Examining the Role of Latitude and Differential Insolation in Asymmetrical Valley Development

PDF Version Also Available for Download.

Description

Valley development through erosional processes typically tends to create symmetrical valleys. Over time, water cuts through the substrate to create valleys, gorges, and canyons for which the sides are the valley are evenly sloped. However, there are anomalies to this process. Asymmetrical valleys have been well-documented even in areas of uniform substrate or little tectonic uplift. One proposed explanation for the asymmetry of these valleys is differential insolation. This may lead to different microclimates from one slope to another which alter the rate and extent of erosion. Since the differences in received insolation vary with latitude (especially in streams that ... continued below

Creation Information

Curran, Lorna L. August 2013.

Context

This thesis is part of the collection entitled: UNT Theses and Dissertations and was provided by UNT Libraries to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 261 times , with 4 in the last month . More information about this thesis can be viewed below.

Who

People and organizations associated with either the creation of this thesis or its content.

Publisher

Rights Holder

For guidance see Citations, Rights, Re-Use.

  • Curran, Lorna L.

Provided By

UNT Libraries

With locations on the Denton campus of the University of North Texas and one in Dallas, UNT Libraries serves the school and the community by providing access to physical and online collections; The Portal to Texas History and UNT Digital Libraries; academic research, and much, much more.

Contact Us

What

Descriptive information to help identify this thesis. Follow the links below to find similar items on the Digital Library.

Degree Information

Description

Valley development through erosional processes typically tends to create symmetrical valleys. Over time, water cuts through the substrate to create valleys, gorges, and canyons for which the sides are the valley are evenly sloped. However, there are anomalies to this process. Asymmetrical valleys have been well-documented even in areas of uniform substrate or little tectonic uplift. One proposed explanation for the asymmetry of these valleys is differential insolation. This may lead to different microclimates from one slope to another which alter the rate and extent of erosion. Since the differences in received insolation vary with latitude (especially in streams that flow along an east/west axis), it follows that the degree of asymmetry should also vary with latitude if differential insolation is a primary driving factor in the development of these valleys. To evaluate if insolation plays a role in the development of asymmetrical valleys, this study examines variability in asymmetry across 447 valleys in nine study areas located at different latitudes. The degree of asymmetry for each valley was measured by using 30 meter resolution digital elevation models (DEMs) to determine the slope angle of each side of the valley. Asymmetry was measured by computing a ratio of the average slope angle for each side of the valley (larger value divided by smaller). If the resulting value is one, the valley is deemed symmetrical. As the value increases, the degree of asymmetry increases. This investigation found that contrary to expectations, valleys at lower latitudes tend to have a higher degree of asymmetry than those at higher latitudes, which suggests that differential insolation does not play a major role in the development of these valleys. Instead, this study found that high altitudes and low latitudes are more frequently associated with a higher degree of asymmetry. These unexpected findings open the door to new avenues of investigation into the causes of asymmetrical valley development.

Language

Collections

This thesis is part of the following collection of related materials.

UNT Theses and Dissertations

Theses and dissertations represent a wealth of scholarly and artistic content created by masters and doctoral students in the degree-seeking process. Some ETDs in this collection are restricted to use by the UNT community.

What responsibilities do I have when using this thesis?

When

Dates and time periods associated with this thesis.

Creation Date

  • August 2013

Added to The UNT Digital Library

  • April 23, 2014, 8:20 p.m.

Description Last Updated

  • Nov. 16, 2016, 2:37 p.m.

Usage Statistics

When was this thesis last used?

Yesterday: 0
Past 30 days: 4
Total Uses: 261

Interact With This Thesis

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Curran, Lorna L. Examining the Role of Latitude and Differential Insolation in Asymmetrical Valley Development, thesis, August 2013; Denton, Texas. (digital.library.unt.edu/ark:/67531/metadc283821/: accessed April 19, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; .