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NEWTON'S METHOD
WITH A

MODEL TRUST-REGION MODIFICATION

by

D. C. Sorensen

ABSTRACT

A modified Newton method for unconstrained minimization is
presented and analyzed. The modification is based upon the model
trust region approach. This report contains a thorough analysis
of the locally constrained quadratic minimizations that arise as
subproblems in the modified Newton iteration. Several promising
alternatives are presented for solving these subproblems in ways
that overcome certain theoretical difficulties exposed by this
analysis. Very strong convergence results are presented concern-
ing the minimization algorithm. In particular the explicit use of
second order information is justified by demonstrating that the
iterates converge to a point which satisfies the second order
necessary conditions for minimization. With the exception of very
pathological cases this occurs whenever the algorithm is applied
to problems with continuous second partial derivatives.

1. Introduction

The problem of minimizing a real valued function f of several real

variables is generally attacked by some variant of Newton's method for finding

a zero of the gradient of f. The term variant here is meant to include any

method based upon maintaining an approximation to the Hessian matrix of mixed

second order partial derivatives of f. When this matrix is actually

computable, then Newton's method is probably the method of choice for the

minimization problem.

As we shall point out in Section 3 there are several things to consider

when attempting to provide a practical implementation of Newton's method for

general use. Not the least of these is the problem of forcing convergence of

the method when good initial guess at the solution is not available. The main

purpose of this report is to describe and analyze a technique for the solution

of this problem. The approach we shall present is well known. It is appr-

priately called a model trust region approach in that the step to a new

iterate is obtained by minimizing a local quadratic model to the objective
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function over a restricted ellipsoidal region centered about the current

iterate. The diameter of this region is expanded and contracted in a

controlled way based upon how well the local model predicts behavior of the

objective function. It is possible to control the iteration in this way so

that convergence is forced from any starting value assuming reasonable con-

ditions on the objective function. In fact, we shall prove some very strong

convergence properties for this method in Section 4. There it is shown that

one can expect (but not ensure) that the iteration will converge to a point

which satisfies the second order necessary conditions for a minimum.

The origin of this method properly lies with the work of Levenberg [14]

and Marquardt [15] for nonlinear least squares calculations. The method was

first discussed in connection with general minimization by Goldfeld, Quandt,

and Trotter [11]. Powell [23] applied the modification in a more general

situation of a quasi-Newton iteration. Hebden [12] made some important

computational observations. This paper is most heavily influenced by the work

of More [18] for the nonlinear least squares case.

The current interest stems from several recent efforts to obtain a

practical implementation of a Modified Newton method that takes full advantage

of the second order information. Several of the more recent works have

attempted to explicitly use directions of negative curvature to accomplish

various tasks such as escape from saddle points [5,9,13], search along more

general paths [10,16,19,20,28], obtain convergence to points that satisfy

second order necessary conditions [10,16,19,20] etc. We observe along with

Gay [7,8] that the method proposed nere will accomplish these things in a very

elegant and intuitively appealing way.

It is hoped that this report will present a succinct but thorough

analysis of this method. In particular we feel it is important to clearly

describe the theoretical nature of the locally constrained quadratic minimi-

zation in Section 2. The analysis given in Section 4 is made sufficiently

general to apply to several possible implementations. These possibilities are

described in Section 5 where particular attention is paid to overcoming a

practical problem of implementation exposed by the theoretical discussion in

Section 2. We make an effort to offer several alternatives to implementation

but shall make no recommendations until there is numerical evidence to

present.
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2. Constrained Quadratic Minimization

An important portion of the unconstrained minimization procedure

presented in Section 3 will be concerned with the solution of the following

problem:

(2.1) Let 4(w) = f + gTw +!wTBw. Find p E 1n such that

P(p) = minIj*(w): Ilw' < Al .

In (2.1) B = BT F gnXn; wg E $n; f,A E I with A > 0, and -II throughout is

the 2-norm. There are some important subtleties to this problem. The purpose

of this section is to give a complete discussion of the theoretical aspects of

problem (2.1) and to expose the nature of the computational difficulties that

may be present.

Several authors have considered problem (2.1) or related problems. This

problem appears implicitly as a subsidiary calculation in Levenberg-Marquardt

type algorithms for nonlinear least squares [14,15]. The computational aspect

of this calculation was fully discussed by More in [18]. A relatively early

paper by Forsythe and Golub [6] considers a closely related problem concerning

minimization of the Farm

(2.2) minj(x-b)TA(x-b): Dxi - j

While their work gives an extensive study of problem (2.2), it is not fully

applicable to problem (2.1) since g r range(B) may not hold, and the interior

is not considered. Problem (2.1) first appeared as a subsidiary calculation

in unconstrained minimization in the work of GoLdfeld, Quandt, and Trotter

[11]. Hebden [12] made an important contribution concerning the practical

computation of a solution to (2.1). More recently the problem has been

discussed by Gay [7].

If the method of Lagrange is applied to the equivalent problem

(2.3) min (w)
s.t. w w<A

it is a straightforward conclusion of the first order necessary conditions

that p solves (2.3) and hence (2.1) only i& p satisfies an equation of the
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form (B+AI)p = -g with A > 0 the Lagrange multiplier associated with the

constraint ww < A2

Lemma (2.4): If p is a nonzero solution to (2.1) then p is a solution to an

equation of the form

(2.5) (B+AI)p = -g

with A > 0 and B+AI positive semidefinite.

