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Previous research implementing stratification on the propensity score has generally relied 

on using five strata, based on prior theoretical groundwork and minimal empirical evidence as to 

the suitability of quintiles to adequately reduce bias in all cases and across all sample sizes. This 

study investigates bias reduction across varying number of strata and sample sizes via a large-

scale simulation to determine the adequacy of quintiles for bias reduction under all conditions. 

Sample sizes ranged from 100 to 50,000 and strata from 3 to 20. Both the percentage of bias 

reduction and the standardized selection bias were examined. The results show that while the 

particular covariates in the simulation met certain criteria with five strata that greater bias 

reduction could be achieved by increasing the number of strata, especially with larger sample 

sizes. Simulation code written in R is included. 
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DETERMINATION OF THE OPTIMAL NUMBER OF STRATA FOR BIAS REDUCTION IN 
 

 PROPENSITY SCORE MATCHING 
 

1. Introduction 

 Fully randomized experimental designs are generally regarded as the gold standard for 

any research involving a treatment or intervention (Barth, Guo, & McCrae, 2008).  This is due to 

the fact that the randomization process should remove any bias due to pre-existing factors among 

the participants by equally dispersing them amongst the treatment (or levels of treatment) and 

control groups.  The rigorous controls needed for a fully randomized experiment are not always 

possible, due to practical or ethical reasons (Austin, Grootendorst, & Anderson, 2007).  In 

medical research, people are generally treated based on their need for treatment rather than 

randomly assigned to treatments, for ethical reasons.  In the fields of economics, social work, 

and education, data is mainly observational due to the breadth and scope of the subject.  Trying 

to implement experimental designs in these areas would not only raise ethical questions, but also 

would likely greatly diminish the external validity, due to the circumscribed nature of the setting 

(Stϋrmer et al., 2006). 

1.1. Development of Propensity Score Analysis 

 For these reasons and others, a method was needed that would help adjust for the fact that 

participants were not randomly assigned.  One of the most prominent methods (especially in the 

aforementioned fields of study) is propensity score analysis (PSA) (Stϋrmer et al., 2006; 

D’Agostino & Rubin, 2000; Bhattacharya & Vogt, 2007).  PSA is grounded in the counterfactual 

framework (Winship & Morgan, 1999), which is the assumption that all participants have a 

theoretical outcome as both treated and non-treated, regardless of the group within which they 

are placed.  In non-experimental designs there is usually some bias for treatment group.  This 
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bias is a measure of imbalance between the groups on covariates over which the researcher has 

no control.   The aim of PSA and other adjustment methods is to reduce this bias as much as 

possible and to make a robust estimation of the counterfactual. 

 Prior to PSA, the primary method of accounting for bias was to match all treatment 

participants with control participants based on all of the measured factors that might influence 

treatment selection.  This is an arduous and sometimes-impossible task to find matching pairs 

between groups of subjects on numerous individual factors where all must be in alignment 

simultaneously.  In response, Rosenbaum and Rubin (1983) developed the PSA, which combines 

all of the individual factors into a single scalar that may be used for matching.  The propensity 

score is the likelihood of a participant to be placed into the treatment group (or a particular 

treatment group) or control group.  In a fully randomized experimental design with a single 

treatment group and a control group, each person would have a true propensity score of 0.50 

(with any variation being due to sampling error), meaning that they are just as likely to be 

selected for the treatment group as the control group.  In a research design without random 

assignment, the propensity scores for participants must be estimated and these estimates will 

likely not cluster around 0.50, but will be distributed across the range of possible values. 

€ 

e(xi) = p(Zi =1Xi = xi)     (1) 

Where for participant i, e(xi), is the probability that participant i is assigned to one group  
 
(e.g., treatment), Zi = 1, given his/her scores, xi, on the set of covariates, Xi. 
 

Luellen, Shadish, and Clark (2005) presented the following general introduction to 

propensity scoring: 

1.  “A propensity score is the conditional probability that a person will be in one condition 

rather than in another (e.g., get a treatment rather than be in the control group) given a set 
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of observed covariates used to predict the person’s condition (Rosenbaum and Rubin 

1983a).”  [p. 531] 

2. “With a quasi-experiment, the true propensity score function is not known and must be 

estimated. The probabilities of receiving treatment (i.e., propensity scores) are a function 

of individual characteristics and are likely to vary from 0.50. For instance, if the 

researcher dummy codes treatment as 1 and control as 0, then a propensity score above 

0.50 would mean the person was more likely to select into treatment than control, and a 

score below 0.50 would mean the opposite.” [p. 532] 

3. “Because propensity scores are derived from observed covariates…a crucial step in 

designing a quasi-experiment is identifying potentially relevant covariates to measure. 

Potentially relevant covariates are those expected to affect treatment selection and 

outcomes.” [p. 532] 

4. “Researchers can use propensity scores to balance nonequivalent groups using matching, 

stratification, covariance adjustment, or weighting on the propensity score.” [p. 532] 

 One of the basic assumptions of the application of propensity scores is that all (or at least 

the overwhelming majority of) variables related to treatment assignment are included in the 

selection model.  Luellen, Shadish, and Clark (2005) also included variables related to treatment 

outcome, but there is other evidence (Bhattacharya & Vogt, 2007) suggesting that if variables are 

related more to outcome than treatment assignment they should not be included in the 

development of the propensity scores because of the likelihood of introducing further bias into 

treatment assignment.  Therefore, variables that may be more highly correlated with outcomes 

than with treatment selection should be considered with great caution and possibly omitted from 

the calculation of propensity scores. 
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1.2. Estimation of Propensity Scores 

 Once all variables determined to be influential in selection assignment have been 

determined, the propensity scores may be estimated using regression (typically logistic) or 

discriminant analysis (less common).  Using logistic regression as an example, the dependent 

variable is a dummy coded treatment assignment, with 0 being control and 1 being treatment.  

All contributing factors are then used as independent variables in the model.  Once the model has 

been developed then propensity scores are calculated by running the individual values of 

independent variables for each participant through the resulting equation to obtain an estimate.   

 A major assumption in PSA is that all relevant differences between control and treatment 

groups can be captured by observable characteristics in the data.  If there are missing factors then 

it will be impossible to obtain a good model fit and to be able to make meaningful inferences.  It 

is also assumed that treatment and control groups have significant overlap in the covariates being 

used in the PSA model and that they are normally distributed.  If the range of a treatment group 

for certain covariates lies entirely out of the range of  the same covariates for the control group 

then judgments made based on the resulting propensity scores would be invalid (Caliendo & 

Kopeinig, 2006).  Due to this fact, it is very important to find a control group that is 

representative of the same population from which the treatment group was drawn.  Barring the 

ability to do this, other statistical controls and adjustments may need to be made in addition to 

the use of propensity scores. 

2.  Propensity Score Techniques 

 Once the propensity score model has been determined to be the best possible, given the 

available data, then the scores will need to be applied to the participants, which is usually in one 

of three ways: matching, stratification, or regression adjustment (D’Agostino & Kwan, 1995).  
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Both matching and stratification are ways of matching or grouping like individuals for the 

purpose of later statistical analysis, whereas regression adjustment is typically the calculation of 

the treatment effect itself.  There are numerous matching methods and each technique is best 

suited to a particular set of data.  Typically, several methods are applied to a given set of data to 

determine which method achieves the greatest level of balance among the covariates. 

2.1. Nearest Available Neighbor Matching 

 There are numerous ways that matching has been implemented and several methods 

should generally be attempted to determine which results in the greatest bias reduction.  The first 

type of matching is “nearest available neighbor” matching based entirely on the propensity score.  

This is the easiest method to employ and takes on several forms.  There can be a one-to-one 

matching between treatment and control, with any unmatched participants being discarded.  This 

is generally considered a waste of potential data and a method that allows matching of a single 

treated participant with up to four control participants (or vice versa) is recommended 

(Rosenbaum, 2002). 

2.2. Matching Within Calipers 

 Another type of matching is matching within calipers. (Rosenbaum & Rubin, 1985a)  

With this type of matching, matches must be less than a predefined difference from the control 

propensity score value.  There is a tradeoff between obtaining inexact matches or having 

incomplete matches (and therefore lost data).  Grossly inexact matches may greatly overestimate 

resulting treatment effects, whereas incomplete matches will reduce the sample size and 

consequently reduce the power of any statistical method used to determine treatment effect.  

