1880

USER GUIDE FOR MINPACK-1

by

Jorge J. Moré, Burton S. Garbow, and Kenneth E. Hillstrom

ARGONNE NATIONAL LABORATORY, ARGONNE, ILLINOIS
Prepared for the U. S. DEPARTMENT OF ENERGY
under Contract W-31-109-Eng-38

```
ANL,-80-74
```


ARGONNE NATIONAL LABORATORY

9700 South Cass Avenue Argonne, Illinois 60439

USER GUIDE FOR MINPACK~1
by

Jorge J. Moré, Burton S. Garbow, Kenneth E. Hillstrom

Applied Mathematics Division

August 1980

TABLE OF CONTENTS

Abstract 5
Preface 5
Acknowledgments 8
CHAPTER 1. Introduction to MINPACK-1 9
1.1 Systems of Nonlinear Equations 9
1.2 Nonlinear Least Squares Problems 9
1.3 Derivative Checking 10
1.4 Algorithmic Paths: Core Subroutines and Easy-to-Use Drivers 10
1.5 MINPACK-1 Subroutines: Systems of Nonlinear Equations 10
1.6 MINPACK-1 Subroutines: Nonlinear Least Squares Problems 12
1.7 Machine-Dependent Constants 13
1.8 MINPACK-1 Internal Subprograms 14
CHAPTER 2. Algorithmic Details 17
2.1 Mathematical Background 17
2.2 Overview of the Algorithms 19
2.3 Convergence Criteria 21
2.4 Approximations to the Jacobian Matrix 26
2.5 Scaling 28
2.6 Stbroutine FCN: Calculation of the Function and Jacobian Matrix 30
2.7 Constraints 33
2.8 Error Bounds 35
2.9 Printing 43
CHAPTER 3. Notes and References 45
CHAPTER 4. Documentation 49
CHAPTER 5. Program Listings 139

MINPACK-1 is a package of Fortran subprograms for the numerical solution of systems of nonlinear equations and nonlinear least squares problems. This report provides an overview of the algorithms and software in the package and includes the documentation and program listings.

Preface

The MINPACK Project is a research effort whose goal is the development of a systematized collection of quality optimizatin software. The first step towards this goal has been realized in MINPACK-1, a package of Fortran prograns for the numerical solution of systems of nonlinear equations and nonlinear least squares problems.

The design of the algorithms and software in MINPACK-l has several objectives; the main ones are reliability, ease of use, and transportability.

At the algorithmic level, reliability derives from the underlying algorithms having a sound theoretical basis. Entirely satisfactory global convergence results are available for the MINPACK-1 algorithms and, in addition, their properties allow scale invariant implementations.

At the software level, reliability derives from extensive testing. The heart of the testing aids is a large collection of test problems (Moré, Garbow, and Hillstrom [1978]). These test problems have been used to measure the performance of the software on the following computing systems: IBM 360/370, CDC 6000-7000, Univac 1100, Cray-1, Burroughs 6700, DEC PDP-10, Honeywell 6000, Prime 400, Itel AS/6, and ICL 2980. At Argonne, software per Eormance has been further measured with the help of WATFIV and BRNANL (Fcsdick [1974]). WATFIV detects run-time errors such as undefined variables and out-of-range subscripts, while BRNANL provides execution counts for each block of a program and, i.l particular, has established that the MINPACK-1 test problems execute every non-trivial program block.

Reliability further implies efficient and robust implementations. For example, MINPACK-1 programs access matrices sequentially along columns (rather than rows), since this improves efficiency, especially on paged systems. Also, there are extensive checks on the input parameters, and computations are
formulated to avoid destructive underflows and overflows. Underflows can then be safely ignored; overflows due to the problem should of course be investigated.

Ease of use derives from the design of the user interface. Each algorithmic path in MINPACK-1 includes a core subroutine and a driver with a simplified calling sequence made possible by assuming default settings for certain parameters and by returning a limited amount of information; many applications do not require full flexibility and in these cases the drivers can be invoked. On the other hand, the core subroutines enable, for example, scaling of the variables and printing of intermediate results at specified iterations.

Ease of use is also facilitated by the documentation. Machine-readable documentation is provided for those programs normally called by the user. The documentation includes discussions of all calling sequence parameters and an actual example illustrating the use of the corresponding algorithm. In addition, each program includes detailed prologue comments on its purpose and the roles of its parameters; in-line comments introduce major blocks in the body of the program.

To further clarify the underlying structure of the algorithms, the programs have been formatted by the TAMPR system of Boyle and Dritz [1974]. TAMPR produces implementations in which the loops and logical structure of the programs are clearly delineated. In addition, TAMPR has been used to produce the single precision version of the programs from the master (double precision) version.

Transportability requires that a satisfactory transfer to a different computing system be possible with only a small number of changes to the software. In MINPACK-1, a change to a new computing system only requires changes to one program in each precision; all other programs are written in a portable subset of ANSI standard Fortran acceptable to the PFORT verifier (Ryder [1974]). This one machine-dependent program provides values of the machine precision, the smallest magnitude, and the largest magnitude. Most of the values for these parameters were obtained from the corresponding PORT library program (Fox, Hall, and Schryer [1978]); in particular, values are provided for all of the computing systems on which the programs were tested.

MINPACK-1 is fully supported. Comments, questions, and reports of poos or incorrect performance of the MINPACK-1 programs should be directed to

Burton S. Garbow
Applied Mathematics Division
Argonne National Laboratory
9700 South Cass Avenue
Argonne, IL 60439
Phone: (312) 972-7184
Of particular interest would be reports of performance of the MINPACK-1 package on machines not covered in the testing.

The MINPACK-1 package consists of the programs, their documentation, and the testing aids. The package comprises approximately 28,000 card images and is transmitted on magnetic tape. The tape is available from the following two sources.

National Energy Software Center
Argonne National Laboratory
9700 South Cass Avenue
Argonne, IL 60439
Phone: (312) 972-7250
IMSL
Sixth Floor-NBC Building
7500 Bellaire Blvd.
Houston, TX 77036
Phone: (713) 772-1927
The package includes both single and double precision versions of the programs, and for those programs normally called by the user machine-readable documentation is provided in both single and double precision forms. An implementation guide (Garbow, Hillstrom, and Moré [1980]) is also included with the tape.

Acknowledgments

The MINPACK-1 testing was conducted by the following individuals; their assistance and suggestions were invaluable to the project.

```
Poul Arendal, The World Bank (Burroughs)
Richard Bartels, University of Waterloo (Honeywell)
Mary Ann Berg, University of Illinois at Urbana-Champaign (CDC)
W. Robert Boland, Air Force Weapons Laboratory (CDC)
Roger Crane, RCA Laboratories (IBM)
Dona Crawford, Sandia Laboratories, Livermore (CDC)
John Dennis, Rice University (Itel)
Jeremy DuCroz, Numerical Algorithms Group Ltd. (ICL)
Jay Fleisher, The University of Wisconsin (Univac)
Fred Fritsch, Lawrence Livermore Laboratory (CDC, Cray)
Patrick Gaffney, Union Carbide Corporation (CDC, Cray, DEC, IBM)
David Gay, Massachusetts Institute of Technology (IBM)
Kathie Hiebert, Sandia Laboratories, Albuquerque (CDC)
L. W. Lucas, Naval Weapons Center (Univac)
Dan O'Reilly, Data Resources, Inc. (Burroughs;
Gerald Ruderman, Management Decision Systems, Inc. (Prime)
Nora Sabelli, University of Illinois at Chicago Circle (IBM)
Susan Sherry, Federal Reserve Board (IBM)
Danny Sorensen, University of Kentucky (IBM)
Jesse Wang, Argonne National Laboratory (IBM)
```

Many others have contributed to the package in various ways; in particular, we acknowledge Beverly Arnoldy, Jim Boyle, Ken Brown, Wayne Cowell, Jim Cody, Tom Coleman, Bill Davidon, Jack Dongarra, Dudley Goetschel, Jerry Kreuser, James Lyness, Mike Minkoff, Larry Nazareth, Mike Powell, Rich Raffenetti, Bob Schnabel, Greg Shubert, Brian Smith, David Thuente, and Richard Wilk.

Special thanks go to Jim Pool, the originator of the project, and to Paul Messina, the head of the Applied Mathematical Sciences section of the Applied Mathematics Division at Argonne. Finally, thanks to Judy Beumer for her usual outstanding job of typing this report.

CHAPTER 1
Intreduction to MINPACK-1

The purpose of this chapter is to provide an overview of the algorithms and software in MINPACK-1. Most users need only be acquainted with the first six sections of this chapter; the remaining two sections describe lower-level software called from the main programs.

1.1 Systems of Nonlinear Equations

If n functions $f_{1}, f_{2}, \ldots, f_{n}$ of the n variables $x_{1}, x_{2}, \ldots, x_{n}$ are specified, then MINPACK-1 subroutines can be used to find values for $x_{1}, x_{2}, \ldots, x_{n}$ that solve the system of nonlinear equations

$$
\mathrm{f}_{\mathrm{i}}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right)=0, \quad 1 \leq i \leq \mathrm{n} .
$$

To solve this system we have implemented a modification of Powell's hybrid algorithm. There are two variants of this algorithm. The first variant only requires that the user calculate the functions f_{i}, while the second variant requires that the user calculate both the functions f_{i} and the n by n Jacobian matrix

$$
\left(\frac{\partial f_{i}(x)}{\partial x_{j}}\right), \quad 1 \leq i \leq n, \quad 1 \leq j \leq n
$$

1.2 Nonlinear Least Squares Problems

If m functions $f_{1}, f_{2}, \ldots, f_{m}$ of the n variables $x_{1}, x_{2}, \ldots, x_{n}$ are specified with $m \geq n$, then MINPACK-1 subroutines can be used to find values for $x_{1}, x_{2}, \ldots, x_{n}$ that solve the nonlinear least squares problem

$$
\min \left\{\sum_{i=1}^{m} E_{i}(x)^{2}: x \in R^{n}\right\}
$$

To solve this problem we have implemented a mod fication of the LevenbergMarquardt algorithm. There are three variants of this algorithm. The first
variant only requires that the user calculate the functions f_{i}, while the second variant requires that the user calculate both the functions f_{i} and the m by n Jacobian matrix

$$
\left(\frac{\partial f_{i}(x)}{\partial x_{j}}\right), \quad 1 \leq i \leq m, \quad 1 \leq j \leq n
$$

The third variant also requires that the user calculate the functions and the Jacobian matrix, but the latter only one row at a time. This organization only requires the storage of an n by n matrix (rather than m by n, and is thus attractive for nonlinear least squares problems with a large number of functions and a moderate number of variables.

1.3 Derivative Checking

The main advantage of providing the Jacobian matrix is increased reliability; for example, he algorithm is then much less sensitive to functions subject to errors. However, providing the Jacobian matrix is an error-prone task. To help identify errors, MINPACK-1 also contains a subroutine CHKDER that checks the Jacobian matrix for consistency with the function values.

1.4 Algorithmic Paths: Core Subroutines and Easy-to-Use Drivers

There are five general algorithmic paths in MINPACK-1. Each path includes a core subroutine and an easy-to-use driver with a simplified calling sequence made possible by assuming default settings for certain parameters and by returning a limited amount of information; many applications do not require full flexibility and in these cases easy-to-use drivers can be invoked. On the other hand, the core subroutines enable, for example, scaling of the variables and printing of intermediate results at specified iterations.

1.5 MINPACK-1 Subroutines: Systems of Nonlinear Equations

The MINPACK-1 subroutines for the numerical solution of systems of nonlinear equations are HYBRD1, HYBRD, HYBRJI, and HYBRJ. These subroutines provide alternative ways to solve the system of nonlinear equations

$$
\mathrm{f}_{\mathrm{i}}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right)=0, \quad 1 \leq \mathrm{i} \leq n
$$

by a modification of Powell's hybrid algorithm. The principal requirements of the subroutines are as follows (see also Figure 1).

HYBRD1, HYBRD
The user must provide a subroutine to calculate the functions $\mathrm{f}_{1}, \mathrm{f}_{2}, \ldots, \mathrm{f}_{\mathrm{n}}$. The Jacobian matrix is then calculated by a forwarddifference approximation or by an update formula of Broyden. HYBRD1 is the easy-to-use driver for the core subroutine HYBRD.

HYBRJI, HYBRJ
The user must provide a subroutine to calculate the functions $\mathrm{f}_{1}, \mathrm{f}_{2}, \ldots, \mathrm{f}_{\mathrm{n}}$ and the Jacobian matrix

$$
\left(\frac{\partial \mathrm{f}_{\mathrm{i}}(\mathrm{x})}{\partial \mathrm{x}_{\mathrm{j}}}\right), \quad 1 \leq \mathrm{i} \leq \mathrm{n}, \quad 1 \leq \mathrm{j} \leq \mathrm{n}
$$

(Subroutine CHKDER can be used to check the Jacobian matrix for consistency with the function values.) HYBRJI is the easy-to-use driver for the core subroutine HYBRJ.

1.6 MINPACK-1 Subroutines: Nonlinear Least Squares Problems

The MINPACK-1 subroutines for the numerical solution of nonlinear least squares problems are LMDIF1, LMDIF, LMDER1, LMDER, LMSTR1, and LMSTR. These subroutines provide alternative ways to solve the nonlinear least squares problem

$$
\min \left\{\sum_{i=1}^{m} £_{i}(x)^{2}: x \in R^{n}\right\}
$$

by a modification of the Levenberg-Marquardt algorithm. The principal requirements of the subroutines are as follows (see also Figure 2).

LMDIF1, LMDIF
The user must provide a subroutine to calculate the functions ${ }_{{ }_{\mathrm{m}}^{1}}, \mathrm{~F}_{2}, \ldots, \mathrm{f}_{\mathrm{m}}$. The Jacobian matrix is then calculated by a forwarddifference approximation. LMDIFl is the easy-to-use driver for the core subroutine LMDIF.

LMDERI, LMDER
The user must provide a subroutine to calculate the functions $\mathrm{f}_{1}, \mathrm{f}_{2}, \ldots, \mathrm{f}_{\mathrm{m}}$ and the Jacobian matrix

$$
\left(\frac{\partial \mathrm{f}_{\mathrm{i}}(\mathrm{x})}{\partial \mathrm{x}_{\mathrm{j}}}\right), \quad 1 \leq \mathrm{i} \leq m, \quad 1 \leq \mathrm{j} \leq \mathrm{n} .
$$

(Subroutine CHKDER can be used to check the Jacobian matrix for consistency with the function values.) LMDER1 is the easy-to-use driver for the core subroutine LMDER.

LMSTR1, LMSTR
The user must provide a subroutine to calculate the functions $f_{1}, f_{2}, \ldots, f_{m}$ and the rows of the Jacobian matrix

$$
\left(\frac{\partial f_{i}(x)}{\partial x_{j}}\right), \quad 1 \leq i \leq m, \quad i \leq j \leq n,
$$

one row per call. (Subroutine CHKDER can be used to check the row of the Jacobian matrix for consistency with the corresponding function value.) LMSTR1 is the easy-to-use driver for the core subroutine LMSTR.

$$
\begin{aligned}
\text { Figure } 2
\end{aligned}
$$

1.7 Machine-Dependent Constants

There are three machine-dependent constants that have to be set before the single or double precision version of MINPACK-1 can be used; for most machines the correct values of these constants are encoded into DATA statements in functions SPMPAR (single precision) and DPMPAR (double precision). These constants are:

$$
\begin{aligned}
& \beta^{1-\ell}, \text { the machine precision }, \\
& \beta^{e^{\min ^{-1}}} \text {, the smallest magnitude }, \\
& \left(1-\beta^{-\ell}\right) \beta^{e^{m a x}} \text {, the largest magnitude , }
\end{aligned}
$$

where ℓ is the number of base β digits on the machine, $e_{\min }$ is the smallest machine exponent, and $e_{\text {max }}$ is the largest machine exponent.

The most critical of the constants is the machine precision ε_{M}, since the MINPACK-1 subroutines treat two numbers a and b as equal if they satisfy

$$
|b-a| \leq \varepsilon_{M}|a|
$$

and the above test forms the basis for deciding that no further improvement is possible with the algorithm.

1.8 MINPACK-1 Internai Subprograms

Most users of MINPACK-1 need only be acquainted with the core subroutines and easy-to-use drivers described in the previous sections. Some users, however, may wish to experiment by modifying an algorithmic path to improve the performance of the algorithm on a particular application. A modification to an algorithmic path can ofte: be achieved by modifying or replacing one of the internal subprograms. Additionally, the internal subprograms may be useful independent of the MINPACK-l algorithmic paths in which they are employed.

For these reasons brief descriptions of the MINPACK-1 internal subprograms are included below; more complete descriptions can be found in the prologue comments in the program listings of Chapter 5.

DOGLEG
Given the $Q R$ factorization of $a n m$ by n matrix A, an n by n nonsingular diagonal matrix D, an m-vector b, and a positive number Δ, this subroutine determines the convex combination of the Gauss-Newton and scaled gradient directions that solves the problem

$$
\min \{\|A x-b\|:\|D x\| \leq \Delta\} .
$$

ENORM
This function computes the Euclidean norm of a vector x .

FDJACl
This subroutine computes a forward-difference approximation to the Jacobian matrix associated with n functions in n variables. It includes a banded Jacobian option.

FDJAC2
This subroutine computes a forward-difference approximation to the Jacobitn matrix associated with m functions in n variables.

LMPAR

Given the $Q R$ factorization of $a n$ by n matrix A, an n by nonsingular diagonal matrix D, an meveror b, and a positive number Δ, this subroutine is used to solve the problem

$$
\min \{\|A x-b\|:\|D x\| \leq \Delta\} .
$$

QFORM
Given the $Q R$ factorization of a rectangular matrix, this subroutine accumulates the orthogonal matrix Q from its factored form.

QRFAC
This subroutine uses Householder transformations with optional column pivoting to compute a $Q R$ factorization of an arbitrary rectangular matrix.

QRSOLV
Given the $Q R$ factorization of $a n$ by n matrix A, an n by n diagonal matrix D, and an mector b, this subroutine solves the linear least squares problem

$$
\binom{A}{D}_{x} \cong\binom{b}{0} .
$$

RWUPDT
This subroutine is used in updating the upper triangular part of the $Q R$ decomposition of a matrix A after a row is added to A.

RIMPYQ

This subroutine multiplies a matrix by an orthogonal matrix given as a product of Givens rotations.

RIUPDT

This subroutine is used in updating the lower triangular part of the $L \mathbb{Q}$ decomposition of a matrix A after a rank-l matrix is added to A.

CHAPTER 2
Algorithmic Details

The purpose of this chapter is to provide information about the algorithms and to point out some of the ways in which this information can be used to improve their performance. The first two sections are essential for the rest of the chapter since they provide the necessary background, but the other sections are independent of each other.

2.1 Mathematical Background

To describe the algorithms for the solution of systems of nonlinear equations and nonlinear least squares problems, it is necessary to introduce some notation.

Let R^{n} represent the n-dimensional Euclidean space of real n-vectors

$$
x=\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right)
$$

and ${ }^{\prime} x$ ll the Euclidean norm of x,

$$
\|x\|=\left(\sum_{j=1}^{n} x_{j}^{2}\right)^{\frac{1}{2}}
$$

A function F with domain in R^{n} and range in R^{m} is denoted by F : $R^{n} \rightarrow R^{m}$. Such a function can be expressed as

$$
F(x)=\left(\begin{array}{c}
\mathrm{f}_{1}(x) \\
\mathrm{f}_{2}(x) \\
\vdots \\
\mathrm{f}_{\mathrm{m}}(x)
\end{array}\right) \text {, }
$$

where the component function $F_{i}: R^{n}+R$ is sometimes called the $i-t h$ residual of F. The terminology derives from the fact that a common problem is to fit a model $g(t, x)$ to data y, in which case the f_{i} are of the form

$$
f_{i}(x)=y_{i}-g\left(t_{i}, x\right),
$$

where y_{i} is measured at t_{i} and x is the set of fit parameters.
In this n, tion a system of nonlinear equations is specified by a function $F: R^{n} \supset R^{n}$, and a solution vector x^{*} in R^{n} is such that

$$
F\left(x^{*}\right)=0 .
$$

Similarly, a nonlinear least squares problem is specified by a function $F: R^{n} \rightarrow R^{m}$ with $m \geq n$, and a solution vector x^{*} in R^{n} is such that

$$
\left\|F\left(x^{*}\right)\right\| \leq\|F(x)\| \text { for } x \varepsilon N\left(x^{*}\right) \text {, }
$$

where $N\left(x^{*}\right)$ is a neighborhood of x^{*}. If $N\left(x^{*}\right)$ is the entire domain of definition of the function, then x^{*} is a global solution; otherwise, x^{*} is a local solution.

Some of the MINPACK-1 algorithms require the specification of the Jacobian matrix of the mapping $F: R^{n} \rightarrow R^{m}$; that is, the m by matrix $F^{\prime}(x)$ whose (i, j) entry is

$$
\frac{\partial f_{i}(x)}{\partial x_{j}} .
$$

A related concept is the gradient of a function $f: R^{n} \rightarrow R$, which is the mapping $\nabla \mathrm{f}: \mathrm{R}^{\mathrm{n}} \rightarrow \mathrm{R}^{\mathrm{n}}$ lefined by

$$
\nabla f(x)=\left(\begin{array}{c}
\frac{\partial f(x)}{\partial x_{1}} \\
\frac{\partial f(x)}{\partial x_{2}} \\
\vdots \\
\frac{\partial f(x)}{\partial x_{n}}
\end{array}\right) \text {. }
$$

Note that the i-th row of the Jacobian matrix $F^{\prime}(x)$ is the gradient $\nabla f_{i}(x)$ of the $i-t h$ residual.

It is well-known that if x^{*} is a solution of the nonlinear least squares problem, then x^{*} solves the system of nonlinear equations

$$
\sum_{i=1}^{m} f_{i}(x) \nabla f_{i}(x)=0
$$

In terms of the Jacobian matrix this implies that

$$
F^{\prime}\left(x^{*}\right)^{T} F\left(x^{*}\right)=0
$$

and shows that at the solution the vector of residuals is orthogonal to the columns of the Jacobian matrix. This orthogonality condition is also satisfied at maximizers and saddle points, but algorithms usually take precautions to avoid these critical points.

2.2 Overview of the Algorithms

Consider a mapping $F: R^{n} \rightarrow R^{m}$, where $m=n$ for systems of nonlinear equations and $m \geq n$ for nonlinear least squares problems. The MINPACK-l algorithms in these two problem areas seek a solution x^{*} of the problem
(1)

$$
\min \left\{\|F(x)\|: x \in R^{n}\right\}
$$

In particular, if $m=n$ it is expected that $F\left(x^{*}\right)=0$.
Our initial description of the algorithms will be at the macroscopic level where the techniques used in each problem area are similar.

With each algorithm the user provides an initial approximation $x=x_{0}$ to the solution of the problem. The algorithm then determines a correction p to x that produces a sufficient decrease in the residuals of F at the new point $x+p$; it then sets

$$
x_{+}=x+p
$$

and begins a new iteration with x_{+}replacing x.
A sufficient decrease in the residuals implies, in particular, that

$$
\|F(x+p)\|<\|F(x)\|
$$

and thus the algorithms guarantee that

$$
\left\|F\left(x_{+}\right)\right\|<\|F(x)\| .
$$

'The correction p depends upon a diagonal scaling matrix D, a step bound Δ, and an approximation J to the Jacobian matrix of F at x. Users of the core subroutines can specify initial values D_{0} and Δ_{0}; in the easy-to-use drivers D_{o} and Δ_{o} are set internally. If the user is providing the Jacobian matrix, then $J_{0}=F^{\prime}\left(x_{0}\right)$; otherwise the algorithm sets J_{0} to a forward difference approximation to $\mathrm{F}^{\prime}\left(\mathrm{x}_{0}\right)$.

To compute p, the algorithm solves (approximately) the problem

$$
\begin{equation*}
\min \left\{\|f+J p\|:\left\|D_{p}\right\| \leq \Delta\right\}, \tag{2}
\end{equation*}
$$

where f is the m-vector of residuals of F at x. If the solution of this problem does not provide a suitable correction, then Δ is decreased and, if appropriate, J is updated. A new problem is now solved, and this process is repeated (usually only once or twice) until a p is obtained at which there is sufficient decrease in the residuals, and then x is replaced by $x+p$. Before the start of the next iteration, D, Δ, and J are also replaced.

The motivation for using (, to obtain the correction f is that for appropriate choices of J and Δ, the solution of (2) is an approximate solution of

$$
\min \left\{\|F(x+p)\|:\left\|D_{p}\right\| \leq \Delta\right\} .
$$

It follows that if there is a solution x^{*} such that

$$
\begin{equation*}
\left\|D\left(x-x^{*}\right)\right\| \leq \Delta, \tag{3}
\end{equation*}
$$

then $x+p$ is close to x^{*}. If this is not the case, then at least $x+p$ is a better approximation to x^{*} than x. Under reasonable conditions, it can be shown that (3) eventually holds.

The algorithms for systems of nonlinear equations and for nonlinear least squares problems differ, for example, in the manner in which the correction p
is obtained as an approximate solution of (2). The nonlinear equations algorithm obtains a p that minimizes $\|f+J p\|$ in a two-dimensional subspace of the ellipsoid $\{p:\|D p\| \leq \Delta\}$. The nonlinear least squares algorithm obtains a p that is the exact solution of (2) with a small (10%) perturbation of Δ. Other differences in the algorithms include convergence criteria (Section 2.3) and the manner in which J is computed (Section 2.4).

It is propriate to close this overview of the algorithms by discussing two of therr limitations. First, the algorithms are limited by the precision of the computations. Although the algorithms are globally convergent under reasonable conditions, the convergence proofs are only valid in exact arithmetic and the algorithms may fail in finite precision due to roundoff. This implies that the algorithms tend to perform better in higher precision. It alsc implies that the calculation of the function and the Jacobian matrix should be as accurate as possible and that improved performance results when the user can provide the Jacobian analytically.

Second, the algorithms are only designed to find local solutions. To illustrate this point, consider

$$
F(x)=x^{3}-3 x+18
$$

In this case, problem (1) has the global solution $x^{*}=-3$ with $F\left(x^{*}\right)=0$ and the local solution $x^{*}=1$ with $F\left(x^{*}\right)=16$; depending on the starting point, the algorithms may converge either to the global solution or to the local solution.

