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ABSTRACT

This paper describes a computational method for impreving the accuracy of a given
singular value and its associated left and right singular vectors. The methed is analo-
gous to iterative improvement for the solution of linear systerms. That is, by means of a
low-precision computation, an iterative algorithm is applied to increase the accuracy
of the singular value and vectors; extended precision computations are used in the
residual calculation. The method is related to Newton's Method applied Lo the singular
value problem and inverse iteration for the eigenvalue problem.



Improving the Accuracy of Computed Singular Values

J.J. Dongarra*

Argonne National Laboratory

Suammary - This paper describes a computatisnal method for improving the
accuracy of a given singular value and its associated left and right singular
vectors. The methed is analogous to iterative improvement for the solution
of linear systems. That is, by means of a low-precision compulalicn, an
iterative algorithm is applied to increase the accuracy of the singular value
and vectors; extended precision compulalions are used in the residual cal-
culation. The method is related to Newton's Melhod applied to the singular
value problem and inverse iteration for Lhe eigenvalue problem.

1. THE BASIC ALGORITHM

In a recent paper, Dongarra, Moler and Wilkinson [1] described an algorithm
for improving an approximation Lo a simple eigenvalue and the corresponding
eigenvector. In this paper we extend and mecdify the algorilkm o cover the

singular value problem.
We begin with a bricf description of the basic algorithm.

Given an mxn rectangular matrix A, we are interested in the decomposi-
tion

A=UZVvT, (1.1)
where U/ «nd V are unitary matrices and ¥ s a rectangular disgonal ootvix of
the same dimension us A with real nonnegative diageonal entrins. The eqriations

can also be written as
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Av; = oy (1.2)
and

ATy, = g1 for each singular value o;. (1.3)

If 0, u, and v have been derived from some computation on a computer with
finite precision or by some insight into the problem, they are generally not the
true singular value and vectors, but approximations. We know, however, that

there exist j,, x2, 4. and z such that

Alv +y) = (o + uy)(u + 2) (1.4)
and

AT(u + 2) = (0 + wp){v +y), (1.5)

where u,;, 4z, ¥, and z, when added to computed o, u#, and v, give the exact left
and right singular vectors and the exact singular value. The corrections 4, and
Me come about by the separate na.ure of Equations 1.2 and 1.3. We compute the

correction to o as i = (u; + )/ 2.

The above equations can be expanded to obtain

Ay -0z —fgu =ou - Av + w2z
and

ATz —oy —pgv = ov — ATu + oy, (1.8)
It the orthogonality conditicns

v+y) (v +y)=1 (1.7)
and

(u+2)T(ut+e)=1

are included, we then have m +n + 2 equations in m +n + 2 unkrowns. We

can now rewrite the equations in matrix notations to obtain
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-gf A -u 0|z ou — A + 2

AT —ol 0 —u|ly ov — ATu + ppy

2uT 0 0 Ol |t-uTu-2Tz] (1.8)
0 20T 0 o0 1—vTy ~yTy

Note that this is a miidly nonlinear matrix equation. We can determine the unk-

nowns (z,y,u,14z)7 iteratively by solving

o) A u® g [z oPlu @) — 4P 4 “ip)z(p)
AT P 0 @ ||yeen|  (aEWE) _ 4Ty ¢ el )

2u®” 0 0 0 |[uE]T] - ue Ty - e
o 2 o o JlE [ 1-ueme) - yeiye)

(1.9)

to obtain corrections to u®) 4, and p.(") by the updates

uP+) = ) 4 g+

@D = ) 4 ylp o)

oP+D) = o) 4 (ufp+) 4 ufpey 2
If A is mxn, then this is an (m+n +2)x(m +n +2) system to be solved. If this
system is sclved, we can compute corrections u, ¥, and z to the singular value
and the singular vectors, thereby obtaining a more accurate value for the singu-

lar value and singular vectors.