Therefore, it is extremely important to utilize an optimal caliper size based on previous work or 

calculations based on the precision/loss tradeoff.  
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2.3. Mahalanobis Metric Matching 

 Another type of matching is Mahalanobis metric matching (Rubin, 1980), which has been 

used both in place of PSA and as a supplement to PSA.  As a replacement to PSA, the 

Mahalanobis distance for the covariance matrix of all covariates for a randomly chosen treatment 

participant and each of the control participants is calculated and the closest (smallest) is matched.  

Both individuals are removed from the pool and the next treatment participant is chosen.  This 

process continues until all treatment participants have been matched.  As a supplement to PSA, 

either the propensity score can be included in the covariance matrix or calipers are utilized and 

only those corresponding participants within the caliper range have their Mahalanobis distances 

calculated.  Participants are matched and removed from the pool, as mentioned above. 

2.4. Kernel Based Matching 

 With kernel based matching (Caliendo & Kopeinig, 2006), each person in the treatment 

group is matched to a weighted sum of individuals who have similar propensity scores with the 

greatest weight being given to people with closer scores.  Some kernel based matching uses all 

people in non-treated group (e.g. Gaussian kernel) whereas others only use people within a 

certain probability user-specified bandwidth (e.g. Epanechnikov). The choice of bandwidth 

involves a trade-off of bias with precision. 

2.5. Stratification 

Also called subclassification, stratification separates control and treatment participants 

into strata where all have propensity scores within a certain range (Lunceford & Davidian, 2004).  

This is typically a separation into quintiles, but a larger number of strata may also be used.  

Based on a review of the literature, though, using any number of strata other than 5 appears to be 

a less common practice (Austin, 2008; D’Agostino, 1998; Leon & Hedeker, 2007; Lunceford & 
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Davidian, 2004; Stϋrmer et al., 2006).  This may be due to the fact that it limits the consequent 

statistical analysis to a multi-level general linear model, reducing the flexibility of the researcher 

to explore other options.  Because having 5 strata has already imposed this restriction, it is more 

likely that it has just become the de facto standard and is used as a matter of convenience and to 

make results comparable to previous studies.   

2.6. Regression Adjustment 

 With regression adjustment, the researcher immediately begins statistical analysis  

once propensity scores have been estimated and uses them, possibly alongside variables that 

could not be balanced, as predictors in a regression, survival or logistic model (D’Agostino, 

1998).  Separate regressions can be fitted by propensity score quintile, to estimate the treatment 

effect within quintiles, as well as the overall treatment effect.  

2.7. Calculating Treatment Effect 

 If the estimated propensity scores are not directly used for regression estimation then 

there is still a need to run a statistical analysis to calculate the treatment effect.  Common 

procedures following PSA are multiple regression, application of a general linear model, survival 

analysis, structural equation modeling, or hierarchical linear modeling (Luellen, Shadish, & 

Clark, 2005).  To insure that the development of the propensity score model did not influence the 

treatment effects, it is important to use another sample of data in order to cross-validate the 

results.  This may be done by either randomly holding back a considerable amount of 

participants from the initial analysis or by obtaining a new sample of participants gathered from 

the same population and for whom the exact same covariate values are known. 
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2.8. Determination of Bias Reduction and Robustness 

 There are sensitivity analyses that may be conducted to determine bias reduction, but the 

best estimate is to compare against the “gold standard” of a fully randomized experimental 

design.  There are two ways to do this (or simulate it).  The first involves obtaining actual data 

from an experiment that utilized randomized assignment to treatment and found a significant 

treatment effect.  In addition to this, the data must also contain any measures that could be 

considered confounding measures in a purely observational study, including any that could lead 

to self-selection bias or other treatment selection bias.  This would be difficult to do, since most 

of these measures would be unnecessary given the experimental controls being placed on the 

design, unless the purpose of the study was to provide later data for PSA validation.  In most 

cases, such an approach is untenable. 

 The more feasible option is to simulate data that models an experimental study and 

fabricate covariates.  In this manner, a very large dataset can be created and can be manipulated 

in many ways to accommodate different data conditions.  Sampling conditions can be altered to 

simulate variations from the assumptions in order to determine the robustness of the PSA in 

these situations.  The limitation to this approach is the very fact that the data is simulated and 

must be simulated based on certain assumptions and algorithms.  Due to this, it would be easy to 

draw incorrect conclusions by simulating exactly the conditions necessary to demonstrate 

robustness which may not be relevant to the data in any particular real world situation. 

3.  Variable Selection in Propensity Score Matching 

 Generally, the original work of Rosenbaum and Rubin (1983a, 1983b, 1984, 1985a, 

1985b) suggested that any covariate that could be considered to explain confounding should be 

included in the propensity score model.  There have still been disagreements in the literature 
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about which variables should be included, whether those related to assignment or outcome or 

both.  Bhattacharya and Vogt (2007) showed through simulation and empirical analysis that 

strong instrumental variables should not be used to develop propensity score estimations.  They 

further caution that “since there is no statistical test to determine whether a particular variable is 

an instrument, the researcher must rely on knowledge about the problem to assess which 

variables are appropriate instruments and which variables are appropriate propensity score 

matching predictors” (p. 20).   

Another recent simulation study suggested that variables related to the exposure, but not 

to the outcome will increase the variance of the estimated exposure effect without decreasing 

bias (Brookhart et al., 2006).  This is somewhat counterintuitive, considering that exposure (or 

treatment selection) was the primary thing propensity scores were created to predict.  

Corroborating these findings is another simulation study by Austin, Grootendorst, and Anderson 

(2006) that found that “including a variable that is related to treatment, but not to outcome, does 

not improve balance and reduces the number of matched pairs available for analysis.”  Since it 

was previously shown that incomplete matching left much greater residual bias than inexact 

matching, this would be a poor trade-off in terms of the overall effectiveness of the analysis. 

The majority of research involving variable selection has focused on individual matching 

techniques, but Leon and Hedeker (2006) investigated the effect of misspecified propensity 

scores in longitudinal treatment with a simulation and determined that the same type of variable 

inclusion is important with stratification matching as with individual matching methods.    Given 

the conflicting viewpoints on which variables should be included based on individual matching 

methods, this is both a boon and a bane to the researcher employing stratification.  Most research 
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seems to defer to the original guidelines of Rosenbaum and Rubin, to include any variable that 

may explain confounding. 

4.  Rationale for the Present Study 

 Although the majority of research in propensity score matching has focused on nearest 

available matching and its variants, there are certain instances when that type of exact matching 

is either not possible or is unreasonably prohibitive, such as smaller populations from which to 

construct matches or at the opposite end of the spectrum when there is a large population and the 

researcher wants to include as much control data as possible.  Because of this, there is still 

significant interest in stratification matching.   

Throughout the articles implementing stratification, the general consensus has been to use 

quintiles (Austin, 2008; D’Agostino, 1998; Leon & Hedeker, 2007; Lunceford & Davidian, 

2004; Stϋrmer et al., 2006).  Typically the reason for this has either been stated that 5 strata was 

already considered the de facto standard in previous studies or refer to a 1965 article by 

Cochrane and Chambers that determined that “five subclasses are often enough to remove 95% 

of the bias associated with a single covariate.”  Rosenbaum and Rubin (1984) suggested that 

separation into only 5 strata based on the propensity score was enough to remove 90% of the bias 

that could be removed by individually matching on all covariates.   However, Lunceford and 

Davidian (2004) demonstrated that bias is increased with greater sample sizes if stratification is 

limited to quintiles, due to residual confounding as the datapoints within strata become more 

heterogeneous.  The authors suggested that there is a trade-off point between bias and variability 

and that future research in this area should focus on finding the optimal number of strata given 

larger sample sizes.  Recently, Rubin (2010) suggested grouping into 5 to 10 strata, but with no 

justification or guideline as to how this number should be determined.  The percentage of bias 
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reduction is not an effective measure of overall bias, because of the fact that it is relative to the 

initial bias.  Therefore, researchers typically use standard bias values as an absolute criterion 

with d < 0.20 or 0.25 as maximum allowed bias scores, but strive to get these numbers as close 

to zero as possible (Shadish & Steiner, 2010).  Most attempts to reduce bias, though, have been 

through changes in matching strategy or included covariates and no systematic examination of 

the effect of number of strata on bias has been undertaken. 

