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The main aim of this dissertation is to relate measurable and hopefully 

controllable features of a material's microstructure to its observed failure modes to 

provide a basis for designing better materials. The understanding of creep in materials 

used at high temperatures is of prime engineering importance. Single crystal Ni-based 

superalloys used in turbine aerofoils of jet engines are exposed to long dwell times at 

very high temperatures. In contrast to current theories, creep tests on Ni-based 

superalloy specimens have shown size dependent creep response termed as the thickness 

debit effect. To investigate the mechanism of the thickness debit effect, isothermal creep 

tests were performed on uncoated Ni-based single crystal superalloy sheet specimens 

with two thicknesses and under two test conditions: a low temperature high stress 

condition and a high temperature low stress condition. At the high temperature, surface 

oxidation induced microstructural changes near the free surface forming a layered 

microstructure. Finite element calculations showed that this layered microstructure gave 

rise to local changes in the stress state. The specimens also contained nonuniform 

distribution of initial voids formed during the solidification and homogenization 

processes. The experiments showed that porosity evolution could play a significant role 

in the thickness debit effect. This motivated a basic mechanics study of porosity 

evolution in single crystals subjected to creep for a range of stress states. The study was 

performed using three-dimensional finite deformation finite element analysis of unit cells 

containing a single initially spherical void in a single crystal matrix. The materials are 



characterized by a rate-dependent crystal plasticity constitutive relation accounting for 

both primary and secondary creep. The effect of initial void spacing and creep exponent 

was also explored. Based on the experimental observations and results of finite element 

calculations a quantitative mechanistic model is proposed that can account for both 

bulk and surface damage effects and assess their relative roles in the observed thickness 

debit effect. Another set of calculations aim at relating the crack growth resistance and 

fracture surface morphology to material microstructure for ductile structural metals. 

The process that governs the ductile fracture of structural materials at room 

temperature is one of nucleation, growth and coalescence of micron scale voids, and 

involves large plastic deformations. Experimental studies have shown that fracture 

surfaces in a wide variety of materials and under a wide variety of loading conditions 

have remarkable scaling properties. For thirty years, the hope to relate the statistical 

characterization of fracture surfaces to a measure of a material’s crack growth resistance 

has remained unfulfilled. Only recently has the capability been developed to calculate 

sufficient amounts of three dimensional ductile crack growth in heterogeneous 

microstructures to obtain a statistical characterization of the predicted fracture surfaces.  

This development has enabled the exploration of the relation of both fracture toughness 

and fracture surface statistics to material properties and microstructure when the 

fracture mechanism is one of void nucleation, growth and coalescence. The relation of 

both toughness and the statistical properties of fracture surfaces in calculations of 

heterogeneous microstructures to various microstructural features is discussed and a 

remarkable correlation between fracture surface roughness and fracture toughness is 

shown for the first time.  
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CHAPTER 1

INTRODUCTION

Engineers carefully optimize a design such that the device, plan or creation should

perform its function without fail. Everything, however, eventually fails in some way to

perform its given function. Failure of most of the engineering components especially the

structural components can be well related to material failure. The optimistic solution to this

problem is to choose a material that is resistant to all failure modes in all environmental

conditions. Unfortunately such a material has not been discovered yet. Hence, the engineer

must struggle to design in such a way as to avoid failure. As Leonardo da Vinci said that

although nature commences with reason and ends in experience it is necessary for us to do

the opposite, that is to commence with experience and from this to proceed to investigate

the reason. Following this the main aim of this dissertation is to relate measurable and

hopefully controllable features of a material’s microstructure to its observed failure modes

to provide a basis for designing better materials.

The failure of engineering materials can be attributed to many known and unknown

factors. Furthermore there are a number of mechanisms and combinations of mechanisms

that can cause failure. The specific failure mechanism or mechanisms indeed depend on

material or microstructural defects, damage induced during manufacturing and assembly,

and on conditions during storage and in use. In this dissertation the focus is confined

on creep and ductile fracture of materials used for structural applications. Using both the

methods of mechanics and material science few specific problems related to creep and ductile

fracture of engineering materials are addressed. The topics addressed in this dissertation are

briefly summarized in the following paragraphs. A detail introduction and background of

the topic is provided in the beginning of each chapter.

The understanding of creep in materials used at high temperatures is of prime en-

gineering importance. Single crystal Ni-based superalloys used in turbine aerofoils of jet

engines are exposed to long dwell times at very high temperatures. Creep tests on Ni-based
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single-crystal superalloy sheet specimens typically show greater creep strain rates and/or

reduced strain or time to creep rupture for thinner specimens than predicted by current the-

ories, which predict a size-independent creep strain rate and creep rupture strain. This size-

dependent creep response is termed the thickness debit effect. To investigate the mechanism

of the thickness debit effect, isothermal, constant nominal stress creep tests were performed

on uncoated PWA1484 Ni-based single-crystal superalloy sheet specimens of thicknesses 3.18

and 0.51 mm under two test conditions: 760◦C/758MPa and 982◦C/248MPa. The micro-

scopic analysis revealed that the specimens contained initial microvoids formed during the

solidification and homogenization processes. For the specimens tested at 760◦C/758MPa mi-

croscopic analyses revealed that the thick specimens exhibited a mixed failure mode of void

growth and cleavage-like fracture while the predominant failure mode for the thin specimens

is cleavage-like fracture. The creep specimens tested at 982◦C/248MPa in air showed the

development of surface oxides and a near-surface precipitate-free zone. Finite-element anal-

ysis revealed that the presence of the alumina layer at the free surface imposes a constraint

that locally increases the stress triaxiality and changes the value of the Lode parameter (a

measure of the third stress invariant). The surface cracks formed in the oxide layers are

arrested by further oxidation; for a thickness of 3.18 mm the failure mode is void nucleation,

growth and coalescence, whereas for a thickness of 0.51 mm there is a mixed mode of ductile

and cleavage-like fracture.

In order to quantify the role of void growth in single crystals under creep loading con-

ditions, three dimensional finite deformation finite element analyses of unit cells containing

a single initially spherical void was carried out. The materials were characterized by a rate

dependent crystal plasticity constitutive relation accounting for both primary and secondary

creep. Two types of imposed loading were considered: an applied true stress (force/current

area) that is time independent; and an applied nominal stress (force/initial area) that is time

independent. Isothermal conditions were assumed. The evolution of porosity was calculated

for various values of the stress triaxiality and of the Lode parameter. The evolution of poros-

ity with time is sensitive to whether constant true stress or constant nominal stress loading
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is applied. However, the evolution of porosity with the overall unit cell strain is insensitive to

the mode of loading. At high values of stress triaxiality, the response is essentially indepen-

dent of the value of the Lode parameter. At sufficiently low values of the stress triaxiality,

the porosity evolution depends on the value of the Lode parameter and void collapse can

occur. Also, rather large stress concentrations can develop which could play a role in the

observed thickness dependence.

Following the observation that depending on the stress state the voids can either

grow and coalesce or collapse and close up. A further investigation of the possible transition

between void collapse for well separated voids to coalescence for sufficiently close voids in a

nonlinearly viscous single crystal subject to creep loading is warranted. For a fixed value of

stress triaxiality of 1/3 and three values of the Lode parameter 1, 0 and 1 three dimensional

unit cell calculations were carried out for two initial void volume fractions and, for each

initial void volume fraction, a range of void spacings. The materials were characterized

by a rate power law viscous crystal plasticity constitutive relation and three values of the

power law creep exponent were considered. The results show that, for sufficiently closely

spaced voids, void coalescence occurs while for widely spaced voids void collapse can occur.

Whether void coalescence, void collapse or neither occurs mainly depends on the value of

the Lode parameter. The calculations also showed that as the void coalesces or collapses, a

stress concentration develops which can then trigger cracking as seen in the experiments

Based on the experimental observations and detailed finite element calculations a

mechanistic model for the observed thickness debit effect in the creep response of Ni-based

single crystal super alloys is proposed. The phenomenological model is a nonlinear paral-

lel spring model for uniaxial creep with springs representing the bulk and possible surface

damage layers. The nonlinear spring constitutive relations model both material creep and

evolving damage. The number of springs and the spring creep and damage parameters

are based, as much as possible, on the experimental observations of thickness debit effect.

The bulk damage mechanisms accounted for are the nucleation of cleavage-like cracks from

preexisting voids and, at the higher temperature, void nucleation. The surface damage mech-
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anisms modeled at the higher temperature are an oxidation layer, a γ′-precipitate free layer

and a γ′-precipitate reduced layer. Model results for the creep response and for the thickness

debit effect are in close quantitative agreement with the experimental results. In addition,

the model predicts qualitative features of the failure process that are in good agreement with

experimental observations. The simplicity of the model also allows parameter studies to be

undertaken to explore the relative roles of bulk and surface damage as well as the relative

roles of cleavage-like cracking and void nucleation in the bulk.

Another part of this dissertation aim at correlating the crack growth resistance and

fracture surface morphology to material microstructure for ductile structural metals. The

process that governs the ductile fracture of structural materials at room temperature is one

of nucleation, growth and coalescence of micron scale voids, and involves large plastic de-

formations. The morphology of fracture surfaces reveals how microstructural features affect

crack growth. Experimental studies have shown that fracture surfaces in a wide variety of

materials and under a wide variety of loading conditions have remarkable scaling proper-

ties. For thirty years, the hope to relate the statistical characterization of fracture surfaces

to a measure of a materials crack growth resistance has remained unfulfilled. Recent work

suggests that analyses based on a damage constitutive relation for ductile fracture provide

a promising tool for exploring this relation. Here, finite element, finite deformation calcu-

lations were carried out using a constitutive framework for progressively cavitating ductile

solids. The matrix material was modeled as an isotropic hardening viscoplastic solid. The

large inclusions, which nucleate voids at an early stage, were modeled as a three dimen-

sional distribution of islands of the amplitude of the void nucleation function. Their size and

spacing introduce a microstructurally based characteristic length into the formulation. The

smaller second-phase particles, which require large strains for void nucleation, were uniformly

distributed, and so did not introduce any physically based length scale. The calculations

were carried out for small scale yielding conditions under remote Mode I loading. These

simulations led to the exploration of the relation of both fracture toughness and fracture

surface statistics to material properties and microstructure when the fracture mechanism
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is one of void nucleation, growth and coalescence. The relation of both toughness and the

statistical properties of fracture surfaces in calculations of heterogeneous microstructures to

various microstructural features is discussed and a remarkable correlation between fracture

surface roughness and fracture toughness is shown for the first time.

In summary in my PhD I have focused on correlating the material’s microstructural

features to specific failure modes through experimental observations and mechanistic sim-

ulations. Study of material failure begins with observations and descriptions. Computer

simulations using an idealized model which are governed by the equations of mechanics pro-

vide insight into features that are not directly accessible experimentally. These simulations

seek to provide trends, scaling relations and insight into the mechanisms of material failure.

However, the observed patterns of behavior, when sufficiently clear, leads to the development

of simple models which permits sensible planning in engineering applications and can be used

to make better materials. My infinitesimally small contribution to the already existing field

of “Mechanics of Materials” has been compiled in this dissertation. I have tried my best to

be substantial and yet remain concise.
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CHAPTER 2

EFFECT OF SPECIMEN THICKNESS ON THE CREEP RESPONSE OF A NI-BASED

SINGLE CRYSTAL SUPERALLOY

2.1. Introduction

Single crystal Ni-based superalloys were introduced in the early 1980s [1]. Since then

they have been widely used in turbine aerofoils in jet engines in order to allow for increased

turbine inlet gas temperatures so as to improve thermal efficiency. The desire for weight

reduction and the use of advanced metal cooling schemes to improve jet engine efficiency

tends to drive designs toward thinner airfoil walls [2]. Creep tests on both polycrystalline and

single crystal Ni-based superalloy specimens have shown greater creep strain rates and/or

reduced strain to creep rupture for thinner specimens than predicted by current theories

[3, 4, 5, 6, 7, 8, 9, 11, 10, 12, 13, 14]. This is known as the thickness debit effect. Current

theories of creep deformation and rupture are expressed in terms of stress, strain, strain rate,

rupture strain and rupture time, and so, for a given applied stress, predict size independent

values of the creep strain rate and the creep rupture time and strain. Phrased another

way, current theories predict that for a given applied force and given specimen width the

creep strain rate and the creep rupture strain should scale with the specimen thickness.

The understanding of creep in single crystal superalloy turbine blades is of importance for

designing more reliable and fuel efficient aircraft engines.

A qualitative comparison of the thickness debit effect for conventionally cast, colum-

nar grain and single crystal PWA1483 superalloy materials by Duhl [5] showed that the

thickness debit effect is smallest for single crystals. Doner and Heckler [4, 6] investigated

the thickness debit effect in single crystal CMSX-3 mini-flat specimens. Uncoated specimens

with a thickness of 0.76mm tested in air at 982◦C at a stress level below 275MPa exhibited

a 30% reduction in the time to creep rupture as compared with specimens with a thickness

of 3.18mm. On the other hand, Doner and Heckler [4, 6] observed no thickness debit effect

for both aluminide coated and uncoated specimens tested in high purity argon. Hüttner
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et al. [13, 14] reported a thickness debit effect in the creep response of both coated and

uncoated René N5 single crystal superalloy specimens at a test temperature of 980◦C. In

[13, 14] coated samples showed a greater thickness debit effect than the corresponding un-

coated samples. Hüttner et al. [13, 14] also showed that the samples with a misorientation of

about 16◦ showed an increased thickness debit effect as compared with < 001 > orientated

samples. Seetharaman and Cetel [10] performed creep tests on uncoated PWA1484 (see Cetel

and Duhl [15]) single crystal superalloy specimens in air at four conditions: 760◦C/758MPa,

871◦C/413MPa, 982◦C/207MPa and 982◦C/248MPa. They found a moderate thickness debit

effect for the high temperature low stress (982◦C/248MPa) condition and a greater thickness

debit effect for the low temperature high stress (760◦C/758MPa) condition.

Although attention here is focused on a single crystal superalloy, similar size depen-

dent creep behavior has been observed in a variety of materials. Cane and Townsend [16]

observed the effect of section size on the creep behavior of 0.5CrMoV steel. Storesund and

Tu [17] showed that the creep life of a cross-weld bar specimen (1Cr0.5Mo weldment) is a

strong function of specimen diameter. Size effect on the creep properties of lead free solders

under several stress levels was observed by Ueno et al. [18]. Villain et al. [19] also observed

size dependent creep response on both lead free and lead containing solders. In all cases

increased creep strain rates and/or reduced creep life with decreasing sample dimensions

were seen over a range of size scales similar to those for single crystal superalloy materials.

At smaller length scales, length scales of the order of tens of microns and smaller,

room temperature plastic deformation size effects have recieved a great deal of attention

both experimentally and theoretically, e.g. [20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31,

32]. A variety of dislocation mechanisms are known to give rise to a room temperature

size dependent plastic response including geometrically necessary dislocations, dislocation

starvation and source truncation, e.g. [20, 26, 32, 29, 31, 30]. Micron scale size effects at

elevated temperatures have received less attention, see [33, 34].

The thickness debit effect occurs at size scales of the order of hundreds of microns

to millimeters and at elevated temperatures and, although it has been widely observed, the
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mechanism (or mechanisms) responsible for the thickness debit effect have not been exper-

imentally documented. The relatively larger size scale over which the thickness debit effect

occurs suggests that the mechanisms leading to creep size effects can differ from those that

give rise to room temperature size effects and a variety of mechanisms have been proposed

as being responsible for the thickness debit effect. Baldan [9] presumed that the thickness

debit effect occurs due to a damage mechanism occurring throughout the section and argued

that the creep response is controlled by the crack size to section size ratio. Doner and Heck-

ler [4, 6] suggested that the degradation in the time to creep rupture in their experiments

was primarily due to environmental effects. Seetharaman and Cetel [10] considered sev-

eral possible explanations including deformation constraint, cavity nucleation, growth and

coalescence, environmental degradation and changes in anisotropy with section thickness.

Gullickson et al. [35] assumed that the thickness debit effect observed in the creep tests of

Seetharaman and Cetel [10] was due to damage occurring in a surface layer. They used a

constitutive model for the nucleation and growth of voids and carried out three dimensional

finite element analyses incorporating a surface damage layer. Cassenti and Staroselsky [36]

modeled a mechanism involving an overstressed boundary layer created due to plastic slip

and the preferential nucleation of voids or micro-cracks near surface to explain the thickness

debit effect. The results for the thickness dependence of creep curves in [35, 36] were qual-

itatively consistent with the experimental observations. Bensch et al. [37] analyzed surface

oxidation in uncoated specimens to model the thickness debit reported in [13, 14]. Their

results indicated that surface oxidation could qualitatively explain the thickness debit effect

in circumstances where environmental degradation is the main mechanism.

Given the variety of observations and proposed mechanisms, a further investigation

of the mechanism (or mechanisms) responsible for the thickness debit effect in creep prop-

erties of single crystal superalloys is warranted. Here, the results of creep tests and the

microscopic analysis of the test specimens aimed at identifying the mechanism (or mecha-

nisms) responsible for the thickness debit effect are reported. The tests were performed on

uncoated PWA1484 single crystal superalloy sheet specimens with thicknesses of 3.18mm
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and 0.51mm at 760◦C/758MPa and 982◦C/248MPa (the same material and test conditions

as in Seetharaman and Cetel [10]). Two specimens for each thickness and test condition

were creep tested until rupture, while three creep tests at 982◦C/248MPa were terminated

after a time in the range of 30% to 70% of the time to rupture. In total eleven creep tests

were conducted. Several finite element analyses were also carried out to aid in interpreting

the experimental results.

2.2. Material Description and Experimental Procedure

Single crystal bars (25.4mm diameter × 228.6mm long) of PWA1484 [15, 38] alloy

with nominal chemical composition of (weight percent) Co 10.0%, Cr 5.0%, Al 5.6%, Ta

8.7%, W 6.0%, Mo 2.0%, Re 3.0%, and Ni the balance was directionally solidified at Pratt &

Whitneys in-house Rapid Prototype Casting Laboratory. X-ray diffraction (Laue) analysis

and macro-etching were used to confirm that the bars were single crystals with a primary

orientation within 10◦ of the [100] axis. The single crystal bars were subjected to a standard

sequence of heat treatment cycles, viz., solution annealing at 1316◦C (2400◦F) for 2 hours

in vacuum, coating diffusion heat treatment at 1080◦C (1975◦F) for 4 hours in a controlled

atmosphere, and with a precipitation heat treatment at 704◦C (1300◦F) for 24 hours in air.

The creep test specimens with a gauge length of≈ 25.58mm, a width of≈ 4.75mm and

a thickness of either h = 0.51mm or h = 3.18mm (Fig. 2.1) were electro-discharge machined

from heat treated single crystal bars and ground to remove the recast layer. All creep test

specimens were machined from bulk single crystal bars to eliminate the influence of variations

in secondary dendrite arm spacing, micro-segregation patterns and initial micro-voids as in

[10]. The sheet specimens were machined such that the orientation of the specimen width

was within ±2 degrees of < 100 > (see Fig. 2.1).

Metallographic studies were performed on all the creep tested specimens using scan-

ning electron microscopy (SEM). Specimens creep tested in air at 982◦C developed surface

oxides where as no oxidation was observed on the specimens creep tested at 760◦C. The

chemical analysis of the oxides formed due to environmental effects during the high temper-

ature creep tests (982◦C) was performed using energy dispersive spectroscopy (EDS) in the
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Figure 2.1. Schematic illustrating the shape and orientation of the uncoated

PWA1484 single crystal superalloy sheet specimens used in the creep tests.

SEM using an Apollo X silicon drift detector (SDD) at 20kV excitation voltage. The mea-

sured X-ray intensities were converted to atom% using an atomic number absorbance and

fluorescence (ZAF) program. Electron backscatter diffraction known as orientation imag-

ing microscopy (OIM), was carried out using a field emission gun (FEI Nova 230) scanning

electron microscope (FEGSEM) in order to determine the local texture and microstructural

changes, if any.

2.3. Results

Figure 2.2. SEM images of the microstructure of the PWA1484 single crystal

superalloy showing initial voids. (a) Two nearly spherical homogenization

voids. (b) An irregular shaped shrinkage void.

The undeformed microstructure of the PWA1484 single crystal superalloy contained

micro-voids formed during the solidification and homogenization processes as shown in

Fig. 2.2 and also observed for other Ni-based single crystal superalloys, see e.g. [39, 40].
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The nearly spherical voids in Fig. 2.2a are generally formed during the homogenization pro-

cess while the larger, irregular shaped voids such as shown in Fig. 2.2b are mainly formed

during the solidification process. The volume fraction of the micro-voids is generally low but

the voids are mainly confined to the interdendritic regions of the crystal which results in a

relatively high local void volume fraction. The dendrite arm spacing in a nickel base single

crystal superalloy mainly depends on solidification velocity and thermal gradient [41]. The

secondary dendrite arm spacings of the single crystal bars of PWA1484 used in the present

study were less than 100µm.

Isothermal creep tests were carried out at Metcut Research Inc., Cincinnati, OH

(USA) on uncoated specimens in air under two conditions: (i) a test temperature of 760◦C

(1400◦F) with a fixed nominal stress (force/initial area) of 758MPa (110ksi); and (ii) a test

temperature of 982◦C (1800◦F) with a fixed nominal stress of 248MPa (36ksi). At 760◦C

the ratio of applied stress to yield strength is 0.79 while at 982◦C this ratio is 0.46 [10]. The

elastic deformation was neglected and the creep data was recorded after applying the tensile

load. The creep strain (εc) is defined as ∆ℓ/ℓ0, where ℓ0 is the initial gauge length. The

creep data was recorded until a creep strain of 5% and after that the test was continued

until rupture. Specimens that showed evidence of bending or that failed near the grips were

discarded (there was one of each).

Based on the results of Seetharaman and Cetel [10] creep tests of two specimens

of thickness 3.18mm at 982◦C/248MPa were interrupted after a test duration of 75 hours

(εc = 0.63%) and 145.7 hours (εc = 5.5%). For the 0.51mm thick specimens one test

at 982◦C/248MPa was interrupted after 51.2 hours (εc = 0.76%) to explore the evolution

of damage as a function of the accumulated creep strain. Subsequently, the creep tests

conducted at 760◦C/758MPa will be termed the low temperature high stress creep tests and

the tests at 982◦C/248MPa will be termed the high temperature low stress creep tests.

2.3.1. Low Temperature High Stress Results

The creep strain, εc, versus time, t, curves for the low temperature high stress loading

condition for specimen thicknesses of 0.38mm, 0.76mm, 1.52mm and 3.18mm from the work
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Figure 2.3. Creep strain, εc versus time, t, curves for sheet specimens having

various thicknesses, h, tested at 760◦C with a 758MPa applied nominal stress.

(a) Data from Seetharaman and Cetel [10] and the current work are shown.

(b) Short time creep strain εc versus time, t, curves for sheet thicknesses h =

0.51mm and 3.18mm.

Figure 2.4. The effect of specimen thickness (h) on (a) the creep strain to

fracture (εf) and (b) the time to fracture (tf) of sheet specimens creep tested

at 760◦C/758MPa. Data from Seetharaman and Cetel [10] and the current

work are included. The dashed line is a least squares fit of a− b/
√
h to εf and

tf data, where a and b are positive fitting constants.

of Seetharaman and Cetel [10] along with the results for specimen thicknesses of 0.51mm and

3.18mm from the current work are shown in Fig. 2.3. Irrespective of the specimen thickness
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the primary creep regime extends to approximately 6% strain. The creep curves up to 5%

strain for a h = 0.51mm and a h = 3.18mm are shown in Fig. 2.3b. Both specimens showed

a brief time delay before primary creep begins, as also reported in [42, 43], followed by a

constant primary creep rate. Specimens of thickness 0.51mm reached 5% creep strain in 2.2

hours and those with thickness 3.18mm reached εc = 5% in 2.5 hours. The difference in time

to 5% creep strain is very small compared with the difference in final creep rupture time.

For specimens of thicknesses 0.76mm, 1.52mm and 3.18mm a deviation from steady state

creep to tertiary creep occurred whereas failure occurred for the 0.38mm thick specimens in

the secondary creep regime.

Figure 2.4 shows the effect of thickness on the creep strain to fracture, Fig. 2.4a, and

on the time to fracture, Fig. 2.4b. The creep strain to fracture, εf , is nearly the same for

h = 3.18mm and h = 1.52mm while for thinner specimens, the creep ductility is reduced.

There is a more than 40% reduction in εf for the specimens with a thickness of 0.38mm as

compared with the specimens with h = 3.18mm. The time to creep rupture, tf , is reduced

by about 60% for h = 0.38mm as compared with that for h = 3.18mm. Interestingly the

variations of both εf and tf for this range of specimen thicknesses h are well represented by

a fit of the form a− b/
√
h, where a and b are positive fitting constants.

Standard fractography using secondary electron imaging (SE) in a scanning electron

microscope (SEM) was performed. SEM images of the fracture surface for a h = 3.18mm

specimen are shown in Fig. 2.5. Figure 2.5a shows the reconstructed fracture surface with the

loading direction marked as ld and with the thickness direction into the plane of the image.

Specimens with h = 3.18mm showed pronounced tertiary creep and failed after εc ≈ 18%.

Failure of the h = 3.18mm specimens are accompanied by localized necking with the cross-

sectional area near fracture surface being approximately 10% less than the cross-sectional

area of the far gauge section. Micro-cracks are also present away from the fracture region

on the gauge section. No surface oxidation was observed in the low temperature high stress

specimens.

The fracture morphology in Fig. 2.5b shows stepped cleavage-like planes as well as
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Figure 2.5. SEM images of a 3.18mm thick sheet specimen tested at

760◦C/758MPa. (a) The region near the fracture surface reconstructed af-

ter rupture (the loading direction is ld and the sheet thickness is into the

plane). (b) The fracture morphology of the upper half of the specimen in (a)

(the loading direction is into the viewed plane). (c) Zoomed view of the region

enclosed by the dotted circle in (b). (d) Zoomed view of the region enclosed

by the dotted rectangle in (b).

micro-voids. The crystallographic cleavage-like planes have traces of slip bands showing

evidence of creep deformation by a slip process. The edges of the projected fracture surface

are inclined at an angle ≈ 45◦ with respect to the loading axis, i.e. a < 001 > crystallographic

direction so that these edges are along a < 011 > direction. The maximum resolved shear

stress is at 45◦ to the tensile direction and, since {111} planes intersect with {100} planes

along < 011 > directions, these cleavage-like planes are {111} planes. A similar observation

was made by Sherry and Pilkington [44] in creep rupture testing of single-crystal superalloy
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SRR99 at 750◦C. The presence of numerous crystallographic facets indicate that the rupture

process involves multiple {111} planes. The zoomed view of the region with void activity

in Fig. 2.5c shows numerous shallow voids joined by shear along slip bands. In Fig. 2.5d

voids connected by micro-cracks are also seen. At several locations the fracture surface

surrounding the voids is orthogonal to the loading axis as in brittle fracture, marked by the

arrow in Fig. 2.5d. Also two intersecting {111} crystallographic cleavage-like planes can be

seen.