It we handle this as we do in the eigenvalue case[1], we will improve the
accuracy of o, u, and v. The accuracy obtained by the algorithm will be full
working precision, with only the residual calculations (the right-hand side of

Equation 1.9) done in extended precision

2. RELATIONSHIP TO NEWTON'S METHOD

The algorithm as described above can be derived by the use of Newion's
Method applied to Equations (1.2) and (1.3). We define tunctions f; and f as fol-



lows:

Jiluwwv,0,,03) =M —ogu

feluwv,00,00) = ATu — agu (2.1)
Sau,0,00) = u”
Jauv.ono) =vTv -1

u -1

and
J(z) = (f12).f2(2).f s(=).S 4(2)).
where
z = ::
ge

The approach is to find the zeros of f (z). Newton's Method applied to this prob-

lemn is
J (@) (Zin —x) = =1 (%), (2.2)
where
o
¢
Iy = zn .
a!‘)

The derivative of f(z) is

-of A -u 0
Ar —Ugl o —v

J'@)=ut o0 o0 ol (2.3)
o 2T 0 0

The above method expressed in rnatrix notation is then just a restatement of
Equation (1.8), ignoring the second order terms in the right hand side.

Notice that since the method is equivalent to Newton's Method, we could
compute Lbe left and right singular vectors, given a close approximation to the

singular value.
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3. EFFECTS OF VARIOUS FACTORIZATIONS

It we have computed the singular value decomposition and retained the
matrices produced during the factorization, each singular value and the
corresponding singular vectors can be improved in O(mn) operations. We will
assume that the matrices U, I, and V are available such that A & ULV?. Then

the coefficient matrix in Equation 1.8 can be decomposed into the form

vooollo/ T -8 0T 0 0O
0 Vo ol| Z -0/ 0 -gllo VW 0O
co10/ef o o ollo o 10| (3.1)
0 001 0 0 01

0 ef 0 o©

where e, is the s** column of the identity matrix, and o, is the approximation

being improved.

This tactored form can be used to simplify Equation {1.B). Since U and V
are orthogonal, systems of equations involving the left and the right matrices of
(3.1) can be easily solved by simply multiplying by the transposes. Systems of
equations involving the matrix in the center can be handled by solving 2x2 or

4x4 subsystemns of equations as can be seen from the non-zero structure of the

\.

\ ¢
[ ]

/

matrix:

(3.2)

A
N



It we have a bidiagonal factorization of A, say A = UBVT, where B is bidiago-
nal, then we can improve the accuracy in O(mn) operations. Let us assume we
have the matrices ¥V and 5 from the bidiagonalization prccedure. We will con-

centrate only on the matrix

—of A
AT —qll (3.3)
This matrix is the interesting part of the one in {1.8) and can be thought of as a

rank 2 modification of that equation. The matrix can then be written as

1

I 0] [~os 0 I —=—4
: ' o (3.4)
—;—A" VIl |o -of + G—BTB 0o Vv

Note that solving systems based on this factored form is a simple task since

V! = V7. The only actual need for an equation solver comes from

1

~of + —BTH, (3.5)
g

and this matrix is tridiagonal. Thus, given the bidiagonal matrix and the V

matrix of the transformation, we can improve the accuracy of the singular

values.

If we have instead the @R factorization of A, namely A = @K, where R is
upper triangular and @ is orthogonal, then we can improve the accuracy of the
singular value in O(mn + n®) operations, provided we have some approximation
to it. We will concentrate on the matrix in (3.3). This matrix can be rewritten in

factored form as

1
I Of (~of 0 Ia

_1 .r por - 1 pr
AT @ 0 -ol+ -RTR| 0 @

(3.6)
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As in (3.4) it becomes a matter of solving equations with a matrix of the form

~af + :-RTR. (3.7)
o

Unlike Equation (3.5), this matrix is full and, unfortunately, the factor R cannot
be used to simplify the process since the matrix RTR is being modified by a
rank n matrix, a/. Equation (3.7) requires a further factorization to solve sys-

tems based upon it.