The purpose of the current study is to fill this gap with quantitative evidence for 

guidelines for choosing an optimal number of strata in order to sufficiently reduce bias while 

maintaining adequate within stratum variability.  Are 5 strata really enough to remove 90% of 

the bias in the propensity score?  How many strata are required to remove 90% of the bias in the 

individual confounding covariates?  How many strata are required to reduce standard bias below 

0.20? 

5.  Methodology 

 The purpose of the current study was to determine this optimal number of strata for 

reducing bias in larger sample sizes.  The method by which this was accomplished was through a 

large-scale simulation encompassing a range of sample sizes broken into various number of 

strata and analyzing the resulting balance and bias.  Treated and comparison groups were kept 

equal in size to avoid introducing imbalance to cells that might complicate interpretation. 

The R statistical software package was utilized to create large datasets of simulated data 

as well as to perform the subsequent analyses.  The MatchIt library provided the propensity score 

matching and the bias measures for the simulated datasets.  The R function that performed the 

simulations is included in Appendix B.  The parameters passed to the function are the number of 

iterations (1,000 were used in this study in order to provide stability) and the sample size.  The 
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sample size is the size of the treated group which is generally the limiting factor in most studies.  

A correspondingly sized sample is used as controls for matching.  The psmSim function was run 

for sample sizes of: 100, 300, 500, 1000, 3000, 5000, 10000, 30000, and 50000.  Sample sizes of 

smaller than 100 did not lend themselves well to propensity score matching due to the large 

number of missing simulations for which matching could not be performed and were therefore 

left out of the study. 

5.1.  Description of the Simulation Function 

 The function begins by creating a matrix in which to store the summary data from all of 

the simulation iterations for a given sample size.  It then sets the means and standard deviations 

to be used for all relevant variables.  These values were chosen at reasonable values that could 

equate to score ranges on tests, biometric measures, or demographic data and used throughout all 

simulations.  The X1 variable is related to outcome only and is included based on 

recommendations (Rosenbaum & Rubin, 1984) that all variables that could possibly be 

confounding be included in the propensity score calculation.  Since the end goal of this study is 

optimal matching of datasets rather than a full analysis, its relation to outcome is not realized, but 

is included for consistency and as a means for comparison with later work that may expand upon 

this simulation framework.  The X2 variable is related only to treatment selection and the X3 

variable is related to both treatment selection and (theoretically, though also not realized in the 

current study) outcome. 

 Next, normal distributions are created for each of the variables for the simulated 

participants based on the previously defined means and standard deviations.  These distributions 

are created with twice the sample size that was passed into the function for reasons that are 

explained shortly.  Creation of the variable distributions is followed by minimums and ranges 
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being calculated for the two variables related to treatment selection: X2 and X3.  These are 

subsequently used as a scaling method by which 60% of the treatment selection is attributed to 

X2 and 40% of the treatment selection is attributed to X3.  The top half of the resulting scores are 

selected for “treatment” and the bottom half discarded, which is why the initial samples were 

created at twice the requested number. 

 Now that the treatment group has been created, another group of controls are simulated 

using the same means and standard deviations for each of the variables.  This insures that the 

assumption of shared support is upheld.  As can be seen in Figs. 1, 2, and 3 (based on a sample 

size of 50,000) there is considerable overlap between the distributions of X1, X2, and X3 in the 

treated and control populations.  This is not at all surprising for X1, since it played no role in 

treatment selection and therefore should present no selection bias. 

 
Fig. 1.  Example comparison of treated and untreated groups for distribution of X1  

with  n = 50,000. 
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Fig. 2. Example comparison of treated and untreated groups for distribution of X2  

with n = 50,000. 
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Fig. 3. Example comparison of treated and untreated groups for distribution of X3  

with n = 50,000. 
 
 Following creation of the control group, variable values are concatenated and then 

grouped into a dataframe object for analysis by the matchit function of the MatchIt library.  This 

process is performed for all strata sizes being investigated, from 3 to 20.  Although three strata 

are generally regarded as too few to significantly reduce bias (Drake, 1993), it was included in 

the simulations for completeness and to help visualize trends across strata sizes.  The number of 

strata was also capped at 20, since even this number is considered beyond the range one might 

expect to continue to reap significant benefits in bias reduction in even the largest datasets. 

 The variables for the simulated participants are passed to the matchit function with all 

three variables (X1, X2, and X3) as factors related to treatment selection.  The matching method 

chosen is subclassification with the number of strata set according to the value of the loop 
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iterator (3 through 20) and since no calculation for propensity score is chosen, it defaults to 

logistic regression.  A summary object is created from the outcome of the propensity score 

matching function with standardized difference scores calculated. 

 The next portions of the script simply compile the results obtained from the summary 

object.  The first loop pulls out bias reduction scores along with a count of missing values.  It 

also takes the current reduction value and places it into a weighted average of all iterations for 

each number of strata.  This was done as a memory optimization strategy, as maintaining all 

iteration values for an entire simulation would quickly overrun the memory available of the 

computer being used for the simulations.  If the current reduction score is not a valid value then 

the number of missing values is incremented rather than attempting to add it to the weighted 

average.  This count is also used in the weighted average calculation itself to keep track of the 

number of previous valid values.  The next loop extracts the standard bias numbers from the 

summary object in the same fashion, also placing them into the output table.  Finally, the last 

loop of the function simply converts the missing values numbers into a percentage for easier 

direct interpretation.  The full R script for the simulation function can be found in Appendix B. 

6.  Simulation Results 

 Results were very consistent across number of strata for all sample sizes with respect to 

bias reduction scores for the propensity score (see Fig. 4).  At three strata, all sample sizes 

showed between a 70 to 75% reduction in bias as compared to before matching.  Unlike previous 

literature stating that over 90% of bias should be removed with only 5 strata (Rosenbaum & 

Rubin, 1984), these simulations suggest that approximately nine strata were needed in order to 

reduce bias by 90% even at the smallest sample sizes used. 
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Fig. 4.  Bias reduction for propensity score versus strata count. 

As expected, the bias reduction scores for X1 show no improvement (see Fig. 5).  They 

are erratic due to the fact that X1 played no role in treatment selection and should have therefore 

been randomly distributed simply by chance.  The selection bias for X1 should be minimal to 

begin with and any trend in improvement based on propensity score matching would be spurious. 
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Fig. 5.  Bias reduction for X1 versus strata count. 

 In order to interpret the results of the bias reduction scores for both X2 and X3, it becomes 

necessary to take into account the missing data at the 100 participant sample size (see Figs. 6 and 

7).  Propensity score matching is not considered a small sample procedure, so it is not surprising 

that it is not entirely successful with samples as small as 100 treated participants.  At six strata, 

there were 1.6% missing cases which increased to 17.6% by 10 strata and 60.5% at fifteen strata.  

Since these missing cases were omitted from the averages rather than being treated as zeros, the 

results were slightly erratic rather than being completely distorted.  A trend can still be observed 

in X2 that bias reduction improved more for the 100 and 300 sample sizes at lower numbers of 

strata and ceased to benefit as much with larger sample sizes at the higher number of strata.  
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Above n = 300, trend lines were almost identical and required 10 strata to break 90% bias 

reduction and showed tapering to 95% reduction by twenty strata. 

 In the case of bias reduction for X3, the effect of the small sample size for n = 100 was 

much more apparent.  Almost no trend can be determined for this set of simulations because of 

the erratic nature of the results.  Moving past that sample size, the trend for sample sizes of 300 

and above show that larger sample sizes again benefitted from a larger number of strata.  

Reduction for n = 300 plateaus at almost 89%, while n = 500 goes to 92% and n = 1000 to 94%.  

All higher sample sizes track almost identically across all number of strata and appear to still be 

slightly improving at twenty strata, where they show approximately 95% bias reduction. 

 

Fig. 6.  Bias reduction for X2 versus strata count. 
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Fig. 7.  Bias reduction for X3 versus strata count. 

