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IMPROVING THE ACCURACY OF

COMPUTED MATRIX EIGENVALUES

Jack J. Dongarra

ABSTRACT

This dissertation describes a computational method for improving the

accuracy of a given eigenvalue and its associated eigenvector, arrived at

through a computation in a lower precision. The method to be described will

increase the accuracy of the pair and do so at a relatively low cost.

The technique used is similar to iterative refinement for the solution of

a linear system. That is, using the factorization from the low-precision

computation, an iterative algorithm is applied to increase the accuracy of the

eigenpair. Extended precision arithmetic is used at critical points in the

algorithm. The iterative algorithm requires 0(n2 ) operations for each

iteration.
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CHAPTER 1

Summary of Results

Wilkinson [24] has proposed an algorithm to determine rigorous

error bounds for a single computed eigenvalue and the corresponding

eigenvector. The method can also be used to improve the accuracy of a

given eigenvalue, A, and its associated eigenvector, x. (We will refer

to X and x as an eigenpair.) Wilkinson describes the conditions under

which the method converges, and discusses the behavior of the method

when there are multiple roots corresponding to a well conditioned

e igenprob lem.

In this dissertation we extend the method, as described by

Wilkinson, to use information generated during the initial eigenvalue

calculation in order to reduce the operational cost of the method. We

will show the relationship between the improvement method and Newton's

Method. We then extend the improvement algorithm to calculate the

eigenvecto:, given an initial eigenvalue and the decomposition that

produced the eigenvalue. Finally, we discuss a way to improve the

invariant subspace for the ill-conditioned eigenvalue problem.
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CHAPTER 2

Background

An extensive review of the eigenvalue problem can be found in

Wilkinson [22], chapters 1-3. Our intent here is not to review all the

methods, but to provide some reference on methods that compute eigen-

values and/or eigenvectors, given some initial approximation. The

eigenvalue problem must, by its nature, be solved in an iterative

fashion. There are existing algorithms that, once the matrix is reduced

to a suitable form by a direct approach, apply an iterative technique to

expose the eigenvalues and compute the eigenvectors. Some of these

methods compute an eigenvalue or eigenvector without prior information

as to where it lies, while other approaches require some initial infor-

mation such as an approximate eigenvector or approximate eigenvalue to

carry out the iteration. We will briefly describe some of these

methods. A more detailed review can be found in [22].

The power method has been in general use for quite a number of

years. It may be used to find the eigenvector corresponding to the

dominant eigenvalue. The convergence properties are governed by the

degree of dominance of the eigenvalue A1, which corresponds to the

eigenvector we wish to find, as measured by the ratio |A1 /AiI where

i=2,...,n. A drawback of the method is that convergence can be very

slow or fail when the eigenvalue associated with the eigenvector is not

dominant, that is when the ratio is near one.

The inverse power method or inverse iteration is an attempt to

ci-.umvent the dominance problems with the power method. Here the

matrix is transformed to have the given eigenvalue as the largest one,
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and a few iterations with the power method usually converges to the

eigenvector. Inverse iteration is the most widely used technique for

computing eigenvectors for selected eigenvalues. Its wide usage is a

result of the accuracy gained after only one or two iterations. For the

inverse power method, an approximate eigenvalue is needed.

If on the other hand we have a fairly good approximate eigenvector,

but no information about the eigenvalue, the Rayleigh quotient can be

used to determine the eigenvalue. If the inverse power method is then

applied with this approximate eigenvalue from the Rayleigh quotient,

there results a new approximate eigenvector. The process may be

iterated by computing a new Rayleigh quotient and then applying the

inverse power method.

A method that at first sight appears unrelated to inverse iteration

is Newton's Method applied to the eigenvalue problem. With Newton's

Method both the eigenvalue and the eigenvector are corrected on each

iteration. That is, starting with some initial approximation to the

eigenvalue and eigenvector, Newton's Method will improve the pair.

With this brief background, we will now turn to the central idea of

this paper: improving the accuracy of a given eigenvalue-eigenvectoc

pair.
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CHAPTER 3

Basic Method

Wilkinson [24] has described a method for determining rigorous

error bounds for a simple eigenvalue and its associated eigenvector.

The algorithm has the pleasing feature of providing an improved

eigenpair as a by-product. Wilkinson's approach assumes that an

eigenpair is given. No assumptions are made about how that eigenpair

was found, whether through some knowledge of the physical problem, an

initial eigenvalue decomposition in a lower precision or a clever guess.

We are interested in improving the accuracy of an eigenvalue-

eigenvector pair. Consider the eigenvalue problem Ax = Ax, where A and

x have been found by some means. Because they were arrived at by some

calculation on a computer with finite precision or by some insight into

the problem, they are, in general, not the true eigenvalue and eigen-

vector, but an approximation. We know, however, that there exist U

and y such that

A(x+y) = (A+L)(x+y) (1)

is the exact solution to the eigenvalue problem, where U and y are the

corrections to the computed A and x.

We will normalize x such that IUxU. - 1 and say xs = 1, where the sth

component of x is the largest. This can be done because we have one

degree of freedom in our choice of the components for x. We will assume

that the sth component of x is exact and no correction is needed. This

determines the value of y8, which is the correction to xs. Because xs
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is exact, the value of ys is zero. This also determines the degree of

freedom in the corrected vector, x+y, through the relationship between x

and y, namely (x+y)s =1.

We can rewrite equation (1) as

(A-AI)y - px = Ax-Ax + 11y . (2)

Note that Ax-Ax is the residual for the computed eigenvalue and eigen-

vector. If we look more closely at the product (A-AI)y, we discover

that because ys = 0, the sth column of A-AI does not participate in the

product with y. In the formulation of (A-AI)y-ux, we can replace the s

component of y, which is zero, by the value U and the s column of A-AI

by -x to arrive at (A-AI)y-px.

We will define y by y E y+pes, where es is the sth column of the

identity matrix. So the sth component of the newly defined y has the

value u; i.e., ys = P. We will also define the matrix B as the matrix

A-AI with the sth column replaced by -x. Thus we can rewrite (2) as

By = r + ysy , (3)

where r = Ax-Ax.

Another way to view the equation (3) is to consider tie matrix B as

the (n+l)x(n+1) matrix of the form

_m (A-AI -x

B

eT 0

8
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Then (3) can be derived from (2) by one step of elimination on (2). We

would like to solve

_y r + ys

y 0.

To solve this, we can apply a permutation, Ps, which will interchange

the sth and the n+1th columns of the matrix B, so that

_.. _1 y r + yS
BF P =

Sss

When tie permutation is applied Lo B, it has the effect of interchanging

the sth and n+1th columns and swapping the stn an. 1th elements of

(Y) so that
u

( a a2  ** a -x a *** a a \

s 0 0 s** 0 0 0 "* n 1

where a. is the jth column of A-AI and

-1
P =

e

12

Y2

Ys-1

Y3+1

Yn

0
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Because the n+l element of the solution vector, P , is known, we

will solve with the truncated form of B, truncated so the n+l row and

n+l column are no longer present. This truncation can be done because

- ' - the solution vector has a zero in the n+Ith position.

'."dtion (3) is a nonlinear equation defining the correction y.

Wilkinson has investigated the following iterative method for solving

(3),

By = r + y y , where

~( _(p) (p))y -= y --y e .
S S

We will show in chapter 7 that, when certain conditions are satisfied,

the iteration described above is a contraction and therefore con-

verges. Considering the previous iterate to p+l in (4), we have

B(p) =_ y(p-l)~(p-l)
By = r +y y .

When the two iterates are subtracted, we get

(p)= (p)~(p) -y(p-l)~(p-l),(5)
5 y

where 6(P) = y(p+1)y(p)

We could solve (4) in an iterative fashion and in the absence of

floating point arithmetic we would do so. The right hand side of

equation (4) contains two quantities, a fixed part, the residual, and

the term ysy which changes from iteration to iteration. As the process

converges on a computer with floating point arithmetic the term y y will

rapidly become negligible compared to the residual. This may happen, in

fact, before the attainable precision is reached. PI order to prevent
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this premature termination we will not calculate the correction y

directly, but instead compute a correction 6, which is a correction to

y.

Another source of computational difficulty may be that the accuracy

of ysp)y(p) - s y may suffer from cancellation when subtraction

occurs in the presence of floating point arithmetic. This problem is

easily avoided by expanding y(p)(p) in terms of yP and 6(P We

have

(p)~(p) __ (p-1)+ )) EpYS s s

which leads to

=p)~(p) _ _ (p-l)~(p-l) + + 6(pl)(p-1)

5 S

(p-l)6(p-l) + 6(plypl + 6(p- Zp~I)Ys s s

= (p)'(p-1) + 6(p-1)y(p-l)
s s

This quantity avoids the severe cancellation which may occur and is used

in the programs which implement the algorithm. The iteration thus

becomes:

B6 = r = Ax - Ax y( = '

B6(1) = ( 1)%(1) (2) (1+ (1)
B6 =y y y = y + 6

B6(2)= (2)Z(l) + 6(1)y(1)y( 3 ) = (2) + 6(2)
s s

B6P = (p)(p-l) + 6 y(p-])(p-l) (p+l) = (P + 6(p)
s S
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We see that 6  is a correction to and that the final y contains

the correction to the eigenvalue and eigenvector. It should be noted

here that the residual calculation, r = Ax-Ax, is a critical part of the

method's performance. In order to guarantee that rounding errors do not

invalidate the analysis, we will assume that the residual is calculated

using extended precision. The error analysis described in chapter 8

details the reasons for demanding this.

The iterative method given above requires one to have an approxima-

tion to the eigenvalue A and the eigenvector x in its first step. Next,

a system of equations is solved to obtain a correction to the p'ir;

this procedure is repeated until convergence. Each iteration involves

the sci'e matrix B, which is A-Al with the s column replaced by -x, but

with the right hand side changed. Every iteration gives rise to a

correction to a correction, and, as we will show, this process converges

rapidly under certain conditions. It is important to point out the fact

that we do not solve for a correction to (A,x) directly, but solve

for 6(p) which is the correction to y(p). At each step, Y(p+l) is

determined from y(P) and 6 (P). When the process terminates, the final y

contains the correction to (A,x).

The iterative method that arises from (5) can be stated in

algorithmic form
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Algorithm 1: The Improvement Algorithm (Wilkinson)

Given A, A and x; 1xi. = 1 and xs = 1

1: r + Ax-Ax; (extended precision used)

form B; (A-XI with s column replaced by -x)

2: factor B into L and U;

3: B6(0) = r; (solve for 6(0 using L and U)

y(0) +0;

(1) + 6(0)

p + 0;

Do urtil convergence

p + p+1;

4: B6(P) = y (- + 6(P l)y(P- ; (solve for 6(P using L and U)
s s

y(p+1) + y(P) + 6(P);

test for convergence

iterate end;

A + A + y(p+1);

~(p+l)

x + x + y ;1

Operation Count 1: n2

2: 1/3 n3

3: n2

4: p(n2 )

Total Count: 1/3 n3 + (p+2)n2

In the operation count here and in later ones, n refers to the order of

the matrix and p refers to the number of iterations needed to

converge. Operation counts of 0(n) are ignored.
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The method outlined above requires a system of equations to be

solved p times, where p is the number of iterations required to con-

verge. The initial decomposition of the matrix B used to solve a system

of equations involves 0(n3) operations and 0(n2) operations in solving

for a specific right hand side. The matrix B is not affected by the

correction, so the decomposition need be performed only once, but the

right hand side does change at each iteration.

To gain a more accurate solution, d(p), at each step, one might

attempt iterative refinement in the solution to (5). We can incorporate

one step of iter-tive refinement of 6(P-1) in the same step in which we

determine (09. To do so, we simply augment the right-hand side of (5)

by the residual of the previous system corresponding to the computed

6(p-i).

The first step of the process is to solve B6(0) = r = Ax-Ax. Round-

off errors are introduced so B6(0) is not exactly equal to r. One

iterative step would give

Bz(0) = B6(0) - (Ax-Ax)

then

-(0) = 6(0) + Z(0)

The next step would look like

y(1) = (1)~(1)
s

This process requires two systems to be solved at each step, one for 6

and the other for the refinement step. The next refinement is of the

form

11



B(1)_ (1)~(l) -Y y B(1) r(1) Bz =y y - B6 = r

and

-(2) _ a(l) + z .)

Note that the final correction desired is y(p+1), which is

(p+l) (p)+ 6(p)

or, expanded, looks like

(p+l) - 6 (i)

i=0

The refinement gives b of the form

o =

(pl) =

+

+

(0)
z

(1)Z

6 (p-) + z(p-)

so tha: y(p+l), if refined ar each step is

(p+l) =P )

i=0

= (o +'

i =0

We can reduce the number of systems to be solved by taking advantage

of the additive nature for the refinement and the correction. This can

be done by solving a system based on the current correction 6 (P) and the

previous o.finement z(P~II, so that

12



B6 = r -B+ yy( )'(-)+ 6(p-)Y(p-) = r (6)
s S

where r( 0 = Xx-Ax and the 6 contains the following:

T(O) - 6(0)

-(1) 6 (1) + (0)

-(p) = 6(p) +Z(p-1)

Then the final correction y(p+1) will have incorporated in it the

advantage gained by performing one step of iterative refinement at each

step except the last; no additional system of equations need be solved,

thereby saving n2 operations each iteration. On the last iteration the

answer will have converged so no refinement is necessary.

The iterative method which arises from (6) can be stated in

algorithmic form as:

13



Algorithm 1.1: The Improvement Algorithm with One Step of Iterative
Improvement (Wilkinson)

Given A, A and x; Ix . = 1 and xs = 1

1: r(0) + Ax-Ax; (extended precision used)

form B; (A-AI with s column replaced by -x)

2: factor B into L and U;

3: B6(0) = r( ; (solve for 6() using L and U)

y(0) + 0;

y(1) + 6(0);

p + 0;

Do until convergence

p + p+1;

4: z + r(P-1) - B6(P~1 ); (extended precision used)

r(P). + z + yp) - + 6p-l6)l;
s5

5: B6(P) = r(P); (solve for 6(P) using L and U)

(p+l) + y(p) + 8(P);

test for convergence

iterate end;

A + + (p+l);
s

(p+l)
x + x + y ;P1

Operation Count 1: n2

2: 1/3 n3

3: n2

4: p(n2 )

5: p(n2 )

Total Count 1/3 n3 + (2p+2)n 2

14



CHAPTER 4

Method Using Updates on the Factors

In his discussion of the method, Wilkinson assumes that the

approximate eigenpair (X,x) is known. Then the improvement algorithm is

used to gain more accuracy in the pair. The algorithm requires 1/3 n3 +

(2p+2)n2 operations to perform p steps of improvement. Most of the work

in the algorithm, 0(n3) term, is consumed by factoring a matrix. We

will assume that an LU factorization is performed, although any other

stable factorization could be used. The factors are then used to

repeatedly solve systems of equations, 0(n2) term. In many applications

users may have no knowledge of the eigenpair a priori, but they may want

a very accurate representation of (X,x). In such cases they must resort

to an initial eigenvalue-eigenvector calculation, then use the

improvement algorithm to gain more accuracy. The initial eigenvalue-

eigenvector calculation, if done by the QR algorithm, requires 0(n3 )

operations, most of which goes into factoring the original matrix. The

QR algorithm will factor a matrix into the form A = QTQT, where Q is

orthogonal and T is either triangular or quasi-triangular depending on

the nature of the eigenvalues. Th. improvement algorithm also requires

O(n3) operations, most of which also goes into factoring a slightly

different matrix. Although the coefficient of the n3 term for the

improvement algorithm is much smaller than that of the eigenvalue-

eigenvector calculation, information generated during the decomposition

to find (A,x) is not being used to its full potential. The algorithm to

be discussed in this chapter assumes the QR algorithm has been used to

determine the initial eigenvalue and eigenvector approximation and uses

15



the factorization to reduce the number of operation for the improvement

algorithm from O(n3 ) to 0(n2)

During the eigenvalue calculation thc original matrix, A, is reduced

to triangular or quasi-triangular form [20]. If we could use this

reduced form of the matrix in the improvement algorithm, the operation

count could effectively be dropped to 0(n2), thereby making the improve-

ment calculation very attractive.

We start by looking at

B6 = b ,

where B is A-AI with the s column replaced by -x, s is the index of the

largest component of x in magnitude, and b = y( p)6(pl)+ 6( .p-l)(p-l)
5 5

We can express B as

B = A +ces (7)

where AX = A-AI, c = -x-aA5 and aXs is the sth column of Ax. Thus

matrix B is obtained by applying a rank-one correction to A.

As a first approach, one might consider using the Sherman-Morrison-

Woodbury (S-M-W) formula [10, 2.24] to find the inverse of a matrix

with a rank-one correction. The S-M-W update has the form

T -1 -1 -1 T -1
(A -uv ) -=A + aA uvTAA,

where a T-l
1-v A- u

We would be interested in solving a system of the form (A-uvT )x - b so

that

-l -1 T-l
x * b + ctA~ uv Ab.
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For the problem we are dealing with, the matrix AX is singuitar and the

-1 -1
S-M-W formula breaks down in the computation of Ax b and Ax u. Thus we

see that the S-M-W formula cannot be used, and we look for an

alternative.

