%x0: initial guess  

tol=10^-4; % our tolerance 

x(1)=x0;y(1)=y0;%matlab starts vectors at index 1 

%f is a function of x and y, k:number of steps limited to 200 

gradf=[diff(f,sym('x'));diff(f,sym('y'))]; %the gradient of f 

%p(1)=-subs(subs(f,'x',x0),'y',y0) %by this we mean p0=-gradf(x0) 

p(:,1)=-subs(subs(gradf,'x',x0),'y',y0); %by this we mean p0=-gradf(x0) 

%:,1 inside p means the first col in all the rows in the matrix 

k=1;%matlab starts counting at 1 

finalX = x(1) ; %initialize the vector  

finalY = y(1) ; 

finalZ = subs(subs(f,'x',x(1)),'y',y(1)); 

while and(norm(subs(subs(gradf,'x',x(k)),'y',y(k)))>tol,k<500) 

    rho=0.5;c=0.1; 
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    alp=armijo(f,rho,c,x(k),y(k),gradf,p(:,k)); % alp is updated using the other function 

    x(k+1)=x(k)+alp*p(1,k); 

%updating x(k);p(1,k)means row 1 &col k 

    y(k+1)=y(k)+alp*p(2,k); 

%updating y(k);p(2,k)means row 2 &col k    

bet(k+1)=subs(subs(gradf,'x',x(k+1)),'y',y(k+1))'*(subs(subs(gradf,'x',x(k+1)),'y',y(k+1))-

subs(subs(gradf,'x',x(k)),'y',y(k)))/((subs(subs(gradf,'x',x(k)),'y',y(k))'*subs(subs(gradf,'x',x(k)),'y',y

(k)))); 

    p(:,k+1)=-subs(subs(gradf,'x',x(k+1)),'y',y(k+1))+bet(k+1)*p(:,k); 

%p(:,k+1)takes existing matrix and adds a col 

    finalX = [finalX; x(k+1)];  

%each calculated value is appended into the  

    finalY = [finalY; y(k+1)]; 

    finalZ= [finalZ; subs(subs(f,'x',x(k+1)),'y',y(k+1))];     

    k=k+1 

end       

    k=k 

    fmin=subs(subs(f,'x',x(k)),'y',y(k)) 

    xmin=x(k) 

    ymin=y(k) 

    finalX = [finalX; xmin]; %each calculated value is append into the  

    finalY = [finalY; ymin];     
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    finalZ = [finalZ; fmin];%vertical descent down along the Z direction     

%axis([x(k)-10 x(k)+10 y(k)-20 y(k)+20]);trying to set the axis to an area 

%near the final solution 

 plot3(finalX,finalY,finalZ);%plot of the iterarates x,y and z i.e the path to the solution 

hold on 

    %plot(finalX,finalY);this was for the 2D projection that we are not 

    %using now     

     [X,Y]= meshgrid(x(k)-10:1:x(k)+10,y(k)-20:1:y(k)+20);% 

    % Z=subs(subs(f,'x','X.'),'y','Y.'); 

    IJ=size(X);%getting the matrix dimension for the mesh grid 

    Z=zeros(size(X));%initializing Z 

    for i=1:IJ(1) 

        for j=1:IJ(2) 

            Z(i,j)=subs(subs(f,'x',X(i,j)),'y',Y(i,j)); 

%evaluating the function on the grid 

        end 

    end 

    mesh(X,Y,Z)%plotting the surface 

    title('Subrats Pics'),xlabel('x'),ylabel('y') 

end 

 function [alp]=armijo(f,rho,c,xk,yk,gradf,p)%alp0 is the initial step size, 

%rho is (0,1),xk is the current iterate 
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%c is in (0,1); 

%DEBUG - put gradf_val back in and compare with the p values, to try and 

%see why our alphas are so small/silly 

gradf_val=subs(subs(gradf,'x',xk),'y',yk); 

alp=0.5; 