Proof: It has been noted that p must solve an equation of the form of

(2.5). It remains to show that B+AI is positive semidefinite. Since p solves

(2.1), it also solves minbl'(w): Ilw' = IIpI}. It follows that $(w) > J(p) for

all w such that iiwi = IipII. This inequality together with equation (2.5) gives

(2.6) f - pT(B+AI)w + 2 w Bw > f - p (B+AI)p + - p Bp

Rearranging terms in (2.6) gives

1 T 1 T T(2.7) 2 (w-p) (B+AI)(w-p) >2 (w w-p p) = 0

for all w such that fwl = Mpi. Since p # 0, it follows readily from (2.7)

that B+AI is positive semidefinite.

Lemma (2.4) establishes necessary conditions concerning the pair A,p when

p solves (2.1). Our next result establishes sufficient conditions that will

ensure p is a solution to (2.1). These results are essentially given in

[11]. However, we wish to present a statement and proof of these results that

is more complete and better suited to this presentation.

Lemma (2.8): Let A , p e In satisfy

(2.9) (B+AI)p " -g with B+AI positive semidefinite.

If A " 0 and Hpi < < then p solves (2.1).(i)
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(ii) If IpU = A then p solves

iJ(p) = min{(J(w): liwi = A}

(iii) If A > 0 and p = A then p solves (2.1).

If, in fact, B+XI is positive definite then p is unique in each of the cases

(i), (ii), (iii).

Proof: If A,p satisfy (2.9) then

(2.10) f + gTw +2wT(B+AI)w > f + g p + 2pT(B+XI)p

holds for any w E 1n. It follows that

(2.11) q(w) > (p) + 2 (pTp - wTw)

Statements (i), (ii), (iii) are immediate consequences of (2.11). The

uniqueness statement follows from (2.10) because the inequality is strict when

B+AI is positive definite and w # p.

The solution of problem (2.1) is closely related to solving the nonlinear

equation.

(2.12) $(n) - A , where $(a) =(B+aI)-1gI.

Using the eigensystem of the symmetric matrix B together with the invariance

of BlI under orthogonal transformations it is easy to show if g # 0 that

$~(a) is a rational function with second order poles all belonging to a subset

of the eigenvalues of -B. Since lim (a) - 0 it follows that (2.12) has a

solution whenever A > 0 and g 0 0.

We can construct a solution to problem (2.1) using a particular solution

of (2.12). Let al be the smallest eigenvalue of B; let S1 jq n:

Bq = X1qJ; let a be the largest root of (2.12) when g 0 0 and a *-0 when

g *0. If there is any q c S1 such that gTq f 0 then a > -A1 must hold. If

g c Si then -A1 is not a pole of $. Thus $(-A 1) is well defined when g C Si

and this is the only possibility for & < -A1 to occur. Put A = max{0,-A 1,a 
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and let

62= A2 - *2(A) if A = - 0, = 0 otherwise.

We now construct a solution p to problem (2.1) by the formula

(2.13) p = -(B+AI) g + 6q

where q c Sl, IqIl = 1, and (t) denotes pseudo-inverse [25]. Note B+AI must be

positive semidefinite with this choice of X. Since qT(B+AI) = 0 when

A = -Al, it is easily checked that p is a solution to (2.9) and satisfies

either condition (i) or (iii) of Lemma (2.8). Thus p solves (2.1) and

ipI = A whenever Al < 0. The solution given by (2.13) shows that p is not

unique whenever g e S and $(-a ) < A due to the arbitrary choice of sign in1 1
defining 6.

This discussion of the theoretical subtleties of solving (2.1) indicates

numerical difficulties may arise when a solution to problem (2.1) is sought.

The case g r SA = -al in (2.13) will give rise to a very sensitive numeri-

cal problem. Any computational technique for solving (2.9) will introduce

roundoff error. However, in this sensitive case small perturbations in the

quantities B,g,A can lead to large perturbations of the solution p due to the

fact that B+AI will be nearly singular. Apparently the true nature of the

difficulty here is the non-uniqueness of the solution p given by (2.14). We

illustrate this point with a simple example. Let

gT = (1,0) , B = ( 0) with n < 0

The solutions to (2.1) are of the form

T /1 \ 1 2 2
p ----- 1 6 with Cln)' +0l -A

whenever 1/(1-n)2 ( A2. The perturbation g_ - (1,e) gives a solution

T 1 e 1 ___ 2
p n-1---, - ,with___+ 2 _

e 1+a n+a (1+Aw)h (n+A )

Clearly for any choice of sign for 6 there is a perturbation C such that
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Ip-p N /Iplis "large". In case Ti < 0 we must have lip11 = A to solve (2.1) and

we can be led to extremely different solutions as a result of error introduced

by roundoff.

The convergence analysis to be given in Section 4 will depend heavily

upon the following technical result concerning the amount of decrease in the

local quadratic model. A geometric interpretation of the result is that, for

a quadratic function, any solution p to (2.1) produces a decrease f-P(p) that

is at least as much as the decrease a search along the steepest descent direc-

tion -g would provide.

Lemma (2.14): Let p be a solution to (2.1). Then

f-d(p) > I gllmin(IPI, IB .

A proof of this result may be found in [23].

In fact, the inequality in Lemma (2.14) is obtained by Powell's "dog-leg"

step [22]. This inequality is the main ingredient used to show the sequence

of gradients tend to zero for the Modified Newton's method we are about to

present. The reason for solving (2.1) rather than using the dog-leg step is

that second order information is used to greater advantage. This will become

evident as we present some very strong convergence results in Section 4.

