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AUTOMATIC TRANSFORMATIONS IN THE INFERENCE PROCEuS

by

Robert L. Veroff

ABSTRACT

A technique for incorporating automatic transformations into processes

such as the application of inference rules, subsumption, and demodulation

provides a mechanism for improving search strategies for theorem proving

problems arising from the field of program verification. The incorporation

of automatic transformations into the inference process can alter the

search space for a given problem and is particularly useful for problems

having 'broad' rather than 'deep' proofs. The technique can also be used

to permit the generation of inferences that might otherwise be blocked

and to build some commutativity or associativity into the unification

process. Appropriate choice of transformations, and new literal clashing

and unification algorithms for applying them showed significant improvement

on several real problems according to several distinct criteria.
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I. INTRODUCTION

Section A contains a review of the general problem area addressed by

this thsis. Sections B and C discuss, respectively, the goals and

relevance of this work to the field. Section D contains a brief survey of

related work.

I.A.l. REVIEW OF RESOLUTION-BASED FIRST-ORDER THEOREM PROVING

This section provides a brief and informal review of resolution-based

first-order theorem proving. In particular, it is oriented towards the

Argonne National Laboratory Northern Illinois University (ANL-NIU)

automated theorem proving system ([10], [17]). See [1], [10], [11], [12],

[13], [14], [19], [20], [21], and [22] for a more thorough treatment of

the material.

I.A.l.a. REPRESENTATION OF FACTS

Facts are represented in the ANL-NIU theorem proving system in a

manner which is consistent with first-order predicate calculus.

DEFINITIONS

The basic symbols of the language of representation are:

1. a set of symbols called CONSTANTS,

2. a set of symbols called VARIABLES,
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3. a set of symbols called FUNCTIONS,

4. a set of symbols called PREDICATES,

and 5. a single symbol called NEGATION.

The following definitions characterize the l.aguage of

representation:

Definition 1.

A TERM is a constant, a variable, or any F(tl,t2,...tn), where F is

an n-ary function symbol and the ti are terms.

Definition 2.

An ATOM is P(tl,t2,...tn), where P is an n-ary relation (predicate)

symbol and the ti are terms. Note that atoms are the basic true/false

items.

Definition 3.

A LITERAL is an atom or the negation of an atom.

Definition 4.

A CLAUSE is a disjunction of literals.

Definition 5.

A CLAUSE SPACE is F. conjunction of clauses.

The following definition associates syntax and semantics.

Definition 6.

An INTERPRETATION consists of a non-empty domain D and an assignment

of constant, function, and predicate symbols to fixed elements,

functions, and relations on D. Variable symbols can be assigned
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arbitrary values from D.

To facilitate the implementation of paramodulation and demodulatic.n

(see Sections I.A.1.c and I.A.l.d of this chapter), the string of symbols

'EQUAL' has been reserved in the ANL-NIU theorem proving system. All

predicate names beginning with this string represent some equality

relation. Other than this one exception, the symbols used to represent

facts have no inherent semantic meaning to the theorem proving system. In

this sense the theorem prover is completely general. That is, for any set

of clauses, any interpretation which is semantically consistent with the

clauses is valid.

Note that existential quantifiers are replaced by Skolem functions in

clause space representation [1].

Example: Replacing Existential Quantifiers with Skolem Functions

The expression (EXISTS x)(ALL y)(y+x=y) (existence of right additive

identity in a group) can be represented in clause form as

EQUAL(SUM(Y,E),Y) under an interpretation in which SUM denotes addition

in a group, EQUAL denotes the equality predicate, E is a Skolem constant

(replacing the existential quantifier) denoting the (right) additive

identity, and the domain is the set of elements of a group.

Similarly, the expression (ALL x)(EXISTS y)(x+y=E) (existence of

right additive inverse) can be represented in clause form as

EQUAL(SUM(X,INV(X)),E) under an interpretation in which IWV(X) denotes

the (right) additive inverse of X and is a Skolem function of one

argument. Note that the existential y is dependent on the choice of x.
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By convention, all variables in a clause space are universally

quantified and have scope restricted to the conjunct containing them. That

is, while two variables with the same name occurring in the same clause

must represent the same element, two variables with the same name

occurring in different clauses are distinct. It follows that clause spaces

are free of all explicit quantifiers.

Since clause form is clearly identical to (quantifier free)

conjunctive normal form, it follows that a clause space is sufficient to

represent an arbitrary expression in first-order predicate calculus [1].

In addition to the above definitions, the following naming

conventions have been adopted in this paper for uniform representation of

clause spaces: Names beginning with the letters A, B, C, D, and E are used

to represent constants. Names beginning with the letters F, G, H, ... , T,

and U are used to represent functions and predicates. Names beginning

with the letters V, W, X, Y, and Z are used to represent variables. Blanks

separate the literals of a clause, with the disjunction operator implied

between them. And finally, clauses are written on separate lines, with

the conjunction operator implied between them.

Example: Clause Space

The clause space,

LT(X,Y) LT(Y,X) EQUAL(X,Y)

,LT(X,Y) 'LT(Y,X)

represents the expression, (ALL x,y)(x<y OR y<x OR x=y) AND (ALL x,y) (NOT

x<y OR NOT y<x), under an interpretation in which LT represents the <

relation and EQUAL represents the = relation.
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I.A.1.b. FORMULATION OF PROBLEMS

The clause space representing a theorem to be proved by the ANL-NIU

system may be considered to consist of the union of three sets of clauses:

a set of axioms defining the field of study, the special hypothesis or the

theorem to be proved, and the denial of the theorem.

This representation of the problem corresponds to finding a proof by

contradiction. That is, the theorem to be proved is valid if and only if

the conjunction of the axiom set, the special hypothesis, and the denial

of the theorem forms an unsatisfiable clause space.

Example:

Consider the theorem: In a ring, if for all X, X3=X, then the ring is

commutative.

For this problem, the axioms would be the set of axioms that define a

ring, the special hypothesis would be X3=X, and the denial of the theorem

would be AB , BA (that is, there exist two elements, A and B, that do not

commute).

The set of axioms that defines a particular area of study is not

unique. In fact, the choice of an appropriate representation for the

axioms can have a significant effect on the ability of the theorem proving

system to find an inconsistency in the clause space. Note the two

different representations of the ring axioms given in the examples below.
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Example: Ring Axioms - Equality Formulation

The following clauses define a ring under an interpretation in which

EQUAL(X,Y) denotes X=Y (equality predicate), SUM(X,Y) denotes X+Y

(addition) in a ring, PROD(X,Y) denotes XY (multiplication) in a ring,

INV(X) denotes -X (additive inverse) in a ring, and E denotes the ring

identity:

EQUAL(SUM(X,Y),SUM(YX))

EQUAL(SUM(SUM(XY),Z),SUM(XSUM(YZ)))

EQUAL (PROD(PROD(XY), Z),PROD(XPROD(YZ)))

EQUAL(PROD(SUM(X,Y),Z),SUM(PROD(X,Z),PROD(Y,Z)))

EQUAL(PROD(XSUM(YZ)),SUM(PROD(X,Y),PROD(X,Z)))

EQUAL(SUM(XE),X)

EQUAL(SUM(E,X),X)

EQUAL(SUM(X,INV(X)),E)

EQUAL(SUM(INV(X),X),E)

EQUAL(X,X)

Note that the first nine clauses represent the axioms: commutativity

of addition, associativity of addition and multiplication, right and left

distributivity, right and left identity, and right and left inverse

respectively. The clause, EQUAL(X,X), is added for closure and to define

equality.

Example: Ring Axioms - Equality De-emphasized

The following clauses define a ring under an interpretation in which

P(X,Y,Z) denotes XY=Z in a ring, S(X,Y,Z) denotes X+Y=Z in a ring, and the

remaining symbols are defined as in the example above:

-'S(X,Y,Z) S(Y,X,Z)
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,S(X,Y,VO) ,S(Y,Z,Vl) ,S(X,Vl,W) S(VO,Z,W)

-'S(X,Y,VO) -'S(Y,Z,V1) -'S(VO,Z,W) S(X,Vl,W)

-'P(X,Y,VO) -'P(Y,Z,Vl) -'P(X,Vi,W) P(VO,Z,W)

-P(X,Y,VO) -'P(Y,Z,Vl) -P(VO,Z,W) P(X,Vl,W)

-'P(X,Y,VO) -'P(X,Z,Vl) -'S(Y,Z,V2) -'P(X,V2,W) S(VO,Vl,W)

'P(X,Y,VO) -'P(X,Z,Vl) -'S(Y,Z,V2) -'S(VO,Vl,W) P(X,V2,W)

-'P(Y,X,VO) -'P(Z,X,Vl) -'S(Y,Z,V2) -'P(V2,X,W) S(VO,Vl,W)

'P(Y,X,VO) -'P(Z,X,V1) -'S(Y,Z,V2) -'S(VO,Vl,W) P(V2,X,W)

S(X,E,X)

S(E,X,X)

S(X,INV(X),E)

S(INV(X),X,E)

S(X,Y,SUM(X,Y))

P(X,Y,PROD(X,Y))

Note that these clauses represent the axioms: commutativity of

addition, associativity of addition (two clauses), associativity of

multiplication (two clauses), distributivity (four clauses), right and

left identity, right and left inverse, and closure of addition and

multiplication respectively.

The equality emphasized formulation is more function (term) oriented

while the equality de-emphasized formulation is more predicate (literal)

oriented. The question of the relative merits of the two forms of

representation (function versus predicate orientation) is a source of

controversy in the field of automated theorem proving.
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I.A.l.c. INFERENCE RULES

Inference rules provide the mechanism for manipulating and expanding

the clause space. That is, they provide a way to derive new facts

(clauses) from the existing set of clauses.

