
Distribution Category:
Mathematics and Computers

(UC-32)

AN1r82-4

ARGONNE NATIONAL LABORATORY
9700 South Cass Avenue
Argonne, Illinois 60439

ATL-'-8 2-4

DE82 008087

IMPROVING THE ACCURACY OF COMPUTED SINGULAR VALUES

J.J. Dongarra

Applied Mathematics Division

DISCLAIMER -

January 1982



ABTRACT

This paper describes a computational method for improving the accuracy of a given
singular value and its associated left and right singular vectors. The method is analo-
gous to iterative improvement for the solution of linear systems. That is, by means of a
low-precision computation, an iterative algorithm is applied to increase the accuracy
of the singular value and vectors; extended precision computations are used in the
residual calculation. The method is related to Newton's Method applied to the singular
value problem and inverse iteration for the eigenvalue problem.



Improving the Accuracy of Computed Singular Values

J. J. Dongarra*
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Siunmary - This paper describes a computatinal method for improving the
accuracy of a given singular value and its associated left and right singular
vectors. The method is analogous to iterative improvement for the solution
of linear systems. That is, by means of a low-precision computation, an
iterative algorithm is applied to increase the accuracy of the singular value
and vectors; extended precision computations are used in the residual cal-
culation. The method is related to Newton's Method applied to the singular
value problem and inverse iteration for the eigenvalue problem.

1. THE BASIC ALGORITHM

In a recent paper, Dongarra, Moler and Wilkinson [1] described an algorithm

for improving an approximation to a simple eigenvalue and the corresponding

eigenvector. In this paper we extend and mc.dify thu algorithm !o cover thre

singular value problem.

We begin with a brief description of the basic algorithm.

Given an mxn rectangular matrix A, we are interested in the decomposi-

tion

A = UE VT, (1.1)

where U r'nd V are unitary mat rices and ' 's . rctangular diigon& ;.iri. ' !

the same dimension us A with real nonnegative diagonal entries. Th', eq'iations

can also be written as
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Av{ = at (1.2)

and

A u j = a v1 for each singular value as. (1.3)

If a, u, and v have been derived from some computation on a computer with

finite precision or by some insight into the problem, they are generally not the

true singular value and vectors, but approximations. We know, however, that

there exist pL, p,2, y, and z such that

A(v + y) = (a + p 1)(u + z) (1.4)

and

Ar(u + z) = (a p)(v + y), (1.5)

where pl,. p, y, and z, when added to computed a, u, and v, give the exact left

and right singular vectors and the exact singular value. The corrections p, and

pe come about by the separate nature of Equations 1.2 and 1.3. We compute the

correction to a as = (p + j)/ 2.

The above equations can be expanded to obtain

Ay - az -p 1u =a u - Au + pz

and

AT: - oy - p2v = ou - Aru + p2y. (1.6)

If the orthogonality conditions

(v + yV)'(v + .y) = 1 (1.7)

and

(u + z)r(u + z) = 1

are included, we then have m + n + 2 equations in m + n + 2 unknowns. We

can now rewrite the equations in matrix notations to obtain
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--al A -u 0 [z a u-~Av + 1 z

AT  -aI 0 -v y av - ATu + pzy

2uT 0 0 0 --Uu - zTz. (1.8)

0 2iT 0 0 1 - v -yy

Note that this is a mildly nonlinear matrix equation. We can determine the unk-

nowns (z ,y ,p ,p )T iteratively by solving

-a(P)I A -u(P) 0 z(p+1-i)-AV ()+ y?)Z(
AT -a(P )J 0 -vP )y(P+1) aP)v(P) - ATu(P) + pP)y(P)

2u(P) 0 0 0 l)P 1 - u(P)Tu(p) - Tz((.P)

0 2/(P4P y 1 - v(P)rT(P) _ (P)r(P)

to obtain corrections to u(P),v M, and A(P) by the updates

u(P+1)= u(C) + z(P

v(P+1)= vtP) + y(P

AP +1 = a(P) + (4P + p +1))/2.