A particular method for obtaining numerical solutions to (2.1) will be

suggested in Section 5. For the moment we assume that a numerical solution p

to problem (2.1) can be obtained which satisfies

(i) (B+XI)p = -g+6g with B+AI positive semidefinite

e gil if Ilgu 0 ,
(ii) 6gUif gU - 0,

and

... IUpI-AI < e2A (when A > 0)

NO < (1+e )A (when A 0)
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for some fixed 0 < e1(<e2 in (0,1) that are consistent with the finite

precision arithmetic. The results of Lemma (2.8) imply that such a p solves

the modified problem.

(2.15) min{f + gT w + wBw: INO < t

where (1-e2 )L < A< (1+e2 )t and g = g+6 g with 116g1I < e 1 1g II and i p"1 = A when

g / 0. In our analysis we shall assume E = e2 = 0. A trivial but tedious

modification of the analysis would apply to a computed step p which satisfies

the above criteria. This is primarily because the crutial inequality of Lemma

(2.14) will become

(2.16) f-*(p) >_2- igllmin A, - -

(1-e )1Ig 1

> 2(1-c )IHglmin (1-c2 ' HBH '

It is straightforward to see that the inequality of (2.16) is sufficient

for purposes of the ensuing analysis, but we wish to refrain from including

such complicated expressions at each stage of the analysis.

3. A Modified Newton Iteration

A well known method for solving the unconstrained minimization problem is

Newton's method applied to finding a zero of the gradient of the objective

function. However, this iteration is clearly not suitable as a general algo-

rithm without modification. The basic iteration is

-1
(3.1) xk+l = xk - Gk kVf(x) , k=0,1,2,...

where an initial iterate x0 must be specified, Vf(xk) is the gradient of f,

Gk - V2f(xk) is the nxn (symmetric) Hessian matrix of mixed second partial

derivatives of f. The algorithm we shall discuss will require that f is twice

differentiable at any point x in the domain of f, and that these derivatives

can be evaluated explicitly.
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There are three fundamental reasons why this basic method must be

modified. First, the initial iterate may have to be very "close" to a local

minimizer in order to be assured that the iteration will converge. Second,

even if the iteration converges to a stationary value x* (Vf(x )=0) there is

no guarantee that x will be a local minimizer. Third, the iterate xk+l may

not be well defined by (3.1) if the Hessian Gk is singular or it may not be a

sensible move if Gk is indefinite. Our purpose here is to discuss certain

theoretical properties of a modification of the basic iteration (3.1). Our

approach is not a new one, however we feel that the theoretical and numerical

properties of the proposed method should be fully treated and that is the main

goal of this discussion. The method we shall consider is called the model

trust region method. We have already mentioned the history of this

approach. The main concern here is the implementation of this type of algo-

rithm. Therefore, this discussion is intended to apply to several possible

implementations. Specific implementations are presented in Section 5.

Before the iteration is defined let us set out some of the properties

desired of a modified-Newton iteration:

(3.2) (a) For a sufficiently general class of functions the iteration

should be well defined and convergent given any initial iterate

x0.

(b) When the iteration converges to a point x*, this point should

satisfy as many necessary conditions for a minimizer as possible.

(c) The modification should not detract from the local quadratic rate

of convergence enjoyed by Newton's method.

(d) The method should be invariant under linear affine scalings of

the variables. That is, if we replace f(x) by f(w) - f(Jw+z)

where J c 1 nxn is nonsingular and w,z c 1n, then applying the

iteration to f with initial guess w0 satisfying x0 = Jw0+z should

produce a sequence lwkl related to the sequence {xk} by xk

Jwk+z, where Ixk} is produced by applying the algorithm to f with

initial guess x0.
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The algorithm we are about to define will be shown to meet criteria a,b,c

for all practical purposes. The last criterion (d) will be discussed in

Section 6. To begin we introduce a factorization of the Hessian matrix. For

each k we let

B =JG J

k =kkk

be a factorization of Gk with Bk = B k 1nxn and Jk nonsingular. It follows

that Bk has the same inertia (see [17, p. 377]) as Gk. For each k we put

$k(w) = f(xk+Jkw). This function 4k(w) may be regarded as a locally scaled

objective function. The first three terms of the Taylor series of $k about

w=0 will define a local quadratic model

k(w) fk + gkw + 2 wTBkw

T T
where gk f(xk) Tk and fk = f(xk) = k(0). Along with the local quadratic

model we shall maintain a control parameter Ak > 0 which defines a local

region of trust 1w: Ilwl < Ak} where the model is considered valid. This

parameter Ok will be revised during tht. iteration according to specific rules

which are designed to force convergence of the iterates {xk}.

We are potentially considering any symmetric factorization of the

matrix Gk, but certain requirements should be kept in mind. For example,

g = Vf(xk)TJk should be easily computed either explicitly or by solving

Vf(xk )T = gkJj. Also, it will be an advantage if the eigensystem of Bk is

relatively inexpensive to compute or if the smallest eigenvalue and

corresponding eigenvector(s) are easy to obtain. The reason for this is that

the solution to problem (2.1) will play an important role in this iteration

and as we have seen the eigensystem information may be required. This is

especially true at points xk where Gk ij indefinite or singular.

Now we are ready to define the iteration.
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Algorithm (3.3):

1) Let k=1 and let 0 < n1 < n2 < Y < <1 2 be prespecified

constants;

2) Let x1 EIn, A1 > 0 be given;

3) If "convergence" then STOP;

4) Evaluate fk : f(xk); Gk .=V02(fxk);

FactorBk : J Gk Jk; Evaluate gk: Jk Vf(xk);

5) Compute wk argmin14k(w): IwI(Ak}

Comment: k k ' gkw + 7 wTBkw;

6) Put ared : k(O)k(wk); pred := k(O)- k(wk);

Comment: k(w) = f(xk+Jkw);

7) Ifare < n then begin Ak Y k oto 5; end;

8) Ifn < armed then

1) xk+1 :=xk + Jkwk

I 2) if ared >n te2) pred>2 then k 2 k

3) k +1 k:= k; k := k+1;

9) GO to 2;

end.