Figure 2.6. SEM images of a 0.51mm thick sheet specimen tested at

760◦C/758MPa. (a) The region near the fracture surface reconstructed after

rupture (the loading direction is ld and the sheet thickness is into the plane).

(b) The fracture morphology of the region marked by a dotted circle in (a)

(the loading direction is into the viewed plane). (c) The fracture morphology

of the region marked by a dotted rectangle in (a) and the inset shows the side

view marked by the arrow in (a). (d) Zoomed view of the fracture surface

showing stepped cleavage-like planes.
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Figure 2.6 shows SEM images of the fracture surface for a h = 0.51mm specimen.

Unlike the h = 3.18mm specimens there is no evidence of micro-cracks on the surface away

from the fracture region of the h = 0.51mm specimens as shown in the reconstructed fracture

surface in Fig. 2.6a. Also no significant necking is observed and the specimens failed at a

very low creep strain of εc ≈ 11% as compared to h = 3.18mm specimens. However, there is

a shear lip in the extreme left of Fig. 2.6a. The orthogonal view of the region marked with

a dotted circle in Fig. 2.6a is shown in Fig. 2.6b. In the upper half of Fig. 2.6b there is a

region that contains numerous micro-cracks that apparently originated from micro-voids. A

shear lip inclined at an angle of approximately 45◦ to the loading axis can also be seen at the

bottom of the image. The shear lip in Fig. 2.6b contains numerous cleavage-like steps. At

the root of the shear lip a river pattern [45] can be seen. The region marked with a dotted

rectangle in Fig. 2.6a and shown in Fig. 2.6c is flat with the right side edge inclined at an

angle of ≈ 45◦ to the loading axis, as can be seen in the inset. Micro-cracks and micro-

voids are present on this surface. Figure 2.6d shows a zoomed view of the fracture surface

between the dotted circle and the dotted rectangle in Fig. 2.6a. The presence of intersecting

crystallographic cleavage-like planes shows that rupture in this region occurred along more

than one {111} family of planes unlike what is observed near one end of the specimen as

shown in Fig. 2.6c.

The major differences between the fracture morphology of thick and thin specimens

can be summarized as, (i) an increased cleavage-like fracture and (ii) a transition from

heterogeneous multi crystallographic cleavage-like fracture to mainly single plane cleavage-

like fracture with reducing specimen thickness. The presence of initial micro-voids are the

preferred sites for crack nucleation as shown in Figures 2.7a and 2.7b. The SEM images in

Figs. 2.7a and 2.7b are taken from the section above the fracture surface of a specimen with

h = 0.51mm. As shown in Fig. 2.7a the voids elongate predominantly in the loading direction

and precipitate cracks near (but not at) the tip of the deformed void. The transverse view

of another deformed void is shown in Fig. 2.7b. Once a crack initiates it propagates along

planes, probably {111} planes, that have a high resolved shear stress. The bead-like structure
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Figure 2.7. SEM images from the section near fracture surface of a specimen

with h = 0.51mm tested at 760◦C/758MPa. (a) Initiation of micro-cracks from

the surface near the tip of the elongated void (the loading direction is ld). (b)

Growth of crack initiated from the surface of a void (the loading direction is

into the viewed plane).

on the slant portion of the crack in Fig. 2.7b (marked with an arrow) shows the presence of

connected micro-voids. Deformed voids and micro-cracks such as those in Fig. 2.7 are also

seen with h = 3.18mm specimens at locations just above the fracture surface. The loss of

area associated with cleavage-like cracks nucleating from deformed voids as in Fig. 2.7 has

a greater impact on the load carrying capacity of thinner specimens leading to a transition

from creep-ductile to creep-brittle behavior with reducing specimen thickness.

2.3.2. High Temperature Low Stress Results

Curves of creep strain versus time for specimen thicknesses of h = 0.51mm and

h = 3.18mm tested at a temperature of 982◦C and a nominal stress of 248MPa are shown in

Fig. 2.8. The creep strain versus time curves were recorded up to a creep strain of 5%. Two

tests for each specimen thickness were continued to rupture while two tests on specimens

with h = 3.18mm were interrupted after test durations of 75 hours and 145.7 hours. One

test on a specimen with h = 0.51mm was interrupted after a test duration of 51.2 hours.

The interrupted tests allowed exploration of damage evolution as a function of accumulated

creep strain. As shown in Fig. 2.8 the time to reach 5% creep strain for a specimen with
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Figure 2.8. Creep strain (εc) versus time (t) curves for sheet specimens with

h = 0.51mm and h = 3.18mm tested at 982◦C and with 248MPa applied

nominal stress to a creep strain of εc = 5%. Also shown are creep strain versus

time curves for creep tests interrupted after t = 51.2 hours for h = 0.51mm

and after t = 75 hours for h = 3.18mm.

Figure 2.9. The effect of specimen thickness (h) on (a) the creep strain to

fracture (εf) and (b) the time to fracture (tf ) for sheet specimens creep tested

at 982◦C/248MPa. Data from Seetharaman and Cetel [10] and the current

work are included. The dashed line is a least squares fit of a− b/
√
h to εf and

tf data, where a and b are positive fitting constants.

h = 3.18mm is 152 hours while for a specimen with h = 0.51mm it is 125 hours. The plots

in Fig. 2.8 show an increased creep rate with decreasing thickness at low strain levels for
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both the specimens tested to rupture and for the interrupted tests.

The creep strain to rupture and the time to rupture for specimens with h = 0.51mm

and with h = 3.18mm from the current work and for specimens with h = 0.76mm, h =

1.52mm and h = 3.18mm from the work of Seetharaman and Cetel [10] are shown in Figs. 2.9a

and 2.9b, respectively. There is a clear dependence of the time to rupture on specimen

thickness as shown in Fig. 2.9b. On the other hand, there is no clear dependence of the creep

strain to rupture on specimen thickness. The largest value of εf occurs for h = 1.52mm and,

even if that point is neglected, the dependence of εf on specimen thickness h is relatively

weak. The dotted lines in Fig. 2.9 show a least squares fit to a− b/
√
h. The fit in Fig. 2.9a

reflects the weak dependence on specimen thickness whereas the fit in Fig. 2.9b shows a

strong dependence on h. The specimens with thickness h = 3.18mm ruptured after 210

hours whereas the specimens with h = 0.51mm ruptured after 155 hours, a reduction of

about 25% in the time to creep rupture.

In contrast to the creep tests at 760◦C significant surface oxidation was observed

during the creep tests at 982◦C. Figures 2.10a and 2.10b shows the surface textures of the

gauge region surface oxide after various creep exposure times for specimens with thicknesses

h = 0.51mm and Figs. 2.10c and 2.10d show the same for specimens with h = 3.18mm.

As will be shown subsequently, layer A is an Al-rich oxide layer and layer M is a mixed

oxide layer. After 51.2 hours of creep exposure time for h = 0.51mm and 75 hours of

creep exposure time for h = 3.18mm, the gauge region surfaces show a single oxide layer

marked as layer A in Figs. 2.10a and 2.10c. With continuing creep exposure layer A on the

specimen gauge surface develops cracks perpendicular to the loading direction. These cracks

expose metal to air for further oxidation. The oxides formed in the open cracks are shown

in Fig. 2.10b for a h = 0.51mm and in Fig. 2.10d for a h = 3.18mm specimen. This shows

that the cracks formed in the surface oxide layers were arrested due to further oxidation. So

that propagation of these cracks did not play a role in the creep rupture process. The grip

regions of all specimens creep tested at 982◦C/248MPa also showed M and A oxide layers

with significant spallation of layer M. The surface texture of the gauge region did not depend
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Figure 2.10. SEM images showing the evolution of the specimen surface of

the gauge region during the creep test at 982◦C/248MPa (the loading direction

is ld). (a) A h = 0.51mm thick specimen after 51.2 hours. (b) A h = 0.51mm

thick specimen after creep rupture. (c) A h = 3.18mm thick specimen after

75 hours. (d) A h = 3.18mm thick specimen after creep rupture. ‘A’ marks

the Al-rich oxide and ‘M’ marks the mixed oxide.

on the creep exposure time.

A further examination of the oxide layers is important to analyze the progressive loss

of load-carrying cross-section of the specimens as it will affect thinner specimens more than

thicker specimens. Metallographic examination of the polished samples taken from near the

fracture region of the gauge section of the creep ruptured specimens showed the presence

of various layers of oxides and the microstructure that developed in the alloy. One of the

images taken from near the fracture surface of a h = 3.18mm creep ruptured specimen is

shown in Fig. 2.11. Similar layers can also be seen in 0.51mm thick specimens. There are

three layers of oxides, layer N, layer M and layer A. The first layer after the oxide layers is
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Figure 2.11. SEM image from near the fracture surface showing three layers

of oxides in a h = 3.18mm specimen creep tested at 982◦C/248MPa. N marks

the Ni-rich oxide layer. M marks the mixed oxide layer. A marks the Al-rich

oxide layer. L1 marks the γ′ free layer. L2 marks the γ′ reduced layer. The

rafting in the bulk can be seen. The arrow marks the presence of faceted

precipitates in the L1 layer. The loading direction is ld.

a precipitate free layer, denoted as layer L1. As shown in the Fig. 2.11 no γ′ precipitates

are present in this layer. Two interesting features observed in layer L1 are the presence of

large micro-voids and faceted precipitates (marked with an arrow). After the γ′-free layer

is the depleted γ′ precipitate layer, denoted as L2. The extensive rafting of γ′ normal to

the loading direction in the bulk of the material is consistent with other observations on

superalloys characterized by a small negative misfit between the lattices of γ and γ′ phases,

e.g. [46, 47, 48].

The first two oxide layers shown in Fig. 2.11 are present in small patches on specimen

surfaces both at the stressed gauge section and the unstressed grip section. The EDX spectra

in Fig. 2.12 identifies layer N as a Ni-rich oxide layer; Layer-M as a mixed oxide of Ni, Al,

Ta, Cr and Co; and the adherent layer A as the Al-rich oxide. The mixed oxide M is

also present in the cracks in the adherent layer A as shown in Figs. 2.10b and 2.10d. The

quantification of EDX spectra from the faceted precipitates in the γ′-free layer in Fig. 2.11
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Figure 2.12. EDX spectra from the representative regions marked as N, M

and A in Fig. 2.11.

Figure 2.13. Inverse pole figure map of the γ′ free zone in a specimen creep

tested to fracture at 982◦C/248MPa. The map is given in the [001] orienta-

tion. The recrystallized grain orientations can be seen from the color-coded

stereographic triangle. Σ3 (twin) boundaries are marked in black.

suggests the presence of a β (NiAl) phase similar to what has been reported in oxidation

studies of CMSX-10 by Akhtar et al. [49]. The EBSD inverse pole figure, Fig. 2.13, of the

γ′ precipitate free zone in Fig. 2.11 shows the presence of recrystallized grains. Figure 2.13
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represents an area of 9.1 × 4.6µm2 and the electron beam was scanned in steps of 0.1µm.

The EBSD pattern was indexed using the nickel fcc phase. Dynamic recrystallization in the

precipitate free zone under the oxide scale occurred both in specimens with h = 3.18mm and

h = 0.51mm. Oxidation induced dynamic recrystallization of the near surface region during

thermomechanical fatigue of CMSX-4 single crystal superalloy has been recently reported by

Moverare and Johansson [50]. Surface recrystallization of single crystal superalloys has been

generally observed in circumstances where the surface is predeformed via surface indentation

[51] or shot peening [52]. In the absence of residual plastic strain and at a temperature well

below the solvus temperature of γ′ precipitates, dynamic recrystallization is mainly due

to oxidation induced precipitate depletion. The dynamic recrystallization mainly resulted

in subgrain boundaries and recrystallization twin boundaries. The grain boundaries that

form during recrystallization could promote creep cavitation and, indeed, an increase in the

number of voids in the precipitate free zone is seen in Fig. 2.11. Hence, oxidation not only

contributes to a reduction in load carrying cross-sectional area but also leads to processes

that produce a boundary layer prone to void nucleation. The size of the recrystallized zone

formed due to oxidation during high temperature creep will be independent of the specimen

thickness and will have more adverse effect on thinner specimens.

Figure 2.14 compares the evolution of micro-voids and micro-cracks for the specimens

with h = 0.51mm and h = 3.18mm. Figures 2.14a and 2.14b show the accumulated damage

in the gauge region of a specimen interrupted after 51.2 hours (εc=0.76%) and in the region

above the fracture surface of a creep ruptured (εf=14.9% and tf = 155 hours) specimen

with h = 0.51mm. Similarly Figs. 2.14c and 2.14d show micro-voids and micro-cracks in

the gauge region of a specimen interrupted after 75 hours (εc=0.63%) and in the region

above the fracture surface of a creep ruptured (εf=18.6% and tf = 210 hours) specimen

with h = 3.18mm. The comparison of Figs. 2.14a and 2.14b and of Figs. 2.14c and 2.14d

reveals an increase in the number and size of micro-voids with increasing creep deformation.

Several voids are elongated in the loading direction (as shown in the inset of Fig. 2.14b)

and also many voids have initiated micro-cracks near the tip of the elongated void or have
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Figure 2.14. SEM images showing evolution of damage in the gauge region

of the specimens creep tested at 982◦C/248MPa. (a) A h = 0.51mm thick

specimen after 51.2 hours. (b) A h = 0.51mm thick specimen after creep

rupture. (c) A h = 3.18mm thick specimen after 75 hours. (d) A h = 3.18mm

thick specimen after creep rupture. The loading direction is ld.

coalesced with the neighboring void perpendicular to the loading direction (as shown in

the inset of Fig. 2.14d). The increased number of voids observed after creep deformation

indicates nucleation of new voids as well as the growth of existing voids. Epishin and Link

[53] observed similar nucleation and growth of voids in the interdendritic regions and at the

γ-γ
′

interfaces. A comparison of Fig. 2.14b with 2.14d shows an increased number and size

of micro-voids and an increased number of micro-cracks in the creep ruptured specimens

with h = 3.18mm as compared with the specimens with h = 0.51mm. This suggests that

the thicker specimens are more damage tolerant than the thinner specimens as in the case

of low temperature high stress creep.
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Figure 2.15. SEM images of the sheet specimens tested at 982◦C/248MPa.

(a) The region near the fracture surface of a 3.18mm thick specimen recon-

structed after rupture (the loading direction is ld and the sheet thickness is

into the plane). (b) The fracture morphology of the one half of the specimen

in (a) (the loading direction is into the viewed plane). (c) The region near

the fracture surface of a 0.51mm thick specimen reconstructed after rupture

(the loading direction is ld and the sheet thickness is into the plane). (d) Two

non-mating halves of the fracture surface of the specimen in (c) (the loading

direction is into the viewed plane).

SEM images of the fracture surface of a h = 3.18mm and of a h = 0.51mm specimen

tested under the high temperature low stress condition are shown in Fig. 2.15. The SEM

image of a reconstructed creep ruptured specimen with thickness h = 3.18mm is shown

in Fig. 2.15a and with thickness h = 0.51mm is shown in Fig. 2.15c. The tensile loading

direction is marked by ld and the thickness direction is into the plane of the image. The
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presence of micro-cracks perpendicular to the loading direction can be seen in the gauge

section away from the fracture surface. Specimens with h = 0.51mm show fewer micro-cracks

in the gauge section as compared with h = 3.18mm specimens. The h = 0.51mm specimens

and h = 3.18mm specimens failed after undergoing roughly the same creep strain. Under

high temperature low stress creep loading conditions h = 0.51mm thick and h = 3.18mm

thick specimens showed gradual reduction in the cross-sectional area with cross-sectional

area near fracture section roughly being 25 − 30% less than the cross-sectional area of the

far gauge section.

A dimpled fracture morphology can be seen in Fig. 2.15b for a h = 3.18mm specimen.

The zoomed view of the fracture morphology in the inset of Fig. 2.15b shows the presence

of micro-voids and micro-cracks in cup-like depressions. The fracture morphology indicates

that the rupture occurred due to the nucleation, growth and coalescence of voids and not

because of micro-cracks initiated in the oxide layer as these cracks were arrested after further

oxidation. The two non-mating halves of the fracture surface of a h = 0.51mm specimen

are shown in Fig. 2.15d. The fracture surface shows the presence of deformed micro-voids

and irregular bulged areas (bottom half of Fig. 2.15d and the inset). This type of fracture

morphology is observed over 50% fraction of the fracture surface. Near one end of the

fracture surface, as shown in the upper half of Fig. 2.15d, cleavage-like steps can be seen

that are inclined to the loading direction. There is a transition from more or less complete

ductile fracture for thicker specimens to a mix mode of ductile and cleavage-like fracture for

thinner specimens. This transition, together with the environmental effects, plays a major

role in the observed thickness debit effect under the high temperature low stress condition.

2.4. Discussion

The thickness debit effect of sheet specimens of PWA1484 Ni-based single crystal

superalloy has a distinctly different manifestation in the two creep test conditions considered.

In the low temperature high stress creep condition (760◦C/758MPa) the thickness debit

effect has the form of a reduction in the creep strain to rupture and the time to rupture

with decreasing specimen thickness. The fracture surfaces for the thinner specimens are
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more cleavage dominated and the creep strain versus time response exhibits little or no

tertiary creep. The thickness debit effect at the high temperature low stress creep condition

(982◦C/248MPa) has the form of an increase in creep rate even at low creep strain levels

and a reduction in the time to creep rupture with decreasing thickness but with no, or

limited, dependence of the creep strain to rupture on specimen thickness, even though the

fracture surfaces for the thinner specimens are more cleavage dominated as for the case of

low temperature high stress creep.

Figure 2.16. Computational results for the change in stress state near the

free surface due to an adherent surface oxide and dynamic recrystallization

for applied uniaxial creep loading in the x3−direction giving χ = 1/3 and

L = −1. (a) Sketch of the cross section of the configuration analyzed. (b)

Variation of stress triaxiality χ on two cuts. (c) Variation of the value of the

Lode parameter L on two cuts.

The adherent surface oxide and the layered structure that forms near the surface

at 982◦C/248MPa will affect the stress distribution in the specimen. Finite element finite

deformation calculations were carried out to explore this effect. The material in each layer

was taken to follow the isotropic Norton power law creep relation

(1) ǫ̇e = ȧ

(

σe

σ0

)n

where σe is the Mises effective stress and ǫ̇e is the corresponding effective strain rate. The

commercial program ABAQUS [54] was used with C3D20H elements (20 node hybrid ele-

27



ments). Constant engineering stress creep loading, as in the experiments, was imposed in

the x3 direction. The deformation was assumed uniform in the x3 direction so that only 5

layers of elements normal to the x3 direction were used. On one external plane normal to the

loading direction u3 = U is imposed for all nodes while u3 = 0 is for all nodes on the oppo-

site normal plane. The displacement u1 was taken to vanish on the external surface parallel

to the x1 direction similarly u2 = 0 on the external surface parallel to the x2 direction in

order to simulate the constrain imposed by the adherent alumina layer. Since the adherent

alumina layer readily cracks normal to the loading direction hence it is assumed that it does

not impose any constraint in the loading direction (x3 direction). Symmetry conditions were

imposed on the sides at x1 = 100µm and x2 = 100µm.

The creep properties of regions R2 and R3 are not known but it is expected that the

creep rate increases with a decreasing volume of γ′ as assumed in [37]. The parameters σ0

and n are chosen to exhibit this trend in creep rate and the reference strain rate ȧ is fixed at

7.59× 10−8s−1. In region R1 σ0 = 150MPa and n = 5, in region R2 σ0 = 15MPa and n = 5

and in region R3 σ0 = 6.92MPa with n = 7. Note that in Eq. 1 the values of σ0 and ȧ do

not independently affect ǫ̇e; all that matters is the combination ȧ/σn
0 . The elastic constants

in region R1 was taken as C11 = 271GPa, C12 = 194GPa and C44 = 105GPa, region R2 was

assumed to be elastically isotropic with E = 210GPa and Poisson’s ratio 0.3, and region R3

was also assumed to be elastically isotropic with E = 200GPa and Poisson’s ratio 0.31. The

calculations were continued to an engineering creep strain of 10%.

Figures 2.16b and 2.16c illustrates the change in stress state that can occur due to the

development of a heterogeneous microstructure. Figure 2.16b shows the variation of stress

triaxiality χ and Fig. 2.16c shows the variation in Lode parameter L along the sections A-A

and B-B. The stress triaxiality χ is the ratio of the first to second stress invariants and is

given by

(2) χ =
Σh

Σe
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where

(3) Σe =
1√
2

√

(Σ1 − Σ2)2 + (Σ2 − Σ3)2 + (Σ3 − Σ1)2

(4) Σh =
1

3
(Σ1 + Σ2 + Σ3)

The stress triaxiality is 1/3 for uniaxial tension. The influence of the third stress invariant

is assessed via the Lode parameter, L, which is given by

(5) L =
2Σ2 − Σ1 − Σ3

Σ1 − Σ3

The value of the Lode parameter ranges from −1 to +1 with L = −1 for uniaxial tension.

The constraint imposed on the free surface of the region R3 results in a decrease in

stress triaxiality value near the corner and an increase in the value of χ away from the corner.

Away from the surface stress triaxiality χ and Lode parameter L attain values corresponding

to a uniaxial state of stress (χ = 1/3 and L = −1). The variation of L in the regions R2

and R3 covers the entire range from −1 to 1. It is in the R2 and R3 layers that increased

micro-cracks, as well as void nucleation, was seen in the specimens tested at 982◦C/248MPa.

It is worth noting that the change in stress state associated with the formation of a layered

structure will also affect the material response during thermomechanical fatigue.

In both the low temperature high stress condition, 760◦C/758MPa, and the high

temperature low stress condition, 982◦C/248MPa, the initial voids can precipitate nucleation

of cleavage-like cracks so that the thickness debit effect is a bulk effect arising from the

increased crack size to thickness ratio for thinner specimens. At least under the conditions

considered here, the results indicate that bulk effects play a major role in the observed

thickness debit effect. In the high temperature low stress condition surface effects including

oxidation, dynamic recrystallization and the formation of a boundary damage layer leading

to a near surface change in stress state play contributing roles as well. The surface effects are

independent of specimen thickness and hence affects thinner specimens more than thicker

ones.
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2.5. Summary and Conclusions

Isothermal, constant nominal stress creep tests at two test conditions 760◦C/758MPa

and 982◦C/248MPa were performed on uncoated PWA1484 Ni-based single crystal superalloy

sheet specimens of thickness h = 3.18mm and h = 0.51mm. Metallographic studies showed

that the specimens contained initial voids mainly in the interdendritic regions. To understand

the contribution of various mechanisms possibly leading to the thickness debit effect, creep

tests at 982◦C/248MPa were interrupted after t = 75 hours and t = 145.7 hours for specimens

of h = 3.18mm and after t = 51.2 hours for specimen of h = 0.51mm. The dependence of

the creep response on specimen thickness differed under the two test conditions:

Low temperature high stress condition (760◦C/758MPa):

• There was little effect of specimen thickness on the steady-state creep rate. The main

effect of specimen thickness was on the onset of tertiary creep and for h = 0.38mm

failure occurred prior to any tertiary creep.

• A decrease in specimen thickness from 3.18mm to 0.38mm resulted in over 40%

reduction in the creep strain to rupture and around a 60% reduction in the time to

rupture.

• Neither oxide formation on the specimen surfaces, rafting nor void nucleation was

observed.

• With h = 3.18mm a mixed mode of failure involving ductile void growth and coa-

lescence and cleavage-like cracking was observed. With h = 0.51mm cleavage-like

cracking covered more of the failure surface.

• The thickness debit effect can be attributed to the following process: The loss in load

carrying area due to cleavage-like cracking raises the stress level on the remaining

intact surface which promotes additional cleavage. The deleterious effect of loss of

intact area is greater for thinner specimens.

High temperature low stress condition (982◦C/248MPa):

• The steady-state creep rate increased with decreasing specimen thickness. The time

to reach 5% creep strain was reduced by 18% for the specimens with thickness
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h = 0.51mm as compared with the specimens with h = 3.18mm.

• The time to rupture for the specimens with h = 0.51mm was 25% less than that

for the specimens with h = 3.18mm but there was no systematic dependence of the

strain to rupture on specimen thickness.

• Surface oxides formed. Spallation of the Ni-rich and mixed oxide layers and forma-

tion of adherent Al-rich oxide was observed. Cracks formed in the adherent oxide

layer exposed metal but were arrested due to further oxidation.

• Oxidation of the uncoated specimens resulted in the formation of a γ′-precipitate

free zone. The precipitate free zone underwent dynamic recrystallization resulting

in the formation of subgrains.

• Void nucleation was observed throughout the specimen and particularly in the pre-

cipitate free zone.

• Finite element analysis of a constrained layered structure shows a near surface in-

crease in stress triaxiality and a change in Lode parameter.

• A transition from homogeneous dimple fracture due to void nucleation, growth and

coalescence to a mixed mode of void nucleation, growth and coalescence together

with cleavage was observed with decreasing specimen thickness.

In summary the results show that, depending on temperature and stress magnitude,

bulk and surface mechanisms can play a role in the thickness debit effect. This is also the case

for room temperature plastic deformation with, depending on circumstances, geometrically

necessary dislocations (a bulk effect) and/or source truncation and dislocation starvation

(where surfaces are involved) leads to a size effect.
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CHAPTER 3

POROSITY EVOLUTION IN A CREEPING SINGLE CRYSTAL

3.1. Introduction

The motivation for this study stems from experimental observations of creep defor-

mation and failure of a nickel based single crystal superalloy in Chapter 2. Metallographic

observations have shown that Ni-based single crystal superalloys contain micro voids formed

during the solidification and homogenization processes as shown in Chapter 2 and in [39, 40].

A variety of experimental results, e.g. [9, 14, 10], have shown greater creep strain rates and

reduced creep life for thinner specimens (but still larger than the micron scale at which size

dependent plasticity effects come into play) than is predicted by current theories. This is

termed the thickness debit effect and is typically attributed to some sort of surface damage

as in [35, 36, 37]. Isothermal creep tests carried out on plate-like specimens of a PWA1484

nickel-based single crystal superalloy having various thicknesses and deformed at several

stress levels and temperatures in [10] showed a thickness debit effect even at temperatures

too low for there to be any significant effect of diffusion or environmental damage. Void

growth was observed in Chapter 2 and played a role in the creep failure process.