2.3 Convergence Criteria

The convergence test in the MINPACK-1 algorithms for systems of nonlinear equations is based on an estimate of the distance between the current approximation x and an actual solution x^{*} of the problem. If D is the current scaling matrix, then this convergence test (X-convergence) attempts to guarantee that

$$
\begin{equation*}
\left\|D\left(x-x^{*}\right)\right\| \leq X T O L \cdot\|D x *\|, \tag{1}
\end{equation*}
$$

There are three convergence tests in the MINPACK-1 algorithms for nonlinear least squares problems. One test is again for X-convergence, but the main convergence test is based on an estimate of the distance between the Euclidean norm $\|F(x)\|$ of the residuals at the current approximation x and the optimal value $\left\|F\left(x^{*}\right)\right\|$ at an actual solution x^{*} of the problem. This convergence test (F-convergence) attempts to guarantee that

$$
\begin{equation*}
\|F(x)\| \leq(1+F T O L) \cdot\left\|F\left(x^{*}\right)\right\|, \tag{2}
\end{equation*}
$$

where FTOL is a second user-supplied tolerance.

The third convergence test for the nonlinear least squares problem (G-convergence) guarantees that

$$
\begin{equation*}
\max \left\{\frac{\left|a_{i} f\right|}{\left\|a_{i}\right\|\|f\|}: 1 \leq i \leq n\right\} \leq \text { GTOL } \tag{3}
\end{equation*}
$$

where $a_{1}, a_{2}, \ldots, a_{n}$ are the columns of the current approximation to the Jacobian matrix, f is the vector of residuals, and GTOL is a third usersupplied tolerance.

Note that individual specification of the above three tolerances for the nonlinear least squares problem requires direct user call of the appropria-e core subroutine. The easy-to-use driver only accepts the single value TOL. It then internally sets $\mathrm{FTOL}=\mathrm{XTOL}=\mathrm{TOL}$ and GTOL $=0$.

The X-convergence condition (1) is a relative error test; it thus fails when $x^{*}=0$ unless $x=0$ also. Also note that if (l) is satisfied with XTOL $=10^{-k}$, then the larger components of $D x$ have k significant digits, but smaller components may not be as accurate. For example, if D is the identity matrix, XTOL $=0.001$, and

$$
x^{*}=(2.0,0.003)
$$

then

$$
x=(2.001,0.002)
$$

satisfies (l), yet the second component of x has no significant digits. This may or may not be important. However, note that if instead

$$
D=\operatorname{diag}(1,1000),
$$

then (1) is not satisfied even for XTOL $=0.1$. These scaling considerations can make it important to choose D carefully. See Section 2.5 for more information on scaling.

Since x^{*} is unknown, the actual criterion for X-convergence cannot be based on (1); instead it depends on the step bound Δ. That is, the actual convergence test is

$$
\Delta \leq \mathrm{XTOL} \cdot\|\mathrm{Dx}\| .
$$

The F-convergence condition (2) is a relative error test; it thus fails when $F\left(x^{*}\right)=0$ unless $F(x)=0$ also. It is for this reason that F-convergence is not tested for systems of nonlinear equations where $F\left(x^{*}\right)=0$ is the expected result. Also note that if (2) is satisfied with FTOL $=10^{-\mathrm{k}}$, then $\|F(x)\|$ has k significant digits, but x may not be as accurate. For example, if $\mathrm{FTOL}=10^{-6}$ and

$$
F(x)=\binom{x-1}{1}
$$

then $x^{*}=1,\left\|F\left(x^{*}\right)\right\|=1$, and if $x=1.001$ then (2) is satisfied with FTOL $=10^{-6}$, but (1) is only satisfied with XTOL $=10^{-3}$.

In many least squares problems, if $\mathrm{F}^{\prime} \mathrm{TOL}=(X T O L)^{2}$ then X -convergence implies F-convergence. This result, however, does not hold if $\| F\left(x^{*}\right) \sharp$ is very small. For example, if

$$
F(x)=\binom{x-1}{0.0001},
$$

then $x^{*}=1$ and $\left\|F\left(x^{*}\right)\right\|=0.0001$, but if $x=1.001$ then (1) is satisfied with XTOL $=10^{-3}$ and yet

$$
\|F(x)\| \geq 10\left\|F\left(x^{*}\right)\right\| .
$$

Since $\|F(x *)\|$ is unknown, the actual criterion for F-convergence cannot be literally (2); instead it is based on estimates of the terms in (2). If f
and f_{+}are the vectors of residuals at the current solution approximation x and at $x+p$, respectively, then the (relative) actual reduction is

$$
\operatorname{ACTRED}=\left(\|f\|-\left\|f_{+}\right\|\right) /\|f\|
$$

while the (relative) predicted reduction is

$$
\operatorname{PRERED}=(\|f\|-\|\mathrm{f}+\mathrm{J} \mathrm{p}\|) /\|\mathrm{f}\|
$$

The F-convergence test then requires that

$$
\begin{aligned}
& \text { PRERED } \leq \text { FTOL } \\
& \mid \text { ACTRED } \mid \leq \text { FTOL } \\
& \text { ACTRED } \leq 2 \cdot \text { PRERED }
\end{aligned}
$$

all hold.
The X-convergence and F-convergence tests are quite reliable, but it is important to note that their validity depends critically on the correctness of the Jacobian. If the user is providing the Jacobian, he may make an error. (CHKDER can be used to check the Jacobian.) If the algorithm is estimating the Jacobiat matrix, then the approximation may be incorrect if, for example, the function is subject to large errors and EPSFCN is chosen poorly. (For more details see Section 2.4.) In either case the algorithm usually terminates suspiciously near the starting point; recommended action if this occurs is to rerun the problem from a different starting point. If the algorithm also terminates near the new starting point, then it is very likely that the Jacobian is being determined incorrectly.

The X-convergence and F-convergence tests may also fail if the tolerances are too large. In general, XTOL and FTOL should be smaller than 10^{-5}; recommended values for these tolerances are on the order of the square root of the machine precision. As described in Section 1.7 , the single precision value of the machine precision can be obtained from the MINPACK-l function SPMPAR and the double precision value from DPMPAR. Note, however, that on some machines the square root of machine precision is larger than 10^{-5}.

The G-convergence test (3) measures the angle between the residual vector and the columns of the Jacobian matrix and thus can be expected to fail if either $F\left(x^{*}\right)=0$ or any column of $F^{\prime}\left(x^{*}\right)$ is zero. Also note that there is no clear relationship between G-convergence and either X-convergence or F-convergence. Furthermore, the G-convergence test detects other critical points, namely maximizers and saddle points; therefore, termination with G-convergence should be examined carefully.

An important property of the tests described above is that they are scale invariant. (See Section 2.5 for more details on scaling.) Scale invariance is a feature not shared by many cther convergence tests. For example, the convergence test

$$
\begin{equation*}
\|\mathrm{f}\| \leq \mathrm{AFTOL}, \tag{4}
\end{equation*}
$$

where AFTOL is a user-supplied tolerance, is not scale invariant, and this makes it difficult to choose an appropriate AFTOL. As an illustration of the difficulty with this test, consider the function

$$
F(x)=(3 x-10) \exp (10 x)
$$

On a computer with 15 decimal digits

$$
\left|F\left(x^{*}\right)\right| \geq 1,
$$

where x^{*} is the closest machine-representable number to $10 / 3$, and thus a suitable AFTOL is not apparent.

If the user, however, wants to use (4) as a termination test, then he can do this by setting NPRINT positive in the call to the respective core subroutine. (See Section 2.9 for more information on NPRINT.) This provides him periodic opportunity, through subroutine $F C N$ with IFLAG $=0$, to affect the iteration sequence, and in this instance he might insert the following program segment into FCN .

IF (IFLAG .NE. 0) GO TO 10
FNORM = ENORM(LFVEC,FVEC)
IF (FNORM . LE. AFTOL) IFLAG $=-1$
RETURN
10 CONTINUE

In this program segment it is assumed that LFVEC $=\mathrm{N}$ for systems of nonlinear equations and LFVEC $=M$ for nonlinear least squares problems. It is also assumed that - MINPACK-1 function ENORM is declared to the precision of the computation.

2.4 Approximations to the Jacobian Matrix

If the user does not provide the Jacobian matrix, then the MINPACK-1 algorithms compute an approximation J . in the algorithms for nonlinear least squares problems, J is always determined by a forward difference approximation, while in the algorithms for systems of nonlinear equations, J is sometimes determined by a forward-difference approximation but more often by an update formula of Broyden. It is important to note that the update formula is also used in the algorithms for systems of nonlinear equations where the user is providing the Jacobian matrix, since the updating tends to improve the efficiency of the algorithms.

The forward-difference approximation to the j-th column of the Jacobian matrix can be written
(1)

where e_{j} is the j-th column of the identity matrix and h_{j} is the difference parameter. The choice of h_{j} depends on the precision of the function evaluations, which is specified in the MINPACK-1 algorithms by the parameter EPSFCN. To be specific,

$$
h_{j}=(E P S F C N)^{\frac{1}{2}}\left|x_{j}\right|
$$

unless $x_{j}=0$, in which case

$$
h_{j}=(E P S F C N)^{\frac{1}{2}}
$$

In the easy-to-use drivers EPSFCN is set internally to the machine precision (see Section 1.7), since these subroutines assume that the functions can be evaluated accurately. In the core subroutines EPSFCN is a usersupplied parameter; if there are errors in the evaluations of the functions, then EPSFCN may need to be much larger than the machine precision. For example, if the specification of the function requires the numerical evaluation of an integral, then EPSFCN should probably be on the order of the tolerance in the integration routine.

One advantage of approximation (1) is that it is scale invariant. (See Section 2.5 for more details on scaling.) A disadvantage of (1) is that it assumes EPSFCN the same for each variable, for each component function of F, and for each vector x. These assumptions may make it difficult to determine a suitable value for EPSFCN. The user who is uncertain of an appropriate value of $E P S F C N$ can run the algorithm with two or three values of EPSFCN and retain the value that gives the best results. In general, overestimates are better than underestimates.

The update formula of Broyden depends on the current approximation x, the correction P , and J. Since

$$
F(x+p)-F(x)=\left[\int_{0}^{3} F^{\prime}(x+\theta p) d \theta\right] p,
$$

it is natural to ask that the approximation J_{+}at $x+p$ satisfy the equation

$$
J_{+} p=F(x+p)-F(x),
$$

and among the possible choices be the one closest to J. To define an appropriate measure of distance, let D be the current diagonal scaling matrix and define the matrix norm

$$
\|A\|_{D}=\left(\sum_{j=1}^{n}\left(\frac{\| a_{j}{ }^{\|}}{d_{j}}\right)^{2}\right)^{\frac{1}{2}}
$$

where $a_{1}, a_{2}, \ldots, a_{n}$ are the columns of A. It is now easy to verify that the solution of the problem

$$
\min \left\{\|\tilde{J}-J\|_{D}: \tilde{J}_{p}=F(x+p)-F(x)\right\},
$$

is given by

$$
J_{+}=J+\frac{\left(F(x+p)-F(x)-J_{p}\right)\left(D^{T} D_{p}\right)^{T}}{\|D p\|^{2}}
$$

There are many properties of this formula that justify its use in algorithms for systems of nonlinear equations, but a discussion of these properties is beyond the scope of this work.

2.5 Scaling

Scale invariance is a desirable feature of an optimization algorithm. Algorithms for systems of nonlinear equations and nonlinear least squares problems are scale invariant if, given problems related by the change of scale

$$
\begin{aligned}
& \tilde{F}(x)=\alpha F\left(D_{v} x\right) \\
& \tilde{x}_{o}=D_{V}^{-1} x_{o}
\end{aligned}
$$

where α is a positive scalar and D_{V} is a diagonal matrix with positive entries, the approximations x and \tilde{x} generaced by the algorithms satisfy

$$
\tilde{x}=D_{v}^{-1} x
$$

Scale invariance is a natural requirement that can have a significant effect on the implementation and performance of an algorithm. To the user scale invariance means, in particular, that he can work with either problem and obtain equivalent results.

The core subroutines in MINPACK-1 are scale invariant provided that the initial choice of the scaling matrix satisfies

$$
\begin{equation*}
\tilde{D}_{0}=\alpha D_{v} D_{o} \tag{1}
\end{equation*}
$$

where D_{0} and \tilde{D}_{0} are the initial scaling matrices of the respective problems defined by F and x_{0} and by \tilde{F} and \tilde{x}_{0}. If the user of the core subroutines has
requested internal scaling ($M O D E=1$), then the internal scaling matrix is set to

$$
\operatorname{diag}\left(\left\|a_{1}\right\|,\left\|a_{2}\right\|, \ldots,\left\|a_{n}\right\|\right),
$$

where a_{i} is the $i-t h$ column of the initial Jacobian approximation, and (I) holds. If the user has stipulated external scaling (MODE $=2$) then the initial scaling matrix is specified by the contents of the array DIAG, and scale invariance is only achieved if the user's choice satisfies (l).

There are certain cases in which scale invariance may be lost, as when the Jacobian matrix at the starting point has a column of zeroes and internal scaling is requested. In this case D_{0} would have a zero element and be singular, but this possibility is not catered to in the current implementation. Instead, the zero element is arbitrarily set to 1 , preserving nonsingularity but giving up scale invariance. In practice, however, these cases seldom arise and scale invariance is usually maintained.

Our experience is that iaternal scaling is generally preferable for nonlinear least squares problems and external scaling for systems of nonlinear equations. This experience is reflected in the settings built into the easy-to-use drivers; MODE $=1$ is specified in the drivers for nonlinear least squares problems and $M O D E=2$ for systems of nonlinear equations. In the latter case, D_{o} is set to the identity matrix, a choice that generally works out well in practice; if this choice is not appropriate, recourse to the core subroutine would be indicated.

It is important to note that scale invariance does not relieve the user of choosing an appropriate formulation of the problem or a reasonable starting point. In particular, note that an appropriate formulation may involve a scaling of the equations or a nonlinear transformation of the variables and that the performance of the MINPACK-1 algorithms can be affected by these transformations. For example, the algorithm for systems of nonlinear equations usually generates different approximations for problems defined by functions \tilde{F} and F, where

$$
\begin{aligned}
& \tilde{F}(x)=D_{E} F(x) \\
& \underset{x_{0}}{ }=x_{0}
\end{aligned}
$$

and D_{E} is a diagonal matrix with positive entries. The main reason for this is that the algorithm usually decides that x_{+}is a better approximation than x if

$$
\left\|F\left(x_{+}\right)\right\|<\|F(x)\|,
$$

and it is entirely possible that

$$
\left\|\tilde{F}\left(x_{+}\right)\right\|>\|\tilde{F}(x)\| .
$$

The user should thus scale his equations (i.e., choose D_{E}) so that the expected errors in the residuals are of about the same order of magnitude.

2.6 Subroutine FCN: Calculation of the Function and Jacobian Matrix

The MINPACK-1 algorithms require that the user provide a subroutine with name of his choosing, say $F C N$, to calculate the residuals of the function $F: R^{n}+R^{m}$, where $m=n$ for systems of nonlinear equations and $m \geq n$ for nonlinear least squares problems. Some of the algorithms also require that FCN calculate the Jacobian matrix of the mapping F.

It is important that the calculation of the function and Jacobian matrix be as accurate as possible. It is also important that the coding of FCN be as efficient as possible, since the timing of the algorithm is strongly influenced by the time spent in FCN . In particular, when the residuals f_{i} have common subexpressions it is usually worthwhile to organize the computation so that these subexpressions need be evaluated only once. For example, if the residuals are of the form

$$
\mathrm{f}_{\mathrm{i}}(\mathrm{x})=\mathrm{g}(\mathrm{x})+\mathrm{h}_{\mathrm{i}}(\mathrm{x}), \quad \mathrm{l} \leq \mathrm{i} \leq \mathrm{m}
$$

with $g(x)$ common to all of them, then the coding of $F C N$ is best expressed in the following form.

$$
\begin{aligned}
& \tau=g(x) \\
& \text { For } i=1,2, \ldots, m \\
& \quad f_{i}(x)=\tau+h_{i}(x) .
\end{aligned}
$$

$$
f_{i}(x)=\sum_{j=1}^{n}\left(\alpha_{i j} \cos \left(x_{j}\right)+\beta_{i j} \sin \left(x_{j}\right)\right),
$$

where the $\alpha_{i j}$ and $\beta_{i j}$ are given constants. The following program segment evaluates the f_{i} efficiently.

$$
\text { For } \begin{aligned}
& i=1,2, \ldots, m \\
& f_{i}(x)=0 \\
\text { For } & j=1,2, \ldots, n \\
\gamma & =\cos \left(x_{j}\right) \\
\sigma & =\sin \left(x_{j}\right) \\
\text { For } i & =1,2, \ldots, m \\
& f_{i}(x)=f_{i}(x)+\gamma \alpha_{i j}+\sigma B_{i j} .
\end{aligned}
$$

If the user is providing the Jacobian matrix of the mapping F, then it is important that its calculation also be as efficient as possible. In particular, when the elements of the Jacobian matrix have common subexpressions, it is usually worthwhile to organize the computation so that these subexpressions need be evaluated only once. For example, if

$$
\mathrm{f}_{\mathrm{i}}(\mathrm{x})=\mathrm{g}(\mathrm{x})+\mathrm{h}_{\mathrm{i}}(\mathrm{x}), \quad 1 \leq \mathrm{i} \leq \mathrm{m},
$$

then the rows of the Jacobian matrix are

$$
\nabla_{f_{i}}(x)=\nabla_{g}(x)+\nabla_{h_{i}}(x), \quad 1 \leq i \leq m
$$

and the subexpression $\nabla \mathrm{g}(\mathrm{x})$ is thus common to all the rows of the Jacobian matrix.

As another example, assume that

$$
f_{i}(x)=\sum_{j=1}^{n}\left(\alpha_{i j} \cos \left(x_{j}\right)+\beta_{i j} \sin \left(x_{j}\right)\right)
$$

where the $\alpha_{i j}$ and $\beta_{i j} a_{1} e$ given constants. In this case,

$$
\frac{\partial f_{i}(x)}{\partial x_{j}}=-\alpha_{i j} \sin \left(x_{j}\right)+\beta_{i j} \cos \left(x_{j}\right),
$$

and the following program segment evaluates the Jacobian matrix efficiently.

$$
\text { For } \begin{aligned}
j & =1,2, \ldots, n \\
\gamma & =\cos \left(x_{j}\right) \\
\sigma & =\sin \left(x_{j}\right) \\
\text { For } i & =1,2, \ldots, m \\
& \frac{\partial f_{i}(x)}{\partial x_{j}}=-\sigma \alpha_{i j}+\gamma \beta_{i j} .
\end{aligned}
$$

The previous example illustrates further the possibility of common subexpressions between the function and the Jacobian matrix. For the nonlinear least squares algorithms advantage can be taken of this, because a call to FCN to evaluate the Jacobian matrix at x is always preceded by a call to evaluate the function at x. This is not the case for the nonlinear equations algorithms.

To specifically illustrate this possibility of sharing information between function and Jacobian matrix, assume that

$$
f_{i}(x)=g(x)^{2}+h_{i}(x), \quad 1 \leq i \leq m
$$

Then the rows of the Jacobian matrix are

$$
\nabla f_{i}(x)=2 g(x) \nabla g(x)+\nabla_{h_{i}}(x), \quad l \leq i \leq m,
$$

and the coding of FCN is best done as follows.

If FUNCTION EVALUATION then

$$
\tau=g(x)
$$

Save T in COMMON
For $\mathrm{i}=1,2, \ldots, \mathrm{~m}$

$$
f_{i}(x)=\tau^{2}+h_{i}(x)
$$

If JACOBIAN EVALUATION then

$$
\begin{aligned}
& v=\nabla g(x) \\
& \text { For } i=1,2, \ldots, m \\
& \quad \nabla f_{i}(x)=2 \tau_{v}+\nabla h_{i}(x) .
\end{aligned}
$$

2.7 Constraints

Systems of nonlinear equations and nonlinear least squares problems often impose constraints on the solution. For example, on physical grounds it is sometimes necessary that the solution vector have positive components.

At present there are no algorithms in MINPACK that formally admit constraints, but in some cases they can be effectively achieved with ad hoc strategies. In this section we describe two strategies for restricting the solution approximations to a region D of R^{n}.

The user has control over the initial approximation x_{0}. It may happen, however, that x is in D but the algorithm computes a correction p such that $x+p$ is not in D. If this correction is permitted, the algorithm may never recover; that is: the approximations may now converge to an unacceptable solution outside of D.

The simplest strategy to restrict the corrections is to impose a penalty on the function if the algorithm attempts to step outside of D. For example, let μ be any number such that

$$
\left|f_{i}\left(x_{0}\right)\right| \leq \mu, \quad 1 \leq i \leq m,
$$

and in $F C N$ define

$$
\mathrm{f}_{\mathrm{i}}(\mathrm{x})=\mu, \quad 1 \leq \mathrm{i} \leq \mathrm{m}
$$

whenever x does not belong to D. If $F C N$ is coded in this way, a correction P for which $x^{+} p$ lies outside of D will not decrease the residuals and is therefore not acceptable. It follows that this penalty on FCN forces all the approximations x to lie in D.

Note that this strategy restricts all the corrections, and as a consequence may lead to very slow convergence if the solution is nenr the boundary of D. It usually suffices to only restrict the initial correction, and users of the core subroutines can do this in several ways.

Recall from Section 2.2 that the initial correction p_{0} satisfies a bound of the form

$$
\left\|D_{0} p_{0}\right\| \leq \Delta_{0},
$$

where D_{0} is a diagonal scaling matrix and Δ_{0} is a step bound. The contents of D_{0} are governed by the parameter MODE. If MODE $=1$ then D_{0} is internally set, while if MODE $=2$ then D_{0} is specified by the user through the array DIAG. The step bound Δ_{0} is determined from the parameter FACTOR. By definition

$$
\Delta_{0}=F A C T O R \cdot\left\|D_{0} x_{0}\right\|,
$$

unless x_{0} is the zero vector, in which case

$$
\Delta_{0}=\text { FACTOR }
$$

It is clear from this definition that smaller values of FACTOR lead to smaller steps. For a sufficiently small value of FACTCR (usually 0.01 suffices), an improved point $x_{0}+p_{0}$ will be found that belongs to D.

Be aware that the step restriction is on $D_{0} P_{0}$ and not on P_{0} directly. A small element of D_{0}, which can be set by internal scaling when MODE $=1$, may lead to a large component in the correction P_{0}. In many cases it is not necessary to control P_{0} directly, but if this is desired then MODE $=2$ must be used.

When MODE $=2$, the contents of D_{0} are specified by the user, and this allows direct control of P_{0}. If, for example, it is desired to restrict the components of P_{0} to small relative corrections of the corresponding components of x_{0} (assumed nonzero), then this can be done by setting

$$
D_{0}=\operatorname{diag}\left(\frac{1}{T \xi_{1} T}, \frac{1}{T \xi_{2}}, \cdots, \frac{1}{T_{n} T}\right)
$$

where ξ_{i} is the i-th component of x_{0}, and by chooring FACTOR appropriately. To justify this choice, note that P_{0} satisfies

$$
\left\|D_{0} P_{0}\right\| \leq \Delta_{0}=F A C T O R \cdot\left\|D_{0} x_{0}\right\|,
$$

and that the choice of D_{0} guarantees that

$$
\left\|D_{0} x_{0}\right\|=n^{\frac{1}{2}} .
$$

Thus, if ρ_{i} is the i th component of P_{0}, then

$$
\left|p_{i}\right| \leq n^{\frac{1}{2} \cdot} \text { FACTOR•| } \xi_{i} \mid,
$$

which justifies the choice of D_{0}.

2.8 Error Bounds

A problem of general interest is the determination of error bounds on the components of a solution vector. It is beyond the scope of this work to discuss this topic in depth, so the discussion below is limited to the computation of bounds on the sensitivity of the parameters, and of the covariance matrix. The discussion is in terms of the nonlinear least squares problem, but some of the results also apply to systems of nonlinear equations.

Let $F: R^{n}+R^{m}$ define a nonlinear least squares problem (m $\geq n$), and let x^{*} be a solution. Given $\varepsilon>0$, the problem is to determine sensitivity (upper) bounds $\sigma_{1}, \sigma_{2}, \ldots, \sigma_{n}$ such that, for each i, the condition

$$
\left|x_{i}-x_{i}^{*}\right| \leq \sigma_{i}, \quad \text { with } x_{j}=x_{j}^{*} \text { for } j \neq i,
$$

implies that

$$
\|F(x)\| \leq(1+\varepsilon)\left\|F\left(x^{*}\right)\right\| .
$$

Of particular interest are values of σ_{i} which are large relative to $\left|x_{i}\right|$, since then the residual norm $\|F(x)\|$ is insensitive to changes in the i th parameter and may therefore indicate a possible deficiency in the formulation of the problem.

A first order estimate of the sensitivity bounds σ_{i} shows that

$$
\begin{equation*}
\sigma_{i}=\varepsilon^{\frac{1}{2}}\left(\frac{\left\|F\left(x^{*}\right)\right\|}{T^{\top}\left(x^{*}\right) \cdot e_{i}}\right), \tag{1}
\end{equation*}
$$

where $F^{\prime}\left(x^{*}\right)$ is the Jacobian matrix of F at x^{*} and e_{i} is the $i-t h$ column of the identity matrix. Note that if $\left\|F^{\prime}\left(x^{*}\right) \cdot e_{i}\right\|$ is small relative to $\left\|P\left(x^{\circ}\right)\right\|$, then the residual norm is insensitive to changes in the i-th parameter.