There are ways to update the value of A at step 7 and step 8.2 which make

better use of the information available at the current iterate xk. For

example, the cubic polynomial that fits "(a) - *k( wk) by interpolating 0(0),
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V'(0), 0"(0) and @(1) will have a minimum a in (0,1) when the test at step 7

is passed. The region is contracted by setting Y1 = E if a is not "too close"

to 0 or 1. Details of this type of idea appear in [4,8,12,18]. Similar ideas

may be applied at (8.2) to obtain an expansion factor Y2 > 1 that depends upon

available information. Other variations involving step 7 include accepting

the predicted minimizer it 0 <o armed< 1 but reducing the trust region.
O-pred - 1

The analysis we shall perform on Algorithm (3.3) can be adapted to cover these

possibilities in a fairly straightforward way. However, the gain in general-

ity will result in a substantial loss in clarity of exposition in the analysis

so we shall analyze the simple choices set forth in Algorithm (3.3).

Finally it should be pointed out that this iteration is well defined

because step 7 will produce a sufficiently small ok to obtain red > nl after

a finite number of steps since the quadratic function 1k(w) is defined by the

first three terms of the Taylor series for $k(w). Our statement of the

strategy is slightly different than the usual description in that xk+1 is

always different from xk. By doing this we avoid having to distinguish

between "successful" and "unsuccessful" iterates in the analysis. With this

except ion the statement of the algorithm and the ensuing -nalysis are in the

spirit of the paper presented by Powell [23]. Numerical schemes for producing

the constrained quadratic minimization at step 5 will be presented in

Section 5.

4. Convergence of the Modified Newton Iteration

In this section we shall establish that some very strong convergence

properties are possessed by Algorithm (3.3). The first result is a slight

modification of Powell's result in [23]. Our proof is much simpler due to the

fact that here second order information is explicitly available.

Theorem (4.1): Let f: In + I be bounded below and let G(x) = V2f(x) be

continuous and satisfy NG(x)U ( < for all x c .1(x0). Let lxkI C n be the

sequence produced by Algorithm (3.3) applied to f given starting value x0.

Assume I, k k 1 < 0, k = 0,1,2,... for some a > 1. Then there is no

constant c > 0 such that *Vf(xk)I > C for all k.
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Proof: Assume there is an e > 0 such that iVf(xk ) >e for all k. Since

gk = k)we have

Igk -- k kf(xk)II/iI1  > c/a = Y > 0

From step (7) of Algorithm (3.3) and from Lemma (2.14) we have

2)-F-f > I f . - J(w k))J > 4g U *in 
0  g

(k4.2) fk k+1 1 k k k -Tk " m n k ' UBkI /

where UBkU = Jk k 2. Since f is bounded below and fk+l < k

k=0,1,2,... we have fk~ k+l + 0. Since IIgkII/UBkUi >Y/20 it follows that

Ak + 0 from (4.2). However,

(4.3) ok > ~kU/ 2+(k))

is obtained from the inequality

fkl= H(Bk+a(k)I)wk -(Owkil(UBk ii+(k))

where X(k) is the multiplier associated with the solution to step 5 of

Algorithm (3.3). Thus Inequality (4.3) shows a(k) + +. Now, from Taylor's

theorem and Lemma (2.8) it readily follows (for k sufficiently large) that

wT (Bk(6)-Bk)(1-O)d~wk)

(4.4) ared(k) - 1 = 2 0
pred(k) w (Bk+X(k)IJwk + A(kwrW

<1 sup MBk(0)-Bk
A 0<6<1

where Bk (O) Jk[G(xk+6sk k with sk- xk+l-xk. Since A(k) + + we obtain

pred(k) + 1 and thus the test at step (7) of Algorithm (3.3) is passed the

first time through for all k sufficiently large. This implies the existence

of a K > 0 such that k K > A for all k > K. Therefore, the assumption

Hf(xk)I > C for all k has led to a contradiction.
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We remark that the continuity of G(x) is only used to obtain the numerator on

the right hand side of (4.4) and that the Theorem can also be established

without this assumption. See Powell [23] for example.

This result has shown that at least one subsequence of {xk} converges to

a critical point of f. The next result which is due to Thomas [26] will

establish the much stronger fact that every accumulation point of the sequence

{xkl is a critical point of f.

Theorem (4.5): Let the hypotheses of Theorem (4.1) hold. Then

limIlf(xk)II = 0.
k+w

Proof: Suppose there is a subsequence xkj c {xk such that

IIVf(xkj)II >e > 0, for all j=1,2,... . As in Theorem (4.1) this implies

Igk > Y > 0. Moreover, due to Theorem (4.1), we may select an integer Lj

corresponding to each j such that

(4.6) tj = min{R > kj: IIg If > Y/2a2 }

and without loss of generality kj < Lj < k , j=1,2,... . From inequality

(4.2) we obtain that

(4.7) f -f _>_ 1 min _,

4a 2Sa4)

will hold for all kj < < Lj, j=1,2,... .From (4.7) it follows that

Rj

(4.8) kj j+1 . R+l
L=kj

>402min(: A , .
4v2 A=kj 28a0

From inequality (4.8) it follows that

Ixkj Lj+l0 + 0 as j +

because
Rj Lj

(4.9) ix .-x H < j (s i <a
kj Lj+1 - L-kj ~Rkj
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and the right hand side of (4.9) is forced to zero due to (4.8). The uniform

bound on G(*) implies the uniform continuity of Vf(x) on f(x0) and it follows

that

IIVf(xk )-Vf(xR )II <
kj j+l 4

for all j sufficiently large. Therefore

lgk. 0 < aIIVf(x )II
kj - kj

( a(IIVf(xkj )-f(xj+) + IIVf(xj+1I)