The focus here is confined on analyzing void growth in a single crystal matrix using

a unit cell model. Each unit cell contains a single initially spherical void. Isothermal con-

ditions are assumed and the attention is confined to circumstances where diffusion effects

have a negligible influence on void growth. Finite deformation finite element analyses are

carried out using a rate dependent crystal plasticity constitutive relation accounting for both

primary and secondary creep. One initial crystallographic orientation, as in the experiments

in Chapter 2, and one initial void volume fraction is considered.

There is a large literature on cell models of porosity evolution aimed at understanding

the micromechanics of ductile fracture and developing damage-type constitutive relations,

e.g. [55, 56, 57, 58, 59, 61, 60, 62, 63, 64, 65, 66]. The initial focus was on relatively

high values of stress triaxiality where the effect of the stress triaxiality (the ratio of the
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first and second stress invariants) is dominant, for example [55, 56, 57, 58, 59, 61, 60, 62].

More recently, largely motivated by experiments of Bao and Wierzbicki [67], modeling the

behavior at moderate and low values of stress triaxiality where the influence of the third stress

invariant becomes more prominent has been receiving much attention, e.g. [63, 64, 65, 66].

These studies have been carried out for isotropic solids and for imposed loadings where the

applied stress increases with time.

Hori and Nemat-Nasser [68] analyzed void growth and void collapse in a three di-

mensional single crystal matrix with an isolated ellipsoidal void under far field tensile and

compressive loading. Void growth in two dimensional single crystals have been analyzed

in [69, 70, 71, 72]. Kysar et al. [72] used anisotropic slip line theory to obtain stress and

deformation state around a cylindrical void in a single crystal oriented such that plane strain

conditions are admitted from three effective in-plane slip systems. Void growth in a single

crystal was analyzed in [73, 74, 75, 76, 77, 78, 80, 79] using a three dimensional cell model

based crystal plasticity calculation that accounts for void-void interaction effects. Wan et

al. [74] and Yu et al. [80] analyzed the effect of the Lode parameter (a parameter that

characterizes the third invariant of stress) on void growth. It has been shown that the ef-

fect of the Lode parameter can depend on crystallographic orientation [80] and void shape

(crack-like or pore-like) [75]. All these results were obtained for monotonically increasing

loading conditions.

For creep loading, Budiansky et al. [81] analyzed deformation of an isolated void

in an isotropic viscous material under a wide range of remote axisymmetric stress states.

Based on the void growth model in [81], Dennis [82] (also see [83]) carried out an analysis

of an isolated void in a single crystal and proposed a failure criterion for the initiation of a

micro-crack from a void surface in terms of a critical inelastic strain in the vicinity of the

void which in turn was linked to a stress triaxiality dependent critical relative void volume

fraction. Finite deformation analyses of the effect of void interaction and void shape change

on the void growth rate in an isotropic power law creeping matrix were carried out in [84].

For polycrystalline metals, grain boundary diffusion often plays a significant role, see for
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example [86, 85]. However, for single crystals this mechanism is ruled out and, at least for

one of the temperatures tested in Chapter 2, 760◦C, bulk diffusion also was not significant

so that dislocation creep was the main deformation mechanism.

The analyses here is focused on the role of stress state on deformation and void

growth in ductile single crystals in the dislocation creep regime. The possible role of porosity

evolution in the thickness debit effect is also explored. Two types of imposed loading has

been considered: in one case the applied true stress (force/current area) is fixed in time

while in the other case the applied nominal stress (force/initial area) is time independent.

For both type of loading, stress states corresponding to various values of triaxiality (the

ratio of hydrostatic to Mises effective stress) and various values of the Lode parameter has

been analyzed. The true stress conditions are of interest for constitutive modeling while

the experiments in Chapter 2 were carried out under fixed nominal stress loading conditions.

Results are presented for the effects of stress triaxiality and Lode parameter on the evolution

of the void volume fraction and the void shape as well as for the effect of void shape changes

on the stress state that develops in the crystal matrix. A part of results have been reproduced

from the work of Srivastava [87] for the sake of completion.

3.2. Problem Formulation

3.2.1. Unit Cell

Three dimensional cell model analyses of a single initially spherical void in a face

centered cubic (fcc) crystal under tensile creep loading conditions has been carried out.

Cartesian tensor notation is used. The unit cell is initially cubic with side lengths 2a0

(−a0 ≤ xi ≤ a0) and the initial void radius is r0. The main loading direction is parallel

to the x1 axis and the edges initially parallel to the x2 and x3 axes are required to remain

parallel to their respective axes during deformation which is consistent with, but stronger

than, symmetry about these axes. The fcc crystal is taken to be in a < 001 > (cube)

orientation. Symmetry about each axis is assumed so that only 1/8 of the unit cell needs to

be analyzed numerically. The configuration analyzed is shown in Fig. 3.1.
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Figure 3.1. A finite element mesh of 1/8 of the unit cell with a spherical

void in the center.

Overall tractions are imposed on the faces of the unit cell with the requirement that

the cell boundaries remain planes aligned with the coordinate axes and shear free so that

u1(a0, x2, x3) = U1(t) , T2(a0, x2, x3) = 0 , T3(a0, x2, x3) = 0

u2(x1, a0, x3) = U2(t) , T1(x1, a0 x3) = 0 , T3(x1, a0, x3) = 0

u3(x1, x2, a0) = U3(t) , T1(x1, x2, a0) = 0 , T2(x1, x2, a0) = 0(6)

The symmetry conditions on the remaining surfaces are

u1(0, x2, x3) = 0 , T2(0, x2, x3) = 0 , T3(0, x2, x3) = 0

u2(x1, 0, x3) = 0 , T1(x1, 0, x3) = 0 , T3(x1, 0, x3) = 0

u3(x1, x2, 0) = 0 , T1(x1, x2, 0) = 0 , T2(x1, x2, 0) = 0(7)

The macroscopic true (or Cauchy) stresses, Σi, are defined as

Σ1 =
1

a2a3

∫ a2

0

∫ a3

0

σ11(a1, x2, x3)dx2dx3

Σ2 =
1

a1a3

∫ a1

0

∫ a3

0

σ22(x1, a2, x3)dx1dx3

Σ3 =
1

a1a2

∫ a1

0

∫ a2

0

σ33(x1, x2, a3)dx1dx2(8)

where a1 = a0 + U1, a2 = a0 + U2 and a3 = a0 + U3.
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The time histories of the displacements U1(t), U2(t) and U3(t) in Eq. (6) are deter-

mined by the analysis. In one set of calculations, true stresses Σ1, Σ2 and Σ3 are applied

and remain constant throughout the deformation history. In the other set of calculations,

the value of the nominal (or engineering) stress, N1 is required to remain fixed throughout

the deformation history. The macroscopic nominal stress Ni are related to the values of Σi

in Eq. (8) by

(9) N1 =
a2a3
a20

Σ1 , N2 =
a1a3
a20

Σ2 , N3 =
a1a2
a20

Σ3

For both types of imposed loading, the macroscopic true stresses follow a proportional

stress history that is given by

(10) Σ2 = ρ2Σ1 Σ3 = ρ3Σ1

where ρ2 and ρ3 are constants. Hence, with N1 fixed and proportional true stress values

imposed N2 and N3 generally vary during the loading history. However, for uniaxial tensile

loading Σ2 = Σ3 = 0, the values of N2 and N3 also remain zero. Here, calculations with Σ1

fixed (and by Eq. (10) Σ2 and Σ3 fixed) are termed constant true stress calculations while

calculations with N1 fixed are termed constant nominal stress calculations even though N2

and N3 typically vary during the deformation history.

The macroscopic effective stress, Σe, and the macroscopic hydrostatic stress (positive

in tension), Σh, are given by

(11) Σe =
1√
2

√

(Σ1 − Σ2)2 + (Σ2 − Σ3)2 + (Σ3 − Σ1)2 Σh =
1

3
(Σ1 + Σ2 + Σ3)

The stress triaxiality χ, is then defined as

(12) χ =
Σh

Σe
=

√
2

3

1 + ρ2 + ρ3
√

(1− ρ2)2 + (ρ2 − ρ3)2 + (ρ3 − 1)2

The stress triaxiality involves the first and second stress invariants, the influence of

the third invariant is assessed via the Lode parameter, L, which is

(13) L =
2Σ2 − Σ1 − Σ3

Σ1 − Σ3

=
2ρ2 − 1− ρ3

1− ρ3
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3.2.2. Constitutive Relation

The crystal plasticity constitutive implementation is based on the UMAT due to

Huang [88] as modified by Kysar [89]. This crystal constitutive formulation follows that in

Asaro and Needleman [90] (see also Asaro [91]). The deformation gradient, F, is written as

(14) F = F
∗ · FP

where F
∗ is due to stretching and rotation of the crystal lattice and F

P is due to crys-

tallographic slip. In the reference, undeformed lattice, the slip direction and the slip plane

normals of the crystal are denoted by s
(α) andm

(α), respectively. In the current configuration

these are given by

(15) s
(α)∗ = F

∗ · s(α) m
(α)∗ = m

(α) · F∗−1

Differentiating Eq. (14) with respect to time and combining terms gives

(16) Ḟ · F−1 = D+Ω = (D∗ +Ω
∗) + (Dp +Ω

p)

Here, (D∗ + Ω
∗) are, respectively, the elastic rate of stretching and spin tensors, and the

plastic rate of stretching, Dp, and spin tensors, Ωp, are given by

(17) D
p =

∑

α

γ̇(α)
P

(α)
Ω

p =
∑

α

γ̇(α)
W

(α)

where γ̇(α) is the rate of shearing on slip system α, and

(18) P
(α) =

1

2
(s(α)∗m(α)∗ +m

(α)∗
s
(α)∗) W

(α) =
1

2
(s(α)∗m(α)∗ −m

(α)∗
s
(α)∗)

Elastic strains are presumed small so that the lattice Jaumann rate of Cauchy stress, σ̂∗, is

given by

(19) σ̂∗ = σ̇ + σ ·Ω∗ −Ω
∗ · σ = L : D∗ − σ(I : D∗)

with L being the tensor of elastic moduli. The corotational stress rate on axes rotating with

the material, σ̂, is given by

(20) σ̂ = σ̇ −Ω · σ + σ ·Ω
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The difference between σ̂∗ and σ̂ is

(21) σ̂∗ − σ̂ =
∑

α

γ̇(α)
W

(α) · σ −
∑

α

γ̇(α)σ ·W(α)

Defining

(22) ψ(α) = W
(α) · σ − σ ·W(α)

and using Eqs. (16) and (17) with Eqs. (19) and (21) gives

(23) σ̂ = (L− σI) : D−
∑

α

γ̇(α)
R

(α)

since I : D∗ = I : D and with

(24) R
(α) = L : P(α) +ψ(α)

The Schmid resolved shear stress is given by

(25) τ (α) = m
(α)∗ · σ · s(α)∗ = σ : P(α)

The material modeled is a PWA1484 Ni based single crystal superalloy [10]. The

elastic constants have cubic symmetry and are specified by C11 = 283.3GPa, C12 = 197.5GPa

and C44 = 112GPa. The active slip systems for this material at the temperature of interest

are not known. Given the fcc-based crystal structure, potentially active slip system are taken

to be the twelve primary octahedral slip systems {111} < 110 >.

Slip is assumed to obey Schmid’s law so that the slip rate γ̇(α) only depends on the

current stress state through the slip-system resolved shear stress τ (α). The crystals exhibit

both primary and secondary creep, both of which are represented in terms of power law

relations. The initial value of slip on each slip system is taken to be zero and the evolution

of slip on slip system α is given by

(26) γ̇(α) =

{

(1− β)γ̇M

∣

∣

∣

∣

τ (α)

τ0

∣

∣

∣

∣

M

+ βγ̇N

∣

∣

∣

∣

τ (α)

τ0

∣

∣

∣

∣

N
}

sgn(τ)

where τ0, γ̇M , γ̇N , M and N are material constants and β evolves as

(27) β̇ =
1

t0
(βss − β)
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with the initial condition that β = 0 at t = 0 and with βss the steady state value of β and t0

a time constant that governs the transition from primary to secondary creep. This particular

form was fit to the experimental constant applied nominal stress creep data of Seetharaman

and Cetel [10] for the sheet specimen of thickness 3.18mm at a test temperature of 760◦C

and an applied nominal stress of N1 = 758MPa. The material parameters used in Eq. (26)

are τ0 = 245MPa, γ̇M = 1.04 × 10−6s−1, γ̇N = 1.53 × 10−9s−1, M = 1 and N = 5 and the

parameters used in Eq. (27) are βss = 0.998 and t0 = 1.35 × 104s. Figure 3.2 shows the

experimental tensile creep curve of ∆l/l0 versus time, where l0 is the initial length of the

specimen gauge section and ∆l is the change in length of the gauge section with the loading

applied in the < 001 > direction. For comparison purposes two computed curves for a fully

dense material using the parameter values given above are also plotted: one with constant

nominal stress and one with constant true stress. The computed and experimental curves

with a constant nominal stress are in good agreement until the time at which the onset of

tertiary creep occurs in the experiment.

3.2.3. Numerical Method

The calculations are carried out using the commercial finite element code ABAQUS

standard, version 6.x [54], and using a UMAT based on that developed by Huang [88] and

Kysar [89] modified for the creep relation in Section 3.2.2. In all calculations the initial values

of Σi are prescribed so that Σ1 ≥ Σ2 ≥ Σ3. In the calculations with fixed values of the true

stresses Σi the values of the stress triaxiality χ and the Lode parameter L directly remain

fixed. In the calculations with the nominal stress N1 kept fixed the values of Σi vary with time

so that the fixed stress ratio in Eq. (10) needs to be maintained by controlling the tractions

acting on the surfaces of the unit cell. At each time step the values of Σi are calculated

from Eq. (8). The proportional history of stress state is monitored using the URDFIL user

subroutine in ABAQUS standard 6.x [54] and any deviation in the proportionality constants

ρ2 and ρ3 given in Eq. (10) is counteracted by applying an additional uniform traction on

the corresponding surfaces using the DLOAD user subroutine. The variations in ρ2 and ρ3

were kept within 0.1% over the course of the loading history. This procedure enables the
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Figure 3.2. Comparison of experimental and computed tensile creep curves

for a single crystal of orientation < 001 >. The experimental creep curve is

obtained for constant nominal stress creep loading and the computed creep

curves are shown for both constant nominal stress (CNS) and constant true

stress (CTS) creep loading. The computed curves are for a fully dense material.

responses under prescribed true stress conditions and under prescribed nominal stress N1 to

be compared for fixed χ and L values. Prescribed proportional true stressing is of interest

for formulating a phenomenological damage-type constitutive relation while the interest in

prescribed nominal stressing is because that was the condition in the creep experiments in

Chapter 2.

A finite element mesh with C3D20H (20-node hybrid solid elements with quadratic

displacement interpolation and linear pressure interpolation) elements is shown in Fig. 3.1.

Most calculations are carried out using 916 elements. Convergence was assessed by carrying

out calculations with 1250 and 1786 elements for a representative case with χ = 2, L = −1

and fixed Σi. The time to reach an effective creep strain of Ee = 0.3 was used to assess

convergence. For meshes with 916, 1250 and 1786 elements the time to Ee = 0.3 was

7.2889×106s, 7.2887×106s and 7.2885×106s respectively. The time steps were varied during

the course of the deformation history so that ∆γ(α) on any slip system never exceeded 0.001.
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3.3. Numerical Results

The unit cell analyzed, see Fig. 3.1, has r0/a0 = 0.267 which gives a void volume

fraction of (4πr30/3)/(2a0)
3 = 0.01. This is selected based on the distribution of porosity in

the material in Chapter 2. The average void volume fraction in a Ni-based single crystal

material is generally low but these pores are confined in interdendritic areas [39, 40], hence

leading to a higher local void volume fraction. This initial void volume fraction and the

crystal properties are the same in all calculations. The loading axis in the creep tests of [10]

is within 10◦ of < 001 > and < 001 > tensile loading is prescribed in the calculations here.

In the first time step values of Σi are specified that give a value of Σe in Eq. (11)

of 750MPa and the crystal response is taken to be elastic. Calculations are carried out for

six values of the stress triaxiality χ, Eq. (12), and, for each value of χ, for five values of the

Lode parameter L, Eq. (13). The stress state is taken to be such that Σ1 ≥ Σ2 ≥ Σ3. The

expressions Eq. (12) and Eq. (13) together with Σe = 750MPa in Eq. (11) constitute a set of

quadratic equations for the stress components. For a given value of χ and L two sets of values

of the stress components are obtained only one of which satisfies the specified inequality

constraint. For example, with χ = 3 and L = −1 the two solutions are: Σ1 = 2750MPa,

Σ2 = 2000MPa, Σ3 = 2000MPa; and Σ1 = 1750MPa, Σ2 = 2500MPa, Σ3 = 2500MPa. A

reordering of the second of these solutions to Σ1 = 2500MPa, Σ2 = 2500MPa, Σ3 = 1750MPa

corresponds to χ = 3, L = 1. Similarly for other combinations of χ and L, the solution that

does not satisfy the inequality constraint gives stress components with the same value of χ

and a sign change in L when the stresses are reordered.

The initial stress states together with the values of stress triaxiality χ, the Lode

parameter L and the parameter ω introduced by Nahshon and Hutchinson [65] are shown in

Table. 3.1. The value of ω is given by

(28) ω = 1−
(

27J3

2Σ3
e

)2

where, J3 = (Σ1 − Σh)(Σ2 − Σh)(Σ3 − Σh) with Σe and Σh defined in Eq. (11).

For each initial stress state, the creep response under both constant true stress and
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constant nominal stress loading is analyzed. For constant true stress creep Σi remains

constant through out loading history whereas for constant nominal stress creep Σi varies

during the deformation history.

Table 3.1: Initial values of the stress triaxiality χ, the

Lode parameter L, the parameter ω and the initial

macroscopic stresses Σi.

χ L ω Σ1 (MPa) Σ2 (MPa) Σ3 (MPa)

3.00 -1.00 0.00 2750.00 2000.00 2000.00

3.00 -0.50 0.44 2735.36 2111.33 1903.31

3.00 0.00 1.00 2683.01 2250.00 1816.99

3.00 0.50 0.44 2596.69 2388.68 1764.64

3.00 1.00 0.00 2500.00 2500.00 1750.00

2.00 -1.00 0.00 2000.00 1250.00 1250.00

2.00 -0.50 0.44 1985.36 1361.33 1153.31

2.00 0.00 1.00 1933.01 1500.00 1066.99

2.00 0.50 0.44 1846.69 1638.68 1014.64

2.00 1.00 0.00 1750.00 1750.00 1000.00

1.00 -1.00 0.00 1250.00 500.00 500.00

1.00 -0.50 0.44 1235.36 611.32 403.31

1.00 0.00 1.00 1183.01 750.00 316.99

1.00 0.50 0.44 1096.69 888.68 264.64

1.00 1.00 0.00 1000.00 1000.00 250.00

0.75 -1.00 0.00 1062.50 312.50 312.50

0.75 -0.50 0.44 1047.86 423.82 215.81

0.75 0.00 1.00 995.51 562.50 129.49

Continued on next page
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Table 3.1 – Continued from previous page

χ L ω Σ1 (MPa) Σ2 (MPa) Σ3 (MPa)

0.75 0.50 0.44 909.19 701.18 77.14

0.75 1.00 0.00 812.50 812.50 62.50

0.50 -1.00 0.00 875.00 125.00 125.00

0.50 -0.50 0.44 860.36 236.32 28.31

0.50 0.00 1.00 808.01 375.00 -58.01

0.50 0.50 0.44 721.69 513.68 -110.36

0.50 1.00 0.00 625.00 625.00 -125.00

0.33 -1.00 0.00 750.00 0.00 0.00

0.33 -0.50 0.44 735.36 111.32 -96.69

0.33 0.00 1.00 683.01 250.00 -183.01

0.33 0.50 0.44 596.69 388.68 -235.36

0.33 1.00 0.00 500.00 500.00 -250.00

The parameter ω defined in [65], lies in the range 0 ≤ ω ≤ 1, with ω = 0 for all

axisymmetric stress states and ω = 1 for all stress comprised of a pure shear stress plus a

hydrostatic contribution. Thus, ω does not distinguish between the imposed stress states

corresponding to L = −1 and L = 1. In the following the Lode parameter L has been used

to characterize the imposed stress state.

The macroscopic effective creep strain is defined as

(29) Ee =

√
2

3

√

(Ec
1 −Ec

2)
2 + (Ec

2 − Ec
3)

2 + (Ec
3 − Ec

1)
2

where

(30) Ec
1 = ln

(

a1
ã1

)

Ec
2 = ln

(

a2
ã2

)

Ec
3 = ln

(

ac3
ã3

)

where ãi is the value of ai after the first elastic step.
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The calculations proceed with fixed true or nominal stresses until one of the following

conditions is met: (i) 90% loss of ligament in either the x2 or the x3 direction; (ii) void

collapse, f/f0 ≈ 0; or (iii) achieving an effective macroscopic creep strain Ee = 1.5.

3.3.1. Evolution of the Macroscopic Creep Strain

The time history of Ee for stress triaxiality values χ = 3 and 0.33 and values of the

Lode parameter ranging from −1 to 1 is shown in Fig. 3.3 under constant true stress creep

loading conditions. The transition from primary to secondary (steady state) creep, governed

by the evolution of β in Eq. (27), is essentially independent of the stress triaxiality and occurs

at t ≈ 1.0× 105s. This corresponds to Ee = 0.061 for χ = 3 and L = −1 and to Ee = 0.058

for χ = 0.33 and L = −1. The steady state effective creep strain rate, Ėss, is essentially

independent of the value of the Lode parameter and is almost same for χ ≤ 0.75 as for the

fully dense material in Fig. 3.2 which is Ėss = 0.235 × 10−7s−1. For greater values of the

stress triaxiality χ there is an effect of χ on Ėss with Ėss increasing to Ėss = 0.438×10−7s−1

for χ = 3.

For χ = 3, Fig. 3.3(a), there is a transition to tertiary creep which, as will be shown

subsequently, is associated with necking of the ligament between adjacent voids. Under the

creep loading conditions here the increase in strain rate accompanying necking occurs less

abruptly than for the nearly rate independent materials in [58]. Here, and subsequently,

the time at which tertiary creep begins has been identified as the earliest time at which

Ėe/Ėss ≥ 5. With this definition, in Fig. 3.3(a) where χ = 3 the onset of tertiary creep

occurs at t ≈ 0.32 × 107s. For χ = 0.33, Fig. 3(b), tertiary creep does not occur over the

range computed and the calculations are terminated either when void collapse occurs or

when Ee = 1.5. The maximum quantitative difference in Fig. 3(b) is between the curves for

L = ±1 and L = 0.

The values L = −1 and L = 1 both correspond to axisymmetric stress states. For a

fully dense single crystal, the number of slip systems with the same magnitude of resolved

shear stress is the same and the number of systems with positive and negative values of

resolved shear stress are also the same although the particular slip systems differ. For
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example, with χ = 0.33, there are four slip systems with τ = 306.3MPa and four with

τ = −306.3MPa for both L = 1 and L = −1. Nevertheless, the responses with a void differ

with different values of Lode parameter in particular at low values of stress triaxiality.
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Figure 3.3. Time histories of macroscopic effective creep strain Ee under

constant true stress creep loading for stress triaxiality (a) χ = 3 and (b)

χ = 0.33.

The variation of macroscopic effective strain, Ee, with time for all six values of stress

triaxiality, χ, is shown in Fig. 3.4 for L = −1 and L = 1. Whether or not tertiary creep

occurs depends on the value of the stress triaxiality, χ, and, if it does occur, the value of

time at which it occurs also depends on the value of χ. For L = −1 to L = 1 tertiary creep

(as defined here) occurs for χ ≥ 2 and does not occur for χ ≤ 0.75. The value of χ at which

the transition from tertiary creep occurring to no tertiary creep (over the time computed)

does depend on the value of the Lode parameter L. For example, tertiary creep occurs for

χ = 1 and L = −1 at t = 3.5 × 107s but for χ = 1 and L = 1, Ėe/Ėss remains less than 5

till 90% loss of ligament. The curves for χ = 0.5 and χ = 0.33 with L = 1 in Fig. 4(b) are

terminated before Ee = 1.5 because void collapse occurred as will be shown in Section 3.3.2.

The results for constant nominal stress creep loading are shown in Figs. 3.5 and 3.6.

Under constant nominal stress creep loading, Σ1 increases with the deformation induced
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Figure 3.4. Time histories of macroscopic effective creep strain Ee under

constant true stress creep loading for Lode parameter (a) L = −1 and (b)

L = 1.
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Figure 3.5. Time histories of macroscopic effective creep strain Ee for con-

stant nominal stress creep loading for stress triaxiality (a) χ = 3 and (b)

χ = 0.33.

reduction in cross sectional area perpendicular to the x1 direction, see Eq. (9). In contrast

to the results for constant true stress creep loading, there is a significant dependence on the
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value of the Lode parameter L for all values of χ in Fig. 3.5. In particular, the responses for

L = −1 and L = 1 differ significantly. The steady state effective strain rate for a fully dense

material with constant N1 in Fig. 3.2 is Ėss = 0.355 × 10−7s−1. There is a small effect of

porosity (with f0 = 0.01) on the steady state creep rate for χ = 0.33; Ėss = 0.395× 10−7s−1

for χ = 0.33 and L = −1. As for constant Σi loading, the effect of porosity on the secondary

creep rate increases with increasing stress triaxiality being 0.61 × 10−7s−1 for χ = 3 and

L = −1. At all values of χ, the effect of porosity is greater under constant N1 (nominal

stress) loading than it is under constant Σi (true stress) loading.

Under constant nominal stress loading, tertiary creep occurs for χ = 0.33. and there is

a significant dependence on the values of Lode parameter L for all values of χ. For example,

in Fig. 5(b) where χ = 0.33 the onset of tertiary creep, i.e. Ėe/Ėss > 5, takes place at

t = 0.642 × 107s for L = −1 while it occurs at t = 1.482 × 107s for L = 1. This sensitivity

to the value of the Lode parameter decreases with increasing values of χ. For example, in

Fig. 5(a) where χ = 3, the onset of tertiary creep occurs at t = 0.178 × 107s for L = −1

and at t = 0.243 × 107s for L = 1. The analyses for L = 0.5 and L = 1 with χ = 0.33 are

terminated after void collapse.

The time histories of the effective creep strain Ee for six values of χ and for Lode

parameter values of L = −1 and L = 1 are shown in Fig. 3.6. For all values of the Lode

parameter, a decreasing value of stress triaxiality decreases the creep rate and delays the

onset of tertiary creep for χ ≥ 1. For χ ≤ 1 with L = −1, Fig. 3.6(a), the secondary creep

rate, Ėss ≈ 0.4× 10−7s−1, and the onset of tertiary creep are nearly independent of χ. With

L = −1 and χ ≤ 1 the onset of tertiary creep occurs at t ≈ 0.6 × 107s. For L = −1 the

calculations for χ = 0.5 and 0.33 were terminated at Ee = 1.5.