If x is an approximation to the solution x^{*} and J is an approximation to $F^{\prime}\left(x^{*}\right)$, then the bounds (1) can usually be replaced by

$$
\begin{equation*}
\sigma_{i}=\varepsilon^{\frac{1}{2}}\left(\frac{\|F(x)\|}{\left\|\mathrm{Je}_{i}\right\|^{\|}}\right) \tag{2}
\end{equation*}
$$

The MINPACK-1 nonlinear least squares programs (except LMDIFl) return enough information to compute the sensitivity bounds (2). On a normal exit, these programs return $F(x)$ and part of the $Q R$ decomposition of J; namely, an upper triangular matrix R and a permutation matrix P such that

$$
\begin{equation*}
\mathrm{JP}=\mathrm{QR} \tag{3}
\end{equation*}
$$

for some matrix Q with orthogonal columns. The vector $F(x)$ is returned in the array FVEC and the matrix R is returned in the upper triangular part of the array FJAC. The permutation matrix P is defined by the contents of the integer array IPVT; if

$$
\text { IPVT }=(p(1), p(2), \ldots, p(n)),
$$

then the j-th column of P is the $p(j)-$ th column of the identity matrix.
The norms of the columns of the Jacobian matrix can be computed by noting that (3) implies that

$$
J e_{p(j)}=\operatorname{RR} e_{j}
$$

and hence,

$$
\left\|\mathrm{Je}_{\mathrm{p}(\mathrm{j})}\right\|=\left\|\mathrm{Re}_{\mathrm{j}}\right\|
$$

The following loop uses this relationship to store $\left\|\mathrm{Je}_{\ell}\right\|$ in the ℓ-th position of an array FJNORM; with this information it is then easy to compute the sensitivity bounds (2).

$$
\text { DO } 10 \mathrm{~J}=1, \mathrm{~N}
$$

L= IPVT(J)
FJNORM(L) - ENORM(J, FJAC(1, J))
CONTINUE

This loop assumes that ENORM and FJNORM have been declared to the precision of the computation.

In addition to sensitivity bounds for the individual parameters, it is sometimes desirable to determine a bound for the sensitivity of the residual norm to changes in some linear combination of the parameters. Given $\varepsilon>0$ and a vector v with $\|v\|=1$, the problem is to determine a bound σ such that

$$
\left\|F\left(x^{*}+\sigma v\right)\right\| \leq(1+\varepsilon)\left\|F\left(x^{*}\right)\right\| .
$$

A first order estimate of σ is now

$$
\sigma=\varepsilon^{\frac{3}{2}}\left(\frac{\left\|^{\prime}\left(x^{*}\right)\right\|}{\| F^{\top}\left(x^{*}\right) \cdot v} \|\right) ;
$$

if $\left\|F^{\prime}\left(x^{*}\right) \cdot v\right\|$ is small relative to $\left\|F\left(x^{*}\right)\right\|$, then σ is large and the residual norm is insensitive to changes in the linear combination of the parameters specified by v.

For example, if the level set

$$
\left\{x:\|F(x)\| \leq(1+\varepsilon)\left\|F\left(x^{*}\right)\right\|\right\}
$$

is as in Figure 3, then the residual norm, although sensitive to changes in x_{1} and x_{2}, is relatively insensitive to changes along $v=(1,1)$.

If the residual norm is relatively insensitive to changes in some linear combination of the parameters, then the Jacobian matrix at the solution is nearly rank-deficient, and in these cases it may be worthwhile to attempt to determine a set of linearly independent parameters. In some statistical applications, the covariance matrix

$$
\left(J^{T} J\right)^{-1}
$$

is used for this purpose.

Figure 3

Subroutine COVAR, which appears at the end of this section, will compute the covariance matrix. The computation of the covariance matrix from the $Q R$ factorization of J depends on the relationship

$$
\begin{equation*}
\left(J^{T}\right)^{-1}=P\left(R^{T_{R}}\right)^{-1} P^{T} \tag{4}
\end{equation*}
$$

which is an easy consequence of (3). Subroutine COVAR overwrites R with the upper triangular part of $\left(R^{T}\right)^{-1}$ and then computes the covariance matrix from (4).

Note that for proper execution of COVAR the QR factorization of J must have used column pivoting. This guarantees that for the resulting R

$$
\begin{equation*}
\left|\mathbf{r}_{k k}\right| \geq\left|\mathbf{r}_{i j}\right|, \quad k \leq i \leq j, \tag{5}
\end{equation*}
$$

thereby allowing a reasonable determination of the numerical rank of J. Most of the MINPACK-1 nonlinear least squares subroutines return the correct factorization; the $Q R$ factorization in LMSTRI and LMSTR, however, satisfies

$$
J P_{1}=Q_{1} R_{1}
$$

but R_{1} does not usually satisfy (5). To obtain the correct factorization, note that the $Q R$ factorization with column pivoting of R_{1} satisfies

$$
R_{1} P_{2}=Q_{2} R_{2}
$$

where R_{2} satisfies (5), and therefore

$$
J\left(P_{1} P_{2}\right)=\left(Q_{1} Q_{2}\right) R_{2}
$$

is the desired factorization of J. The program segment below uses the MINPACK-1 subroutine QRFAC to compute R_{2} from R_{1}.

```
    DO \(30 \mathrm{~J}=1, \mathrm{~N}\)
        \(\mathrm{JPI}=\mathrm{J}+1\)
        IF (N .LT. JP1) GO TO 20
        DO \(10 \mathrm{I}=\mathrm{JPl}\), N
            FJAC(I,J) = ZERO
            CONTINUE
        CONTINUE
        CONTINUE
        CALL \(\operatorname{QRFAC}(N, N, F J A C, L D F J A C, . T R U E ., I P V T 2, N, W A 1, W A 2, W A 3)\)
        DO \(40 \mathrm{~J}=1\), N
        \(\operatorname{FJAC}(\mathrm{J}, \mathrm{J})=\) WAI( J\()\)
        \(\mathrm{L}=\mathrm{IPVT2}(\mathrm{~J})\)
        IPVT2(J) \(=\operatorname{IPVTI}(\mathrm{L})\)
        40 CONTINUE
```

Note that QRFAC sets the contents of the array IPVT2 to define the permutation matrix P_{2}, and the final loop in the program segment overwrites IPVT2 to define the permutation matrix $P_{1} P_{2}$.

SUBROUTINE COVAR(N,R,LDR,IPVT,TOL,WA)	COVR0010
INTEGER N,LDR	COVR0020
INTEGER IPVT(N)	COVR0030
DOUBLE PRECISION TOL	COVR0040
DOUBLE PRECISION R(LDR, N), WA (N)	COVR0050
***********	COVk0060
	COVR0070
SUBROUTINE COVAR	COVR0080
	COVR0090
GIVEN AN M BY N MATRIX A, THE PROBLEM IS TO DETERMINE	COVR0100
THE COVARIANCE MATRIX CORRESPONDING TO A, DEFINED AS	COVR0110
	COVR0120
T	COVR0130
INVERSE ($\mathrm{A} \because \mathrm{A}$)	COVR0140
	COVR0150
THIS SUBROUTINE COMPLETES THE SOLUTION OF THE PROBLEM	COVR0160
IF IT IS PROVIDED WITH THE NECESSARY INFORMATION FROM THE	COVR0170
QR FACTORIZATION, WITH COLUMN PIVOTING, OF A. THAT IS, IF	COVR0180
$A * P=Q * R$, WHERE P IS A PERMUTATION MATRIX, Q HAS ORTHOGONAL	COVR0190
COLUMNS, AND R IS AN UPPER TRIANGULAR MATRIX WITH DIAGONAL	COVR0200
ELE.MENTS OF NONINCREASING MAGNITUDE, THEN COVAR EXPECTS	COVR0210
THE FULL UPPER TRIANGLE OF R AND THE PERMUTATION MATRIX P.	COVR0220
THE COVARIANCE MATRIX IS THEN COMPUTED AS	COVR0230
	COVR0240
	COVR0250
$\mathrm{P} *$ INVERSE $(\mathrm{R} * \mathrm{R}) * \mathrm{P}$	COVR0260
	COVR0270
IF A IS NEARLY RANK DEFICIENS, IT MAY BE DESIRABLE TO COMPUTE	COVR0280
THE COVARIANCE MATRIX CORRESPONDING TO THE LINEARLY INDEPENDENT	COVR0290
COLLMNS OF A. TO DEFINE THE NUMERICAL RANK OF A, COVAR USES	COVR0300
THE TOLERANCE TOL. IF L IS THE LARGEST INTEGER SUCH THAT	COVR0310
	COVR0320
	COVR0330
	COVR0340
THEN COVAR COMPUTES THE COVARIANCE MATRIX CORRESPONDING TO	COVR0350
THE FIRST L COLUMNS OF R. FOR K GREATER THAN L, COLUMN	COVR0360
AND ROW IPVT(K) OF THE COVARIANCE MATRIX ARE SET TO ZERO.	COVR0370
	COVR0380
THE SUBROUTINE STATEMENT IS	COVR0390
	COVR0400
SUBROUTINE COVAR(N,R,LDR, IPVT, TOL, WA)	COVR0410
	COVR0420
WHERE	COVR0430
	COVR0440
N IS A POSITIVE INTEGER INPUT VARIABLE SET TO THE ORDER OF R.	COVR0450
	COVR0460
R IS AN N BY N ARRAY. ON INPUT THE FULL UPPER TRIANGIE MUST	COVR0470
CONTAIN THE FULL UPPER TRIANGLE OF THE MATRIX R. ON OUTPUT	COVR0480
R CONTAINS THE SQUARE SYMMETRIC COVARIANCE MATRIX.	COVR0490
	COVR0500
LDR IS A POSITIVE INTEGER INPUT VARIABLE NOT LESS THAN N	COVR0510
WHICH SPECIFIES THE LEADING DIMENSION OF THE ARRAY R.	COVR0520
	COVR0530
IPVT IS AN INTEGER INPUT ARRAY OF LENGTH N WHICH DEFINES THE	CUVR0540

C
C
C
C
FORM THE FULL UPPER TRIANGLE OF THE INVERSE OF (R TRANSPOSE)*R
IN THE FULL UPPER TRIANGLE OF R.
IF (L .LT. 1) GO TO 110
DO $100 \mathrm{~K}=1$, L
KM1 $=\mathrm{K}-1$
IF (KM1 .LT. 1) GO TO 80
DO $70 \mathrm{~J}=1$, KM1 COVR1040
TEMP $=\mathrm{R}(\mathrm{J}, \mathrm{K}) \quad$ COVR1050
DO $60 \mathrm{I}=1$, J
$R(I, J)=R(I, J)+T E M P * R(I, K) \quad$ COVR1070
CONTINUE

COVR1030
COVR1060
COVR1080

70	CONTINUE	COVR1090
80	CONTINUE	C0VR1100
	TEMP $=\mathrm{R}(\mathrm{K}, \mathrm{K})$	COVR1110
	DO $90 \mathrm{I}=1$, K	COVR1120
	$R(I, K)=T E M P * R(I, K)$	COVR1130
90	CONTINUE	COVR1140
100	CONTINUE	COVR1150
110	CONTINUE	COVR1160
C		COVR1170
C	FORM THE FULL LOWER TRIANGLE OF THE COVARIANCE MATRIX	COVR1180
C	IN THE STRICT LOWER TRIANGLE OF R AND IN WA.	COVR1190
C		COVR1200
	DO $130 \mathrm{~J}=1, \mathrm{~N}$	COVR1210
	$\mathrm{JJ}=\operatorname{IPVT}(\mathrm{J})$	COVR1220
	SING = J .GT. L	COVR1230
	DO $120 \mathrm{I}=1$, J	COVR1240
	IF (SING) R(I,J) = ZERO	COVR1250
	$\mathrm{II}=\mathrm{IPVT}(\mathrm{I})$	COVR1260
	IF (II .GT. JJ) $\mathrm{R}(\mathrm{II}, \mathrm{JJ})=\mathrm{R}(\mathrm{I}, \mathrm{J})$	COVR1270
	IF (II .LT. JJ) $\mathrm{R}(\mathrm{JJ}, \mathrm{II})=\mathrm{R}(\mathrm{I}, \mathrm{J})$	COVR1280
120	CONTINUE	COVR1290
	WA(JJ) $=$ R(J, J)	COVR1300
130	CONTINUE	COVR1310
C		COVR1320
C	SYMMETRIZE THE COVARIANCE MATRIX IN R.	COVR1330
C		COVR1340
	DO $150 \mathrm{~J}=1, \mathrm{~N}$	COVR1350
	DO $140 \mathrm{I}=1, \mathrm{~J}$	COVR1360
	$\mathrm{R}(\mathrm{I}, \mathrm{J})=\mathrm{R}(\mathrm{J}, \mathrm{I})$	COVR1370
140	CONTINUE	COVR 1380
	$R(J, J)=W A(J)$	COVR1390
150	CONTINUE	COVR1400
	RETURN	COVR1410
C		COVR1420
C	LAST CARD OF SUBROUTINE COVAR.	COVR1430
C		COVR1440
	END	COVR1450

2.9 Printing

No printing is done in any of the MINPACK-1 subroutines. However, printing of certain parameters through FCN can be facilitated with the integer parameter NPRINT that is available to users of the core subroutines. For these subroutines, setting NPRINT positive results in special calls to FCN with IFLAG $=0$ at the beginning of the first iteration and every NPRINT iterations thereafter and immediately prior to return. On these calls to FCN, the parameters X and FVEC are available for printing; FJAC is additionally available if using LMDER.

Often it suffices to print some simple measure of the iteration progress, and the Euclidean norm of the residuals is usually a good choice. "nis norm can be printed by inserting the following program segment into FCN .

```
            IF (IFLAG .NE. 0) GO TO 10
            FNORM = ENORM(LFVEC,FVEC)
            WRITE (---,1000) FNORM
1000 FORMAT (---)
            RETURN
        10 CONTINUE
```

In this program segment it is assumed that LFVEC $=\mathrm{N}$ for systems of nonlinear equations and LFVEC $=M$ for nonlinear least squares problems. It is also assumed that the MINPACK-1 function ENORM is declared to the precision of the computation.

CHAPTER 3

Notes and References

This chapter provides notes relating the MINPACK-1 algorithms and software to other work. The list of references appears at the end.

Powell's Hybrid Method

The MINPACK-1 version of Powell's [1970] hybrid method differs in many respects from the original version. For example, the "special iterations" used in the original algorithm proved to be inefficient and have been replaced. The updating method used is due to Broyden [1965]; the MINPACK-1 algorithm is a scaled version of the original. A comparison of an earlier version of the MINPACK-1 algorithm with other algorithms for systems of nonlinear equations has been made by Hiebert [1980].

The Levenberg-Marquardt Algorithm

There are many versions of the algorithm proposed by Levenberg [1944] and modified by Marquardt [1963]. An advantage of the MINPACK-1 version is that it avoids the difficulties associated with choosing the Levenberg-Marquardt parameter, and this allows a very strong global convergence result. The MINPACK-1 algorithm is based on the work of Hebden [1973] and follows the ideas of Moré [1977]. A comparison of an earlier version of the MINPACK-1 algorithm with other algorithms for nonlinear least squares problems has been made by Hiebert [1979].

Derivative Checking

Subroutine CHKDER is new, but similar routines exist in the Numerical Algorithms Group (NAG) library. An advantage of CHKDER is its generality; it can be used to check Jacobians, gradients, and Hessians (second derivatives). To enable this generality, CHKDER presumes no specific parameter sequence for the function evaluation program, returning control instead to the user. This in turn makes necessary a second call to CHKDER for each check.

MINPACK-1 Internal Subprograms

Subroutines DOGLEG and LMPAR are used to generate search directions in the algorithms for systems of nonlinear equations and nonlinear least squares problems, respectively. The algorithm used in DOGLEG is a fairly straightforward implementation of the ideas of Powell [1970], while LMPAR is a refined version of the algorithm described by More [1977]. The LMPAR algorithm is the more complicated; in particular, it requires the solution of a sequence of linear least squares problems of special form. It is for this purpose that subroutine QRSOLV is used.

The algorithm used in ENORM is a simplified version of Blue's [1978] algorithm. An advantage of the MINPACK-1 version is that it does not require machine constants; a disadvantage is that nondestructive underflows are allowed.

The banded Jacobian option in FDJACl is based on the work of Curtis, Powell, and Reid [1974].

QRFAC and RWUPDT are based on the corresponding algorithms in LINPACK (Dongarra, Bunch, Moler, and Stewart [1979]).

The algorithm used in RIUPDT is based on the work of Gill, Golub, Murray, and Saunders [1974].

References

Blue, J. L. [1978]. A portable Fortran program to find the Euclidean norm of a vector, ACM Transactions on Mathematical Software 4, 15-23.

Boyle, J. M. and Dritz, K. W. [1974]. An automated programming system to facilitate the development of quality mathematical software, Proceedings IFIP Congress, North-Holland.

Broyden, C. G. [1965]. A class of methods for solving nonlinear simultaneous equations, Math. Comp. 19, 577-593.

Curtis, A. R., Powell, M. J. D., and Reid, J. K. [1974]. On the estimation of sparse Jacobian matrices, J. Inst. Maths Applics 13, 117-119.

Dongarra, J. J., Bunch, J. R., Moler, C. B., and Stewart, G. W. [1979]. LINPACK users' guide, SIAM Publications.

Fosdick, L. D. [1974]. BRNANL, A Fortran program to identify basic blocks in Fortran programs, University of Colorado, Computer Science report CU-CS-040-74.

Fox, P. A., Hall, A. D., and Schryer, N. L. [1978]. The PORT mathematical subroutine library, ACM Transactions on Mathematical Software 4, 104-126.

Garbow, B. S., Hillstrom, K. E., and Moré, J. J. [1980]. Implementation guide for MINPACK-1, Argonne National Laboratory report ANL-80-68.

Gill, P. E., Golub, G. H., Murray, W., and Saunders, M. A. [1974]. Methods for modifying matrix factorizations, Math. Comp. 28, 505-535.

Hebden, M. D. [1973]. An algorithm for minimization using exact second derivatives, Atomic Energy Research Establishment report TP 515, Harwell, England.

Hiebert, K. L. [1979]. A comparison of nonlinear least squares software, Sandia Laboratories report SAND 79-0483, Albuquerque, New Mexico.

Hiebert, K. L. [1980]. A comparison of software which solves systems of nonlinear equations, Sandia Laboratories report SAND 80-0181, Albuquerque, New Mexico.

Levenberg, K. [1944]. A method for the solution of certain nonlinear problems in least squares, Quart. Appl. Math. 2, 164-168.

Marquardt, D. W. [1963]. An algorithm for least-squares estimation of nonlinear parameters, SIAM J. App1. Math. 11, 431-441.

Moré, J. J. [1977]. The Levenberg-Marquardt algorithm: Implementation and Theory, Numerical Analysis, G. A. Watson, ed., Lecture Notes in Mathematics 630, Springer-Verlag.

Moré, J. J., Garbow, B. S., and Hillstrom, K. E. [1978]. Testing unconstrained optimization software, Argonne National Laboratory, Applied Mathematics Division Technical Memorandum 324 (to appear in ACM Transactions on Mathematical Software).

Powell, M. J. D. [1970]. A hybrid method for nonlinear equations, in Numerical Methods for Nonlinear algebraic Equations, P. Rabinowitz, ed., Gordon and Breach.

Ryder, B. G. [1974]. The PFORT verifier, Software Practice and Experience 4, 359-377.

CHAPTER 4

Documentation

This chapter contains the double precision version of the MINPACK-1 documentation; both single and double precision versions of the documentation are available in machine-readable form with the MINPACK-1 package. The documentation appears in the following order:

Systems of nonlinear equations
HYBRDI, HYBRD, HYBRJI, HYBRJ

Nonlinear least squares problems
LMDIF1, LMDIF, LMDER1, LMDER, LMSTR1, LMSTR

Derivative checking
CHKDER

Documentation for MINPACK subroutine HYBRD1
Double precision version
Argonne National Laboratory
Burton S. Garbow, Kenneth E. Hillstrom, Jorge J. More
March 1980

1. Purpose.

The purpose of HYBRDI is to find a zero of a system of N nonlinear functions in N variables by a modification of the Powell hybrid method. This is done by using the more general nonlinear equation solver HYBRD. The user must provide a subroutine which calculates the functions. The Jacobian is then calculated by a forward-difference approximation.
2. Subroutine and type statements.

SUBROUTINE HYBRD1(FCN,N,X, EVEC,TOL,INFO,WA, LWA)
INTEGER N, INFO,LWA
DOUBLE PRECISION TOL DOUBLE PRECISION X(N), FVEC(N),WA(LWA) EXTERNAL FCN
3. Parameters.

Parameters designated as input parameters must be specified on entry to HYBRDI and are not changed on exit, while parameters designated as output parameters need not be specified on entry and are set to appropriate values on exit from HYBRD1.

FCN is the name of the user-supplied subroutine which calculates the functions. FCN must be declared in an EXTERNAL statement in the user calling program, and should be written as follows.

SUBROUTINE FCN(N,X, FVEC,IFLAG)
INTEGER N, IFLAG
DOUBLE PRECISION X(N), FVEC(N)
CALCULATE THE FUNCTIONS AT X AND RETURN THIS VECTOR IN FVEC.

RETURN

END
The value of IFLAG should not be changed by FCN unless the user wants to terminate execution of HYBRDI. In this case set IFLAG to a negative integer.

N is a positive integer input variable set to the number of functions and variables.
X is an array of length N. On input X must contain an initial estimate of the solution vector. On output X contains the final estimate of the solution vector.

EVEC is an output array of length N which contains the functions evaluated at the output X.

TOL is a nonnegative input variable. Termination occurs when the algorithm estimates that the relative error between X and the solution is at most TOL. Section 4 contains more details about TOL.

INFO is an integer output variable. If the user has terminated execution, INFO is set to the (negative) value of IFLAG. See description of FCN. Otherwise, INFO is set as follows.

INFO $=0$ Improper input parameters.
INFO = 1 Algorithm estimates that the relative error between X and the solution is at most TOL.

INFO $=2$ Number of calls to FCN has reached or exceeded 200* ($\mathrm{N}+1$).

INFO $=3$ TOL is too small. No further improvement in the approximate solution X is possible.

INFO $=4$ Iteration is not making good progress.
Sections 4 and 5 contain more details about INFO.
WA is a work array of length LWA.
LWA is a positive integer input variable not less than ($\left.\mathrm{N}^{*}(3 * N+13)\right) / 2$.
4. Successful completion.

The accuracy of HYBRDI is controlled by the convergence parameter TOL. This parameter is used in a test which makes a comparison between the approximation X and a solution XSOL. HYBRDI terminates when the test is satisfied. If TOL is less than the machine precision (as defined by the MINPACK function DPMPAR(1)), then HYBRDI only attempts to satisfy the test defined by the machine precision. Further progress is not usually possible. Unless high precision solutions are required, the recommended value for $T O L$ is the square root of the machine precision.

The test assumes that the functions are reasonably well behaved.

If this condition is not satisfied, then HYBRD1 may incorrectly indicate convergence. The validity of the answer can be checked, for example, by rerunning HYBRD1 with a tighter tolerance.

Convergence test. If ENORM(Z) denotes the Euclidean norm of a vector Z, then this test attempts to guarantee that
ENORM (X-XSOL) . LE. TOL*ENORM (XSOL).

If this condition is satisfied with TOL $=10 * *(-K)$, then the larger components of X have K significant decimal digits and INFO is set to 1 . There is a danger that the smaller components of X may have large relative errors, but the fast rate of convergence of HYBRDl usually avoids this possibility.
5. Unsuccessful completion.

Unsuccessful termination of HYBRDl can be due to improper input parameters, arithmetic interrupts, an excessive number of function evaluations, errors in the functions, or lack of good progress.

Improper input parameters. INEO is set to 0 if N.LE. 0 , or TOL .LT. O.DO, or LWA .LT. ($\left.\mathrm{N}^{*}\left(3^{*} \mathrm{~N}+13\right)\right) / 2$.

Arithmetic interrupts. If these interrupts occur in the FCN subroutine durinc an early stage of the computation, they may be caused by an u.acceptable choice of X by HYBRD1. In this case, it may be possible to remedy the situation by not evaluating the functions here, but instead setting the components of FVEC to numbers that exceed those in the initial FVEC, thereby indirectly reducing the step length. The step length can be more directly controlled by using instead HYBRD, which includes in its calling sequence the step-length- governing parameter EACTOR.

Excessive number of function evaluations. If the number of calls to FCN reaches 200* $(N+1)$, then this indicates that the routine is converging very slowly as measured by the progress of FVEC, and INFO is set to 2. This situation should be unusual because, as indicated below, lack of good progress is usually diagnosed earlier by HYBRDl, causing termination with INFO = 4.

Errors in the functions. The choice of step length in the for-ward-difference approximation to the Jacobian assumes that the relative errors in the functions are of the order of the machine precision. If this is not the case, HYBRDI may fail (usually with INFO = 4). The user should then use HIBRD instead, or one of the programs which require the analytic Jacobian (HYBRJI and HYBRJ).

Lack of good progress. HYBRDI searches for a zero of the system by minimizing the sum of the squares of the functions. In so doing, it can become trapped in a region where the minimum does not correspond to a zero of the system and, in this situation, the iteration eventually fails to make good progress. In particular, this will happen if the system does not have a zero. If the system has a zero, rerunning HYBRDI from a different starting point may be helpful.
6. Characteristics of the algorithm.

HYBRDI is a modification of the Powell hybrid method. Two of its main characteristics involve the choice of the correction as a convex combination of the Newton and scaled gradient directions, and the updating of the Jacobian by the rank-1 method of Broyden. The choice of the correction guarantees (under reasonable conditions) global convergence for starting points far from the solution and a fast rate of convergence. The Jacobian is approximated by forward differences at the starting point, but forward differences are not used again until the rank-1 method fails to produce satisfactory progress.

Timing. The time required by HYBRD1 to solve a aiven problem depends on iN, the behavior of the functions, the accuracy requested, and the starting point. The number of arithmetic operations needed by HYBRD1 is atout ll.5*(N**2) to process each call to FCN. Unless FCN can be evaluated quickly, the timing of HYBRD1 will be strongly influenced by the time spent in FCN .

Storage. HYBRD1 requires $(3 * N * * 2+17 * N) / 2$ double precision storage locations, in addition to the storage required by the program. There are no internally declared storage arrays.
7. Subprograms required.

USER-supplied FCN
MINPACK-supplied ... DOGLEG, DPMPAR,ENORM, FDJAC1,HYBRD, QFORM, QREAC, RIMPYQ, RIUPDT

FORTRAN-supplied ... DABS, DMAX1,DMIN1,DSQRT,MINO,MOD
8. References.
M. J. D. Powell, A Hybrid Method for Nonlinear Equations. Numerical Methods for Nonlinear Algebraic Equations, P. Rabinowitz, editor. Gordon and Breach, 1970.
9. Example.