Definition 7.

An inference rule is VALID if it cannot be used to generate an

unsatisfiable set of clauses from a satisfiable set of clauses. That

is, it cannot derive false statements from true statements.

We are only interested in inference rules that are valid. In

particular, we are interested in the valid inference rules, resolution and

paramodulation.

Definition 8.

An inference rule is REFUTATION COMPLETE if for every

E-unsatisfiable set of clauses (unsatisfiable in extended

first-order predicate calculus including equality), there exists a

way to find a contradiction using only the one inference rule. An

inference system (a set of inference rules that can be applied) is

REFUTATION COMPLETE if for every E-unsatisfiable set of clauses,

there exists a way to find a contradiction using only the inference

rules in the system.

For the remainder of this paper, 'completeness' will be synonymous

with refutation completeness, and 'inconsistency' will be synonymous with



E-unsatisfiability.

We are only interested in inference systems that are complete. Whon

defined with factoring (see [20]), resolution alone, and paramodulation

used in conjunction with resolution are complete inference systems.

A thorough introduction to these rules of inference is given in [1],

[11] and [12].

"or a brief review, ccnsidcr the following:

Definition 9.

A SUBSTITUTION is an assignment of terms to a set of variables.

Definition 10.

The UNIFICATION of two terms is the process by which a substitution

for the variables in the terms is found that makes the terms

identical. That is, a common instance of the terms is found (if one

exists) [12]. Note that two atoms are considered to be unified if

their predicate symbols are identical and a substitution for the

variables is found that makes the atoms identical.

Example: Resolution

Consider the clause space,

(1) -'P(X) Q(A,X)

(2) P(B) R(C)

(3) Q(AB) R(C)

The first two clauses resolve to generat 3 the third, because under t

variable substitution, X <-- B in clause (1), the -'P(X) of (1) and the

P(B) of (2) clash (are the same atom with opposite sign).
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Note that a proof to a theorem is found by deriving the EMPTY CLAUSE,

the clause with no literals. That is, finding a contradiction in a clause

space corresponds to resolving all of the literals of a clause without

adding any literal. For example, the clause EQUAL(A,B) and the clause

-'EQUAL(A,B) form a contradiction (resolve to derive the empty clause).

Example: Paramodulation - Equality Substitution

Consider the clause space,

(1) Q(G(F(A,B)))

(2) EQUAL(F(X,Y),F(YX))

(3) Q(G(F(BA)))

The second clause can be paramodulated into the term, F(A,B), of the first

clause under the variable substitution, X <-- A and Y <-- B in clause (2),

to generate the paramodulant clause (3). That is, an instance of the term,

F(X,Y), is replaced by the corresponding instance of the term, F(Y,X).

An extension to resolution, hyper-resolution, has been developed

[13]. One hyper-resolution step can combine several resolution steps to

produce a clause with no negative literals. Hyper-resolution has been

found to be an effective inference rule [8], and is commonly used in

resolution-based theorem proving systems. A similar extension to

paramodulation, hyper-paramodulation, is currently being studied [22].
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I.A.l.d. DIFFICULTIES / SPECIAL FEATURES

There are general difficulties with resolution and paramodulation

based theorem proving systems. In a simple combinatorial sense, it is

clear that the larger the clause space, the more searching that might be

done. In particular, the more 'useless' clauses, clauses that do not

participate in a proof, that there are in the clause space, the more

searching and expanding of the clause space that must be done to generate

'useful' clauses. It is clearly beneficial to keep the number of

'useless' clauses down to a minimum. In particular, redundant information

should be eliminated.

The following examples review and illustrate various techniques that

have been developed to improve the effectiveness of resolution and

paramodulation-based theorem proving systems:

Example: Motivation for Subsumption

The clause, Q(F(X,Y)), is a more general form of all of the clauses:

Q(F(A,B)), Q(F(G(X),Y)), Q(F(F(C),B),Y), ... etc.... Similarly, the

clause, Q(A), is a more general form of all of the clauses: Q(A) Q(B),

Q(A) Q(A), Q(A) Q(X) Q(C), ... etc... in that these clauses are all

trivial consequences of the first. It would seem ur.desirable to keep the

less general forms when all of the information is captured by the two

clauses, Q(F(X,Y)) and Q(A).

An automatic process, SUBSUMPTION, has been added to the ANI-NIU

theorem proving system. If at any time, clauses Cl and C2 are in the

clause space and there exists a substitution S such that Cl(S) is equal to
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C2 or to any subset of the literals of C2, then clause C2 is deleted from

the clause space. Note that the inclusion of subsumption in the theorem

proving system does not effect the completeness of either resolution or

paramodulation ([12] and 116]).

Example: Motivation for Demodulation as a Simplifier

If the fact X + 0 = X is known, it seems reasonable to replace the

term, A + (B + 0) with the term, A + B. The process of automatically

simplifying terms is known as DEMODULATION. If the equality unit,

EQUAL(TERM1,TERM2) is marked as a demodulator, then any instance of TERM1

in the clause space will be replaced by the corresponding instance of

TERM2 [21].

Note that while demodulation is similar to paramodulation in that it

is essentially equality substitution, it differs from paramodulation in

four fundamental ways. First, paramodulation is an inference rule that is

directed by the proof search. Demodulation is an automatic process that

occurs at all stages of the proof search. Second, paramodulation expands

the clause space by deriving new clauses from old ones that remain in the

clause space. Demodulation actually replaces existing terms in the clause

space (effectively deleting the original clauses). Third, paramodulation

allows substitution for the variables in both the equality literal as well

as the clause that is being paramodulated into. Demodulation, as a

simplifier, only allows substitutior for the variables of the

demudulator. And fourth, paramodulation allows the relevant equality

literal to be in a clause with other literals. Demodulation, as a

simplifier, requires that the relevant equality literal be a unit clause

(no other literals).
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Note that because a clause that is demodulated is deleted from the

clause space, the inclusion of automated demodulation eliminates the

completeness property. Demodulation can prevent inferences that are

necessary for a proof (see Section II.B.2). Although the sacrifice of

completeness is very important from a theoretical point of view, the

primary concern in operational theorem proving systems is performance.

Experimental evidence to date supports the inclusion of demodulation in a

theorem proving system.

Example: Motivation for Demodulation as a Canonicalizer

It seems reasonable to keep all of the polynomials A + B + C = 0, A + C

+ B = 0, C + A = -B ... etc... in the single canonical form, A + B + C = 0.

This type of canonicalization can be simulated by giving the theorem

proving system an appropriate set of demodulators [19].

I.A.l.e. STRATEGIES

All of the above features are completely :mechanical in nature and are

easily implemented with a computer program. The difficult part of

automated theorem proving, however, is the algorithm that guides the proof

search.

The search space can be thought of as a tree-like graph. The level 0

clauses (the clauses at the initial nodes of the graph) are the original

set of input clauses, and in general, the level i+l clauses are clauses

whose ancestors (clauses that participated in the inference that derived

the clause) come only from levels 0 through i, with at least one ancestor
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coming from level i.

Definition 11.

A search strategy is COMPLETE if when using a complete inference

system and given enough time and memory, the strategy is guaranteed

to find a proof if one exists.

One possible search strategy consists of deriving all level i clauses

before generating any clauses in level i+l. This is called LEVEL

SATURATION, and is a breadth first search of the graph that represents the

search space. This strategy is complete, but is completely uninformed.

That is, it makes no use of any acquired knowledge, and makes no

evaluation of the existing state of the clause space. In general, this is

a very poor search strategy.

At the other extreme is the depth first search. In this strategy only

the most recently generated clauses are looked at. This means that the

graph that represents the search space is expanded as deeply as possible

along one path before considering an alternate path. This is clearly

inefficient and incomplete unless the proof is already known and the

correct path chosen from the start. .

Since the 'safest' search is the breadth first search, and the ideal

search is the depth first search with the correct path chosen from the

start, it is expected that the best search strategy will combine the

positive aspects of both. That is, the search will be broad enough to

maximize the likelihood of finding a proof eventually, and deep enough to

find a proof as directly and efficiently as possible.

Various search strategies have been developed that attempt to achieve
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this goal. One particular search strategy that is used extensively in the

ANL-NIU system is that of SET OF SUPPORT [20].

Recall that the three parts of the initial clause space are the

axioms, the special hypothesis, and the denial of the theorem. The idea of

set of support is to focus the proof search on the problem to be solved

(the special hypothesis and the denial of theorem) rather then on the

general field of study (the axioms). Basically, the rule says not to

generate any clause that does not have as an ancestor a clause from either

the special hypothesis or the denial of the theorem. It can be proved

[20] that unler this definition, set of support is a complete search

strategy. That is, if the clause space corresponding to the theorem to be

proved is unsatisfiable, and the inference system being used is complete,

then there is a proof using the set of support strategy.

I.A.2. PROGRAM VERIFICATION - GENERAL ESCRIPTION

Any problem that can be stated as a theorem in any area that can be

axiomatized in first-order predicate calculus can theoretically be solved

with the theorem prover. Because of this generality, there are several

interesting and useful application areas including mathematics, database

information retrieval, and program verification.

The verification of a program consists of two distinct steps. Given an

assertion that represents the properties of the program variables on input

to a program, and an assertion that represents the desired properties of

the program variables at each 'halt' statement, proof of CORRECTNESS

consists of proving for each 'halt' that if the input assertion is



21

satisfied and the 'halt' is reached, then the corresponding 'halt'

assertion is satisfied. Proof of TERMINATION consists of proving that at

least one of the 'halt' statements will be reached under all possible

valid inputs. Clearly, a program that has been proved to satisfy both

correctness and termination has been verified.