We have from the QR algorithm's initial eigenvalue calculation a

factorization for A of the form A = QTQT. Here we have assumed that A

has all real eigenvalues, T is a triangular matrix, and Q is orthogo-

nal. Later the solution will be discussed for T quasi-triangular and Q

orthogonal. We will perform a rank-one update to AX which iicor-

T
porates ce . So

s

T T T
A,+ ceT= QT + ce

T T T T T
or QTA Q + QTcesQ T + QTcesQ , where Tx= T-xl,

which can be written as

T T T T T
Q (A +ces)Q = T + df where d = Q c and f = Q es

We would like to bring Tx+dfT back to triangular form. Choose the

orthogonal matrix Q1 such that

Qd = [P2 p nP d = Y e where Y2 2

Pi is a Givens transformation which eliminates the ith component of a

particular vector by taking linear combinations of rows i-1 and i. When

Ql is applied to TX+dfT, we have

Qi(Tx+dfT) nQiTx + Q1 dfT

- QiTx + Y elfT

T

U +Yelf T

(U,

17



The matrix we a:-e left with is in upper Hessenberg form:

-T

Tu

Ql(TX+dfT) =
(Ul

=H ,

where Ui = UT + YfT and H is an upper Hessenberg matrix. This is the

first sweep. To sumaarize, G'.vens transformations are chosen to

eliminate elements from the vector d starting in the nth position and

continuing to the second position. These transformations are applied to

TX, and transform the triangular matrix to Hessenberg form.

Next, the triangular form is restored by applying Givens transforma-

tions to the Hessenberg matrix. This defines the second sweep. An

orthogonal matrix Q2 is chosen such that Q2H is restored to upper

triangular form. We have

-T

Q2 H =Q2 = U2
U 2

where Q2  E[p'...P ;P and U2  is upper triangular. P! is a Givens

transformation which eliminates the hi _1 element of H. To summarize,

we can work with the triangular form produced by the initial eigenvalue

decomposition. This is done by applying a rank one update to the tri-

angular matrix and transforming that updated matrix back to triangular

form in 0(n2 ) operations. Once the matrix is in triangular form, the

system of equations can be solved in 0(n2) operations.

The method that arises from adding a rank-one update and the

orthogonal reduction to triangular form can be stated in algorithmic

form:

18



Algorithm 2: Improvement Algorithm Using Factors from the Eigenvalue
Decomposition

Given A, A and x; Q and T such chat A = QTQT; IIxlI, = 1 and xs = 1

1: r + Ax-Ax; (extended precision used)

TX + T-AXI;

c + -x-axs; (aXs is s column of Ax)

f + QTe; (es is s column of I)

2: d + QTc;

Compute Q1 such that Q1d = Ye1;

Compute Q2 such that Q2(Q1(Tx+dfT)) is triangular;

3: T + Q2 Q1(TX+dfT)

-(0)
y + 0;

4: y + QQQ Tr;

p 0;

Do until convergence

p + p+l;

5: T 6(p) = sp)'6(p-) + 6(p-1) (p-1); (solve for (P)

-(p+l) +(P)+q (p)

test for convergence

iterate end;

6: y(p+ l + QQTQT2 p);

A+ a+,,(P+1).
s

x + x+y;

Ope rat ion Count : 1: n2 4: n2

2: n2 5. P(1/2 n2)

3: n2 6: n2

Total Count: (5 + p/2)n2

19



Algorithm 2 requires the factors Q and T generated when the QR

algorithm is applied to the matrix A. The QR algorithm will also

produce the approximation to the eigenpair, which will be used to start

the improvement process. For Algorithm 1, no assumption is made as to

where the initial eigenpair originated, :,o no factorization is known for

the matrix A. This is the main difference between the two algorithms.

One of the main applications of Algorithm 2 is when more precision

is required for a computed eigenpair. Algorithm 1, on the other hand,

has applications when one has an approximate eigenpair by some knowledge

of the problem other than an actual eigenvalue calculation, and wishes

to improve the approximation.
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CHAPTER 5

Method Using Repeated Updates on the Factors

The methods developed in the earlier chapters can be further

extended by updating the matrix B and recomputing the residual with the

corrected eigenpair at each iteration. During the course of the itera-

tion, corrections for the pair (A,x) are generated and used to construct

the right-hand side of the equation. The matrix B and residual being

tsed to solve the system depend upon the approximate eigenpair (A,x),

but in the earlier algorithms the initial values ('X (0)) were used

in defining these quantities, and thus were held fixed during the

iteration. If the value of (X E ,x ?) were used during the course of

the iteration to correct B, the following iteration would result:

B )(I= r( (8)
(p) (p) = (p) (T

where B = (A-a I)+c e
s

(p) = (p) (p)c = -x -a

as = (A-a(PI)eT

Another way to view the process is to restart the algorithm with the

corrected eigenpair (X(P),x(P)) at each iteration. Thus at each

iteration a new residual is calculated,

r(p) = A -A(p)

21



a new matrix and update constructed from the eigenvalue decomposition

and the improved pair

(p) T(p) (p) (p)T TA , c = -x -a ,

and a new correction 6(P) calculated based on this corrected

informat ion.

The method can be stated in algorithmic form as:

22



Algorithm 3: The Improvement Algorithm Using Factors from the Eigen-

value Decomposition with Updates to A and x at Each Stage

Given A, A and x; Q and T such that A = QTQT; Ilxii = 1 and xs= 1

p + 0;

(1) + A.

x()+ x;

Do until convergence

p + p+
1;

1: r (p) a x -Ax ; (extended precision used)

T(P + T-A(PI;

c + -x(p)-a ; (a is s column of A-A P)I)

2: d +QTc;

f+ QT es; (e is s column of I)

compute Q P) such that Q d = Ye ;

compute Q( such that Q(P)(Q(P (TA +dfT))

is triangular;

3: T + QQ( T +dfT)*

4: z (+)Q(p)Q rT (p)
ZQ2 

'<1p

5: 6 = z; (solve for aP) )

6: P)+ QQ(P)TQ(P)T6 (P);

)L(P+1) F (p) + a(P)-

x(Pl + x(P + 6 ;)

test for convergence

iterate end;

Operation Count: 1: p(n2) 4: p(n2 )

2: p(n2) 5: p(1/2 n2)

3: p(n2) 6: p(n2 )

Total Count: 11/2 pn2
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A natural extension to the method just described is to develop a

hybrid-like approach that incorporates features from Algorithm 2 and

Algorithm 3. That is, perform a few iterations based upon a given

approximate pair (X,x), then correct the pair, update the matrix and

iterate again. We have found that Algorithm 3 by itself converges very

quickly and the inner iteration is not really needed. By using

Algorithm 3 we will do slightly more work per iteration but fewer

iterations.
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CHAPTER 6

Relationship to Newton's Method

The methods described in the previous chapters resemble Newton's

Method for the eigenvalue problem. The eigenvalue problem can be

written as

T
(A-AI)x 0 with ex = 1 for some fixed s.

s

If we let v = (a) and define a function f mapping 1 n+1 to &n+1
Ax-fAx

as f(v) = A--J, the eigenvalue problem can be stated as finding the

zeros of f(v). Newton's Method applied to this problem is

f'(v.)(v. -v.) = -f(v.)
i i+l i 1

where v. = (

The derivative of f(vi) is

A.-A . I -x.

f'(v.) = (-u ~ i

The above method expressed in matrix notation is

A-A.I -x. x. r.
1 L (9)

eT 0 8a. 0
s

where r. = A.x.-Ax.

This method can be restated as follows.
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T T
(A-X.I)6x.-6a.x. = r. where e 6x. = 0 and e x = 1 . (10)

I I 1 1 s 1. Sj

A common variant of Newton's Method, referred to as simplified

Newton's Method [15], holds the Jacobian fixed over the entire

iteration, i.e., f'(vi) is replaced by f'(v0).

For the simplified Newton's Method we have

A-a0 -x0 6x. (ri)

or Ax 0 -6x 1-x0 6X X.x.-Ax. (11)

wit e xS1

where x.l = x-.'x. a. = X.+6X.
i+ +1 i I

ii
xl = x0 + k0 xk +1 0 + 0d k

k=0 k=0

We will define

i i
Ax. = Z 6xk and Aa = 6k for i = 0,1,2,...

k=0 k=0 k

so that x i+1= x0 + Ax. and A. = A + AX..
1+ i+l 0 1

The fundamental difference between the simplified Newton's Method

and the improvement algorithm is that the simplified Newton method gives

a correction, 6x , which is added to a previously improved solution;

i.e., xi., = xi+ 6xi and =a;.. Xai+6Xi. Thus at every iteration we are

building up the corrected solution. In the improvement algorithm, xi,.

(i+1)+1(i+1)+y and X - . Here the improvement comes in one
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quantity, y(i+l), at the end of the process and is then added directly

to x0 and A0 to get the final corrected solution; we are not computing

an accumulated corrected pair at each stage directly. This is the basic

difference between the two methods.

We will now turn to the Improvement Method to see the similarity

between it and the simplified Newton Method.

Theorem: In the absence of round-off errors, the simplified Newton

Method applied to the eigenvalue problem and Algorithm 1 (Inprovement

Method) produce the same final iterate, (A.,x.).
1 1

Proof: The simplified Newton method for the eigenvalue problem can be

stated as

A-a0 I -x 0  6xi r.\ /A.x.-Ax.

_eT / ( / = 0 ') (12)
T J0 61. 0 0

where x = x0 + Ax and

i 0 i-1

We will expand Aixi-Axi in the terms above:

(a + AX. 1)(x0 + Ax. 1 ) - A(x0 + Ax.1 )
0 1- 0 11 0 i-1

= Ax0 + A 0 i- i+ 1x0

+ AX- _ x_-1 A0 - AAx_

= A ox. + AX. x - AAx. + (0 x-Ax ) + AX. Ax.
0 1-1 i-l(0 i-I 0 0 0 i-i i-w

Equat ion (12) can then be written as
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(A-A 01)Sx.-6X x0 = 0Ax i- +A ji x0 -Axi 1 + r0 +AX -Axi-1

where r0= 0x-Ax0

Rearranging terms in A. and ix. on the right gives

(A-AXI)x -AiX0 =r0 +A - Axi.l

The improvement iterate from Algorithm 1 is

B(i) = (i)~(i) y(i-1) ('.-1) = (i+l)B6 =y y -y y
s s

If z(i)-B6(i1) is added to the right side, it then becomes

B(i) (i) B(i-1)+y(i)~(i) y(i-1)~(i-l) = (i+1)

y y

If z (u) is expanded, we have

(i) = (i-i) B(i-2) y(i-1)~(i-1) y(i-2)~(i-2)z = z -y y+yy sYS s

where z (0) r0

Substituting the fully expanded expression for z(1) we arrive at

B6( ) - r 0 B ) +yBi)2)- . .. -(i)+y

Bringing terms in B to the right and using the definition of

28
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(i+l) = (k)
y =

k=0

we arrive at

By(i+ =r+y(i)y(i)

By using the definition of B and y(i+1), we have

x(i+)ri+1) +y yi)(i)

which is the same as (13) derived from the simplified Newton Method. So

the two methods are the same and produce the same final iterate.

Q.E.D.

Because the two methods are the same, we will be assured of conver-

gence for the Improvement Method, whenever the convergence conditions

are satisfied for the simplified Newton method in exact arithmetic.

If in the Improvement Method the corrected values for Xi and xi are

used in constructing the B matrix at every iteratio-1, then the method

begins to resemble the full Newton method applied to the eigenvalue

problem. We can accomplish this quite easily by restarting the Improve-

ment Method at each iteration. We then have the following theorem.

Theorem. In the absence of roundoff errors, Newton's Method and Algo-

rithm 3 (the Improvement Method restarted every iteration) produce the

same final iterate (aix;).
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Proof. Newton's Method for the eigenvalue problem is (A-A.I)6xi-6Ax =

ri where esax = 0. The Improvement Method which is restarted every

iteration from equation (8) is B(1)6(') = r( . If B1) is expressed in

terms of its original parts we have

B(i)6(i) (i) (i) (i), T 6(i)B i6C)= [CA-A Ci) + C-x -a I)es]C

(i) ~(i)'i) ) T
where 6 = 6 + 6 e

Sss

(i) (i) (i) ~(i) (i) - (i) (i) - (i) (i)
Bi6C = (A-AiI)6 + 6 As s s x as

= (A-Ai)I)6Ci) - 6Ci) xi)= r Ci)s

But this is the same as Newton's Method because 6(C) = 6x. and
1

6(i) = 6A. when the method is restarted every iteration. Thus, they
s 1

produce the same final iterate.

Q.E.D.

We will now turn to an algorithm, inverse iteration, which at first

sight appears to be completely unrelated to Newton's Method. Inverse

iteration is the most widely used method for computing eigenvectors

corresponding to selected precomputed eigenvalues. If A is a good

approximation to some eigenvalue, then consider the sequence of vectors

xi derived from:

(A-AI)xi+l - k x,

where x0 is almost arbitrary and ki is a scale factor checen so xji is

normalized. If A has a full set of eigenvectors, 'j, then x0 can be

expressed as
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n
x0= . a.v.

j=1 J J

consequently

n
x. 1 =(k1k ...k.) .vi+1

j=1

Let A be the eigenvalue closest to A. If IA-A << IA-A.| for j =

1,2,...,n, k i j and at # 0 then vt become increasingly dominant. In

fact if A is very accurate, say to working precision, the first iterate

xl will probably be an accurate eigenvector, possibly correct to working

accuracy [17]. The fact that A-AI is near singular is not troublesome,

since we are interested in an eigenvector or some multiple of it; i.e.

we are interested only in the direction of the eigenvalue being

computed. Wilkinson has pointed out the following theorem.

Theorem (Wilkinson). In the absence of roundoff errors, Newton's Method

applied to the eigenproblem and inverse iteration produce the same

iterates.

Proof. For inverse iteration we have

(A-AI)x. - kx.,i+1 i L

where xi+ 1 - xi+ 6xi, 6xi is the correction to go to the next iteration,

and k. is some scale factor. We will assume that Ux.iU - 1 with xi -

1, then 6x. * 0.
1 ,8

(A-AI)(x.+6x.) - k.x.
1 ~ (14)

(A-AI)6x. - k.x. (A.I-A)x. - r.
I LI I. I. I
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If we now go back to equation (10), which is Newton's Method for the

eigenvalue problem, we see that ki, the scale factor for inverse itera-

tion, is the correction to the eigenvalue 6X. from Newton's Method.

Thus the two methods produce the same iterate.

Q.E.D.

Wilkinson [17] points out that if the initial X is quite accurate it

is not necessary to correct X. If one does, the matrix A-AI, stored in

factored form, will change with each iteration. But in the improvement

algorithm, the matrix used to solve systems is triangular with a rank-

one change, so no additional cost is incurred since we do not have to

refactor.

Keeping in mind the relationships between Newton's Method applied to

the eigenvalue problem, inverse iteration and the improvement algorithm,

we can extend the Improvement Method one step further; namely, given an

approximate eigenvalue and the decomposition which gave the approxima-

tion, compute the eigenvector from some initial random guess. This is

the way in which inverse iteration is used to construct the eigenvector.

The algorithm to carry out the improvement of A0 and to compute the

eigenvector is almost identical to Algorithm 3 given in the previous

chapter, except that x(
1
) is chosen randomly.
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Algorithm 4: The Improvement Algorithm Using Factors from the Eigen-
value Decomposition, with NO Eigenvector Approximation

Given A and A, Q and T such that A = QTQT;

p + 0;

X(P) + A;

choose x( randomly;

Do until convergence

p + p+1;

normalize x p such that iix )II = 1 and x = 1;

1: r (p)+ a x -Ax ; (extended precision used)

T + T-API;

c + -x ~a-a ; (a is s column of A-A(P)I)

2: d + Q c;

f + QT es; (es is s column of I)

compute Q P) such that Q d = Yel;

compute Q( such that Q(P)(Q(P (T( +dfT))

is triangular;

3: ~T~+ Q2 Qi(TX +df );

4: z + Q (pQ Q rp);

5: T (P6(p+l) = z; (solve for 6()

6: T(P) + QQ(P)TQ(P)T6 (P);

a(p+l) +(P) + (P

s

p+l) + (p) +

test for convergence

iterate end;

Operation Count: 1: p(n2) 4: p(n2 )

2: p(n2) 5: p(1/ 2 n2)

3: p(n2) 6: p(n2)

Total Count: 11/2 pn2
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The basic difference between Algorithm 3 and Algorithm 4 is that

Algorithm 4 chooses as i:he initial approximate eigenvector some random

vector. This vector is then corrected and rcnormalization is performed

within the iteration. Whereas in Algorithm 3, the approximate eigen-

vector was accurate to working precision to start, and no renormaliza-

tion is performed during the iteration.

When x is updated with the correction during the iteration, the

largest component of x may change. This will cause the updated x to be

renormalized and the value s to change.

We have found that Algorithm 4 works remarkably well for improving

the initial eigenvalue and constructing the eigenvector given some

initial random eigenvector. Typically Algorithm 4 takes three or four

iterations to converge, even when the original eigenvector guess is

completely orthogonal to the true eigenvector.
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CHAPTER 7

Convergence Results

We would like to show that various versions of the Improvement

Method described in earlier chapters will converge. That is, we w,uld

like to analyze the conditions under which 6(p) + 0, and hence y(P) +

y. Wilkinson [24] proves one theorem on convergence for the improvement

method. The classical Kantorovich theorem on Newton's method is also

applicable. In this chapter we will show that the two approaches are

equivalent.