% initial step 

fkk=subs(subs(f,'x',xk+alp*p(1)),'y',yk+alp*p(2)); 

%fkk is the potential new min 

fk=subs(subs(f,'x',xk),'y',yk); 

    while and(fkk>fk+c*alp*(gradf_val)'*p, alp>10^-6); 

    alp=rho*alp; 

    fkk=subs(subs(f,'x',xk+alp*p(1)),'y',yk+alp*p(2)); 

%fkk is the potential new min 

    end 

end 

 

Polak Ribiere algorithm applied to Rosenbrock function: 

PR (‘100*(y-x2)2+(1-x)2 +.01’,0,0) 

Initial guess x0 =0, y0=0  

k =    29 

fmin =    0.0100 

xmin =    1.0001 
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ymin =    1.0002 

ans =    0.0100 

 

Polak Ribiere algorithm applied to [7]: 

 f(x,y) = (x2/4)+(y2/10)-0.8 x - y- 0.3 x y-3 

 PR ('(x2/4) + (y2/10)-0.8*x-y-0.3*x*y-3',0,0) 

k =   500 

fmin =  -58.3608 

xmin =   44.7819 

ymin =   72.0290 

ans =  -58.3608 

 

Polak Ribiere algorithm applied to [7]: 

 f(x,y) = (x2/4)+(y2/11)-0.8 x - y-0.3 x y-3 

PR ('(x2/4) + (y2/11)-0.8*x-y-0.3*x*y-3‘,0,0) 

k =   500 

fmin = -296.3405 

xmin =  139.0078 

ymin =  230.5760 
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Applications and Research 

One of the most researched areas in computational biology is to determine the genome 

sequence of organisms and finding new protein structures. The tools required for such an 

exercises are software to build protein models* and fitting maps etc. which make use of Polak 

Ribiere variant of BFGS (a secant updating method for solving nonlinear equations) conjugate 

gradient technique to minimize a multiple variable function [3]. 

The nonlinear conjugate gradient methods are increasingly used in imaging and image 

restoration because of low evaluation and storage cost [10]. 

MATLAB is used in computed tomography (CT scans) for three dimensional modeling of 

forward scattering using the conjugate gradient together with fast linear adjoint approximation. 

The nonlinear conjugate gradient method is used in three dimensional diffraction tomography 

[11]. 

 

Observation 

We observe that the performance of PR method (k=29) is far better than the FR method 

(k=42) when the minimum of the nonlinear function is close to zero and the iterates have small 

magnitude as well; this is evident from the application of the MATLAB code to the Rosenbrock 

function. 

But when the function minimum is a large negative number and the iterates are large 

values far off from zero the PR algorithm does not perform well. This is verified by applying the 

MATLAB codes to general nonlinear functions [7]. Although, it is worth noting that the FR 

method still works better in comparison to the PR method in this situation. 
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There could be more than one reason for this inaccuracy of the PR method. One reason 

could be that the general condition for restart is not met for particular termination conditions 

such as Wolfe or Armijo. This, if true highlights another drawback of the PR method namely the 

restart conditions have to be appropriate and suitable on the case by case basis which then 

would depend on the function being considered.  

Another reason could be that we may need to use specific inexact line search 

condition(Wolfe , Strong Wolfe or another criteria) for certain specific functions to obtain 

better convergence. This would need more analysis of the function before we have a particular 

variant of PR available which gives better results. 

Suggestions for Improvement of PR Nonlinear Conjugate Gradient Method 

• Finding a better weighing parameter βk. 

• Devising better line search method to find the optimum step length descent 

direction and/or using specific line search for certain functions.  

• Specific restart criteria need to be identified based on the function to be 

optimized. 

If we incorporate the above features, it may make the PR algorithm more robust and 

accurate for iterates and solution bounded away from zero. This could also make it cost 

effective for operation count, storage and algorithm run time. 
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