< a(L+ iug I)

< Q(4 + ) li4 <Y,

for all j sifficiently large. The assumption that UVf(xkj)N > e > 0 has led

to a contradiction and we must conclude that limfVf(xk)II = 0.
k+0"

This result has established that every limit point of the sequence

{xkj satisfies the first o:der necessary conditions for a minimum. Now we

shall establish results which give added justification to the use of second

order information when it is available. Several authors [10,16,19,20] have

proposed modified Newton methods which guarantee convergence to a critical

point x* with the additional feature that the Hessian G(x*) be positive semi-

definite. Thus second order necessary conditions for a minimum are satisfied

by x*. The following series of results show that Algorithm (3.3) shares this

property.

Lemma (4.10): Let the hypotheses of Theorem (4.1) be satisfied. If G(x) is

uniformly continuous on (xk0) then there is no positive number A > 0 such

that a(k) > A for k > k0.

Proof: If A(k) > 0 then NwkI -k due to Lemma 2.8. We conclude from

inequality (4.4) that
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red( k) < 1 sup UBk()-BkuPredk)00 1

where Bk(6) = J(Gk (xk+Osk))Jk. Since pred(k) > A(k) k>_ A it follows that

Ak + 0 because pred(k) + 0. Now the boundedness of UJkI, UJkN0 together with

the uniform continuity of G(x) on (,k() gives

ared(k) + 1 as k + +O0
pred(k)

We must conclude as in the proof of Theorem (4.1) that Ak>.AK for some

K > 0. This contradiction establishes the result.

Since -a(k) < (k) which is the smallest eigenvalue of Bk, the next theorem

follows easily from the boundedness of NJIkIlik1I together with Lemma (4.10).

Theorem (4.11): Let the hypotheses of Lemma (4.10) be satisfied. If the

sequence {xk} is convergent to a limit x* say, then Vf(x*) = 0 and G(x*) is

positive semidefinite.

At this point we should remark that failure of this iteration to converge

will require an extremely pathological situation. A moments reflection will

convince the reader that every limit point of the sequence {xk} must be a

critical point of f, and f must have the same value at each of these critical

points. Moreover, at least one of these critical points has a positive

semidefinite Hessian. The next result- shows that if any one of the limit

points of the sequence, x* say, satisfies G(x*) is positive definite then the

entire sequence must converge to x*.

Lemma (4.12): Let f satisfy the hypothesis of Theorem (4.1). Let

{xkj }C{lxkl be a subsequence which converges to a critical point x*. If

G(x*) is positive definite and G(x) is continuous in a neighborhood of x* then

the entire sequence must converge to x*.

Proof: Due to the continuity of G we must have HG(x) II <_ for all x in some

neighborhood .7? of x*. Thus for any E > 0 there is a 6 > 0 and a corresponding

ball 96 = {x: ix-x*i < 61 c f such that

NG(x)-Vf(x)II < E for x c m2
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This follows from the continuity of Vf and G, as well as the fact that

Vf(x*) = 0. The assumption that G(x*) is positive definite implies that x* is

an isolated local minimum. Therefore, there is a 6 > 0 such that f(x*) <

1-f(x), G(x) is positive definite, Vf(x) 0 for every XE 1 = lz: Uz-x*II <61

that is different from x*. Let 0 < 62 <1/461 be chosen so that IG(x) 1 Vf(x)II

< for all x E 92 {= z: Iz-x*U < 62}. We shall show that for all k
2a2

sufficiently large, the iterates xk lie in 92.

Since xkj + x* and f(x*) < f(x) for all x e 9, x # x* there is a j0 such

that

(4.13) f(x . ) < infjf(x): 6 ( IIx-x*II < 6 }
kj 0  2 - -- 1

and xkj c }2 for all j > j0. L j >j0 be fixed and suppose that

xR E9 but xR+1 2 for

Since k+1 > kj0 we have f(x+ 1) < f(xj 0) and thus x+ 1  9 due to (4.13). It

follows that

I xt+l~'" H DxU x*-+1 Hx -U *il> 61-62 > '. 6

36
This implies that At > w II > lix U-x > -. However, this is a contra-

diction since x e Q2 implies

S-1 6
UG(x ) Vf(x)U <

2a

so the Newton iterate z = x - G(x )'Vf(x ) satisifes

6
-1 1

*JR, (z-x )H < aUz-xR, U <a9.

This argument shows that xk e .02 for all k > kj0. Since x* is the only

critical point of f in -2 and since every limit point of the sequence {xkI

is a critical point of f we must conclude that the entire sequence converges

to x*.
0
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It would be more desirable to obtain a result that would ensure conver-

gence of the sequence Ixk} without assuming a subsequence converges to a

strong local minimum. However, just extending this argument to the case of an

isolated local minimum with singular Hessian would be difficult since one can

no longer rely on the Newton step. Our final result will show, in conjunction

with Lemma (4.12), that if there is a subsequence which converges to a strong

local minimum then the entire sequence converges and ultimately the rate of

convergence is quadratic.

Theorem (4.14); Let the hypotheses of Theorem (4.1) be satisfied. Suppose

further that xk + x* with G(x*) positive definite and

(4.15) IG(x)-G(x*)II < LIIx-x*II

for all x in some neighborhood of x*. Then there is a constant x > 0 such

that

IIXk+1 -x*H (tXKIIxk-*1
ixk+ k_

for all k sufficiently large.