We start by considering

By = r + ysy or
N

-1 -ly = B r + B ys y

By a simple scaling of the program we can assume B1, = 1. Let

eb = B-1 r, where Ilbil, = 1 and E = IIB-rII.,. Consider the iteration

(p+1) _ -l (p)~(p)y - Eb + B y y

where the first few iterates are

y(0) = 0

y(1) = Eb

(2) 2 -1 ~y = Eb + EB bb.

We have that

|b | K < IIbII = 1

lIbH K lbO = 1
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which implies

Jy()-Ebl = 0

Uy(2)- Eb l < E2K where K = UB 1 U

Since we have assumed IIBiI = 1, K is the condition number of B. We will

show that if EK <1/4 then

II y (-Eb_ < a2

ly II < + S Ka ,

where a is the small root of a = (1 + acK)2 which is

2

(1 - 2EK) + (1 - 4EK) 2

If EK < 1/4 , the a's are real and the positive sign gives the smaller a;

clearly, 1 < a < 4. When EK = 0, a = 1, and when 4EK = 1, a < 4. For

small values of EK, a ' 1 + 2cK.

Lemma (Wilkinson): If EK <1/4 , then

ay (p-Ebl < aE 2 K and (15)

y(P)110< E + aE 2 K
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Proof: The proof will be by induction on p. By definition

Iy -EbI = 0 .

So the inequality holds for p = 1.

Now assume (15) is true for p, then

(p+l) -1 (p)~(p)
y =cb+B y y

IIy(p+1) B-1  (p)~(p)

From the inductive hypothesis

y(P+1)-Ebll < K(E + E2 2

= E2K(1 + aEK)2

2
= IE K

(by the definition of a and

using the fact that EK < 1/4)

which establishes the result. Hence it is true for all p. The second

inequality

IIy(p) II K 2+as

is a direct consequence of above because ubu = 1.

Q.E.D.

We will now show that if B is not too badly conditioned the corrections

become smaller at each step.
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Theorem (Wilkinson): If 5K <1/4 , then 6(P + 0 and y(P) + y.

Proof: We start by considering two iterates,

(p+l ) = Eb + B

(p) = eb + B-y-y( .

Writing Y(P -Y=(p) _6(p) we have

6(p) = B-1-(P)y(P)-y(P')y(P-)(p-i )y(p)

Adding and subtract ing y y , we have

6(p) - B-ly(P) (P) - (P-1) () p-)(p)

- te ys gseytys

Combining terms, we get

6 (p) = B-(Y(p) ysp1))Y(p)

-ys

+ -y-l

6 (p)= B- 6 + )(p-
B sy Ys

Hence

Ud6p~I < K([16(P-1)y(p)I

< K( p) Ny

(p-1) (P-l)(p) + )

(pu+ Uy(P-i)1 )100])UJ

= (K6(p-1)I[ny(p)I +

Kil6(P 1)10(2 E+ 2acE 2 K)

- 2EKU6 P M(l + cEK)
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Using the fact that a = (I + acK)2 then

116 p) < 2F-a 26 U .

Here we define Y = 2Ka2

116 p)I K YH6(P-1)11

The assumption that CK <1/4 implies Y < 1 so we have a contraction.

Q.E.D.

The analysis in the previous chapter, which showed the equivalence

between Newton's Method and the improvement algorithm, together with the

convergence results shows that the Improvement Method is a special case

of Newton's Method. The Newton-Kantorovich theorem gives the general

conditions for convergence of Newton's Method.

For Newton's Method, we would like to investigate the conditions

under which a sequence {v.} will converge to a solution v = v* of
1

f(v) = 0 for the eigenvalue problem.

We will now state the Kantorovich theorem on convergence of Newton's

Method in a Banach space.

Theorem (Kantorovich)[18]:

If If"(v)U < k, 1v 1-v0U < n ,U[f'(v 0 )] -II <% and h0  = 30 0 k <1/2 in
1 0 0 - 0 0

some closed ball u(v0 ,r) with r > r0 = - - , then the Newton

sequence {vi} starting from v0 will converge to a solution v which

exists in u(v0 ,r).

The rate of convergence for Newton's Method can be stated as
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* -. 2 1-1

lv -v II K (2hJ) ni i-1 00
2

Note that if h0 < 1/2 , then we will get convergence and when we have

convergence it is quadratic. Looking at the ith iteration, we have

h. = S.n. k
1 1w1

where k is some bound on the second derivative,

S.f'(v.) ~ ( <-1 .

11 v i+1~ 1 - 1

For the eigenvalue problem we have

where

(A-AI)x

f(v) = T
e Tx-I
s

(A-AI)

f'(v) = T
e s

0 -I

f"(v) =
0 0

-x

0

I 0

0 0

The term f"(v) is a bilinear operator and constant.

We can examine the quantities from the Kantorovich theorem;

If"(v)Il < k

UIf'(v )]lu <

1v 1-v U <n 0 and

h0 00 Ok

40
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For the eigenvalue problem k is constant and equal to 2, because f"(v)

is a constant operator. We will have convergence when 00 1/4.

In the Newton-Kantorovich theorem the quantity %0n 0  is closely

related to EK used in the proof of contraction for the Improvement

Method. In Newton's Method we have

If'(v ) 1 II < .o - 0

For the eigenvalue problem

f'(v0 ) = B, so

IIf' (v0)-111 = IIB ~10 < 13 .o - 0

The value no is related to the quantity v1-v0 by

uv0 -v, II <0'

The quantity v0-v1  corresponds to y (1) from the Improvement Method.

Using the value for y(1) from the Improvement Method, we have

v0-v1 = y ()=b = B- r, or

I1v0 -v 1 II = UB1rU < n0 .

So that lB 1 rNUB-H from Newton's Method are bounded by

UB-1 rNlB~ I < 0n0
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and for convergence of Newton's Method we require 0%0 < 1/4. From the

Improvement Method, we have

E = UB~ r1 and K = HBUUB-1 ,

So

u3f = 1 .

CK = IIB 1rUiIB-II

lB 1rIlB~1U = EKor

and for convergence we require

E <1/4.

In conclusion, we have shown that the convergence conditions for the

Improvement Method and those of the Newton-Kantorovich theorem are the

same.
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CHAPTER 8

Error Analysis

We will examine the nature of the roundoff errors for the

improvement algorithm which updates A and x every iteration; this

corresponds to Algorithm 4. The method involves four steps:

1) Calculate the residual r(P= = ACp)x(p)-Axf?).

2) Let BCp) be A-AP)I with the s column replaced by -xfp).

3) Solve the system BCP)y(p+l) = r(p).

4) Update the approximation x(P) = x +y

We will assume that calculations will be performed in working

precision, using normalized floating point arithmetic unless otherwise

specified. By working precision we mean arithmetic is carried out with

ti digits of base 0. We will also use the term extended precision to

describe arithmetic that is carried out with t 2 digits of base a, where

t 2 > ti.

The residual calculation is a critical part of the improvement

process. If A and x have been produced by a stable algorithm, such as

the QR algorithm using working precision, then the true residual,

r - Ax-Ax satisfies

Urql R- 1IAg(n) where g(n) is a modest function of n

If we now compute the residual in working precision, we will produce

-t
roundoff errors of the order 8-t, which is the same order of magnitude

as the true residual. Consequently, unless some precaution is taken,
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the computed residual may differ quite substantially from the true

residual.

To demonstrate the need for carrying out the residual calculations

in extended precision we will show an example.

If we consider the matrix

A( 23

A = 2 3 4 ,

3 4 5

then using single precision as our working precision one of the

eigenvalues is

A = -.623475976

and its corresponding eigenvector is given by

-.827670515
x = -. 142414615 .

.542843938

If the residual calculation, (A-AI)x, is carried out totally in working

precision then the residual rs is

(-.0536
rs = -.1192 * 10-5

.0060

If the subtraction, A-AI, is performed in working precision and the

resulting matrix multiplied by x in extended precision the result is

(-.0557
rsd = -. 1186 * 10-5

-. 0389

If the operations Ax and Ax are carried out in extended precision and
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the subtraction Ax-Ax performed in working precisioia, the result is

-.0596

rds = -.1207 * 10-5
-.0179

Finally, if all operations are carried out in extended precision the

result is

(-.0606
rd = -.1211 * 10-5

-.0163

If Ax is subtracted in working precision from Ax, regardless of the

-ti
precision of each quantity, errors may be introduced of order -t. The

same is true in the term (A-AI)x, where A-AI is subtracted in working

-tl
precision. This error, d-t, is precisely the order of magnitude of the

true residual. Thus, the computed residual can be arbitrarily different

from the true residual. In the example, we see that rs is completely

different than rd, even to the point of having a different sign.

If, on the other hand, the subtraction of Ax from Ax is performed in

extended precision the computed residual will differ from the true

residual by order of magnitude -2

This example also points out the need to carry out the residual

calculation with the original matrix. If the matrices produced from the

factorization were used in calculating the residual there would be an

additional source of error from roundoff generated during the decompo-

sition. Therefore, we see the need to carry out the entire computation

in extended precision using A, A and x. This can be done as an n+l

inner product, with the first term Ax and the remaining n terms -Ax,

using extended precision accumulation. The form of the expression is
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n
r. = Xx. - a..x..

j=l J

Subroutine DQQDOT, found in the appendix, carries out this operation

using extended double precision accumulation for the double precision

quantities A, x and A.

We can express the improvement algorithm by

(Ap) x(p) ~(p)(p)(p)- (p)

eT u(p) ~
5 0/\ s

where x(p+ 1 ) = x(p) + y(p) and a(p+l) = (p) + (p). If we define v and

f as in chapter 6 we have

xr)x (r)-Ax)(r)

Vr = (r) and f(vr) =

then we can write f'(vr) (vr+ 1-vr) = f(vr). Let vr denote the rth

iterate computed in the absence of floating point roundoff errors, let

vr denote the rth iterate actually computed and v* denote a solution to

f(v) = 0.

We want to know how Vr compares with vr for every r. In particular

-. *
if v + v as r + , what can be said about Vr as r + 0.

rr

In the absence of roundoff errors, the algorithm is equivalent to

Newton's method applied to the eigenvalue problem. We can therefore

apply results about the error analysis for Newton's method [12] to our

improvement method and obtain the desired error estimates.
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The Newton-Kantorovich theorem tells us that under certain

conditions the iterates, vr, lie in a neighborhood of v0. The neighbor-

hood is

K0 = {VC V I v-v011 la0

where ar =lvr+l -vr

= r(f'r(v ))lf(V ).
r r

When we compute the iterates vr we can expect them to deviate from vr to

some degree; in particular, they may not belong to KO. We need to

expand the neighborhood K0  to K6 =v C V I Iv-v0
11 <a0 + 6j for some

6 > 0.

The computation of Vr+l involves an equation of the form

V+ -v = (f(v ))l f(v )
r+l r r r

In the presence of floating point arithmetic we will actually compute

vr+l -vr = (f'(v )+E r) (f(vr)+er) + g . (16)

There are three sources of errors: er, Er and gr. The error er comes

from errors made during construction of the right hand side, which is

the residual calculation for the eigenvalue problem and is carried out

in extended precision. The error Er comes from solving the system of

equations. The error gr is derived from adding the correction to the
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previously computed x(r) and A(r). We will assume that there exist eS,

E2 and e3 such that for every yr EK 6 ,

lie II < E
r - 1

lIE < E2

Ig_ I < E3

The analysis also involves

~K6 = su I (f'(v))-1 I .
v6 6

Note that if f'(vr) has been scaled to have a norm of order unity, then

K6 bounds the condition number of the matrix Br involved in the linear

system of equations solved at the rth step.

Our objective is to show that the roundoff errors of size e2 intro-

duced in the linear system solution may affect the rate of convergence

of the algorithm, but do not significantly affect the accuracy of the

final result. The other roundoff errors, which involve KE 1 and E3, do

affect the final accuracy.

The following theorem is a restatement of Lancaster's Theorems 2A

and 4A [12].

Theorem: Assume there exists a 6 > 0 and an iteration index n so that

a) S= 2K6 (an+e2  < 1

Let K ~idand
1-Tf
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=K (e +(;E) + E1 n2 1_ 3

Assume

b)

c)

Then the

r > n and

2U K 6

4K < 1

computed iterates vr remain in the neighborhood K6 for all

Illy -~v II < 20r r -l1 +V/1-4K--O

Moreover, let

K = 211 (f'(vn-1) )1II
n 1 - 2an- 1 n-(f'(v1)) I

Then

*42
Ii - K <s[i + 4K (S+Ilv -v 1 )' + KnIIVn-Vn~ 2

The hypotheses involves three inequalities. Inequalities a) and c)

are precise versions of the statement "The matrix B is not too badly

conditioned." Inequality b) relates to the expansion of the Newton-

Kantorovich neighborhood required to include effects of roundoff. For

all but the most badly conditioned problems we expect these inequalities
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to be satisfied by a margin wide enough to justify the following

estimates.

1 - 7~1

K K6

1 + v1-4KS~~ 2

Moreover, when the process converges, an + 0. C nsequently we can

expect to ultimately obtain accuracies of the order

livr- vll ~~KE1 + E 3.

Note that E2 is involved in the hypotheses, but does not affect the

ultimate accuracy in an essential way. If we use extended precision for

the residual calculation then

E2 and E E .

Hypothesis a) implies KE 2 < 1, hence KE 1 < E2 and the limiting accuracy

is order E3. In other words, if the problem is not pathologically badly

conditioned, it converges to working precision accuracy.

The error e3 is derived from the roundoff errors made in adding the

correction to the approximate solution. If on the last iteration the

correction is added in extended precision then E3 will be the same size

as El and the final accuracy will be controlled by KS1 solely.

This points out that when the matrix B is ill conditioned with

respect to linear systems the accuracy attainable by the method will

degrade, since KE 1 controls the accuracy. The condition under which B
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is singular or ill conditioned can be described in the following

theorem.

Theorem (Wilkinson): B is singular iff A is a multiple eigenvalue of A.

Proof: If A and x are the exact eigenpair and A is a multiple eigen-

value of A, then there exists at least one left eigenvector y belonging

to A which is orthogonal to x. (This is true whatever the nature of the

elementary divisors associated with A.) Hence

T T
y (A-AI) = 0 and y x = 0.

We have

B = A - I + ceT
s

with c = -ax -x .

When yT is multiplied into B, it follows that

T T T
y B = y (A-AI+ce ) = 0

So y is a null vector of B, and B is singular.

Conversely, if B is singular then there exists a z / 0 such that

Bz = 0 or

B(z+z e ) = 0
s s

and hence

Bz = z x because
s

Be = -x
s
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But Bz = (A-XI)z since zs= 0 (by definition of the tilde notation).

Hence,

(A-AI)z = z x

If zs = 0, then z is therefore an eigenvector of A corresponding to A.

Because xs = 1 and zs = 0, the vectors x and z are independent. If

zs Y 0, then because (A-AI)z = zsx, x is an eigenvector and z 0. Thus

we have

(A-AI)2z = 0

Hence z is a principal vector of grade 2. In either case A is an

eigenvalue of multiplicity at least two.

Q.E.D.

We can make a somewhat stronger statement on how the conditioning of

B is related to the sensitivity of the eigenvalues.

Theorem (Wilkinson): Let y and x be the left and right eigenvectors of

T
A corresponding to the eigenvalue A. Let B = A-AI+ces where c = -as- (.

Then

cond(B) >I 1 .
- Tly xl

Proof: Consider

yTB = yT (A-AI+ceT)
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we know that yT is orthogonal to the column of A-XI so that

yTB (U,..,,-Tx 0  ,,).

We have that ByTBII = IyTxi, from above we see

II B 1i > I .
-T
ly xl

Since x is a column of B, llBil > lxil and we have

cond(B) > I x
- T

ly x|
Q.E.D.

We expect the method to have trouble when the eigenvalues are

sensitive, corresponding to an ill conditioned eigenvalue problem. The

method as stated has a defect in that any type of multiplicity in the

eigenvalues gives rise to ill conditioning in the matrix B. In a paper

by Wilkinson [26] the case where multiple eigen'"alues exist is handled

and an algorithm is given to compute the invariant subspace associated

with multiple eigenvalues.
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CHAPTER 9

Complex Eigenvalues for Real Matrices

Where there is a real matrix and complex eigenvalues, we have

a computed eigenvalue A = A t X.i and a computed eigenvector x = xr
r ir

xii. If we use the strategy developed earlier for the complex case, we

run into a problem. The original formulation replaced a column of A-AI

with -x, the eigenvector. While we could do this by using complex

arithmetic and doubling the storage, that procedure is not very attrac-

tive. We would like to maintain real arithmetic -d conserve storage as

much as possible.

Consider the following:

A(x ,x.) = (x ,x.) A A. .
r i r i r i

i r

Here, as before, (A ,A.) and (x ,x.) have been arrived at through some
r i r'I.

computation, and we wish to improve their accuracy. As before, we

write

A[(xx.)+(y ,y.)] = [(x ,x.)+(y ryr (: A) ' ( u.
r i r r i r r r i + r

-A. A- .
i r i r

or AY - YA - XM = XA - AX + YM where Y = (yr' i)

X = (x ,x. )r i

A = A A.
r 1

i r

and M = J .
r i

i r
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which is

A(y ,y.)-(y ,yi)ar Xi) - (x,x.) ( Pi) =

i r 1 r

(x ,x.) A A) - A(x ,x.) + (y ry.) r . . (17)

i r i r

We will now rewrite this in a simple matrix notation as

I
A-A I A.I -x x. y r.h.s. 1

r I. r 1 r

-a.I A-A I -x. -x y. r.h.s. 2
1 r 1 r 1.