The problem is to determine the values of $x(1), x(2), \ldots, x(9)$, which solve the system of tridiagonal equations

$$
\begin{aligned}
(3-2 * x(1)) * x(1) & =-1 \\
-x(i-1)+(3-2 * x(i)) * x(i) & -2 * x(i+1) \\
=-x(8)+(3-2 * x(9)) * x(9) & =-1, i=2-8
\end{aligned}
$$

C C C
CALL HYBRDI(ECN,N, X, FVEC, TOL, INFO, WA, LWA)
FNORM $=\operatorname{ENORM}(\mathrm{N}, \mathrm{FVEC})$
WRITE (NWRITE, 1000) FNORM, INFO, (X(J), J=1,N)
STOP
UNLESS HIGH PRECISION SOLUTIONS ARE REQUIRED,
THIS IS THE RECOMMENDED SETTING.
TOL $=\operatorname{DSQRT}(\operatorname{DPMPAR}(1))$
1000 FORMAT
*
*
5X,27H FINAL APPROXIMATE SOLUTION // (5X,3D15.7))
LAST CARD OF DRIVER FOR HYBRDI EXAMPLE.

END

 SUBROUTINE FCN(N,X,FVEC,IFLAG)
 INTEGER N,IFLAG
 DOUBLE PRECISION X(N), FVEC(N)
 C

LWA $=180$
INTEGER J,N,INFO,LWA, NWRITE DOUBLE PRECISION TOL, FNORM DOUBLE PRECISION X(9), FVEC(9), WA(180) DOUBLE PRECISION FNORM,DPMPAR EXTERNAL FCN

LOGICAL OUTPUT UNIT IS ASSUMED TO SE NUMBER 6.
DATA NWRITE /6/
$\mathrm{N}=9$
THE FOLLOWING STARTING VALUES PROVIDE A ROUGH SOLUTION.
DO $10 \mathrm{~J}=1,9$
$X(J)=-1 . D 0$
CONTINUE

SET TOL TO THE SQUARE ROOT OF THE MACHINE PRECISION. THIS IS THE RECOMMENDED SETTING.

TOL $=$ DSQRT (DPMPAR (1))

FORMAT (5X,31H FINAL L2 NORM OF THE RESIDUALS,D15.7//

* 5X,27H FINAL APPROXIMATE SOLUTION // (5X,3D15.7))

LAST CARD OF DRIVER FOR HYBRDI EXAMPLE.

INTEGER N,IFLAG
DOUBLE PRECISION X(N), FVEC(N)

SUBROUTINE ECN FOR HYBRDI EXAMPLE.
INTEGER K
DOUBLE PRECISION ONE,TEMP,TEMP1,TEMP2,THREE,TWO,ZERO
DATA ZERO,ONE,TWO,THREE /O.DO,1.DO,2.DO,3.DO/
DO $10 \mathrm{~K}=1, \mathrm{~N}$
TEMP $=($ THREE - TWO*X(K)) $* X(K)$
TEMP1 = ZERO
$\operatorname{IF}(\mathrm{K} . \mathrm{NE} .1) \mathrm{TEMP1}=\mathrm{X}(\mathrm{K}-1)$
TEMP2 = ZERO
IF (K .NE. N) TEMP2 $=X(K+1)$
FVEC(K) = TEMP - TEMP1 - TWO*TEMP2 + ONE
CONTINUE
RETURN
LAST CARD OF SUBROUTINE FCN.
END
Results obtained with different compilers or machines may be slightly different.

EINAL L2 NORM OF THE RESIDUALS 0.1192636D-07
EXIT PARAMETER
1

FINAL APPROXIMATE SOLUTION
$-0.5706545 D+00-0.6816283 D+00-0.7017325 D+00$
$-0.7042129 D+00-0.7013690 D+00-0.6918656 D+00$
$-0.6657920 \mathrm{D}+00-0.5960342 \mathrm{D}+00-0.4164121 \mathrm{D}+00$

Documentation for MINPACK subroutine HYBRD
Double precision version
Argonne National Laboratory
Burton S. Garbow, Kenneth E. Hillstrom, Jorge J. More
March 1980

1. Purpose.

The purpose of HYBRD is to find a zero of a system of N nonlinear functions in N variables by a modification of the Powell hybrid method. The user must provide a subroutine which calculaces the functions. The Jacobian is then calculated by a for-ward-difference approximation.
2. Subroutine and type statements.

SUBROUTINE HYBRD(ECN,N,X,FVEC,XTOL, MAXFEV,ML,MU, EPSFCN,DIAG,
MODE, FACTOR, NPRINT, INFO, NEEV, FJAC, LDFJAC,
R, LR, QTE, WA1,WA2,WA3,WA4)
INTEGER N, MAXFEV, ML, MU, MODE, NPRINT, INEO, NFEV, LDEJAC, LR DOUBLE PRECISION XTOL,EPSFCN, EACTOR DOUBLE PRECISION X(N), FVEC(N), DIAG(N),FJAC(LDEJAC,N),R(LR), QTE(N), * WAl(N),WA2(N),WA3(N),WA4(N)

EXTERNAL FCN
3. Parameters.

Parameters designated as input parameters must be specified on entry to HYBRD and are not changed on exit, while parameters designated as output parameters need not be specified on entry and are set to appropriate values on exit from HYBRD.

FCN is the name of the user-supplied subroutine which calculates the functions. FCN must be declared in an EXTERNAL statement in the user calling program, and should be written as follows.

SUBROUTINE FCN(N,X,FVEC,iFLAG)
INTEGER N, IFLAG
DOUBLE PRECISION X(N), FVEC(N)
CALCULATE THE FUNCTIONS AT X AND
RETURN THIS VECTOR IN EVEC.

RETURN
END
The value of IFLAG should not be changed by FCN unless the
user wants to terminate execution of HYBRD. In this case set IFLAG to a negative integer.

N is a positive integer input variable set to the number of functions and variables.
X is an array of length N. On input X must contain an initial estimate of the solution vector. On output X contains the final estimate of the solution vector.

FVEC is an output array of length N which contains the functions evaluated at the output X.

XTOL is a nonnegative input variable. Termination occurs when the relative error between two consecutive iterates is at most XTOL. Therefore, XTOL measures the relative error desired in the approximate solution. Section 4 contains more details about XTOL.

MAXFEV is a positive integer input variable. Termination occurs when the number of calls to FCN is at least MAXFEV by the end of an iteration.

ML is a nonnegative integer input variable which specifies the number of subdiagonals within the band of the Jacobian matrix. If the Jacobian is not banded, set ML to at least N - 1 .

MU is a nonnegative integer input variable which specifies the number of superdiagonals within the band of the Jacobian matrix. If the Jacobian is not banded, set MU to at least N - 1 .

EPSECN is an input variable used in determining a suitable step for the forward-difference approximation. This approximation assumes that the relative errors in the functions are of the order of EPSFCN. If EPSFCN is less than the machine precision, it is assumed that the relative errors in the functions are of the order of the machine precision.

DIAG is an array of length N. If MODE $=1$ (see below), DIAG is internally set. If MODE $=2$, DIAG must contain positive entries that serve as multiplicative scale factors for the variables.

MODE is an integer input variable. If MODE $=1$, the variables will be scaled internally. If MODE $=2$, the scaling is specified by the input DIAG. Other values of MODE are equivalent to MODE $=1$.

FACTOR is a positive input variable used in determining the initial step bound. This bound is set to the product of FACTOR and the Euclidean norm of DIAG*X if nonzero, or else to FACTOR itself. In most cases FACTOR should lie in the interval (.1,100.). 100. is a generally recommended valie.

NPRINT is an integer input variable that enables controlled printing of iterates if it is positive. In this case, FCN is called with IFLAG $=0$ at the beginning of the first iteration and every NPRINT iterations thereafter and immediately prior to return, with X and FVEC available for printing. If NPRINT is not positive, no special calls of FCN with IFLAG $=0$ are made.

INFO is an integer output variable. If the user has terminated execution, INFO is set to the (negative) value of IFLAG. See description of FCN. Otherwise. INEO is set as follows.

INEO = 0 Improper input parameters.
INFO = 1 Relative error between two consecutive iterates is at most XTOL.

INFO $=2$ Number of calls to FCN has reached or exceeded MAXEEV .
$I N E O=3$ XTOL is too small. No further improvement in the approximate solution X is possible.

INFO $=4$ Iteration is not making good progress, as measured by the improvement from the last five Jacobian evaluations.

INFO $=5$ Iteration is not making good progress, as measured by the improvement from the last ten iterations.

Sections 4 and 5 contain more details about INFO.
NFEV is an integer output variable set to the number of calls to FCN.

FJAC is an output N by N array which contains the orthogonal matrix Q produced by the $Q R$ factorization of the final approximate Jacobian.

LDFJAC is a positive integer input variable not less than N which specifies the leading dimension of the array EJAC.
R is an output array of length $I R$ which contains the upper triangular matrix produced by the $Q R$ factorization of the final approximate Jacobian, stored rowwise.

LR is a positive integer input variable not less than ($\left.\mathrm{N}^{*}(\mathrm{~N}+1)\right) / 2$.

QTF is an output array of length N which contains the vector (Q transpose)*FVEC.

WA1, WA2, WA3, and WA4 are work arrays of length N .
4. Successful completion.

The accuracy of HYBRD is controlled by the convergence parameter XTOL. This parameter is used in a test which makes a comparison between the approximation X and a solution XSOL. HYBRD terminates when the test is satisfied. If the convergence parameter is less than the machine precision (as defined by the MINPACK function DPMPAR(1)), then HYBRD only attempts to satisfy the test defined by the machine precision. Further progress is not usually possible.

The test assumes that the functions are reasonably well behaved. If this condition is not satisfied, then HYBRD may incorrectly indicate convergence. The validity of the answer can be checked, for example, by rerunning HYBRD with a tighter tolerance.

Convergence test. If ENORM(Z) denotes the Euclidean nurm of a vector Z and D is the diagonal matrix whose entries are defined by the array DIAG, then this test attempts to guarantee that
ENORM(D*(X-XSOL)) .LE. XTOL*ENORM(D*XSOL).

If this condition is satisfied with XTOL $=10 * *(-K)$, then the larger components of $\mathrm{D} * \mathrm{X}$ have K significant decimal digits and INFO is set to 1 . There is a danger that the smaller components of $D * X$ may have large relative errors, but the fast rate of convergence of HYBRD usually avoids this possibility.
Unless high precision solutions are required, the recommended value for $X T O L$ is the square root of the machine precision.
5. Unsuccessful completion.

Unsuccessful termination of HYBRD can be due to improper input parameters, arithmetic interrupts, an excessive number of function evaluations, or lack of good progress.

Improper input parameters. INFO is set to 0 if N.LE. 0 , or XTOL .LT. O.DO, or MAXFEV .LE. 0, or ML .LT. 0, or MU .LT. 0, or FACTOR .LE. O.DO, or LDEJAC .LT. N, or LR .LT. ($\left.\mathrm{N}^{*}(\mathrm{~N}+1)\right) / 2$.

Arithmetic interrupts. If these interrupts occur in the FCN subroutine during an early stage of the computation, they may be caused by an unacceptable choice of X by HYBRD. In this case, it may be possible to remedy the situation by rerunning HYBRD with a smaller value of EACTOR.

Excessive number of function evaluations. A reasonable value for MAXFEV is 200* $(N+1)$. If the number of calls to FCN reaches MAXFEV, then this indicates that the routine is converging very slowly as measured by the progress of FVEC, and

INFO is set to 2. This situation should be unusual because, as indicated below, lack of good progress is usually diagnosed earlier by HYBRD, causing termination with INFO $=4$ or INEO $=5$.

Lack of good progress. HYBRD searches for a zero of the system by minimizing the sum of the squares of the functions. In so doing, it can become trapped in a region where the minimum does not correspond to a zero of the system and, in this situm ation, the iteration eventually fails to make good progress. In particular, this will happen if the system does not have a zero. If the system has a zero, rerunning HYBRD from a different starting point may be helpful.
6. Characteristics of the algorithm.

HYBRD is a modification of the Powell hybrid method. Two of its main characteristics involve the choice of the correction as a convex combination of the Newton and scaled gradient directions, and the updating of the Jacobian by the rank-1 method of Broyden. The choice of the correction guarantees (under reasonable conditions) global convergence for starting points far from the solution and a fast rate of convergence. The Jacobian is approximated by forward differences at the starting point, but forward differences are not used again until the rank-1 method fails to produce satisfactory progress.

Timing. The time required by $H Y B R D$ to solve a given problem depends on N, the behavior of the functions, the accuracy requested, and the starting point. The number of arithmetic operations needed by HYBRD is about $11.5 *(N * * 2)$ to process each call to FCN. Unless FCN can be evaluated quickly, the timing of HYBRD will be strongly influenced by the time spent in FCN .

Storage. HYBRD requires $(3 * N * * 2+17 * N) / 2$ double precision storage locations, in addition to the storage required by the program. There are no internally declared storage arrays.
7. Subprograms required.

USER-supplied ECN
MINPACK-supplied ... DOGLEG,DPMPAR, ENORM, EDJACI,
FORTRAN-supplied ... DABS,DMAX1,DMIN1,DSQRT,MINO,MOD
8. References.
M. J. D. Powell, A Hybrid Method for Nonlinear Equations.

Numerical Methods for Nonlinear Algebraic Equations, P. Rabinowitz, editor. Gordon and Breach, 1970.
9. Example.

The problem is to determine the values of $x(1), x(2), \ldots, x(9)$, which solve the system of tridiagonal equations

$$
\begin{array}{rlrl}
(3-2 * x(1)) * x(1) & =-1 \\
-x(i-1)+(3-2 * x(i)) * x(2) & -2 * x(i+1) & =-1, i=2-8 \\
& -x(8)+(3-2 * x(9)) * x(9) & =-1
\end{array}
$$

DRIVER FOR HYBRD EXAMPLE.
DOUBLE PRECISION VERSION

INTEGER J,N,MAXFEV,ML,MU,MODE, NPRINT, INFO, NEEV, LDEJAC, LR,NWRITE DOUBLE PRECISION XTOL, EPSFCN, FACTOR, FNORM
DOUBLE PRECISION X(9), $\operatorname{FVEC}(9), \operatorname{DIAG}(9), \operatorname{FJAC}(9,9), R(45), Q T F(9)$,

* WA1(9),WA2(9),WA3(9),WA4(9)

DOUBLE PRECISION ENORM,DPMPAR
EXTERNAL FCN

$$
\mathrm{N}=9
$$

LDFJAC $=9$
$L R=45$
SET XTOL TO THE SQUARE ROOT OF THE MACHINE PRECISION. UNLESS HIGH PRECISION SOLUTIONS ARE REQUIRED, THIS IS THE RECOMMENDED SETTING.