Proof: Since xk + x* and G(x*) is positive definite it follows from

continuity that there are positive constants 13 <IIG(xk)' -I< 2 for k

sufficiently large. Thus Ipred(k)I|> s G(xk)sk > Usk 2 /UG(xk)'INH > 1 s1k2
and

Iared(k)-pred(k)I ( < sk2 J AGk(0)-Gkn(1-e)d ,
0

where Gk(6) - G(xk+Osk) with sk - xk+lxk. It follows easily from (4.15) that

ared(k) _ 11+ +0 as k + 0
1 pred(k) I

and we must conclude that there is some K > 0 such that Ak AK for all k > K.

Again, since xk + x* with Vf(x*) - 0 it follows that UG(xk ) kVf(x )U<OAK

so the Newton step is accepted for all k sufficiently large. Hence the tail
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of the sequence {xkl is the unmodified Newton iterat:ion which is quadratically

convergent to x* since G(x*) is positive definite [.'1, p. 421]. [-

While these results hold little computational meaning in the presence of

roundoff error, it is satisfying to have established such strong results about

the iteration. This is especially true since the method has such an intuitive

appeal. Our aim in this section has been to establish these theoretical

results in a framework that is general enough to encompass many possible

implementations. We shall consider some of these implementations in the next

section.

5. Implementation

Numerical performance of the algorithm described in Section 3 and

analyzed in Section 4 is obviously going to depend upon a careful imple-

mentation of the locally constrained minimization of the quadratic model. In

Section 2 we pointed out several theoretical facts that indicate great care

should be exercised in this computation. In this section we shall put forth

several possible implementations. Each of these will have certain advantages

and disadvantages depending upon the nature of the optimization problem at

hand. The convergence theory provided in Section 4 was purposely made

sufficiently general to apply to all of the alternative implementations to be

presented here.

Our main concern is to provide an efficient and stable method for the

solution of problem (2.1). To this end we consider factorizations

JTGJ = B

of the symmetric nxn matrix G. We are assuming that IIJIUJ 1U <( o where a > 1

is some fixed number that is independent of G. Recall that the matrix B is

also symmetric and must have the same inertia as G. Some specific examples

are: (a) J orthogonal and B diagonal; (b) J orthogonal and B tridiagonal;

(c) JT = LI1P where L is unit lower triangular, P is a permutation matrix, and

B is either tridiagonal [1] or block diagonal with lxl or 2x2 diagonal blocks
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[2]. We shall also consider the case when J is just a diagonal nonsingular

matrix.

If the eigensystem of B is easily obtained (i.e. in case a or case c when

B is block diagonal) then we are able to solve problem (2.1) directly by

solving the nonlinear equation (2.12) for the largest root and then

constructing a solution to (2.1) using formula (2.13). This method of

solution has the particular advantage that the case when g e S is explicitly

revealed.

A disadvantage of using factorization (a) is that it is relatively

expensive to compute. One of the reasons for introducing generality into the

model trust region calculation was to allow use of the Bunch-Parlett factori-

zation [2]. This factorization is very efficient due to the fact that

symmetry is exploited. The matrix B for this factorization has an eigensystem

that is easily computed. Moreover, the matrices J satisfy the criteria

HJI , IJ < a so in theory all of the results of Section 4 apply. There may

be some cause for concern regarding the effect of the transformation J on the

descent direction, because the triangular coordinate system may be very skewed

even though the matrix J is well conditioned.

Nevertheless, our main concern with either of these factorizations is the

efficient and reliable solution to an equation of the form

[n 2 -1/2

(5.1) l 2 =A

j=1 (a+X .)

for the largest root A. The left hand side of (5.1) is precisely the form of

$(a) = I(B+aI) gil in (2.12) regardless of whether or not B is diagonal.

Several authors [12,18,24] discuss the solution of equations that closely

resemble (5.1). The key observation is that Newton's method which is based on

a local linear approxir tion to 4(a) is not likely to be the best method for

solving (5.1) because the rational structure of +2(a) is ignored. Instead, an

iteration for solving (5.1) can be derived based upon a local rational approx-

imation to $. The iteration is obtained by requiring 4(a) - -a to satisfy

dCa) - (a) , *'(a) - 0'(a)
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where we regard a as the current approximation to the root A. This approxima-

tion is then improved by solving for an a that satisfies $a) = A. The

resulting iteration is

4 (a ) F - 4 (a )1
$k kj

(5.2) akl= ak + (a)[ A

If the form of $(a) is known explicitly then it is straightforward to

safeguard (5.1). The local rate of convergence of thi' iteration is quadratic

but the most important feature of (5.1) is that usually the number of

iterations required to produce an acceptable approximation to A is very small

because the iteration is based upon the rational structure of $2

Iteration (5.2) can be implemented without explicit knowledge of the

eigensystem of B. This important observation which is due to Hebden [12]

makes it possible to implement (5.2) merely by solving linear systems with

B+aI as the coefficient matrix. This is easy to see since $(a) = "lpall, and

'(a)= - 1 pa(B+aI) pa where (B+aI)p = -g. Hebden [12] suggests a way to

obtain a > -A1 during the process of attempting to compute the Cholesky fac-

torizatin of B+aI. This is discussed in more detail by Gay in [7] where the

difficult case g E Si is addressed. Within this context we could allow J to

be taken as a nonsingular diagonal matrix for solving purposes. More has used

this idea in his adaptation of Hebden's work to the nonlinear least squares

problem [18]. The result of More's work is a very elegant robust algorithm

for nonlinear least squares. In [18] careful attention is paid to safe-

guarding the step calculation. The safeguarding task is somewhat more

difficult in the present setting due to the fact that B may have negative

eigenvalues. The essential difficulty seems to stem from the fact that

without explicit knowledge of the eigensystem it is difficult to detect the

case g e S1. Moreover, it seems to be necessary to have an estimate of the

smallest eigenvalue and a corresponding eigenvector in order to obtain a

solution to (2.1) in case g c Sl (see formula 2.13). This was recognized by

Hebden but he did not provide a suitable solution. Gay [7] suggests obtaining

an eigenvector using inverse iteration if the case g E S is detected because

a factorization of the (nearly) singular matrix B+AI will be available.