In Fig. 3.6(b) where L = 1 Ėss ≈ 0.35 × 10−7s−1 for χ ≤ 1. The onset of tertiary

creep takes place at t = 1.34 × 107s for χ = 1 and at t = 1.48 × 107s for χ = 0.33. With

L = 1 void collapse occurs for χ = 0.5 and 0.33.

One feature common to all cases analyzed, both constant true stress loading and

constant nominal stress loading, and for values of the Lode parameter, is that for values
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Figure 3.6. Time histories of macroscopic effective creep strain (Ee) under

constant nominal stress creep loading for Lode parameter (a) L = −1 and (b)

L = 1.

of the stress triaxiality χ ≥ 0.75 the analyses were terminated due to necking down of the

ligament between adjacent voids giving a 90% loss of ligament.

3.3.2. Evolution of the Porosity

The void volume fraction is defined as f = (Vcell− VM)/Vcell where Vcell is the current

cell volume and VM is the current material volume (the small elastic volume change is

neglected) and f/f0 is the relative void volume fraction.

Plots of relative void volume fraction f/f0 versus time are shown in Fig. 3.7 for χ = 3.

The evolution of porosity is essentially independent of the value of the Lode parameter L

for constant true stress creep loading, Fig. 3.7(a), whereas there is a significant dependence

on L for constant nominal stress creep loading, Fig. 3.7(b). The void growth rate initially

decreases as creep deformation shifts from primary to secondary creep, reaches a minimum

value and then increases. The onset of tertiary creep (as defined here) is marked by the

circles in Fig. 3.7. The earliest onset of tertiary creep in Fig. 3.7(b) occurs for L = −1 and

the latest for L = 1. Due to the increase in imposed true stress under constant nominal

stress loading the void growth rate is greater at any given time than that under constant
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Figure 3.7. Plots of relative void volume fraction f/f0 versus time t for stress

triaxiality χ = 3. (a) Constant true stress creep loading. (b) Constant nominal

stress creep loading. The onset of tertiary creep for the Lode parameter values

L = −1 and L = 1 is marked by a circle.
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Figure 3.8. Plots of relative void volume fraction f/f0 versus time t for stress

triaxiality χ = 0.33. (a) Constant true stress creep loading. (b) Constant

nominal stress creep loading.
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Figure 3.9. Evolution of the relative void volume fraction f/f0 as a function

of the macroscopic effective creep strain Ee for various values of the stress

triaxiality. (a) χ = 3. (b) χ = 1. (c) χ = 0.5. (d) χ = 0.33. The data is

for constant true stress creep loading. However, the calculations for constant

nominal stress loading give nearly the same results.

true stress loading.

With χ = 0.33 in Fig. 3.8 the relative void volume fraction decreases after an initial

increase. In Fig. 3.8 f/f0 is independent of the value of the Lode parameter in the early

stages of deformation. For χ = 0.33 and L = −1 in Fig. 3.8(a), the relative void volume
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Figure 3.10. Progressive loss of relative ligament (lr = (a3 − r3)/(ã3 − r̃3))

in the x3 direction under constant true stress creep loading for various values

of the stress triaxiality χ and the Lode parameter L. (a) L = −1. (b) L = 0.

(c) L = 1.

fraction increases to a maximum with f/f0 > 1 and saturates to f/f0 ≈ 1. For χ = 0.33

and L ≥ −0.5, after an initial increase f/f0 decreases. As seen in Fig. 3.8 f/f0 decreases

more rapidly under constant nominal stress loading than under constant true stress loading.

This because under constant nominal stress loading the increasing value of Σ1 leads to

an increasing strain rate. The rate of decrease of porosity increases with increasing Lode
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parameter value under constant true stress loading whereas the rate decreases with increasing

value of Lode parameter under constant nominal stress loading. For instance the time to

void collapse, f/f0 ≈ 0, under constant true stress loading for L = −0.5 is t ≈ 4.5 × 107s

and for L = 1 it is t ≈ 4.2 × 107s. Under constant nominal stress loading the time to void

collapse for L = −0.5 is t ≈ 1× 107s and for L = 1 it is t ≈ 1.5× 107s.

Figure 3.9 shows plots of relative void volume fraction f/f0 versus macroscopic ef-

fective creep strain Ee under constant true stress loading. The corresponding results for

constant nominal stress loading are nearly the same. For a given stress triaxiality the evo-

lution of relative void volume fraction with respect to macroscopic creep deformation is not

strongly dependent on the type of creep loading. Hence, the main difference between these

two types of imposed loading is the different strain histories that occur. The evolution of the

void volume fraction, at least with the constitutive description used here, mainly depends

on the creep strain.

The evolution of porosity with Ee shows no dependence on the values of the Lode

parameter until a stress triaxiality dependent value of Ee is reached. The value of Ee at

which f/f0 depends on the value of the Lode parameter increases with decreasing stress

triaxiality until χ = 0.75. For example, for χ = 3 the effect of Lode parameter value is seen

for Ee > 0.25 and for χ = 1 the effect of Lode parameter value is seen for Ee > 0.6. On

the other hand, the dependence of f/f0 on the Lode parameter value for χ = 0.5 occurs for

Ee > 0.3 and for χ = 0.33 this dependence can be seen for Ee > 0.2.

In Fig. 3.9(a) for χ = 3, f/f0 is maximum for L = −1 and minimum for L = 1 at

any given Ee > 0.25. Whereas for χ = 1 in Fig. 3.9(b) the value of f/f0 is smaller for L = 0

than that for L = ±1 at any given Ee > 0.6. For void growth in an fcc single crystal unit cell

analyses under monotonically increasing load for χ ≥ 1 Wan et al. [74] and Yu et al. [80]

observed a smaller void volume fraction at a given strain for L = 0 than for L = ±1. The

analyses here for χ ≥ 0.75 were terminated after 90% loss of ligament and f/f0 at the end

of these analyses was found to decrease with increasing Lode parameter value. For example,

for χ = 1 and L = −1, 0 and 1, f/f0 = 12.3, 7.6 and 5.71 at the end of the analysis,
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respectively.

In Fig. 3.9(c) where χ = 0.5 void collapse occurs for L = 1 while in Fig. 3.9(d) where

χ = 0.33 void collapse occurs for both L = 1 and L = 0.5. In other cases in Figs. 3.9(c)

and 3.9(d) the calculations were terminated on reaching Ee = 1.5. These results indicate

that void collapse for χ = 0.5 and 0.33, or an evolution toward void collapse can occur, for

some values of Lode parameter at low values of stress triaxiality even when χ is positive.

Budiansky et al. [81] found void collapse in an axisymmetric analysis of an isolated void in

a power law creeping solid with Σ1 = Σ2 and Σ3/Σ1 = −0.5 which corresponds to χ = 0.33

and L = 1.

The necking down between voids is quantified in terms of the evolution of the smallest

ligament length between voids. For values of stress triaxiality and Lode parameter analyzed

here the x3 direction is the direction with the minimum value of Σi, Table. 3.1, and necking

down between voids generally takes place in the x3 direction. With L = −1 Σ2 = Σ3 and

there is simultaneous necking down in the x2 and x3 directions. However, the ligament length

in the x3 direction can still be used to characterize necking.

The relative ligament length in this direction is lr = (a3− r3)/(ã3− r̃3), where a3 and

r3 are, respectively, the current cell length and void size along the x3−axis, and ã3 and r̃3

are, respectively, the cell length and void size along the x3−axis after the first elastic step.

Plots of lr versus Ee are shown in Fig. 3.10 for L = −1, 0 and 1. The results in Fig. 3.10 are

shown for constant true stress creep loading. The results for constant nominal stress creep

loading are nearly the same.

There is a significant difference between the responses with L = −1 and L = 1 in

Fig. 3.10. With L = −1, Σ2 = Σ3 there is simultaneous necking in the ligament between

adjacent voids in the x2 and x3 directions, whereas for L = 1, Σ1 = Σ2 necking between

adjacent voids only occurs in the x3 direction. The necking down of the ligament is mainly

responsible for the rapid increase in void growth rate during tertiary creep regime for χ = 3

and 2 and, as discussed, void growth occurs more slowly with strain with increasing Lode

parameter value.
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Figure 3.10 shows the variation of the ligament length lr for L = −1, 0 and 1. For

χ ≥ 0.75 lr decreases to ≈ 0.1 for Ee ≤ 1.5. There is, as expected, a strong dependence on

the strain to reach lr = 0.01 on the value of χ. For L = −1 a strain is reached at which

lr decreases rapidly for χ ≥ 0.75. For L = 1 this rapid decrease only occurs for χ = 3 and

2 although there is an increases in the magnitude of the slope for χ = 1 and (slightly) for

χ = 0.75. For L = 0, there is only a rapid increase in slope magnitude for χ = 3 and 2;

for χ = 1 and 0.75 there is a very gradual decrease in ligament which is associated with

the Poisson area reduction with increasing strain rather than a more or less abrupt necking

down. The results show that under creep loading there is a gradual transition depending on

stress triaxiality and Lode parameter between necking down between voids that can occur at

relatively small strains and a gradual decrease in distance between voids that requires much

larger strains.

3.3.3. Evolution of the Void Shape
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Figure 3.11. Evolution of void radius ratios for various values of the stress

triaxiality χ with the Lode parameter L = −1. (a) r3/r1. (b) r3/r2.

The void shape has been characterized by two ratios: (i) r3/r1 where r1 is the void

size along the x1−axis and r3 is the void size along the x3−axis; and (ii) r3/r2 where r2 is
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Figure 3.12. Evolution of void radius ratios for various values of the stress

triaxiality χ with the Lode parameter L = 0. (a) r3/r1. (b) r3/r2.
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Figure 3.13. Evolution of void radius ratios for various values of the stress

triaxiality χ with the Lode parameter L = 1. (a) r3/r1. (b) r3/r2.

the void size along the x2−axis. The ratio r3/r1 gives the gives the ratio of the minimum

cross sectional radius to that in the loading direction while r3/r2 is the ratio of the void sizes

along the coordinate axes in the plane perpendicular to the loading direction.

Figure 3.11 shows the evolution of the radius ratios with effective creep strain Ee
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(a) (b)

(c)

Figure 3.14. The void shape for various values of the Lode parameter for

χ = 0.33 at Ee = 0.8, χ = 1 at Ee = 0.8 and χ = 3 at Ee = 0.3. (a) L = −1.

(b)L = 0. (c)L = 1.

for L = −1 and for constant true stress loading (the curves for both constant true stress

and constant nominal stress loading are essentially identical). In Fig. 3.11(a) for χ ≥ 2 the

ratio r3/r1 initially decreases and then increases indicating the necking down of the ligament

between adjacent voids. For χ = 1 there is an increase in r3/r1 just before the calculation

is terminated at Ee ≈ 1. For smaller values of χ the value of r3/r1 monotonically decreases

during the deformation history so that the void becomes prolate.
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The value of the Lode parameter L = −1 corresponds to an axisymmetric state of

stress, Σ1 > Σ2 = Σ3, with the x1−axis being the symmetry axis. The radius ratio r3/r2

remains close to unity, Fig. 3.11(b), for the range of stress triaxiality values analyzed in the

current work. However the void cross sectional shape depends on the stress triaxiality value.

For χ = 0.33, where void interaction effects are not significant and no necking down of the

ligament between voids occurs, the cross sectional shape remains essentially circular. For

χ = 3 necking down of the ligament in the x2 and x3 directions leads to a rapid increase

in the void radii in these directions whereas void growth in off-axis directions is less so that

the void cross section is not circular. The largest deviation from a circle occurs at 45◦. For

example, the radius ratio r45◦/r3 = 0.91 for χ = 3 and L = −1 at an effective creep strain

Ee = 0.322 which is when there is 90% loss of ligament.

For L = 0, Fig. 3.12, r3/r1 and r3/r2 decrease initially for χ ≥ 2 but then increase

for L = −1. For χ = 1 both radius ratios eventually level off while for χ = 0.5 and 0.33 the

void predominantly elongates in the x1 direction which is the major stress axis. Both r3/r1

and r3/r2 approach zero with χ = 0.33 indicating void collapse.

The trends for the variation of r3/r1 and r3/r2 for L = 1 in Fig. 3.13 are qualitatively

similar to those for L = 0 in Fig. 3.12 but with void collapse occurring for χ = 0.5 as well

as for χ = 0.33. For χ = 1 and 0.75, the radius ratio r3/r1 increases due to void interaction

effects in the x3 direction, but the values remain well below unity over the entire deformation

history leading to the formation of an oblate shape (largest cross section perpendicular to

the direction of loading). Although not shown here r2/r1 ≈ 1 throughout the deformation

history for all values of stress triaxiality χ for L = 1 since the x3−axis is the axis of symmetry,

with Σ1 = Σ2. It is worth noting that for high stress triaxiality, χ ≥ 2, the void radii along

all three axes increase for all Lode parameter values. For smaller values of χ, r3 decreases

during the deformation history so that the void becomes oblate.

Figure 3.14 shows the void shapes obtained for L = −1, 0 and 1 and for three values

of stress triaxiality χ = 3, 1 and 0.33. For all values of L, the void is essentially spherical for

χ = 3. For L = −1 and χ = 1 the void is a prolate spheroid (largest cross section along the
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loading direction) and needle-like for χ = 0.33. For L = 0 the void has a three dimensional

shape for χ = 1 and is like an elliptical crack for χ = 0.33. For L = 1 the void evolves into

a shape like that of an oblate spheroid for χ = 1 and like that of a penny shaped crack for

χ = 0.33 (and also for χ = 0.5 not shown here).

3.3.4. Stress Distributions

Distributions of σ11 normalized by the current value of the applied stress Σ1 for

χ = 0.33 are shown in Fig. 3.15. Figure 3.15(a) shows distributions for L = −1 and

Fig. 3.15(b) for L = 1. The value of Σ1 is constant throughout the deformation history

under constant true stress loading but the value of Σ1 changes with the change in cross

sectional area under constant nominal stress loading. For both types of imposed loading

the distributions of σ11/Σ1 at a given value of Ee are nearly same and the distributions in

Fig. 3.15 (and in Fig. 3.16) are for constant Σ1 loading. The three values of strain shown in

Fig. 3.15 are: (i) after the first elastic step, denoted as Ee = 0; (ii) at Ee = 0.2; and (iii) at

Ee = 0.8.

After the first elastic step, Σ1 = 750MPa and the maximum value of the stress ratio,

σ11/Σ1 is 1.77. This maximum occurs at the circumference of the void on the x2 − x3

plane. For L = −1 at Ee = 0.2 in Fig. 15(a) the maximum value of σ11/Σ1 has decreased to

1.29. This corresponds to maximum σ11 = 968MPa under constant true stress loading but to

1189MPa under constant nominal stress loading since Σ1 has increased to 922MPa due to the

reduction in cross sectional area. At Ee = 0.8 the maximum stress concentration has shifted

towards the tip of the void which has taken on a needle-like shape and the maximum value

of σ11/Σ1 is 1.63. The maximum σ11 under constant true stress creep loading is 1222MPa

and is 2.69GPa under constant nominal stress loading since Σ1 = 1.65GPa at Ee = 0.8.

For χ = 0.33 and L = 1, Fig. 15(b), Σ1 = 500MPa after the first elastic step and the

peak value of σ11/Σ1 is 2.37 and occurs at the circumference of the void in x2 − x3 plane.

Under constant nominal stress creep, Σ1 increases to 554MPa at Ee = 0.2. At Ee = 0.2

the maximum stress concentration is still on the x2 − x3 plane but has slightly shifted away

from the void surface and has increased to σ11/Σ1 = 2.66 so that the maximum values of
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(a)

(b)

Figure 3.15. Distributions of normalized stress σ11/Σ1 after the first elastic

step and at Ee = 0.2 and 0.8 under constant true stress creep loading for stress

triaxiality χ = 0.33. (a) L = −1. (b) L = 1.

σ11 are 1.33GPa and 1.47GPa for constant true stress and constant nominal stress loading,

respectively. For χ = 0.33 and L = 1 at Ee = 0.8, void collapse has led to the void evolving

into a shape like that of a penny shaped crack. The maximum value of σ11/Σ1 has increased

to 2.79 and occurs near the tip. Under constant nominal stress loading Σ1 = 751MPa at
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(a)

(b)

Figure 3.16. Distributions of normalized stress σ11/Σ1 after the first elas-

tic step and at Ee = 0.2 under constant true stress creep loading for stress

triaxiality χ = 3. (a) L = −1. (b) L = 1.

Ee = 0.8 leading to σ11 = 2.10GPa at the point of maximum stress concentration while

σ11 = 1.40GPa for constant true stress loading.

Distributions of σ11/Σ1 for χ = 3 and L = −1 and L = 1 are shown in Fig. 3.16.

At Ee = 0 Σ1 = 2750MPa for L = −1 and Σ1 = 2500MPa for L = 1; the maximum value,

σ11/Σ1 = 1.48, is the same for both L = −1, Fig. 16(a), and L = 1, Fig. 16(b). At Ee = 0.2

the peak value of σ11/Σ1 is 1.83 for L = −1 and 2.11 for L = 1. For L = −1 the maximum

value occurs at the center of the ligament between adjacent voids along both the x2 and x3

axes, Fig. 16(a). For L = 1 at Ee = 0.2 the maximum value is attained only along the x3
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axis. At Ee = 0.2 the maximum stress values are 5.0GPa for L = −1 and 5.3GPa for L = 1

under constant true stress loading.

3.4. Discussion

The analyses were motivated by the experiments in Chapter 2 on creep of a nickel

based single crystal superalloy under uniaxial tensile loading. Since the aim is to model

porosity evolution under creep, applied stresses (of one kind or another) are taken to be

not varying with time. In the experiments the applied nominal stress was fixed so that

type of loading was imposed in the calculations. However, for comparison purpose as well

as to provide a basis for developing a phenomenological creep damage constitutive relation

the response under time constant true stresses applied to the unit cell was also analyzed.

This latter type of loading is analogous to the type of loading applied in the ductile fracture

oriented studies. Although the imposed loading in the crystals tested in Chapter 2 was

uniaxial tension, say due to constraint or inhomogeneity effects, the stress state can differ

and, in particular, there can be regions of locally enhanced stress triaxiality as well as local

variations in the value of the Lode parameter.

The calculations show that the time history of deformation and porosity depends on

which type of creep loading is imposed. However, when the evolution of void volume fraction

and shape is considered as a function of a measure of the overall creep strain, the results from

the two types of imposed loading essentially coincide. This is not particularly surprising

because (except for the effect of elasticity) the slip system resolved shear stress-resolved

shear strain relation is history independent. If the slip system flow rule were strongly history

dependent this conclusion would not hold. Another simplification in the crystal constitutive

relation is that only self hardening has been considered. It is worth noting that with porosity

evolution considered as a function of strain, the results exhibit many of the same qualitative

features regarding the dependence on stress triaxiality and Lode parameter values as those

found in ductile fracture oriented cell model studies.

In the analyses here one value of initial applied Mises effective stress was considered.

The initial applied Mises effective stress is time independent under constant true stress creep
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loading whereas it increases with time under constant nominal stress creep loading. In the

absence of experimental creep data at different stress levels at 760◦C for the material tested

in Chapter 2 as well as in [10] a representative value for the secondary creep slip system

power law exponent was used. Since, at least with this constitutive characterization, the

creep response is essentially history independent and the void shape changes mainly occur

when the material is in the secondary creep regime, it is expected that the macroscopic

stress dependence will exhibit this same power law relation. Additional parameter studies

are needed to determine the orientation dependence of the porosity evolution. The results

of such analyses together with the constant true stress results obtained here could provide

the background for developing a phenomenological constitutive relation using a framework

such as in [92].

The Lode parameter was used to characterize the role of the third invariant of the

applied stress. Another parameter that could be used for that purpose is the parameter ω

in Nahshon and Hutchinson [65] which has the convenient feature that it lies between zero

and one. The value of ω is zero for all axisymmetric stress states. The value of the Lode

parameter can be 1 or −1 for an axisymmetric stress state (two of the applied stresses on the

unit cell equal). The three dimensional analyses of void growth in the current work showed

that significantly different void evolution histories are possible for L = 1 and L = −1 because

the results depend on which plane contains the two equal stresses.

Budiansky et al. [81] found that an isolated initially spherical void in an isotropic

matrix under power law creep for high stress triaxiality tends to become a prolate spheroid

for stress ratios giving L = −1 whereas it tends to become an oblate spheroid for stress

ratios giving L = 1. Here, for those loading conditions the same shape evolution occurs

until void interaction effects come into play and the void aspect ratio then tends to increase

and three dimensional void growth is observed. Similar void interaction effects were seen

in [84] for an initially spherical void in an isotropic axisymmetric (L = −1) unit cell under

power law creep at high stress triaxiality. For uniaxial tension with χ = 0.33 and L = −1,

Budiansky et al. [81] found that the void predominantly elongates in the loading direction
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leading to a needle-like shape. Whereas for χ = 0.33 and L = 1 the void collapses forming a

penny-shaped crack. In the cell model calculations here at low stress triaxiality values void

interaction effects are not dominant and the void shape in the analyses here evolves as in

[81].

With reducing thickness of the sheet specimens it was found that local cleavage played

a significant role in the observed creep rupture process whether environmental effects were

dominant or not. The analyses here suggest that the high local stresses that develop in the

ligament between voids could precipitate cleavage which would lead to an abrupt loss of load

carrying area. This then would increase the stress on the remaining load carrying material

and so act to precipitate further cleavage. This loss of area would be more damaging for

thinner cross-sections. This could account for a thickness debit effect in Ni-based single

crystal superalloys in circumstances where surface damage effects do not come into play.

3.5. Summary and Conclusions

Finite deformation finite element analyses of void growth in an fcc crystal under

isothermal creep loading conditions were carried out. The slip system constitutive relation

modeled primary and secondary creep. A unit cell was analyzed for crystals with a < 001 >

orientation and with a fixed initial void volume fraction of 0.01. The effect of stress triaxiality

values (the ratio of mean normal true stress to Mises effective stress) between 0.33 and 3

and Lode parameter values between −1 and 1 was considered for both constant applied true

stress loading and for constant applied nominal stress loading. For both types of loading

proportional true stress ratios were maintained. The results show that:

• For fixed values of the stress triaxiality and Lode parameter, the mode of creep

loading (constant applied true stress or constant applied nominal stress) has a sig-

nificant effect on the time histories of the macroscopic effective creep strain and the

void volume fraction. This dependence is more pronounced at low values of the

stress triaxiality.

• The effect of imposed loading type stems from the loading mode dependence of the

macroscopic effective creep strain. The dependence of the void volume fraction and
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shape evolution on the macroscopic effective creep strain is independent of whether

constant true stress or constant nominal stress creep loading is applied. The main

features of this dependence are similar to the observations in previous cell model

analyses of void growth under monotonically increasing loading.

• There is no significant effect of the value of the Lode parameter at high values of

the stress triaxiality. At low values of the stress triaxiality the evolution of void

volume fraction (including whether or not void collapse occurs) and the void shape

evolution can be strongly dependent on the Lode parameter value.

• Due to void growth and the change in void shape the local stress magnitude in the

void vicinity generally increases with time. For low values of the stress triaxiality,

stress concentration factors exceeding 2.5 were found.

• A possibility, for certain materials, is that locally high stresses could initiate cleavage

before void coalescence occurs. The associated loss of stress carrying capacity would

be more pronounced for thinner specimens and this could lead to a thickness debit

effect.

64



CHAPTER 4

VOID GROWTH VERSUS VOID COLLAPSE IN A CREEPING SINGLE CRYSTAL

4.1. Introduction

The studies here are largely motivated by the experimental observations in Chapter 2.

In Chapter 2, it was found that porosity evolution played a significant role in the creep

rupture processes. The microstructural analysis of these creep tested specimens revealed

nucleation of cracks from isolated voids and coalescence of closely spaced voids. Finite

element analyses in Chapter 2 indicated that observed microstructural changes near the

specimen surface at high temperatures would give rise to local changes in the stress triaxiality

and Lode parameter values.

The evolution of porosity plays an important role in the processing of porous ma-

terials as well as in fracture processes at room temperature and at elevated temperatures.

Depending on the stress state, the void distribution and the temperature, the voids can either

grow and coalesce or collapse and close up. There is a large literature on porosity evolution

in rate independent or nearly rate independent solids aimed at modeling room temperature

ductile fracture processes, see [93] and [94] for reviews. Analyses of void growth and collapse

in linear and nonlinear viscous solids have been aimed at modeling creep fracture and/or

compaction of porous solids, see for example [81, 95, 96, 97, 84, 98]. Typically, void coa-

lescence occurs at high values of the stress triaxiality (the ratio of the first to second stress

invariants) and void collapse occurs at negative values of the stress triaxiality. More recently

the role of the third stress invariant (as can be measured by the Lode parameter) in affecting

porosity evolution at moderate and low values of stress triaxiality has been receiving much

attention, e.g. [63, 67, 99, 74, 64, 65, 80, 66].

At low but positive values of the stress triaxiality, isolated [81] or well separated voids

[100, 101] (as also shown in Chapter 3) may collapse for certain Lode parameter values. On

the other hand, Pardoen and Hutchinson [61] showed that a reduction in initial void spacing

promotes void coalescence and hence closely spaced voids could coalesce even at low values

65



of the stress triaxiality. Thus, there is the possibility, depending on void spacing and stress

state, that either void collapse or void coalescence may occur.

Here, the possible transition between void collapse for well separated voids to coa-

lescence for sufficiently close voids in a nonlinearly viscous single crystal subject to creep

loading has been investigated . The value of the stress triaxiality is fixed at 1/3 and three

values of the Lode parameter (a measure of the third stress invariant that has values between

−1 and 1) −1, 0 and 1 are considered. Three dimensional unit cell calculations are carried

out for three values of creep exponent, two initial void volume fractions and, for each initial

void volume fraction, a range of void spacings. The results show that, depending on the

values of these parameters void coalescence, void collapse or neither can occur.

4.2. Problem Formulation

The problem formulation and numerical method follow that in Chapter 3 where fur-

ther details and additional references are given.

4.2.1. Cell Model

Three dimensional finite element calculations are carried out to model the response

of a regular array of initially spherical voids of radius r0 as shown in Fig. 4.1. Cartesian

tensor notation is used and the origin of the coordinate system is taken to be at the center of

the void. An initially rectangular cuboidal unit cell with side lengths 2a0i in the xi direction

(i = 1, 2, 3) is analyzed. The initial inter-void spacing is 2l0i = 2a0i − 2r0.