If A is mxn, then this is an (m+n+2)x(m+n+2) system to be solved. If this

system is solved, we can compute corrections , y, and z to the singular value

and the singular vectors, thereby obtaining a more accurate value for the singu-

lar value and singular vectors.

If we handle this as we do in the eigenvalue case[1], we will improve the

accuracy of a, u, and v. The accuracy obtained by the algorithm will be full

working precision, with only the residual calculations (the right-hand side of

Equation 1.9) done in extended precision.

2. RIMATIONSHIP TO NEWTON'S MI7HOD

The algorithm as described above can be derived by the use of Newton's

Method applied to Equations (1.2) And (1.3). We define functions fg and f as fol-



lows:

f i(uv,ai,a2 ) = AV - olu

f 2 (u,v,a1 ,17 2 ) = ATU - ago (2.1)

f 3 (uv,a 1 ,a2 ) = u u - 1

f 4(u,vavg2 ) = v v - 1

and

f (z) = (f 1(z),f (Z),fs(z),f 4(z)),

where

S= .

The approach is to find the zeros of f (z). Newton's Method applied to this prob-

lem is

f'(zj)(z+1 -zi) = -f (Z;), (2.2)

where

'U(t)

s{ = a{')'

S)

The derivative of f (z) is

-a1! A -u 0

AT -a2J 0 -'v
f'(z)= T o o 0 0 0 . (2.3)

0 2r 0 0

The above method expressed in matrix notation is then just a restatement of

Equation (1.8), ignoring the second order terms in the right hand side.

Notice that since the method is equivalent to Newton's Method, we could

compute Lbe left and right singular vectors, given a close appreximationi to the

singular value.



. KFVECTS OF VARIOUS FACTORIZATIONS

If we have computed the singular value decomposition and retained the

matrices produced during the factorization, each singular value and the

corresponding singular vectors can be improved in O(rnn) operations. We will

assume that the matrices U, E, and V are available such that A a UE VT. Then

the coefficient matrix in Equation 1.8 can be decomposed into the form

U 0 0 0 -a 8 !

o V0 0 E
0 o 1 0 or
0 0 0 1 0

E

-a 1 I
0

-BE

0
0

0

0 UT 0 0 0

-ea 0 VT 0 0
0 0 0 1 0,

0 *0 0 0 1

where e, is the soh column of the identity matrix, and a, is the approximation

being improved.

This factored form can be used to simplify Equation (1.8). Since U and V

are orthogonal, systems of equations involving the left and the right matrices of

(3.1) can be easily solved by simply multiplying by the transposes. Systems of

equations involving the matrix in the center can be handled by solving 2x2 or

4x4 subsystems of equations as can be seen from the non-zero structure of the

matrix:

I

e

0

(3.2)

(3.1)

1

i
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If we have a bidiagonal factorization of A, say A = UBVT, where B is bidiago-

nal, then we can improve the accuracy in O(mn) operations. Let us assume we

have the matrices V and B from the bidiagonalization procedure. We will con-

centrate only on the matrix

l-al 
A

AT -aI). (3.3)

This matrix is the interesting part of the one in (1.8) and can be thought of as a

rank 2 modification of that equation. The matrix can then be written as

I 0 -aI 0 I - -A

a .(3.4)
[.1AT VT] 0 -a! +LBTB 0 V

Note that solving systems based on this factored form is a simple task sinre

V = VT. The only actual need for an equation solver comes from

-al + LBB, (3.5)

and this matrix is tridiagonal. Thus, given the bidiagonal matrix and the V

matrix of the transformation, we can improve the accuracy of the singular

values.

If we have instead the QR factorization of A, namely A = QR, where R is

upper triangular and Q is orthogonal, then we can improve the accuracy of the

singular value in O(mn + n ) operations, provided we have some approximation

to it. We will concentrate on the matrix in (3.3). This matrix can be rewritten in

factored form as

I 0 -ol 0 I -Q-A

a . (3.6)

-- AT Qr 0 -aI + Q-RTR g
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As in (3.4) it becomes a matter of solving equations with a matrix of the form

-a! + aRT R. (3.7)

Unlike Equation (3.5), this matrix is full and, unfortunately, the factor R cannot

be used to simplify the process since the matrix RTR is being modified by a

rank n matrix, aI. Equation (3.7) requires a further factorization to solve sys-

tems based upon it.