Here we suggest an alternative to the methods which have been proposed

previously. In the following we are considering J to be a diagonal
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nonsingular matrix. Let us return to the derivation of iteration (5.2).

Another way to obtain this iteration is to apply Newton's method to the

problem

1 1 =
(5.3) 0 -a =0.

From this observation we can see that iteration (5.2) is closely related to

Newton's method applied to the problem

r(p,a) 0

$ (a) 
0

where we use the notation r(p,a) = Bap+g with Ba = B+aI. There is a serious

disadvantage to this iteration when g r S or nearly so. This is because the

Jacobian of (5.4) is

B p

(5.5)a

2(a)

and this matrix is singular at a solution A,p of (2.1) in the sensitive case

g S1, IB gI < A, where X = -A1.

Of course, this situation impairs the local rate of convergence.

Moreover, as the iteration converges to such a solution the method requires

solving linear systems which have increasingly ill-conditioned coefficient

matrices.

As an alternative we suggest removing the explicit dependence of 4(a) on

the variable a in (5.4). Instead of (5.4) we shall apply Newton's method to

solve

rr(p,a) 0

(5.6) 1 .L1
-1- ---
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Due to Lemma (2.8) a solution a = A, p = p, to (5.6) provides a solution to

problem (2.1) whenever BX is positive (semi) definite and A > 0. The Jacobian

of (5.6) is

B p

(5.7)a

____T

and this matrix is nonsingular at a solution to (2.1) in the cases that are

most likely to occur. This is important since it follows that Newton's method

applied to (5.6) will usually enjoy a quadratic rate of convergence. A

precise statement of when (5.7) is nonsingular at a solution is given in the

following lemma.

Lemma (5.7): Let a = A > 0, p = p 0 be a solution to problem (5.6) with B

positive semidefinite. If BX is positive definite or if IIB gII = A and

dim(S1) = 1 then the Jacobian matrix (5.7) is nonsingular.

Proof: Let p = pX, a = A. It is sufficient to show

B p

(5.8)

p 0

is nonsingular. Suppose that

Bx p z i 0

(5.9)2 =

p 0 C-0

Then

(5.9) (i) Bz + pS = 0 and (ii) piz - 0

These two equations imply zTBXz = 0. Therefore either z = 0 or B is singular

and z E S1. Both of these possibilities imply c - 0 since p f 0, and

BXz - 0. Thus, when BA is positive definite the only solution to (5.9) is
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z = 0, r = 0 so (5.8) is nonsingular. If on the other hand B is singular and

IIB gII < 0 then p = -B g+Oq with q e S1, liqil = 1, and 0 # 0. Since dim(S1 ) = 1

it follows that z = Yq and thus 0 = zTp = 9Y which shows Y = 0. Again we

conclude (5.9) only has the trivial solution so (5.8) is nonsingular.

The basic iteration (without safeguards) for solving (5.6) will be given

now. The details of various suggested implementations will follow.

Algorithm (5.10):

1) Obtain an initial guess p0  and a0  such that B0  = Ba0  is positive

definite;

2) for k = 0,1,2,...

T

1) rk = Bkpk+g; Pk = =Pk k A);

2) Solve

Bk Pk 6p ] rk]

k 0 . 8a pk ..

3) Pk+ = Pk+ p; Bk+l = Bk+a;

We must address several computational questions concerning this iteration.

These include what initial guess should be used, how to solve the linear

systems at step 2.2, how to safeguard the basic iteration, and finally how to

stop the iteration.

First of all we shall discuss some methods for solving the linear system

at step 2.2. For matrices B that are of moderate size and those which have no

particular structure we recommend the following. Compute an orthogonal matrix

Q through a product of Householder transformations such that

Q 0 (B0Q P0 Q ( 
0 T Ten

0 1 pO 0 0 1 Ten 0
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where T is tridiagonal and eT = (O,...,,l). Initially this factorization isn
more expensive than some alternatives (such as the Bunch-Kaufman [3] factori-

zation). However, it presents several advantages as we shall see. First of

all, since T = QBQT has the same eigenvalues as B we can easily compute a

Sturm-sequence for T to tell very reliably whether or not T is positive

definite [27]. Moreover, since good upper and lower bounds for the smallest

eigenvalues of T are available, a good safeguarding scheme can be obtained.