The main loading direction is parallel to the x1 axis and the edges initially parallel to

the x2 and x3 axes are required to remain parallel to their respective axes during deformation

which is consistent with, but stronger than, symmetry about these axes.

The boundary conditions on the faces of the unit cell are

u1(a
0
1, x2, x3) = U1(t) , T2(a

0
1, x2, x3) = 0 , T3(a

0
1, x2, x3) = 0

u2(x1, a
0
2, x3) = U2(t) , T1(x1, a

0
2, x3) = 0 , T3(x1, a

0
2, x3) = 0

u3(x1, x2, a
0
3) = U3(t) , T1(x1, x2, a

0
3) = 0 , T2(x1, x2, a

0
3) = 0(31)
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Figure 4.1. Schematic representation of the periodic arrangement of voids

in the x2 and x3 directions with the geometric parameters. Not shown in the

figure is the periodic distribution of voids in the x1 direction where the initial

inter-void ligament size is 2l01.

Symmetry about each axis is imposed so that only 1/8 of the cell needs to be analyzed

numerically so that

u1(0, x2, x3) = 0 , T2(0, x2, x3) = 0 , T3(0, x2, x3) = 0

u2(x1, 0, x3) = 0 , T1(x1, 0, x3) = 0 , T3(x1, 0, x3) = 0

u3(x1, x2, 0) = 0 , T1(x1, x2, 0) = 0 , T2(x1, x2, 0) = 0(32)

The time histories of the displacements U1(t), U2(t) and U3(t) in Eq. (31) are de-

termined by the analysis. The value of the nominal (or engineering) stress, N1, defined

by

(33) N1 =
a2a3
a02a

0
3

Σ1 , Σ1 =
1

a2a3

∫ a2

0

∫ a3

0

σ11(a1, x2, x3)dx2dx3

is required to remain fixed throughout the deformation history together with

(34) Σ2 = ρ2Σ1 Σ3 = ρ3Σ1

where ρ2 and ρ3 are constants, ai = a01+Ui and Σ2 and Σ3 are overall true stresses defined by

expressions analogous to that for Σ1. Also 2li = 2ai− 2ri is defined as the current inter-void
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ligament size with ri the intersection of the void surface with the xi coordinate axis.

The overall effective stress, Σe, and the overall hydrostatic stress (positive in tension),

Σh, are given by

(35) Σe =
1√
2

√

(Σ1 − Σ2)2 + (Σ2 − Σ3)2 + (Σ3 − Σ1)2 Σh =
1

3
(Σ1 + Σ2 + Σ3)

The stress triaxiality χ, and Lode parameter, L, values are given by

(36) χ =
Σh

Σe

=

√
2

3

1 + ρ2 + ρ3
√

(1− ρ2)2 + (ρ2 − ρ3)2 + (ρ3 − 1)2

and

(37) L =
2Σ2 − Σ1 − Σ3

Σ1 − Σ3
=

2ρ2 − 1− ρ3
1− ρ3

While calculating Lode parameter value in Eq. (37) the stress state is taken to be such that

Σ1 ≥ Σ2 ≥ Σ3.

The overall effective creep strain is defined as

(38) Ee =

√
2

3

√

(Ẽ1 − Ẽ2)2 + (Ẽ2 − Ẽ3)2 + (Ẽ3 − Ẽ1)2

where

(39) Ẽ1 = ln

(

a1
ã1

)

Ẽ2 = ln

(

a2
ã2

)

Ẽ3 = ln

(

a3
ã3

)

where ãi is the value of ai after the first elastic step.

In Chapter 3 tensile creep calculations were carried out for fixed tensile nominal stress

and for fixed tensile true stress, with in both cases the same values of stress triaxiality and

Lode parameter. It was found that when quantities such as the evolution of void volume

fraction f were plotted against the overall effective strain Ee, the results were virtually the

same for both types of fixed tensile stress loading.
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4.2.2. Constitutive Relation

As in Chapter 3, the crystal plasticity constitutive implementation is based on the

UMAT due to Huang [88] as modified by Kysar [89] which follows the constitutive formulation

in Asaro and Needleman [90].

The deformation gradient, F, is written as

(40) F = F
∗ · FP

where F
∗ is due to stretching and rotation of the crystal lattice and F

P is due to crystallo-

graphic slip. Differentiating Eq. (40) with respect to time and combining terms gives

(41) Ḟ · F−1 = D+Ω = (D∗ +Ω
∗) + (Dp +Ω

p)

Here, (D∗ + Ω
∗) are, respectively, the elastic rate of stretching and spin tensors, and the

plastic rate of stretching, Dp, and spin tensors, Ωp, are given by

(42) D
p =

∑

α

γ̇(α)
P

(α)
Ω

p =
∑

α

γ̇(α)
W

(α)

where γ̇(α) is the rate of shearing on slip system α, and

(43) P
(α) =

1

2
(s(α)∗m(α)∗ +m

(α)∗
s
(α)∗) W

(α) =
1

2
(s(α)∗m(α)∗ −m

(α)∗
s
(α)∗)

with

(44) s
(α)∗ = F

∗ · s(α) m
(α)∗ = m

(α) · F∗−1

where s
(α) and m

(α) are the slip directions and the slip plane normals of the crystal in the

reference, undeformed lattice.

The stress rate on axes rotating with the material, σ̂, is given by

(45) σ̂ = (L− σI) : D−
∑

α

γ̇(α)
R

(α)

with

(46) R
(α) = L : P(α) +W

(α) · σ − σ ·W(α)
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Here, L is the tensor of elastic moduli (small elastic strains are assumed). The elastic

constants are taken to be those of a PWA1484 Ni-based single crystal superalloy and are

specified by C11 = 283.3GPa, C12 = 197.5GPa and C44 = 112GPa as in Chapter 3.

An fcc-based crystal structure is modeled with the potentially active slip system taken

to be the twelve primary octahedral slip systems {111} < 110 >. Slip is assumed to obey

Schmid’s law so that the slip rate γ̇(α) only depends on the current stress state through the

slip-system resolved shear stress τ (α). A power law viscous relation for the slip rates γ̇(α) is

used. The initial value of slip on each slip system is taken to be zero and the evolution of

slip on slip system α is given by

(47) γ̇(α) =

{

γ̇0

∣

∣

∣

∣

τ (α)

τ0

∣

∣

∣

∣

n}

sgn(τ)

where the slip-system resolved shear stress is

(48) τ (α) = m
(α)∗ · σ · s(α)∗ = σ : P(α)

with τ0, γ̇0 and n material constants. The material parameters used in Eq. (47) are τ0 =

245MPa and γ̇0 = 1.53 × 10−9s−1. Three values of the power law creep exponent, n = 3, 5

and 7 are used in the calculations.

4.2.3. Numerical Method

The calculations are carried out using the commercial finite element code ABAQUS

[54], and using a UMAT by Huang [88] and Kysar [89] modified for the creep relation given

in Section 4.2.2. The values of Σi vary with time so that the fixed stress ratio in Eq. (34)

needs to be maintained by controlling the tractions acting on the surfaces of the unit cell. At

each time step the proportionality of the overall stresses is monitored using the URDFIL user

subroutine in ABAQUS [54]. Any deviation from the prescribed values of the proportionality

constants ρ2 and ρ3 given in Eq. (34) is counteracted by applying an additional uniform

traction on the corresponding surfaces using the DLOAD user subroutine. The variations in

ρ2 and ρ3 were kept within 0.1% over the course of the loading history. The time steps were
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varied during the course of the deformation history so that ∆γ(α) on any slip system never

exceeded 0.001.

Loading:

The calculations here are carried out for a constant stress triaxiality value χ = 1/3

and for three values of the Lode parameter L = −1, 0 and 1. The Lode parameter values

L = −1 (Σ1 > Σ2 = Σ3) and L = 1 (Σ1 = Σ2 > Σ3) correspond to an overall axisymmetric

state of stress while L = 0 (Σ1 > Σ2 > Σ3 with (Σ1 +Σ3)/2 = Σ2) corresponds to an overall

state of shear plus hydrostatic stress. The < 001 > orientations of the fcc crystal are taken

to coincide with the coordinate axes.

The expressions Eq. (36) and Eq. (37) together with Σe = 750MPa in Eq. (35)

constitute a set of quadratic equations for the stress components. Imposing the inequality

Σ1 ≥ Σ2 ≥ Σ3 as in Chapter 3, gives a unique state of stress for a given stress triaxiality

and Lode parameter value. The initial values of Σi for χ = 1/3 and for L = −1, 0 and 1 are

given in Table 4.1. For each initial stress state, the creep response with fixed N1 is analyzed.

In the first time step the response is taken to be elastic.

Table 4.1. Values of the stress triaxiality χ, the Lode parameter L, and the

initial overall stresses Σi.

χ L Σ1 (MPa) Σ2 (MPa) Σ3 (MPa)

1/3 -1.00 750.00 0.00 0.00

1/3 0.00 683.01 250.00 -183.01

1/3 1.00 500.00 500.00 -250.00

Unit cell geometry and finite element mesh:

Two initial void volume fractions f0 = 0.01 and f0 = 0.1 are considered where

f0 = (4πr0
3/3)/8a01a

0
2a

0
3. Symmetry about each axis is assumed so that only 1/8 of the

cuboidal cell shown in Fig. 4.1 is modeled. For both initial void volume fractions the cell

dimensions are varied to achieve various initial inter-void spacings. The geometric parameters

defining the various unit cells analyzed are tabulated in Table 4.2. The initial cell dimensions
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are taken to be such that a01/r0 = a02/r0 in all cases.

Table 4.2. The ratios of initial cell dimensions to void radius, a0i /r0, and the

ratios of initial ligaments to void radius, l0i /r0, where i = 1, 2, 3.

f0 = 0.01

a01/r0 a02/r0 a03/r0 l01/r0 l02/r0 l03/r0

6.06 6.06 1.43 5.06 5.06 0.43

5.80 5.80 1.56 4.80 4.80 0.56

5.55 5.55 1.70 4.55 4.55 0.70

5.34 5.34 1.84 4.34 4.34 0.84

5.21 5.21 1.94 4.21 4.21 0.94

5.12 5.12 2.00 4.12 4.12 1.00

4.97 4.97 2.12 3.97 3.97 1.12

4.50 4.50 2.59 3.50 3.50 1.59

3.75 3.75 3.75 2.75 2.75 2.75

f0 = 0.1

a01/r0 a02/r0 a03/r0 l01/r0 l02/r0 l03/r0

1.91 1.91 1.43 0.91 0.91 0.43

1.85 1.85 1.52 0.85 0.85 0.52

1.79 1.79 1.62 0.79 0.79 0.62

1.74 1.74 1.74 0.74 0.74 0.74

1.67 1.67 1.87 0.67 0.67 0.87

1.62 1.62 2.00 0.62 0.62 1.00

1.52 1.52 2.27 0.52 0.52 1.27

1.38 1.38 2.74 0.38 0.38 1.74

The calculations use 20-node hybrid solid elements with quadratic displacement in-

terpolation and linear pressure interpolation, C3D20H elements [54]. Finite element meshes

for two unit cells with f0 = 0.01 are shown in Fig. 4.2(a) and for two unit cells with f0 = 0.1
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(a)

(b)

Figure 4.2. Finite element mesh showing 1/8 of the unit cell with an initial

spherical void of radius r0 in the center giving an initial void volume fraction

of (a) f0 = 0.01 and (b) f0 = 0.1.

in Fig. 4.2(b). The number of elements in the finite element meshes varied from a minimum

of 916 elements to a maximum of 2140 elements. In general a larger number of elements were

used for smaller inter-void ligament sizes to account for possible localized deformations.

Mesh convergence studies were performed for several unit cells. The evolution of the

relative void volume fraction f/f0 with the overall effective creep strain Ee was used to

assess convergence. For example for χ = 1/3 and L = 1 the unit cell with f0 = 0.01 and

l03/r0 = 0.94 with 994 elements at Ee = 0.5 reached f/f0 = 1.013 and at Ee = 1.0 reached
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f/f0 = 0.81 whereas with 1680 elements at Ee = 0.5 reached f/f0 = 1.016 and at Ee = 1.0

reached f/f0 = 0.83. Leading to an error of 0.3% at Ee = 0.5 and 2.5% at Ee = 1.0.

4.3. Numerical Results

The calculations were carried out for the unit cell geometries in Table 4.2 with the

values of stress triaxiality and Lode parameter given in Table 4.1 and for n = 3, 5 and 7

in Eq. (47). In total 153 cases were analyzed. The calculations were continued until one

of the following conditions was met: (i) void coalescence; a minimum relative inter-void

ligament lri = li/l
0
i < 0.2; (ii) void collapse; a relative void volume fraction f/f0 ≈ 0 or

f/f0 decreasing monotonically (and sufficiently rapidly) between Ee ≈ 0.5 and Ee = 1; (iii)

neither void coalescence or void collapse up to an overall effective creep strain Ee = 1.0.

4.3.1. Evolution of the Void Volume Fraction

The void volume fraction is f = (Vcell−VM)/Vcell where Vcell is the current cell volume

and VM is the current material volume (sum of current elemental volumes). The quantity

f/f0 is the relative void volume fraction.

The evolution of f/f0 with Ee for the calculations with f0 = 0.01 is shown in Fig. 4.3.

The unit cells are characterized by the initial x3 inter-void ligament to void radius ratio,

l03/r0. With L = −1, Fig. 4.3(a), f/f0 monotonically increases with decreasing slope for

sufficiently closely spaced voids while for more widely spaced voids f/f0 initially increases,

then decreases slightly but remains greater than unity until the limiting value Ee = 1 is

reached. As expected for L = −1, the value of f/f0 at any given strain level increases

with increasing value of creep exponent n [81, 97, 84]. The effect of the value of the creep

exponent n on void growth is greater for more closely spaced voids (smaller values of l03/r0).

As shown in Fig. 4.3(b), for L = 0, there is a clear transition with initial void spacing

between the tendency for void growth and void collapse. As shown for l03/r0 = 0.94 after

an initial increase f/f0 saturates to f/f0 ≈ 1.1. For a smaller value of l03/r0, f/f0 increases

monotonically whereas for a greater value of l03/r0, f/f0 decreases monotonically. For L = 0

there is a relatively small effect of the value of creep exponent n on the evolution of f/f0.
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(a) (b)

(c)

Figure 4.3. Evolution of the relative void volume fraction f/f0 as a function

of overall effective creep strain Ee for three Lode parameter values (a) L = −1,

(b) L = 0 and (c) L = 1. The initial void volume fraction f0 = 0.01 and stress

triaxiality χ = 1/3.

Similar to L = 0, for L = 1, Fig. 4.3(c), the evolution of f/f0 with Ee shows a

transition from void growth to void collapse (monotonically decreasing f/f0) with increasing

values of l03/r0. In contrast to the calculations with L = 0, for L = 1 there is a significant
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(a) (b)

(c)

Figure 4.4. Evolution of the relative void volume fraction f/f0 as a function

of overall effective creep strain Ee for three Lode parameter values (a) L = −1,

(b) L = 0 and (c) L = 1. The initial void volume fraction f0 = 0.1 and stress

triaxiality χ = 1/3.

effect of n on the evolution of f/f0 with Ee. For smaller l03/r0 values, the value of f/f0 at a

given strain level increases with increasing n which is similar to L = −1. For intermediate

values of l03/r0, depending on the value of n a transition from void growth to void collapse is
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seen. For larger values of l03/r0, where void collapse is observed for all three values of n, the

value of f/f0 decreases with increasing value of n. A similar but stronger effect of the value

of n on void collapse in isotropic viscous solids under far field compressive stresses (negative

stress triaxiality) has been previously seen by [95, 97].

The evolution of f/f0 with Ee for the calculations with f0 = 0.1 is shown in Fig. 4.4.

The major difference between the results for f0 = 0.1 and the results for f0 = 0.01 is that

with L = −1 and f0 = 0.1, f/f0 monotonically increases with increasing slope for relatively

closely spaced voids, Fig. 4.4(a), showing a clear tendency toward coalescence. For L = 0 and

L = 1, Figs. 4.4(b) and 4.4(c), the response is qualitatively similar to that for the cases with

f0 = 0.01. What is meant by f/f0 decreasing sufficiently rapidly is illustrated in Fig. 4.4(b)

where L = 0. With n = 3 and l03/r0 = 0.74, the red dashed curve with triangles, f/f0

is decreasing monotonically for 0.5 ≤ Ee ≤ 1.0 but not sufficiently rapidly. On the other

hand, with n = 3 and l03/r0 = 1.74, the black dotted curve with triangles, f/f0 is decreasing

sufficiently rapidly to be regarded as tending to void collapse.

Figure 4.5 compares the evolution of f/f0 with Ee for f0 = 0.01 and 0.1 for two l03/r0

values. The comparison is shown for a creep exponent n = 5, the behavior is qualitatively

the same for creep exponents n = 3 and 7. For L = −1, the value of f/f0 for f0 = 0.01

is greater than the value of f/f0 for f0 = 0.1 until Ee ≈ 0.65 for l03/r0 = 0.43, Fig. 4.5(a),

and until Ee ≈ 0.75 for l03/r0 = 1.0, Fig. 4.5(b). The rapid increase in the value of f/f0 for

smaller values of f0 as compared to the greater values of f0 for χ = 1/3 and L = −1 has

also been observed by Sangyul and Kim [78] in their analyses for increasing tensile loading.

Regardless of the value of l03/r0 for L = 0 and L = 1, the value of f/f0 for the unit cell

with f0 = 0.01 is always greater than the value for f/f0 for the corresponding unit cell with

f0 = 0.1. As shown in Fig. 4.5(a) for l03/r0 = 0.43, the value of f/f0 for L = 1 at a given

overall strain is greater than the corresponding value of f/f0 for L = −1 for both f0 = 0.01

and 0.1. On the other hand, for greater values of l03/r0, Fig. 4.5(b), the value of f/f0 at a

given strain for L = 1 is always less than the corresponding value for f/f0 for L = −1.
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Figure 4.5. Evolution of the relative void volume fraction f/f0 as a function

of overall effective creep strain Ee for two initial inter-void ligament to initial

void radius ratio (a) l03/r0 = 0.43 and (b) l03/r0 = 1.0. The creep exponent

n = 5 and stress triaxiality χ = 1/3.

4.3.2. Evolution of the Inter-Void Ligament

For the calculations with f0 = 0.01 the evolution of the relative ligament size in the

x3 direction i.e. lr3 = l3/l
0
3 = (a3 − r3)/(a

0
3 − r0) is used to exhibit inter-void interaction as

it is the direction of minimum applied stress (see Table 4.1) as well as is the direction of

minimum initial inter-void spacing (see Table 4.2). Hence, the greatest reduction in ligament

size generally occurs in the x3 direction. The evolution of lr3 with Ee for three void spacings

with f0 = 0.01 is shown in Fig. 4.6. For L = −1, Fig. 4.6(a), there is a gradual decrease in

lr3 for all the values of l03/r0 until the limiting condition lr3 = 0.2 or Ee = 1 is reached. For

L = 0, Fig. 4.6(b), and L = 1, Fig. 4.6(c), a rapid decrease in lr3 occurs for smaller values of

l03/r0. The effect of creep exponent n on the evolution of lr3 with Ee reduces with increasing

l03/r0 and basically no effect of n on the evolution of lr3 with Ee is seen for l03/r0 = 2.75 for

all three Lode parameter values.

The evolution of lr3 with f0 = 0.1 is qualitatively similar to that for f0 = 0.01. But for
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(a) (b)

(c)

Figure 4.6. Evolution of the relative inter-void ligament lr3 = l3/l
0
3 as a

function of overall effective creep strain Ee for three Lode parameter values

(a) L = −1, (b) L = 0 and (c) L = 1. The initial void volume fraction

f0 = 0.01 and stress triaxiality χ = 1/3.

the calculations with f0 = 0.1, x3 is not always the direction of minimum initial inter-void

spacing (see Table 4.2). Hence for L = −1 where Σ1 > Σ2 = Σ3 the tendency to coalescence

can occur along either the x2 or x3 direction. For the unit cells with f0 = 0.1 the evolution
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Figure 4.7. Evolution of the relative inter-void ligament lr3 = l3/l
0
3 (open

symbols) and lr2 = l2/l
0
2 (closed symbols) as a function of overall effective creep

strain Ee for a Lode parameter value L = −1. The initial void volume fraction

f0 = 0.1, creep exponent n = 7 and stress triaxiality χ = 1/3.

of lr3 and of lr2 = l2/l
0
2 for L = −1 and n = 7 are shown in Fig. 4.7. The evolution of lr3 for the

unit cell with l03/r0 = 0.52 and the evolution of lr2 for the unit cell with l03/r0 = 1.27 (where

l02/r0 = 0.52) are the same until Ee ≈ 0.4. For Ee >≈ 0.4, lr3 for l03/r0 = 0.52 decreases more

rapidly than lr2 for l03/r0 = 1.27 leading to earlier void coalescence. This may be due to the

fact that the initial area fraction of the void (πr0
2/4a02a

0
3) on the x2 − x3 plane for the unit

cell with l03/r0 = 0.52 is ≈ 0.060 which is larger than that for the unit cell with l03/r0 = 1.27

(≈ 0.049). For l03/r0 = 0.74 where l01/r0 = l02/r0 = l03/r0 = 0.74, the evolution of both lr3 and

lr2 with Ee is the same.

The relative inter void ligament lr3 = l3/l
0
3 depends on the current cell dimension a3

and on the current void radius r3. For nearly rate independent materials at stress triaxiality

values greater than ≈ 1 the onset of void coalescence is associated with flow localization

in the ligament between adjacent voids leading to an overall uniaxial straining mode, [58],

which in the calculations here would correspond to da3/dEe ≈ 0. In Fig. 4.8(a) for f0 = 0.01

and in Fig. 4.8(b) for f0 = 0.1, even when the voids are extremely close to each other for

l03/r0 = 0.43, a3/a
0
3 decreases monotonically for both L = −1 and L = 1 without a transition
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Figure 4.8. Evolution of the normalized unit cell dimension (a) a3/a
0
3 for a

unit cell with f/f0 = 0.01 and (b) a3/a
0
3 for a unit cell with f/f0 = 0.1; and

evolution of normalized void radius (c) r3/r0 for a unit cell with f/f0 = 0.01

and (d) r3/r0 for a unit cell with f/f0 = 0.1 as a function of Ee for l
0
3/r0 = 0.43.

The stress triaxiality χ = 1/3.

to an overall uniaxial straining mode for all three creep exponent values. For f0 = 0.01

and L = −1, Fig. 4.8(c), r3/r0 gradually decreases until Ee = 1. On the other hand, for
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f0 = 0.1 and L = −1, Fig. 4.8(d), r3/r0 gradually decreases until a creep exponent dependent

strain value and then increases. The value of r3/r0 at any given strain level decreases with

a decreasing value of n for L = −1. For L = 1, regardless of the value of n, r3/r0 initially

decreases until a critical value of Ee is reached and then r3/r0 increases rapidly for n = 7.

The value of r3/r0 remains nearly constant for n = 5 while for n = 3 the slope of the r3/r0

versus Ee curve decreases. This is true for both the unit cells with f0 = 0.01, Fig. 4.8(c), and

f0 = 0.1, Fig. 4.8(d). The change in the evolution of r3/r0 beyond a critical Ee leads to the

transition from a gradual reduction in the inter-void ligament to a rapid decrease leading to

accelerated void coalescence.

Figure 4.9 shows the critical strain to coalescence, Ec
e (the value of Ee at which

lr3 = 0.2) for the cases where void coalescence occurred. In general the value of Ec
e increases

linearly as a function of l03/r0. As expected the value of Ec
e decreases with increasing values

of n so that with increasing value of n the void coalescence condition is met for unit cells

with greater values of l03/r0. For L = 1, the value of Ec
e for f0 = 0.1 is slightly greater

than the value of Ec
e for f0 = 0.01. Whereas for L = −1, the value of Ec

e for f0 = 0.1 is

slightly smaller than the value of Ec
e for f0 = 0.01 as shown in Fig. 4.9(c) for n = 7 and

l03/r0 = 0.43. For L = 0, the value of Ec
e for f0 = 0.1 is greater than the value of Ec

e for

f0 = 0.01 for smaller values of l03/r0, whereas for greater values of l03/r0 the value of Ec
e for

f0 = 0.1 is smaller than the value of Ec
e for f0 = 0.01, as shown in Fig. 4.9(b) for n = 5 and

in Fig. 4.9(c) for n = 7. For relatively higher values of χ, Pardoen and Hutchinson [61] also

found a smaller strain to coalescence with a smaller f0 for a fixed initial void spacing but

with L = −1.

4.3.3. Stress Distributions

Figs. 4.10 and 4.11 show stress concentrations, the ratio of σ11 to Mises effective

stress Σe for several calculations. With N1 constant, the values of Σi and Σe increase with

the increasing creep strain due to the change in cross-sectional area.

The distribution of σ11/Σe is shown in Fig. 4.10(a) for L = −1 and for a unit cell with

f0 = 0.01 and l03/r0 = 0.43. After the first elastic step where Ee = 0, the maximum value of
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Figure 4.9. Critical strain to coalescence, Ec
e , for initial void volume fraction

f0 = 0.1 (open symbols); f0 = 0.01 (closed symbols); for various initial inter-

void ligament to void radius ratio l03/r0 for creep exponents (a) n = 3, (b)

n = 5 and (c) n = 7. Stress triaxiality χ = 1/3.

σ11/Σe occurs at the circumference of the void on x2 − x3 plane and is 1.89. Initially, creep

deformation gives rise to stress relaxation so that σ11/Σe = 1.55 at Ee = 0.3. At Ee = 0.8

σ11/Σe = 1.59 but the location of the maximum stress concentration has now shifted towards
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(a)

(b)

Figure 4.10. Distribution of normalized stress σ11/Σe after the first elastic

step and at Ee = 0.3 and 0.8 for Lode parameter L = −1 and creep exponent

n = 5. (a) Unit cell with f0 = 0.01 and l03/r0 = 0.43. (b) Unit cell with

f0 = 0.1 and l03/r0 = 0.43. Stress triaxiality χ = 1/3.

the tip of the void which has taken on a needle-like shape.

The corresponding evolution of the stress concentration with f0 = 0.1 is shown in

Fig. 4.10(b). Here, σ11/Σe = 1.98 after the first elastic step, decreases to σ11/Σe = 1.59 at
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(a)

(b)

Figure 4.11. Distribution of normalized stress σ11/Σe after the first elastic

step and at Ee = 0.3 for Lode parameter L = 1 and creep exponent n = 5.

(a) Unit cell with f0 = 0.01 and l03/r0 = 0.43. (b) Unit cell with f0 = 0.1 and

l03/r0 = 0.43. Stress triaxiality χ = 1/3.