Both correctness and termination are proved by breaking a program into

a set of small program segments that are each easily verified. To insure

that all possible paths through the program are accounted for, it is

important that none of the segments has any loops or branches. Also,

since e&ch segment is to be verified separately, an additional set of

input and 'halt' assertions must be assigned to each point where the

program is broken such that the 'halt' assertion of the first of two

consecutive segments is the same as the input assertion of the segment

that follows it.

Example: Proof of Correctness

Consider the flowchart in FIGURE 1 that represents a program to

compute the largest integer, Z, such that Z 2 <= X, for any natural number

X ([7] page 178). The input assertion (point A) is that X >= 0 (the domain

of integers is assumed). The 'halt' assertion (point C) is that Z2 <= X <

(Z+1)2. Assigning the assertion, Y12 <= X and Y2 = (Y1+1)2  and Y3 =

2*Y1+1, to point B, the proof of correctness consists of verifying the

three program segments A to B, B to B, and B to C. Note that since the

point B is inside the loop, every possible path through the program must

consist only of the paths A to B, B to B, and B to C. It follows then that

these are the only program segments that need to be verified.

For each program segment, the theorem, "If the input assertion is
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correct and the program segment is executed then the 'halt' assertion is

correct.", is attempted by the automated theorem proving system. The

execution of the program segment is reflected by the values of the program

variables in the assertions.

START

A -- p(X): X z 0

(YiY2,Y3) 4-(0,0,17

E-Y2 + Y

B - -- p(X TY2,Y3):Yi3)Y X &
F T Y2=+(Y+if &

Y2>X Y3=2*Y1 +1

(Y 1, 3 ) e- ( ni + 1,Y 3 + ) z fE-few

C --- (xV) e X < (Z+if

HALT

FIGURE 1
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I.B. GOALS

Since the most important and most difficult part of automated theorem

proving is the proof search strategy, the general goal of this thesis is

to provide a mechanism for improving the strategy for problems arising

from the field of program verification.

The proof search process consists, in part, of a set of algorithmic

processes such as the application of inference rules, subsumption, and

demodulation. The specific goal of this thesis is to present a method for

increasing the deductive power of these individual processes. In

particular, a method for incorporating automatic transformations into the

inference process will be motivated and described.

Literal clashing and unification are essential and fundamental

processes in any resolution and paramodulation theorem proving system.

The automatic transformation concept will be illustrated with new

algorithms for these two processes.

It will be shown that in addition to reordering the proof search space

for a given problem in a significant way, the incorporation of automatic

transformations permits the generation of inferences that might otherwise

be blocked (e.g. by demodulation or by ordering the arguments of equality

literals in a canonical way - see Section II.A.2).

I.C. RELEVANCE

Any resolution and paramodulation theorem proving system is dependent

on the deductive power of its inference processes. The automatic
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transformation concept presented in this paper is applicable to any area

that has 'rewrite' relations (e.g. commutativity, associativity, ordering

relations, ... ). The new literal clashing and expanded unification

algorithms presented in this paper are particularly effective in areas

that tend to have broad rather than deep proofs (see Chapter II). Program

verification is one such area.

I.D. SURVEY OF OTHER WORK

Various methods for building a theory into an automated theorem

proving system have been considered in the literature. Most fall into onie

or more of three loosely defined categories: unification, simplification,

and inference rules.

The concept of defining unification in the context of an equational

theory is not new ([2], [5], [6], [9], [15], [18], and [21]). Since some

sort of matching (unification) is of fundamental importance to any

resolution-based theorem proving system, much attention has been paid to

the theoretical aspects of building more powerful matching systems. In

general, methods for finding all possible matches in a given environment

have been of primary Lnterest.

As an illustration, consider Fay [2]. This paper discusses the

incorporation of rules into the unification process to get complete sets

of unifiers. For example, the terms, F(X,B) and F(A,Y), have the common

instance F(A,B) as well as the common instance F(A,F(Z,B)) in the presence

of the associative axiom, EQUAL(F(X,F(Y,Z)),F(F(X,Y),Z)).

A second way to build a theory into an automated theorem proving
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system is to define rules for the construction and application of sets of

simplifiers (complete sets of reductions) ([3], [4], and [5]). For

example, Gloess and Laurent [3] propose as an alternative to the

Knuth-Bendix algorithm [4] a dynamic algorithm for applying simplifiers

to terms.

As an alternative to modifying the unification process, a third way to

build a theory into an automated theorem proving system is to define new

rules of inference that reflect that theory [16]. Slagle in [16] discusses

a technique for designing new inference rules based on the axioms of a

theory being studied. For example, the transitivity axiom for partially

ordered sets can be replaced by an appropriate inference rule.

The methods presented in this thesis provide a technique for building

some theory into the inference process. Since this technique has been

designed for performance in an applied environment (program verification

in particular), it does not attempt to find complete sets of unifiers when

used in the context of a unification algorithm. Although the new

technique can be used in the context of simplification, it differs from

existing techniques in two important ways. First, the transformation

concept can apply to predicates and literals as well as to terms. And

second, the technique is not oriented towards complete sets of reductions

which in fact, do not always exist. Finally, although the transformation

concept does increase the deductive power of the inference rules when

applied to literal clashing or unification algorithms, the rules

themselves remain unchanged.
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II. AUTOMATIC TRANSFORMATIONS

The automatic transformation concept is introduced in this chapter.

The concept is motivated in Section A. New algorithms are given for

literal clashing and unification in Section B to illustrate the concept.

These algorithms are discussed further in Section C.

II.A.l. NATURE OF PROGRAM VERIFICATION PROOFS

Recall that the proof search can be thought of as the expansion of a

tree-like graph. Proofs in many areas are deep by nature:

Input clauses -> C1 -> C2 -> ... -> empty clause (proof)

where the Ci are generated clauses.

That is, the subgraph that corresponds to the proof has a relatively large

number of levels. Program verification proofs, however, tend to be very

broad:

Input clauses -> C1

Input clauses -> C2

Input clauses -> Cn

where C1, C2, ... Cn -> empty clause in one hyper-resolution step.

That is, the subgraph that corresponds to the proof has only a few levels

with a relatively large number of nodes.

A problem will be considered to hate a broad proof it there exists a
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proof which is broad, and will be considered to have a deep proof if every

proof is deep.

The following example illustrates a sample program verification

proof:

Example:

Consider the following set of input clauses:

(1) LT(A,B) EQUAL(C,D) LT(E,F(X,A))

(2) LT(B,A)

(3) LT(C,D)

(4) LT(F(A,B),E)

(5) -'LT(X,Y) -LT(Y,X)

(6) -'LT(X,Y) -'EQUAL(X,Y)

(7) EQUAL(F(X,Y),F(Y,X)),

and the following set of generated clauses:

(8) -'LT(A,B) (resolve (2) and (5))

(9) -'EQUAL(C,D) (resolve (3) and (6))

(10) -'LT(E,F(A,B)) (resolve (4) and (5))

(11) -'LT(E,F(B,A)) (paramodulate (7) into (10)).

None of the literals in clauses (1) through (4) will resolve, but all of

the literals of clause (1) can be resolved with clauses (8), (9), and

(11), which are transformed versions of clauses (2), (3), and (4).

The existing theorem proving system must go through the following

sequence to find this proof:

1. Clauses (2), (3), and (4) must be chosen by the propi

search to generate clauses (8), (9), and (10).

2. Clause (10) must be chosen by the proof search to
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generate clause 411).

3. Clauses (8), (9), and (11) must be chosen by the proof

search to resolve against clause (1).

This procedure may, in general, have the side effect of generating

many clauses that do not participate in the proof, and may prevent the

search from finding the right clauses as a result (because of the siz3 of

the clause space).

The key to the new literal clashing algorithm presented in the next

section is the incorporation of certain 'rewrite' transformations (e.g.

LT(X,Y) -- > ,LT(Y,X), LT(X,Y) -- > -EQUAL(X,Y), and F(X,Y) -- > F(Y,X)) into

the literal clashing process. In the example above, clauses (2), (3), and

(4) will now clash against clause (1), effectively finding a proof without

generating any new clauses at all.

The new algorithm has two distinct effects:

1. The new literal clashing algorithm has the effect of generating

more general clauses sooner by allowing the resolution of more

literals. More general clauses imply a smaller clause space

(because of subsumption), which in turn implies a more efficient

proof search. The limiting case is the empty clause which subsumes

all other clauses and signifies that a proof has been found. It

follows then that earlier generation of more general clauses can

have a significant effect on a proof search by preventing the

generation of many less general clauses and their corresponding

descendants.

2. The new literal clashing algorithm causes the graph that represents

the search space to be broader and less deep. That is, clauses
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that were originally generated at level i may now be generated at

level j rjhere j < i. This implies that a search strategy that has

elements of breadth first search in it will be more effective than

in the original search space.

In general, the broader (and less deep) a proof is, the more effective

the new literal clashing algorithm will be. Note that the algorithm will

not prevent the generation of what would have been the intermediate

clauses to inferences made with the new algorithm, it only reorders the

search space, effectively delaying the generation of these clauses. The

algorithm is more likely to delay the generation of these intermediate

clauses until after a proof has been found (in effect not generating them

at all) when the proof is broad rather than deep. For this reason, the

algorithm is particularly well suited for application to program

verification problems.