4. CONVERGENCE OF THE UPDATE PROCESS

The convergence results for this method are the same as for the eigenvalue

case. We state the results here but omit the proof which can be found in [1].

In the presence of round-off error, if the initial error in the singular value
is small enough in some sense and the singular value is an isolated one,

tha iterative process will converge.

If working precision is used in computing the approximate singular values
ond extended precision is used in the residual caiculation, then when the
method converges, il produces resulls lhat are accurale lo al least full

working precision.

The method is equivalent to Newton s method,; Lherefore, the convergence

is quadratic,

The method just described has a deficiency: When there are multiple singu-
lar values, the matrix in Equation (1.8) becomes ill-conditioned. The dcgree of
ill-conditioning is related to the separation between the singular value being
improved and its closest neighbor. For identical singular values, the matrix

involved is exactly singular.
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This deficiency can be illustrated by an example. For a 2x2 system the

matrix has the form

-0 Oy
g -0

where o is an approximation to g,. If any g, is close to g,, then this system will

be ill-conditioned, and the conditioning depends upon . In this situation

g—0y
one cannot improve just one singular value but must work with a cluster of

them, as well as the invariant subspace of singular vectors.

5. RESULTS

The following numerical tests were run on a VAX 11/780. The initial reduc-
tion was performed in single precision; double precision was used only to com-
pute the residuals and to add the correction to the previous result. In single

precision, the working accuracy is 278. in double precision, the accuracy is 2%,

The matrices used here come from the original paper by Golub and Reinsch

[2]. The first matrix has the form

f 3

2210 2 3 7

14 710 0 8

-1 13 -1 -11 3

~3 -2 13 -2 4
A=l 9 8 1 -2 &
9 1 -7 5 -1

2 -8 6 5 1
4 5 0 -2 2 |

with singular values
o, = V1248, 0, = 20, 03 = V3B4, 0,= 0, = 0.

The results from the improvermnent algorithm on this problem are given below.
All resuits were achieved using single precision compulations except to accumu-

late the residuals. The method used was based on the factored form of Equation



(3.1)
Iteration g uTu uTy
0 35.3270149 0.999999718 0.999099683
1 35.327043465315858 1.000000000000101 1.00C500000000304
2 35.327043465311387 1.000000000000000 1.000000000000000
true 35.327043465311387419
c 19.9999790 0.999999520 0.999999328
1 20.000000000008048 1.000000000003621 1.000000000003431
2 20.000000000000000 1.00000000000C000 1.000000000000600
true 20.
0 18.5958881 0.999999043 0.999999379
1 19.595817942277176 1.0000CN000003258 1.000000000003183
2 18.595917942265425 1.000000000000000 1.000000000000000
true 19.59598179422656424785H
0 0.00000718535284 0.999998454 0.699090228
1 -0.000000000004162 1.000000000000745 1.000000000000306
2 0.000000000000000 1.000000000533098 1.000000000281307
true 0.0
0 0.00000120505399 0.999998900 0.999999509
1 -0,.000000000000479 1.000000000000304 1.000002300000061
2 0.000000000000000 1.000000018476308 1.000000001164373
true 0.0

The results here show the iteration converging very rapidly. The singular values
are initially cnrrect to working precision, and two iterations have gained full

extended precision.