 Bias reduction scores are helpful for showing improvement with different matching 

procedures and with differing parameters, but are of little help in determining whether the bias 

for a given procedure is acceptable, since they rely on the initial unmatched bias.  For 

determining if a given procedure yields a passable level of selection bias, the standardized bias 

scores are needed.  These scores are also less prone to being erratic, especially with variables that 

are not highly related to treatment selection.  The standardized bias scores in the case of the 

MatchIt package are the standardized mean differences between treated and untreated within 

each strata or subclassification.  The raw differences are divided by the standard deviation of the 

treated strata, therefore the within group variability must remain high with regard to differences 

between treated and untreated to make these values sufficiently small.  Researchers typically use 



 21 

d < 0.20 or 0.25 as maximum allowed bias scores, but strive to get these numbers as close to zero 

as possible (Shadish & Steiner, 2010). 

 The standardized bias for the propensity score for all sample sizes was between 0.367 to 

0.384 at three strata (see Fig. 8).  All values of n except for n = 100 were similar across strata and 

decreased to values between 0.052 and 0.056 by twenty strata.  The 100 participant sample 

followed the same general trend, but had slightly lower bias across all strata. 

 

Fig. 8.  Bias for propensity score versus strata count. 

 As expected, the bias scores for X1 were largely unaffected by number of strata and were 

lower with larger sample sizes (see Fig. 9).  The standardized bias scores increased slightly with 

increasing number of strata, not because the difference between treated and untreated groups 

increased, but because the variance within the groups became smaller while the difference 
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remained the same.   As with the bias reduction scores, missing data played a large role in 

skewing the results at n = 100 due to the fact that by the 10 strata simulations over half of the 

iterations did not return values from the bias calculation.  The missing values increased to over 

99% at the higher levels with the nineteen strata simulations having no successful iterations at 

all.  Other than these small sample limitations, the results are exactly what would be expected 

from a variable that played no role in treatment selection. 

 

Fig. 9.  Bias for X1 versus strata count. 

 The bias score results for X2 and X3 were very similar, with the main difference being that 

X2 had higher bias scores at lower numbers of strata but benefitted more as the number of strata 

increased (see Figs. 10 and 11).  Some of the smaller sample sizes (up through n = 500) actually 

had lower standardized bias scores by the twenty strata level for the X2 variable.  Since X2 played 
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a greater role in treatment selection, it would have had greater selection bias before matching, 

but also benefitted more from the matching since it is based on the propensity score to which it is 

more highly correlated. 

 

Fig. 10.  Bias for X2 versus strata count. 
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Fig. 11.  Bias for X3 versus strata count. 

7.  Discussion 

  Based on these simulations, it appears that sample sizes larger than somewhere between 

1,000 and 3,000 participants in the treated group behave very similarly across varying numbers 

of strata.  Full results for all sample sizes in table format can be found in Appendix C.  Contrary 

to previous suggestions, based on these simulations and the calculations of the MatchIt package, 

it appears that even with smaller sample sizes that it requires at least eight strata to reduce 90% 

of the selection bias in a single variable (the propensity score) and that it may take even more to 

also reduce bias to this level in the component variables (X2 and X3).   

It also appears that the addition of variables that are not related to treatment selection in 

the calculation of the propensity score simply adds unnecessary variance and may reduce the 
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amount of bias that may be removed from variables that actually are a factor in treatment 

selection.  The bias level for these unrelated variables (which should be near zero to begin with) 

is affected by sample size, but not by the matching process itself in any meaningful way.  The 

standardized bias actually increases with increasing number of strata due to the fact that raw bias 

is maintained while within group variability decreases.  It would be more useful to remove these 

types of variables from the propensity score calculation, but still verify the bias related to them 

both before and after matching to insure that the matching process did not adversely affect what 

should already be a minimal selection bias.  With the MatchIt package, this is accomplished 

automatically by adding the variable names in calls to the summary function in the parameter 

addlvariables.  By using this parameter, any variable not used in the propensity score calculation 

will be included in the summary output with all corresponding balance measures just as if they 

were used in the PS model. 

 The functioning of variables that are significantly related to treatment selection varies 

based on the amount of influence.  In the case of the present simulations, X2 contributed 60% and 

X3 contributed 40% to the treatment selection.  In real life, it is generally not known exactly how 

much individual variables contribute to treatment selection.  As an empirical guide, it is evident 

from the results that the more highly a variable affects treatment selection the greater bias it will 

have initially, but also the more it can be improved by the matching process and especially with 

greater number of strata in the case of stratification or subclassification. 

 In examining the bias results in terms of the standard bias, it took only a few strata to 

bring the propensity score as well as all variables below the d < 0.20 or 0.25 often used as 

determination for acceptable selection bias (Shadish & Steiner, 2010).  The propensity score as 

well as both contributing variables continued to receive benefits in bias reduction up through 
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eight strata, at which point the bias improvement gains tended to taper, so the cutoff point 

appears to be based on the amount of bias reduction that is considered adequate for a given 

study.  What is made clear from the results of this study is that beyond sample sizes of 

approximately 3,000 that increasing numbers of participants do not receive substantial benefit 

from larger numbers of strata. 

8.  Conclusion 

 As suspected in previous research (Lunceford & Davidian, 2004; Caliendo & Kopeinig, 

2008; Rubin, 2010), the 5 strata standard that has been used in most studies (Austin, 2008; 

D’Agostino, 1998; Leon & Hedeker, 2007; Lunceford & Davidian, 2004; Stϋrmer et al., 2006) 

may not be sufficient to optimally remove bias in all cases.  The current study shows that there is 

definitely a trend for improvement in both bias reduction scores and standardized bias with larger 

strata sizes for both the propensity score itself and its component covariates, but that those 

differences are fairly similar at sample sizes of 3,000 and beyond.  There are different standards 

by which acceptable bias has been judged, including greater than 90% bias reduction and d < 

0.20 (Shadish & Steiner, 2010).  This leads to three primary questions regarding selection of the 

optimal number of strata to be employed in propensity score stratification, based on these 

standards: 

1. Are 5 strata really enough to remove 90% of the bias in the propensity score and 

covariates?   

2. How many strata are required to reduce standard bias below 0.20? 

3. Is the ultimate goal of stratification matching to achieve sufficient bias reduction or 

optimal bias reduction? 
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The following tables summarize the findings regarding strata requirements as they relate to 

sample size and criteria for adequate bias: 

Table 1 
Number of strata to reach criterion for propensity score. 
 n 
Criterion 100 300 500 1000 3000 5000 10000 30000 50000 
Reduction > 90% 9 9 9 9 9 9 9 9 9 
d < 0.20 6 6 6 6 6 6 6 6 6 

 

Table 2 
Number of strata to reach criterion for covariates. 
 n 
Criterion 100 300 500 1000 3000 5000 10000 30000 50000 
Reduction > 90% N/A N/A 11 10 10 10 10 10 10 
d < 0.20 7 5 5 5 5 5 5 5 5 

 

8.1.  Number of Strata Required to Remove 90% of the Bias 

 Consistently across all sample sizes, nine strata were required to remove 90% of the bias 

from the propensity scores.  This is much larger than the 5 strata previously cited to be adequate 

for removing 90% of the bias in a single covariate.  Even though the propensity score was 

calculated with the component covariates of X1, X2, and X3, the process reduces those covariates 

to a single scalar which therefore constitutes a single covariate in the matching procedure.  It is 

apparent and very consistent that almost double the number of strata than have been previously 

used in the literature are required to meet the criterion of 90% bias reduction for only the 

propensity score measure itself. 

 The number of strata required to reduce both of the functioning covariates comprising the 

propensity score (X2 and X3) greater than 90% was not available for sample sizes below 500, 

because the mean reduction never exceeded this mark for one of the covariates.  At n = 500, it 

required 11 strata to achieve 90% reduction in bias in both variables.  This may be a little 

misleading, because if the percentages were rounded to the nearest percent then X3 would have 



 28 

been 90% (89.900) reduction at 10 strata the same as X2, which is consistent across all 

subsequent sample sizes.  So, in summary, to reduce bias in the propensity score and all 

covariates at least 90% required approximately 10 strata. 

8.2.  Number of Strata Required for d < 0.20 

 The more practical criterion based on the standard mean difference or standardized bias 

(d) was much more easily attained for both the propensity score and the individual covariates.  