II.A.2. BUILT-IN INCOMPLETENESS

Some processes have been built into the ANL-NIU theorem proving system

(and others) that eliminate the completeness property. These processes

are often added because the general gain in effectiveness of the theorem

proving system is felt to outweigh the loss of generality caused by

incompleteness. The automatic transformation process can eliminate some

of the blocks to completeness caused by these processes.
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II.A.2.a. DEMODULATION

Although demodulation can cause a significant simplification of the

clause space, there are some negative side effects. One of the most

serious side effects is the blocking of certain unifications (and literal

clashes).

Examples: Unification Blocked by Demodulation

Consider the demodulator EQUAL(G(A),G(B)) and the clause

-'EQUAL(F(X,G(X)),E). If the clause EQUAL(F(A,G(A)),E) were generated, it

could clash against the inequality, and a proof would have been found.

With the demodulator present, however, the clause EQUAL(F(A,G(A)),E) will

be demodulated to EQUAL(F(A,G(B)),E), which does not clash against the

inequality, before it is added to the clause space.

Consider a second example. The terms, F(X,A) and F(B,Y), which are

normally unifiable, cannot be unified in the presence of the demodulator,

EQUAL(F(X,Y),F(Y,X)) (used as a canonicalizer - see [19]), because the

terms will be demodulated to their corresponding canonical forms, F(X,A)

and F(Y,B), which are not unifiable.

Note that it is this type of blocking that causes theorem proving

systems using demodulation to be incomplete.

One of the features of the expanded unification algorithm presented in

the next section is to allow the clash of the literal -'EQUAL(F(X,G(X)),E)

against the literal EQUAL(F(A,G(B)),E) in the presence of the demodulator

EQUAL(G(A),G(B)), and to allow the unification of the term F(X,A) with the

term F(Y,B) in the presence of the demodulator EQUAL(F(X,Y),F(Y,X)).
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II.A.2.b. EQUALITY ORDERING

Some automated theorem proving systems have built in equality

ordering. That is, every equality literal, EQUAL(T1,T2), is kept in a

single canonical form, either EQUAL(T1,T2) or EQUAL(T2,T1) but not both.

(Literals of the form -EQUAL(T1,T2) are handled the same way). This can

significantly reduce the size of the clause space but can, in general,

lead to incompleteness.

Example: Resolution Blocked by Equality Ordering

Consider the clause, -'EQUAL(F(A,B),F(C,D)). If the clause

EQUAL(F(X,B),F(C,D)) were generated, it might (depending on the equality

ordering rule) be reordered to EQUAL(F(C,D),F(X,B)), which does not clash

against the first clause, before it is added to the clause space.

One of the features of the new literal clashing algorithm presented in

the next section is to allow the clashing of EQUAL(F(A,B),F(C,D)) with

EQUAL(F(C,D),F(X,B)) by incorporating the transformations, EQUAL(X,Y) -- >

EQUAL(Y,X) (and -'EQUAL(X,Y) -- > 'EQUAL(Y,X)), into the literal clashing

process.
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II.A.3. COMMUTATIVE AND ASSOCIATIVE UNIFICATION

The benefit c' _n expanded unification algorithm that would include

commutativity for commutative functions and associativity for associative

functions has been discussed in the literature ([2], [5], [6], [9], [15],

and [18]). The expanded unification portion of the new literal clashing

algorithm will allow unification subject to any of a number of special

axioms supplied by the user.

Example: Expanded Unification

Consider the terms, F(J(X,B),A) and EVAL(A,Y). These two terms will

unify in the presence of the clauses EQUAL(EVAL(X,Y),F(X,Y)) and

EQUAL(F(X,Y),F(Y,X)) with the expanded algorithm.

IT.B. LITERAL CLASHING AND EXPANDED UNIFICATION

The new concept is to incorporate automatic transformations of

literals and terms into the inference process. That is, a single 'new'

inference may in fact represent a sequence of inferences. The concept has

been motivated by two areas of interest, literal clashing and unification.

Algorithms will be given to illustrate the implementation of the new

concept in these areas. These algorithms have two aspects that require

special discussion, the choice of transformations eligible to apply and

rules for applying them. Three factors must be considered in the choice

of transformations, validity of the resulting inferences, complexity

properties of the algorithm, and effectiveness of the theorem prover with
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the algorithm included.

Every transformation will have a corresponding 'transformation

clause'. That is, for every transformation, Tr, there will exist a

clause, C, such that the application of Tr to a literal or term is

equivalent to making a single resolution or paramodulation step with C.

Since all transformation clauses will be required to be immediate

consequences of the clause space representing the problem in question, all

transformations and resulting inferences will be valid. In the

description of the algorithms given below, transformations will in fact be

defined by giving the corresponding transformation clause. That is, all

transformations will be given either as a clause with exactly two

literals, L1 and L2, or as an equality unit clause, EQUAL(T1,T2).

To be useful, the transformation process must be direct and efficient.

One requirement is to keep the set of transformations that can apply at

any point reasonably small. In addition, it can be shown that if the set

of applicable transformations satisfies certain properties (see below)

then the process will in fact be efficient in the sense that the number of

dead end paths pursued will be reasonably small.

The increased effectiveness of the theorem prover due to the inclusion

of such an algorithm must justify the cost (e.g. time and/or memory) of

the algorithm. The inclusion of the two algorithms given below can effect

the search space in two significant ways: first, by generating inferences

that might otherwise be blocked (e.g. by demodulation or equality

ordering), and second, by reordering the search space. Reordering the

search space can cause shortcuts in a particular proof (shorter paths to

key inferences). Some transformations, however, can cause unnecessary

redundancies and inefficiencies. For example, it might be better to have
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the unit clauses, Q(A,B) and Q(B,A), both in the clause space than to have

the single unit clause Q(A,B) and the transformation, -'Q(X,Y) Q(Y,X),

which might apply at many unnecessary places. It is important to limit the

set of available transformations to those which can have a significant

effect (hopefully positive) on the search space.

The following definitions facilitate the formal description of the

transformations:

Definition 12.

A term is GROUND if it contains no variables. Note that a ground

term names a cor.stant element of the relevant domain.

Definition 13.

A term is COMPOSITE if it is not a constant and not a variable.

Definition 14.

A BAG is a collection of items in which duplications are allowed.

Note that a set is no more than a bag with no duplications.

Example: Bags and Sets

Consider the list (1,2,1,3,3,4).

The set of elements in the list is (1,2,3,4), but the bag of elements

ii the list is (1,2,1,3,3,4) (or (1,1,2,3,3,4) since a bag is an unordered

list).

Definition 15.

A ground subterm of a term, T, is MAXIMAL in T if it is not the

subterm of any ground term other than itself.
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Examples: Maximal Ground Subterms

Consider the te-m, F(G(J(A,B)),J(X,C)). The subterms, G(J(A,B)) and

C are maximal, but the subterms A, B, and J(A,B) are not.

For another example, consider the atom, Q(J(A,B),J(C,D)). Since an

atom is not a term, both J(A,B) and J(C,D) are maximal.

Definition 16.

A WFF (well formed formula) is a literal, an atom, or a term.

The following functions are defined by their action on an arbitrary WFF:

Definition 17.

VARBAG(WFF) = bag of all variable names in WFF.

Definition 18.

VARSET(WFF) = set of all variable names in WFF.

Definition 19.

MFS(WFF) = major function symbol of WFF.

Definition 20.

NARGS(WFF) = number of arguments of MFS(WFF).

Examples:

VARBAG(F(X,J(Y,X))) (X,X,Y)

VARSET(F(X,J(Y,X))) (X,Y)

NARGS(F(X,J(Y,X))) = 2 (X and J(X,Y))

MFS(F(X,J(Y,X))) - F
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Definition 21.

COM(WFF) = number of maximal ground subterms in WFF plus the number

of composite subterms (including the term itself) that are not

ground. Note that this is one measure of the complexity of a WFF

because it counts each maximal ground term as one item, namely, the

single constant element that the term names (as discussed in

Definition 12).

Examples:

COM(F(X,J(Y,X))) = 0 + 2 = 2

COM(F(X,J(Y,A))) = 1 + 2 = 3

COM(F(X,J(A,B))) = 1 + 1 = 2

COM(F(A,J(B,C))) = 1 + 0 = 1

Note that the last example is the least complex in the above sense

because it names a single constant element of the relevant domain.

Definition 22.

SGN(literal) = '+' or '-' (sign of atom)

Definition 23.

Two literals, L1 and L2, PRE-CLASH if MFS(L1) = MFS(L2) and SGN(L1)

-i SGN(L2). Note that two literals clash (resolve) if they pre-clash

and their atoms unify.

Definition 24.

A list of clauses (or a clause space) is FULLY (iASHED if no new

resolvents can be found. That is, if clauses C1 and C2 are on the

list and can be resolved to generate clause C3, then either C3 or a

clause that subsumes C3 must be on the list.
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Definition 25.

A list of clauses (or a clause space) is FULLY PARAMODULATED if no

new paramodulants can be found. That is, if clauses C1 and C2 are on

the list and can be paramodulated to generate clause C3, then either

C3 or a clause that subsumes C3 must be on the list.

Definition 26.

A literal (or term), T, is TRANSFORMABLE by a list of transformations

if there exists at least one transformation, Tr, on the list such

that Tr(T) , T.

Literal clashing and unification are fundamental steps in the

inference process of any resolution and paramodulation theorem proving

system. The incorporation of automatic transformations into these

processes can have a dramatic effect on the clause space corresponding to

a problem by permitting more inferences to be generated from a given set

of clauses. The algorithms presented in the following subsections

illustrate the incorporation of automatic transformations into these two

processes.