XTOL $=$ DSQRT(DPMPAR(1))
MAXFEV $=2000$
ML = 1
$\mathrm{MU}=1$
EPSECN = O.DO
MODE $=2$
DO $20 \mathrm{~J}=1,9$ DIAG(J) $=1$. DO

```
    20 CONTINUE
        FACTOR = 1.D2
        NPRINT = 0
C
    CALL HYBRD(FCN,N,X,FVEC,XTOL,MAXFEV,ML,MU,EPSFCN,DIAG,
    *
    *
        MODE, FACTOR, NPRINT, INEO,NFEV, FJAC, LDFJAC,
                            R,LR, QTE,WA1,WA2,WA3,WA4)
        FNORM = ENORM(N,FVEC)
        WRITE (NWKTTE,1000) ENORM,NFEV,INEO,(X(J),J=1,N)
        STOP
    1000 FORMAT (5X,31H FINAL L2 NORM OF THE RESIDUALS,D15.7//
        5X,15H EXIT PARAMETER,16X,IlO //
        5X,27H FINAL APPROXIMATE SOLUTION // (5X,3D15.7))
C
C LAST CARD OF DRIVER FOR HYBRD EXAMPLE.
C
    END
    SUBROUTINE FCN(N,X,FVEC,IFLAG)
    INTEGER N,IFLAG
    DOUBLE PRECISION X(N),FVEC(N)
C
C SUBROUTINE FCN FOR HYBRD EXAMPLE.
    INTEGER K
    DOUBLE PRECISION ONE,TEMP,TEMP1,TEMP2,THREE,TWO,ZEPO
    DATA ZERO,ONE,TWO,THREE /O.DO,1.DO,2.DO,3.DO/
C
C
C
C
    IF (IFLAG .NE. O) GO TO 5
        RETURN
        5 \text { CONTINUE}
    DO 10 K = 1, N
        TEMP = (THREE - TWO*X(K))*X(K)
        TEMP1 = ZERO
        IF (K .NE. 1) TEMP1 = X(K-1)
        TEMP2 = 2ERO
        IF (K .NE. N) TEMP2 = X(K+1)
        FVEC(K) = TEMP - TEMP1 - TWO*TEMP2 + ONE
            CONTINUE
        RETURN
LAST CARD OF SUBROUTINE FCN.
END
Results obtained with different compilers or machines may be slightly different.
FINAL L2 NORM OF THE RESIDUALS \(0.1192636 \mathrm{D}-07\)
NUMBER OF FUNCTION EVALUATIONS

\section*{Page 8}

EXIT PARAMETER 1

FINAL APPROXIMATE SOLUTION
\(-0.5706545 D+00-0.6816283 D+00-0.7017325 D+00\)
\(-0.7042129 D+00-0.7013690 D+00-0.6918656 D+00\)
\(-0.6657920 \mathrm{D}+00-0.5960342 \mathrm{D}+00-0.4164121 \mathrm{D}+00\)

Documentation for MINPACK subroutine HYBRJI
Double precision version
Argonne National Laboratory
Burton S. Garbow, Kenneth E. Hillstrom, Jorge J. More
March 1980
1. Purpose.

The purpose of HYBRJ is to find a zero of a system of \(N\) nonlinear functions in \(N\) variables by a modification of the Powell hybrid method. This is done by using the more general nonlinear equation solver HYBRJ. The user must provide a subroutine which calculates the functions and the Jacobian.
2. Subroutine and type statements.

SUBROUTINE HYBRJ1(FCN,N,X,FVEC,EJAC, LDFJAC,TOL, INFO,WA,LWA) INTEGER N,LDFJAC, INFO, LWA DOUBLE PRECISION TOL DOUBLE PRECISION X(N),FVEC(N),FJAC(LDEJAC,N),WA(LWA) EXTERNAL FCN

\section*{3. Parameters.}

Parameters designated as input parameters must be specified on entry to HYBRJ1 and are not changed on exit, while parameters designated as output parameters need not be specified on entry and are set to appropriate values on exit from HYBRJl.

FCN is the name of the user-supplied subroutine which calculates
the functions and the Jacobian. FCN must be declared in an EXTERNAL statement in the user calling program, and should be written as follows.

SUBROUTINE FCN(N,X,FVEC, FJAC, LDEJAC,IFLAG)
INTEGER N, LDEJAC, IELAG
DOUBLE PRECISION X(N), EVEC(N), EJAC(LDFJAC,N)
----------
If IFLAG \(=1\) CALCULATE THE FUNCTIONS AT X AND
RETURN THIS VECTOR IN FVEC. DO NOT ALTER FJAC.
IF IFLAG \(=2\) CALCULATE THE JACOBIAN AT X AND
RETURN THIS MATRIX IN FJAC. DO NOT ALTER FVEC.
-----------
RETURN
END
The value of IFLAG should not be changed by FCN unless the
user wants to terminate execution of HYBRJ1. In this case set IFLAG to a negative integer.

N is a positive integer input variable set to the number of functions and variables.
\(X\) is an array of length \(N\). On input \(X\) must contain an initial estimate of the solution vector. On output \(X\) contains the final estimate of the solution vector.

FVEC is an output array of length \(N\) which contains the functions evaluated at the output \(X\).

EJAC is an output N by N array which contains the orthogonal matrix Q produced by the \(Q R\) factorization of the final approximate Jacobian. Section 6 contains more details about the approximation to the Jacobian.

LDEJAC is a positive integer input variable not less than \(N\) which specifies the leading dimension of the array \(\mathrm{FJ} A C\).

TOL is a nonnegative input variable. Termination occurs when the algorithm estimates that the relative error between \(X\) and the solution is at most TOL. Section 4 contains more details about TOL.

INEO is an integer output variable. If the user has terminated execution, INFO is set to the (negative) value of IFLAG. See description of \(F C N\). Otherwise, INFO is set as follows.

INFO \(=0\) Improper input parameters.
INFO \(=1\) Algorithm estimates that the relative error between \(X\) and the solution is at most TOL.

INFO \(=2\) Number of calls to FCN with IFLAG \(=1\) has reached 100* ( \(\mathrm{N}+1\) ).

INEO \(=3\) TOL is too small. No further improvement in the approximate solution \(X\) is possible.

INEO \(=4\) Iteration is not making good progress.
Sections 4 and 5 contain more details about INFO.
WA is a work array of length LWA.
LWA is a positive integer input variable not less than ( \(\mathrm{N}^{*}(\mathrm{~N}+13)\) )/2.
4. Successful completion.

The accuracy of HYBRJI is controlled by the convergence
parameter TOL. This parameter is used in a test which makes a comparison between the approximation \(X\) and a solution XSOL. HYBRJI terminates when the test is satisfied. If TOL is less than the machine precision (as defined by the MINPACK function DPMPAR(1)), then HYBRJI only attempts to satisfy the test defined by the machine precision. Further progress is not usually possible. Unless high precision solutions are required, the recommended value for \(T O L\) is the square root of the machine precision.

The test assumes that the functions and the Jacobian are coded consistently, and that the functions are reasonably well behaved. If these conditions are not satisfied, then HYBRJl may incorrectly indicate convergence. The coding of the Jacobian can be checked by the MINPACK subroutine CHKDER. If the Jacobian is coded correctly, then the validity of the answer can be checked, for example, by rerunning HYBRJl with a tighter tolerance.

Convergence test. If ENORM(Z) denotes the Euclidean norm of a vector \(Z\), then this test attempts to guarantee that
ENORM (X-XSOL) . LE. TOL*ENORM (XSOL).

If this condition is satisfied with TOL \(=10 * *(-K)\), then the larger components of X have K significant decimal digits and INFO is set to 1 . There is a danger that the smaller components of \(X\) may have large relative errors, but the fast rate of convergence of HYBRJl usually avoids this possibility.
5. Unsuccessful completion.

Unsuccessful termination of HYBRJI can be due to improper input parameters, arithmetic interrupts, an excessive number of function evaluations, or lack of good progress.

Improper input parameters. INFO is set to 0 if \(N\).LE. 0 , or LDEJAC .LT. \(N\), or TOL .LT. O.DO, or LWA.LT. ( \(\left.N^{*}(N+13)\right) / 2\).

Arithmetic interrupts. If these interrupts occur in the FCN subroutine during an early stage of the computation, they may be caused by an unacceptable choice of \(X\) by HYBRJI. In this case, it may be possible to remedy the situation by not evaluating the functions here, but instead setting the components of FVEC to numbers that exceed those in the initial FVEC, thereby indirectly reducing the step length. The step length can be more directly controlled by using instead HYBRJ, which includes in its calling sequence the step-length- governing parameter FACTOR.

Excessive number of function eraluations. If the number of calls to ECN with IFLAG \(=1\) reaches 100*(N+1), then this indicates tlat the routine is converging very slowly as measured
by the progress of FVEC, and INFO is set to 2. This situation should be unusual because, as indicated below, lack of good progress is usually diagnosed earlier by HYBRJl, causing termination with INFO \(=4\).

Lack of good progress. HYBRJl searches for a zero of the system by minimizing the sum of the squares of the functions. In so doing, it can become trapped in a region where the minimum does not correspond to a zero of the system and, in this situation, the iteration eventually fails to make good progress. In particular, this will happen if the system does not have a zero. If the system has a zero, rerunning HYBRJI from a different starting point may be helpful.
6. Characteristics of the algorithm.

HYBRJI is a modification of the Powell hybrid method. Two of its main characteristics involve the choice of the correction as a convex combination of the Newton and scaled gradient directions, and the updating of the Jacobian by the rank-1 method of Broyden. The choice of the correction guarantees (under reasonable conditions) global convergence for starting points far from the solution and a fast rate of convergence. The Jacobian is calculated at the starting point, but it is not recalculated until the rank-1 method fails to produce satisfactory progress.

Timing. The time required by HYBRJ1 to solve a given problem depends on \(N\), the behavior of the functions, the accuracy requested, and the starting point. The number of arithmetic operations needed by HYBRJI is about ll.5*(N**2) to process each evaluation of the functions (call to FCN with IFLAG = 1) and 1.3*(N**3) to process each evaluation of the Jacobian (call to FCN with IELAG \(=2\) ). Unless FCN can be evaluated quickly, the timing of HYBRJl will be strongly influenced by the time spent in FCN.

Storage. HYBRJl requires (3*N**2 : ?7*N)/2 double precision storage locations, in addition to the storage required by the program. There are no internally declared storage arrays.
7. Subprograms required.

USER-supplied ...... FCN
MINPACK-supplied ... DOGLEG, DPMPAR, ENORM, HYBRJ, QFORM, QRFAC,RIMPYQ,RIUPDT

FORTRAN-supplied ... DABS,DMAXI,DMIN1,DSQRT,MINO, MOD

\section*{8. References.}
M. J. D. Powell, A Hybrid Method for Nonlinear Equations. Numerical Methods for Nonlinear Algebraic Equations, P. Rabinowitz, editor. Gordon and Breach, 1970.
9. Example.

The problem is to determine the values of \(x(1), x(2), \ldots, x(9)\), which solve the system of tridiagonal equations
\[
\begin{aligned}
(3-2 * x(1)) * x(1) & =-1 \\
-x(i-1)+(3-2 * x(i)) * x(i) & -2 * x(2) \\
-x(8)+(3-2 * x(9)) * x(9) & =-1, i=2-8
\end{aligned}
\]

DRIVER FOR HYBRJ1 EXAMPLE. DOUBLE PRECISION VERSION

INTEGER J,N,LDEJAC, INFO, LWA, NWRITE
DOUBLE PRECISION TOL,FNORM
DOUBLE PRECISION X(9), \(\operatorname{FVEC}(9), \operatorname{FJAC}(9,9)\), WA (99)
DOUBLE PRECISION ENORM,DPMPAR
EXTERNAL FCN
\(\mathrm{N}=9\)
THE FOLLOWING STARTING VALUES PROVIDE A ROUGH SOLUTION.
LOGICAL OUTPUT UNIT IS ASSUMED TO BE NUMBER 6.
DATA NWRITE /6/

DO \(10 \mathrm{~J}=1,9\) \(X(J)=-1 . D 0\)
10 CONTINUE
LDEJAC \(=9\)
LWA \(=99\)
SET TOL TO THE SQUARE ROOT OF THE MACHINE PRECISION.
UNLESS HIGH PRECISION SOLUTIONS ARE REQUIRED,
THIS IS THE RECOMMENDED SETTING.
TOL = DSQRT(DPMPAR(1))
CALL HYBRJI(FCN,N,X,FVEC, FJAC, LDEJAC,TOL, INEO,WA, LWA)
FNORM \(=\) ENORM(N,FVEC)
WRITE (NWRITE,1000) ENORM,INFO,(X(J),J=1,N)
STOP
1000 FORMAT (5X,31H FINAL L2 NORM OF THE RESIDUALS,D15.7 //
* 5X,27H EINAL APPROXIMATE SOLUTION // (5X,3D15.7))

C LAST CARD OF DRIVER FOR HYBRJI EXAMPLE.
END
SUBROUTINE FCN(N,X,FVEC,FJAC, LDFJAC, IFLAG)
INTEGER N,LDFJAC, IFLAG
DOUBLE PRECISION X(N), FVEC(N),FJAC(LDFJAC,N)
SUBROUTINE FCN EOR HYBRJI EXAMPLE.
INTEGER J,K
DOUBLE PRECISION ONE,TEMP,TEMP1,TEMP2,THREE,TWO, ZERO
DATA ZERO,ONE,TWO,THREE,FOUR /O.DO,1.DO,2.DO,3.DO,4.DO/
IE (IFLAG .EL. 2) GO TO 20
DO \(10 \mathrm{~K}=1\), N
TEMP \(=(\) THREE - TWO* \(X(K)) \star X(K)\)
TEMP1 = 2ERO
IF (K .NE. 1) TEMP1 \(=\mathrm{X}(\mathrm{K}-1)\)
TEMP2 = ZERO
IF (K .NE. N) TEMP2 \(=\mathrm{X}(\mathrm{K}+1)\)
FVEC \((\mathrm{K})=\) TEMP - TEMP1 - TWO*TEMP2 + ONE
CONTINUE

20 CONIINU

LAST CARD OF SUBROUTINE FCN.

END
Results obtained with different compilers or machines may be slightly different.

FINAL L2 NORM OF THE RESIDUALS 0.1192636D-07
EXIT PARAMETER
FINAL APPROXIMATE SOLUTION
\(-0.5706545 D+00-0.6816283 D+00-0.7017325 D+00\)
\(-0.7042129 D+00-0.7013690 D+00-0.6918656 D+00\)
\(-0.6657920 D+00-0.5960342 D+00-0.4164121 D+00\)

Documentation for MINPACK subroutine HYBRJ
Doubie precision version
Argonne National Laboratory
Burton S. Garbow, Kenneth E. Hillstrom, Jorge J. More
March 1980
1. Purpose.

The purpose of HYBRJ is to find a zero of a system of N ronlinear functions in \(N\) variables by a modification of the Powell hybrid method. The user must provide a subroutine which calculates the functions and the Jacobian.
2. Subroutine and type statements.

SUBROUTINE HYBRJ(FCN,N,X,FVEC,FJAC,LDFJAC,XTOL,MAXFEV,DIAG,
* WA1,WA2,WA3,WA4)

INTEGER N,LDEJAC, MAXFEV,MODE, NPRINT, INFO, NEEV,NJEV, LR DOUBLE PRECISION XTOL, FACTOR DOUBLE PRECISION X(N),FVEC(N), EJAC(LDFJAC,N),DIAG(N),R(LR), QTF(N),

WA1 (N), WA2 (N) ,WA3(N),WA4(N)
3. Parameters.

Parameters designated as input parameters must be specified on entry to HYBRJ and are not changed on exit, while parameters designated as output parameters need not be specified on entry and are set to appropriate values on exit from HYBRJ.

FCN is the name of the user-supplied subroutine which calculates the functions and the Jacobian. FCN must be declared in an EXTERNAL statement in the user calling program, and should be written as follows.

SUBROUTINE FCN(N,X,FVEC, FJAC, LDEJAC,IFLAG)
INTEGER N, LDFJAC, IFLAG
DOUBLE PRECISION X(N), FVEC(N), FJAC(LDEJAC, N)
----------
IF IFLAG \(=1\) CALCULATE THE FUNCTIONS AT X AND RETURN THIS VECTOR IN FVEC. DO NOT ALTER EJAC.
IF IFLAG \(=2\) CALCULATE THE JACOBIAN AT \(X\) AND RETURN THIS MATRIX IN FJAC. DO NOT ALTER FVEC.
-----------
RETURN
END

The value of IFLAG should not be changed by FCN unless the user wants to terminate execution of HYBRJ. In this case set IFLAG to a negative integer.

N is a positive integer input variable set to the number of functions and variables.
\(X\) is an array of length \(N\). On input \(X\) must contain an initial estimate of the solution vector. On output \(X\) contains the final estimate of the solution vector.

FVEC is an output array of length \(N\) which contains the functions evaluated at the output \(X\).

FJAC is an output N by N array which contains the orthogonal matrix \(Q\) produced by the \(Q R\) factorization of the final approximate Jacobian. Section 6 contains more details about the approximation to the Jacobian.

LDEJAC is a positive integer input variable not less than \(N\) which specifies the leading dimension of the array FJAC.

XTOL is a nonnegative input variable. Termination occurs when the relative error between two consecutive iterates is at most XTOL. Therefore, XTOL measures the relative error desired in the approximate solution. Section 4 contains more details about XTOL.

MAXFEV is a positive integer input variable. Termination occurs when the number of calls to FCN with IFLAG \(=1\) has reached MAXEEV.

DIAG is an array of length \(N\). If MODE \(=1\) (see below), DIAG is internally set. If MODE = 2, DIAG must contain positive entries that serve as multiplicative scale factors for the variables.

MODE is an integer input variable. If MODE \(=1\), the variables will be scaled internally. If MODE \(=2\), the scaling is specified by the input DIAG. Other values of MODE are equivalent to MODE = 1 .

FACTOR is a positive input variable used in determining the initial step bound. This bound is set to the product of FACTOR and the Euclidean norm of DIAG*X if nonzero, or else to FACTOR itself. In most cases FACTOR should lie in the interval (.1,100.). 100. is a generally recommended value.

NPRINT is an integer input variable that enables controlled printing of iterates if it is positive. In this case, FCN is called with IFLAG \(=0\) at the beginning of the first iteration and every NPRINT iterations thereafter and immediately prior to return, with \(X\) and FVEC available for printing. FVEC and EJAC should not be altered. If NPRINT is not positive, no
special calls of \(F C N\) with IFLAG \(=0\) are made.
INFO is an integer output variable. If the user has terminated execution, INFO is set to the (negative) value of IFLAG. See description of FCN. Otherwise, INFO is set as follows.

INFO \(=0\) Improper input parameters.
INFO \(=1\) Relative error between two consecutive iterates is at most XTOL.

INFO \(=2\) Number of calls to FCN with IFLAG \(=1\) has reached MAXEEV.
\(I N F O=3\) XTOL is too small. No further improvement in the approximate solution \(X\) is possible.

INFO \(=4\) Iteration is not making good progress, as measured by the improvement from the last five Jacobian evaluations.

INFO = 5 Iteration is not making good progress, as measured by the improvement from the last ten iterations.

Sections 4 and 5 contain more details about INFO.
NFEV is an integer output variable set to the number of calls to ECN with IFLAG \(=1\).

NJEV is an integer output variable set to the number of calls to FCN with IFLAG \(=2\).
\(R\) is an output array of length \(L R\) which contains the upper triangular matrix produced by the \(Q R\) factorization of the final approximate Jacobian, stored rowwise.

LR is a positive integer input variable not less than ( \(\left.N^{*}(N+1)\right) / 2\).

QTE is an output array of length \(N\) which contains the vector (Q transpose)*FVEC.

WA1, WA2, WA3, and WA4 are work arrays of length \(N\).
4. Successful completion.

The accuracy of HYBRJ is controlled by the convergence parameter XTOL. This parameter is used in a test which makes a comparison between the approximation \(X\) and a solution XSOL. HYBRJ terminates when the test is satisfied. If the convergence parameter is less than the machine precision (as defined by the MINPACK function DPMPAR(1)), then HYBRJ only attempts to satisfy the test defined by the machine precision. Further progress is not
usually possible.
The test assumes that the functions and the Jacobian are coded consistently, and that the functions are reasonably well behaved. If these conditions are not satisfied, then HYBRJ may incorrectly indicate convergence. The coding of the Jacobian can be checked by the MINPACK subroutine CHKDER. If the Jacobian is coded correctly, then the validity of the answer can be checked, for example, by rerunning HYBRJ with a tighter tolerance.

Convergence test. If ENORM(Z) denotes the Euclidean norm of a vector \(Z\) and \(D\) is the diagonal matrix whose entries are defined by the array DIAG, then this test attempts to guarantee that
ENORM(D*(X-XSOL)) .LE. XTOL*ENORM(D*XSOL).

If this condition is satisfied with XTOL \(=10 * *(-K)\), then the larger components of \(\mathrm{D} * \mathrm{X}\) have K significant decimal digits and INFO is set to 1. There is a danger that the smaller components of D*X may have large relative errors, but the fast rate of convergence of HYBRJ usually avoids this possibility. Unless high precision solutions are required, the recommended value for \(X T O L\) is the square root of the machine precision.
5. Unsuccessful completion.

Unsuccessful termination of \(H Y B R J\) can be due to improper input parameters, arithmetic interrupts, an excessive number of function evaluations, or lack of good progress.

Improper input parameters. INFO is set to \(O\) if \(N\).LE. \(O\), or LDFJAC . LT. N, or XTOL .LT. O.DO, or MAXEEV .LE. 0 , or FACTOR .LE. O.DO, or LR .LT. \(\left(\mathrm{N}^{*}(\mathrm{~N}+1)\right) / 2\).

Arithmetic interrupts. If these interrupts occur in the FCN subroutine during an early stage of the computation, they may be caused by an unacceptable choice of \(X\) by HYBRJ. In this case, it may be possible to remedy the situation by rerunning HYBRJ with a smaller value of FACTOR.

Excessive number of function evaluations. A reasonable value for MAXFEV is 100* \((N+1)\). If the number of calls to \(E C N\) with IFLAG \(=1\) reaches MAXFEV, then this indicates that the routine is converging very slowly as measured by the progress of FVEC, and INFO is set to 2. This situation should be unusual because, as indicated below, lack of good progress is usually diagnosed earlier by HYBRJ, causing termination with INFO \(=4\) or \(\mathrm{INFO}=5\).

Lack of good progress. HYBRJ searches for a zero of the system by minimizing the sum of the squares of the functions. In so
doing, it can become trapped in a region where the minimum does not correspond to a zero of the system and, in this situation, the iteration eventually fails to make good progress. In particular, this will happen if the system does not have a zero. If the system has a zero, rerunning HYBRJ from a different starting point may be helpful.
6. Characteristics of the algorithm.

HYBRJ is a modification of the Powell hybrid method. Two of its main characteristics involve the choice of the correction as a convex combination of the Newton and scaled gradient directions, and the updating of the Jacobian by the rank-l method of Broyden. The choice of the correction guarantees (under reasonable conditions) global convergence for starting points far from the solution and a fast rate of convergence. The Jacobian is calculated at the starting point, but it is not recalculated until the rank-1 method fails to produce satisfactory progress.

Timing. The time required by HYBRJ to solve a given problem depends on \(N\), the behavior of the functions, the accuracy requested, and the starting point. The number of arithmetic operations needed by HYBRJ is about \(11.5 *\left(N^{*} * 2\right)\) to process each evaluation of the functions (call to FCN with IFLAG = 1) and \(1.3 *\left(N^{* *}\right)\) to process each evaluation of the Jacobian (call to FCN with IFLAG \(=2\) ). Unless FCN can be evaluated quickly, the timing of HYBRJ will be strongly influenced by the time spent in FCN.

Storage. HYBRJ requires \((3 * N * * 2+17 * N) / 2\) double precision storage locations, in addition to the storage required by the program. There are no internally declared storage arrays.
7. Subprograms required.
```

USER-supplied FCN
MINPACK-supplied ... DOGLEG,DPMPAR,ENORM,
QFORM, QRFAC,R1MPYQ,R1UPDT
FORTRAN-supplied ... DABS,DMAXI,DMIN1,DSQRT,MINO,MOD

```

\section*{8. References.}
M. J. D. Powell, A Hybrid Method for Nonlinear Equations. Numerical Methods for Nonlinear Algebraic Equations, P. Rabinowitz, editor. Gordon and Breach, 1970.
9. Example.

The problem is to determine the values of \(x(1), x(2), \ldots, x(9)\), which solve the system of tridiagonal equations
\[
\begin{array}{rlrl}
(3-2 * x(1)) * x(1) & =-1 \\
-x(i-1)+(3-2 * x(i)) * x(i) & -2 * x(2) & -2 * x(i+1) & =-1, i=2-8 \\
& -x(8)+(3-2 * x(9)) * x(9) & =-1
\end{array}
\]

LDEJAC \(=9\)
\(L R=45\)
SET XTOL TO THE SQUARE ROOT OF THE MACHINE PRECISION. UNLESS HIGH PRECISION SOLUTIONS ARE REQUIRED, THIS IS THE RECOMMENDED SETTING.
\(\mathrm{XTOL}=\operatorname{DSQRT}(\operatorname{DPMPAR}(1))\)
MAXFEV \(=1000\)
MODE \(=2\)
DO \(20 \mathrm{~J}=1,9\) \(\operatorname{DIAG}(J)=1 . D 0\)
CONTINUE
FACTOR \(=1\). D2
NPRINT \(=0\)
C
DRIVER FOR HYBRJ EXAMPLE.
DOUBLE PRECISION VERSION
**********
INTEGER J, N, LDEJAC, MAXFEV, MODE, NPRINT, INFO, NFEV, NJEV, LR, NWRITE DOUBLE PRECISION XTOL, FACTOR, FNORM DOUBLE PRECISION X(9), \(\operatorname{FVEC}(9), \operatorname{FJAC}(9,9), \operatorname{DIAG}(9), \operatorname{R}(45), Q T E(9)\), * WA1(9),WA2(9),WA3(9),WA4(9)

DOUBLE PRECISION ENORM,DPMPAR
EXTERNAE FCN
LOGICAL OUTPUT UNIT IS ASSUMED TO BE NUMBER 6.
DATA NWRITE /6/
\(\mathrm{N}=9\)
THE FOLLOWING STARTING VALUES PROVIDE A ROUGH SOLUTION.
DO \(10 \mathrm{~J}=1,9\)
\(X(J)=-1 . D O\)
CONTINUE

CALL HYBRJ (FCN, N, X, FVEC, FJAC, LDFJAC, XTOL, MAXFEV, DIAG,
*
*
WA1,WA2,WA3,WA4)
FNORM = ENORM(N, FVEC)
WRITE (NWRITE, 1000) FNORM, NFEV, NJEV, INFO, (X(J), J=1,N)

STOP

1000 FORMAT
*
    GO TO 50
20 CONTINUE
    DO \(40 \mathrm{~K}=1, \mathrm{~N}\)
        DO \(30 \mathrm{~J}=1, \mathrm{~N}\)
            FJAC (K,J) = ZERO
            CONTINUE
            FJAC(K,K) \(=\) THREE - FOUR*X(K)
            IF (K .NE. 1) \(\operatorname{FJAC}(K, K-1)=-O N E\)
            IF (K .NE. N) EJAC(K,K+1) = -TWO
            40 CONTINUE
50 CONTINUE
    RETURN

LAST CARD OF DRIVER FOR HYBRJ EXAMPLE.
END
SUBROUTINE FCN(N,X,FVEC,FJAC,LDFJAC, IFLAG)
INTEGER N,LDFJAC, IFLAG
DOUBLE PRECISION X(N), FVEC(N), EJAC(LDFJAC,N)
SUBROUTINE FCN FOR HYBRJ EXAMPLE.
INTEGER J,K
DOUBLE PRECISION ONE,TEMP,TEMPI,TEMP2,THREE,TWO,ZERO
DATA ZERO,ONE,TWO,THREE,FOUR /O.DO,1.DO,2.DO,3.DO,4.DO/
IF (IFLAG .NE. O) GO TO 5
INSERT PRINT STATEMENTS HERE WHEN NPRINT IS POSITIVE.
RETURN
5 CONTINUE
IF (IFLAG .EQ. 2) GO TO 20
DO \(10 \mathrm{~K}=1\), N
TEMP \(=(\) THREE - TWO*X \((\mathrm{K})) * \mathrm{X}(\mathrm{K})\)
TEMPI = ZERO
\(\operatorname{IF}(\mathrm{K} . \mathrm{NE} .1) \mathrm{TEMP} 1=\mathrm{X}(\mathrm{K}-1)\)
TEMP2 = ZERO
IF (K .NE. N) TEMP2 \(=\mathrm{X}(\mathrm{K}+1)\)
FVEC \((\mathrm{K})=\) TEMP - TEMP1 - TWO*TEMP2 + ONE
ONIINUE
20 CONTINUE
DO \(40 \mathrm{~K}=1, \mathrm{~N}\)
DO \(30 \mathrm{~J}=1, \mathrm{~N}\)
FJAC (K,J) = ZERO CONTINUE
FJAC(K,K) \(=\) THREE - FOUR*X(K)
IF (K .NE. 1) FJAC(K,K-l) = -ONE
IF (K .NE. N) EJAC(K,K+1) = -TWO
40 CON'TINUE
50 CONTINUE
RETURN
LAST CARD OF SUBROUTINE FCN.


END
Results obtained with different compilers or machines may be slightly different.

EINAL L2 NORM OF THE RESIDUALS 0.1192636D-07
NUMBER OF FUNCTION EVALUATIONS 11
NUMBER OF JACOBIAN EVALUATIONS 1
EXIT PARAMETER 1
FINAL APPROXIMATE SOLUTION
\(-0.5706545 D+00-0.6816283 D+00-0.7017325 D+00\)
\(-0.7042129 D+00-0.7013690 D+00-0.6918656 D+00\)
\(-0.6657920 D+00-0.5960342 D+00-0.4164121 D+00\)

Documentation for MINPACK subroutine LMDER1
Double precision version
Argonne National Laboratory
Burton S. Garbow, Kenneth E. Hillstrom, Jorge J. More
March 1980
1. Purpose.

The purpose of LMDERI is to minimize the sum of the squares of \(M\) nonlinear functions in \(N\) variables by a modification of the Levenberg-Marquardt algorithm. This is done by using the more general least-squares solver LMDER. The user must provide a subroutine which calculates the functions and the Jacobian.
2. Subroutine and type statements.
```

 SUBROUTINE LMDER1(FCN,M,N,X,FVEC,FJAC,LDFJAC,TOL,
 * INFO,IPVT,WA,LWA)
INTEGER M,N,LDEJAC,INFO,LWA
INTEGER IPVT(N)
DOUBLE PRECISION TOL
DOUBLE PRECISION X(N),FVEC(M),FJAC(LDFJAC,N),WA(LWA)
EXTERNAL FCN

```

\section*{3. Parameters.}

Parameters designated as input parameters must be specified on entry to LMDER1 and are not changed on exit, while parameters designated as output parameters need not be specified on entry and are set to appropriate values on exit from LMDERI.

FCN is the name of the user-supplied subroutine which calculates
the functions and the Jacobian. FCN must be declared in an EXTERNAL statement in the user calling program, and should be written as follows.

SUBROUTINE FCN(M,N,X,FVEC, FJAC, LDEJAC,IFLAG)
INTEGER M, N, LDFJAC, IFLAG
DOUBLE PRECISION X(N), EVEC(M), FJAC(LDEJAC,N)
----------
IF IFLAG \(=1\) CALCULATE THE FUNCTIONS AT X AND
RETURN THIS VECTOR IN EVEC. DO NOT ALTER FJAC.
IF IFLAG \(=2\) CALCULATE THE JACOBIAN AT X AND
RETURN THIS MATRIX IN FJAC. DO NOT ALTER FVEC.
-----------
RETURN
END

The value of IFLAG should not be changed by FCN unless the user wants to terminate execution of LMDER1. In this case set IFLAG to a negative integer.
\(M\) is a positive integer input variable set to the number of functions.

N is a positive integer input variable set to the number of variables. \(N\) must not exceed \(M\).
\(X\) is an array of length \(N\). On input \(X\) must contain an initial estimate of the solution vector. On output \(X\) contains the final estimate of the solution vector.

FVEC is an output array of length \(M\) which contains the functions evaluated at the output \(X\).

FJAC is an output \(M\) by \(N\) array. The upper \(N\) by \(N\) submatrix of FJAC contains an upper triangular matrix \(R\) with diagonal elements of nonincreasing magnitude such that
\[
P^{T} *\left(J A C{ }^{T} * J A C\right) * P=R^{T} * R,
\]
where \(P\) is a permutation matrix and JAC is the final calculated Jacobian. Column \(j\) of \(P\) is column IPVT(j) (see below) of the identity matrix. The lower trapezoidal part of FJAC contains information generated during the computation of \(R\).

LDEJAC is a positive integer input variable not less than M which specifies the leading dimension of the array \(E J A C\).

TOL is a nonnegative input variable. Termination occurs when the algorithm estimates either that the relative error in the sum of squares is at most \(T O L\) or that the relative error between \(X\) and the solution is at most \(T O L\). Section 4 contains more details about TOL.

INFO is an integer output variable. If the user has terminated execution, INFO is set to the (negative) value of IFLAG. See description of FCN. Otherwise, INFO is set as follows.

INFO \(=0\) Improper input parameters.
INEO \(=1\) Algorithm estimates that the relative error in the sum of squares is at most TOL.

INFO = 2 Algorithm estimates that the relative error between \(X\) and the solution is at most TOL.

INFO \(=3\) Conditions for \(\operatorname{INFO}=1\) and INFO \(=2\) both hold.
INFO \(=4\) FVEC is orthogonal to the columns of the Jacobian to machine precision.

INFO \(=5\) Number of calls to FCN with IFLAG \(=1\) has reached 100* ( \(\mathrm{N}+1\) ).

INFO \(=6\) TOL is too small. No turther reduction in the sum of squares is possible.

INFO \(=7\) TOL is too small. No further improvement in the approximate solution \(X\) is possible.

Sections 4 and 5 contain more details about INFO.
IPVT is an integer output array of length \(N\). IPVT defines a permutation matrix \(P\) such that \(J A C * P=Q * R\), where JAC is the final calculated Jacobian, \(Q\) is orthogonal (not stored), and \(R\) is upper triangular with diagonal elements of nonincreasing magnitude. Column \(j\) of \(P\) is column IPVT(j) of the identity matrix.

WA is a work array of length LWA.
LWA is a positive integer input variable not less than \(5 * N+M\).
4. Successful completion.

The accuracy of LMDERI is controlled by the convergence parameter TOL. This parameter is used in tests which make three types of comparisons between the approximation \(X\) and a solution XSOL. LMDERI terminates when any of the tests is satisfied. If TOL is less than the machine precision (as defined by the MINPACK function DPMPAR(1)), then LMDER1 only attempts to satisfy the test defined by the machine precision. Further progress is not usually possible. Unless high precision solutions are required, the recommended value for \(T O L\) is the square root of the machine precision.

The tests assume that the functions and the Jacobian are coded consistently, and that the functions are reasonably well behaved. If these conditions are not satisfied, then LMDER1 may incorrectly indicate convergence. The coding of the Jacobian can be checked by the MINPACK subroutine CHKDER. If the Jacobian is coded correctly, then the validity of the answer can be checked, for example, by rerunning LMDERI with a tighter tolerance.

First convergence test. If ENORM(Z) denotes the Euclidean norm of a vector \(Z\), then this test attempts to guarantee that

ENORM (FVEC) . LE. (1+TOL)*ENORM(FVECS),
where FVECS denotes the functions evaluated at XSOL. If this condition is satisfied with TOL = 10**(-K), then the final residual norm ENORM(FVEC) has \(K\) significant decimal digits and INEO is set to 1 (or to 3 if the second test is also
satisfied).
Second convergence test. If D is a diagonal matrix (implicitly generated by LMDER1) whose entries contain scale factors for the variables, then this test attempts to guarantee that
ENORM(D*(X-XSOL)) . LE. TOL*ENORM (D*XSOL).

If this condition is satisfied with TOL \(=10 * *(-K)\), then the larger components of \(D * X\) have \(K\) significant decimal digits and INFO is set to 2 (or to 3 if the first test is also satisfied). There is a danger that the smaller components of \(D * X\) may have large relative errors, but the choice of \(D\) is such that the accuracy of the components of \(X\) is usually related to their sensitivity.

Third convergence test. This test is satisfied when FVEC is orthogonal to the columns of the Jacobian to machine precision. There is no clear relationship between this test and the accuracy of LMDER1, and furthermore, the test is equally well satisfied at other critical points, namely maximizers and saddle points. Therefore, termination caused by this test (INFO \(=4\) ) should be examined carefully.
5. Unsuccessful completion.

Unsuccessful termination of LMDER1 can be due to improper input parameters, arithmetic interrupts, or an excessive number of function evaluations.

Improper input parameters. INEO is set to 0 if \(N\).LE. 0 , or M .LT. N, or LDEJAC .LT. M, or TOL .LT. O.DO, or LWA .LT. 5*N+M.

Arithmetic interrupts. If these interrupts occur in the \(E C N\) subroutine during an early stage of the computation, they may be caused by an unacceptable choice of \(X\) by LMDERI. In this case, it may be possible to remedy the situation by not evaluating the functions here, but instead setting the components of FVEC to numbers that exceed those in the initial FVEC, thereby indirectly reducing the step length. The step length can be more directly controlled by using instead LMDER, which includes in its calling sequence the step-length- governing parameter \(\operatorname{FACTOR}\).

Excessive number of function evaluations. If the number of calls to FCN with IFLAG \(=1\) reaches \(100 *(N+1)\), then this indicates that the routine is converging very slowly as measured by the progress of FVEC, and INFO is set to 5 . In this case, it may be helpful to restart LMDER1, thereby forcing it to disregard old (and possibly harmful) information.
6. Characteristics of the algorithm.

LMDERI is a modification of the Levenberg-Marquardt algorithm. Two of its main characteristics involve the proper use of implicitly scaled variables and an optimal choice for the correction. The use of implicitly scaled variables achieves scale invariance of LMDERI and limits the size of the correction in any direction where the functions are changing rapidly. The optimal choice of the correction guarantees (under reasonable conditions) global convergence from starting points far from the solution and a fast rate of convergence for problems with small residuals.

Timing. The time required by LMDER1 to solve a given problem depends on \(M\) and \(N\), the behavior of the functions, the accuracy requested, and the starting point. The number of arithmetic operations needed by LMDER1 is about N**3 to process each evaluation of the functions (call to FCN with IFLAG = 1) and \(M^{*}\left(N^{* *}\right)\) ) to process each evaluation of the Jacobian (call to \(F C N\) with IFLAG \(=2\) ). Unless \(F C N\) can be evaluated quickly, the timing of LMDERI will be strongly influenced by the time spent in ECN.

Storage. LMDER1 requires \(M * N+2 * M+6 * N\) double precision storage locations and N integer storage locations, in addition to the storage required by the program. There are no internally declared storage arrays.
7. Subprograms required.

USER-supplied ...... FCN
MINPACK-supplied ... DPMPAR, ENORM, LMDER, LMPAR, QRFAC, QRSOLV
FORTRAN-supplied ... DABS, DMAX1,DMIN1,DSQRT,MOD
8. References.

Jorge J. More, The Levenberg-Marquardt Algorithm, Implementation and Theory. Numerical Analysis, G. A. Watson, editor. Lecture Notes in Mathematics 630, Springer-Verlag, 1977.
9. Example.

The problem is to determine the values of \(x(1), x(2)\), and \(x(3)\) which provide the best fit (in the least squares sense) of
\[
x(1)+u(i) /(v(i) * x(2)+w(i) * x(3)), \quad i=1,15
\]
to the data
\[
\begin{aligned}
\mathrm{y}= & (0.14,0.18,0.22,0.25,0.29,0.32,0.35,0.39 \\
& 0.37,0.58,0.73,0.96,1.34,2.10,4.39)
\end{aligned}
\]
where \(u(i)=i, v(i)=16-i\) ，and \(w(i)=\min (u(i), v(i))\) ．The i－th component of FVEC is thus defined by
\[
y(i)-(x(1)+u(i) /(v(i) * x(2)+w(i) * x(3))) .
\]

DRIVER FOR LMDERI EXAMPLE． DOUBLE PRECISION VERSION

INTEGER J，M，N，LDFJAC，INFO，LWA，NWRITE
INTEGER IPVT（3）
DOUBLE PRECISION TOL，ENORM
DOUBLE PRECISION X（3），FVEC（15），FJAC（15，3），WA（30）
DOUBLE PRECISION ENORM，DPMPAR
EXTERNAL FCN
LOGICAL OUTPUT UNIT IS ASSUMED TO BE NUMBER 6.
DATA NWRITE／6／
C
\(M=15\)
\(\mathrm{N}=3\)
THE FOLLOWING STARTING VALUES PROVIDE A ROUGH EIT．
\(X(1)=1 . D 0\)
\(X(2)=1 . D 0\)
\(X(3)=1 . D O\)
C
LDFJAC \(=15\)
LWA \(=30\)
SET TOL TO THE SQUARE ROOT OF THE MACHINE PRECISION．
UNLESS HIGH PRECISION SOLUTIONS ARE REQUIRED，
THIS IS THE RECOMMENDED SETTING．
TOL \(=\operatorname{DSQRT}(\operatorname{DPMPAR}(1))\)
C
CALL LMDER1（FCN，M，N，X，FVEC，FJAC，LDFJAC，TOL，
＊INEO，IPVT，WA，LWA）
FNORM \(=\) ENORM（M，FVEC）
WRITE（NWRITE，1000）FNORM，INFO，（X（J），J＝1，N）
STOP
1000 FORMAT（5X，31H FINAL L2 NORM OF THE RESIDUALS，D15．7／／
＊5X，15H EXIT PARAMETER，16X，I10／／
＊5X，27H FINAL APPROXIMATE SOLUTION／／5X，3D15．7）
LAST CARD OF DRIVER FOR LMDERI EXAMPLE．
```