Ee = 0.3 and then increases to σ11/Σe = 1.82 at Ee = 0.8 where the initially spherical void

has evolved into a prolate spheroid and the stress concentration is nearly constant over much

of the x2 − x3 cross section. For both f0 = 0.01 and f0 = 0.1, σ11/Σe is compressive at the

tip of the elongated void.

For more widely spaced voids with f0 = 0.01 the evolution of the void shape and the

corresponding stress distributions for L = −1 are similar to those in Chapter 3 where the

initially spherical void evolves into a needle-like shape and the maximum value of σ11/Σe is

near, but not at, the tip of the needle-like void. On the other hand, for more widely spaced

voids with f0 = 0.1 the evolution of the void shape and the corresponding stress distributions
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(a)

(b)

Figure 4.12. Distribution of normalized stress σ11/Σe after the first elastic

step and at Ee = 0.3 for Lode parameter L = 1 and creep exponent n = 5.

(a) Unit cell with f0 = 0.01 and l03/r0 = 2.75. (b) Unit cell with f0 = 0.1 and

l03/r0 = 1.74. Stress triaxiality χ = 1/3.

are qualitatively similar to those in Fig. 4.10.

For L = 1 and l03/r0 = 0.43, distributions of σ11/Σe are shown in Fig. 4.11(a) for

the calculations with f0 = 0.01. After the first elastic step the maximum value of σ11/Σe

is 1.49 at the circumference of the void on x2 − x3 plane. At Ee = 0.3 the maximum

stress concentration is 1.96 and is near the center of the ligament between adjacent voids

along x3 direction. In Fig. 4.11(b) where f0 = 0.1 the initial value of the maximum stress

concentration and the value at Ee = 0.3 are 1.62 and 2.2, respectively. Thus, in this case

the evolving void shape leads to a stress concentration that is greater than the initial elastic

86



one. As shown in Fig. 4.11, σ11/Σe at Ee = 0.3 is compressive at the void circumference on

x1 − x2 plane.

Figure 4.12(a) shows distributions of σ11/Σe for f0 = 0.01 and l03/r0 = 2.75 while

Fig. 4.12(b) shows corresponding distributions for f0 = 0.1 and l03/r0 = 1.74. After first

elastic step the maximum value of σ11/Σe is 1.58 in Fig. 4.12(a) and 1.65 in Fig. 4.12(b). For

both the unit cells the maximum value occurs at the void circumference on x2 − x3 plane as

in Fig. 4.11 for l03/r0 = 0.43. At Ee = 0.3 the maximum value of σ11/Σe is 2.20 for f0 = 0.01

and l03/r0 = 2.75, and is 2.06 for f0 = 0.1 and l03/r0 = 1.74. For L = 1 and larger values of

l03/r0, the void collapses in the x3 direction and the maximum value of σ11/Σe occurs on the

x2 − x3 plane but has slightly shifted away from the void surface. As the void collapses, the

void shape tends toward a penny-shaped crack and the stress concentration increases near,

but not at, the tip of the collapsing void.

4.4. Discussion

With void coalescence and void collapse as defined in Section 4.3, the results for void

coalescence and void collapse are summarized for an initial void volume fraction f0 = 0.01

in Fig. 4.13 and for f0 = 0.1 in Fig. 4.14. For L = 1 and L = 0, a transition from void

coalescence to void collapse takes place with increasing initial inter-void spacing, l03/r0. There

is a sharper transition from void coalescence to void collapse for L = 1 than for L = 0. Also,

for L = 1 and L = 0 an increase in the value of the creep exponent n results in void

coalescence occurring at a larger value of l03/r0. As a consequence, the transition to void

collapse takes place at a larger value of l03/r0. Void collapse did not occur for L = −1 in the

calculations here. Indeed, void collapse did not occur for an isolated void in the analyses of

Budiansky at al. [81] for χ = 1/3 and L = −1. For a unit cell with f0 = 0.1 and l03/r0 = 1.74

(where l02/r0 = 0.38) void coalescence for L = −1 and n = 7 occurred in the x2 direction and

this case is marked with a solid triangle in Fig. 4.14(c). In this calculation, the minimum

value of l0i /r0 which is l02/r0 falls within the range of values for which coalescence is expected.

In axisymmetric analyses for a nearly rate independent viscoplastic solid Koplik and

Needleman [58] found that a transition to an overall uniaxial straining mode could occur
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Figure 4.13. The dependence of void collapse or coalescence on initial void

spacing and Lode parameter L for an initial void volume fraction of f0 = 0.01;

stress triaxiality χ = 1/3; and three creep exponents (a)n = 3, (b)n = 5

and (c)n = 7. Here l03/r0 = a03/r0 − 1 is the initial inter-void ligament (in x3

direction) to void radius ratio.

and that was associated with the onset of void coalescence. Such a transition to an overall

uniaxial straining mode was not obtained for low stress triaxiality values at least for small
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Figure 4.14. The dependence of void collapse or coalescence on initial void

spacing and Lode parameter L for an initial void volume fraction of f0 = 0.1;

stress triaxiality χ = 1/3; and three creep exponents (a)n = 3, (b)n = 5

and (c)n = 7. Here l03/r0 = a03/r0 − 1 is the initial inter-void ligament (in x3

direction) to void radius ratio.

initial void volume fractions, e.g. [58, 61, 102, 103, 64, 94]. In the calculations here a

transition to such an overall uniaxial straining mode (i.e., da3/dE3 ≈ 0) did not occur
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even for an initial void volume fraction of f0 = 0.1 and with an initial inter-void spacing of

l03/r0 = 0.43. This can probably be attributed to the highly rate dependent material response

in the calculations here which significantly delays localization [104]. In the calculations here

coalescence is defined in terms of a reduction in ligament size. In some cases although r3/r0

initially decreases, it increases beyond some overall strain value leading to coalescence. This

occurs mainly in calculations with L = 1 and L = 0 but also occurred for L = −1 for

sufficiently closely spaced voids with f0 = 0.1.

For L = 1 and L = 0 when void coalescence occurred, it occurred in the direction

of the minimum applied stress (x3), regardless of the initial inter-void spacing in the other

directions. For L = −1 (Σ1 > Σ2 = Σ3), void coalescence occurred in either the x2 or the x3

direction depending on which initial inter-void spacing was smaller. Gologanu et al. [102]

refer to the mode of coalescence with L = −1 as coalescence in layers whereas Gologanu et al.

[103] refer to the mode of coalescence with L = 1 as coalescence in columns. In [81, 103, 101]

and in Chapter 3 void collapse was seen along the direction of the minimum applied stress

for χ = 1/3 and L > −1. In the calculations here, when void collapse occurred, it occurred

along the direction of the minimum applied stress (x3 in the calculations here), regardless

of the initial inter-void ligament size in the other directions. Here, both void coalescence

and void collapse occurred along the ligament with the minimum applied stress for L > −1.

Hence the transition from void coalescence to void collapse depends on the void spacing in

the minimum applied stress direction.

Danas and Aravas [100] (also see [101]) proposed a failure criterion involving void

collapse based on a void aspect ratio where the smallest void radius was in the denominator

becoming unbounded in the plane normal to the collapse direction (the x3 direction here).

The voids then link up parallel to the major loading direction leading to a loss of load carrying

capacity. Recently, in an analysis of a rate independent solid subject to a monotonically

increasing load [105] noted that the average stress continues to increase even after void

collapse (f ≈ 0) so that void collapse is not associated with a loss of load carrying capacity.

In the cell model calculations here the stresses in the x1 − x2 plane along the mid-section
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of the collapsing void are generally compressive. However, as the void collapses, a stress

concentration develops near, but not at, the tip of the collapsing void which can then trigger

cracking as seen in the experiments in Chapter 2.

4.5. Summary and Conclusions

Three dimensional cell model analyses for an array of initially spherical voids in an

fcc single crystal has been carried out. The crystals were subjected to creep loading with

a constant nominal tensile stress and with the stress triaxiality fixed at 1/3. Calculations

were carried out for Lode parameter values of −1, 0 and 1; creep exponent values of 3, 5

and 7; initial void volume fractions of 0.01 and 0.1; and for a range of initial void spacings.

The calculations were continued until one of the following conditions was met: (i) void

coalescence; a minimum relative void spacing of lri = li/l
0
i < 0.2; (ii) void collapse; a relative

void volume fraction f/f0 ≈ 0 or f/f0 decreasing monotonically and sufficiently rapidly

between Ee ≈ 0.5 and Ee = 1; or (iii) neither void coalescence or void collapse up to an

overall effective creep strain Ee = 1.0.

The calculations showed that:

• For Lode parameter values L = 0 and L = 1 a transition between void collapse for

widely spaced voids to coalescence for closely spaced voids occurred.

– This transition was observed for all three values of the creep exponent and both

initial void volume fractions.

– This transition is rather sharp and occurs at an initial relative void spacing,

l03/r0, in the range of 0.7− 1.0.

– Larger values of the creep exponent gave rise to void coalescence for larger

initial void spacings. Consequently this transition occurred at larger initial

void spacings for greater values of the creep exponent.

• For L = −1 a transition between void growth and void collapse was not observed

for the range of initial void spacings considered. Indeed, void collapse for L = −1

was not observed for an isolated void in [81].
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– For f0 = 0.01 and n = 7, void coalescence occurred due to a gradual reduction

in the inter-void ligament size for very closely spaced voids.

– For f0 = 0.10 and n = 5, 7 values, accelerated void coalescence occurred for

very closely spaced voids.

– The effect of the creep exponent on the evolution of void volume fraction de-

creases with increasing initial void spacings.

• An abrupt transition to an overall plane strain mode of deformation in the ligament

between coalescing voids did not occur. However, for closely spaced voids a rapid

increase in the void radius along the direction of minimum applied stress (or along

the direction of minimum initial void spacing for L = −1) could occur resulting in

an accelerated reduction in ligament size.

• The strain to void coalescence is smaller with f0 = 0.01 than with f0 = 0.10 for

L = 1. On the other hand, for L = −1 the situation is reversed. For L = 0 the

strain to coalescence is smaller with f0 = 0.01 for sufficiently closely spaced voids

while for voids that are sufficiently far apart the strain to coalescence is smaller with

f0 = 0.10.

• The strain to coalescence as well as the strain to collapse decreases with increasing

creep exponent.

• Stress concentrations develop due to the change in void shape that can promote

crack initiation from the void surface as shown in Chapter 2. In some cases the

stress concentration that develops due to the evolving void shape is greater than

the initial elastic stress concentration.
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CHAPTER 5

PHENOMENOLOGICAL MODELING OF THE EFFECT OF SPECIMEN THICKNESS

ON THE CREEP RESPONSE OF NI-BASED SUPERALLOY SINGLE CRYSTALS

5.1. Introduction

As discussed in Chapter 2 creep tests on single crystal Ni-based superalloys show

increased creep strain rates and/or decreased creep rupture strains and times for thinner

specimens. This is known as the thickness debit effect. Also it is shown in Chapter 2 that

depending on the creep test condition both bulk and/or surface damage mechanisms can

contribute to the thickness debit effect.

A quantitative mechanistic model that can account for both bulk and surface damage

effects and that assesses their relative roles is not currently available. Here, a simple phe-

nomenological nonlinear parallel spring model for uniaxial creep with springs representing

the bulk and possible surface damage layers is proposed. The nonlinear spring constitutive

relations model both material creep and evolving damage. The model draws on the experi-

mental observations in Chapter 2 and the detailed finite element calculations in Chapters 3

and 4. Numerical results are presented and a quantitative comparison is made with the ex-

perimental results in Chapter 2 and Ref. [10] for the thickness dependence of the creep strain

rate and/or the creep rupture strain and time under two loading conditions; a low temper-

ature high stress condition, 760◦C/758MPa; and a high temperature low stress condition,

982◦C/248MPa.

5.2. Model Formulation

In this chapter a tensile specimen subjected to a fixed applied force F is analyzed.

The deformation and strain state is assumed to be uniform along the length of the specimen

which, until near final fracture, is consistent with the results in Chapter 2. Hence, only a

single cross section is considered. The average nominal stress acting on the cross section is

s = F/A0, with A0 the initial cross sectional area, and the average true stress is σ = F/A,

with A the current cross sectional area. Elasticity is neglected and the creep strain rate ε̇
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Figure 5.1. Schematic of the cross section of the specimen showing the bulk

and the surface region (surf); w and h are the initial dimensions of the cross

section.

is taken to be uniform in the cross section. The cross section is taken to consists of a bulk

region and a surface region as shown in Fig. 5.1.

The current load bearing cross sectional area A evolves as

(49) Ȧ = Ȧbulk + Ȧsurf

where Abulk = A0 and Asurf = 0 at t = 0. The evolution equations for the bulk and surface

area need to be specified which strongly depend on the active damage mechanisms.

The creep strain rate is given by

(50) ε̇ = (1− β)Cpσ
m + βCsσ

n

and the quantity β evolves as

(51) β̇ =
1

t0
(1− β)

with initial condition that β = 0 at t = 0 and t0 a time constant that governs the transition

from primary to secondary creep.

In Eq. (50) m is the primary creep exponent, n is the secondary creep exponent

and Cp and Cs are parameters of the cross section that characterize the creep resistance in

primary and secondary creep, respectively. For specifying parameter values it is convenient
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to write

(52) Cp = ε̇p

(

1

σp

)m

, Cs = ε̇s

(

1

σs

)n

and to specify the values of ε̇p, σp and ε̇s, σs individually.

The calculations proceeds as follows: a fixed tensile force F is applied and a time

step ∆t is chosen. At each time step, the strain increment ∆ε = ε̇∆t and the area changes

∆Abulk = Ȧbulk∆t and ∆Asurf = Ȧsurf∆t are calculated and the average true stress σ is

updated. The evolution equations for Cp and Cs differ for the low temperature high stress

and high temperature low stress cases.

5.2.1. Low Temperature High Stress

Since no surface damage was observed at 760◦C, Ȧsurf = 0 so that Ȧ = Ȧbulk in

Eq. (49). The damage mechanism modeled is loss of bulk area due to cleavage-like cracking

emanating from the preexisting voids.

The bulk crystal material is regarded as incompressible, Ȧbulk/Abulk = −ε̇, the rate

of change of load bearing bulk cross sectional area is written as,

(53) Ȧbulk = −ε̇Abulk − Ḋclv

where Ḋclv is the rate of loss of area due to cleavage-like cracking. It is assumed here that

the nucleation of cleavage-like cracks follows Weibull statistics, Ref. [106], and that a crack

of fixed length nucleates. The cumulative distribution function for the Weibull distribution

as a function of true stress σ is

(54) p (σ) = 1− exp

[

−
(σ

λ

)k
]

where λ is the scale factor and k is the shape factor of the distribution.

The cleavage-like cracking is assumed to begin in the secondary creep regime which

is approximately ε > 0.07, Chapter 2. Then, at each strain increment ∆ε = ε̇∆t = 0.001 a

random number R is generated where R ∈ [0, 1] and
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(55) Ḋclv =







acε̇ for R ≤ p

0 for R > p

so that the reduction in cross sectional area due to cleavage-like cracking for a given time

step in the secondary creep regime is ∆Dclv = Ḋclv∆t = ac∆ε if R ≤ p or else no loss of area

due to damage occurs in that increment.

The parameter ac in Eq. (55) is taken such that ∆Dclv = 0.03mm2 per ∆ε = 0.001 if

R ≤ p. This corresponds to the nucleation of about 100 annular cracks extending ≈ 7µm from

the void surface. The initial void volume fraction in the undeformed specimen corresponds

to several hundred micro-voids, Refs. [53, 107], and, multiple cracks can initiate from each

micro-void.

The parameter values defining Cp and Cs in Eq. (52) are σp = σs = 900MPa, ε̇p =

5 × 10−6sec−1, m = 1, ε̇s = 4.5 × 10−8sec−1 and n = 5. The time constant in Eq. (51) is

t0 = 1.48×104sec. These values are chosen to give a good representation of the experimentally

observed primary and secondary creep strain versus time response given in Chapter 2.

The observations in Chapter 2 do not give a direct basis for choosing the parameters

in Eq. (54). Here, λ = σp = σs is taken, which is about 0.9 times the effective yield strength

of PWA1484 at 760◦C reported in Ref. [15]. For the specified value of λ, k ≈ 10 gives a value

of p that tends to one as σ approaches the effective yield strength and leads to a reasonably

good fit to the experimental data for the evolution of the creep strain.

5.2.2. High Temperature Low Stress

Surface damage due to oxidation, nucleation of new voids and cleavage-like cracking

emanating from the deformed voids are active damage mechanisms in the high temperature

low stress loading condition. The oxide layer is taken to carry no load so that only the cross

sectional areas of the γ′-precipitate free region, AL1, and of the γ′-precipitate reduced region,

AL2, contribute to the load bearing surface cross sectional area, Asurf in Eq. (49). Hence,

(56) Ȧsurf = ȦL1 + ȦL2
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where AL1 = AL2 = 0 at t = 0.

The depletion of the γ′-precipitate is due to surface oxidation as noted in Chapter 2

hence the cross sectional area of these two layers can be assumed to be proportional to the

cross sectional area of the oxide layer, Aoxide. As shown in Chapter 2, void nucleation was

seen in both the γ′-precipitate free and in the γ′-precipitate reduced regions. Hence, the load

carrying cross sectional area of these two regions evolve as

(57) ȦL1 = αL1Ȧoxide −AL1Ḋvoid , ȦL2 = αL2Ȧoxide −AL2Ḋvoid

where αL1 and αL2 are the proportionality constants; and Ḋvoid is the rate of homogeneous

nucleation of voids.

The void nucleation rate is taken to be strain controlled and to have a normal distri-

bution about a mean nucleation strain εN as in Ref. [108]

(58) Ḋvoid =
DN

sN
√
2π

exp

[

−1

2

(

ε− εN
sN

)2
]

ε̇

where DN is the maximum area fraction of cross sectional area that can be lost due to void

nucleation and sN is the standard deviation.

The solid state diffusion is in general the rate limiting step for oxidation reactions and

the oxidation kinetics are reasonably well approximated using a parabolic fit, Refs. [109, 110],

so that the thickness x of the oxide layer at any given time t is

(59) x = kpt
1/2

The cross sectional area Aoxide evolves as

(60) Ȧoxide = ẋP0 − 8xẋ

Here, P0 = 2 (w + h) is the initial perimeter of the cross section with initial dimensions w

and h, see Fig. 5.1.

With the bulk crystal material regarded as incompressible, the time rate of change of

the load bearing bulk cross sectional area is given by

(61) Ȧbulk = −ε̇Abulk −AbulkḊvoid − Ḋclv − Ȧoxide

(

1 + αL1 + αL2
)
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where Abulk = A0 at t = 0, Ḋvoid is given by Eq. (58) and Ḋclv is given by Eqs. (54) and (55)

and Ȧoxide is given by Eq. 60.

Thus, the time rate of change of the total load bearing cross sectional area A is

(62) Ȧ = ȦL1 + ȦL2 + Ȧbulk

In the high temperature low stress loading condition primary creep was negligible

hence β = 1 in Eq. (51). A power law creep relation is then taken to hold for each of AL1,

AL2 and Abulk. Since each sub-area is assumed to undergo power law creep with the same

creep exponent n, the overall creep relation has the form

(63) ε̇ = Csσ
n

where Cs is the collective creep resistance of the total load bearing cross section.

Each sub-area is regarded as deforming homogeneously with each planar cross section

remaining planar so that ε̇L1 = ε̇L2 = ε̇bulk = ε̇. The overall stress in each of the sub-areas is

related to the strain rate by

(64) σbulk =

(

ε̇

Cbulk
s

)1/n

, σL1 =

(

ε̇

CL1
s

)1/n

, σL2 =

(

ε̇

CL2
s

)1/n

where Cbulk
s is the creep resistance of the bulk region, CL1

s is the creep resistance of the

γ′-precipitate free region and CL2
s is the creep resistance of the γ′-precipitate reduced region.

The total force acting on the cross sectional area is F = Abulkσbulk+AL1σL1+AL2σL2.

The overall response is regarded as three non-linear springs in parallel so that average true

stress σ is given by

(65) σ =
Abulk

A
σbulk +

AL1

A
σL1 +

AL2

A
σL2

From Eqs. (63), (64) and (65), the overall section creep resistance Cs is

(66)
1

Cs
=

[

AL1

A (CL1
s )1/n

+
AL2

A (CL2
s )1/n

+
Abulk

A (Cbulk
s )1/n

]n

The creep exponent n = 5 and the other parameters defining CL1
s , CL2

s and Cbulk
s

are ε̇L1s = ε̇L2s = ε̇bulks = 1.6 × 10−6sec−1 and σL1
s = 150MPa, σL2

s = 300MPa and σbulk
s =
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600MPa respectively. The value of Cbulk
s was chosen to give a good representation of the

experimentally observed creep strain versus time response up to 1% creep strain in Ref. [10].

The values of CL1
s and CL2

s were chosen to represent a decrease in creep strength with

precipitate depletion as also presumed in Ref. [37].

The values used in the calculations for kp = 4 × 10−5mm sec−1/2, αL1 = 0.5 and

αL2 = 0.25 give oxide layer, γ′-precipitate free layer and γ′-precipitate reduced layer sizes

close to those seen in Chapter 2. Also, the values DN = 0.5, sN = 0.01 and εN = 0.012 used

in Eq. (58) give an increase in porosity similar to that observed in Chapter 2. As in the

low temperature high stress calculations, λ = σbulk
s is taken, which is about 0.9 times the

effective yield strength of the PWA1484 Ni-based single crystal superalloy at 982◦C reported

in Ref. [15], and k = 10 in Eq. (54). However, here the parameter ac in Eq. (55) is taken

as ∆Dclv = 0.01mm2 per ∆ε = 0.001 if R ≤ p because smaller length cracks were seen

to nucleate at high temperature low stress creep in Chapter 2, as expected with the lower

applied stress.

5.3. Results

The model formulation given in Section 5.2 was coded in a MATLAB [111] program.

As in the experiments reported in Ref. [10] and in Chapter 2, five initial specimen thicknesses

h (see Fig. 5.1), 0.38mm, 0.51mm, 0.76mm, 1.52mm and 3.18mm are analyzed for low

temperature high stress creep and four initial specimen thicknesses h = 0.51mm, 0.76mm,

1.52mm and 3.18mm for high temperature low stress creep. The initial specimen width

w = 4.75mm is the same for all cases. The low temperature high stress creep calculations are

carried out under a constant applied nominal stress of s = 758MPa and the high temperature

low stress creep calculations are carried out under s = 248MPa as in Chapter 2. For each

specimen thickness and creep condition 50 calculations are carried out. For given conditions,

the results of each calculation depends on the random number generated at each step for

Eq. (55) to determine the damage due to cleavage. The average values presented subsequently

are averages over the 50 calculations and the error bars indicate the minimum and maximum

values from the 50 calculations. In all calculations, the time step ∆t is adjusted to give a
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fixed strain increment ∆ε = 0.001. The time step ∆t varied from 0.05 − 0.06hrs in the

primary and tertiary creep regimes to a maximum of 8 − 9hrs in the steady state creep

regime.

The calculations are continued until one of two conditions is met: (i) a critical strain

rate is attained; or (ii) there is a critical loss of area due to cleavage-like cracking. The

critical strain rate condition is taken to be ε̇ > ε̇fail where ε̇fail is the maximum strain rate

that can be sustained and the critical loss of area due to cleavage-like cracking is taken as

Dclv ≥ Dfail. In the calculations here the value of ε̇fail differs for the low temperature high

stress and the high temperature low stress conditions while Dfail = 2mm2 for both loading

conditions. It is assumed that this much loss of load bearing area due to crack nucleation

will result in crack growth and crack coalescence leading to fracture. There is no basis from

the experiments in Chapter 2 for choosing ε̇fail or Dfail. The values used give a reasonable

quantitative fit to the failure data shown in Chapter 2.

5.3.1. Low Temperature High Stress

The value of ε̇fail is taken to be 10ε̇ss where ε̇ss is the creep rate taken at the beginning

of steady state/secondary creep, which is taken as ε = 0.07.

The calculated creep strain, ε, versus time, t, curves for specimen thicknesses h =

3.18mm and 0.38mm are shown in Fig. 5.2 together with the experimental curves from

Ref. [10]. The average value for both specimen thicknesses shows a very good correlation

with the experimental curve. As seen in Fig. 5.2 the spread in the evolution of creep strain

with time for the thinner specimens can be seen when ε > 0.07. For the thicker specimens

the spread in the evolution of creep strain is small until ε ≈ 0.1. The calculations for the

specimens with thickness h = 3.18 and 1.52mm are terminated after attaining Dfail for all

50 calculations whereas the calculations for the specimens with h = 0.76, 0.51, and 0.38mm

are terminated after attaining ε̇fail.

Figure 5.3 shows the time evolution of the Weibull cumulative distribution function,

p, i.e. the probability of crack nucleation and the cumulative loss of area normalized by the

initial cross sectional area, Dclv/A0, for all specimen thicknesses h analyzed. In Fig. 5.3a,
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Figure 5.2. Comparison of the calculated creep curves for 50 calculations

(cal) and their average (avg) with the experimental (exp) creep curves from

Ref. [10] of specimens with thickness h = 3.18mm and 0.38mm at low temper-

ature high stress creep. Where ε is the logarithmic creep strain.

p starts with a small initial value of 0.3 at t ≈ 62.5hrs (crack nucleation begins in the

secondary creep regime). In Fig. 5.3b, Dclv/A0 increases with time, which raises the stress

level on the remaining intact area and hence increases the probability, p, of further crack

nucleation. This deleterious effect is more detrimental for thinner specimens leading to an

increased fraction of the cross sectional area being lost by cleavage-like cracks as observed

experimentally in Chapter 2. Regardless of the criterion by which the specimen fails, the

probability of crack nucleation for all specimens is near unity prior to final failure.

Figure 5.4 shows the effect of specimen thickness on the creep strain to fracture, εf ,

and on the time to fracture, tf , for the low temperature high stress creep loading condition.

Both the results of the model predictions and the experimental data from Ref. [10] and

Chapter 2 are shown. The average values of εf and tf follow a 1/
√
h dependence as also

seen in the experimental results of Chapter 2.
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Figure 5.3. Evolution of (a) Weibull cumulative distribution function (p) and

(b) cumulative loss of area due to cleavage-like cracking normalized with the

initial cross sectional area of the specimen (Dclv/A0) at low temperature high

stress creep for various specimens with thickness h. The values are averaged

over 50 calculations.

5.3.2. High Temperature Low Stress

In the high temperature low stress creep condition there is no primary creep and ε̇fail

is taken to be 10ε̇N where εN is the mean strain for void nucleation in Eq. (58).