(18)

T
e 0-".0 0 0 u 0

s r

0-*-0 e 0 0 u. 0
S

where r.h.s. 1 and r.h.s. 2 are the right hand side of equation (17)

when expanded. We now have a (2n+2)x(2n+2) system of equations to

solve. With a little care, this system can be solved without actually

storing all the (2n+2)x(2n+2) elements and without the additional cost

in storage brought on by a matrix of order 2n+2.

We want to solve a system of equations based on (18), but do not

explicitly want to form such a matrix because of the additional storage

and computational requirements. Instead we will develop an approach

that implicitly solves such a system and requires only the original

quantities to be used. We will pre- and post-multiply the matrix in

(18) by
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QT

QT

1 and its transpose. (19)

The submatrix Q is the orthogonal matrix from the original eigenvalue

decomposition of the matrix A, which reduced A to a quasi-triangular

matrix. A quasi-triangular matrix is triangular except for some (2x2)

blocks on the diagonal. These blocks correspond to complex conjugate

eigenvalue pairs for the real matrix A.

When (19) is applied to the matrix, the result is

T T T
Q (A-a I)Q A.I -Q x Q x.

r 1 r

T T T
-1.i Q (A-a I)Q -Q x. -Q xr r

T
eQ 0...0 0 0

T
0.--0 eQ 0 0

5

Bec ause QTAQ is the quas i-t r iangul ar mat rix formed dur ing the ini t ial

eigenvalue decomposition, we have

T-X .I -w v

-AIT-X I -v -w
i. r

,(20)

T 0*- 0 0 0

0--*0 T 0 0
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where T is quasi-triangular, qT = eTQ, w = QT x , and v = QT xi. This
s s rxi

matrix is of the form

**9o

0

0 o0

o 0

The * in the off diagonal positions of the triangular matrix represent

elements arising from complex conjugate pairs of eigenvalues.

If the last two rows of the matrix are replaced with

T T
e2n+1 and e2n+2, we can easily solve systems of equations based on this

modified matrix. This is best seen by looking at an example. Let us

assume we have an order 10 matrix, C, which originated from an

eigenvalue problem of order 4 having one complex conjugate pair located

in a 2x2 block in position 2,2 of the original matrix, so that

x xxx x xx
x x x x x x
* x x x x x

x x x x
C x x x x x x x

x x x x x x
x * xxx x

x xxx
1
1

This is the structure that is obtained after removing the 9th and 10 th

T Trows and replacing them with e9 and e10.

The matrix C, if formed, will unfortunately be singular. This

feature is best seen by looking at the complex counterpart of C, which
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has the form

T-XI -x
C =,

0 1

where T is a complex upper triangular matrix and A and x represent the

complex eigenpair. C is singular because it is upper triangular and has

a zero on the diagonal (namely, where A = T..) and has a null vector of
It

the form (X), where x is the eigenvector. If we assume A is a simple

eigenvalue, then C can be modified to remove the singularity and allow

the upper triangular matrix to be used in solving a system of equa-

tions. The modification will be a rank one change of the form

T
e.e., where i is the position on the diagonal of T where A occurs.

Then C is upper triangular and does not have a zero on the diagonal and

therefore is not singular. The chapter on eigenvalue clusters describes

the situation when A is not a simple eigenvalue and when C is near

singular.

If we now go back to the real matrix form of C, the (2n+2)x(2n+2)

matrix C, it will be necessary to make two rank one corrections in C.

These corrections will place 1 and -1 in the blocks containing Ai and

-AiI and will occur on the subdiagonal position corresponding to the 2x2

block of the conjugate pair being corrected for the triangular matrix

T-ArI. Thus, if the 2x2 block has its nonzero on the subdiagonal at

position (i,i-1) and (i+n, i-l+n) the two rank one changes are of the

T T
form -e.e.il~ and e.e The matrix will then be of the form
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xxx x x x x

xxx x x x
* x l1x x x

x xxx
C= x x x x x x x

x xxxxX
-1 x *x x x x

x x x x
1 0
0 1

This form of the matrix will be used to solve a system.

The first step in solving a system based on C is to determine values

for unknowns x9 and x10 . This is straightforward. The next step is to

use information in rows 4 and 8 to determine values for unknowns x4 and

x8 . This step is equivalent to solving a 2x2 system. We then proceed

to rows 3 and 7. They contain information from the complex conjugate

eigenpair. If we expand the scope to look at rows 2, 3, 6 and 7 we can

then determine unknowns x2, x3 , x 6 and x7 by solving a 4x4 system.

Finally, using rows 1 and 5 determine x1 and x5.

Another way to view this process is to carry out row and column

permutations on the matrix to isolate 2x2 or 4x4 blocks on the

diagonal. Again following the example above for a 10x10 case we have,

x x x x x x x

x x x x x x
+ x x 1 x x x

x x x x
C x x x x x x x

x x x x x x
-1lx +xxxx

x x x x
1
1

Permutation will be performed on rows and columns 4 and 7 to isolate a

2x2 block. After the permutations the matrix has the form:
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x xx x x x x
xx x x x x
+ x x 1 x x x

-1lx x + x x x
x x xx x xx

x x x xxx
x x x xX
x x x x

1
1

A 2x2 block is now isolated in rows and columns 7 and 8. A second set

of permutations will be applied to isolate a 4x4 block. The permuta-

tions will interchange rows and columns 2 and 5. After the permutations

the matrix has the form:

x x x x x x x

x x x x x x x
x x+ 1 x x x

x x-1l+ x x x
x xxx x x

x x x x x x

x x x x

x x x x
1
1

The permutations have isolated 2x2 and 4x4 blocks on the diagonal.

Solving a system of this form reduces to 2x2 or 4x4 systems of

equations, where the 4x4 systems arise from complex conjugate eigen-

pairs. The amount of work needed to solve a system based on a matrix of

this structure is 0(n2 ).

To get matrix (20) into the correct form, we will use the

generalized form of the Sherman-Morrison-Woodbury update [10], which is

A-1 = (C-UV ) = C-1 + C-1U(I-M) 1V C 1

where M = VTC U.

The matrices U and V are of dimension 2n+2 by 4 in this case and are of

the form
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U = [-e , -e , -e., -e. J
2n+1 2n+2 i i+n

T -
Q e 0

s
V T

1 0 Q e

i-l+n i-1

0 -1

where (i,i-1) is the position of the nonzero

element in the 2x2 block.

To solve systems we need to apply the update to a right hand side, so

-l -l -iITM-1
C b + C U(I-M) V C b

Determining C~1b and C~'U is just a matter of applying what was outlined

above to the vector b and matrix U. I-M is a 4x4 system and can easily

be used to solve systems.

The fact that the eigenvalues were complex conjugate is really quite

incidental. The method can be easily extended to cover the case where

we wish to improve several distinct eigenvalues simultaneously.
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CHAPTER 10

Multiple Eigenvalues

Up to this point, the discussion of improving eigenvalues has dealt

with the case of a simple eigenvalue eigenvector pair or a group of dis-

tinct eigenvalues and eigenvectors. We will now consider the problem

where there are multiple eigenvalues.

Multiple eigenvalues can occur with linear or nonlinear elementary

divisors. Either situation is relatively easy to detect, but a

nonlinear elementary divisor, by its nature, is ill-conditioned and very

sensitive to small perturbations.

In the case where multiple eigenvalues exist, the algorithm

described appears to break down. We are interested in solving

y y -y y

where B is formed by taking A-AI and replacing a column by -x. The

theorem from chapter 8 states the matrix B is singular if and only if A

is a multiple eigenvalue of A. Because we wish to solve systems of

equations based on B, and B is ill-conditioned with respect to linear

systems for the case being considered, we appear to have a problem. It

is fairly easy to detect when this condition arises. The technique

described by Cline, Moler, Stewart and Wilkinson [3] and implemented in

LINPACK [5] can effectively be used to signal ill-conditioning in B, and

some action can be taken. This will be discussed in more detail in

chapter 13, which deals with implementation.
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We would like to analyze the case where there are multiple roots

corresponding to linear elementary divisors. This is a well conditioned

eigenproblem, and therefore we would like to improve the accuracy

without any additional complication. The theorem states that B is ill-

conditioned with respect to linear systems in this case, but we will

look at the consequences of solving the special system we have in mind.

We start out by assuming IIA-XIII = 0(1) and 1IBI = 0(1). If the

system Bz = c is solved, then the computed solution is exact for

(B+E)z = c where hIEll = 0 (13t). Thus we can write

c-Bz = Ez

or lc-Bzl K lElhhizhl = ( -

The residual is related to the size of z, the computed solution. We

wish to solve

By = -r where r = (XI-A)x

and we want to show that y is 0(hlrll) and not contaminated with B 1 . B

is close to being singular when there are multiple eigenvalues. We will

say that the computed y is of the same order of magnitude as the exact y

unless B is singular to working precision. This can be seen by looking

at

1B- -l = t-k

The computed y will have about k correct digits. Even one correct digit
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implies that the computed and the exact y have the same order of

magnitude.

We begin the analysis by looking at a closely related method,

inverse iteration. For inverse iteration we have

(A-AI)w = x.

w w
with x = w being the next iterate. We also note that -w = x+ y

s ^'s

with 6A = , where y is the correction to xi at this step and SA is the

s

correction to A. Now let us assume that we have a double eigenvalue

corresponding to a linear elementary divisor with A1 = '2 and A = I-E,

i.e., that A is the true eigenvalue which differs from A , the computed

eigenvalue by E, where E is small in a relative sense. Dropping sub-

scripts from x, we can expand x in the true eigenvectors of A so that

n

x = av1 + bv 2 + L Evi , where {v} is a complete
i=3

system of eigenvectors.

The next iterate, w, can also be expanded in a similar fashion so that

Wa b n ivi

1 1 i=3 1+E

We know that A1 = A2 and that A = A -E, so

n E.
a b _ _

w-vl + v2 + -vA+E V.
i=3 i 1

Here E and C. are small, and a and b are order unity. We see that Ilwll =

0(1/E) with 1/ws = 0(c). If we consider w/ws-x, the difference in the
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two iterates, we see that it has components of the same order of

magnitude as E.

Theorem (Wilkinson): If B is not exactly singular, then By = r has a

solution of size O(HlrII ).

Proof: We know from above that w/ws = x+y.

This implies that the exact solution, y, of By = r is the order of

magnitude of the E's.

The computed y satisfies (B+E)y = r or

By - r = -Ey .

Going back to the definition of B and r we have

B = [A-A X: -xJ and r = Ax-Ax, so that

By = Ay - Ay - ysx and

By - r = Ay - Ay - ysx + Ax - Ax = -Ey .

Then by adding -ysy to both sides we get

Ax - Ax - ysx + Ay - Ay - y SY = -Ey - ysys

(A-(A+y )I)(x+y) = -Ey - y y
s s

or

We know that IhEll = O(- ) and y = 0(e), so
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IIEy+y yIl = 0( t+e2) where e = max(E,E.)

Hence the residual corresponding to the improved eigenpair is far

smaller than r. When A has a full set of eigenvector this means X+ys is

a much improved eigenvalue of A.

Q.E.D.

As far as x+y is concerned we can say only that it is a much

improved vector in 2 space. However, we have shown that Ilyll = 0(e), so

that x+y cannot change too much in the subspace.

For the case corresponding to nonlinear elementary divisors or ill

conditioned eigenvalues, things are not as simple. Because of their

nature, these problems may be considered not well posed. By this we

mean that the matrix has a poorly conditioned eigensystem in the sense

that small perturbations in the matrix can cause large changes in the

eigensystem. In such a case we are interested in finding an invariant

subspace spanned by the eigenvectors corresponding to the ill-

conditioned eigenvalues. For a given matrix A we would like to solve

AX = XA , where X is nxk and A is kxk .

Note that because we are dealing with an ill-conditioned eigensystem, A

will not in general be diagonal. We would like to improve a subspace of

eigenvectors, X, and the associated eigenvalues, instead of a single
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eigenvalue and eigenvector pair as was done earlier. The subspace is

chosen because the eigenvalues form a cluster, and the cluster itself is

usually associated with "close" eigenvalues. Here we are being a little

vague about the terms cluster and close.

By the term close we do not necessarily mean recognizably close, but

that the eigenvalues are sensitive to small changes in the matrix A.

This sensitivity can be measured by

T
V.X.

1 1
s =i I v.IlI x. I

1 1

where xi is the right eigenvector associated with X. and vi is the left

eigenvector associated with Xj. Golub and Wilkinson [8] have shown that

when si is small, A is necessarily relatively close to a matrix with

multiple eigenvalues.

By using the triangular matrix and the approximate eigenvector [2]

we can compute the sensitivity information, si, very inexpensively in

the update version of the algorithm. (This will be discussed later in

the implementation chapter). By using the si information we can signal

the case where there is an ill-conditioned eigenvalue. Corrective

action can then be taken to improve the eigenvalue cluster and the

invariant subspace spanned by the associated eigenvectors.

One approach that can be used to determine an invariant subspace

associated with an ill-conditioned eigensystem has been developed by

Varah [21]. In that approach, inverse iteration is used to determine

the size of the subspace. For a given eigenvalue X1 an approximate

eigenvector is found by means of inverse iteration (A-X 1I)x(
1 = x(O),

(0) (1)it -1 -twith x chosen so that IlxO| is close to nowhere ny= . To
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determine whether A1  is associated with a one-dimensional subspace,

(A-AX 1 )y1  = x (1) is solved and Ilyll/lix II is examined. If A1

-1
corresponds to a semisimple root, the ratio will be close to n1.

However, if Al corresponds to a multiple eigenvalue given a numerically

-1/k
defective matrix, then the increase in norm will be about nl1 , where k

is the order of the root A. The basis vectors can then be found by

(A-AI)x = x0

(A-A I)x2 = x1
( -2 2 1

(A-A3 I)x3 =2

(A-Ak I)xk = xk-1

Once the invariant subspace has been determined, the improvement

algorithm can be used to improve it. If we look at an example where

there is a cubic elementary divisor, then there exists x1, x2, x 3 and

,1' ?2' A3 such that,

Ax1 = A1x1

Ax2 = A2x2+x1

Ax3 = A3x3+x2

or

(A-A1 I)x1 = 0

(A-A21)x2 = l

(A-A3 1)x3 = x2

where x1 is a principal vector of grade 1, x2 is a principal vector of

grade 2, and x3 is a principal vector of grade 3. We can then define
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corrections to the principal vectors and eigenvalues in the same manner

as was done earlier. Namely,

A(x1 +y1 ) -_(A+p=)xl+yl)

A(x 2+y2) =_(X2+p2)(x 2+y2) + (x1+y1 )

A(x3+y3) =_(X3+p3)(x 3+y3) + (x2+y2 )

where yi and PK are corrections to xi and Xi, for i=1,2,3.

approximations to the eigenvalues, Xi, and approximations

principal vectors, xi, we can solve for corrections yi and Pi
sidering the following equations,

Given

to the

by con-

(A-X11)y1 - 1 1x1

(A-X21 )y2 - J2X2 -

(A-X31)y3 13X3 -2

=Ax -Ax + yy

2x2 - 2 +x 1+ 2y2

x -33 3 +x2+ 
3y 3 '

If expressed in matrix notation we have,

/ A-XlII

T
e
r

-I

-xl

0

A-X21

T
e

s

-I

-X2

0

A-X31

T
et

This system will then be solved in the

yi

p1
y2

u2

-X3  y3

0 113

same manner

I Aix1-Ax1+uty1

0

X2x2-Ax2+xi+p 2y2

0

A 3X3-Ax3+x2+p 3y3

0

as was done earlier.
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CHAPTER 11

Extensions to the Generalized Eigenvalue Problem

The methods described up to this point have all applied to the

standard eigenvalue problem Ax = Ax. The generalization of these ideas

to handle the generalized eigenvalue problem Ax = XBx presents one minor

difficulty in the residual calculation. As before, we have an

approximate eigenpair A and x, and we would like to find U and y such

that

A(x+y) = (A+I)B(x+y)

Then expanding and grouping terms as before, we have

Ay-ABy-IBx = aBx-Ax+iBy . (21)

Equation (21) is analogous to the corresponding one for the standard

problem where B is replaced by I. If we define r = aBx-Ax and C as A-AB

with the s column replaced by -Bx, and the same conventions on ys

and y, we obtain

Cy = r + ysBy . (22)

The basic iteration has the form

Cy(p+ 1) = r + y B ,
S
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and when successive iterates are subtracted,

CS6p = y PBy~p - y P1By .1
s s

The complete iteration would be:

(0) r y(1) = 6(0)

C (1) =y(1)B~(1) y(2) = (1) + (1)
C6 =y By y =y +

s

() (2) ~(2) -y(1) B(1y) (3) (2) +6(2)
. Ys s

C6p = yP(By+l) -yBy(P) + 6(p)

which is analogous to (5).

An additional complication is incurred by the residual calculation

ABx-Ax, which no.v involves the triple product ABx. In forming the

components of the residual vector r1, Bx should be formed in double

precision then multiplied by A and the n+l inner product found. This

procedure requires a double precision and single precision operation to

occur, but at no stage is the multiplication of two double precision

operands required.