4. CONVERGENCE OF THE UPDATE PROCE

The convergence results for this method are the same as for the eigenvalue

case. We state the results here but omit the proof which can be found in [1].

In the presence of round-off error, if the initial error in the singular value

is small enough in some sense and the singular value is an isolated one,

the iterative process will converge.

If/working precision is used in computing the approximate singular values

and extended precision is used in the residual calculation, then when the

method converges, it produces results that are accurate to at least full

working precision.

The method is equivalent to Newton s method; therefore, the convergence

is quadratic.

The method just described has a deficiency: When there are multiple singu-

lar values, the matrix in Equation (1.8) becomes ill-conditioned. The dcgrcL of

ill-conditioning is related to the separation between the singular value being

improved and its closest neighbor. For identical singular values, the matrix

involved is exactly singular.
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This deficiency can be illustrated by an example. For a 2x2 system the

matrix has the f orm

where a is an approximation to a,. If any a is close to a,, then this system will

be ill-conditioned, and the conditioning depends upon a1 . In this situation

one cannot improve just one singular value but must work with a cluster of

them, as well as the invariant subspace of singular vectors.

5. WHIJLTS

The following numerical tests were run on a VAX 11/780. The initial reduc-

tion was performed in single precision; double precision was used only to com-

pute the residuals and to add the correction to the previous result. In single

precision, the working accuracy is 223; in double precision, the accuracy is 2-5.

The matrices used here come from the original paper by Golub and Reinsch

[2]. The first matrix has the form

22 10 2 3 7
14 7 10 0 8
-1 13 -1 -11 3
-3 -2 13 -2 4

A= 9 8 1 -2 4
9 1 -7 5 -1
2-6 6 5 1
4 5 0 -2 2

with singular values

= ~, a2 = 20, a3 = v44, a4 = as = 0.

The results from the improvement algorithm on this problem are given below.

All results were achieved using single precision computations except to accumu-

late the residuals. The method used was based on the factored form o Equation



a uTU
t I.

35.3270149
35.327043465315658
35.327043465311387
35.327043465311387419

19.9999790
20.000000000006048
20.000000000000000
20.

19.5958881
19.595917942277176
19.595917942265425
19.595917942265424785

0.00000718535284
-0.000000000004162
0.000000000000000
0.0

0.00000120505399
-0.000000000000479
0.000000000000000
0.0

0.999999718
1.000000000000101
1.000000000000000

0.999999520
1.000000000003621
1.000000000000000

0.999999043
1.00000000003258
1.000000000000000

0.999998454
1.000000000000745
1.000000000533098

0.999998900
1.000000000000304
1.000000018476308

VTV
0.999999683
1.00C000000000304
1.000000000000000

0.999999326
1.000000000003431
1.000000000000000

0.999999379
1.000000000003183
1.000000000000000

0.999999228
1.000000000000306
1.000000000281307

0.999999509
1.000000000000061
1.000000001164373

The results here show the iteration converging very rapidly. The singular values

are initially correct to working precision, and two iterations have gained full

extended precision.

For the next example we use a standard symmetric eigenvalue problem.

The matrix, WA+ 1 [3], is symmetric tridiagonal, and has some pathologically

close eigenvalues and singular values. It is defined by the relations

a4 = k + 1 - i , i = 1, - - - ,k + 1

a4 = i - k - 1, i = k +2, -.-.- 2k+ 1

4 = +1, i=2, i2k+1

where k = 5, a, is the ith diagonal element, and Nt is the ii" subdiagonal ele-

rent.

(3.1).