The calculated creep strain, ε, versus time, t, curves for specimen thicknesses h =

3.18mm and 0.76mm together with the experimental results from Ref. [10] are shown in

Fig. 5.5. The average values for the specimens show a very good correlation with the ex-

perimental curve. In contrast to the low temperature high stress creep case, the deviation

of each of the 50 calculations from the mean creep strain versus time curve is small. All

specimens failed by attaining ε̇fail.

The evolution of the oxide layer thickness, x, with time, t, is shown in Fig. 5.6a. The

evolution of the γ′-precipitate free and γ′-precipitate reduced regions are proportional to the

evolution of the oxide layer. The evolution of x only depends on time and hence at any
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Figure 5.4. The effect of specimen thickness (h) on (a) the creep strain to

fracture (εf) and (b) the time to fracture (tf , hrs) at low temperature high

stress creep. Experimental data is taken from Ref. [10] and Chapter 2. The

dashed line is a least-square fit of a−b/
√
h to the mean value of the calculated

εf and tf data, where a and b are positive fitting constants and their values

differ for εf and tf . The error bars show the maximum and minimum deviation

over the mean value of 50 calculations.

given time t the thickness of the oxide layer is the same for all the specimens resulting in

a relatively greater loss of load bearing cross sectional area for thinner specimens than for

thicker specimens. Also, the final thickness of the oxide layer depends on the failure time

so that the specimens with longer creep life develop a thicker oxide scale. The extent of

oxidation in Fig. 5.6a shows a very good correlation with the total thickness of oxide layers

observed experimentally in Chapter 2.

The loss of area fraction of the bulk cross section due to homogeneous void nucleation,

Dvoid, with time, t is shown in Fig. 5.6b. There is an increase in void nucleation in the bulk

of the thinner specimens prior to achieving a thickness independent saturation value of Dvoid

as shown in Fig. 5.6b. The dependence of Dvoid on strain ε is independent of the specimen
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Figure 5.5. Comparison of the calculated creep curves for 50 calculations

(cal) and their average (avg) with the experimental (exp) creep curves from

Ref. [10] of specimens with thickness h = 3.18mm and 0.76mm at high tem-

perature low stress creep. Where ε is the logarithmic creep strain.

thickness since void nucleation is strain controlled, Eq. (58).

The time evolution of Weibull cumulative distribution function, p, i.e. the probability

of crack nucleation is shown in Fig. 5.7a and the cumulative loss of area normalized with

the initial cross sectional area of the specimen, Dclv/A0, is shown in Fig. 5.7b. In the high

temperature low stress calculations the value of p is near zero until t ≈ 100hrs, Fig. 5.7a.

The increase in σ in the high temperature low stress calculations, not only depends on Dclv

but also on Aoxide and Dvoid. The probability of cleavage-like crack nucleation is smaller

than in the low temperature high stress calculations because of the smaller applied nominal

stress. As shown in Fig. 5.7b, the loss of area fraction due to cleavage-like cracking, Dclv/A0,

is slightly greater for thinner specimen than for thicker specimens.

Figure 5.8 shows the effect of specimen thickness on the creep strain to fracture, εf ,

and on the time to fracture, tf , for the high temperature low stress creep loading condition.

Both the model predictions and the experimental data from Ref. [10] and Chapter 2 are

plotted. In the experimental data there is no systematic dependence of εf on specimen
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Figure 5.6. Evolution of (a) oxide layer thickness x and (b) cumulative loss

of area fraction of the bulk cross section due to void nucleation (Dvoid) at

high temperature low stress creep for various specimens with thickness h. The

values are averaged over 50 calculations.

thickness h whereas the calculations show some dependence of εf on h. The time to fracture,

tf , shows a good correlation with the experimental data and follows the 1/
√
h dependence

seen in the experimental results in Chapter 2. Compared with the low temperature high

stress loading condition results in Fig. 5.4, there is a relative lack of scatter among the 50

computations for each specimen thickness h in Fig. 5.8. This is a consequence of strain

controlled void nucleation rather than cleavage-like cracking being the dominant damage

mechanism in the bulk.

5.4. Discussion

With this simple model the relative contributions of surface damage and bulk damage

can also be compared. Figure 5.9 shows a comparison of calculated and experimental curves

of creep strain versus time for specimens with thicknesses h = 0.76mm and 3.18mm in the

high temperature low stress creep loading condition. In Fig, 5.9a only surface damage is

modeled, Ḋvoid = 0 and Ḋclv = 0 in Eq. (61). Surface damage alone does not lead to the
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Figure 5.7. Evolution of (a) Weibull cumulative distribution function (p)

and (b) cumulative loss of area due to cleavage-like cracking normalized with

the initial cross sectional area of the specimen (Dclv/A0) at high temperature

low stress creep calculations for various specimens with thickness h. The values

are averaged over 50 calculations.

rapid increase in the creep strain seen experimentally. The calculated creep curves assuming

no surface damage, Ȧoxide = 0 in Eqs. (57) and (61), are compared with the experimental

creep curves in Fig. 5.9b. The evolution of creep strain for the calculations with only bulk

damage also do not show rapid increase seen in the experimental data. Hence, the model

indicates that in the high temperature low stress loading condition both surface and bulk

damage play significant roles. On the other hand, in the low temperature high stress loading

condition bulk damage alone can give a rather good representation of the evolution of creep

strain. The results here indicate that, much like Baldan [9] suggested, the loss of load

carrying area due to bulk damage is a major contributor to the thickness debit effect.

Previous models of the thickness debit effect at a high temperature low stress loading

condition focused on a surface damage mechanism [35, 36, 37]. Although surface damage

alone can reproduce the thickness debit effect, the surface damage layer thickness that needs
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Figure 5.8. The effect of specimen thickness (h) on (a) the creep strain to

fracture (εf) and (b) the time to fracture (tf , hrs) at high temperature low

stress creep. Experimental data is taken from Ref. [10] and Chapter 2. The

dashed line is a least-square fit of a− b/
√
h to the mean value of calculated εf

and tf data, where a and b are positive fitting constants and their values differ

for εf and tf . The error bars show the maximum and minimum deviation over

the mean value of 50 calculations.

to be assumed is much greater than observed. For example, in Gullickson et al. [35], a

good representation of the experimental creep curve for a specimen with h = 0.38mm was

obtained with only surface damage with a surface layer thickness of 152µm which is more

than three times the thickness, x(1+αL1+αL2), of the surface damage layer observed in the

experiments reported in Chapter 2 or in the calculations, Fig. 5.6.

The simple phenomenological model presented here gives a quite good prediction of

the evolution of creep strain with time for various specimen thicknesses at both the creep

test conditions. However, the quantitative agreement of strain to failure and time to failure

with experiment depends to some extent on the more or less arbitrary choice of the values of

Dfail and ε̇fail. In most of the calculations here, failure is associated with attaining ε̇fail. Of
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Figure 5.9. Comparison of the calculated (cal) creep curves (a) considering

only surface damage (Ḋvoid = Ḋclv = 0) and (b) considering only bulk damage

mechanism (Ȧoxide = 0) with the experimental (exp) creep curves from Ref. [10]

of specimens with thickness h = 3.18mm and 0.76mm in the high temperature

low stress loading condition.

course, physically attaining a certain strain rate does not imply loss of load carrying ability.

The presumption in using such a criterion is that the strain rate increase is due to the loss

of load carrying area and that a large strain rate corresponds to a high density of defects

that will interact and coalesce; a process not accounted for in the simple model.

Both the experiments and the calculations exhibit a square root dependence on spec-

imen thickness, Figs. 5.4 and 5.8. The fit for the calculations is even better than for the

experimental data. Nevertheless, a mechanistic reason for the 1/
√
h dependence for both

the strain to failure and the time to failure can not be found. Indeed, the 1/
√
h dependence

fits the results for the two thicknesses, h = 1.52mm and h = 3.18mm, in the low tempera-

ture high stress loading condition where the failure is associated with a loss of area due to

cracking as well as for all the remaining calculations under both loading conditions where

failure is associated with the strain rate reaching ε̇fail.
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In addition to the fit of the creep curve and creep failure data, the model predicts

some features of the failure process that are in very good qualitative agreement with the

experimental observations, such as the increased fraction of cleavage-like cracks on the failure

surfaces of thinner specimens and the thickness of the surface damage layer in the high

temperature low stress loading condition. The model also points out the important role

played by void nucleation in the high temperature low stress loading condition. Indeed,

calculations (not shown here) for the high-temperature low stress loading conditions with

no cleavage-like crack formation give only a small change in the creep strain evolution from

that in Fig. 5.7. On the other hand, calculations for this loading condition (also not shown

here) that neglect void nucleation but account for cleavage-like cracking give the evolution

of creep strain to be much like the results computed for surface damage only in Fig. 5.9a.

The failure mechanism that emerges from the model is a damage percolation process

similar to that in Ref. [112] except that in the circumstances here the process is nucleation

dominated. Depending on temperature and stress level, the main damage mechanism is

either the nucleation of cleavage-like cracks or void nucleation. At the low value of stress

triaxiality in uniaxial tension, void growth does not contribute, as shown in Chapters 3 and

ch4. The surface damage at high temperature low stress in the experiments of Ref. [10] and

of Chapter 2 plays a secondary role and exaggerates the bulk damage in thinner specimens.

The loss of area associated with defect nucleation leads to increased stress and an increased

strain rate on the remaining intact area which then leads to increased defect nucleation

further reducing the load carrying area and so on. This mechanism eventually leads to a

cascade of defect nucleation that is more detrimental for thinner specimens than for thicker

specimens so giving rise to the thickness debit effect.

5.5. Summary and Conclusions

A simple phenomenological model to analyze the effect of specimen thickness on the

uniaxial tensile creep response of Ni-based single crystal superalloys has been developed. The

main features of the model draw on the experimental observations in Chapter 2 and the finite

element calculations of void evolution in Chapters 3 and 4. However, the model does contain
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failure parameters that were chosen to fit experimental data. Although the quantitative fit to

the experimental data does depend on the specific value of these parameters, key qualitative

features do not.

• In the low temperature high stress loading condition the main contribution to the

thickness debit effect comes from bulk damage due to the nucleation of cleavage-like

cracks from the surface of pre-existing voids.

• In the high temperature low stress loading condition bulk damage, mainly void

nucleation, and surface damage due to oxidation contribute to the thickness debit

effect.

• A thickness debit effect, in good quantitative agreement with the experimental data

in Ref. [10] and Chapter 2, is obtained under both the low temperature high stress

loading condition and the high temperature low stress loading condition.

• The model also predicts several features of the failure process in very good qualita-

tive agreement with the experimental observations such as the a−b/
√
h fit to failure

times and strains, and the increased area fraction of cleavage for thinner specimens.

• Parameter studies indicate that void nucleation plays a major role in creep failure

in the high temperature low stress loading condition.
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CHAPTER 6

CORRELATING TOUGHNESS AND ROUGHNESS IN DUCTILE FRACTURE

6.1. Introduction

Thirty years ago, Mandelbrot and coworkers revealed the self-affine nature of fracture

surfaces [113]. Their hope was to relate the roughness of fracture surfaces via the exponents

characterizing their scale invariance properties to the material’s crack growth resistance.

This hope has remained unfulfilled. Indeed, later studies showed that the value of the

roughness exponent was not only independent of the material toughness but also of the

material considered, as long as the failure mechanism remained the same [114, 115]. Indeed,

the scaling exponent measured along the propagation direction was observed to take a value

βbrittle ≃ 0.5 rather independent of the considered material for brittle failure while another

value around βdamage ≃ 0.6 was observed for damage accompanying failure [116, 117].

The universality of fracture surface roughness exponents limits the applicability of

quantitative fractography based on statistical analyses for the characterization of microscopic

failure mechanisms and toughness. On the other hand, it has paved the way for a unified

theoretical framework based on critical transition theory to describe the failure properties

of disordered materials. By interpreting the onset of material failure as a dynamic phase

transition, many aspects of the behavior of cracks in disordered materials has thus been

rationalized, such as the intermittent dynamics of cracks [118], their scale invariant roughness

[119], their average dynamics [120] and their effective toughness [121]. Most of these successes

have been achieved in the context of brittle failure, but our understanding of the scaling

properties of ductile fracture surfaces is still limited.

The process that governs the ductile fracture of structural materials at room temper-

ature is one of nucleation, growth and coalescence of micron scale voids, and involves large

plastic deformations. Quantitative models of crack growth by the progressive coalescence of

voids with a crack have been available since the 1970s [122, 123, 124, 125], and calculations

have provided reasonable agreement with experimental toughness measurements [126]. How-
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ever, only recently has the capability been developed to calculate sufficient amounts of three

dimensional ductile crack growth in heterogeneous microstructures to obtain a statistical

characterization of the predicted fracture surfaces [127, 128]. This enables us to explore the

microscopic mechanisms governing the fracture surface roughness as well as the relation, if

any, to a material’s crack growth resistance.

The present work capitalizes on these new developments and show that the scaling

properties of ductile cracks can correlate with the material’s toughness. However, the relation

is not with the value of the roughness exponent, but with the cut-off length of the scale

invariant regime. In particular, it is shown that the cut-off length scale of the self-affine

behavior of ductile cracks can be quantitatively related to a measure of fracture toughness.

This correlation is shown for ductile crack growth with a range of densities of randomly

distributed void nucleation sites and with fixed material properties.

Quite generally, length scales extracted from scale invariant properties of disordered

systems such as power law amplitudes or boundaries of the scale invariant domain are not

universal and depend on the detailed characteristics of the system. In the context of the fail-

ure of heterogeneous materials, the microstructure of the material and the failure mechanism

play this role. Varying the microstructure in a controlled manner is the key to identifying

the quantities that determine the roughness associated length scales. Experimentally, it is

difficult if not impossible to change one microstructural parameter without affecting others.

However, numerical simulations permit this. Here one parameter, the density of randomly

distributed large particles is varied, to analyze a family of ductile materials with a broad

range of toughness. The results reveal a length scale extracted from the statistics of the

crack roughness that is linked to a measure of the macroscopic toughness, hence correlating

roughness and toughness in ductile fracture.

6.2. Problem Formulation and Numerical Method

The full three dimensional analyses of ductile fracture are carried out using a data

parallel implementation of the progressively cavitating ductile material model in a transient

finite element program. The boundary value problem analyzed here is the same as in Needle-
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man et al. [127] (also see [129]). For completeness, the formulation and constitutive relation

are briefly stated here.

A convected coordinate Lagrangian formulation is used with transient calculations

carried out for numerical convenience. The finite element calculations are based on the

dynamic principle of virtual work written as

(67)

∫

V

τ ijδEijdV =

∫

S

T iδuidS −
∫

V

ρ
∂2ui

∂t2
δuidV

with

(68) T i =
(

τ ij + τkjui
,k

)

vj

(69) Eij =
1

2

(

ui,j + uj,i + uk
,iuk,j

)

where τ ij are the contravariant components of the Kirchhoff stress on the deformed

convected coordinate net (τ ij = Jσij , with σij being the contravariant components of the

Cauchy stress and J being the ratio of the current to reference volume), vj and uj are the

covariant components of the reference surface normal and displacement vectors, respectively,

ρ is the mass density, V and S are the volume and surface of the body in the reference

configuration, and (),i denotes covariant differentiation in the reference (y1, y2, y3) Cartesian

frame. All field quantities are taken to be functions of the convected coordinates, yi, and

time, t. In presenting the results the notations, x, y and z for y1, y2 and y3, respectively are

used.

A mode I small scale yielding boundary value problem is analyzed with symmetry

conditions corresponding to an overall plane strain constraint. The analyses are carried out

for a slice of material orthogonal to the initial crack plane (the y1 − y3-plane), with the

in-plane dimensions hx × hy and the slice occupying 0 ≤ y3 ≤ hz, Fig. 6.1. The initial crack

front lies along (0, 0, y3) and the boundary conditions imposed are

(70) u3(y
1, y2, 0) = 0 , u3(y

1, y2, hz) = 0
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together with

T 1
(

y1, y2, 0
)

= T 2
(

y1, y2, 0
)

= 0

T 1
(

y1, y2, hz

)

= T 2
(

y1, y2, hz

)

= 0(71)

In the y1−y2-plane remote displacement boundary conditions that correspond to the

quasi-static linear isotropic elastic mode I crack tip field are prescribed. The crack has an

initial opening b0 with traction free crack faces.

Although dynamic analyses are carried out, the focus is on quasi-static crack growth.

In essence, the formulation can be regarded as dynamic relaxation to approach a quasi-

static solution. The initial conditions and the time dependence of the loading are prescribed

in order to minimize inertia effect (see [129] for further details on the prescription of the

loading). As in [127], the in-plane block (see Fig. 6.1) dimensions are hx = hy = 0.4m

with an initial crack tip with an opening of b0 = 1.875 × 10−4m. The finite element mesh

consists of 428,256 twenty node brick elements giving 1,868,230 nodes and 5,604,690 degree

of freedom. Ten uniformly spaced elements are used through the thickness hz of 0.005m,

with 10 elements through the thickness, and a uniform 208× 64 in-plane (x− y plane) mesh

is used in a 0.02m × 0.006m region immediately in front of the initial crack tip with in-

plane elements of dimension ex ≈ ey ≈ 1.0× 10−4m. The element dimension, ex, also serves

as a normalization length. The results of the calculations are interpreted as modeling the

quasi-static response so that, the absolute magnitude of geometric dimensions or units do

not matter; what matters is the ratio of geometric lengths.

The constitutive framework is the modified Gurson constitutive relation (for more

details see [93]) with the rate of deformation tensor written as the sum of an elastic part,

d
e = L

−1 : σ̂, a viscoplastic part, dp, and a part due to thermal straining, dΘ = αΘ̇I, so

that

(72) d = L
−1 : σ̂ + αΘ̇I+ d

p
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Figure 6.1. Full three dimensional specimen with an initial crack and the

finite element mesh in the vicinity of the initial crack tip. Here and in subse-

quent figures, x, y and z denote the coordinates y1, y2 and y3, respectively.

Here, small elastic strains are assumed, σ̂ is the Jaumann rate of Cauchy stress, Θ is

the temperature, α = 1× 10−5/K is the thermal expansion coefficient and L is the tensor of

isotropic elastic moduli.

The plastic part of the strain rate, dp, is given by [130]

(73) d
p =

[

(1− f)σ̄ ˙̄ǫ

σ : ∂φ
∂σ

]

∂φ

∂σ

with the flow potential having the form [131]

(74) Φ =
σ2
e

σ̄2
+ 2q1f

∗ cosh

(

3q2σh

2σ̄

)

− 1− (q1f
∗)2 = 0

where q1 = 1.25, q2 = 1.0 are parameters introduced in [132, 133], f is the void

volume fraction, σ̄ is the matrix flow strength, and

(75) σe
2 =

3

2
σ′ : σ′ , σh =

1

3
σ : I , σ′ = σ − σhI

The function f ∗, introduced in [134], is given by
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(76) f ∗ =







f, f < fc

fc + (1/q1 − fc)(f − fc)/(ff − fc), f ≥ fc

where the values fc = 0.12 and ff = 0.25 are used.

The matrix plastic strain rate, ˙̄ǫ, is given by

(77) ˙̄ǫ = ǫ̇0

[

σ̄

g(ǭ,Θ)

]1/m

, g(ǭ,Θ) = σ0G(Θ) [1 + ǭ/ǫ0]
N

with ǭ =
∫

˙̄ǫdt and ǫ0 = σ0/E. In the calculations here E = 70GPa, ν = 0.3,

σ0 = 300MPa (ǫ0 = σ0/E = 0.00429), N = 0.1, m = 0.01 and ǫ̇0 = 103s−1.

Adiabatic conditions are assumed so that

(78) ρcp
∂Θ

∂t
= χτ : dp

with ρ = 7600kg/m3 = 7.6× 10−3MPa/(m/s)2, cp = 465J/(kg ◦K), χ = 0.9, and the

temperature-dependence of the flow strength is given by

(79) G(Θ) = 1 + bG exp(−c[Θ0 − 273]) [exp(−c[Θ−Θ0])− 1]

with bG = 0.1406 and c = 0.00793/K. In Eq. (79), Θ and Θ0 are in K and Θ0 = 293K.

Also, the initial temperature is taken to be uniform and 293K.

The initial void volume fraction is taken to be zero and the evolution of the void

volume fraction is governed by

(80) ḟ = (1− f)dp : I+ ḟnucl

where the first term on the right hand side of Eq. (80) accounts for void growth and

the second term accounts for void nucleation.

Eight point Gaussian integration is used in each twenty-node element for integrating

the internal force contributions and twenty-seven point Gaussian integration is used for the
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element mass matrix. Lumped masses are used so that the mass matrix is diagonal. The

discretized equations are integrated using the explicit Newmark β-method (β = 0) [135]. The

constitutive updating is based on the rate tangent modulus method in [136], while material

failure is implemented via the element vanish technique in [137]. Just before final failure,

when the void volume fraction f in an integration point reaches 0.9ff , the value of f is kept

fixed so that the material deforms with a very small flow stress, and the entire element is

taken to vanish when three of the eight integration points have reached this stage.

6.3. Inclusion Distributions

In the calculations the material microstructure is characterized by two populations

of void nucleating second phase particles: (i) uniformly distributed small particles that are

modeled by plastic strain controlled void nucleation; and (ii) large, low strength inclusions

that are modeled as “islands” of stress controlled nucleation. In each case, void nucleation

is assumed to be described by a normal distribution [108].

For plastic strain nucleation

(81) ḟnucl = D ˙̄ǫ , D =
fN

sN
√
2π

exp

[

−1

2

(

ǭ− ǫN
sN

)2
]

with fN = 0.04, ǫN = 0.3 and sN = 0.1.

For stress controlled nucleation

(82) ḟnucl = A [ ˙̄σ + σ̇h] , A =
fN

sN
√
2π

exp

[

−1

2

(

σ̄ + σh − σN

sN

)2
]

The large, low strength inclusions will simply be referred to as inclusions now onwards

in this manuscript. The value of fN in Eq. 82 at a point (x, y, z) for an inclusion centered

at (x0, y0, z0) is

(83) fN =



















f̄N for
√

(x− x0)2 + (y − y0)2 + (z − z0)2 ≤ r0

0 for
√

(x− x0)2 + (y − y0)2 + (z − z0)2 > r0
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The values of f̄N = 0.04, σN/σ0 = 1.5 and sN/σ0 = 0.2 are used in the calculations.

The size and spacing of the inclusions introduce characteristic lengths into the formulation.

The inclusion radius r0 = 1.5× 10−4m or in terms of in-plane element dimension r0 = 1.5ex

is kept fixed and the number of inclusions, Nincl, in the uniform mesh region in front of the

initial crack tip is varied. As stated before the size of uniform mesh region in front of the

initial crack tip is V = 0.02m × 0.006m × 0.005m. Varying the number of inclusions in the

uniform mesh region of volume, V , varies both inclusion volume fraction, n, and mean (center

to center) inclusion spacing, l0. The inclusion volume fraction, n =
(

Nincl × 4
3
πr30
)

/V , and

the mean inclusion spacing, l0 = (V/Nincl)
1/3. The calculations are carried out for eight

inclusion volume fractions varying from n = 0.012 to n = 0.19 corresponding to mean

inclusion spacings (in terms of in-plane element dimension) l0 = 10.6ex and l0 = 4.21ex,

respectively. The location of the inclusion centers within the uniform mesh region in front of

the initial crack tip is determined using a random number generator with the condition that

the center to center distance of two neighboring inclusions are at least greater than twice the

inclusion radius. The parallel implementation of the formulation given in Section 6.2 in a

transient finite element program permits us to perform large number of parametric studies in

a reasonable amount of time. For each inclusion volume fraction seven random distributions

of inclusion centers are considered. For the distribution with smallest inclusion volume

fraction, n = 0.012, the results are based on five distributions because for two distributions,

no inclusions were sufficiently close to the initial crack tip for void nucleation to occur under

small scale yielding conditions. Figure 6.2a and 6.2b show the distribution of the inclusions

on the plane z = hz for inclusion volume fractions, n = 0.024 (l0/ex = 8.41) and n = 0.143

(l0/ex = 4.63), respectively for one random distribution.

6.4. Numerical Results

6.4.1. Crack Initiation, Growth and Toughness

The attention here is focused on quasi-static crack growth under remote mode I small

scale yielding boundary condition. The contours of constant equivalent plastic strain , ǭp,

shown in Fig. 6.3 very closely resemble the shape of the contours as expected for small scale
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Figure 6.2. Initial inclusion distribution for inclusion volume fractions, (a)

n = 0.024 (l0/ex = 8.41) and (b) n = 0.143 (l0/ex = 4.63) for one random

distribution.

(a) (b)

Figure 6.3. Contours of constant equivalent plastic strain, ǭp, for inclusion

volume fractions, (a) n = 0.024 (l0/ex = 8.41) and (b) n = 0.143 (l0/ex = 4.63)

for one random distribution at J/ (σ0ex) = 1.61.
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(a) (b)

Figure 6.4. Contours of constant equivalent plastic strain, ǭp, for inclusion

volume fractions, (a) n = 0.024 (l0/ex = 8.41) and (b) n = 0.143 (l0/ex = 4.63)

for one random distribution after a crack growth of ∆a = 50ex.

quasi-static yielding condition. The contours of ǭp are plotted for applied normalized J ,

J/ (σ0ex) = 1.61, for inclusion volume fractions n = 0.024 and n = 0.143. Where σ0 is the

initial yield strength and ex is the representative dimension of mesh size. The value of J is

computed from the applied stress intensity factor KI using the small scale yielding relation,

J = K2
I (1− ν2) /E [138]. At this point no crack initiation has occurred for both the cases

shown in Fig. 6.3. The initiation of crack growth is assumed when elements at the initial

crack tip achieve a void volume fraction, f ≥ 0.1, throughout the thickness (along z-axis).

At the same applied J the half height of the area enclosed by the same value of ǭp is roughly

the same for both inclusion volume fractions as evident in Fig. 6.3. Local perturbation in

the strain field due to the presence of inclusions can be seen even at a very small value of ǭp

as early nucleation of voids occur following a stress based criteria.

Similar contours of ǭp for the same inclusion volume fractions but after a crack growth

of ∆a = 50ex are shown in Fig. 6.4a for n = 0.024 and in Fig. 6.4b for n = 0.143. The crack

length ∆a is defined as the projected length of the f = 0.1 void volume fraction contour
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on the initial crack mid plane averaged along the specimen thickness. At ∆a = 50ex, the

value of J/ (σ0ex) = 16.15 for n = 0.024 and J/ (σ0ex) = 7.6 for n = 0.143. Figures 6.4a

and 6.4b illustrate the change in strain pattern due to crack growth off the initial crack line.