In trying to extend the ideas in the updating form of the improve-

ment algorithm to the generalized problem, a difficulty arises. For the

generalized eigenproblem proiblem, the QZ algorithm is the generaliza-

tion of the QR algorithm used for the standard eigenvalue problem. In

the QZ algorithm, orthogonal matrices Q and Z are determined to

transform
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Ax = XBx into

QAZx = XQBZx ,

where QAZ and QBZ are upper triangular. Because of the nature of the

transformations used to generate Q, Q is not accumulated or stored but

applied in the reduction process at each step. Only the transformations

which go into making up Z are actually accumulated and stored. In order

to apply the updating technique, both Q and Z must be accumulated and

stored for use during the updated form of the improvement algorithm.

For the update form to be effective, Q must be accumulated in less than

1/3 n3 operations. If this is not the case, then it would be cheaper to

form A-AB with the s column replaced with -Bx and use the generalized

form of Algorithm 1 to update A and x, and ignore the eigenvalue

factorization. It turns out that the accumulation and storage of the

matrix Q requires more than 1/3 n3 operations. Thus the updated form of

the improvement algorithm cannot be effectively used to correct a single

eigenpair. If many eigenpairs are to be improved then the updating will

be advantageous. This will depend on the order of the matrix and the

number of eigenpairs to be improved.
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CHAPTER 12

Numerical Results

The following section displays some results for improving eigen-

values and eigenvectors by one of the approaches described earlier. The

method uses Algorithm 4 which applies the updating technique, computes

an eigenvector and corrects the eigenpair at each iteration.

The experiments were carried out as follows: a matrix with known

eigenvalues was generated and the eigenvalues computed using a modifica-

tion to the EISPACK routine HQR2 called HQRORT. The eigenvalues, one at

a time, were then passed to the improvement algorithms for correcting.

In Algorithm 4, a "random" initial guess for the eigenvector is made.

All runs were made on an IBM 3033 using the H extended enhanced

compiler in double precision. The word size is approximately 15 decimal

digits in this case. The results as displayed were generated by taking

the approximate eigenvalue and adding the correction in extended preci-

sion and printing the extended results.

The first matrix is a "magic square" of order four. A magic square

is a matrix whose rows, columns, or diagonal elements add to the same

number. For this example the magic square has the form

16 2 3 13

5 11 10 8

9 7 6 12

4 14 15 1

and has eigenvalues 34, 8.94427..., -8.94427..., and 0 with eigenvectors
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1 1 -4.57... 1/3

1 f-5.14...\ -2.86...\ 1

1 1 42(-2.86... )3 -5.14... X4 -1

\ -4.57.../ 1 -l/3

This matrix is fairly easy for the improvement method. It has distinct

eigenvalues that are well conditioned.

Typical behavior for the improvement algorithm can be seen here.

The first iteration is spent in calculating the eigenvector from the

initial random vector, and the last iteration is performed to determine

convergence.
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INITIAL
EIGENVALUE

3.3999999999999876D+01
ITERATION 1
3.40000000000000341176739637738535Q+01

ITERATION 2
3.40000000000000000000000000006122Q+01

ITERATION 3
3.39999999999999999999999999999985Q+01

ITERATION 4
3.39999999999999999999999999999165Q+01

ITERATION 5
3.39999999999999999999999999998493Q+01

INITIAL
EIGENVALUE

8.9442719099991024D+00
ITERATION 1
8.94427190999915467523040391029099Q+00

ITERATION 2
8.94427190999915878563669467476144Q+00

ITERATION 3
8.94427190999915878563669467492440Q+00

ITERATION 4
8.94427190999915878563669467492441Q+00

EIGENVECTOR

9.99999999999998633905262668266260Q-01
9.99999999999998001598555674720929Q-01
1.00000000000000000000000000000000Q+00
9.99999999999999708566456035896802Q-01

9.99999999999999999999999999897448Q-01
9.99999999999999999999999999948724Q-01
1.00000000000000000000000000000000Q+00

9.99999999999999999999999999921903Q-01

9.99999999999999999999999999999930Q-01
9.99999999999999999999999999999977Q-01
1.00000000000000000000000000000000Q+00

9.99999999999999999999999999999976Q-01

1.00000000000000000000000000000000Q+00
9.99999999999999999999999999995415Q-01
9.99999999999999999999999999993738Q-01
9.99999999999999999999999999999112Q-01

9.99999999999999999999999999975890Q-01
1.00000000000000000000000000000000Q+00

9.99999999999999999999999999993837Q-01
9.99999999999999999999999999998351Q-01

EIGENVECTOR

1. 0000000000000000000000000000O000Q+00
-5.14331351935456783400648527397003Q-01
-2.86627038709131738864297460471938Q-02
-4.57005944193629991538579185239993Q-01

1.00000000000000000000000000000000Q+00
-5. 14331351935456735020538537900203Q-01
-2.86627038709134700410770757957714Q-02
-4.57005944193629794938384386296334Q-01

1.00000000000000000000000000000000Q+00

-5. 14331351935456735020538537900823Q-01
-2.86627038709134700410770758016261Q-02
-4.57005944193629794938384386297592Q-01

1.00000000000000000000000000000000Q+00
-5. 14331351935456735020538537900826Q-01
-2.8662 7038709134700410770758016218Q-02
-4.5700-5944193629794938384386297595Q-01
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INITIAL
EIGENVALUE

-8.9442719099991237D+00
ITERATION 1
-8.94427190999915074087756039489250Q+00

ITERATION 2
-8.94427190999915878563669467469912Q+00

ITERATION 3
-8.94427190999915878563669467492472Q+00

ITERATION 4
-6.94427190999915878563669467492474Q+00

INITIAL
EIGENVALUE

-1.4328549785478851D-15
ITERATION 1
6.94932885737204682747612741220060Q-15

ITERATION 2
2.60324098722933895785870426543319Q-29

ITERATION 3
-3.85185988877447170611195588516985Q-33

ITERATION 4
-2.69630192214213019427836911961890Q-33

ITERATION 5
-2.69630192214213019427836911961890Q-33

EIGENVECTOR

4.57005944193631066444363414677375Q-01
2.86627038709129770068702408760016Q-02
5.14331351935456017989134198603601Q-01

-1.00000000000000000000000000000000Q+00

4.57005944193629794938384386310386Q-01
2.86627038709134700410770757951305Q-02
5.14331351935456735020538537900795Q-01

-1.00000000000000000000000000000000Q+00

4.57005944193629794938384386297566Q-01
2.86627038709134700410770758016137Q-02
5. 14331351935456735020538537900802Q-01
-1.00000000000000000000000000000000Q+00

4.57005944193629794938384386297567Q-01
2.86627038709134700410770758016110Q-02
5. 14331351935456735020538537900807Q-01

-1.00000000000000000000000000000000Q+00

EIGENVECTOR

3. 33333333333333752847293940391716Q-01
1. 00000000000000000000000000000000Q+00

-9.99999999999999658259475232568568Q-01
-3. 33333333333333138466062865271755Q-01

3.33333333333333333333333333337097Q-01
9.99999999999999999999999999992752Q-01

-1.00000000000000000000000000000000Q+00
-3. 33333333333333333333333333338822Q-01

3. 33333333333333333333333333333348Q-01
9.99999999999999999999999999999992Q-01

-1.00000000000000000000000000000000Q+00
-3.33333333333333333333333333333348Q-01

3.33333333333333333333333333333350Q-01
9.99999999999999999999999999999992Q-01

-1.00000000000000000000000000000000Q+00
-3.33333333333333333333333333333349Q-01

3.33333333333333333333333333333351Q-01
9.99999999999999999999999999999991Q-01

-1.00000000000000000000000000000000Q+00
-3.33333333333333333333333333333350Q-01
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The next example is a 3x3 matrix

-149 -50 -154

537 180 546
-27 -9 -25

The matrix has eigenvalues '1 = 1, X2 = 2 and A3 = 3. The eigen-

values are fairly sensitive to small changes in the matrix. The

sensitivity, sc, for all the eigenvectors is 0(104). A detailed dis-

cussion of this example can be found in [41.

77



INITIAL
EIGENVALUE EIGENVECTOR

1.0000000000142959D+00
ITERATION 1
1.00000000001418298811728391228826Q+00 3.33333333333785633953131072361700Q-01

-1.00000000000000000000000000000000Q+00
-4. 70321698254422099546122243332684Q-13

ITERATION 2
9.99999999999999999999805546115029Q-01 3.33333333333333333333321839238669Q-01

-1.00000000000000000000000000000000Q+00
1. 16681236906581287610003847231549Q-23

ITERATION 3
1.00000000000000000000000000061166Q+00 3.33333333333333333333333333355221Q-01

-1.00000000000000000000000000000000Q+00
-2.26543287498381782067188246617628Q-29

ITERATION 4
1.00000000000000000000000000000031Q+00 3.33333333333333333333333333333344Q-01

-1.00000000000000000000000000000000Q+00
-1.11703937020948080902185578719597Q-32

ITERATION 5
1.00000000000000000000000000000046Q+00 3.33333333333333333333333333333349Q-01

-1.00000000000000000000000000000000Q+00
-1.67555901588005232320322790413289Q-32

INITIAL
EIGENVALUE EIGENVECTOR

1.9999999999901883D+00
ITERATION 1
1.99999999999007731232847362434768Q+00 4.44444444440801082769020302384271Q-01

-1.00000000000000000000000000000000Q+00

-1. 11111111107509162167983535745657Q-01
ITERATION 2
2.00000000000000000000018975252641Q+00 4.44444444444444444444433522200309Q-01

-1.00000000000000000000000000000000Q+00
-1.11111111111111111111100724030214Q-01

ITERATION 3
1.99999999999999999999999999996102Q+00 4.444444444444444444444444444304970-01

-1.00000000000000000000000000000000Q+00
-1. 11111111111111111111111111097327Q-01

ITERATION 4
1.99999999999999999999999999993080Q+00 4.44444444444444444444444444438256Q-01

-1.00000000000000000000000000000000Q+00
-1.11111111111111111111111111104981Q-01

ITERATION 5
1.99999999999999999999999999993300Q+00 4.44444444444444444444444444439103Q-01

-1.00000000000000000000000000000000Q+00
-1.11111111111111111111111111105798Q-01
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INITIAL
EIGENVALUE EIGENVECTOR

2.9999999999956521D+00
ITERATION 1
2.99999999999554799179346531445844Q+00 1.42857142856110241557563602056358Q-01

-1.00000000000000000000000000000000Q+00
1.83673469388779290658086312175022Q-01

ITERATION 2
2.99999999999999999999998953584213Q+00 1.42857142857142857142862711151298Q-O1

-1.00000000000000000000000000000000Q+00
1.83673469387755102040810866818749Q-01

ITERATION 3
2.99999999999999999999999999993310Q+00 1.42857142857142857142857142823945Q-01

-1.00000000000000000000000000000000Q+00
1.83673469387755102040816326563306Q-01

ITERATION 4
2.99999999999999999999999999993313Q+00 1.42857142857142857142857142823135Q-01

-1.00000000000000000000000000000000Q+00
1.83673469387755102040816326564119Q-O1
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The initial eigenvalues are accurate to about 11 digits. This is

predicted by the sensitivity information of the eigensystem. After 4 or

5 iterations of improvement, both the eigenvalues and eigenvectors are

accurate to 29 digits.

The third example is W2 which is tridiagonal and symmetric with

w. = 11-il, wi = wi+1 = 1. The two largest eigenvalues A1, A2

differ only in their 16 th decimal. There is a complete set of eigen-

vectors associated with this matrix. Because the matrix has such close

eigenvalues we expect the improvement algorithm to have trouble in

correcting the eigenvalues and eigenvectors. The original eigenvalue

corresponding to AX1 had 14 digits of accuracy and after 8 iterations of

the improvement method the eigenvalue has 18 digits correct. The same

behavior is observed when correcting the eigenvalue corresponding to A2 .

80



INITIAL EIGENVALUE
ITERATION 1
ITERATION 2
ITERATION 3
ITERATION 4
ITERATION 5
ITERATION 6
ITERATION 7

1.0746194182903373D+01
1.07461941829034380718743690863448Q+01
1.07461941829033816031557790893203Q+01
1.07461941829033882228605634168161Q+01
1.07461941829033909533153146043105Q+01
1.07461941829033922422148572550782Q+01
1.07461941829033928623784999167867Q+01
1.07461941829033931598835760468091Q+01

FINAL EIGENVECTOR
9.88629190846133067516998428507032Q-01
7.37709351257873695301407780896377Q-01
2.99554586993802406947410760068640Q-01
8.49257130065351296738959121095138Q-02
1.85936250502026604683445724975527Q-02
3.32324204582360684315906057050302Q-03
5.02369061888928422363358090729180Q-04
6.58371971621544206761515042671864Q-05
7.61865178720211938107160392662216Q-06
7.97010780691418203861648718235799Q-07
1.49170047309691283205590487905030Q-07
8.05999513949657381932711436162661Q-07
7. 70625772698264849596256646785896Q-06
6.65944269897135814036409630992582Q-05
5.08147105234540647132087931845974Q-04
3.36146461840266871735592640782954Q-03
1.88074813310664411767048001135738Q-02
8.59024938701690869193894026281412Q-02
3.02999941502255420378278874600648Q-01
7.46194182903393090985315558399757Q-01
1.00000000000000000000000000000000Q+00
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INITIAL EIGENVALUE 1.0746194182903271D+01
ITERATION 1 1.07461941829033433976059441761208Q+01
ITERATION 2 1.07461941829033040124441455986926Q+01
ITERATION 3 1.07461941829032911616126355625056Q+01
ITERATION 4 1.07461941829033261891490624861945Q+01
ITERATION 5 1.07461941829033209017119077088864Q+01
ITERATION 6 1.07461941829033191609168995661605Q+01
ITERATION 7 1.07461941829033215617741903180615Q+01
ITERATION 8 1.07461941829033217325902425931528Q+01
ITERATION 9 1.07461941829033218036596949995776Q+01

FINAL EIGENVECTOR
9.99767082373558997476133599023331Q-01
7.46020381125375926389092975887160Q-01
3.02929367474891514994654137850312Q-01
8.58824856647538856754939996741997Q-02
1.88031007356874164974556390419611Q-02
3.36068166751090116238052254894111Q-03
5.08028712753559382921368672313649Q-04
6.65786792150239053911737520188987Q-05
7.70266488724515758843727812168871Q-06
7.90323614653383512144175281119245Q-07
-1.74714992194825858603603953099996Q-11
-7.90511366776660928970220311843171Q-07
-7.70445981289842522998879257140420Q-06
-6.65941902312079510151632817103730Q-05
-5.08147069171241713956089083797286Q-04
-3.36146461187119442654765745811924Q-03
-1.88074813295983861027133925647032Q-02
-8.59024938697314931368727202823157Q-02
-3.02999941502077987310919436763046Q-01
-7.46194182903321869663590896149039Q-01
-1.00000000000000000000000000000000Q+00
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The poor performance in this case is a result of the closeness of

and X2. Even though W21 has a well conditioned eigensystem and the

initial eigenvalues are fairly accurate, the improvement algorithm

converges very slowly as a result of the matrix B having condition of

0(1016). We do converge to working precision but cannot do much

better. This example points out the deficiency of the method for

matrices which have multiple well conditioned eigenvalues.

The next case involves a Frank matrix of order 16,F 16 . For modest

orders, some of the eigenvalues and eigenvectors are very ill condi-

tioned. The Frank matrix of order 5 has the form

5 4 3 2 1

4 4 3 2 1

F5 = 3 3 2 1 .