 END
 SUBROUTINE FCN(M,N,X,FVEC,FJAC,LDFJAC,IFLAG)
 INTEGER M,N,LDFJAC, IFLAG
 DOUBLE PRECISION X(N),FVEC(M),FJAC(LDE,TAC,N)
 GO TO 40
 20 CONTINUE
DO 30 I = 1, 15
TMP1 = I
TMP2 = 16 - I
TMP3 = TMP1
IF (I .GT. 8) TMP3 = TMP2
TMP4 = (X(2)*TMP2 + X(3)*TMP3)**2
FJAC(I,1) = -1.DO
FJAC(1,2) = TMP1*TMP2/TMP4
EJAC(I,3) = TMP1*TMP3/TMP4
30 CONTINUE
40 CONTINUE
RETURN

```

SUBROUTINE FCN FOR LMDERI EXAMPLE.
INTEGER I
DOUBLE PRECISION TMP1,TMP2,TMP3,TMP4
DOUBLE PRECISION Y(15)
DATA \(Y(1), Y(2), Y(3), Y(4), Y(5), Y(6), Y(7), Y(8)\),
* \(Y(9), Y(10), Y(11), Y(12), Y(13), Y(14), Y(15)\)
* 3.7D-1,5.8D-1,7.3D-1,9.6D-1,1.34DO,2.1DO,4.39D0/

IF (IFLAG .EQ. 2) GO TO 20
DO \(10 \mathrm{I}=1,15\)
TMP1 \(=\mathrm{I}\)
TMP2 \(=16-I\)
TMP3 \(=\) TMP1
IF (I .GT. 8) TMP3 = TMP2
CONTINUE
GO TO 40
20 CONTINUE
DO \(30 \mathrm{I}=1,15\)
TMP1 \(=\mathrm{I}\)
TMP2 \(=16-\mathrm{I}\)
TMP3 \(=\) TMP1
IF (I .GT. 8) TMP3 = TMP2
TMP4 \(=(\mathrm{X}(2) * T M P 2+X(3) * T M P 3) * * 2\)
\(\operatorname{FJAC}(1,1)=-1 . D 0\)
\(\operatorname{FJAC}(1,2)=\) TMP1*TMP2/TMP4
EJAC(I,3) \(=\) TMP1*TMP3/TMP4
30 CONTINUE
40 CONTINUE
RETURN
LAST CARD OF SUBROUTINE FCN.
```

* /1.4D-1,1.8D-1,2.2D-1,2.5D-1,2.9D-1,3.2D-1,3.5D-1,3.9D-1,
$\operatorname{FVEC}(\mathrm{I})=\mathrm{Y}(\mathrm{I})-(\mathrm{X}(1)+\mathrm{TMP1} /(\mathrm{X}(2) * T M P 2+\mathrm{X}(3) * T M P 3))$
END
Results obtained with different compilers or machines may be slightly different.
FINAL L2 NORM OF THE RESIDUALS 0.9063596D-O1
EXIT PARAMETER
FINAL APPROXIMATE SOLUTION

```
\(0.8241058 \mathrm{D}-01\)
\(0.1133037 \mathrm{D}+01\)
\(0.2343695 \mathrm{D}+01\)

Documentation for MINPACK subroutine LMDER
Double precision version
Argonne National Laboratory
Burton S. Garbow, Kenneth E. Hillstrom, Jorge J. More
March 1980

\section*{1. Purpose.}

The purpose of LMDER is to minimize the sum of the squares of \(M\) nonlinear functions in \(N\) variables by a modification of the Levenberg-Marquardt algorithm. The user must provide a subroutine which calculates the functions and the Jacobian.
2. Subroutine and type statements.

SUBROUTINE LMDER(FCN,M,N,X,FVEC, EJAC,LDFJAC,FTOL,XTOL,GTOL,
```

* MAXFEV,DIAG,MODE,FACTOR,NPRINT,INFO,NEEV,NJEV,
* IPVT,QTE,WA1,WA2,WA3,WA4)

INTEGER M,N,LDFJAC, MAXFEV, MODE, NPRINT, INFO, NFEV, NJEV
INTEGER IPVT(N)
DOUBLE PRECISION FTOL,XTOL,GTOL, FACTOR
DOUBLE PRECISION X(N), FVEC(M),FJAC(LDFJAC,N),DIAG(N), QTE(N),
*
WA1(N), WA2 (N), WA3(N),WA4(M)

```
3. Parameters.

Parameters designated as input parameters must be specified on entry to LMDER and are not changed on exit, while parameters designated as output parameters need not be specified on entry and are set to appropriate values on exit from LMDER.

FCN is the name of the user-supplied subroutine which calculates the functions and the Jacobian. FCN must be declared in an EXTERNAL statement in the user calling program, and should be written as follows.

SUBROUTINE FCN(M,N,X,FVEC, FJAC, LDFJAC, IFLAG)
INTEGER M,N,LDFJAC,IELAG
DOUBLE PRECISION X(N), FVEC(M), FJAC(LDEJAC,N)
----------
IF IFLAG \(=1\) CALCULATE THE FUNCTIONS AT X AND RETURN THIS VECTOR IN FVEC. DO NOT ALTER FJAC. IF IFLAG \(=2\) CALCULATE THE JACOBIAN AT X AND RETURN THIS MATRIX IN FJAC. DO NOT ALTER FVEC.
-----------
RETURN
END

The value of IFLAG should not be changed by FCN unless the user wants to terminate execution of LMDER. In this case set IFLAG to a negative integer.
\(M\) is a positive integer input variable set to the number of functions.

N is a positive integer input variable set to the number of variables. \(N\) must not exceed \(M\).
\(X\) is an array of length \(N\). On input \(X\) must contain an initial estimate of the solution vector. On output \(X\) contains the final estimate of the solution vector.

FVEC is an output array of length \(M\) which contains the functions evaluated at the output \(X\).

FJAC is an output \(M\) by \(N\) array. The upper \(N\) by \(N\) submatrix of FJAC contains an upper triangular matrix \(R\) with diagonal elements of nonincreasing magnitude such that
\[
P^{T} *\left(J A C C^{T} * J A C\right) * P=R^{T} * R,
\]
where \(P\) is a permutation matrix and JAC is the final calculated Jacobian. Column \(j\) of \(P\) is column IPVT(j) (see below) of the identity matrix. The lower trapezoidal part of FJAC contains information generated during the computation of \(R\).

LDFJAC is a positive integer input variable not less than \(M\) which specifies the leading dimension of the array EJAC.

FTOL is a nonnegative input variable. Termination occurs when both the actual and predicted relative reductions in the sum of squares are at most FTOL. Therefore, FTOL measures the relative error desired in the sum of squares. Section 4 contains more details about FTOL.

XTOL is a nonnegative input variable. Termination occurs when the relative error between two consecutive iterates is at most XTOL. Therefore, XTOL measures the relative error desired in the approximate solution. Section 4 contains more details about XTOL.

GTOL is a nonnegative input variable. Termination occurs when the cosine of the angle between FVEC and any column of the Jacobian is at most GTOL in absolute value. Therefore, GTOL measures the orthogonality desired between the function vector and the columns of the Jacobian. Section 4 contains more details about GTOL.

MAXFEV is a positive integer input variable. Termination occurs when the number of calls to \(E C N\) with IELAG \(=1\) has reached MAXFEV .

DIAG is an array of length \(N\). If MODE \(=1\) (see below), DIAG is internally set. If MODE \(=2\), DIAG must contain positive entries that serve as multiplicative scale factors for the variables.

MODE is an integer input variable. If MODE \(=1\), the variables will be scaled internally. If MODE \(=2\), the scaling is specified by the input DIAG. Other values of MODE are equivalent to MODE \(=1\).

FACTOR is a positive input variable used in determining the initial step bound. This bound is set to the product of FACTOR and the Euclidean norm of DIAG*X if nonzero, or else to FACTOR itself. In most cases \(F A C T O R\) should lie in the interval (.1,100.). 100. is a generally recommended value.

NPRINT is an integer input variable that enables controlled printing of iterates if it is positive. In this case, FCN is called with IELAG \(=0\) at the beginning of the first iteration and every NPRINT iterations thereafter and immediately prior to return, with \(X\), FVEC, and FJAC available for printing. FVEC and FJAC should not be altered. If NPRINT is not positive, no special calls of \(F C N\) with IFLAG \(=0\) are made.

INFO is an integer output variable. If the user has terminated execution, INFO is set to the (negative) value of IFLAG. See description of \(F C N\). Otherwise, INEO is set as follows.

INEO \(=0\) Improper input parameters.
\(I N F O=1\) Both actual and predicted relative reductions in the sum of squares are at most FTOL.

INFO = 2 Relative error between two consecutive iterates is at most XTOL.

INFO \(=3\) Conditions for \(I N F O=1\) and INEO \(=2\) both hold.
\(I N F O=4\) The cosine of the angle between FVEC and any column of the Jacobian is at most GTOL in absolute value.

INEO \(=5\) Number of calls to FCN with IFLAG \(=1\) has reached MAXFEV.

INFO \(=6\) FTOL is too small. No further reduction in the sum of squares is possible.

INFO \(=7\) XTOL is too small. No further improvement in the approximate solution \(X\) is possible.

INFO \(=8\) GTOL is too small. FVEC is orthogonal to the columns of the Jacobian to machine precision.

Sections 4 and 5 contain more details about INFO.

NFEV is an integer output variable set to the number of calls to FCN with IFLAG \(=1\).

NJEV is an integer output variable set to the number of calls to FCN with IFLAG \(=2\).

IPVT is an integer output array of length \(N\). IPVT defines a permutation matrix \(P\) such that JAC*P \(=Q * R\), where JAC is the final calculated Jacobian, \(Q\) is orthogonal (not stored), and \(R\) is upper triangular with diagonal elements of nonincreasing magnitude. Column \(j\) of \(P\) is column IPVT(j) of the identity matrix.

QTF is an output array of length N which contains the first N elements of the vector ( \(Q\) transpose)*FVEC.

WA1, WA2, and WA3 are work arrays of length N.
WA4 is a work array of length M.
4. Successful completion.

The accuracy of LMDER is controlled by the convergence parameters FTOL, XTOL, and GTOL. These parameters are used in tests which make three types of comparisons between the approximation \(X\) and a solution XSOL. LMDER terminates when any of the tests is satisfied. If any of the convergence parameters is less than the machine precision (as defined by the MINPACK function DPMPAR(1)), then LMDER only attempts to satisfy the test defined by the machine precision. Further progress is not usually possible.

The tests assume that the functions and the Jacobian are coded consistently, and that the functions are reasonably well behaved. If these conditions are not satisfied, then LMDER may incorrectly indicate convergence. The coding of the Jacobian can be checked by the MINPACK subroutine CHKDER. If the Jacobian is coded correctly, then the validity of the answer can be checked, for example, by rerunning LMDER with tighter tolerances.

First convergence test. If ENORM(Z) denotes the Euclidean norm of a vector \(Z\), then this test attempts to guarantee that

ENORM(FVEC) .LE. (1+FTOL)*ENORM(FVECS),
where FVECS denotes the functions evaluated at XSOL. If this condition is satisfied with FTOL \(=10 * *(-K)\), then the final residual norm ENORM(FVEC) has \(K\) significant decimal digits and INFO is set to 1 (or to 3 if the second test is also satisfied). Unless high precision solutions are required, the recommended value for \(F T O L\) is the square root of the machine precision.

Second convergence test. If \(D\) is the diagonal matrix whose entries are defined by the array DIAG, then this test attempts to guarantee that

> ENORM(D*(X-XSOL)) .LE. XTOL*ENORM(D*XSOL).

If this condition is satisfied with XTOL \(=10 * *(-K)\), then the larger components of \(\mathrm{D} * \mathrm{X}\) have K significant decimal digits and INFO is set to 2 (or to 3 if the first test is also satisfied). There is a danger that the smaller components of \(D * X\) may have large relative errors, but if MODE \(=1\), then the accuracy of the components of \(X\) is usually related to their sensitivity. Unless high precision solutions are required, the recommended value for XTOL is the square root of the machine precision.

Third convergence test. This test is satisfied when the cosine of the angle between FVEC and any column of the Jacobian at \(X\) is at most GTOL in absolute value. There is no clear relationship between this test and the accuracy of LMDER, and furthermore, the test is equally well satisfied at other critical points, namely maximizers and saddle points. Therefore, termination caused by this test (INFO \(=4\) ) should be examined carefully. The recommended value for GTOL is zero.
5. Unsuccessful completion.

Unsuccessful termination of LMDER can be due to improper input parameters, arithmetic interrupts, or an excessive number of function evaluations.

Improper input parameters. INFO is set to 0 if \(N\).LE. 0 , or M .LT. N, or LDFJAC .LT. M, or FTOL .LT. O.DO, or XTOL .LT. O.DO, or GTOL .LT. O.DO, or MAXEEV .LE. O, or FACTOR .LE. O.DO.

Arithmetic interrupts. If these interrupts occur in the ECN subroutine during an early stage of the computation, they may be caused by an unacceptable choice of \(X\) by LMDER. In this case, it may be possible to remedy the situation by rerunning LMDER with a smaller value of FACTOR.

Excessive number of function evaluations. A reasonable value for MAXFEV is 100* \((N+1)\). If the number of calls to FCN with IFLAG \(=1\) reaches MAXFEV, then this indicates that the routine is converging very slowly as measured by the progress of EVEC, and INFO is set to 5. In this case, it may be helpful to restart LMDER with MODE set to 1.
6. Characteristics of the algorithm.

LMDER is a modification of the Levenberg-Marquardt algorithm.

Two of its main characteristics involve the proper use of implicitly scaled variables (if MODE \(=\) J.) and an optimal choice for the correction. The use of implicitly scaled variables achieves scale invariance of LMDER and limits the size of the correction in any direction where the functions are changing rapidly. The optimal choice of the correction guarantees (under reasonable conditions) global convergence from starting points far from the solution and a fast rate of convergence for problems with small residuals.

Timing. The time required by LMDER to solve a given problem depends on \(M\) and \(N\), the behavior of the functions, the accuracy requested, and the starting point. The number of arithmetic operations needed by LMDER is about \(N * * 3\) to process each evaluation of the functions (call to FCN with IELAG = 1) and \(M^{*}\left(N^{* *}\right)\) to process each evaluation of the Jacobian (call to FCN with IFLAG \(=2\) ). Unless \(F C N\) can be evaluated quickly, the timing of LMDER will be strongly influenced by the time spent in ECN .

Storage. LMDER requires \(\mathrm{M} * \mathrm{~N}+2 * \mathrm{M}+6 * \mathrm{~N}\) double precision storage locations and N integer storage locations, in addition to the storage required by the program. There are no internally declared storage arrays.
7. Subprograms required.

USER-supplied ...... FCN
MINPACK-supplied ... DPMPAR,ENORM, LMPAR, QRFAC, QRSOLV
FORTRAN-supplied ... DABS,DMAXI,DMIN1,DSQRT,MOD
8. References.

Jorge J. More, The Levenberg-Marquardt Algorithm, Implementation and Theory. Numerical Analysis, G. A. Watson, editor. Lecture Notes in Mathematics 630, Springer-Verlag, 1977.
9. Example.

The problem is to determine the values of \(x(1), x(2)\), and \(x(3)\) which provide the best fit (in the least squares sense) of
\[
x(1)+u(i) /(v(i) * x(2)+w(i) * x(3)), \quad i=1,15
\]
to the data
\[
\begin{aligned}
y= & (0.14,0.18,0.22,0.25,0.29,0.32,0.35,0.39, \\
& 0.37,0.58,0.73,0.96,1.34,2.10,4.39),
\end{aligned}
\]
where \(u(i)=i, v(i)=16-i\) ，and \(w(i)=\min (u(i), v(i))\) ．The i－th component of FVEC is thus defined by
\[
y(i)-(x(1)+u(i) /(v(i) * x(2)+w(i) * x(3))) .
\]

\section*{DRIVER FOR LMDER EXAMPLE．} DOUBLE PRECISION VERSION

INTEGER J，M，N，LDEJAC，MAXFEV，MODE，NPRINT，INEO，NFEV，NJEV，NWRITE INTEGER IPVT（3）
DOUBLE PRECISION ETOL，XTOL，GTOL，FACTOR，ENORM DOUBLE PRECISION X（3）， \(\operatorname{FVEC}(15), \operatorname{FJAC}(15,3), \operatorname{DIAG}(3), \operatorname{QTF}(3)\) ， ＊ WA1（3），WA2（3），WA3（3），WA4（15）
DOUBLE PRECISION ENORM，DPMPAR EXTERNAL FCN

LOGICAL OUTPUT UNIT IS ASSUMED TO BE NUMBER 6.
DATA NWRITE／6／
C
\[
M=15
\]
\[
\mathrm{N}=3
\]

THE FOLLOWING STARTING VALUES PROVIDE A ROUGH EIT．
\[
\begin{aligned}
& X(1)=1 . D 0 \\
& X(2)=1 . D 0 \\
& X(3)=1 . D 0
\end{aligned}
\]
```

 FTOL = DSQRT(DPMPAR(1))
 XTOL = DSQRT(DPMPAR(1))
 GTOL = O.DO
    ```
C
        MAXEEV \(=400\)
        MODE \(=1\)
        FACTOR \(=1 . \mathrm{D} 2\)
        NPRINT \(=0\)
C
    CALL LMDER(FCN,M,N,X,FVEC,FJAC,LDFJAC, FTOL,XTOL, GTOL,
    *
    * IPVT,QTE,WA1,WA2,WA3,WA4)
    FNORM = ENORM(M, FVEC)
    WRITE (NWRITE,1000) FNORM,NFEV,NJEV, INEO, (X(J), J=1,N)
    STOP
1000 FORMAT (5X,31H FINAL L2 NORM OF THE RESIDUALS,D15.7 //
    *
    *

\section*{INTEGER I}

DOUBLE PRECISION TMP1,TMP2,TMP3,TMP4
DOUBLE PRECISION Y(15)
DATA \(Y(1), Y(2), Y(3), Y(4), Y(5), Y(6), Y(7), Y(8)\),
* \(Y(9), Y(10), Y(11), Y(12), Y(13), Y(14), Y(15)\)
* /1.4D-1,1.3D-1,2.2D-1,2.5D-1,2.9D-1,3.2D-1,3.5D-1,3.9D-1,
* 3.7D-1,5.8D-1,7.3D-1,9.6D-1,1.34DO,2.1D0, 4.39DO/

IF (IFLAG .NE. O) GO TO 5
INSERT PRINT STATEMENTS HERE WHEN NPRINT IS POSITIVE.
RETURN
5 CONTINUE
IF (IFLAG .EQ. 2) GO TO 20
DO \(10 \mathrm{I}=1,15\)
TMP1 \(=\mathrm{I}\)
TMP2 \(=16-\mathrm{I}\)
TMP3 = TMP1
IF (I .GT. 8) TMP3 = TMP2
\(\operatorname{EVEC}(\mathrm{I})=\mathrm{Y}(\mathrm{I})-(\mathrm{X}(1)+\mathrm{TMP1} /(\mathrm{X}(2) * \mathrm{TMP} 2+\mathrm{X}(3) * T M P 3))\)
10 CONTINUE
GO TO 40
20 CONTINUE
DO 30 I \(=1,15\)
TMP1 \(=1\)
TMP2 \(=16-\mathrm{I}\)
TMP3 \(=\) TMP1
IF (I .GT. 8) TMP3 = TMP2
TMP4 \(=(\mathrm{X}(2) * T M P 2+\mathrm{X}(3) * T M P 3) * * 2\)
\(\operatorname{FJAC}(I, 1)=-1 . D 0\)
FJAC(I,2) \(=\) TMP1*TMP2/TMP4
\(\operatorname{FJAC}(\mathrm{I}, 3)=\mathrm{TMP} 1 * T M P 3 / T M P 4\)
30 CONTINUE
40 CONTINUE
RETURN
LAST CARD OF DRIVER FOR LMDER EXAMPLE.
END
SUBROUTINE FCN(M,N,X,FVEC,FJAC,LDFJAC,IFLAG)
INTEGER M,N,LDFJAC, IFLAG
DOUBLE PRECISION X(N),FVEC(M),FJAC(LDEJAC,N)
SUBROUTINE FCN FOR LMDER EXAMPLE.

LAST CARD OF SUBROUTINE FCN.
```

```
    * 5X,31H NUMBER OF FUNCTION EVALUATIONS,I1O //
```

```
    * 5X,31H NUMBER OF FUNCTION EVALUATIONS,I1O //
    * 5X,31H NUMBER OF JACOBIAN EVALUATIONS,I10 //
    * 5X,31H NUMBER OF JACOBIAN EVALUATIONS,I10 //
        5X,15H EXIT PARAMETER,16X,IlO //
        5X,15H EXIT PARAMETER,16X,IlO //
5X,27H FINAL APPROXIMATE SOLUTION // 5X,3D15.7)
```

```
5X,27H FINAL APPROXIMATE SOLUTION // 5X,3D15.7)
```

```
```

END

```

Results obtained with different compilers or machines may be slightly different.

FINAL L2 NORM OF THE RESIDUALS 0.9063596D-01
NUMBER OE EUNCTION EVALUATIONS 6
NUMBER OF JACOBIAN EVALUATIONS 5
EXIT PARAMETER
1
FINAL APPROXIMATE SOLUTION
\(0.8241058 \mathrm{D}-01\)
\(0.1133037 \mathrm{D}+01\)
\(0.2343695 \mathrm{D}+01\)

Documentation for MINPACK subroutine LMSTR1
Double precision version
Argonne National Laboratory
Burton S. Garbow, Kenneth E. Hillstrom, Jorge J. More
March 1980
1. Purpose.

The purpose of LMSTR1 is to minimize the sum of the squares of \(M\) nonlinear functions in \(N\) variables by a modification of the Levenberg-Marquardt algorithm which uses minimal storage. This is done by using the more general least-squares solver LMSTR. The user must provide a subroutine which calculates the functions and the rows of the Jacobian.
2. Subroutine and type statements.

SUBROUTINE LMSTR1(FCN,M,N,X,FVEC,FJAC,LDEJAC,TOL,
*
```

INFO, IPVT,WA, LWA)

```

INTEGER M,N,LDEJAC, INFO, LWA
INTEGER IPVT(N)
DOUBLE PRECISION TOL
DOUBLE PRECISION X(N),FVEC(M),FJAC(LDFJAC,N),WA(LWA)
EXTERNAL ECN

\section*{3. Parameters.}

Parameters designated as input parameters must be specified on entry to LMSTR1 and are not changed on exit, while parameters designated as output parameters need not be specified on entry and are set to appropriate values on exit from LMSTRI.