After applying transformation (5.11) to the linear system at step 2.2 of

(5.10) a solution can be obtained using ordinary Gaussian-elimination with

partial pivoting. It is preferable to ignore symmetry in this case for the

same reason it is preferable in the case of inverse iteration for the computa-

tion of an eigenvector. See Wilkinson [27] for more detail. A more important

observation to make here is that iteration (5.10) is invariant under transfor-

mation (5.11). Once the correction 6p = QT6p is obtained we have the updated

matrix

Q 0 Bk+Q Tk+ ( Q (Tk+Oc6I 6p+Te)
(5.12)k+ k1=

0 1 Pk+l 0 0 1/ 6 p+Te 0

The form of the matrix on the right hand side of (5.12) is

x x x

x x x x

x x x x

(5.13)Xx xx x
x x x x

x x x

x x x xxx 0

where the x's denote nonzero elements. Gaussian elimination with partial

pivoting preserves this structure if the pivots are taken from the tridiagonal

part until the very last elimination step. The result of this strategy

applied to (5.13) will be of the form

Fx x + x

m x x + x

m x x + x

(5.14) m x x + x
m x x x

m x x

mm m m m m +
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where m's denote multipliers which have overwritten the original matrix

elements, and the +'s denote possible fill-in due to pivoting.

With this scheme only one expensive factorization is required. The rest

of the iteration is performed under the transformation (5.11) and only after

convergence to a vector p is obtained do we transform back to get p = Qp as a

solution to problem (2.1).

Since the factorization given in equation (5.11) is roughly four times as

expensive as a Cholesky factorization we might wish to consider the following

alternate scheme. The system at step 2.2 of Algorithm (5.10) is equivalent

(via symmetric permutation) to one of the form

(5.15)
0 p da p

P B dp r

Use a single Householder transformation Q1 to obtain

1 0 0 p 1 0

0 Q1 p B 0 Q 1

0 T 0T -

'T
T , v

0 v , B

0 vT

v B

T
Q1BQ1 and T lpi

with v C 0n-1, 0 C I, B E

the exact factorization

1 0

0 1 ,'

(5.17)

-V 0-i

1(n-1)x(n-1).

0TF t
LT 0

------ ------

B

The matrix on the right of (5.16) has

1 0 : vT
T

0 1, 0T

-I

(5.16)

where

.
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The eigenvalues of 9 separate the eigenvalues of B so B is positive definite

when B is. Moreover, B is better conditioned than B whenever the separation

is strict. (For a proof of separation see Wilkinson [27, pp. 95-104].) A

solution to (5.15) is now possible using a Cholesky factorization of B

together with factorization (5.17). The purpose of arranging the calculation

this way is to avoid "pivoting" on the matrix B which is the essential result

of factoring forward at step (2.2) of Algorithm (5.10).

This second scheme is much better suited to the problem of obtaining an

initial guess a0,p0 at step 1 of Algorithm (5.10). If B is positive definite

then we want to compute p = -B~'g and check to see if UpI ( A. If Up > A

then take p0 = p. Thus it will be advantageous to attempt the computation

of the Cholesky factorization of B. If B is not positive definite then we

should compute a0 so that Ba0 is positive definite and then take

p- __ Ba b-l B -l
IiB gl 0a0

as an initial guess. Various schemes for computing a0 are possible. See Gay

[7] for example.

Safeguarding this iteration is possible. At present several schemes are

being considered but none of these are elegant. Therefore we shall postpone

discussion of safeguarding at this time.

The decision to stop the iteration should be based upon the following

tests:

Require ak+l'pk+1 to satisfy

(a) Bk+l :s B+ak+lI positive semidefinite

(b e 11g1 if g 0
(b) |Salldpl

E A if g 0

where 6a * ak+1%, 6p - pk+1 k'

and (c) |Ipk+1 1AlI <c 2A
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Note (from step 2.2 of Algorithm 5.10) that (B+ak+lI)pk+1 = -g+6 6p. There-

fore, if g 0 then conditions (a) and (b) together with Lemma (2.8) imply

that pk+1 solves

~T 1 T~min{f + g w + w Bw: IlwI' < Al

where (1-e2)A K < < (1+e2)t and g = g+6g with I16gU < e UIghI and lipk+111 = A. On

the other hand, if g = 0 then Pk+l will be an approximate eigenvector for B

which satisfies

lIBpk+1+ak+l k+l1

11pk+IUk+ 1II - 1

with ak+l on approximation to -al. Thus el > 0 should be taken quite small

and E2 > 0 moderately small.

When these stopping rules are in effect the remarks at the end of

Section 2 will apply. Therefore, the analysis of Section 4 will apply to the

modified Newton iteration when the step is computed in the way described here.

6. Conclusions

The main purpose of this work has been to discuss the theory of the model

trust region modification of Newton's method with an aim towards understanding

the best way to implement it. Because of this goal we introduced sufficient

generality into the analysis so that it would apply to many possible imple-

mentations based upon various factorizations of the Hessian matrix. Results

similar to the second order properties given in Section 4 have been stated

without proof by Gay in [8]. We feel that it is important to give proofs of

these facts. This is of particular interest because no proof has been given

that ensures convergence of the entire sequence (unless we make the assumption

of a nonsingular Hessian at any critical point). This is despite the fact

that the situation would have to be extremely pathological even in theory for

convergence not to occur.

The basic ideas for possible implementations we have set forth in

Section 5 are new alternatives which have been directed towards overcoming the

theoretical difficulties of the locally constrained quadratic minimization
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discussed in Section 2. In particular we considered using the Bunch-Parlett

factorization and we also considered basing our method of solution on a more

properly posed problem. It will be interesting to examine the behavior of

these implementations in practice.

Finally, we have not overcome the problem of invariance under linear

affine scalings of the variables. There is sufficient generality in the

method to introduce uniformly bounded diagonal scalings of the variables.

Ways to choose these scalings has been discussed by Fletcher [4], Gay [8], and

More [18]. it is most appropriate to note here that the reason is that our

method of proof of convergence is essentially based upon not doing worse than

steepest descent at any step and this introduces a term that makes calculation

of the step scale dependent. Nevertheless, we expect good performance on

practical problems especially in the case that the variables can be well

scaled.
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