2 2 1

1 1

The eigenvalues as returned by the EISPACK routines have only 3 or

4 correct digits. After the improvement method is used they are correct

to at least 16 digits.
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INITIAL EIGENVALUE 4.5088136657577553D-02
ITERATION 1 4.32184389819157592851905924646871Q-02
ITERATION 2 4.51698118712213551287533441769284Q-02
ITERATION 2 4.51640978391083669633164130157582Q-02
ITERATION 4 4.51640925934655819177718573790899Q-02
ITERATION 5 4.51640925928243551550703198420706Q-02
ITERATION 6 4.51640925928242919391147684918330Q-02
ITERATION 7 4.51640925928242919262014013342539Q-02
ITERATION 8 4.51640925928242919262014013342502Q-02

FINAL EIGENVECTOR
4.55295858084347418533813329486630Q-15
-9.62562976105861738665815915248324Q-14
5.22862061525376489898124523382600Q-13
1.87835213082000922410422189468399Q-11

-5.47611741819355218640905447497531Q-10
6.58658420064815754995715142325168Q-09
-5.87586125817363698788614994026072Q-09
-1.33414301563556936165063676329558Q-06
2.93766647816964174655529779038886Q-05
-3.84747024699524185525362471751930Q-04
3.58102226114474551535083436570366Q-03
-2.45949033446269205150820221812918Q-02
1.23527015083245415046847795173868Q-01

-4.33273758740630165146808035847900Q-01
9.54835907407175708073798598665749Q-01
-1.00000000000000000000000000000000Q+00

INITIAL EIGENVALUE 6.7142228388109168D-02
ITERATION 1 6.66643137698195442641946328876656Q-02
ITERATION 2 6.71169860010952272141859786813711Q-02
ITERATION 3 6.71178183806233289989734872057320Q-02
ITERATION 4 6.71178190512596008015565365416580Q-02
ITERATION S 6.71178190518308382514619376819214Q-02
ITERATION 6 6.71178190518313248846809576549657Q-02
ITERATION 7 6.71178190518313252936715165005835Q-02
ITERATION 8 6.71178190518313252923292718608222Q-02

FINAL EIGENVECTOR
1.51526057428760024131385441920814Q-14

-2. 10608689199894639121390533553929Q-13
-4.59132809603212013739059370858780Q-13
5.03121006205265221782587381619042Q-11

-6. 10367503128827528549043808789733Q-10
-5.11700773844980640305890641413234Q-10
1.07145899105585657217625838100845Q-07
-1.41300020826933758680717072276926Q-06
5.27206677773053376395254324305684Q-06
9.51429084348379852625249495953166Q-05
-1.87225379403144661116643244001986Q-03
1.75174755179031878008097206595679Q-02

-1.04003257172284109839929604036564Q-01
4.01575672239390198072350013506653Q-01
-9.32882180948168674707670728139122Q-01

1.00000000000000000000000000000000Q+00
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INITIAL EIGENVALUE 2. 172854696602'0205D-02
ITERATION 1 2.21275683536895041367276171229150Q-02
ITERATION 2 2. 17670940262182380990456376235187Q-02
ITERATION 3 2.17643091864742214663175329898356Q-02
ITERATION 4 2.17643101462820506272220231819728Q-02
ITERATION 5 2.17643101463078914989925208745560Q-02
ITERATION 6 2. 17643101463078921699435252926719Q-02
ITERATION 7 2.17643101463078921797841271304686Q-02

FINAL EIGENVECTOR
6.09604200702384038532704455957581Q-15

-2. 73997467322881376572083933142223Q-13
8.11390162023412987354355092524343Q-12
-1.88443538011708528389774685030064Q-10
3.62343087431551569843124637939496Q-09
-5.89610668202315394084972015216677Q-08
8. 18775331638580358500033096711219Q-07
-9.71060335740480132731427431287424Q-06
9.78795456947034517572640469492097Q-05
-8.30002785502956068363334204862331Q-04
5.82520313034380206421780033863721Q-03
-3.33083924049340976490747364589400Q-02
1.45374323477916687230415429288618Q-01

-4.67590377378610502061874206437384Q-01
9. 78235689853692107820215872869586Q-01

-1.00000000000000000000000000000000Q+00

INITIAL EIGENVALUE 3.1423815001609419D-02
ITERATION 1 2.98920447725064585345333689758718Q-02
ITERATION 2 3.13342874872101858794645745653895Q-02
ITERATION 3 3.13342893197246380510016435612399Q-02
ITERATION 4 3.13342893484457732139412910378051Q-02
ITERATION 5 3. 13342893485027760813686373410242Q-02
ITERATION 6 3. 13342893485028892142856233977159Q-02
ITERATION 7 3. 13342893485028894440674471172407Q-02
ITERATION 8 3.13342893485028894453348926301873Q-02
ITERATION 9 3. 13342893485028894453348926270434Q-02

FINAL EIGENVECTOR
3.17169022957775830179754362566001Q-15

-9.80493776651468891135863511564213Q-14
1.51277458773913301139471741752716Q-12

-2.9578326396677830197668028.763098Q-12
-5.36183169749131968412696656076112Q-10
1.77082759614888112651544066577968Q-08

-3. 59203450450862012845803461668147Q-07
5.45298168674534454190165501668829Q-06

-6.54007277430382373383086756256789Q-05
6.29584692442211664012753484966195Q-04
-4.85257564412694696433944370298184Q-03
2.94570420885963346982494016083846Q-02
-1.36309087476099540516468783438076Q-01
4.53489484821733516647939966262720Q-01
-9.68665710651497110554665107372980Q-01

1.00000000000000000000000000000000Q+00
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CHAPTER 13

Implementation

In this chapter we describe some of the details skipped over in the

earlier chapters. The Fortran programs that implement the algorithms

given earlier are listed in the appendix. The routines are written in

double precision, and trivial changes are needed in obvious places to

convert to single precision. Extended double precision variables,

REAL*16, are used in routine DQQDOT for the residual calculation. It

should be noted that REAL*16 is not "standard" and cannot be supplied in

a portable fashion easily.

In the improvement algorithm which uses updates and handles the

case where there are real eigenvalues, the triangular form of the matrix

is necessary as well as the orthogonal matrix that generated the

triangular form. These matrices make up the real Schur form of the

original matrix. The EISPACK [19] routines ORTHES, ORTRAN and a

modification to HQR2, say HQRORT, can be used to generate both the

triangular and orthogonal matrices. The calls to the EISPACK routines

are of the form

CALL ORTHES(LDA,N,1,N,A,FVL)

CALL ORTRAN(LDA,N,1,N,A,FV1,Q)

CALL HQRORT(LDA,N,1,N,A,WR,WI,Q,IERR)

where

LDA is the leading dimension of the array A.

N is the order of the matrix A.
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A contains the original matrix to start and, after the

sequence of calls, contains the triangular matrix.

FVl is a scratch array.

Q will contain the orthogonal matrix that reduced A to

triangular form.

WR is an array that contains the real part of the

eigenvalues.

WI is an array that contains the imaginary part of the

eigenvalues.

IERR is an error flag.

If the matrix A has complex conjugate eigenpairs, then the matrix

returned by HQRORT is not a triangular matrix but a quasi-triangular

matrix which has 2x2 blocks on the diagonal which correspond to the

complex conjugate pairs. The modified version of HQR2, HQRORT, is

easily generated by changing a GO TO statement of HQR2

from 60 IF (EN .LT. LOW) GO TO 340

to 60 IF (EN .LT. LOW) GO TO 1001

Parlett and Feldman [16] describe another approach to generate the

real Schur form of the original matrix. Parlett's routines, called

ORTHAN and HQR3, have an advantage in that there are fewer operations

required to generate T and Q than what was described for the modified

EISPACK routine above. In the case where the improvement algorithm is

used to calculate an eigenvector with no approximation given, Parlett's

routine is advised. The calls are of the form
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CALL ORTHAM(LDA,N,1,N,A,Q,RV1)

CALL HQR3(LDA,N,1,N,A,Q,RV1,IERR)

Algorithm 4 actually computes an eigenvector corresponding to an

approximate eigenvalue. For the initial approximation to the

eigenvector, the kth column of the elementary reflector which

annihilates the last n-1 components of a vector with all ones is

chosen. Here, k refers to the index on the diagonal of the tridiagonal

matrix T where the approximate eigenvalue is found. The kth column is

used so as to have a better chance of resolving eigenvalues correspond-

ing to multiple eigenvalues. If this initial approximation fails to

produce an approximate eigenvector, the next column of the elementary

reflector, k+l, is chosen. This will be repeated until n attempts are

made; then an error exit is taken. To determine failure of an initial

approximate eigenvector, a check is made on the correction to the

eigenvalue. If the correction is too large, then a new initial vector

is tried.

The improvement algorithm can get into trouble when used on ill-

conditioned eigenvalues. This situation can be detected fairly simply

by computing the sensitivity for the eigenvalues. Chan, Feldman, and

Parlett [2] point out that the sensitivity, si, can be computed very

inexpensively from the triangular matrix of the eigenvalue decomposi-

tion. The left eigenvector of the triangular matrix requires a back

substitution using TT beginning at the kth position of T, where k is the

position where the eigenvalue is found on the diagonal of T.

The routine EIGCND can be used to compute the sensitivity for the

eigenvalue. If the sensitivity is small in some sense, then it is
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advisable to compute the invariant subspace. To detect smallness, the

following test can be made

IF ( 1.0 + SI .EQ. 1.0 ) GO TO ...

Here SI is the sensitivity as returned from EIGCND, and the GO TO

branches to a place where corrective action can be taken. Corrective

action in this case would be to compute the invariant subspace by some

method, perhaps using Varah's approach, then invoke the routine imple-

menting the method outlined in chapter 10.
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SUBROUTINE IMPRV1(A,LDA,N,X,W,SAVE,Y1,Y2,Z,R,IPVT)
C

INTEGER LDA,N,IPVT(1)
DOUBLE PRECISION A(LDA,1),SAVE(LDA,1),X(1),W,Y1(1),Y2(1),R(1),Z(1)

C
C IMPRV1 GIVEN THE MATRIX A AND AN INITIAL ESTIMATE OF AN
C EIGENVALUE AND EIGENVECTOR PAIR WILL IMPROVE THE PAIR.
C
C ON ENTRY
C
C A DOUBLE PRECISION (LDA,N)
C THE ORIGINAL MATRIX.
C
C LDA INTEGER
C THE LEADING DIMENSION OF THE ARRAY A.
C
C N INTEGER
C THE ORDER OF THE MATRIX A.
C
C X DOUBLE PRECISION (N)
C THE EIGENVECTOR TO BE IMPROVED.
C
C W DOUBLE PRECISION
C THE EIGENVALUE TO BE IMPROVED.
C
C SAVE DOUBLE PRECISION (LDA,N)
C SAVE IS A WORK ARRAY.
C
C Y1 DOUBLE PRECISION (N)
C Y1 IS A WORK ARRAY.
C
C Z DOUBLE PRECISION (N)
C Z IS A WORK ARRAY.
C
C ON RETURN
C
C A HAS BEEN DESTROYED.
C
C Y2 DOUBLE PRECISION (N)
C CONTAINS THE INFORMATION ON THE CORRECTION
C TO THE EIGENPAIR W AND X. THE S ELEMENT OF
C Y2 CONTAINS THE CORRECTION TO W AND THE REST
C OF Y2 CONTAINS THE CORRECTION TO X. S IS THE
C POSITION IN X WHICH HAS BEEN NORMALIZED TO HAVE
C VALUE 1.0 AND IS CORRECT.
C
C IPVT INTEGER (N)
C AN INTEGER VECTOR OF PIVOT INDICES.
C
C THIS VERSION DATED 3/80.
C J.J. DONGARRA ARGONNE NATIONAL LABORATORY AND UNIVERSITY
C OF NEW MEXICO.
C
C FORTRAN DABS
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C BLAS DSCAL,IDAMAX,DCOPY
C LINPACK DGECO,DGESL,(DGEFA)
C AUXILARY DQQDOT,DQADD
C

DOUBLE PRECISION RCOND,DQQDOT,DQADD
DOUBLE PRECISION ST(2)
INTEGER IMAX, IDAMAX, I

C
C
C NORMALIZE THE EIGENVECTOR.
C

IMAX = IDAMAX(N,X,1)
CALL DSCAL(N,1.ODO/DABS(X(IMAX)),X,1)

C
C CALCULATE THE RESIDUAL WITH EXTENDED PRECISION
C ACCUMULATION OF INNER PRODUCT.
C

DO 10 I = 1,N
ST(1) = -W
ST(2) = X(I)
Z(I) -DQQDOT(N,A(I,1),LDA,X,1,ST)

10 CONTINUE
C
C FORM B FROM A - LAMDA*I WITH THE IMAX-TH COLUMN
C REPLACED BY MINUS THE EIGENVECTOR. IMAX IS THE
C INDEX OF THE LARGEST COMPONENT OF X.
C

DO 20 I = 1,N
A(I,I) = A(I,I) - W
A(I,IMAX) = -X(I)

20 CONTINUE
C
C SAVE THE B MATRIX.
C

DO 30 I = 1,N
CALL DCOPY(N,A(1,I),1,SAVE(1,I),1)

30 CONTINUE
C
C FACTOR THE B MATRIX IN PREPARATION TO ITERATE.
C

CALL DGECO(A,LDA,N,IPVT,RCOND,R)
DO 40 I = 1,N

Y2(I) = 0.ODO
40 CONTINUE

C
C START THE ITERATION.

DO 100 L = 1,5
CALL DCOPY(N,Z,1,R,1)
CALL DGESL(A,LDA,N,IPVT,Z,0)
DO 50 I = 1,N

Y1(I) = Y2(I)
Y2(I) = Z(I) + Y1(I)

50 CONTINUE
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DO 60 I = 1,N
IF( Y1(I) .NE. Y2(I) ) GO TO 70

60 CONTINUE
GO TO 110

70 CONTINUE

CALCULATE RESIDUAL TO DO ONE STEP OF ITERATIVE IMPROVEMENT.

DO 80 I = 1,N
ST(1) = -R(I)
ST(2) = 1.ODO
R(I) = -DQQDOT(N,SAVE(I,1),LDA,Z,1,ST)

80 CONTINUE

CALCULATE THE NEW RIGHT HAND SIDE.

DO 90 1 = 1,N
IF( IMAX .EQ. I ) GO
Z(I) = Y1(IMAX)*Z(I)

90 CONTINUE
Z(IMAX) = R(IMAX)

100 CONTINUE
110 CONTINUE

TO 90
+ Z(IMAX)*Y1(I) + Z(IMAX)*Z(I)

CORRECT THE EIGENVALUE AND EIGENVECTOR.

CALL DCOPY(N,Y2,1,Z,1)
Z(IMAX) = 0.0
W = DQADD(W,Y2(IMAX))
DO 120 I = 1,N

X(I) = DQADD(X(I),Z(I))
120 CONTINUE

RETURN

END
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SUBROUTINE IMPRV2(T,LDT,N,X,W,Q,A,Y1,Y2,Z,R,Z1,Z2)
C

INTEGER LDT,N
DOUBLE PRECISION T(LDT,1),X(1),W,Q(LDT,1),A(LDT,1),Y1(1),Y2(1)
DOUBLE PRECISION Z(1),R(1),Z1(1),Z2(1)

C
C THIS SUBROUTINE WILL IMPROVE A GIVEN EIGENVALUE AND
C EIGENVECTOR PAIR. THE METHOD IS ITERATIVE AND REQUIRES
C ORDER N**2 WORK. THE IMPROVEMENT IS EQUIVALENT TO
C CARRYING OUT THE EIGENVALUE COMPUTATION IN EXTENDED PRECISION
C AND THEN TRUNCATING THE RESULTS TO WORKING PRECISION.
C
C ON ENTRY
C
C T DOUBLE PRECISION(LDT,N)
C CONTAINS THE TRIANGULAR MATRIX.
C
C LDT INTEGER
C THE LEADING DIMENSION OF THE ARRAY T.
C
C N INTEGER
C THE ORDER OF THE MATRIX T.
C
C X DOUBLE PRECISION(N)
C CONTAINS THE APPROXIMATE EIGENVECTOR
C TO BE IMPROVED.
C
C W DOUBLE PRECISION
C CONTAINS THE APPROXIMATE EIGENVALUE
C TO BE IMPROVED.
C
C Q DOUBLE PRECISION(LDT,N)
C CONTAINS THE TRANSFORMATIONS NEEDED TO
C REDUCLJ THE ORIGINIAL MATRIX TO TRIANGULAR FORM.
C
C A DOUBLE PRECISION(LDT,N)
C CONTAINS THE ORIGINAL MATRIX.
C
C ON RETURN
C
C X CONTAINS THE IMPROVED EIGENVECTOR.
C
C W CONTAINS THE IMPROVED EIGENVALUE.
C
C Y1,Y2,Z,R,Z1,Z2
C DOUBLE PRECISION(N)
C WORK VECTORS.
C
C THIS VERSION DATED 3/80
C JACK DONGARRA, ARGONNE NATIONAL LABORATORY, AND
C UNIVERSITY OF NEW MEXICO.
C
C FORTRAN DABS,DSQRT
C BLAS DSCAL,TDAMAX,DCOPY,DDOT,DROTG,DROT
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C LINPACK DTRSL
C AUXILARY DQQDOT,DQADD
C

INTEGER I,IB,IMAX,IDAMAX
DOUBLE PRECISION C,S,DQQDOT,DQADD,T1,T2
DOUBLE PRECISION ST(2)

C
C NORMALIZE THE EIGENVECTOR.
C

IMAX = IDAMAX(N,X,1)
CALL DSCAL(N,1.ODO/DABS(X(IMAX)),X,1)

C
C CALCULATE THE RESIDUAL, FOR THE EIGENVALUE PROBLEM,
C WITH EXTENDED PRECISION ACCUMULATION OF INNER PRODUCT.
C

DO 10 I = 1,N
ST(1) = -W
ST(2) = X(I)
R(I) = -DQQDOT(N,A(I,1),LDT,X,1,ST)

10 CONTINUE
C
C FORM T - LAMDA*I WITH THE IMAX-TH COLUMN
C REPLACED BY MINUS THE EIGENVECTOR. IMAX IS THE
C INDEX OF THE LARGEST COMPONENT OF X.
C

DO 20 I = 1,N
T(I,I) = T(I,I) - W

20 CONTINUE
C
C FORM C = - X - T(,IMAX), WHERE IMAX IS THE LARGEST COMPONENT
C !F X.
C

DO 30 I = 1,N
Z2(I) = - X(I) - A(I,IMAX)

30 CONTINUE
Z2(IMAX) = Z2(IMAX) + W

C
C FORM D = TRANS(Q)*C
C

DO 40 I = 1,N
Y1(I) = DDOT(N,Q(1,I),1,Z2,1)

40 CONTINUE
C
C RESTORE MATRIX TO TRIANGULAR FORM AFTER RANK ONE UPDATE,
C AND APPLY TRANSFORMATIONS AND RANK ONE UPDATE TO
C THE RIGHT HAND SIDE.
C

DO 50 I = 1,N
Z(I) = DDOT(N,Q(1,I),1,R,1)