For the propensity score, six strata reduced standardized bias below the 0.20 criterion across all 

sample sizes.  Five strata were required to reduce the functioning covariates (X2 and X3) for all 

sample sizes other than 100, which likely had greater initial bias due to the smaller number of 

participants.  This type of result is probably what has led to propagation of the use of quintiles in 

research that has used d < 0.20 as a criterion for balancing covariates.  This would be adequate if 

it weren’t for the fact that the true goal is to reduce the bias as much as possible (Shadish & 

Steiner, 2010), with 0.20 being a mark of minimum sufficiency.  Due to the fact that in the 

present simulation all confounding was known (because it was systematically programmed into 

the treatment selection), the bias reduction of the propensity score is likely more effective than it 

would be in a real world situation where all confounders cannot be fully reflected in the 

propensity score.  Given that the researcher performing propensity score matching wants to 

reduce bias as much as possible, it seems valuable to note that beyond sample sizes of 

approximately 1,000 the sufficient standardized bias of 0.20 can be reduced in the functioning 

covariates by as much as 50% or more by increasing to 10 strata. 

8.4.  Meeting the Ultimate Goal 

 The following table shows the further bias reduction that was achieved with an increase 

from 5 to 10 strata.  On average, bias declined by up to 0.115 for sample sizes greater than 300.   
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Although a difference of 0.115 may not necessarily affect the outcome of most research, it must 

give pause when examining any marginally significant findings for which only quintile 

stratification was used.  This 0.115 standardized bias would likely be attributed to a standardized 

treatment effect, giving it over 1/10th of a standard deviation of unwarranted treatment effect and 

possibly granting statistical significance especially with larger sample sizes.  It would certainly 

seem remiss to neglect this amount of residual treatment selection bias given the ease by which it 

can be removed, simply by the addition of a few more strata in the matching procedure. 

Table 3 
Bias improvements with 10 strata. 
 Propensity Score 
 n 
 300 500 1000 3000 5000 10000 30000 50000 
5 strata 0.219 0.223 0.225 0.226 0.226 0.227 0.227 0.227 
10 strata 0.107 0.109 0.11 0.112 0.112 0.112 0.112 0.112 
difference 0.112 0.114 0.115 0.114 0.114 0.115 0.115 0.115 
% improved 51 51 51 50 50 51 51 51 

 

8.3.  Recommendations for Future Research 

 Based on the findings of this study, I would recommend that in the same manner that 

alternate individual matching strategies are investigated on a particular set of data, that the same 

method be applied to stratification matching before selecting the number of strata.  Trends across 

strata at any given sample size are very apparent and using a generalized R function to make a 

table summary for bias on a particular set of data would be much more useful in determining the 

optimal number of strata than using a particular number of strata just because it has been 

previously used on disparate sets of data in the literature.  An interesting follow-up to this study 

would be to find large datasets with a rich and complete set of covariates and verify that the bias 

trend across strata is consistent with the simulation results.  Also, assuming the dataset is 
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sufficiently large, it would be possible to randomly select subsamples of varying sizes to see if 

the sample size trends of the current simulation also hold against real world data. 
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Appendix 1.  R code. 

library(MatchIt) 
 
psmSim <- function(iterations, n) 
{ 
 rdxVals <- matrix(0,nrow=18, ncol=10) 
 
 for (thisIteration in 1:iterations) 
 { 
  x1mean <- 50 
  x1std <- 10 
  x2mean <- 75 
  x2std <- 20 
  x3mean <- 125 
  x3std <- 30 
   
  x1 <- rnorm(n*2,mean=x1mean,sd=x1std) 
  x2 <- rnorm(n*2,mean=x2mean,sd=x2std) 
  x3 <- rnorm(n*2,mean=x3mean,sd=x3std) 
  minX2 <- min(x2) 
  rangeX2 <- max(x2) - minX2 
  minX3 <- min(x3) 
  rangeX3 <- max(x3) - minX3 
 
  Tr <- ((x2-minX2)/rangeX2)*0.60 + ((x3-minX3)/rangeX3)*0.40 
  TrMedian <- median(Tr) 
  x1treated <- x1[Tr>=TrMedian] 
  x2treated <- x2[Tr>=TrMedian] 
  x3treated <- x3[Tr>=TrMedian] 
   
  x1control <- rnorm(n,mean=x1mean,sd=x1std) 
  x2control <- rnorm(n,mean=x2mean,sd=x2std) 
  x3control <- rnorm(n,mean=x3mean,sd=x3std) 
 
  x1 <- c(x1treated,x1control) 
  x2 <- c(x2treated,x2control) 
  x3 <- c(x3treated,x3control) 
  Tr <- c(rep(1,length(x1treated)),rep(0,length(x1control))) 
 
  myDF <- data.frame(x1,x2,x3,Tr) 
 
  for (strataNum in 3:20) 
  { 
   myMatch <- matchit(Tr ~ x1 + x2 + x3, myDF, method="subclass", 
subclass=strataNum) 



 32 

   mySummary <- summary(myMatch, standardize=TRUE) 
 
   for (impType in 1:4) 
   { 
    thisReduction <- abs(mySummary$reduction[impType,1]) 
    if (!is.na(thisReduction)) 
    { 
     rdxVals[strataNum-2,impType] <- (rdxVals[strataNum-
2,impType]*(thisIteration-rdxVals[strataNum-2,5]-1) + thisReduction)/(thisIteration-
rdxVals[strataNum-2,5]) 
    } 
    else if (impType == 1) 
    { 
     rdxVals[strataNum-2,5] <- rdxVals[strataNum-2,5] + 1  
    } 
   } 
 
   for (biasType in 6:9) 
   { 
    thisBias <- abs(mySummary$sum.subclass[biasType-5,3]) 
    if (!is.na(thisBias)) 
    { 
     rdxVals[strataNum-2,biasType] <- (rdxVals[strataNum-
2,biasType]*(thisIteration-rdxVals[strataNum-2,10]-1) + thisBias)/(thisIteration-
rdxVals[strataNum-2,10]) 
    } 
    else if (biasType == 6) 
    { 
     rdxVals[strataNum-2,10] <- rdxVals[strataNum-2,10] + 1  
    } 
   } 
  
  } 
 
 } 
  
 for (rowNum in 1:18) 
 { 
  rdxVals[rowNum,5] <- 100*(rdxVals[rowNum,5])/iterations 
  rdxVals[rowNum,10] <- 100*(rdxVals[rowNum,10])/iterations 
 } 
 return(rdxVals) 
} 
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Appendix 2.  Tables of results. 

 100 Treated 
 Bias Reduction 

Strata PS X1 X2 X3 % Missing 
3 71.848 364.351 70.826 72.383 0.100 
4 79.694 313.330 78.441 79.383 0.100 
5 83.660 422.825 82.268 81.876 0.500 
6 86.620 315.927 84.777 86.354 1.600 
7 88.550 418.092 86.133 85.811 3.600 
8 90.138 477.401 87.110 87.707 5.600 
9 91.099 496.989 87.520 88.888 11.600 

10 92.036 452.213 88.099 87.942 17.600 
11 92.629 295.328 88.754 91.299 24.700 
12 93.319 281.851 88.607 91.625 34.200 
13 93.622 461.652 88.009 86.553 42.700 
14 94.158 301.712 88.717 85.118 52.700 
15 94.453 311.791 88.497 100.820 60.500 
16 94.732 214.719 88.160 96.983 70.500 
17 94.884 175.458 88.249 85.541 76.900 
18 95.333 168.374 88.472 94.452 81.000 
19 95.157 129.014 88.703 101.219 87.400 
20 95.562 176.756 89.010 79.866 90.200 

 
 
 
 100 Treated 
 Standard Bias 

Strata PS X1 X2 X3 % Missing 
3 0.367 0.142 0.312 0.215 0.100 
4 0.270 0.155 0.257 0.196 0.400 
5 0.212 0.166 0.222 0.184 2.100 
6 0.174 0.169 0.201 0.181 6.000 
7 0.147 0.171 0.187 0.178 16.000 
8 0.127 0.171 0.174 0.175 25.200 
9 0.111 0.171 0.165 0.173 38.900 

10 0.098 0.171 0.156 0.169 52.300 
11 0.088 0.168 0.150 0.168 65.000 
12 0.078 0.165 0.142 0.162 77.000 
13 0.070 0.164 0.137 0.165 83.900 
14 0.064 0.154 0.133 0.162 92.200 
15 0.063 0.153 0.127 0.154 95.100 
16 0.055 0.158 0.131 0.155 96.600 
17 0.043 0.135 0.123 0.161 99.000 
18 0.049 0.146 0.139 0.132 99.300 
19 0.000 0.000 0.000 0.000 100.000 
20 0.051 0.174 0.158 0.170 99.900 
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 300 Treated 
 Bias Reduction 