Iteration
0
1
2

true

0
1
2

true

0
1
2

true

0
1
2

true

0
1
2

true
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Q7

5.7462210
5.746231847961203
5.746231833605774
5.746231833805267
5.746231833809865
5.746231833809865

5.7461471
5.746157555822260
5.746157545424549
5.746157545577390
5.746157545580572
5.746157545580572

0.999998079
1.001536038280316
1.000033093486984
1.000000000729813
1.000000000000009
1.000000000000000

0.999998012
1.000863731844646
1.000016916083231
1.000000000495525
1.000000000000011
1.000000000000000

VTV

0.999997771
1.001536023270078
1.000033093488725
1.000000000729813
1.000000000000002
1.000000000000000

0.999997719
1.000863745222875
1.000016916084818
1.000000000495525
1.000000000000011
1.000000000000000

The singular values displayed here are the largest ones of W' and happen to be

the closest. The matrix has a condition number of i05, as a result, each iteration

makes an improvement of approximately three digits. Note the contrast to the

previous case where the matrix was well conditioned and each iteration gained a

full seven digits.

6. MULTIPLE SINGULAR VALUES

We are interested in improving rmiore than one singular value at a time. We

are motivated to do so since the approach for improving one singular value

breaks down when there are multiple singular values with close numerical

values. For simplicity we will restrict the discussion initially to two singular

values a1 and a2 and the corresponding vectors u1, v 1 and u2 , V2.
We know that the two-space in which ui1 and us2 and v 1 and v 2 lie is numeri-

cal well determined. Hence we have

A(ti + yi) = (ay + pAs)(u1 + z I) + pe(u2 + z2 )

A (v + yo) = ;As(? I + ZI) + (02 + IA22)(u + X-)

(6.1)

and

Iteration
0
1
2
3
4
5

0
1
2
3
4
5

------- 
- - -
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AT(u 1 + z1 ) = (al + 1i)(v i + yl) + pei(v2 + Y2)

AT(u 2 + z2) = 12(v i + yO) + (a2 + N22)(v 2 + Y2)

where the corrections y, ;z, and AV are expected to be small.

From above we form

A(v1 + yil v2 + y2) = (u+ Z lu2 + z2) +A n +(6.2)

1+ 1211 121

A T(u1 + zi1u2 + z2) = (a + yl|v2 + Y/2) 1 a 2 +'22 J

We will require in addition that the orthogonality conditions

(v=+ )T(v +y)=1(6.3)

and

0 1if i =j
(ug + ;i)T(u, + zs) ={ 3

be satisfied. For simplicity we will assume that the 2x2 matrix of Equation (6.2)

which contains the correction to the singular values is symmetric, therefore,

121 = Js2. In order to produce the improved singular values this 2x2 matrix

must be diagonalized.

Equation (6.2) together with Equation (3.3) give rise to 2n + 2m + 6 equa-

tions in 2n + 2m + 6 unknowns. This matrix equation has the form
-ail A -U s-2 a u 2u1 -Av+jp 11 +42pz

AT _c -Va "v V1 au2 - Aua+,+ Z2 I4Jgz3

-all A UIp -s 22 Gu Acv a1 + - ,y + +41y,,+

A T  -all - i -we a Gava - Aun +/ 4'2V 1 +M&Va

ur v r1p 12= -uIa -sTa

v= wr ,ipO - rva

eur Al-1-uju -X182

24 1JA rv1 -vy

Iu /24 1 -uu1 -usr

1 24 J1M&b [ 1 -vi o-y



As in the case of a single singular value, if one has access to the matrix factori-

zation then the matrix problem can easily be solved.

In general, if we extend this procedure to handle k close singular values we

have,

A[vi + y, .. . ,v + ]= [u1 + zi, . .. ,u + zk][ding(a)+M]

and

A[u + Zi,. . . ,uk + zk] = vI + y1, ... , vk + y][diag(a{)+M],

where m " = p and M = Mr and it is expected that y{, z;, and pg will be small.

These equations together with Equation (6.3) lead to a system of equations of

order kn(m + n) + k (k + 1) and an eigenvalue problem of order k.
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