For the next example we use a standard symmetric eigenvalue problem.
The matrix, W4,,, [3], is symmetric tridiagonal, and has some pathologically
close eigenvalues and singular values. It is defined by the relations

oy =k+1 -1, i=1 - k+1

oy =1i—k -1, i=k+2, - - 2k+1

ﬁi"—"l- i=2 - 2k+1
where k = 5, a, is the i** diagonal element, and §; is the i** subdiagonal ele-

ment.
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Jlteration g ulu vTy

0 5.7462210 0.999908079 0.999897771

1 5.748231847261203 1.001538038220316 1.0015368023270078
2 5.748231B833805774 1.0000330834868984 1,00003309348B725
3 5.7468231833805287 1.0000400000729813 1.000000000729813
4 5.748231833809885 1.000000000000009 1.000000000000002
6 5.748231833809885 1.000000000300000 1.000000000000000
0 5.7461471 0.999598012 0.999997719

1 5.7468157555822280 1,.000863731844848 1.000883745222875
2 5.746157545424549 1.000016916083231 1.000016918084818
a 5.7461575456577390 1.000000000495525 1.000000000495525
4 5.74681575455B0572 1,000000000000011 1.000000000000011
7] 5.7481575455B0572 1.000000000000000 1.000000000000000

The singular values displayed here are the largest ones of W}, and happen tc be
the closest. The matrix has a condition nwaber of 10°% as a result, each iteration
makes an improvermnent of approximately three digits. Note the contrast to the
previous case where the matrix was well conditioned and each iteration gained a

full seven digits.

6. MULYIPLE SINGULAR VALUES

We are interested in improving rnnre than one singular value at a time. We
are motivated lo do so since the approach for improving one singular value
breaks down when there are multiple singular values wilh close numerical
values. For simplicity we will restrict the discussion initially to two singular

values o, and 0z and the corresponding vectors u,, v, and u,, v,.

We know that the two-space in which 4; and u; and v, and v lie is numeri-

cal well determined. Hence we have

Alvy + ) = (o + un)(ug + 2,) + ppyug + 22) (6.1)

A(ve + ye) = prr(uy + 21) + (02 + pge)(ug + 22)

and
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AT(uy + 2,) = (o) + vy + W) + tz1{ve + y2)

AT(up + 22) = (v, + y1) + (02 + pza)(v2 + y2)
where the corrections y;, 2;, and u;; are expected to be small.

From above we form

Oy + Ly Mg ]

A(ul +yl|’uz+yz) =(ul+zl u2+22) et 02+“22‘ (62)
1HH Mz
AT(":+=1|'"-z+zz)=(‘U|+y1|‘uz+yz)[o Uat 024.#22]'
We will require in addition tha* the orthogonality conditions
0ifi=j
(v + )T (yy +yy) = { 1ifiej (6.3)

and

[ 0ifi=j
(we +2)7(y +2,) =1 | 4 4
be satisfied. For simplicily we will assume that the 2x2 matrix of Equation (8.2)
which contains the correction to the singular values is symmetric, therefore,
Mg = Hp1. In order to produce the improved singular values this 2x2 matrix

must be diagonalized.

Equation (6.2) together with Equation (8.3) give rise to 2n + 2m + B equa-

tions in 2n + 2m + 6 unknowns, This matrix equati\on has the form

(~a,] A —ug —-u, z, o, — Aug +ouliry v plheg 1
AT -0 ~vg -V, ¥ Oguz — Avg + j1faZy + pdaty
-0/ A -u, -~y 2o oy = ATu + uhy ¢ shi
AT —ay -V, —vg| | Ve ogug — ATug + oy, + uhiva
uf uf bh| = ~ulu, - «[e
vi of 1 ~v[vi-yln
uf #h - 1= ufug - sz,
2] wh 1=vlv -yly
2uf iide 1-ufu, -=s,
] ) M‘ [ 1-viva-vin
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As in the case of a sirgle singular value, if one has access to the matrix factori-
zation then the matrix problem can easily be solved.

In general, if we extend this procedure to handle k& close singular values we

have,

Alvy+yy .. ovw vl = (g + 20, u + 2] [diag (o)) + M)
and

ATlup + 2, .. ue +z) = vy +y1, .y + y)dieg (o) +H],

where my; =y and M = MT and it is expected that Y. Z¢, and iy will be small.
These equations together with Equation (8.3} iead to a system of equations of

order k(m + n) + k(k + 1) and an eigenvalue problem of order k.
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