Strata PS X1 X2 X3 % Missing 
3 71.006 215.854 69.555 69.381 0.000 
4 78.559 337.061 77.228 76.862 0.000 
5 82.821 268.072 81.688 80.964 0.000 
6 85.961 365.173 85.086 83.485 0.000 
7 87.978 532.746 87.088 85.479 0.000 
8 89.563 448.679 88.871 86.530 0.000 
9 90.705 530.279 89.975 87.382 0.100 

10 91.669 632.158 90.837 87.971 0.000 
11 92.410 427.316 91.436 88.696 0.400 
12 93.171 562.267 92.276 88.446 0.000 
13 93.637 716.037 92.489 88.762 0.400 
14 94.120 732.908 92.870 88.787 0.700 
15 94.497 592.765 93.232 89.007 0.700 
16 94.839 668.352 93.469 88.918 1.800 
17 95.116 682.084 93.482 88.621 2.500 
18 95.401 506.428 93.678 88.919 4.200 
19 95.644 903.008 93.784 88.661 5.700 
20 95.848 488.457 93.867 88.799 7.200 

 
 
 
 300 Treated 
 Standard Bias 

Strata PS X1 X2 X3 % Missing 
3 0.373 0.081 0.295 0.174 0.000 
4 0.276 0.088 0.230 0.144 0.000 
5 0.219 0.093 0.192 0.130 0.000 
6 0.181 0.097 0.166 0.120 0.000 
7 0.154 0.099 0.150 0.115 0.000 
8 0.134 0.101 0.137 0.110 0.300 
9 0.119 0.102 0.128 0.108 0.300 

10 0.107 0.103 0.120 0.107 0.500 
11 0.097 0.104 0.115 0.106 0.900 
12 0.088 0.104 0.110 0.104 1.600 
13 0.081 0.106 0.106 0.103 2.200 
14 0.075 0.105 0.103 0.103 3.700 
15 0.070 0.106 0.101 0.102 5.800 
16 0.065 0.105 0.098 0.102 8.500 
17 0.062 0.105 0.096 0.102 11.100 
18 0.058 0.106 0.094 0.101 17.900 
19 0.055 0.105 0.092 0.100 21.900 
20 0.052 0.105 0.090 0.099 27.300 
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 500 Treated 
 Bias Reduction 

Strata PS X1 X2 X3 % Missing 
3 70.754 194.274 68.721 69.600 0.000 
4 78.423 272.168 76.512 77.411 0.000 
5 82.955 264.499 81.264 81.958 0.000 
6 85.771 285.937 84.280 84.768 0.000 
7 87.872 346.839 86.525 86.693 0.000 
8 89.437 375.734 88.197 88.218 0.000 
9 90.653 333.991 89.565 89.141 0.000 

10 91.653 334.499 90.650 89.900 0.000 
11 92.353 394.608 91.403 90.470 0.000 
12 93.070 356.438 92.206 90.813 0.000 
13 93.578 398.167 92.700 91.136 0.000 
14 94.081 396.747 93.234 91.428 0.000 
15 94.421 469.933 93.562 91.585 0.000 
16 94.785 390.614 93.936 91.760 0.000 
17 95.097 432.987 94.335 91.828 0.100 
18 95.420 455.875 94.551 91.786 0.000 
19 95.619 462.702 94.764 91.909 0.000 
20 95.892 410.930 94.886 91.895 0.300 

 
 
 
 500 Treated 
 Standard Bias 

Strata PS X1 X2 X3 % Missing 
3 0.382 0.062 0.286 0.171 0.000 
4 0.282 0.067 0.220 0.137 0.000 
5 0.223 0.072 0.180 0.118 0.000 
6 0.187 0.074 0.155 0.108 0.000 
7 0.159 0.076 0.137 0.100 0.000 
8 0.138 0.077 0.123 0.095 0.000 
9 0.122 0.078 0.113 0.092 0.000 

10 0.109 0.078 0.104 0.088 0.000 
11 0.100 0.080 0.099 0.086 0.000 
12 0.091 0.080 0.094 0.085 0.000 
13 0.084 0.080 0.090 0.084 0.000 
14 0.077 0.080 0.086 0.083 0.000 
15 0.073 0.081 0.084 0.083 0.100 
16 0.069 0.081 0.082 0.081 0.300 
17 0.064 0.081 0.080 0.082 0.100 
18 0.060 0.081 0.078 0.081 0.200 
19 0.058 0.082 0.077 0.081 0.300 
20 0.053 0.082 0.074 0.080 1.100 
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 1,000 Treated 
 Bias Reduction 

Strata PS X1 X2 X3 % Missing 
3 70.779 168.763 68.754 68.887 0.000 
4 78.249 242.690 76.301 76.643 0.000 
5 82.682 252.806 80.925 81.299 0.000 
6 85.712 238.309 84.142 84.497 0.000 
7 87.743 201.258 86.344 86.652 0.000 
8 89.323 218.044 88.049 88.338 0.000 
9 90.677 231.909 89.543 89.768 0.000 

10 91.510 236.579 90.429 90.647 0.000 
11 92.286 246.844 91.291 91.373 0.000 
12 92.937 269.583 92.040 91.932 0.000 
13 93.517 244.051 92.677 92.463 0.000 
14 93.954 260.452 93.185 92.796 0.000 
15 94.394 282.235 93.617 93.148 0.000 
16 94.731 271.694 94.014 93.406 0.000 
17 95.056 300.980 94.365 93.602 0.000 
18 95.373 268.702 94.717 93.799 0.000 
19 95.576 299.709 94.898 93.878 0.000 
20 95.804 280.850 95.112 93.923 0.000 

 
 
 
 1,000 Treated 
 Standard Bias 

Strata PS X1 X2 X3 % Missing 
3 0.382 0.045 0.284 0.163 0.000 
4 0.284 0.048 0.217 0.128 0.000 
5 0.225 0.051 0.176 0.107 0.000 
6 0.187 0.054 0.150 0.094 0.000 
7 0.159 0.055 0.130 0.086 0.000 
8 0.139 0.055 0.116 0.079 0.000 
9 0.123 0.056 0.105 0.075 0.000 

10 0.110 0.057 0.096 0.071 0.000 
11 0.100 0.057 0.090 0.069 0.000 
12 0.092 0.057 0.084 0.067 0.000 
13 0.084 0.058 0.079 0.065 0.000 
14 0.079 0.057 0.076 0.063 0.000 
15 0.073 0.057 0.072 0.062 0.000 
16 0.069 0.057 0.069 0.062 0.000 
17 0.064 0.058 0.067 0.061 0.000 
18 0.061 0.058 0.065 0.060 0.000 
19 0.058 0.058 0.063 0.060 0.000 
20 0.054 0.058 0.061 0.059 0.000 



 37 

 
 3,000 Treated 
 Bias Reduction 

Strata PS X1 X2 X3 % Missing 
3 70.609 230.669 68.458 68.541 0.000 
4 78.204 203.417 76.203 76.194 0.000 
5 82.660 191.313 80.886 80.794 0.000 
6 85.592 237.508 84.011 83.897 0.000 
7 87.680 243.817 86.266 86.150 0.000 
8 89.275 281.634 88.007 87.879 0.000 
9 90.481 306.177 89.313 89.252 0.000 

10 91.439 306.528 90.366 90.307 0.000 
11 92.245 313.914 91.275 91.172 0.000 
12 92.882 306.324 91.973 91.902 0.000 
13 93.444 330.099 92.602 92.519 0.000 
14 93.906 343.082 93.141 92.977 0.000 
15 94.328 365.918 93.585 93.474 0.000 
16 94.684 359.235 94.006 93.842 0.000 
17 94.993 371.677 94.350 94.167 0.000 
18 95.280 395.253 94.662 94.472 0.000 
19 95.545 369.560 94.974 94.699 0.000 
20 95.755 362.692 95.208 94.915 0.000 

 
 