FCN is the name of the user-supplied subroutine which calculates
the functions and the rows of the Jacobian. FCN must be declared in an EXTERNAL statement in the user calling program, and should be written as follows.

SUBROUTINE FCN(M,N,X,FVEC,FJROW, IFLAG)
INTEGER M, N, IFLAG
DOUBLE PRECISION X(N),FVEC(M),FJROW(N)
----------
IF IFLAG \(=1\) CALCULATE THE FUNCTIONS AT X AND
RETURN THIS VECTOR IN FVEC.
IF IFLAG \(=\) I CALCULATE THE (I-1)-ST ROW OF THE
JACOBIAN AT X AND RETURN THIS VECTOR IN FJROW.
----------
RETURN

END
The value of IFLAG should not be changed by FCN unless the user wants to terminate execution of LMSTR1. In this case set IFLAG to a negative integer.
\(M\) is a positive integer input variable set to the number of functions.

N is a positive integer input variable set to the number of variables. \(N\) must not exceed M.
\(X\) is an array of length \(N\). On input \(X\) must contain an initial estimate of the solution vector. On output \(X\) contains the final estimate of the solution vector.

FVEC is an output array of length \(M\) which contains the functions evaluated at the output X.

FJAC is an output \(N\) by \(N\) array. The upper triangle of FJAC contains an upper triangular matrix \(R\) such that
\[
P^{T} *\left(J A C^{T} * J A C\right) * P=R^{T} * R,
\]
where \(P\) is a permutation matrix and JAC is the final calculated Jacobian. Column \(j\) of \(P\) is column IPVT(j) (see below) of the identity matrix. The lower triangular part of EJAC contains information generated during the computation of \(R\).

LDFJAC is a positive integer input variable not less than \(N\) which specifies the leading dimension of the array FJAC.

TOL is a nonnegative input variable. Termination occurs when the algorithm estimates either that the relative error in the sum of squares is at most \(T O L\) or that the relative error between \(X\) and the solution is at most TOL. Section 4 contains more details about TOL.

INFO is an integer output variable. If the user has terminated execution, INFO is set to the (negative) value of IFLAG. See description of FCN. Otherwise, INFO is set as follows.

INFO \(=0\) Improper input parameters.
INFO \(=1\) Algorithm estimates that the relative error in the sum of squares is at most TOL.

INFO \(=2\) Algorithm estimates that the relative error between \(X\) and the solution is at most TOL.

INFO \(=3\) Conditions for INFO \(=1\) and INFO \(=2\) both hold.
INEO \(=4\) FVEC is orthogonal to the columns of the Jacobian to
machine precision.
INFO \(=5\) Number of calls to FCN with IFLAG \(=1\) has reached 100* (N+1).
\(I N F O=\varepsilon\) TOL is too small. No further reduction in the sum of squares is possible.

INFO \(=7\) TOL is too small. No further improvement in the approximate solution \(X\) is possible.

Sections 4 and 5 contain more details about INFO.
IPVT is an integer output array of length \(N\). IPVT defines a permutation matrix \(P\) such that \(J A C * P=Q * R\), where JAC is the final calculated Jacobian, \(Q\) is orthogonal (not stored), and \(R\) is upper triangular. Column \(j\) of \(P\) is column IPVT(j) of the identity matrix.

WA is a work array of length LWA.
LWA is a positive integer input variable not less than \(5 * N+M\).
4. Successful completion.

The accuracy of LMSTR1 is controlled by the convergence parameter TOL. This parameter is used in tests which make three types of comparisons between the approximation \(X\) and a solution XSOL. LMSTRI terminates when any of the tests is satisfied. If TOL is less than the machine precision (as defined by the MINPACK function DPMPAR(l)), then LMSTRI only attempts to satisfy the test defined by the machine precision. Further progress is not usually possible. Unless high precision solutions are required, the recommended value for \(T O L\) is the square root of the machine precision.

The tests assume that the functions and the Jacobian are coded consistently, and that the functions are reasonably well behaved. If these conditions are not satisfied, then LMSTRI may incorrectly indicate convergence. The coding of the Jacobian can be checked by the MINPACK subroutine CHKDER. If the Jacobian is coded correctly, then the validity of the answer can be checked, for example, by rerunning LMSTR1 with a tighter tolerance.

First convergence test. If ENORM(Z) denotes the Euclidean norm of a vector \(Z\), then this test attempts to guarantee that

ENORM(FVEC) .LE. (1+TOL)*ENORM(FVECS),
where FVECS denotes the functions evaluated at XSOL. If this condition is satisfied with TOL \(=10 * *(-K)\), then the final residual norm ENORM(FVEC) has \(K\) significant decimal digits and

INFO is set to 1 (or to 3 if the second test is also satisfied).

Second convergence test. If D is a diagonal matrix (implicitly generated by LMSTR1) whose entries contain scale factors for the variabies, then this test attempts to guarantee that
ENORM(D*(X-XSOL)) .LE. TOL*ENORM(D*XSOL).

If this condition is satisfied with TOL \(=10 * *(-K)\), then the larger components of \(D * X\) have \(K\) significant decimal digits and INEO is set to 2 (or to 3 if the first test is also satisfied). There is a danger that the smaller components of \(D * X\) may have large relative errors, but the choice of \(D\) is such that the accuracy of the components of \(X\) is usually related to their sensitivity.

Third convergence test. This test is satisfied when FVEC is orthogonal to the columns of the Jacobian to machine precision. There is no clear relationship between this test and the accuracy of LMSTR1, and furthermore, the test is equally well satisfied at other critical points, namely maximizers and saddle points. Therefore, termination caused by this test (INFO = 4) should be examined carefully.
5. Unsuccessful completion.

Unsuccessful termination of LMSTR1 can be due to improper input parameters, arithmetic interrupts, or an excessive number of function evaluations.

Improper input parameters. INFO is set to 0 if \(N\).LE. 0 , or M.LT. N, or LDFJAC .LT. N, or TOL .LT. O.DO, or LWA .LT. \(5 * N+M\).

Arithmetic interrupts. If these interrupts occur in the FCN subroutine during an early stage of the computation, they may be caused by an unacceptable choice of \(X\) by LMSTRI. In this case, it may be possible to remedy the situation by not evaluating the functions here, but instead setting the components of \(\operatorname{FVEC}\) to numbers that exceed those in the initial EVEC, thereby indirectly reducing the step length. The step length can be more directly controlled by using instead LMSTR, which includes in its callinc sequence the step-length- governing parameter EACTOR.

Excessive number of function evaluations. If the number of calls to FCN with IFLAG \(=1\) reaches 100* \((N+1)\), then this indicates that the routine is converging very slowly as measurea by the progress of EVEC, and INFO is set to 5 In this case, it may be helpriul to restart LMSTR1, thereby forcing it to disregard old (and possibly harmful) information.
6. Characteristics of the algorithm.

LMSTR1 is a modification of the Levenberg-Marquardt algorithm. Two of its main characteristics involve the proper use of implicitly scaled variables and an optimal choice for the correction. The use of implicitly scaled variables achieves scale invariance of LMSTRI and limits the size of the correction in any direction where the functions are changing rapidly. The optimal choice of the correction guarantees (under reasonable conditions) global convergence from starting points far from the solution and a fast rate of convergence for problems with small residuals.

Timing. The time required by LMSTR1 to solve a given problem depends on \(M\) and \(N\), the behavior of the functions, the accuracy requested, and the starting point. The number of arithmetic operations needed by LMSTR1 is about \(N * * 3\) to process each evaluation of the functions (call to FCN with IFLAG = 1) and 1.5*(N**2) to process each row of the Jacobian (call to FCN with IFLAG .GE. 2). Unless FCN can be evaluated quickly, the timing of LMSTRI will be strongly influenced by the time spent in FCN.

Storage. LMSTR1 requires \(N * * 2+2 * M+6 * N\) double precision storage locations and N integer storage locations, in addition to the storage required by the program. There are no internally declared storage arrays.
7. Subprograms required.
USER-supplied \(\ldots \ldots\) FCN
MINPACK-supplied \(\ldots\) DPMPAR, ENORM, LMSTR, LMPAR, QRFAC, QRSOI,V,
FORTRAN-supplied \(\ldots\)... DABS, DMAXI,DMIN1,DSQRT, MOD

\section*{8. References.}

Jorge J. More, The Levenberg-Marquardt Algorithm, Implementation and Theory. Numerical Analysis, G. A. Watson, editor. Lecture Notes in Mathematics 630, Springer-Verlag, 1977.
9. Example.

The problem is to determine the values of \(x(1), x(2)\), and \(x(3)\) which provide the best fit (in the least squares sense) of
\[
x(1)+u(i) /(v(i) * x(2)+w(i) * x(3)), \quad i=1,15
\]
to the data
\[
\begin{aligned}
\mathrm{y}= & (0.14,0.18,0.22,0.25,0.29,0.32,0.35,0.39, \\
& 0.37,0.58,0.73,0.96,1.34,2.10,4.39),
\end{aligned}
\]
where \(u(i)=i, v(i)=16-i\) ，and \(w(i)=\min (u(i), v(i))\) ．The i－th component of FVEC is thus defined by
\[
y(i)-(x(1)+u(i) /(v(i) * x(2)+w(i) * x(3))) .
\]

DRIVER FOR LMSTR1 EXAMPLE． DOUBLE PRECISION VERSION

INTEGER J，M，N，LDEJAC，INFO，LWA，NWRITE
INTEGER IPVT（3）
DOUBLE PRECISION TOL，FNORM
DOUBLE PRECISION X（3）， \(\operatorname{FVEC}(15), \operatorname{FJAC}(3,3)\) ，WA（30）
DOUBLE PRECISION ENORM，DPMPAR
EXTERNAL FCN
C
C

C
\(M=15\)
\(\mathrm{N}=3\)
C
C
THE FOLLOWING STARTING VALUES PROVIDE A ROUGH EIT．
\(X(1)=1 . D 0\)
\(X(2)=1 . D 0\)
\(X(3)=1 . D 0\)
C
LDEJAC \(=3\)
LWA \(=30\)
C
SET TOL TO THE SQUARE ROOT OF THE MACHINE PRECISION．
UNLESS HIGH PRECISION SOLUTIONS ARE REQUIRED，
THIS IS THE RECOMMENDED SETTING．
TOL \(=\) DSQRT（DPMPAR（1））
C
CALL LMSTR1（FCN，M，N，X，FVEC，FJAC，LDFJAC，TOL，
＊INEO，IPVT，WA，LWA）
FNORM \(=\) ENORM（M，FVEC）
WRITE（NWRITE，1000）ENORM，INFO，（X（J），J＝1，N）
STOP
1000 FORMAT（5X，31H FINAL L2 NORM OF THE RESIDUALS，D15．7／／
＊5X，15H EXIT PARAMETER，16X，I10／／
＊5X，27H EINAL APPROXIMATE SOLUTION／／5X，3D15．7）

C LAST CARD OF DRIVER FOR LMSTRI EXAMPLE.
C
END
SUBROUTINE FCN(M,N,X,FVEC,FJROW, IFLAG)
INTEGER M,N,IFLAG
DOUBLE PRECISION X(N),FVEC(M),FJROW(N)
SUBROUTINE FCN FOR LMSTR1 EXAMPLE.
INTEGER I
DOUBLE PRECISION TMP1,TMP2,TMP3,TMP4
DOUBLE PRECISION Y(15)
DATA \(Y(1), Y(2), Y(3), Y(4), Y(5), Y(6), Y(7), Y(8)\),
* \(Y(9), Y(10), Y(11), Y(12), Y(13), Y(14), Y(15)\)
* /1.4D-1,1.8D-1,2.2D-1,2.5D-1,2.9D-1,3.2D-1,3.5D-1,3.9D-1,
3.7D-1,5.8D-1, 7.3D-1,9.6D-1,1.34DO,2.1DO,4.39DO/

IF (IFLAG .GE. 2) GO TO 20
DO \(10 \mathrm{I}=1,15\)
TMP1 = I
TMP2 \(=16-\mathrm{I}\)
TMP3 \(=\) TMP1
IF (I .GT. 8) TMP3 = TMP2
FVEC(I) \(=Y(I)-(X(1)+T M P 1 /(X(2) * T M P 2+X(3) * T M P 3))\)
10 CONTINUE
GO TO 40
20 CONTINUE
\(I=I F L A G-1\)
TMP1 \(=\mathrm{I}\)
TMP2 \(=16-\mathrm{I}\)
TMP3 \(=\) TMP1
IF (I .GT. 8) TMP3 = TMP2
TMP4 \(=\left(\mathrm{X}(2) * \mathrm{~T}^{2}: \mathrm{PP}_{2}+\mathrm{X}(3) * \mathrm{TMP} 3\right) * * 2\)
FJROW(1) \(=-1\). DO
EJROW(2) \(=\) TMP1*TMP2/TMP4
EJROW(3) \(=\) TMP1*TMP3/TMP4
30 CONTINUE
40 CONTINUE
RETURN
LAST CARD OF SUBROUTINE FCN.
END
Results obtained with different compilers or machines may be slightly different.

EINAL L2 NORM OF THE RESIDUALS 0.9063596D-01
EXIT PARAMETER
1

EINAL APPROXIMATE SOLUTION
\(0.8241058 \mathrm{D}-01\)
\(0.1133037 \mathrm{D}+01\)
\(0.2343695 \mathrm{D}+01\)

Documentation for MINPACK subroutine LMSTR
Double precision version
Argonne National Laboratory
Burton S. Garbow, Kenneth E. Hillstrom, Jorge J. More
March 1980
1. Purpose.

The purpose of LMSTR is to minimize the sum of the squares of \(M\) nonlinear functions in \(N\) variables by a modification of the Levenberg-Marquardt algorithm which uses minimal storage. The user must provide a subroutine which calculates the functions and the rows of the Jacobian.
2. Subroutine and type statements.

SUBROUTINE LMSTR(FCN, M,N, X, FVEC, FJAC, LDFJAC, FTOL, XTOL, GTOL,
MAXEEV, DIAG, MODE, FACTOR, NPRINT, INFO, NFEV, NJEV, IPV'T, QTF, WA1, WA2, WA3, WA4)
INTEGER M,N,LDFJAC,MAXFEV,MODE,NPRINT, INEO, NEEV, NJEV INTEGER IPVT(N)
DOUBLE PRECISION FTOL,XTOL,GTOL, FACTOR
DOUBLE PRECISION X(N), FVEC(M),FJAC(LDFJAC,N),DIAG(N),QTF(N), *

WA1(N),WA2(N),WA3(N),WA4(M)
3. Parameters.

Parameters designated as input parameters must be specified on entry to LMSTR and are not changed on exit, while parameters designated as output parameters need not be specified on entry and are set to appropriate values on exit from LMSTR.

FCN is the name of the user-supplied subroutine which calculates the functions and the rows of the Jacobian. ECN must be declared in an EXTERNAL statement in the user calling program, and should be written as follows.

SUBROUTINE FCN(M,N,X,FVEC, FJROW, IFLAG)
INTEGER M,N, IELAG
DOUBLE PRECISION X(N),FVEC(M),FJROW(N)
------
IE IFLAG \(=1\) CALCULATE THE FUNCTIONS AT X AND RETURN THIS VECTOR IN EVEC.
IF IFLAG \(=\) I CALCULATE THE (I-1)-ST ROW OF THE JACOBIAN AT X AND RETURN THIS VECTOR IN EJROW.

RETURN

END
The value of IFLAG should not be changed by FCN unless the user wants to terminate execution of LMSTR. In this case set IFLAG to a negative integer.
\(M\) is a positive integer input variable set to the numiver of functions.

N is a positive integer input variable set to the number of variables. \(N\) must not exceed M.
\(X\) is an array of length \(N\). On input \(X\) must contain an initial estimate of the solution vector. On output \(X\) contains the final estimate of the solution vector.

FVEC is an output array of length \(M\) which contains the functions evaluated at the output \(X\).

FJAC is an output \(N\) by \(N\) array. The upper triangle of FJAC contains an upper triangular matrix \(R\) such that
\[
P^{T} *\left(J A C C^{T} * J A C\right) * P=R^{T} * R,
\]
where \(P\) is a permutation matrix and JAC is the final calculated Jacobian. Column \(j\) of \(P\) is column IPVT(j) (see below) of the identity matrix. The lower triangular part of FJAC contains information generated during the computation of \(R\).

LDEJAC is a positive integer input variable not less than \(N\) which specifies the leading dimension of the array EJAC.

FTOL is a nonnegative input variable. Termination occurs when both the actual and predicted relative reductions in the sum of squares are at most FTOL. Therefore, FTOL measures the relative error desired in the sum of squares. Section 4 contains more details about FTOL.

XTOL is a nonnegative input variable. Terinination occurs when the relative error between two consecutive iterates is at most XTOL. Therefore, XTOL measures the relative error desired in the approximate solution. Section 4 contains more details about XTOL.

GTOL is a nonnegative input variable. Termination occurs when the cosine of the angle between FVEC and any column of the Jacobian is at most GTOL in absolute value. Therefore, GTOL measures the orthogonality desired between the function vector and the columns of the Jacobian. Section 4 contains more details about GTOL.

MAXFEV is a positive integer input variable. Termination occurs when the number of calls to ECN with IELAG \(=1\) has reached

MAXEEV.
DIAG is an array of length \(N\). If MODE \(=1\) (see below), DIAG is internally set. If MODE \(=2\), DIAG must contain positive entries that serve as multiplicative scale factors for the variables.

MODE is an integer input variable. If MODE \(=1\), the variables will be scaled internally. If MODE \(=2\), the scaling is specified by the input DIAG. Other values of MODE are equivalent to \(\mathrm{MODE}=1\).

FACTOR is a positive input variable used in determining the initial step bound. This bound is set to the product of FACTOR and the Euclidean norm of DIAG*X if nonzero, or else to EACTOR itself. In most cases \(F A C T O R\) should lie in the interval (.1,100.). 100. is a generally recommended value.

NPRINT is an integer input variable that enables controlled printing of iterates if it is positive. In this case, FCN is called with IFLAG \(=0\) at the beginning of the first iteration and every NPRINT iterations thereafter and immediately prior to return, with \(X\) and FVEC available for printing. If NPRINT is not positive, no special calls of FCN with IFLAG \(=0\) are made.

INFO is an integer output variable. If the user has terminated execution, INFO is set to the (negative) value of IFLAG. See description of FCN. Otherwise, INEO is set as follows.

INFO = O Improper input parameters.
INFO = 1 Both actual and predicted relative reductions in the sum of squares are at most FTOL.

INFO = 2 Relative error between two consecutive iterates is at most XTOL.

INFO \(=3\) Conditions for INEO \(=1\) and INEO \(=2\) both hold.
INEO \(=4\) The cosine of the angle between FVEC and any column of the Jacobian is at most GTOL in absolute value.

INFO \(=5\) Number of calls to FCN with IFLAG \(=1\) has reached MAXFEV.

INFO \(=6\) FTOL is too small. No further reduction in the sum of squares is possible.

INEO \(=7\) XTOL is too small. No further improvement in the approximate solution \(X\) is possible.

INFO \(=8\) GTOL is too small. FVEC is orthogonal to the columns of the Jacobian to machine precision.

Sections 4 and 5 contain more details about INFO.
NEEV is an integer output variable set to the number of calls to FCN with IFLAG \(=1\).

NJEV is an integer output variable set to the number of calls to FCN with IFLAG \(=2\).

IPVT is an integer output array of length \(N\). IPVT defines a permutation matrix \(P\) such that JAC*P \(=Q * R\), where JAC is the final calculated Jacobian, \(Q\) is orthogonal (not stored), and \(R\) is upper triangular. Column \(j\) of \(P\) is column IPVT(j) of the identity matrix.

QTE is an output array of length N which contains the first N elements of the vector (Q transpose)*FVEC.

WA1, WA2, and WA3 are work arrays of length N.
WA4 is a work array of length \(M\).
4. Successful completion.

The accuracy of LMSTR is controlled by the convergence parameters FTOL, XTOL, and GTOL. These parameters are used in tests which make three types of comparisons between the approximation \(X\) and a solution XSOL. LMSTR terminates when any of the tests is satisfied. If any of the convergence parameters is less than the machine precision (as defined by the MINPACK function DPMPAR(1)), then LMSTR only attempts to satisfy the test defined by the machine precision. Further progress is not usually possible.

The tests assume that the functions and the Jacobian are coded consistently, and that the functions are reasonably well behaved. If these conditions are not satisfied, then LMSTR may incorrectly indicate convergence. The coding of the Jacobian can be checked by the MINPACK subroutine CHKDER. If the Jacobian is coded correctly, then the validity of the answer can be checked, for example, by rerunning LMSTR with tighter tolerances.

First convergence test. If ENORM(Z) denotes the Euclidean norm of a vector \(Z\), then this test attempts to guarantee that

ENORM(FVEC) .LE. (1+ETOL)*ENORM(FVECS),
where FVECS denotes the functions evaluated at XSOL. If this condition is satisfied with FTOL = 10**(-K), then the final residual norm ENORM(EVEC) has \(K\) significant decimal digits and INFO is set to 1 (or to 3 if the second test is also satisfied). Unless high precision solutions are required, the recommended value for \(E T O L\) is the square root of the machine
precision.
Second convergence test. If \(D\) is the diagonal matrix whose entries are defined by the array DIAG, then this test attempts to guarantee that
ENORM(D*(X-XSOL)) . LE. XTOL*ENORM(D*XSOL).

If this condition is satisfied with XTOL \(=10 * *(-K)\), then the larger components of \(D * X\) have \(K\) significant decimal digits and INFO is set to 2 (or to 3 if the first test is also satisfied). There is a danger that the smaller components of \(D * X\) may have large relative errors, but if MODE \(=1\), then the accuracy of the components of \(X\) is usually related to their sensitivity. Unless high precision solutions are required, the recommended value for XTOL is the square root of the machine precision.

Third convergence test. This test is satisfied when the cosine of the angle between FVEC and any column of the Jacobian at \(X\) is at most GTOL in absolute value. There is no clear relationship between this test and the accuracy of LMSTR, and furthermore, the test is equally well satisfied at other critical points, namely maximizers and saddle points. Therefore, termination caused by this test (INFO \(=4\) ) should be examined carefully. The recommended value for GIOL is zero.
5. Unsuccessful completion.

Unsuccessful termination of LMSTR can be due to improper input parameters, arithmetic interrupts, or an excessive number of function evaluations.

Improper input parameters. INFO is set to 0 if \(N\).LE. 0 , or M . LT. N, or LDFJAC .LT. N, or ETOL .LT. O.DO, or XTOL .LT. O.DO, or GTOL .LT. O.DO, or MAXEEV .LE. 0 , or FACTOR .LE. O.DO.

Arithmetic interrupts. If these interrupts occur in the FCN subroutine during an early stage of the computation, they may be caused by an unacceptable choice of \(X\) by LMSTR. In this case, it may be possible to remedy the situation by rerunning LMSTR with a smaller value of FACTOR.

Excessive number of function evaluations. A reasonable value for MAXFEV is 100* \((\mathrm{N}+1)\). If the number of calls to FCN with IFLAG \(=1\) reaches MAXFEV, then this indicates that the routine is converging very slowly as measured by the progress of FVEC, and INEO is set to 5. In this case, it may be helpful to restart LMSTR with MODE set to 1.
6. Characteristics of the algorithm.

LMSTR is a modification of the Levenberg-Marquardt algorithm. Two of its main characteristics involve the proper use of implicitly scaled variables (if MODE \(=1\) ) and an optimal choice for the correction. The use of implicitly scaled variables achieves scale invariance of LMSTR and limits the size of the correction in any direction where the functions are changing rapidly. The optimal choice of the correction guarantees (under reasonable conditions) global convergence from starting points far from the solution and a fast rate of convergence for problems with small residuals.

Timing. The time required by LMSTR to solve a given problem depends on \(M\) and \(N\), the behavior of the functions, the accuracy requested, and the starting point. The number of arithmetic operations needed by LMSTR is about \(N * * 3\) to process each evaluation of the functions (call to FCN with IFLAG \(=1\) ) and 1.5*(N**2) to process each row of the Jacobian (call to FCN with IFLAG . GE. 2). Unless FCN can be evaluated quickly, the timing of LMSTR will be strongly influenced by the time spent in ECN .

Storage. LMSTR requires \(\mathrm{N} * * 2+2 * M+6 * N\) double precision storage locations and N integer storage locations, in addition to the storage required by the program. There are no internally declared storage arrays.
7. Subprograms required.

USER-supplied ...... ECN
MINPACK-supplied ... DPMPAR,ENORM, LMPAR, QREAC, QRSOLV, RWUPDT
FORTRAN-supplied ... DABS,DMAX1,DMIN1,DSQRT,MOD

\section*{8. References.}

Jorge J. More, The Levenberg-Marquardt Algorithm, Implementation and Theory. Numerical Analysis, G. A. Watson, editor. Lecture Notes in Mathematics 630, Springer-Verlag, 1977.
9. Example.