II.B.1. LITERAL CLASHING ALGORITHM

The basic step of resolution is the clashing of literals. The usual

notion is that two literals clash (resolve) if they are opposite in sign

and have a common instance. That is, there exists a substitution to the

variables such that the resulting atoms are identical. The new notion is

that two literals clash if there are transformed versions of the literals
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that clash in the usual sense.

The new literal clashing algorithm presented here makes use of two

distinct lists of applicable transformations, LCLASH1 and LLASH2.

LCLASH1 contains transformations that change the sign and/or predicate

symbol of a literal. LCLASH2 contains transformations that permute the

arguments of a literal.

Both LCLASH1 and LCLASH2 consist of clauses with exactly two literals,

L1 and L2. The mechanism for applying the transformations is ordinary

resolution. Note that every claue in fact represents two

transformations, -'L1 -- > L2 and 'L2 -- > Li.

The clauses on LCLASH1 must satisfy the following properties:

1. The clause, L1 L2, is in (or known to be deducible from) the

clause space representing the problem in question.

This is to maintain the validity of all inferences. The

transformations on LCLASH2 also must satisfy this property.

2. Either SGN(L1) = SGN(L2) or MFS(L1) , MFS(L2).

The transformations of LCLASH1 correspond to changes in sign

and/or predicate symbol.

One additional required property of LCLASH1 will be given after the

description of LCLASH2 below.

The spirit of the new concept is to automate the 'obvious'

transformations, that is, to automate transformations that are in some

sense 'rewrite' rules (for literals as well as terms) such as, 'LT(X,Y)

-'LT(Y,X), where LT is the 'less than' relation. The restrictions that

follow are an attempt to distinguish these kinds of transformations from

transformations that have more deductive power, such as 'LT(X,Y)

LT(X,S(Y)), where S(X) stands for the successor of X. The distinction is
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informal and clearly subject to interpretation.

It was desirable in this first study to greatly restrict the lists of

eligible transformations and the rules for applying them. Promising

results with the restricted lists of transformations indicate that future

studies with some or all of the restrictions relaxed might be worthwhile.

The additional restrictions to LCLASH1 that are currently implemented

are:

1. VARSET(L1) = VARSET(L2).

Transformations do not introduce new variables to or eliminate

variables from a literal.

2. NARGS(L1) = NARGS(L2)

Transformations do not introduce new arguments to or eliminate

arguments from a literal.

3. COM(L1) = COM(L2)

Transformations do not change the complexity of a literal in the

sense of Definition 21.

4. No substitutions for the variables in the literals being

transformed can be made. Thdt is, only the transformation

clauses themselves can be instantiated. The application of the

transformations on LCLASH2 is also restricted in this way.

Example: Restricted Substitution

The clause, -'Q(X,X) R(X,X), is an eligible transformation

clause but cannot be applied to the literal, Q(X,Y), because of

the restriction on substitution.

In addition to the properties for LCLASH1 and LCLASH2 already



40

mentioned, the clauses on LCLASH2 must satisfy the following properties;

1. MFS(Ll) = MFS(L2)

2. SGN(L1) ,= SGN(L2)

3. The major subarguments of L2 are a permutation of the major

subarguments of L1. That is, there; exists some permutation of

arguments, PERM, such that PERM(L1) and L2 differ only in sign.

4. LCLASH2 must be fully clashed.

The final required property of LCLASH1 is that the union of the lists

LCLASH1 and LCLASH2 must be fully clashed subject to the two

qualifications that follow. Although omitting the qualifications would

result in lists with nice theoretical properties (see Lemma 1 below), it

is consistent with the goal of keeping the set of applicable

transformations small to remove transformations that are redundant and

not useful.

1. Tautologies generated by resolving clauses in LCLASH1 need not

be included. For example, the clauses 'P(X) Q(X) and P(X)

-'Q(X) resolve to generate the clauses -'P(X) P(X) and -'Q(X)

Q(X), which do not satisfy property 2 above for LCLASH1 and

would not be added to the list.

2. After the union of lists LCLASH1 and LCLASH2 is fully clashed,

consider the set of all transformations, Ll L2, on LCLASH1 such

that exactly one of the literals, L1 or L2, is transformable by

LCLASH2. If there are two transformations in this subset that

differ only by a single application of a transformation in

LCLASH2 (that is, the clauses are permutation variants of each

other where the permutation is an eligible transformation),

then only one of the transformations need be kept on LCLASH1.
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Keeping all such permutation variants will not effect the

results of the algorithm, but might cause some unnecessary

duplication of work.

Example: Permutation Variants

If the clause, -'LT(X,Y) -'EQUAL(X,Y) is on LCLASH1, and the

clause, -'EQUAL(X,Y) EQUAL(Y,X), is on LCLASH2, then it is not

necessary to include the clause, -'LT(X,Y) 'EQUAL(Y,X), on

LCLASH1.

Note that the fully clashed requirement is not prohibitive if the

number of clauses involved is small. In particular, note that the

resulting set will be finite because of the restrictions placed on the

complexity of the transformations. For example, although the clause,

-'P(X) P(F(X)), itself can generate a countably infinite set of distinct

clauses, transformations of this kind are not allowed.

A transformation (set of transformations) is not eligible if it

indirectly violates the above requirements, even if the transformation

clause itself is eligible. For example, the pair of transformation

clauses, -'Q(A) R(A) and -'R(A) Q(B), would not be eligible because the

fully clashed property would require the transformation clause, -'Q(A)

Q(B), to be present. This transformation clause is not eligible because

it does not correspond to a transformation that changes sign and/or

predicate symbol (for LCLASH1) or to a transformation that permutes

arguments of a literal (for LCLASH2).

Most of the requirements above are relevant to restricting the set of

transformations and how they can apply. A few, however, like the fully
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clashed properties, are relevant to permitting a simple organization to

the new literal clashing algorithm. Although these requirements may seem

to make the set of transformations on lists LCLASH1 and LCLASH2 very

complicated, most of the requirements are only necessary to cover special

cases that will not commonly arise in practice. On one set of real

problems that was tested (see Chapter III), the entire set of

transformations consisted of the following transformation clauses:

-'LT(X,Y) -'LT(Y,X)

-LT(X,Y) ,EQUAL(X,Y)

-'LT(X,NUMl) -'IB(CC,X)

-LT(CN,X) -'IB(CC,X)

-'EQUAL(X,Y) EQUAL(Y,X)

and -'EQUALARR(X,Y) EQUALARR(Y,X)

The set of eligible transformations has been divided into tLe two

lists, LCLASH1 and LCLASH2, for reasons of efficiency. Restricting the

set of transformations that can first be applied to those that change sign

and/or predicate symbol of a literal provides an efficient sieve for

literals that are not clashable. That is, no attempt will ever be made to

unify the atoms of two literals unless they have transformed versions that

pre-clash. Although having a single fully clashed list of transformations

would lend itself to a very simple algorithm for applying the

transformations, it is felt that the trade-off between the computational

efficiency of having two lists against the simple organization of the

algorithm justifies having the two lists.

The following lemmas and theorems help motivate an algorithm that

effectively makes use of the lists of transformation clauses defined

above. The two theorems illustrate the trade-off between techniques that
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can be shown to have nice theoretical properties and those that are useful

in practice. Theorem 1 characterizes the lteral clashing properties of

the lists LCLASH1 and LCLASH2 when transformations can be applied without

a substitution restriction. Theorem 2 characterizes the transformation

properties of the lists when the substitution restriction is in effect.

Note that the identity transformation (represented by tautologies) is

implicitly (but not explicitly) in every set of transformations

(clauses). That is, while the reference to the existence of a

transformation with certain properties includes the possibility of the

identity transformation, the refer nce to literals that are transformable

by a certain set does not.

Notation:

C |-- c if clause, c, is deducible from clause space, C, with ordinary

resolution (without a substitution restriction).

a --> b with respect to a set of clauses, C, if unit clause, b, is

deducible from unit clause, a, with a single ordinary

resolution step. That is, there exists a clause, c, in C

such that b is a resolvent of a and c.

Lemma 1. Let a and b be literals treated as unit clauses. Let C be a set

of transformation clauses (exactly two literals) that is fully clashed.

If the conjunction of b and C is satisfiable, but the conjunction of a, b,

and C is unsatisfiable, then a I--> -'b' with respect to C, where b and -'b'

clash.

Proof. Since a must clearly participate in the derivation of the empty

clause, the fully clashed property implies that if a and C -- 'b', where

b and -'b' clash, then a |--> -'b'. The lemma then follows from Corollary 3
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on page 539 of [14]. o

Note that the case in which the conjunction of b and C is

unsatisfiable is of no interest because of the fully clashed property of

C.

Let C above be partitioned into two sets, C1 and C2, such that Cl

consists of those clauses which (when thought of as transformations)

change sign and/or predicate symbol, and C2 those clauses that remain. Now

replace C1 with Cl' which is constructed from C1 as follows: For each

clause in C1, add the clause to Cl' unless it is the resolvent of a clause

in C2 and a clause already in Cl' and exactly one of its literals is

transformable by C2. In other words, the omitted clauses are clauses that

can be derived by applying a transformation from C2 to one of the literals

of a transformation clause in Cl'.

Note that Cl' may not be uniquely determined by C1. The order that

the clauses are inspected may determine which clauses in C1 are omitted

from Cl' . This has no bearing on the lemmas and theorems that follow.

Lemma 2. Let al, a2, ... an be unit clauses such that al |--> a2 I-->...

|--> an with respect to Cl' and C2. If al and an differ in sign and/or

predicate symbol, then at least one of the following must hold:

(1) There exists a unit clause, b, such that al I--> b with respect to

Cl' and b I--> an with respect to C2.