 
 3,000 Treated 
 Standard Bias 

Strata PS X1 X2 X3 % Missing 
3 0.383 0.025 0.282 0.159 0.000 
4 0.285 0.028 0.214 0.121 0.000 
5 0.226 0.029 0.173 0.099 0.000 
6 0.188 0.031 0.146 0.084 0.000 
7 0.161 0.031 0.126 0.074 0.000 
8 0.140 0.032 0.112 0.066 0.000 
9 0.124 0.032 0.100 0.061 0.000 

10 0.112 0.033 0.091 0.056 0.000 
11 0.101 0.033 0.084 0.053 0.000 
12 0.093 0.033 0.077 0.050 0.000 
13 0.086 0.033 0.072 0.048 0.000 
14 0.080 0.033 0.068 0.046 0.000 
15 0.074 0.033 0.064 0.044 0.000 
16 0.069 0.034 0.061 0.043 0.000 
17 0.065 0.034 0.058 0.042 0.000 
18 0.062 0.034 0.055 0.041 0.000 
19 0.058 0.034 0.053 0.040 0.000 
20 0.055 0.034 0.051 0.039 0.000 
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 5,000 Treated 
 Bias Reduction 

Strata PS X1 X2 X3 % Missing 
3 70.567 171.811 68.388 68.410 0.000 
4 78.159 193.733 76.115 76.082 0.000 
5 82.641 214.288 80.789 80.772 0.000 
6 85.568 256.023 83.909 83.880 0.000 
7 87.662 258.320 86.182 86.106 0.000 
8 89.238 308.551 87.892 87.815 0.000 
9 90.440 254.963 89.219 89.140 0.000 

10 91.414 282.927 90.278 90.226 0.000 
11 92.194 356.437 91.137 91.118 0.000 
12 92.850 346.385 91.868 91.843 0.000 
13 93.413 329.075 92.499 92.468 0.000 
14 93.885 333.116 93.037 93.004 0.000 
15 94.294 344.214 93.495 93.463 0.000 
16 94.656 342.701 93.888 93.901 0.000 
17 94.973 353.294 94.262 94.234 0.000 
18 95.262 407.761 94.585 94.540 0.000 
19 95.512 345.137 94.870 94.826 0.000 
20 95.745 502.015 95.134 95.061 0.000 

 
 
 
 5,000 Treated 
 Standard Bias 

Strata PS X1 X2 X3 % Missing 
3 0.383 0.019 0.281 0.158 0.000 
4 0.284 0.021 0.213 0.120 0.000 
5 0.226 0.022 0.172 0.098 0.000 
6 0.188 0.023 0.145 0.083 0.000 
7 0.161 0.024 0.125 0.072 0.000 
8 0.140 0.024 0.110 0.064 0.000 
9 0.125 0.024 0.099 0.058 0.000 

10 0.112 0.025 0.089 0.053 0.000 
11 0.102 0.025 0.082 0.049 0.000 
12 0.093 0.025 0.075 0.046 0.000 
13 0.086 0.025 0.070 0.044 0.000 
14 0.080 0.026 0.066 0.042 0.000 
15 0.074 0.026 0.062 0.040 0.000 
16 0.070 0.026 0.058 0.038 0.000 
17 0.066 0.026 0.055 0.037 0.000 
18 0.062 0.026 0.053 0.036 0.000 
19 0.059 0.026 0.050 0.035 0.000 
20 0.055 0.026 0.048 0.034 0.000 
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 10,000 Treated 
 Bias Reduction 

Strata PS X1 X2 X3 % Missing 
3 70.599 184.260 68.418 68.419 0.000 
4 78.138 209.335 76.076 76.073 0.000 
5 82.607 201.298 80.729 80.752 0.000 
6 85.574 199.207 83.877 83.928 0.000 
7 87.661 225.452 86.124 86.191 0.000 
8 89.226 259.341 87.820 87.912 0.000 
9 90.450 241.749 89.159 89.260 0.000 

10 91.396 253.614 90.204 90.295 0.000 
11 92.200 248.770 91.095 91.191 0.000 
12 92.848 223.075 91.824 91.902 0.000 
13 93.396 228.230 92.431 92.529 0.000 
14 93.870 232.419 92.957 93.069 0.000 
15 94.291 240.750 93.433 93.539 0.000 
16 94.650 224.933 93.838 93.936 0.000 
17 94.965 242.319 94.191 94.308 0.000 
18 95.253 246.554 94.522 94.626 0.000 
19 95.494 244.615 94.795 94.905 0.000 
20 95.724 253.487 95.057 95.155 0.000 

 
 
 
 10,000 Treated 
 Standard Bias 

Strata PS X1 X2 X3 % Missing 
3 0.384 0.014 0.281 0.157 0.000 
4 0.285 0.015 0.213 0.120 0.000 
5 0.227 0.016 0.172 0.097 0.000 
6 0.188 0.017 0.144 0.081 0.000 
7 0.161 0.017 0.124 0.070 0.000 
8 0.141 0.017 0.109 0.062 0.000 
9 0.125 0.018 0.097 0.056 0.000 

10 0.112 0.018 0.088 0.051 0.000 
11 0.102 0.018 0.080 0.047 0.000 
12 0.093 0.018 0.074 0.044 0.000 
13 0.086 0.018 0.068 0.041 0.000 
14 0.080 0.018 0.064 0.038 0.000 
15 0.075 0.018 0.060 0.036 0.000 
16 0.070 0.019 0.056 0.035 0.000 
17 0.066 0.019 0.053 0.033 0.000 
18 0.062 0.019 0.050 0.032 0.000 
19 0.059 0.019 0.048 0.031 0.000 
20 0.056 0.019 0.046 0.030 0.000 
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 30,000 Treated 
 Bias Reduction 

Strata PS X1 X2 X3 % Missing 
3 70.540 359.059 68.353 68.333 0.000 
4 78.121 569.894 76.048 76.036 0.000 
5 82.590 504.814 80.707 80.699 0.000 
6 85.534 446.924 83.842 83.833 0.000 
7 87.648 468.294 86.116 86.113 0.000 
8 89.205 434.451 87.814 87.800 0.000 
9 90.411 544.115 89.141 89.119 0.000 

10 91.384 602.253 90.215 90.190 0.000 
11 92.174 637.763 91.095 91.061 0.000 
12 92.829 700.944 91.826 91.792 0.000 
13 93.391 654.394 92.455 92.417 0.000 
14 93.867 493.086 92.985 92.957 0.000 
15 94.275 481.278 93.447 93.410 0.000 
16 94.634 477.065 93.854 93.809 0.000 
17 94.951 482.710 94.217 94.165 0.000 
18 95.233 478.840 94.537 94.481 0.000 
19 95.488 522.483 94.823 94.773 0.000 
20 95.713 552.369 95.080 95.027 0.000 

 
 
 
 30,000 Treated 
 Standard Bias 

Strata PS X1 X2 X3 % Missing 
3 0.384 0.008 0.281 0.157 0.000 
4 0.285 0.009 0.213 0.119 0.000 
5 0.227 0.009 0.171 0.096 0.000 
6 0.188 0.010 0.144 0.080 0.000 
7 0.161 0.010 0.124 0.069 0.000 
8 0.141 0.010 0.109 0.061 0.000 
9 0.125 0.010 0.097 0.054 0.000 

10 0.112 0.010 0.087 0.049 0.000 
11 0.102 0.010 0.080 0.045 0.000 
12 0.093 0.010 0.073 0.041 0.000 
13 0.086 0.011 0.068 0.039 0.000 
14 0.080 0.011 0.063 0.036 0.000 
15 0.075 0.011 0.059 0.034 0.000 
16 0.070 0.011 0.055 0.032 0.000 
17 0.066 0.011 0.052 0.030 0.000 
18 0.062 0.011 0.049 0.029 0.000 
19 0.059 0.011 0.047 0.027 0.000 
20 0.056 0.011 0.045 0.026 0.000 
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 50,000 Treated 
 Bias Reduction 

Strata PS X1 X2 X3 % Missing 
3 70.562 166.402 68.358 68.393 0.000 
4 78.113 183.960 76.027 76.055 0.000 
5 82.590 186.020 80.701 80.717 0.000 
6 85.541 167.425 83.837 83.859 0.000 
7 87.637 184.697 86.096 86.112 0.000 
8 89.197 204.496 87.797 87.806 0.000 
9 90.415 207.200 89.133 89.141 0.000 