50 CONTINUE
= Y1CN)

DO 60 IB = 2,N
I = N - IB + 2

Ti = Y1(I-1)
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CALL DROTG(T1,T2,C,S)
CALL DROT(IB,T(I-1,I-1),LDT,T(I,I-1),LDT,C,S)
CALL DROT(1,Z(I-1),1,Z(I),1,C,S)
Z1(I) = T2
T2 = Ti

60 CONTINUE
C
C ADD T + D*TRANS(F), WHERE F = TRANS(Q)*E(S).

DO 70 I = 1,N
T(1,I) = T(1,I) + T1*Q(IMAX,I)

70 CONTINUE
DO 80 1 = 2,N

Ti = T(I-1,I-1)
T2 = T(I,I-1)
CALL DROTG(T1,T2,C,S)
T(I-1,I-1) = Ti
Z2(I) = T2
CALL DROT(N-I+1,T(I-1,I),LDT,T(I,I),LDT,C,S)
T(I,I-1) = O.ODO
CALL DROT(1,Z(I-1),1,Z(I),1,C,S)

80 CONTINUE
DO 90 I = 1,N

Y2(I) = 0.ODO
90 CONTINUE

C
C START THE ITERATION.
C

DO 180 INFO = 1,5
C
C SOLVE TRIANGULAR SYSTEM.
C

CALL DCOPY(N,Z,1,R,1)
CALL DTRSL(T ,LDT,N,Z,1,INF)

C
C CALCULATE RESIDUAL USING EXTENDED PRECISION ACCUMULATION
C OF INNER PRODUCT.
C

DO 110 I = 1,N
ST(1) = -R(I)
ST(2) = 1.ODO
R(I) = -DQQDOT(N-I+1,T(I,I),LDT,Z(I),1,ST)

110 CONTINUE
C
C APPLY RANK ONE UPDATES TO SOLUTION.
C

DO 120 IB = 2,N
I = N - IB + 2

IF( DABS(Z1(I)) .EQ. 1.ODO ) C = O.ODO
IF( DABS(Z1(I)) .EQ. 1.ODO ) S = 1.ODO
IF( DABS(Z1(I)) .LT. 1.ODO ) C = DSQRT(1.ODO - Z1(I)*Z1(I))
IF( DABS(Z1(I)) .LT. 1.ODO ) S = Z1(I)
IF( DABS(Z1(I)) .GT. 1.ODO ) C = 1.0D0/Z1(I)
IF( DABS(Z1(I)) .GT. 1.ODO ) S = DSQRT(1.ODO - C*C)
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CALL DROT(1,Z(I-1),1,Z(I),1,C,S)
120 CONTINUE

DO 130 I = 2,N
IF( DABS(Z2(I))
IF( DABS(Z2(I))
IF( DABS(Z2(I))
IF( DABS(Z2(I))
IF( DABS(Z2(I))
IF( DABS(Z2(I))

.EQ.

.EQ.

.LT.

.LT.

.GT.

.GT.
CALL DROT(1,Z(I-1),1,

130 CONTINUE

1.ODO ) C =
1.ODO ) S =
1.ODO ) C =
1.ODO ) S =
1.ODO ) C =
1.ODO ) S =
Z(I), 1,C,S)

0.ODO
1.ODO
DSQRT(1.ODO - Z2(I)*Z2(I))
Z2(I)
1.ODO/Z2(I)
DSQRT(1.ODO - C*C)

FORM NEW CORRECTIONS.

DO 140 I = 1,N
Y1(I) = Y2(I)
Y2(I) = Z(I) + Y1(I)

140 CONTINUE

TEST IF CONVERGED.

DO 150 I = 1,N
IF( Y1(I) .NE. Y2(I) ) GO TO 160

150 CONTINUE
GO TO 185

160 CONTINUE

CALCULATE THE NEW RIGHT HAND SIDE.

DO 170 I = 1,N
IF( IMAX .EQ. I ) GO TO 170
Z(I) = R(I) + Y1(IMAX)*Z(I)

170 CONTINUE
Z(IMAX) = R(IMAX)

180 CONTINUE
185 CONTINUE

C
C UN-TRANSFORM THE CORRECTIONS.
C

+ Z(IMAX)*Y1(I) + Z(IMAX)*Z(I)

DO 190 IB = 2,N
I = N - IB + 2

IF( DABS(Z2(I)) .EQ. 1.OD0 ) C = 0.ODO
IF( DABS(Z2(I)) .EQ. 1.ODO ) S = 1.OD0
IF( DABS(Z2(I)) .LT. 1.ODO ) C = DSQRT(1.ODO
IF( DABS(Z2(I)) .LT. 1.OD0 ) S = Z2(I)
IF( DABS(Z2(I)) .GT. 1.OD0 ) C = 1.ODO/Z2(I)
IF( DABS(Z2(I)) .GT. 1.ODO ) S = DSQRT(1.ODO
CALL DROT(1,Y2(I-1),1,Y2(I),1,C,-S)

190 CONTINUE
DO 200 I = 2,N

IF( DABS(Z1(I)) .EQ. 1.OD0 ) C = 0.OD0
IF( DABS(Z1(I)) .EQ. 1.ODO ) S = 1.ODO
IF( DABS(Z1(I)) .LT. 1.ODO ) C = DSQRT(1.ODO
IF( DABS(Z1(I)) .LT. 1.ODO ) S = Zi(I)

- Z2(I)*Z2(I))

- C*C)

- Z1(I)*Z1(I))
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IF( DABS(Z1(I)) .GT. 1.ODO ) C = 1.0D0/Z1(I)
IF( DABS(Z1(I)) .GT. 1.0DO ) S = DSQRT(1.ODO - C*C)
CALL DROT(1,Y2(I-1),1,Y2(I),1,C,-S)

200 CONTINUE
DO 210 I = 1,N

Z(I) = DDOT(N,Q(I,1),LDT,Y2,1)
210 CONTINUE

C
C CORRECT THE EIGENVALUE AND EIGENVECTOR.
C

CALL DCOPY(N,Z,1,Y2,1)
Z(IMAX) = 0.ODO
W = DQADD(W,Y2(IMAX))
DO 220 I = 1,N

X(I) = DQADD(X(I),Z(I))
220 CONTINUE

RETURN
C

END
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C

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C

DOUBLE PRECISION(LDT,N)
CONTAINS THE TRIANGULAR MATRIX.

INTEGER
THE LEADING DIMENSION OF THE ARRAY T.

INTEGER
THE ORDER OF THE MATRIX T.

DOUBLE PRECISION(N)
CONTAINS THE APPROXIMATE
TO BE IMPROVED.

DOUBLE PRECISION
CONTAINS THE APPROXIMATE
TO BE IMPROVED.

EIGENVECTOR

E IG NVALUE

T

L1)T

N

X

W

K

Q

A

ON RETURN

CONTAINS THE IMPROVED EIGENVECTOR.

CONTAINS THE IMPROVED EIGENVALUE.

Y1,Y2,Z,R,Z1,Z2
DOUBLE PRECISION(N)
WORK VECTORS.

THIS VERSION DATED 3/80.
JACK DONGARRA, ARGONNE NATIONAL LABORATORY, AND
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SUBROUTINE IMPRV4(TLDT,N,X,W,K,Q,A,Y1,Y2,Z,R,Z1,Z2,INFO)

INTEGER LDT,N,K,INFO
DOUBLE PRECISION T(LDT,1),X(1),W,Q(LDT,1),A(LDT,1),Y1(1),Y2(1)
DOUBLE PRECISION Z(1),R(1),Z1(1),Z2(1)

THIS SUBROUTINE WILL IMPROVE A GIVEN EIGENVALUE AND
EIGENVECTOR PAIR. THE METHOD IS ITERATIVE AND REQUIRES
ORDER N**2 WORK. THE IMPROVEMENT IS EQUIVALENT TO
CARRYING OUT THE EIGENVALUE COMPUTATION IN EXTENDED PRECISION
AND THEN TRUNCATING THE RESULTS TO WORKING PRECISION.
THIS ROUTINE PERFORMS A FULL NEWTON LIKE ITERATION AND
CORRECTS THE EIGENVALUE AND EIGENVECTOR EVERY ITERATION.

ON ENTRY

INTEGER
IS THE INDEX OF THE EIGENPAIR.

DOUBLE PRECISION(LDT,N)
REDUCE THE ORIGINIAL MATRIX TO TRIANGULAR FORM.

DOUBLE PRECISION(LDT,N)
CONTAINS THE ORIGINAL MATRIX.

X

W



C UNIVERSITY OF NEW MEXICO.
C
C FORTRAN DABS,DSQRT
C BLAS DSCAL, IDAMAX,DCOPY,DROTG,DROT,DDOT
C LINPACK DTRSL
C AUXILIARY DQQDOT,DQADD
C

INTEGER I,IB,IMAX,IDAMAX
DOUBLE PRECISION C,S,DQQDOT,LAMDAR
DOUBLE PRECISION NEWZ,OLDZ,TZ,DDOT,SI,T1,T2,ANORM
DOUBLE PRECISION ST(2)
IDIF = K
OLDZ = 1.0D10
ANORM = O.0DO
DO 1 I = 1,N

S = DASUM(N,A(1,I),1)
IF( S .GT. ANORM ) ANORM = S

1 CONTINUE
IRESET 0
LAMDAR W

ITER = 0
GO TO 13(

5 CONTINUE
C

INFO = 0
C
C NORMALIZE THE EIGENVECTOR.
C

IMAX = IDAMAX(N,X,1)
CALL DSCAL(N,1.ODO/DABS(X(IMAX)),X,1)

C
C CALCULATE THE RESIDUAL, FOR THE EIGENVALUE PROBLEM,
C WITH DOUBLE PRECISION ACCUMULATION OF INNER PRODUCT.
C

DO 10 I = 1,N
ST(1) = -W
ST(2) = X(I)
R(I) = -DQQDOT(N,A(I,1),LDT,X,l,ST)

10 CONTINUE
C
C FORM T - LAMDA*I WITH THE IMAX-TH COLUMN
C REPLACED BY MINUS THE EIGENVECTOR. IMAX IS THE
C INDEX OF THE LARGEST COMPONENT OF X.
C

DO 20 I = 1,N
T(I,I) = T(I,I) - W

20 CONTINUE
C
C FORM C = - X - T(,IMAX), WHERE IMAX IS THE LARGEST COMPONENT
C OF X.
C

DO 30 I = 1,N
Z2(I) = - X(I) - A(I,IMAX)

30 CONTINUE
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Z2(IMAX) = Z2(IMAX) + W
C
C FORM D = TRANS(Q)*C
C

DO 40 I = 1,N
Yi(I) = DDOT(N,Q(1,I),1,Z2,1)

40 CONTINUE
C
C RESTORE MATRIX TO TRIANGULAR FORM AFTER RANK ONE UPDATE,
C THE RIGHT HAND SIDE.
C

DO 50 I = 1,N
Z(I) = DDOT(N,Q(1,I),1,R,1)

50 CONTINUE
T2 = Y1(N)
DO 60 IB = 2,N

I = N - IB + 2
Ti = Yl(I-1)
CALL DROTG(T1,T2,C,S)
CALL DROT(IB,T(I-1,I-1),LDT,T(I,I-1),LDT,C,S)
CALL DROT(1,Z(I-1),1,Z(I),1,C,S)
Z1(I) = T2
T2 = Ti

60 CONTINUE
C
C ADD T + D*TRANS(F), WHERE F = TRANS(Q)*E(S).
C

DO 70 I = 1,N
T(1,I) = T(1,I) + T1*Q(IMAX,I)

70 CONTINUE
TZ = Ti
DO 80 I = 2,N

Ti = T(I-1,I-1)
T2 = T(I,I-1)
CALL DROTG(T1,T2,C,S)
T(I-1,I-1) = Ti
Z2(I) = T2
CALL DROT(N-I+1,T(I-1,I),LDT,T(I,I),LDT,C,S)
T(I,I-1) = O.ODO
CALL DROT(1,Z(I-1),1,Z(I),1,",S)

80 CONTINUE
C
C SOLVE TRIANGULAR SYSTEM.
C

CALL DTRSL(T,LDT,N,Z,1,INF)
C
C APPLY RANK ONE UPDATES TO SOLUTION.
C

CALL DCOPY(N,Z,1,Y2,1)
C
C UN-TRANSFORM THE CORRECTIONS.
C

DO 90 IB = 2,N
I = N - IB + 2
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IF( DABS(Z2(I)) .EQ. 1.0DO ) C
IF( DABS(Z2(I)) .EQ. 1.0DO ) S
IF( DABS(Z2(I)) .LT. 1.0DO ) C
IF( DABS(Z2(I)) .LT. 1.0DO ) S
IF( DABS(Z2(I)) .GT. 1.0D0 ) C
IF( DABS(Z2(I)) .GT. 1.0DO ) S
CALL DROT(N-I+1,T(I-1,I),LDT,T(
Ti = T(I-1,I-1)
T(I,I-1) = S*T1
T(I-1,I-1) = C*T1

90 CONTINUE
DO 100 I = 1,N

T(1,I) = T(1,I) - TZ*Q(IMAX,I)
100 CONTINUE

DO 110 I = 2,N
IF( DABS(Z1(I)) .EQ. 1.ODO ) C
IF( DABS(Z1(I)) .EQ. 1.ODO ) S
IF( DABS(Z1(I)) .LT. 1.ODO ) C
IF( DABS(Z1(I)) .LT. 1.ODO ) S
IF( DABS(Z1(I)) .GT. 1.0D0 ) C
IF( DABS(Z1(I)) .GT. 1.0DO ) S
CALL DROT(N-I+2,T(I-1,I-1),LDT

110 CONTINUE
DO 120 I = 1,N

T(I,I) = T(I,I) + W
Z(I) = DDOT(N,Q(I,1),LDT,Y2,1)

120 CONTINUE

= O.ODO
= 1.ODO
= DSQRT(1.ODO - Z2(I
= Z2(I)
= 1.ODO/Z2(I)
= DSQRT(1.ODO - C*C)

(I,I),LDT,C,-S)

= O.ODO
= 1.ODO
= DSQRT(1.ODO - Z1(I
= Z1(I)
= 1.ODO/ZJ.(I)
= DSQRT(1 ODO - C*C)
,T(I,I-1),LDT,C,-S)

TEST IF RESTART NEEDED

S = ANORM*DSQRT(DFLOAT(N))*1O.0D6*16.ODO**(-13)
IF( DABS(Z(IMAX)) .LT. S ) GO TO 150
IRESFT = IRESET + 1
ITER = 0
IF( IRESET .GT. N ) RETURN

W = LAMDAR

PICK A NEW STARTING VECTOR.

130 CONTINUE
S = DSQRT(DFLOAT(N))
C = 1.ODO/(DFLOAT(N) + S)
X(1) = (1.ODO + S)/C
DO 140 1 = 2,N

X(I) = C
140 CONTINUE

X(IDIF) = X(IDIF) - 1.ODO
IDIF = IDIF + 1
IDIF = MOD(IDIF,N) + 1
GO TO 5

CORRECT THE EIGENVALUE AND EIGENVECTOR.

150 CONTINUE

105

)*Z2(I))

)*Z1(I))

C
C
C

C
C
C

C
C
C



W = QEXTD(W) + QEXTD(Z(IMAX))
NEWZ = Z(IMAX)
Z(IMAX) = O.ODO
DO 160 I = 1,N

X(I) = QEXTD(X(I)) + QEXTD(Z(I))
160 CONTINUE

C
C TEST FOR CONVERGENCE.
C

IF( DABS(OLDZ) .LE. DABS(NEWZ) ) GO TO 180
OLDZ = NEWZ
ITER = ITER + 1
IF(ITER .LT. 10 ) GO TO 170
INFO = 10
GO TO 180

170 CONTINUE
GO TO 5

180 CONTINUE
RETURN

C
END
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SUBROUTINE IMPRVC(A,T,Q,LDA,N,XR,XI,WR,WI,Y1,Y2,Z,R,K)
C

INTEGER LDA,N
DOUBLE PRECISION A(LDA,1),XR(1),XI(1),W,Y1(1),Y2(1),R(1),Z(1)
DOUBLE PRECISION T(LDA,1),Q(LDA,1),QXR(40),QXI(40)
DOUBLE PRECISION WR,WI

C
C THIS SUBROUTINE WILL IMPROVE A GIVEN COMPLEX CONJUGATE
C EIGENVALUE AND ITS ASSOCIATED EIGENVECTOR. THE METHOD IS
C ITERATIVE AND REQUIRES ORDER N**2 WORK PER ITERATION. THE
C IMPROVEMENT IS EQUIVALENT TO CARRYING OUT THE EIGENVALUE
C COMPUTATION IN EXTENDED PRECISION AND THEN TRUNCATING THE
C RESULTS TO WORKING PRECISION.
C
C ON ENTRY
C
C A DOUBLE PRECISION(LDA,N)
C CONTAINS THE ORIGINAL MATRIX.
C
C T DOUBLE PRECISION(LDA,N)
C CONTAINS THE QUASI-TRIANGULAR MATRIX.
C
C Q DOUBLE PRECISION(LDA,N)
C CONTAINS THE ORTHOGONAL MATRIX USED TO REDUCE
C A TO QUASI-TRIANGULAR FORM.
C
C LDA INTEGER
C THE LEADING DIMENSION OF THE ARRAYS A,T AND Q.
C
C N INTEGER
C THE ORDER OF THE MATRIX A.
C
C XR DOUBLE PRECISION(N)
C CONTAINS THE APPROXIMATE DOUBLE PRECISION PART OF
C THE EIGENVECTOR TO BE IMPROVED.
C
C XI DOUBLE PRECISION(N)
C CONTAINS THE APPROXIMATE IMAGINARY PART OF THE
C EIGENVECTOR TO BE IMPROVED.
C
C WR DOUBLE PRECISION
C CONTAINS THE APPROIMATE DOUBLE PRECISION PART OF
C THE EIGENVALUE TO BE IMPROVED.
C

C WI DOUBLE PRECISION
C CONTAINS THE APPROXIMATE IMAGINARY PART OF THE
C EIGENVALUE TO BE IMPROVED.
C
C K INTEGER
C IS THE POSITION ON THE DIAGONAL OF T WHERE THE
C 2X2 BLOCK ASSOCIATED ITH (WR,WI) STARTS.
C
C ON RETURN
C

107



C XR CONTAINS THE IMPROVED REAL PART OF
C THE EIGENVECTOR.
C
C XI CONTAINS THE IMPROVED IMAGINARY PART OF THE
C EIGENVECTOR.
C
C WR CONTAINS THE IMPROVED REAL PART OF
C THE EIGENVALUE.
C
C WI CONTAINS THE IMPROVED IMAGINARY PART OF THE EIGENVALUE.