(2) There exists a unit clause, b, such that al |--> b with respect to

C2 and b I--> an with respect to Cl'.
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Proof. Since C is fully clashed, al |--> an with respect to C. Since al and

an differ in sign and/or predicate symbol, it follows that al |--> an with

respect to C1. Let cl be the clause in C1 that resolves with al to produce

an. If cl is in Cl', then there is nothing to show since the identity

transformation is implicitly in C2 (b = an). If cl is not in Cl', then it

must be the resolvent of a clause in Cl' with a clause in C2, and the lemma

follows. 0

Lemma 3. Let al, a2, ... an, be as in Lemma 2. If an is transformable by

C2, then outcome (1) of Lemma 2 holds.

Proof. Note that al I--> an with respect to the original C1 as in the proof

of Lemma 2. If both al and an can clash against clauses in C2, then al I-->

an with respect to Cl' since C1' contains all clauses from C1 in which

both literals are transformable by C2. In this case, both (1) and (2)

hold as the relevant clause from C2 is the identity transformation. If al

cannot clash against any clauses in C2, then (2) cannot hold unless the

relevant clause from C2 is the identity transformation. The fact that

outcome (1) must hold then follows from Lemma 2. Q

First, assume that the transformation process uses ordinary

resolution. That is, substitution is not restricted to the transformation

clauses themselves:

Theorem 1. Consider the conjunction of the clauses in LCLASH1, the clauses

in LCLASH2, and two literals, LITERALA and LITERALB as unit clauses. If

the resulting clause space is unsatisfiable but is satisfiable without

either of the two literals, then there exists a transformation, Trn, from
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LCLASH1 and a transformation, Tr2, from LCLASH2 such that either

Tr2(Trl(LITERALA)) clashes with LITERALB or Tr2(Trl(LITERALB)) clashes

with LITERALA. In particular, the following hold true:

(1) If LITERALA is transformable by LCLASH2, then there exist Tr and

Tr2 such that Tr2(Trl(LITERALB)) clashes with LITERALA.

(2) If LITERALB is transformable by LCLASH2, then there exist Tr and

Tr2 such that Tr2(Trl(LITERALA)) clashes with LITERALB.

(3) If neither LITERALA nor LITERALB is transformable by LCLASH2, then

there exists Tr such that Trl(LTTERALB) clashes with LITERALA.

Proof. Recall that LCLASH1 consists only of transformations that change

sign and/or predicate symbol and that LCLASH2 consists only of

transformations that permute arguments of a literal. Recall also that

LCLASH2 is fully clashed, and that the conjunction of the two lists is

fully clashed up to deletion of tautologies and clauses that can be

derived by the resolution of a clause on LCLASH1 with a clause on LCLASH2

(see Section II.B.1).

Case 1: LITERALA is transformable by LCLASH2.

Since the clause space is unsatisfiable, there must exist a sequence

of unit (single literal) clauses a0, al, ... an such that LITERALB = aO

1--> al I--> a2 |--> ... |--> an = -'LITERALA' where -'LITERALA' and

LITERALA clash (see [14]). Let k <= n be such that ak, ak+1... an are of

the same sign and predicate symbol and such that ak-1 and an differ in

sign and/or predicate symbol. Since LCLASH2 is fully clashed, there exists

(by Lemma 1) a transformation Tr2'' from LCLASH2 such that Tr2' '(ak) = an.

It remains to show that there exists a transformation Trl from LCLASH1

and a transformation Tr2' from LCLASH2 such that Tr2'(Trl(aO)) = ak. This

suffices because Lemma 1 and the fact that LCLASH2 is fully clashed would
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then imply that there exists a transformation Tr2 from LCLASH2 such that

Tr2(Trl(a0)) = Tr2' ' (Tr2' (Trl(a0))) = Tr2' ' (ak) = an.

If aO and ak are of the same sign and predicate symbol, then Tr is the

identity transformation and Tr2' is guaranteed by Lemma 1 (using LCLASH2

for C) since LCLASH2 is fully clashed.

If aO and ak differ in sign and/or predicate symbol, then the result

follows from Lemma 3.

Case 2: LITERALB is transformable by LCLASH2.

This proof is completely symmetric to the proof of Case 1.

Case 3: Neither LITERALA nor LITERALB is transformable by LCLASH2.

Since the two possible outcomes in Lemma 2 are identical when the

candidate from C2 is the identity transformation, this case follows from

Lemma 2. 0

Now, consider the transformation process as defined originally. That

is, substitution is now only allowed into the transformation clauses

themselves:

Notation:

Let a and b be literals.

a -- > b if there exists a transformation Tr on either LCLASH1 or

LCLASH2 such that Tr(a) = b.

a -1-> b (a -2-> b) if there exists a transformation Tr on LCLASH1

(LCLASH2) such that Tr(a) = b.

a -(k)-> b if there exists al, a2, ... ak such that a -- > al --> a2 -->

... -- > ak = b. (If k = 0 then a = b.)

a -(*)-> b if a -(k)-> b for some k >= 0.
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Lemma 4. a -1-> b if and only if -'b -1-> ,a (Similarly for LCLASH2).

Proof. a -1-> b if and only if there exists a transformation clause, L1

L2, and a substitution, S, such that L1(S) = ,a and L2(S) = b (since

substitutions are only allowed into the transformation clauses). 0

Theorem 2. a -(*)-> b implies that there exists a' such that either a -1->

a' -2-> + or 'b -1-> a' -2-> ,a.

Proof. This follows from Theorem 1 where LITERALA and LITERALB in Theorem

1 are thought of as ground literals (so no substitutions are possible). 0

Theorem 1 does not characterize the transformation process of the

algorithm below because it does not account for the substitution

restriction to the application of transformations. Although Theorem 2

does characterize the transformation process of the algorithm, it is

considerably weaker than Theorem 1 in that it only refers to the

transformation process itself and not to the underlying goal of clashing

literals. This difference reflects the trade-off made between nice

theoretical results and practical algorithms, and is illustrated in the

following example.

Example: Weakness of Theorem 2

Consider the two literals, Q(A) and R(X), and the transformation

clause, 'Q(A) 'R(B). Q(A) can be transformed to -'R(B) which clashes with

R(X), but R(X) cannot be transformed to 'Q(A) to clash with Q(A) (because

of the substitution restriction). Although it is necessary to choose the

correct literal to transform for this clash to succeed, the algorithm does

not make this distinction and so the success is left to chance (which
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order the literals are passed to the clashing algorithm).

Since the motivation for the substitution restriction is to preserve

the 'renaming' spirit of the transformation concept, it is reasonable to

allow Q(A) to be transformed to 'R(B) without allowing R(X) to be

transformed to 'Q(A). It is felt that this anomaly in the selection

process (choosing which literal to transform), does not warrant the price

of a different selection algorithm, which would be significantly more

complex and costly.

Example: Inherent Complexity of a Better Selection Algorithm

Consider the two literals, Q(A,X) and R(Y,B), and the transformation

clauses, -'Q(A,X) -'R(B,X) and 'Q(X,A) -'R(X,B). If only the first

transformation clause is present, then it is necessary to transform the

literal, Q(A,X), in order to clash the two literals (because of the

substitution restriction). Similarly, if only the second transformation

clause is present, then it is necessary to transform the literal, R(Y,B).

This distinction is dependent on the complete structure of the

transformation clauses as well as the literals to be transformed. In

other words, for a more effective selection algorithm, detailed

information about the eligible transformations and the literals to be

clashed must be taken into account.

ALGORITHM

Let LITERAL1 and LITERAL2 be two literals that are to be clashed with

the new literal clashing algorithm.

STEP 1: Choose which literal to transform.
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If LITERAL2 is transformable by LCLASH2, then transform

LITERALl, else transform LITERAL2.

Let LITERALB be the literal chosen to be transformed, and let

LITERALA be the literal that remains unchanged.

Go to STEP 2 to clash LITERALA and LITERALB.

STEP 2: Apply transformations of LCLASH1.

Let LITERALB'' = LITERALB

Do while LITERALA and LITERALB'' do not clash.

Let LITERALB' = LITERALB

Do while LITERALA and LITERALB' do not pre-clash.

Choose a transformation from LCLASH1 that has not

been applied to LITERALB yet.

Apply this transformation to generate a new

LITERALB'.

If none apply then STOP (with failure).

End

Go to STEP 3 to unify the corresponding atoms of

LITERALA and LITERALB'.

End

STOP (with success)

STEP 3: Apply transformations of LCLASH2.

Let LITERALB'' = LITERAL'

Do while LITERALA and LITERALB'' do not clash.

Choose a transformation from LCLASH2 that has not

been applied to LITERALB' yet.

Apply this transformation to LITERALB'

to generate a new LITERALB''.
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If none apply then RETURN to STEP 2.

End

RETURN to STEP 2.

It is important to note that the new literal clashing algorithm is not

a 'pre-theorem prover'. That is, it is not the case that the algorithm

corresponds to using the theorem prover to find a proof that two literals

are inconsistent. Let m be the number of transformations on LCLASH1 that

can apply to LITERALB, and let n be the number of transformations on

LCLASH2 that can apply to MFS(LITERALA). It follows that at most mn

transformations can be applied in the algorithm to test the clash of

LITERALl and LITERAL2. In general, m and n will be small. This is

important because each application of a transformation requires a

unification test, which can significantly add to the cost of the

algorithm.

The expanded unification algorithm presented in the next subsection

can be used as the unification step in the new literal clashing algorithm

(or independently as the unification step for parmodulation).