10 91.381 202.606 90.197 90.212 0.000 
11 92.173 204.741 91.076 91.089 0.000 
12 92.828 199.306 91.809 91.816 0.000 
13 93.384 213.353 92.430 92.442 0.000 
14 93.861 205.036 92.964 92.976 0.000 
15 94.274 202.028 93.430 93.440 0.000 
16 94.632 196.040 93.833 93.846 0.000 
17 94.950 204.425 94.193 94.205 0.000 
18 95.232 209.274 94.512 94.524 0.000 
19 95.485 204.239 94.797 94.816 0.000 
20 95.712 203.413 95.055 95.072 0.000 

 
 
 
 50,000 Treated 
 Standard Bias 

Strata PS X1 X2 X3 % Missing 
3 0.384 0.006 0.281 0.156 0.000 
4 0.285 0.007 0.213 0.118 0.000 
5 0.227 0.007 0.171 0.096 0.000 
6 0.188 0.008 0.144 0.080 0.000 
7 0.161 0.008 0.124 0.069 0.000 
8 0.141 0.008 0.109 0.061 0.000 
9 0.125 0.008 0.097 0.054 0.000 

10 0.112 0.008 0.087 0.049 0.000 
11 0.102 0.008 0.080 0.045 0.000 
12 0.093 0.008 0.073 0.041 0.000 
13 0.086 0.008 0.068 0.038 0.000 
14 0.080 0.008 0.063 0.035 0.000 
15 0.075 0.008 0.059 0.033 0.000 
16 0.070 0.008 0.055 0.031 0.000 
17 0.066 0.008 0.052 0.030 0.000 
18 0.062 0.008 0.049 0.028 0.000 
19 0.059 0.008 0.047 0.027 0.000 
20 0.056 0.008 0.044 0.025 0.000 
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Research on Propensity Scores 

There are numerous articles implementing propensity scores throughout the recent 

literature in the fields of medicine, social work, economics, epidemiology, education and 

psychology.  Propensity scores were first introduced through a series of seminal articles on the 

topic by Rosenbaum and Rubin (1983, 1984).  The propensity score relies on the assumption that 

differential assignment to treatment is strongly ignorable, meaning that no significant bias exists 

between treated groups and non-treated groups.  As a formal definition, Rosenbaum and Rubin 

(1983) state that “Generally, we shall say treatment assignment is strongly ignorable given a 

vector of covariates v if 

                                 

for all v.” 

 Subsequent articles by Rosenbaum and Rubin expanded on the techniques surrounding 

the use of propensity scores, such as assessing sensitivity (1983) and removal of bias by 

subclassification on the propensity score (1984).  The subclassification article stated that when 

trying to subclassify on individual covariates that “as the number of covariates increases, the 

number of subclasses grows exponentially.”  Because the propensity score reduces multiple 

covariates into a single scalar, it was determined that 90% of the bias could be removed with 

only 5 subclasses. 

 Rosenbaum and Rubin (1985) demonstrated the construction of a control group based on 

matching by the propensity score.  Using the propensity score for matching greatly reduces the 

complexity of the matching procedure and also insures that fewer cases are lost due to 

incomplete matching.  Direct matching also tends to decrease bias more than comparing 

subgroups, usually even with regression adjustments within groups.  This article also introduced 
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the matching methods of nearest available matching, Mahalanobis metric matching, and nearest 

available Mahalanobis metric matching within calipers.  The latter technique was found to be 

superior to the preceding techniques in bias reduction (given an appropriate caliper selection) 

and was less computationally intensive than the Mahalanobis metric matching alone, which 

required distances to be computed among all pairs in the data which in that particular study 

“required the computation of about 1.5 million Mahalanobis distances.”   

Rosenbaum and Rubin (1985b) elucidated the importance of proper matching methods 

and described the bias that can be introduced by either incomplete matching or inexact matching, 

which are generally diametrically opposed shortcomings based on matching procedures.  The 

conclusion was that reducing (or, more preferably, completely removing) incomplete matching 

was more important and left “only a small residual bias due to inexact matching.” 

Propensity Scores Gain Acceptance 

Other researchers were not aggressive in adopting the fairly new concept of propensity 

scores and there were few articles on the topic outside of further clarifications from Rosenbaum 

and Rubin until the early 1990s.  Rubin and Thomas (1992) presented several theorems and 

calculations surrounding matching using linear propensity score methods that helped to further 

clarify the mathematical bases of the fledgling technique.  Following publication of this article, 

there was a steady increase in articles on the propensity scores from a wider range of authors.  

One such article discussed the limitations of propensity score subclassification with small sample 

sizes (Drake, 1993), which concluded that there can be considerable residual bias if sample sizes 

are too small to allow for at least dividing data into quintiles based on the propensity score. 

D’Agostino and Kwan (1995) brought propensity scores to the forefront of the medical 

research community in a conference presentation on propensity score matching and stratification 
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as viable alternatives to fully randomized experimental design.  Application of matching and 

subclassification based on propensity scores were the focus of articles for the next several years 

(Rubin & Thomas, 1996; Smith, 1997; Rubin, 1997; Dehejia & Wahba, 1998). Smith (1997) 

built upon basic matching by showing how treated “participants” can be matched to multiple 

control “participants” in order to reduce bias when the nature of the investigation focuses on 

treatment effects in a small and rare minority that is difficult to exactly match, but for which 

there are a large number of controls.  The matching is performed in the same manner as one to 

one matching (generally within calipers), except that multiple controls may possibly be matched 

to each treatment case, with or without replacement.  Imbens (1999) expanded the propensity 

score methodology to allow for estimation of causal effects for multi-valued treatments rather 

than the two value (treated or untreated) model that had been used previously.  

At this point in the history of the propensity score literature, the basis of propensity score 

use had been fairly fully developed.  Researchers then turned to introducing the technique to new 

fields of study, creating specialized (or more generalized) applications of the techniques, or in 

many cases either defending or disparaging the results and inferences made using propensity 

scores. 

Building on the Basics 

 The application of propensity scores to longitudinal data was investigated by Winship 

and Morgan (1999) (along with other methods relevant to estimating causal effects), especially 

as they apply to sociological studies.  Greater bias reduction can be realized through “blocking” 

by matching on prognostic variables in addition to regression adjustment (Rubin & Thomas, 

2000).  The authors emphasized that the greatest results are achieved by using a full set of 

covariates rather than selecting only the covariates that account for the most variation. 
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 Dehejia and Wahba (2002) demonstrated that propensity score matching can be used to 

match a relatively rare group of treated individuals without regard to outcome measures to a 

large and diverse population, thereby allowing outcomes to only be measured for the matching 

participants at a considerable cost savings to the researcher.  The same idea was applied to the 

medical field when there are rare outcomes to a common treatment (Braitman & Rosenbaum, 

2002).    In this instance, other multivariate methods could not be used because the number of 

covariates greatly exceeds the number of rare outcomes, making model convergence impossible. 

 Several other articles utilized propensity score matching and showed their effectiveness 

by use of real data, simulations and through theoretical comparison to competing causal 

inference methods (Hirano, Imben, & Ridder, 2003; Zhao, 2004; Caliendo & Kopeinig, 2006; 

John, Wright, Duku, & Willms, 2008; Barth, Guo, & McCrae, 2008).  Caliendo & Kopeinig 

(2006) noted that one area that still requires study is a guideline for the optimal number of strata 

when performing propensity score stratification matching.  Rubin (2004) advocated teaching 

statistical inference for causal effects to all graduate and undergraduate statistics students and 

provided a framework for developing a curriculum and Luellen, Shadish, and Clark (2005) 

presented an introduction to propensity scores and compared results from propensity score 

analysis to a randomized experiment.  They also detailed how to use classification tree analysis 

and bagging for “researchers interested in computing propensity scores using more complex 

classification algorithms known as ensemble methods.” 

Dose-Response Extension 

 Another popular topic was an extension to the binary treatment levels inherent in the 

original concept of propensity score analysis to include multiple levels of treatment and to 

quantify differential levels of dose-reponse (Imbens, 2000; Foster, 2003; Imai & Van Dyk, 
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2004).  Imbens (2000) first introduced the method to allow dose-response modeling by 

expanding on the generalizations of Joffe and Rosenbaum (1999).  Imai and Van Dyk then used 

these methods to demonstrate that with this technique “bias and error reduction is relatively 

robust to model misspecification.” 
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