Compared to the shape of the ǭp contours shown in Fig. 6.3 here the shape of the ǭp contour

is noticeably perturbed by the advancing crack, which is even more pronounced in Fig. 6.4b

for n = 0.143.
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Figure 6.5. (a) Curves of crack opening displacement normalized with initial

crack opening, b/b0−1, versus normalized applied J , J/ (σ0b0), for one random

distribution of all eight values of n. (b) Effect of inclusion volume fraction, n,

on the crack opening displacement normalized with mean inclusion spacing,

(b− b0) /l0.

Curves of crack opening displacement normalized with initial crack opening, b/b0−1,

versus normalized applied J , J/ (σ0b0) for one random distributions of all eight inclusion

volume fractions, n, considered here are shown in Fig. 6.5a, where b is the current crack

opening at x = −2.82ex (initial crack tip is at x = 0). For small scale yielding under quasi-

static loading conditions the slope of curves should be 1/2. The dashed line in Fig. 6.5a is

b/b0 − 1 = 0.5 (J/ (σ0b0)) and correlates very well with the computed values of b and J prior
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to the onset of crack growth. This again confirms that the quasi-static loading conditions

are reasonably well approximated. The variation of crack opening displacement normalized

with mean inclusion spacing, (b− b0) /l0, with n at the crack initiation where ∆a is slightly

greater than zero and after a crack growth of ∆a = l0 is shown in Fig. 6.5b. The error

bar in Fig. 6.5 is the standard error over seven random distributions for each n. The value

of b at crack initiation is mostly dependent on the distance of inclusions from the crack

tip which can be roughly correlated to the mean inclusion spacing and hence the value of

(b− b0) /l0 at initiation is roughly constant. Whereas the value of (b− b0) /l0 at ∆a = l0

roughly corresponds to the coalescence of the crack tip with the inclusions ahead. This

indeed will depend on the overall distribution of the inclusions ahead of the crack tip as can

be seen in Fig. 6.5b where the value of (b− b0) /l0 at ∆a = l0 is decreasing with increasing

n until n ≤ 0.071 and later saturates.

Figure 6.6 shows the evolution of contour of void volume fraction f = 0.1 for one

random distribution corresponding to n = 0.024 at various applied J . The void volume

fraction in the area enclosed by the contour line corresponding to f = 0.1 is greater than

0.1. Although f = 0.1 has no special significance in the constitutive relation but it does

give a more representative picture of the current crack tip and as stated earlier the extent of

f = 0.1 contour is used to define the projected crack length. Similar procedure was adopted

in [139, 126]. As shown in Fig. 6.6a, the crack is growing at an angle from the initial crack

plane. For n = 0.024 (l0/ex = 8.41) the inclusions are far away from the initial crack tip

and hence the initial crack growth is solely due to large plastic strain based void nucleation.

In Fig. 6.6b nucleation of voids at the inclusions ahead of the main crack tip can be seen.

These voids coalesce to form a micro-crack. The main crack then coalesces with theses

voids/micro-cracks and subsequently zig-zag back to the initial crack plane, Figs. 6.6c and

6.6d. However in some cases micro-cracks unconnected to the main crack are left behind as

the crack advances, Fig. 6.6d.

The evolution of contour of void volume fraction f = 0.1 for one random distribution

corresponding to n = 0.143 is shown in Fig. 6.7. For n = 0.143, Fig. 6.7a, the crack starts
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(a) (b)

(c) (d)

Figure 6.6. Evolution of contour of void volume fraction, f = 0.1, for,

n = 0.024 (l0/ex = 8.41), at various applied J , (a) J/ (σ0ex) = 12.63, (b)

J/ (σ0ex) = 14.5, (c) J/ (σ0ex) = 17.9 and (d) J/ (σ0ex) = 21.65.

growing along the initial crack plane due to the abundance of inclusions ahead of the crack

tip. In Fig. 6.7b, the long micro-crack nucleating ahead of the main crack, which is now

stationary, is slightly above the initial crack plane but indeed aligned along the initial crack

plane. As shown in Figs. 6.7c and 6.7d, the crack roughly keeps growing along the initial

123



(a) (b)

(c) (d)

Figure 6.7. Evolution of contour of void volume fraction, f = 0.1, for in-

clusion volume fraction n = 0.143 (l0/ex = 4.63), at various applied J , (a)

J/ (σ0ex) = 4.5, (b) J/ (σ0ex) = 5.4, (c) J/ (σ0ex) = 7.56 and (d) J/ (σ0ex) =

8.8.

crack plane. For large inclusion volume fractions, long micro-cracks aligned with the initial

crack plane nucleate and the main crack grows by linking up with these micro-cracks.

The crack growth resistance curves or the J-R curves for seven random distributions of
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Figure 6.8. Applied normalized J , J/ (σ0ex), versus normalized crack exten-

sion, ∆a/ex, for seven random distributions of inclusion volume fractions, (a)

n = 0.024 (l0/ex = 8.41) and (b) n = 0.143 (l0/ex = 4.63).
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Figure 6.9. Effect of inclusion volume fraction, n, on the fracture toughness, JIC/ (σ0ex).

inclusions for inclusion volume fractions n = 0.024 and n = 0.143 are shown in Fig. 6.8. The

value of J is normalized by σ0ex and the crack length ∆a is normalized by ex. The variation

in the J-R curves for seven random distributions of inclusions for n = 0.024, Fig. 6.8a, mainly
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stem from the nucleation event. For n = 0.143, Fig. 6.8b, the variation in the J-R curves

for seven random distributions of inclusions is roughly insignificant due to the ease of crack

nucleation. The slope of J versus ∆a curve in the stable crack growth regime is significantly

greater for n = 0.024 than n = 0.143.

The calculations here proceed until sufficient crack growth is observed hence the plane

strain mode I fracture toughness JIC , following the procedure recommended by ASTM [140]

can be estimated. The single valued JIC determined by the method outlined in ASTM [140]

standard marks the beginning stage of the material crack growth resistance. The variation

of normalized JIC with inclusion volume fraction n is shown in Fig. 6.9. Also shown is the

value of J at ∆a = l0 in Figs. 6.9. The crack length ∆a = l0 roughly corresponds to the

coalescence of the crack tip with the inclusions ahead. The error bars in Fig. 6.9 show the

standard errors for realizations of inclusion distributions having the same n. The value of

JIC decreases rapidly with increasing n until n ≤ 0.071 and for greater values of n, JIC tends

towards saturation. The similar behavior is shown by the value of J at ∆a = l0. The value

of J at ∆a = l0 is slightly greater than the JIC value estimated using ASTM [140] standard

for low inclusion volume fractions. The difference between ASTM JIC and J at ∆a = l0

decreases with increasing value of n.

6.4.2. Statistical Analysis of Fracture Surfaces

As stated earlier the crack is defined as the region enclosed by the contour of f = 0.1.

The value of f ≥ 0.1 in the region enclosed by the contour of f = 0.1 and outside the

contour of f = 0.1 the value of f ≤ 0.1 as shown in Fig. 6.10. The boundary of these two

regions define the fracture line for a given plane along the thickness of the specimen hence

for each plane there are two fracture lines, top and bottom, Fig. 6.10, extending in the crack

propagation direction (x-axis). In Fig. 6.10, the thresholded distribution of void volume

fraction, black for f ≤ 0.1 and white for f ≥ 0.1, is shown for one plane along the thickness

direction (z-axis). In the calculations ten uniformly spaced elements are used through the

thickness leading to a resolution of ten planes along this direction. Following the procedure

outlined in detail in [128] the fracture surface roughness, h(x, z), is calculated for both top
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Figure 6.10. Distribution of the void volume fraction for one random dis-

tribution of inclusion volume fraction, n = 0.024 (l0/ex = 8.41), showing a

propagating ductile crack. The white region corresponds to a void volume

fraction, f ≥ 0.1, and the black region corresponds to, f < 0.1.

and bottom fracture surfaces.

The fluctuations of heights of the fracture surface is characterized using the correlation

function, ∆h, defined as

(84) ∆h (δx) =
√

〈

[h (x+ δx, z)− h (x, z)]2
〉

x,z

Here, 〈〉x,z denotes the average over x and z. The quantity ∆h (δx) can be interpreted

as the typical difference of height between two points separated by a distance δx along the

mean fracture plane. The focus here is on the correlation of heights in the direction of crack

propagation (x-axis) only, the width of the specimen in the perpendicular direction (z-axis)

is too small to allow a statistical analysis of the roughness in that direction. The correlation

function is computed for both top and bottom fracture surface but the final correlation

function obtained by averaging over these statistically equivalent surfaces. Indeed, from

symmetry arguments, the upper and lower fracture surfaces in each calculation share similar
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Figure 6.11. (a) Height-height correlation functions of the fracture surfaces

for seven random distribution of inclusions corresponding to inclusion volume

fraction n = 0.024. (b) Height-height correlation functions of the fracture

surfaces for seven random distribution of inclusions corresponding to inclusion

volume fraction n = 0.143. (c) Variation of roughness exponent β with n.

statistical properties.

The correlation functions ∆h (δx) for seven random distribution corresponding to

128



inclusion volume fraction, n = 0.024, are shown in Fig. 6.11a and the same for n = 0.143 are

shown in Fig. 6.11b on a logarithmic scale. The values of ∆h and δx are normalized with

ex. Over more than two decades it has been shown that the correlation functions exhibit a

power law behavior

(85) ∆h (δx) ∝ δxβ

Regardless of the value of n the correlation function follows a power law behavior

at small scales and then saturates at a larger scale, indicating a self-affine behavior of the

roughness up to some cut-off length ξ. The value of β is estimated from the slope of the

dashed line fitted to the initial linear portion of ∆h versus δx curve on the log-log plot as

shown in Figs. 6.11a and 6.11b. The values of β for various n are shown in Fig. 6.11c.

The average roughness exponent β = 0.53 with an standard error of 0.0023 is roughly

independent of the inclusion volume fraction and distribution. This captures rather well the

universal self-affine nature of ductile fracture surfaces with β ≈ 0.6 observed experimentally

[116] and numerically [127, 128]. The correlation functions ∆h (δx) as shown in Figs. 6.11a

and 6.11b show two roughness regimes i.e. β ≈ 0.53 for δx < ξ and β ≈ 0 for δx > ξ, as

marked schematically for one case in both the figures. The saturation value of the correlation

function ∆hs is also marked schematically for one case in both the Figs. 6.11a and 6.11b.

The dependence of the cut-off length, ξ, and the saturation value of the correlation

function, ∆hs, on the inclusion volume fraction is shown in Figs. 6.12a and 6.12b. As can be

seen in the figures the value of ξ and ∆hs do vary with n. The error bars shown in Fig. 6.12

are the standard errors estimated over seven random distributions of inclusions for a given

inclusion volume fraction n (for n = 0.012 error bars are over five random distributions).

Interestingly the variation of ξ as well as ∆hs with n is qualitatively similar to the variation

of JIC with n shown earlier.

In [142] the full statistics of fracture surface height fluctuations were obtained for

cracks in variety of materials. It was found that the height fluctuations could be described

by a distribution that differed from a Gaussian by having a power law tail. The deviation
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Figure 6.12. (a) Variation of the cut-off length ξ normalized with ex as a

function of the inclusion volume fraction n. (b) Variation of the saturation

value of the correlation function ∆hs with ex as a function of the inclusion

volume fraction n.

was found to be some what material dependent. Therefore in order to explore possible effects

of inclusion volume fraction on the predicted fracture surface morphology, the full statistics

of height variations δh (x, y) defined by

(86) δh (x, z) = h (x+ δx, z)− h (x, z)

is also investigated.

In Eq. (86), the roughness h (x, z) is the average roughness of the fracture surfaces ob-

tained from all random distribution of inclusions for a given inclusion volume fraction. Hence

in total eight cases corresponding to eight inclusion volume fractions have been analyzed.

Also as expected the top and bottom fracture surfaces are roughly symmetric hence the focus

here is confined on the top fracture surfaces only. For a fixed length scale δx, a histogram

of δh is generated and from the histogram a probability density p (δh | δx) is obtained. The

histogram of δh is calculated by placing the values of δh into bins where the histogram bins

are homogeneously distributed between min[δh] and max[δh]. A detailed procedure of gen-
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Figure 6.13. Histograms p (δh | δx) of height variations δh, see Eq. (86), for

various values of δx, (a) for inclusion volume fraction n = 0.024 and (b) for

inclusion volume fraction n = 0.143. The solid lines are the fit based on the

Student’s t-distribution in Eq. (87) using various values of the parameter k.

erating the probability densities is outlined in [128]. In order to study the scaling behavior

of the fracture surface roughness, this procedure is repeated for various scales δx. An im-

portant property is that the standard deviation of the distributions p (δh | δx) corresponds

to the correlation function ∆h (δx) of the fracture surfaces.

The distribution p (δh | δx) is shown for three values of δx in Fig. 6.13a for inclusion

volume fraction n = 0.024 and in Fig. 6.13b for inclusion volume fraction n = 0.143. It can

be seen in both the figures that the larger the value of δx, the broader the distribution, as

expected from the scaling of the correlation function ∆h (δx) ∝ δxβ. It is quite evident that

the distribution of height variations computed on numerical fracture surfaces are not Gauss-

ian, but exhibit fat tails with power law behavior p (δh) ∝ δh(k+1)/2 for larger values of δh.

this means that the large fluctuations are not exponentially rare on ductile fracture surfaces

as is the case for brittle fracture surfaces [141]. To describe this effect more quantitatively,

the distribution p (δh) are described using a family of probability distributions referred to
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as Student’s t-distributions

(87) pk,δhc
(δh) ∝ 1

δhc

(

1 +
1

k

(

δh

δhc

)2
)

−(k+1)/2

with parameters k and δhc, and the fits of Student’s t-distribution function are repre-

sented by solid lines in Fig. 6.13. The fit of the Student’s t-distribution function in Fig. 6.13

reveals that the scaling of the roughness distribution of ductile fracture surfaces can be

described using Student’ tk,δhc
-distribution function.
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Figure 6.14. (a) Variations of the parameter
√

k/ (k − 2) obtained from the

fit of Student’s t-distribution function to P (δhc) versus δh plots as shown

in Fig. 6.13 with length scale δx. (b) Variation of ξ2 with inclusion volume

fraction n, where ξ2 is the value of δx at which
√

k/ (k − 2) ≃ 1.

The parameter k in Eq. (87) characterizes the shape of the distribution function.

For a finite value of k, the Student’s t-distribution displays fat tails while the distribution

approaches Gaussian as k tends to infinity. Hence this family of distributions is well suited

to describe a transition from power law to Gaussian statistics which is in general observed

for brittle materials [141]. In this context it is more appropriate to consider the parameter
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√

k/ (k − 2) instead of k [128]. The variation of the parameter
√

k/ (k − 2) with the scale

δx for two inclusion volume fractions n = 0.012 and n = 0.190 are shown in Fig. 6.14a on a

logarithmic scale. As shown in Fig. 6.14a,
√

k/ (k − 2) ∝ δx−µ with µ = 0.165 for n = 0.012

and µ = 0.193 for n = 0.190. As stated earlier for Gaussian distribution k tends to infinity

or equivalently
√

k/ (k − 2) ≃ 1. Extrapolating the power law behavior
√

k/ (k − 2) ∝ δx−µ

towards larger values of δx, predicts that it will reach
√

k/ (k − 2)
(δx=ξ2)

≃ 1 at the cross

over length δx ≃ ξ2. It suggests that for δx > ξ2, the fracture surface might recover Gaussian

statistics. The dependence of this cross over length ξ2 with inclusion volume fraction is shown

in Fig. 6.14b. Interestingly a generally decreasing trend of ξ2 with inclusion volume fraction

can be seen in Fig. 6.14b. Indeed it has been shown earlier that the fracture toughness

decreases with increasing inclusion volume fraction n i.e. the material tends to loose ductility

with increasing n. Here Fig. 6.14b, shows that with increasing n, it is easier to reach a

Gaussian statistics which correspond to brittle fracture.

6.5. Toughness-Roughness Correlation
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Figure 6.15. (a) Variation of the normalized cut-off length ξ/ex with the

normalized fracture toughness JIC/ (σ0ex). (b) Variation of the saturation

value of the correlation function ∆hs normalized with ex with JIC/ (σ0ex).
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Figure 6.16. Variation of the cross-over length ξ2 normalized with ex with

the normalized fracture toughness JIC/ (σ0ex).

The variation of the normalized cut-off length ξ/ex with the normalized fracture

toughness JIC/ (σ0ex), Fig. 6.15a, and the variation of the normalized saturation value of

the correlation function ∆hs/ex with JIC/ (σ0ex), Fig. 6.15b, shows a clear correlation. The

value of JIC in Fig. 6.15 is the one obtained using [140]. The straight dashed line ξ/ex =

αJIC/ (σ0ex) illustrate the trend in Fig. 6.15. The value of α for ξ versus JIC/σ0 correlation is

2.65 and that for ∆hs versus JIC/σ0 correlation is 1.4 for JIC obtained using ASTM standard.

The value of α decreases slightly when ξ or ∆hs are plotted with J∆a=l0/σ0. Regardless of the

value of α it is quite interesting that there exists a correlation between a measure of fracture

surface roughness and fracture toughness. The linear correlation between fracture surface

roughness and fracture toughness breaks down for large inclusion volume fractions especially

for n ≥ 0.143. The variation of the normalized cross over length ξ2/ex with JIC/ (σ0ex) is

shown in Fig. 6.16. There is no direct correlation between ξ2 and JIC/σ0 but indeed a four

fold drop in the value of ξ2/ex with a roughly four fold drop in the value of JIC/ (σ0ex) can

be seen in Fig. 6.16.
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Figure 6.17. Variation of the normalized JIC , JIC/ (σ0l0), with the inclusion

volume fraction, n.

6.6. Discussion

To understand ξ versus JIC correlation, first the mechanisms that set the length

scale ξ is examined. Previous experimental studies on glass and mortar fracture surfaces

have reported two scaling regimes ∆h ∼ δxβ , with βdamage ≃ 0.6 at small length scales

δx < ξ and βbrittle ≃ 0.5 at larger length scales δx > ξ [143, 144]. In phase-separated

glass samples, two regimes were also reported, but the second regime was characterized by

logarithmic correlations of height fluctuations, coinciding with βbrittle ≃ 0 [145]. These large

scale behaviors could be captured quantitatively by linear elastic fracture mechanics based

models of crack propagation within disordered brittle solids [146, 143], indicating that beyond

the scale ξ, fracturing solids behave as a coarse-grained equivalent linear elastic medium. For

brittle solids, this suggests an interpretation of the length ξ in terms of process zone size, or

extension of the zone in the crack tip vicinity where linear elasticity breaks down.

For ductile materials large plastic strains and crack tip blunting precede the initiation

of crack growth. Also, the driving force for crack growth increases with progressive crack

advance (stable crack growth). For a homogeneous elastic-plastic continuum in small scale
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yielding the plastic zone size as well as crack tip opening displacement are linearly related

to J/σ0. In addition, if there is a single dominant length scale characterizing the micro-scale

fracture process, dimensional considerations require that length scale to be linearly related

to J/σ0. For example, in models presuming an initial void near the crack tip [122, 123],

that the crack tip opening displacement (a measure of crack tip blunting) required for the

crack initiation is linearly related to the distance of the void from the crack tip. This leads

to a linear relation between a micro-scale length, the distance of the void from the crack

tip, and a macro-scale length JIc/σ0. Alternatively, this can be expressed in terms of a

relation between the distance of the initial void from the crack tip and the crack tip opening

displacement at crack initiation. Also, in the model of Ref. [125] that considers a void by

void ductile failure process, the length scale introduced to define the distance from the crack

tip at which void nucleation is assumed to occur was proportional to J/σ0.

In Fig. 6.15a, JIC is a measure of resistance to the initiation of crack growth while

ξ relates to the deviation from self-affine roughness which occurs after a significant amount

of crack growth and thus at a different value of J . However, both are related to the volume

fraction of large particles n or equivalently to the mean large particle spacing X0 as seen

in Figs. 6.12a and 6.9. Hence, as long as the fracture process and the fracture surfaces

roughness are dominated by a single microstructural length scale, ξ and JIC/σ0 are expected

to be linearly related as seen in Fig. 6.15a for the larger values of n. Also, since the plastic

zone size scales with J/σ0, ξ is linearly related to the plastic zone size. The same argument

explains the correlation of ∆hs, Fig. 6.15b, and ξ2, Fig. 6.16, with JIC .

The deviation from a linear relation seen for smaller values of ξ or ∆hs, corresponding

to higher volume fraction of large particles or smaller mean particle spacings, deviations from

a linear relationship occur that may be interpreted in terms of the two limiting mechanisms

discussed in [124]: void by void crack growth and multiple void (or more generally defect)

interaction crack growth. While the calculations in [124] were idealized, the dimensionless

parameter C = JIC/ (σ0X0) introduced in [124] can provide a decent estimate of the transition

between the two limiting mechanisms of ductile crack growth. In the calculations here,
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Fig. 6.17, C = 0.96 for n = 0.012 and saturates to a value of C ≈ 0.68 for n ≥ 0.071(a

saturation in the value of JIC, ξ, ∆hs and ξ2 for n ≥ 0.071 can also be seen in Figs. 6.9,

6.12 and 6.14b). A rough comparison of the results here with those in [124] suggests that

the void by void crack growth is the dominant mechanism for n < 0.071 and multiple defect

interaction crack growth dominates for n ≥ 0.071. Hence when multiple defect interactions

become more prevalent the mean particle spacing is no longer the only relevant roughness

length scale.

Nevertheless, for all cases considered here, as for brittle solids there are two roughness

regimes of roughness exponent, i.e. βductile ≃ 0.55 for δx < ξ and βductile ≃ 0 for δx > ξ,

consistent with the experimental observations on aluminum alloys in [147]. However, unlike

for brittle solids, this transition in the value of ξ is not associated with linear elasticity

breaking down near the crack tip since the crack tip stress and strain fields, and indeed

those in the fracture process zone, lie within the continuum plastic zone.

Ductile fracture by void nucleation, growth and coalescence necessarily involves more

than one length scale. For example in addition to the particle (or void) spacing there is the

particle (or void) size, the size and spacing of micro-cracks nucleated away from the main

crack, etc. Furthermore, in grid based numerical calculations, as carried out here, there is

the grid spacing. The issue is when, or if, circumstances exist where a single length scale

dominates. Studies of the effect of additional length scales on the correlation of toughness

and roughness can be carried out using the same theoretical and computational framework as

in the present analyses. In addition, a quite realistic description of the large particles could

be obtained by assuming different particle sizes and by taking the parameters governing void

nucleation from a statistical distribution.

6.7. Summary and Conclusions

The calculations show:

• that with a random distribution of void nucleating particles and fixed material

properties, the mean spacing of particles is the dominant length scale;

137



• that an appropriate statistical length scale is the one, ξ, marking the deviation from

self-affine roughness;

• ξ is linearly related to JIC as long as one length scale characterizes the fracture

process and the fracture surface roughness.

This provides a step toward fulfilling the hope that the statistical characterization

of ductile fracture surface roughness may be used for a post-mortem estimate of fracture

toughness.
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CHAPTER 7

CONCLUDING REMARKS AND FUTURE WORK

7.1. Concluding Remarks

The thickness debit effect in the creep response of single crystal Ni-based superal-

loys was investigated experimentally. The experimental observations of the creep response

of single crystal Ni-based superalloys supplemented by microstructural analyses and finite

element calculations rationalized the probable mechanisms leading to the debit effect. These

observations also motivated a basic mechanics studies of porosity evolution in single crystals

subjected to creep loading. The study was performed using three-dimensional finite defor-

mation finite element analyses of unit cells containing a single initially spherical void in a

single crystal matrix. These calculations uncovered new insights into the response of voids in

a single crystal matrix under various stress states. Based on the experimental observations

and results of finite element calculations a quantitative mechanistic model accounting for

both bulk and surface damage effects to assess their relative roles in the observed thickness

debit effect was formulated. The model showed very good correlation with the experimental

results and also correlated several features of the material’s microstructure such as initial

voids and nucleation of new voids at high temperatures that if controlled could lead to bet-

ter properties. Another set of calculations aimed at relating the crack growth resistance

and fracture surface morphology of ductile materials. For thirty years, the hope to relate

the statistical characterization of fracture surfaces to a measure of a materials crack growth

resistance remained unfulfilled. Remarkably for the first time a correlation between fracture

surface roughness and fracture toughness was shown in this work.

7.2. Future Work

In light of the work presented in this dissertation, several directions might be inves-

tigated in the future.

• The role of initial voids at low temperatures and the role of nucleation of new voids

at high temperatures in the observed thickness debit effect in the creep response of
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single crystal superalloys is one key finding of the current work. Eliminating the

initial voids in the single crystal superalloys by hot isostatic pressing (HIP) and

then exploring the creep response and the effect of specimen thickness on the creep

response at least at low temperatures can be carried out in the immediate future.

On the other hand there is a very limited understanding of void nucleation in single

crystal superalloys at high temperature. In the model proposed here the void nu-

cleation was assumed to follow a Gaussian statistics which is not phenomenological

but brings out the role of void nucleation on creep rupture. A better understanding

of void nucleation will not only improve the model but will also help industry in

reducing the extent of void nucleation.

• The key findings of the basic mechanistic study of porosity evolution in a single

crystal matrix carried out in the current work is the evolution of void shape and the

stress concentrations associated with the evolving void shape. Additional parameter

studies are needed to determine the orientation dependence of the porosity evolution.

The results of such analyses together with the results obtained here could provide

the background for developing a phenomenological constitutive relation for evolution

of damage in a creeping single crystal. Such a constitutive relation will be of great

industrial importance and will significantly improve the life time prediction scheme

of jet engine turbine blades.

• In the other set of calculations the focus was confined to simulating ductile fracture

due to void nucleation, growth and coalescence. It was chosen in the current work

to let variations in the volume fraction of void nucleating second phase particles

represent the variation of the microstructure that led to the variation in the crack

growth resistance and fracture surface roughness. It could be interesting to also

study the correlation of toughness and roughness corresponding to variations in the

strength of these void nucleating second phase particles. Furthermore, changing the

size of the second phase particles while keeping their volume fraction fixed would

also change the microstructural length scale. Hence a more realistic description
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of the second phase particles can be obtained from a statistical distribution and a

detailed roughness-toughness correlation can be explored to achieve the dream of

quantitative fractography.
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[115] Måløy K.J., Hansen A., Hinrichsen E.L. and Roux S., Experimental measurements of

the roughness of brittle cracks. Phys. Rev. Lett. 68 (1992), 213-215.

[116] Bonamy D. and Bouchaud E., Failure of heterogeneous materials: a dynamic phase

transition? Phys. Rep. 498 (2011), 1-44.
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