II.B.2. EXPANDED UNIFICATION ALGORITHM

Unification is a fundamental part of every resolution and

paramodulation step. The usual notion of unification is that two terms (or

atoms) unify if they have a common instance. That is, there exists a

substitution to the variables such that the resulting terms (atoms) are
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identical. In expanded unification, two terms (atoms) unify if there are

transformed versions that unify in the usual sense.

The transformation process in the expanded unification algorithm

presented here is fundamentally differer.t than the transformation process

in the new literal clashing algorithm presented in the last subsection.

The application of transformations in the new literal clashing algorithm

corresponds to making resolutions with appropriate transformation

clauses. The application of transformations in the expanded unification

algorithm, however, corresponds to making paramodulations (equality

substitutions) with appropriate transformation clauses.

The expanded unification algorithm presented here makes use of two

distinct lists of applicable transformations, UNIFYl and UNIFY2. Both

UNIFY1 and UNIFY2 consist of equality unit clauses, EQUAL(T1,T2), where T1

and T2 are terms. UNIFY1 contains transformations that change the major

function symbol of a term (MFS(Tl) = MFS(T2)). UNIFY2 contains

transformations that change the subterms of a term (MFS(T1) = MFS(T2)).

The mechanism for applying the transformations to a term, T, is a

restricted form of paramodulation (equality substitution). The difference

between ordinary paramodulation and the application of transformations is

that transformations must substitute for the entire term, T, that is being

transformed. This is an organizational restriction (for an algorithm)

that helps minimize duplication of effort.

Example: Restricted Paramodulation

The transformation, EQUAL(F(X,Y),F(Y,X)), can apply to the term,

F(A,F(B,C)), to produce F(F(B,C),A), but not to produce F(A,(F(C,B)).
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Note that in some automated theorem proving systems paramodulation

from the right side of an equality is prevented. That is, the equality

unit clause, EQUAL(T1,T2), cannot be used to substitute instances of T1

for instances of T2. The application of the transformation, EQUAL(T1,T2),

is not restricted in this way.

It is important to maintain the 'rewrite' spirit of the transformation

concept. In particular, it is important to prevent transformations that

expand terms from being included as eligible transformations.

Examples: Expanding T:ansformations

If the clause, EQUAL(F(A,A),A), was an eligible transformation, then

the following sequence would be possible: A --> F(A,A) --> F(A,F(A,A)) -- >

F(A,F(A,F(A,A))) -- > .....

Similarly, if the :lause, EQUAL(F(X,F(X,Y)),F(Y,X)), was an eligible

transformation, then the following sequence would be possible: i'(X,Y) -->

F(Y,F(Y,X)) -- > F(Y,F(X,F(X,Y))) --> .....

Such sequences must clearly be avoided.

Each clause, EQUAL(T1,T2), on UNIFY1 and UNIFY2 must satisfy the

following properties:

1. EQUAL(T1,T2) is in (or known to be deducible from) the clause

space representing the problem in question.

2. VARBAG(T1) = VARBAG(T2)

3. COM(Tl) = COM(T2)

4. T1 (T2) is not a proper subterm of T2 (T1).

The following general restrictions also apply:

1. No substitutions can be made for the variables in the term
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that is being transformed. Only the transformation itself

can be instantiated.

2. The set of transformations ideally should be fully

paramodulated. For example, if the clauses EQUAL(A,B) and

EQUAL(F(C,A),F(D,A)) are present, then the clauses

EQUAL(F(C,B),F(D,A)), EQUAL(F(C,A),F(D,B)), and

EQUAL(F(C,B),F(D,B) should be present.

Practical considerations limit the application of this

rule. For example, the pair of clauses,

EQUAL(F(X,Y),F(Y,X)) and EQUAL(F(X,F(Y,Z)),F(F(X,Y),Z)),

can generate an infinite set of eligible transformations.

Although the elimination of any such transformations can

cause blocks in the expanded unification algorithm given

below, it is reasonable to restrict the list to a small set

of the most simple and most general transformations.

Note that this property implies that all instances of application of

transitivity of equality will be present. That is, if EQUAL(T1,T2) and

EQUAL(T2,T3) are eligible transformations, then EQUAL(T1,T3) must be an

eligible transformation.

The functional reflexivity axioms (instances of EQUAL(X,X)), which

act as identity transformations, will be assumed to be implicitly on all

lists, but need not be explicitly present. This corresponds to the

assumption about tautologies in the discussion of the literal clashing

algorithm.

The clauses that satisfy the above properties are partitioned into two

sets. UNIFY1 consists of those in which MFS(Tl) , MFS(T2), and UNIFY2

consists of those in which MFS(T1) = MFS(T2).
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As in the case of the literal clashing algorithm, the set of eligible

transformations has been divided into the two lists, UNIFY1 and UNIFY2,

for reasons of efficiency. Restricting the set of transformations that

can first be applied to those that change the major function symbol of a

term provides an efficient sieve for terms that are not unifiable. That

is, no attempt will ever be made to unify terms unless they have

transformed versions that have the same major function symbol.

The following helps motivate the organization of the algorithm given

below:

Notation:

Let r and s be terms.

r -- > s if there exists a transformation Tr on either UNIFY1 or UNIFY2

such that Tr(r) = s.

Theorem 3. r --> s if and only if s --> r.

Proof. r -- > s if and only if there exists a transformation clause,

EQUAL(T1,T2), and a substitution, S, such that T1(S) = r and T2(S) = s

(since substitutions are only allowed into the transformation clauses). o

The following theorem helps justify the recursive orientation of the

expanded unification algorithm. In general, it is possible that the

transformation of a term, T, might be blocked unless some transformation

is first applied to a proper subterm of T. The theorem shows that this

problem does not arise within the context of the expanded unification

algorithm.
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Theorem 4. Let T be a term with proper subterm R, and let Trn and Tr2 be

two transformations represented by transformation clauses, EQUAL(T1,T2)

and EQUAL(T3,T4), respectively. Assume that Trl and Tr2 are on a list that

is fully paramodulated. If T' is the term that is generated by

substituting R with Trl(R) in T, and T'' = Tr2(T'), then there exists a

transformation, Tr3, such that Tr3(T) subsumes T''.

Proof. The fact that Trl is applicable to R implies that there exists a

substitution, S1, such that either T1(S1) = R or T2(S1) = R. Without loss

of generality, assume that T1(S1) = R. Then T' has subterm T2(Sl). The

fact that Tr2 is applicable to T' implies that there exists a

substitution, S2, such that either T3(S2) = T' or T4(S2) = T'. Without

loss of generality, assume that T3(S2) = T'. Now, since T3(S2) has

subterm, T2(Sl), it follows that EQUAL(T3',T4) is a paramodulant of some

instances of EQUAL(T1,T2) and EQUAL(T3,T4), where T3' is the result of

replacing the subterm, T2(Sl), in T3(S2) with T1(Sl). Since the list of

transformations is fully paramodulated (and the functional reflexivity

axioms are implicitly present), Tr3 is the transformation that is

represented by either clause, EQUAL(T3',T4), or by a clause that subsumes

EQUAL(T3',T4). o

Since the fully paramodulated property accounts for applications of

transitivity of equality, at any point in the expanded unification

algorithm, it suffices to apply at most one transformation to a term.

ALGORITHM

Let TERM1 and TERM2 be two terms that are to be unified with the
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expanded unification algorithm. The algorithm applies transformations to

TERM2 until it can be unified with TERM1 with ordinary unification. TERM1

remains unchanged and is only used to test for unification with the

transformed versions of TERM2.

The expanded unification algorithm is presented as a recursive

algorithm. That is, to unify two terms, first match or unify their major

function symbols and then unify each of their subarguments left to right.

STEP 1: Apply transformations of UNIFYl.

Let TERM2' = TERM2

Do while MFS(TERM1) MFS(TERM2')

Choose a transformation from UNIFYl that has not

been applied to TERM2 yet.

Apply this transformation to generate a new TERM2'

If none apply then STOP (with failure).

End

Go to STEP 2 to unify the major subarguments of TERM1

and TERM2'.

STOP (with success)

STEP 2: Apply transformations of UNIFY2.

Let TERM2'' = TERM2'

Do while TERM1 and TERM2'' do not unify.

Let SUBTERM1 be the first argument of TERM1.

Let SUBTERM2 be the first argument of TERM2''.

Do while SUBTERM1 and SUBTERM2 unify with expanded

unification.

If last argument then STOP (with success).

Let SUBTERM1 and SUBTERM2 be the next arguments of
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TERM1 and TERM2'' respectively.

End

Choose a transformation from UNIFY2 that has not been

applied to the current TERM2'.

Apply this transformation to generate a new TERM2''.

If none apply then STOP (with failure).

End

As with the new literal clashing algorit im, the expanded unification

algorithm is not a 'pre-theorem prover' . That is, it is nrt the case that

the algorithm corresponds to using the theorem prover to find a proof that

two terms (or atoms) have instances that are equal. Let k be the number of

function symbols in TERM2, m be the maximum number of transformations on

UNIFY1 that potentially apply to a given term (by comparing major function

symbols), and let n be the maximum number of transformations on UNIFY2

that potentially apply to a given term. It follows that at most k(m+n)

transformations can be applied in the algorithm to test for the

unification of TERM1 and TERM2. In general, m and n will be small.

The transformation concept can easily be incorporated into the

subsumption and demodulation processes with slight variations of the

expanded unification algorithm. For example, consider the clause,

Q(F(A,B)). This clause could be subsumed by Q(F(B,X)) or demodulated by

EQUAL(F(B,X),C) by applying the transformation, EQUAL(F(X,Y),F(Y,X)).