C
C Y1,Y2,Z,R '1,Z2
C DOUBLE PRECISION(N)
C WORK VECTORS.
C
C THIS VERSION DATED 3/80.
C JACK DONGARRA, ARGONNE NATIONAL LABORATORY, AND
C UNIVERSITY OF NEW MEXICO.
C
C
C BLAS DCOPY,DDOT
C AUXILIARY DQQDOT,DQADD,HESSL(CSOLVE)
C

DOUBLE PRE( TSION RCOND,DQQDOT,DQADD,DDOT
DOUBI. iDfl.SION ST(2),ST1,ST2
INTLJER I
DOUBLE PRECISION R1,RES

C
C
C CALCULATE THE RESIDUAL WITH EXTENDED PRECISION
C ACCUMULATION OF INNER PRODUCT.
C

DO 10 I = 1,N
ST(1) = -WR*XR(I)
ST(2) = WI*XI(I)
Z(I) = -DQQDOT(N,A(I,1),LDA,XR,1,ST)
ST(1) = -WI*XR(I)
ST(2) = -WR*XI(I)
Z(I+N) = -DQQDOT(N,A(I,1),LDA,XI,1,ST)

10 CONTINUE
N2P1 = 2*N + 1
NSQ = 2*N + 2
DO 20 I = N2P1,NSQ

Z(I) = O.ODO
20 CONTINUE

C
C INITIALIZE Y2 AND MULTIPLE THE EIGENVECTOR BY TRANS(Q).
C

NBIG = 2*N+2
DO 30 I = 1,NBIG

Y2(I) = 0.ODO
30 CONTINUE

DO 40 I = 1,N
QXR(I) = DDOT(N,Q(1,I),1,XR,1)
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QXI(I) = DDOT(N,Q(1,I),1,XI,1)
40 CONTINUE

C
C START THE ITERATION.
C

DO 120 INFO = 1,5
CALL DCOPY(NBIG,Z,1,R,1)
DO 50 I = 1,N

Z(I) = DDOT(N,Q(1,I),1,R,1)
Z(I+N) = DDOT(N,Q(1,I),1,R(N+1),1)

50 CONTINUE
CALL HESSL(T,LDA,N,Z,QXR,QXI,WR,WI,K+1)
CALL DCOPY(NBIG,Z,1,Y1,1)
DO 60 I = 1,N

Z(I) = DDOT(N,Q(I,1),LDA.Y1,1)
Z(I+N) = DDOT(N,Q(I,1),LI)A,Y1(N+1),1)

60 CONTINUE
DO 70 I = 1,NBIG

Y1(I) = Y2(I)
Y2(I) = Z(I) + Y1(I)

70 CONTINUE
DO 80 I = 1,NBIG

IF( Yl(I) .NE. Y2(I) ) GO TO 90
80 CONTINUE

GO TO 130
90 CONTINUE

C
C CALCULATE THE NEW RIGHT HAND SIDE.
C

DO 100 I = 1,N
Z(I) = Y2(2*N+1)*Y2(I) - Y2(2*N+2)*Y2(I+N)

$ - Y1(2*N+1)*Y1(I) + Y1(2*N+2)* Y1(I+N)
Z(I+N) = Y2(2*N+2)*Y2(I) + Y2(2*N+1)*Y2(I+N)

$ - Y1(2*N+2)*Y1(I) - Y1(2*N+1)*Y1(I+N)
100 CONTINUE

DO 110 I = N2P1,NSQ
Z(I) = O.ODO

110 CONTINUE
120 CONTINUE
130 CONTINUE

WR = DQADD(WR,Y2(2*N+1))
WI = DQADD(WI,Y2(2*N+2))
DO 140 I = 1,N

XR(I) = DQADD(XR(I),Y2(I))
XI(I) = DQADD(XI(I),Y2(I+N))

140 CONTINUE
RETURN

C
END
SUBROUTINE HESSL(T,LDT,N,B,XR,XI,WR,WI,K)

C
C HESSL WILL SOLVE A*X=B, WHERE A IS ORDER 2*N+2, MADE
C UP OF THE MATRIX CALLED SCRIPT A IN THESIS.
C
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C ON ENTRY
C
C T DOUBLE PRECISION(LDT,N)
C CONTAINS THE QUASI-TRIANGULAR MATRIX.
C
C LDT INTEGER
C THE LEADING DIMENSION OF THE ARRAY T.
C
C N INTEGER
C THE ORDER OF THE MATRIX T.
C
C B DOUBLE PRECISION(2*N+2)
C THE RIGHT HAND SIDE.
C
C XR DOUBLE PRECISION(N)
C CONTAINS THE APPROXIMATE DOUBLE PRECISION PART OF
C THE EIGENVECTOR TO BE IMPROVED.
C
C XI DOUBLE PRECISION(N)
C CONTAINS THE APPROXIMATE IMAGINARY PART OF THE
C EIGENVECTOR TO BE IMPROVED.
C
C WR DOUBLE PRECISION
C CONTAINS THE APPROXIMATE DOUBLE PRECISION PART OF
C THE EIGENVALUE TO B IMPROVED.
C
C WI DOUBLE PRECISION
C CONTAINS THE APPROXIMATE IMAGINARY PART OF THE
C EIGENVALUE TO BE IMPROVED.
C
C K INTEGER
C IS THE POSITION ON THE DIAGONAL OF T WHERE THE
C 2X2 BLOCK ASSOCIATED WITH (WR,WI) STARTS.
C
C ON RETURN
C
C B CONTAINS THE SOLUTION.
C
C

DOUBLE PRECISION T(LDT,1),B(1),XR(1),XI(1),WR,WI
C

DOUBLE PRECISION U(42,4),A(4,4),Y(4),DDOT
INTEGER IPVT(4)

C
LDU = 42

C
C CSOLVE SOLVES THE SPECIAL STRUCTURE MATRIX Or ORDER 2*N+2
C CALLED C IN THESIS.
C
C
C SOLVE INV(C)*B
C

CALL CSOLVE(T,LDT,N,WR,WI,XR,XI,B,K)
C
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C
C
C
C
C
C
C

Y(1)
Y(2)
Y(3)
Y(4)

DDOT(N,XR,1,B(1),1) -
DDOT(N,XI,1,B(N+1),1)

-B(K-1+N)
B(K-1)

B(2*N+1)
- B(2*N+2)

FORM (I - TRANS(V)*(INV(C)*U))

C
C
C

C
C
C

C
C
C

C
C
C

C
C
C
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UPDATE FORMULA, GENERALIZED S-M-W, IS APPLIED TO SOLUTION

INV(C)*B+INV(C)*U*INV(I-TRANS(V)*INV(C)*U)*TRANS(V)*INV(C)*B

FORM U

NBIG = 2*N + 2
DO 20 J = 1,4

DO 10 I = 1,NBIG
U(I,J) = 0.0DO

10 CONTINUE
20 CONTINUE

U(2*N+1,1) = -1.ODO
U(2*N+2,2) = -1.ODO
U(K,3) = -1.ODO
U(K+N,4) = -1.ODO

SOLVE INV(C)*U

DO 30 I = 1,4
CALL CSOLVE(T,LDT,N,WR,WI,XR,XI,U(1, I),K)

30 CONTINUE

FORM TRANS(V)*INV(C)*B

DO 40 I = 1,4
A(1,I) = -(DDOT(N,XR,1,U(1,I),1) - U(2*N+1,I))
A(2, I) = -(DDOT(N,XI,1,U(N+1, I) ,1) - U(2*N+2, I))
A(3,I) = U(K-1+N,I)
A(4,I) = -U(K-1,I)
A(I,I) = A(I,I) + 1.ODO

40 CONTINUE

SOLVE INV(I-TRANS(V)*INV(C)*U))*(TRANS(V)*INV(C)*B)

CALL DGEFA(A,4,4,IPVT,INFO)
CALL DGESL(A,4,4,IPVT,Y,O)

FORM INV(C)*B + INV(C)*L, (ABOVE QUANTITY)

DO 50 I = 1,NB1G
B(I) = B(I) + DDOT(4,U(I,1),LDU,Y,1)

50 CONTINUE
RETURN
END
SUBROUTINE CSOLVE(T,LDT,N,WR,WI,XR,XI,B,K)



C
C SPECIAL STRUCTURE SOLVER, MATRIX SOLVING FOR IS ORDER 2*N+2
C CALLED C IN THESIS.
C

DOUBLE PRECISION T(LDT,1),WR,WI,XR(1),XI(1),B(1)
C

DOUBLE PRECISION A(4,4),Y(4)
INTEGER IPVT(4)

C
LDA = 4
NBIG = 2*N + 2

C
C IN SOLVING FOR THE MATRIX C, THERE ARE 2 CASES, 2X2 CASE
C OR 4X4 CASE. THE 4X4 CASE CORRESPONDS TO A 2X2 BUMP IN THE
C QUASI-TRIANGULAR MATRIX T.
C

I = N
10 CONTINUE

IF( I .EQ. 1 ) GO TO 20
IF( T(I,I-1) .NE. 0.0DO ) GO TO 50

C
C 2X2 CASE (NO BUMP)
C

20 CONTINUE
A(1,l) = T(I,I) - WR
A(2,1) = -WI
A(1,2) = WI
A(2,2) = T(I,I) - WR
Y(1) = B(I)
Y(2) = B(N+I)
IF( I .EQ. N ) GO TO 40
IP1 = I + 1
DO 30 J = IP1,N

Y(1) = Y(1) - T(I,J)*B(J)
Y(2) = Y(2) - T(I,J)*B(N+J)

30 CONTINUE
40 CONTINUE

Y(1) = Y(1) + XR(I)*B(2*N+1) - XI(I)*B(2*N+2)
Y(2) = Y(2) + XI(I)*B(2*N+1) + XR(I)*B(2*N+2)

C
C SOLVE 2X2 SYSTEM
C

CALL DGEFA(A,LDA,2,IPVT,INFO)
CALL DGESL(A,LDA,2,IPVT,Y,0)
B(I) = Y(1)
B(N+I) = Y(2)
I = I - 1
GO TO 90

C
C 4X4 CASE (BUMP)
C

50 CONTINUE
A(1,1) = T(I-1,I-1) - WR
A(2,1) = T(I,I-1)
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A(3,1) = -WI
A(4,1) = 0.ODO
A(1,2) = T(I-1,I)
A(2,2) = T(I,I) - WR
A(3,2) = 0.ODO
A(4,2) = -WI
A(1,3) = WI
A(2,3) = 0.ODO
A(3,3) = T(I-1,I-1) - WR
A(4,3) = T(I,I-1)
A(1,4) = 0.0D0
A(2,4) = WI
A(3,4) = T(I-1,I)
A(4,4) = T(I,I) - WR
IF( I .NE. K ) GO TO 60
A(2,3) = 1.0D0
A(4,1) = -1.ODO

60 CONTINUE
Y(1) = B(I-1)
Y(2) = B(I)
Y(3) = B(N+I-1)
Y(4) = B(N+I)
IF( I .EQ. N ) GO TO 80

70
80

IP1 = I I 1
DO 70 J = I

Y(1) = Y
Y(2) = Y
Y(3) = Y
Y(4) = Y

CONTINUE
CONTINUE
Y(1) = Y(1)
Y(2) = Y(2)
Y(3) = Y(3)
Y(4) = Y(4)

P1,N
(1)
(2)
(3)
(4)

+
+
+
+

T(I-1,J)*B(J)
T(I,J)*B(J)
T(I-1,J)*B(N+J)
T(I,J)*B(N+J)

XR(I-1.)*B(2*N+1)
XR(I)*B(2*N+1) -
XI(I-1)*B(2*N+1)
XI(I)*B(2*N+1) +

- XI(I-1)*B(2*N+2)
XI(I)*B(2*N+2)
+ XR(I-1)*B(2*N+2)
XR(I)*B(2*N+2)

SOLVE 4X4 SYSTEM

CALL DGEFA(A,LDA,4,IPVT,INFO)
CALL DGESL(A,LDA,4,IPVT,Y,0)
B(I-1) = Y(1)
B(I) = Y(2)
B(N+I-1) = Y(3)
B(N+I) = Y(4)
I = I - 2

90 CONTINUE
IF( I .GT. 0 ) GO TO 10
RETURN
END
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SUBROUTINE EIGCND(T,LDT,N,W,X,K,Y,SI)
C

INTEGER LDT,N
DOUBLE PRECISION T(LDT,1),W,X(1),Y(1),SI

C
C THIS SUBROUTINE COMPUTES THE SENSITIVITY FOR THE
C EIGENVALUE PROBLEM, GIVEN A TRIANGULAR MATRIX AND
C THE RIGHT EIGENVECTOR.
C
C ON ENTRY
C
C T DOUBLE PRECISION(LDT,N)
C IS THE UPPER TRIANGULAR MATRIX WHICH
C PRODUCED THE EIGENVALUE W.
C
C LDT INTEGER
C THE LEADING DIMENSION OF THE ARRAY T.
C
C N INTEGER
C THE ORDER OF THE MATRIX T.
C
C W DOUBLE PRECISION
C THE EIGENVALUE
C
C X DOUBLE PRECISION(N)
C THE EIGENVECTOR CORRESPONDING TO W, MAY NOT
C BE THE RIGHT EIGENVECTOR OF THE MATRIX T,
C BUT OF A MATRIX WHICH IS SIMILAR TO T.
C
C K INTEGER
C THE INDEX OF WHERE W OCCURS IN THE MATRIX T.
C
C ON RETURN
C
C Y DOUBLE PRECISION(N)
C IS THE LEFT EIGENVECTOR OF THE MATRIX T.
C
C SI DOUBLE PRECISION
C IS THE SENSITIVITY OF THE EIGENVALUE W.
C
C THIS VERSION DATED 3/80
C JACK DONGARRA, ARGONNE NATIONAL LABORATORY AND THE
C UNIVERSITY OF NEW MEXICO.
C
C FORTRAN DABS
C BLAS DSCAL, DDOT, IDAMAX
C

INTEGER I ,IDAMAX,KM1,KP1
DOUBLE PRECISION DDOT

C
DO 10 I = 1,N

T(I,I) = T(I,I) - W
10 CONTINUE

C
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C COMPUTE THE SENSITIVITY OF THE EIGENPAIR.
C

IF( K .EQ. 1 ) GO TO 30
KM1 = K - 1

DO 20 I = 1,KM1
Y(I) = O.ODO

20 CONTINUE
30 CONTINUE

Y(K) = 1.0D0
SI = 1.ODO
IF( K .EQ. N ) GO TO 50
KP1 = K + 1
DO 40 I = KP1,N

Y(I) = -DDOT(I-K,T(K,I),1,Y(K),1)/T(I,I)
40 CONTINUE
50 CONTINUE

J = IDAMAX(N,Y,1)
CALL DSCAL(N,1.ODO/DABS(Y(J)),Y,1)
SI = DDOT(N,X,1,Y,1)
RETURN

C
END
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DOUBLE PRECISION FUNCTION DQQDOT(N,X,INCX,Y,INCY,ST)
DOUBLE PRECISION X(1),Y(1),ST(2)
REAL*16 T

C
C THIS ROUTINE FORMS AN INNER PRODUCT OF THE
C VECTORS X AND Y AND ADDS IN EXTENDED PRECISION
C THE QUANTITY ST. THE ACCUMULATION OF INNER PRODUCT
C IS DONE USING EXTENDED PRECISION.
C

T = QEXTD(ST(1))*QEXTD(ST(2))
IF( N .LE. 0 ) GO TO 20
IX = 1
IY = 1
DO 10 I = 1,N

T = T + QEXTD(X(IX))*QEXTD(Y(IY))
IX = IX + INCX
IY = IY + INCY

10 CONTINUE
20 CONTINUE

DQQDOT = T
RETURN
END
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DOUBLE PRECISION FUNCTION DQADD(A,B)
C
C THIS ROUTINE ADD TWO VARIABLES TOGETHER IN EXTENDED
C PRECISION AND TRUNCATES THE RESULT TO WORKING PRECISION.
C

DOUBLE PRECISION A,B
C

DQADD = QEXTD(A) + QEXTD(B)
RETURN
END

117