Because of the apparent relative importance of the processes, it is

expected that these applications of the transformation concept will have

little impact on the effectiveness of a theorem proving system compared to
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the impact of the new literal clashing and expanded unification

algorithms.

II.C. EFFECTIVE USE OF THE TRANSFORMATION CONCEPT

The cost (in computer resources) of the new literal clashing and

expanded unification algorithms is directly related to the number of

applicable transformations. In general, the user of the theorem proving

system must decide (from the semantics of the problem under consideration)

whether the potential effect of an eligible transformation on the proof

search space warrants its inclusion on the relevant lists. That is, it

may be better to allow a clause to apply only in the normal inference

process of the theorem prover than to include it as an automatic

transformation. In general, it seems desirable to keep the set of

eligible transformations restricted to a small set that are very general

in nature.

Example:

The transformation clause, -P(X,Y) Q(X,Y), is generally more useful

as an automatic transformation than the transformation clause, ,R(X,A)

S(B,X). It might be better (in terms of the general effectiveness and

efficiency of the theorem prover) to include the second less general

transformation as a clause in the clause space, but not as an automatic

transformation.

Note that the literal clashing algorithm finds at most one way to
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clash two literals, even if more that one way exists (in the sense that

different variable. substitutions are necessary). For example, since the

literals Q(X,A) and -'Q(A,Y) already clash, (X <-- A and Y <-- A), the

algorithm will not find the clash in which (X <-- Y) in the presence of the

transformation clause, 'Q(X,Y) Q(Y,X).

Although it might be desirable to find all possible clashes from a

theoretical standpoint, it seems less desirable in practice. It is clearly

more efficient to find just one clash. Also, there are two reasons why the

effect on the clause space of finding only one clash will not be great in

general. First, one natural way to prove problems in program verification

is to emphasize ground terms [17]. That is, aside from the initial axioms,

most clauses that participate in a proof will have no variables in them.

This implies that there will not be many literals in the clause space that

can clash in more than one way. Second, if transformation clauses

corresponding to applicable transformations are included as axioms in the

clause space, then some of the clashes not found by the literal clashing

algorithm will eventually be found by the normal search process.

There is a completely parallel discussion for the expanded

unification algorithm.
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III. IMPLEMENTATION OF THE ALGORITHMS

The algorithms described in Chapter II have been implemented in PL/1

and integrated into the ANL-NIU theorem proving system. Because the

algorithms consist of straightforward applications of processes that

already commonly occur, it is believed that the algorithms are easily

integrated into most existing resolution-based theorem proving systems.

III.A. TESTING AND EVALUATION

The new literal clashing algorithm was tested with the extended

unification algorithm included as the unification step. Three sets of

problems were tested:

1. A set of artificial problems was designed to illustrate the power

of the automatic transformation concept. One of the purposes of

this set of experiments was to uncover any possibly unforeseen side

effects of the automatic transformation process.

2. A set of real problems currently being tested by B. T. Smith on the

environmental theorem proving system [17] was tested to show that

the theorem proving system with the new literal clashing algorithm

included is no worse than, and is sometimes better than, the system

with the usual algorithm.

3. The real problems supplied by B. T. Smith were varied slightly to

help characterize the conditions in which the new literal clashing

algorithm has the most favorable effects on the proof search space.

It is a fundamental property of automated theorem proving that in
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general, it is impossible to know when progress is being made on a given

search path. For this reason, it is often difficult to draw concrete

conclusions from comparisons of different algorithms and strategies. It

is not clear what the definition of 'good' or 'better' should be. The most

obvious criterion for evaluation and comparison is the finding (or not

finding) of proofs. This alone, however, is not sufficient. Questions of

efficiency must also be considered. For example, the breadth first search

of the clause space is guaranteed to succeed (with unlimited computer

resources), but this is clearly not a reasonable strategy to build an

effective automated system on. Some other reasonable criteria are:

computer resources used (time and/or memory), total number of clauses in

the clause space, number of clauses that participate in the proof, number

of clauses actually selected by the search strategy (not counting

automatic processes), number of clauses selected by the search strategy

that actually participate in the proof, and the depth of the empty clause

in the graph representing the search space.

The literal clashing and expanded unification algorithms were

implemented with development (flexibility and testing) rather than

computational efficiency in mind. The program was written as an

independent unit and then patched into the existing theorem proving system

as a last step. Although the system ran significantly slower with the

algorithms integrated than without, it is believed that the running time

of the algorithms themselves can be decreased by approximately 80 percent

by rewriting the programs to use the data structures and routines that

already exist within the current theorem proving system.

The algorithms commonly used by B. T. Smith for program verification

problems consist of several automatic process that do not involve the
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selection of clauses by a search strategy (e.g. demodulation, case

splitting ...[17]). For this reason, a distinction has been made between

1) clauses that are generated by automatic processes and 2) clauses that

are generated by the application of an inference rule to clauses that have

been chosen from the clause space by the proof search strategy. In

particular, the depth of a clause in the graph representing the search

space will be considered with respect to this distinction. That is, the

depth of a clause is equal to the maximum depth of its ancestors if it is

generated by an automatic process, and is one greater than the maximum

depth of its ancestors if it is generated as an inference from a clause

selected by the search strategy.

III.B. RESULTS

Fourteen artificial problems were tested with and without

transformations. These consisted of at least one essential clause (a

clause necessary for the proof) with many literals, and several unit

clauses that could clash against these literals with the application of

one or more transformations.

In every case, the problems with the transformations found proofs in

exactly one hyper-resolution or UR-resolution [10] step. The problems

without the transformations either found a proof in several steps or

failed due to an incompleteness (see II.A.2) or by exhausting reasonable

computer resource limits.

Eleven real problems were tested with various search strategies,

including those most commonly used by B. T. Smith. The problems run with
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transformations and those run without transformations will be referred to

as the 'trans' and 'notrans' versions respectively. The following

observations have been made:

Finding proofs: There was no case in which the notrans version found a

proof and the trans version did not. There was exactly one case

in which the trans version found a proof and the notrans version

did not.

Total number of clauses in search space (in cases in which a proof was

found): The notrans version tended to have fewer clauses than the

trans version. This is reasonable because the transformation

process has the effect of producing more clauses at earlier levels

in the graph that represents the search space. Since all of the

search strategies used have some element of breadth first search

in them, the general effect of the transformation process is a n~t

increase in the total number of clauses added to the clause space.

There were isolated cases in which the trans version actually had

up to 40 percent fewer clauses than the notrans version, and a few

cases in which the trans version had as many as 40 percent more

clauses than the notrans version, but on average, the trans

version produced approximately 18 percent more clauses than the

notrans version.

Number of clauses that participate in proof: The value for the trans

version never exceeded the value for the notrans version. The

differences ranged as high as 6 clauses (ten percent).

Number of clauses selected by the search strategy: The value for the

trans version never exceeded the value for the notrans version in

all cases but one. The single increased value was from 13 to 14
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clauses (less than 8 percent). The decreased values ranged up to

over 50 percent (9 to 4 clauses).

Number of selected clauses that participate in the proof: The value for

the trans version never exceeded the value for the notrans

version, with reductions of up to 40 percent.

Depth of empty clause: The value for the trans version was less than or

equal to the value for the notrans versions in all tests with all

but one of the eleven problems tested, with reductions of up to 50

percent. In the one exception, the trans versions all increased

the depth of the notrans version from 2 to 3. This is possible

because there can be more than one proof to a problem, and because

the search strategies used are not exactly breadth first

searches. That is, sometimes level i clauses can be selected by

the search strategy before level j clauses, where i is greater

than j. In the problems in which the depth was higher in the

trans version than in the notrans version, a longer path to the

empty clause (deeper proof) was found before the shorter path

(less deep proof) was discovered.

In a third set of experiments, noise (extraneous literals and

complications of terms) was added to the real problems. The negative

effect of adding noise was consistently and significantly worse in the

problems run without transformations than in the problems run with

transformations.
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IV. SUMMARY

Do the benefits or potential benefits of the automatic transformation

concept justify the incorporation of transformations into the literal

clashing and unification processes for some problems? What further

investigations might be made to better characterize and take advantage of

the power of the automatic transformation concept? In what other areas

might it apply?

IV.A. AUTOMATIC TRANSFORMATIONS

The artificial problems and the modified real problems tested above

indicate that the automatic transformation concept does have the

potential to become a powerful extension to a resolution-based automated

theorem proving system.

Except for isolated cases, the tests with the real problems indicate

that program verification problems run with automatic transformations

incorporated into the literal clashing and unification processes did no

worse than and sometimes did significantly better than the same problems

run without transformations. The results, however, were not as promising

as expected. This suggests that although the concept may be quite useful,

better search strategies not currently available to the theorem proving

system might be developed to capitalize on the power of the transformation

process. In particular, for program verification problems, a strategy

that is more oriented to breadth first search (but is not an exact breadth

first search) might prove very useful.
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Further study in this area might prove fruitful.

IV.B. IDEAS FOR FURTHER STUDY

Various modifications to the new literal clashing and expanded

unification algorithms including relaxation of some of the rules for

eligibility of transformations and rules for applying transformations

might be investigated. In particular, relaxation of the rule about

restricted substitution into the terms and/or literals being transformed

could have a significant effect on the resulting clause space.

As mentioned in the last subsection, results of tests made indicate

that further testing of the transformation concept with new search

strategies not currently available might be fruitful.

Finally, the incorporation of the automatic transformation concept

into other areas, such as demodulation or subsumption, might be

investigated.
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