The problem is to determine the values of \(x(1), x(2)\), and \(x(3)\) which provide the best fit (in the least squares sense) of
\[
x(1)+u(i) /(v(i) * x(2)+w(i) * x(3)), \quad i=1,15
\]
to the data
\[
\begin{aligned}
y= & (0.14,0.18,0.22,0.25,0.29,0.32,0.35,0.39, \\
& 0.37,0.58,0.73,0.96,1.34,2.10,4.39),
\end{aligned}
\]
where \(u(i)=i, v(i)=16-i\), and \(w(i)=\min (u(i), v(i))\). The i-th component of FVEC is thus defined hy
\[
y(i)-(x(1)+u(i) /(v(i) * x(2)+w: \quad 3))) .
\]

C
C

DRIVER FOR LMSTR EXAMPLE. DOUBLE PRECISION VERSION

INTEGER J,M,N,LDFJAC,MAXFEV,MODE,NPRINT, INFO, NFEV,NJEV, NWRITE INTEGER IPVT(3)
DOUBLE PRECISION FTOL, XTOL, GTOL, FACTOR, FNORM
DOUBLE PRECISION X(3), \(\operatorname{FVEC}(15), \operatorname{FJAC}(3,3), \operatorname{DIAG}(3), Q T F(3)\),
* WA1 (3), WA2 (3), WA3 (3), WA4 (15)
DOUBLE PRECISION ENORM,DPMPAR
EXTERNAL FCN
LOGICAL OUTPUT UNIT IS ASSUMED TO BE NUMBER 6.
DATA NWRITE /6/
\(M=15\)
\(\mathrm{N}=3\)
THE FOLLOWING STARTING VALUES PROVIDE A ROUGH FIT.
\(X(1)=1 . D 0\)
\(X(2)=1 . D 0\)
\(X(3)=1 . D 0\)
LDFJAC \(=3\)
SET FTOL AND XTOL TO THE SQUARE ROOT OE THE MACHINE PRECISION AND GTOL TO ZERO. UNLESS HIGH PRECISION SOLUTIONS ARE REQUIRED, THESE ARE THE RECOMMENDED SETTINGS.
```

 FTOL = DSQRT(DPMPAR(1))
    ```
    XTOL = DSQRT(DPMPAR(1))
    GTOL \(=0 . D O\)
MAXFEV \(=400\)
MODE \(=1\)
FACTOR \(=1\). D2
NPRINT \(=0\)

CALL LMSTR(ECN,M,N,X,FVEC, FJAC, LDFJAC, FTOL,XTOL, GTOL, MAXEEV, DIAG, MODE, FACTOR, NPRINT, INFO, NFEV, NJEV,
IPVT, QTE, WA1, WA2, WA3 ,WA4)
FNORM \(=\operatorname{ENORM}(M, \operatorname{EVEC})\)
WRITE (NWRITE,1000) FNORM,NFEV,NJEV, INEO, (X(J), J=1,N) STOP
1000 FORMAT (5X,31H FINAL L2 NORM OF THE RESIDUALS, D15.7 //
* 5X,31H NUMBER OF FUNCTION EVALUATIONS, I10 //
* 5X,31H NUMBER OF JACOBIAN EVALUATIONS,I10 //
* 5X,15H EXIT PARAMETER,16X,I10 //
* 5X,27H FINAL APPROXIMATE SOLUTION // 5X,3D15.7)
    RETURN

END

INTEGER I

RETURN
5 CONTINUE

TMP1 \(=\) I

10 CONTINUE
GO TO 40
20 CONTINUE
\(I=\) IFLAG - 1
TMP1 \(=I\)

RETURN

LAST CARD OF DRIVER FOR LMSTR EXAMPLE.

SUBROUTINE FCN(M,N,X,FVEC, FJROW, IFLAG)
INTEGER M,N, IFLAG
DOUBLE PRECISION X(N),FVEC(M),FJROW(N)
SUBROUTINE FCN FOR LMSTR EXAMPLE.

DOUBLE PRECISION TMP1,TMP2,TMP3,TMP4
DOUBLE PRECISION Y(15)
DATA \(Y(1), Y(2), Y(3), Y(4), Y(5), Y(6), Y(7), Y(8)\),
* \(Y(9), Y(10), Y(11), Y(12), Y(13), Y(14), Y(15)\)
* \(/ 1.4 \mathrm{D}-1,1.8 \mathrm{D}-1,2.2 \mathrm{D}-1,2.5 \mathrm{D}-1,2.9 \mathrm{D}-1,3.2 \mathrm{D}-1,3.5 \mathrm{D}-1,3.9 \mathrm{D}-1\), 3.7D-1,5.8D-1,7.3D-1,9.6D-1,1.34DO,2.1DO,4.39DO/

IF (IFLAG .NE. O) GO TO 5
INSERT PRINT STATEMENTS HERE WHEN NPRINT IS POSITIVE.

IF (IFLAG .GE. 2) GO TO 20
DO 10 I \(=1,15\)
TMP2 \(=16\) - I
TMP3 = TMP1
IF (I .GT. 8) TMP3 = TMP2
\(\operatorname{FVEC}(\mathrm{I})=\mathrm{Y}(\mathrm{I})-(\mathrm{X}(1)+\mathrm{TMP} 1 /(X(2) * T M P 2+X(3) * T M P 3))\)

TMP2 \(=16\) - I
TMP3 \(=\) TMP1
IF (I .GT. 8) TMP3 = TMF2
TMP4 \(=(\mathrm{X}(2) * T M P 2+\mathrm{X}(3) * T M P 3) * * 2\)
FJROW(1) \(=-1\).DO
FJROW(2) \(=\) TMP1*TMP2/TMP4
EJROW(3) \(=\) TMP1*TMP3/TMP4

LAST CARD OF SUBROUTINE FCN.
END

Results obtained with different compilers or machines way be slightly different.

FINAL L2 NORM OF THE RESIDUALS \(0.9063596 \mathrm{D}-01\)
NUMBER OF FUNCTION EVALUATIONS 6
NUMBER OF JACOBIAN EVALJATIONS 5
EXIT PARAMETER 1
FINAL APPROXIMATE SOLUTION
\(0.8241058 \mathrm{D}-01\)
\(0.1133037 \mathrm{D}+01\)
\(0.2343695 \mathrm{D}+01\)

Documentation for MINPACK subroutine LMDIE1
Double precision version
Argonne National Laboratory
Burton S. Garbow, Kenneth E. Hillstrom, Jorge J. More
March 1980
1. Purpose.

The purpose of LMDIF1 is to minimize the sum of the squares of \(M\) nonlinear functions in \(N\) variables by a modification of the Levenberg-Marquardt algorithm. This is done by using the more general least-squares solver LMDIF. The user must provide a subroutine which calculates the functions. The Jacobian is then calculated by a forward-difference approximation.
2. Subroutine and type statements.

SUBROUTINE LMDIF1(FCN,M,N,X,FVEC,TOL,INFO,IWA,WA,LWA)
INTEGER M,N, INFO, LWA
INTEGER IWA(N)
DOUBLE PRECISION TOL
DOUBLE PRECISION X(N), FVEC(M),WA(LWA)
EXTERNAL FCN
3. Parameters.

Parameters designated as input parameters must be specified on entry to LMDIFl and are not changed on exit, while parameters designated as output parameters need not be specified on entry and are set to appropriate values on exit from LMDIF1.

FCN is the name of the user-supplied subroutine which calculates the functions. FCN must be declared in an EXTERNAL statement in the user calling program, and should be written as follows.

SUBROUTINE FCN(M,N,X, FVEC,IELAG)
INTEGER M,N, IFLAG
DOUBLE PRECISION X(N), EVEC(M)
CALCULATE THE FUNCTIONS AT X AND
RETURN THIS VECTOR IN FVEC.

\section*{RETURN}

END
The value of IFLAG should not be changed by ECN unless the user wants to terminate execution of LMDIE1. In this case set

IFLAG to a negative integer.
\(M\) is a positive integer input variable set to the number of functions.
\(N\) is a \(p^{-}\),tive integer input variable set to the number of variab. \(\pm 5\). \(N\) must not exceed \(M\).
\(X\) is an array of length \(N\). On input \(X\) must contain an initial estimate of the solution vector. On output \(X\) contains the final estimate of the solution vector.

EVEC is an output array of length \(M\) which contains the functions evaluated at the output \(X\).

TOL is a nonnegative input variable. Termination occurs when the algorithm estimates either that the relative error in the sum of squares is at most \(T O L\) or that the relative error between \(X\) and the solution is at most TOL. Section 4 contains more details about TOL.

INFO is an integer output variable. If the user has terminated execution, INFO is set to the (negative) value of IFLAG. See description of FCN . Otherwise, INEO is set as follows.

INFO \(=0\) Improper input parameters.
INFO = 1 Algorithm estimates that the relative error in the sum of squares is at most TOL.

INFO = 2 Algorithm estimates that the relative error between \(X\) and the solution is at most TOL.

INFO \(=3\) Conditions for INFO \(=1\) and INFO \(=2\) both hold.
INFO \(=4\) FVEC is orthogonal to the columns of the Jacobian to machine precision.

INFO \(=5\) Number of calls to FCN has reached or exceeded 200* ( \(\mathrm{N}+1\) ).

INFO \(=6\) TOL is too small. No further reduction in the sum of squares is possible.

INEO \(=7\) TOL is too small. No further improvement in the approximate solution \(X\) is possible.

Sections 4 and 5 contain more details about INEO.
IWA is an integer work array of length \(N\).
WA is a work array of length LWA.
LWA is a positive integer input variable not less than
```

M*N+5*N+M.

```
4. Successful completion.

The accuracy of LMDIF1 is controlled by the convergence parameter TOL. This parameter is used in tests which make three types of comparisons between the approximation \(X\) and a solution XSOL. LMDIE1 terminates when any of the tests is satisfied. If TOL is less than the machine precision (as defined by the MINPACK function DPMPAR(1)), then LMDIFl only attempts to satisfy the test defined by the machine precision. Further progress is not usually possible. Unless high precision solutions are required, the recommended value for \(T O L\) is the square root of the machine precision.

The tests assume that the functions are reasonably well behaved. If this condition is not satisfied, then LMDIFl may incorrectly indicate convergence. The validity of the answer can be checked, for example, by rerunning LMDIF1 with a tighter tolerance.

First convergence test. If ENORM(Z) denotes the Euclidean norm of a vector \(Z\), then this test attempts to guarantee that

ENORM(EVEC) . LE. (1+TOL)*ENORM(EVECS),
where FVECS denotes the functions evaluated at XSOL. If this condition is satisfied with TOL \(=10 * *(-K)\), then the final residual norm ENORM(EVEC) has K significant decimal digits and INEO is set to 1 (or to 3 if the second test is also satisfied).

Second convergence test. If \(D\) is a diagonal matrix (implicitly generated by LMDIFI) whose entries contain scale factors for the variables, then this test attempts to guarantee that
ENORM(D*(X-XSOL)) .LE. TOL•ENORM(D*XSOL).

If this condition is satisfied with TOL \(=10 * *(-K)\), then the larger components of \(D * X\) have \(K\) significant decimal digits and INEO is set to 2 (or to 3 if the first test is also satisfied). There is a danger that the smaller components of \(D * X\) may have large relative errors, but the choice of \(D\) is such that the accuracy of the components of \(X\) is usually related to their sensitivity.

Third convergence test. This test is satisfied when EVEC is orthogonal to the columns of the Jacobian to machine precision. There is no clear relationship between this test and the accuracy of LMDIE1, and furthermore, the test is equally well satisfied at other critical points, namely maximizers and saddle points. Also, errors in the functions (see below) may result in the test being satisfied at a point not close to the
minimum. Therefore, termination caused by this test (INFO \(=4\) ) should be examined carefully.
5. Unsuccessful completion.

Unsuccessful termination of LMDIF1 can be due to improper input parameters, arithmetic interrupts, an excessive number of function evaluations, or errors in the functions.

Improper input parameters. INFO is set to 0 if \(N\).LE. 0 , or M .LT. \(N\), or TOL .LT. O.DO, or LWA .LT. \(\mathrm{M} * \mathrm{~N}+5 * \mathrm{~N}+\mathrm{M}\).

Arithmetic interrupts. If these interrupts occur in the ECN subroutine during an early stage of the computation, they may be caused by an unacceptable choice of \(X\) by LMDIFI. In this case, it may be possible to remedy the situation by not evaluating the functions here, but instead setting the components of FVEC to numbers that exceed those in the initial FVEC, thereby indirectily reducing the step length. The step length can be more directly controlled by using instead LMDIF, which includes in its calling sequence the step-length-governing parameter FACTOR.

Excessive number of function evaluations. If the number of calls to FCN reaches 200*(N+1), then this indicates that the routine is converging very slowly as measured by the progress of FVEC, and INFO is set to 5. In this case, it may be helpful to restart LMDIF1, the: by forcing it to disregard old (and possibly harmful) infcsmation.

Errors in the functions. The choice of step length in the for-ward-difference approximation to the Jacobian assumes that the relative errors in the functions are of the order of the machine precision. If this is not the case, LMDIFl may fail (usually with INFO = 4). The user should then use LMDIE instead, or one of the programs which require the analytic Jacobian (LMDERI and LMDER).
6. Characteristics of the algorithm.

LMDIF1 is a modification of the Levenberg-Marquardt algorithm. Two of its main characteristics involve the proper use of impiicitly scaled variables and an optimal choice for the correction. The use of implicitly scaled variables achieves scale invariance of LMDIEI and limits the size of the correction in any direction where the functions are changing rapidly. The optimal choice of the correction guarantees (under reasonable conditions) global convergence from starting points far from the solution and fast rate of convergence for problems with small residuals.

Timing. The time required by LMDIE1 to solve a given problem
depends on \(M\) and \(N\) ，the behavior of the functions，the accu－ racy requested，and the starting point．The number of arith－ metic operations needed by LMDIF1 is about \(N * * 3\) to procesis each evaluation of the functions（one call to FCN）and M＊（N＊＊2）to process each approximation to the Jacobian（N calls to \(E C N\) ）．Unless \(F C N\) can be evaluated quickly，the tim－ ing of LMDIFl will be strongly influenced by the time spent in ECN．

Stor re．LMDIE1 requires \(M * N+2 * M+6 * N\) double precision sto－ \(r\) ：locations and \(N\) integer storage locations，in addition to the storage required by the program．There are no internally declared storage arrays．

7．Subprograms required．
USER－supplied ．．．．．．FCN
MINPACK－supplied ．．．DPMPAR，ENORM，EDJAC2，LMDIF，LMPAR， QREAC，QRSOLV

FORTRAN－supplied ．．．DABS，DMAX1，DMIN1，DSQRT，MOD

8．References．
Jorge J．More，The Levenberg－Marquardt Algorithm，Implementation and Theory．Numerical Analysis，G．A．Watson，editor． Lecture Notes in Mathematics 630，Springer－Verlag， 1977.

9．Example．
The problem is to determine the values \(r f x(1), x(2)\) ，and \(x(3)\) which provide the best fit（in the least squares sense）of
\[
x(1)+u(i) /(v(i) * x(2)+w(i) * x(3)), i=1,15
\]
to the data
\[
\begin{aligned}
y= & (0.14,0.18,0.22,0.25,0.29,0.32,0.35,0.39, \\
& 0.37,0.58,0.73,0.96,1.34,2.10,4.39),
\end{aligned}
\]
where \(u(i)=i, v(i)=16-i\) ，and \(w(i)=\min (u(i), v(i))\) ．The i－th component of EVEC is thus defined by
\[
y(i)-(x(1)+u(i) /(v(i) * x(2)+w(i) * x(3))) .
\]
    TOL \(=\operatorname{DSQRT}(\operatorname{DPMPAR}(1))\)

CALL LMI IE1 (FCN, M, N, X, FVEC, TCr, INFO, IWA, WA, LWA)
            ENORM = ENORM(M,EVEC)
            WRITE (NWRITE,1000) ENORM, INFO,(X(J),J=1,N)
            STOP
1000 FORMAT (5X,31H FINAL L2 NORM OF THE RESIDUALS,D15.7 //
    * 5X,15H EXIT PARAMETER,16X,I10 //
    * 5X,27H FINAL APPROXIMATE SOLUTION // 5X,3D15.7)

LAST CARD OE DRIVER FOR LMDIEI EXAMPLE.
END
SUBROUTINE ECN(M,N,X, FVEC, IELAG)
INTEGER M,N, IELAG
DOUBLE PRECISION X(N),EVEC(M)
SUBROUTINE FCN FOR LMDIEI EXAMPLE.
INTEGER I
DOUBLE PRECISION TMP1,TMP2,TMP3
DOUBLE PRECISION \(Y(15)\)
DATA \(Y(1), Y(2), Y(3), Y(4), Y(5), Y(6), Y(7), Y(8)\),
* \(Y(9), Y(10), Y(11), Y(12), Y(13), Y(14), Y(15)\)
* /1.4D-1,1.8D-1,2.2D-1,2.5D-1,2.9D-1,3.2D-1,3.5D-1,3.9D-1, 3.7D-1,5.8D-1,7.3D-1,9.6D-1,1.34DO,2.1DO,4.39DO/

DO 10 I \(=1,15\)
TMP1 = I TMP2 \(=16\) - I TMP3 \(=\) TMP1 IF (I .GT. 8) TMP3 = TMP2 \(\operatorname{FVEC}(I)=Y(I)-(X(1)+T M P 1 /(X(2) * T M P 2+X(3) * T M P 3))\) CONTINUE
RETURN
LAST CARD OF SUBROUTINE ECN.
END
Results obtained with different compilers or machines may be slightly different.

FINAL L2 NORM OF THE RESIDUALS 0.9063596D-01
EXIT PARAMETER
1
FINAL APPROXIMATE SOLUTION
\(0.8241057 \mathrm{D}-01 \quad 0.1133037 \mathrm{D}+01 \quad 0.2343695 \mathrm{D}+01\)

Double precision version
Argonne National Laboratory
Burton S. Garbow, Kenneth E. Hillstrom, Jorge J. More
March 1980
1. Purpose.

> The purpose of LMDIF is to minimize the sum of the squares of M nonlinear functions in N variables by a modification of the Levenberg-Marquardt algorithm. The user must provide a subroutine which calculates the functions. The Jacobian is then calculated by a forward-difference approximation.
2. Subroutine and type statements.
```

 SUBROUTINE LMDIF(FCN,M,N,X,FVEC,FTOL,XTOL,GTOL,MAXFEV,EPSFCN,
 *
* DIAG, MODE, EACTOR,NPRINT, INEO,NFEV, FJAC, LDFJAC,
IPVT,QTF,WA1,WA2,WA3,WA4)
INTEGER M,N,MAXFEV,MODE,NPRINT,INFO,NEEV,LDFJAC
INTEGER IPVT(N)
DOUBLE PRECISION ETOL,XTOL,GTOL,EPSFCN,FACTOR
DOUBLE PRECISION X(N),FVEC(M),DIAG(N),FJAC(LDFJAC,N),QTE(N),
* WA1(N),WA2(N),WA3(N),WA4(M)
EXTERNAL FCN

```
3. Parameters.

Parameters designated as input parameters must be specified on entry to LMDIF and are not changed on exit, while parameters designated as output parameters need not be specified on entry and are set to appropriate values on exit from LMDIF.

FCN is the name of the user-supplied subroutine whicin calculates the functions. FCN must be declared in an EXTERNAL statement in the user calling program, and should be written as follows.

SUBROUTINE ECN(M,N,X,FVEC,IELAG)
INTEGER M,N,IELAG
DOUBLE PRECISION X(N), FVEC(M)

CALCULATE THE FUNCTIONS AT X AND RETURN THIS VECTOR IN EVEC.

RETURN
END

The value of IFLAG should not be changed by FCN unless the user wants to terminate execution of LMDIF. In this case set IFLAG to a negative integer.
\(M\) is a positive integer input variable set to the number of functions.

N is a positive integer input variable set to the number of variables. \(N\) must not exceed M.
\(X\) is an array of length \(N\). On input \(X\) must contain an initial estimate of the solution vector. On output \(X\) contains the final estimate of the solution vector.

FVEC is an output array of length \(M\) which contains the functions evaluated at the output \(X\).

FTOL is a nonnegative input variable. Termination occurs when both the actual and predicted relative reductions in the sum of squares are at most FTOL. Therefore, FTOL measures the relative error desired in the sum of squares. Section 4 contains more details about FTOL.

XTOL is a nonnegative input variable. Termination occurs when the relative error between two consecutive iterates is at most XTOL. Therefore, XTOL measures the relative error desired in the approximate solution. Section 4 contains more details about XTOL.

GTOL is a nonnegative input variable. Termination occurs when the cosine of the angle between FVEC and any column of the Jacobian is at most GTOL in absolute value. Therefore, GTOL measures the orthogonality desired between the function vector and the columns of the Jacobian. Section 4 coniains more details about GTOL.

MAXEEV is a positive integer input variable. Termination occurs when the number of calls to FCN is at least MAXFEV by the end of an iteration.

EPSECN is an input variable used in determining a suitable step for the forward-difference approximation. This appioximation assumes that the relative errors in the functions are of the order of EPSECN. If EPSFCN is less than the machine precision, it is assumed that the relative errors in the functions are of the order of the machine precision.

DIAG is an array of length \(N\). If MODE \(=1\) (see below), DIAG is internally set. If MODE \(=2\), DIAG must contain positive entries that serve as multiplicative scale factors for the variables.

MODE is an integer input variable. If MODE \(=1\), the variables will be scaled internally. If MODE \(=2\), the scaling is
specified by the input DIAG. Other values of MODE are equivalent to MODE \(=1\).

FACTOR is a positive input variable used in determining the initial step bound. This bound is set to the product of FACTOR and the Euclidean norm of DIAG*X if nonzero, or else to FACTOR itself. In most cases FACTOR should lie in the interval (.1,100.). 100. is a generally recommended value.

NPRINT is an integer input variable that enables controlled printing of iterates if it is positive. In this case, FCN is called with IFLAG \(=0\) at the beginning of the first iteration and every NPRINT iterations thereafter and immediately prior to return, with \(X\) and FVEC available for printing. If NPRINT is not positive, no special calls of FCN with IFLAG \(=0\) are made.

INFO is an integer output variable. If the user has terminated execution, INFO is set to the (negative) value of IFLAG. See description of FCN. Otherwise, INFO is set as follows.

INFO \(=0\) Improper input parameters.
INFO = 1 Both actual and predicted relative reductions in the sum of squares are at most FTOL.

INFO \(=2\) Relative error between two consecutive iterates is at most XTOL.

INFO \(=3\) Conditions for \(I N E O=1\) and INFO \(=2\) both hold.
INFO \(=4\) The cosine of the angle between FVEC and any column of the Jacobian is at most GTOL in absolute value.

INFO \(=5\) Number of calls to FCN has reached or exceeded MAXFEV.

INFO \(=6\) FTOL is too small. No further reduction in the sum of squares is possible.

INFO \(=7\) XTOL is too small. No further improvement in the approximate solution \(X\) is possible.

INFO = 8 GTOL is too small. EVEC is orthogonal to the columns of the Jacobian to machine precision.

Sections 4 and 5 contain more details about INFO.
NFEV is an integer output variable set to the number of calls to FCN.

EJAC is an output \(M\) by \(N\) array. The upper \(N\) by \(N\) submatrix of EJAC contains an upper triangular matrix \(R\) with diagonal elements of nonincreasing magnitude such that
\[
P^{T} *\left(J A C^{T} * J A C\right) * P=R^{T} * R
\]
where \(P\) is a permutation matrix and JAC is the final calculated Jacobian. Column \(j\) of \(P\) is column IPVT(j) (see below) of the identity matrix. The lower trapezoidal part of FJAC contains information generated during the computation of \(R\).

LDFJAC is a positive integer input variable not less than \(M\) which specifies the leading dimension of the array EJAC.

IPVT is an integer output array of length N. IPVT defines a permutation matrix \(P\) such that \(J A C * P=Q * R\), where JAC is the final calculated Jacobian, \(Q\) is orthogonal (not stored), and \(R\) is upper triangular with diagonal elements of nonincreasing magnitude. Column \(j\) of \(P\) is column IPVT(j) of the identity matrix.

QTE is an output array of length N which contains the first N elements of the vector ( \(Q\) transpose)*FVEC.

WA1, WA2, and WA3 are work arrays of length \(N\).
WA4 is a work array of length M.
4. Successful completion.

The accuracy of LMDIF is controlled by the convergence parameters FTOL, XTOL, and GTOL. These parameters are used in tests which make three types of comparisons between the approximation \(X\) and a solution XSOL. LMDIF terminates when any of the tests is satisfied. If any of the convergence parameters is less than the machine precision (as defined by the MINPACK function DPMPAR(1)), then LMDIE only attempts to satisfy the test defined by the machine precision. Further progress is not usually possible.

The tests assume that the functions are reasonably well behaved. If this condition is not satisfied, then LMDIF may incorrectly indicate convergence. The validity of the answer can be checked, for example, by rerunning LMDIF with tighter tolerances.

First convergence test. If ENORM(Z) denotes the Euclidean norm of a vector \(Z\), then this test attempts to guarantee that

ENORM(FVEC) .LE. (1+FTOL)*ENORM(FVECS),
where FVECS denotes the functions evaluated at XSOL. If this condition is satisfied with FTOL \(=10 * *(-K)\), then the final residual norm ENORM(FVEC) has \(K\) significant decimal digits and INEO is set to 1 (or to 3 if the second test is also satisfied). Unless high precision solutions are required, the
recommended value for \(E T O L\) is the square root of the machine precision.

Second convergence test. If \(D\) is the diagonal matrix whose entries are defined by the array DIAG, then this test attempts to guarantee that
ENORM(D*(X-XSOL)) .LE . XTOL*ENORM(D*XSOL).

If this condition is satisfied with XTOL \(=10 * *(-K)\), then the larger components of \(D * X\) have \(K\) significant decimal digits and INFO is set to 2 (or to 3 if the first test is also satisfied). There is a danger that the smaller components of \(D * X\) may have large relative errors, but if MODE \(=1\), then the accuracy of the components of \(X\) is usually related to their sensitivity. Unless high precision solutions are required, the recommended value for \(X T O L\) is the square root of the machine precision.

Third convergence test. This test is satisfied when the cosine of the angle between FVEC and any column of the Jarobian at \(X\) is at most GTOL in absolute value. There is no clear relationship between this test and the accuracy of LMDIF, and furthermore, the test is equally well satisfied at other critical points, namely maximizers and saddle points. Therefore, termination caused by this test (INFO = 4) should be examined carefully. The recommended value for GTOL is zero.
5. Unsuccessful completion.

Unsuccessful termination of LMDIF can be due to improper input parameters, arithmetic interrupts, or an excessive number of function evaluations.

Improper input parameters. INEO is set to 0 if \(N\).LE. 0 , or M .LT. N, or LDEJAC .LT. M, or ETOL .LT. O.DO, or XTOL .LT. O.DO, or GTOL .LT. O.DO, or MAXEEV .LE. 0 , or FACTOR .LE. O.DO.

Arithmetic interrupts. If these interrupts occur in the FCN subroutine during an early stage of the computation, they may be caused by an unacceptable choice of \(X\) by LMDIF. In this case, it may be possible to remedy the situation by rerunning LMDIF with a smaller value of FACTOR.

Excessive number of function evaluations. A reasonable value for MAXFEV is 200* \((N+1)\). If the number of calls to FCN reaches MAXFEV, then this indicates that the routine is converging very slowly as measured by the progress of EVEC, and INFO is set to 5 . In this case, it may be helpful to restart LMDIF with MODE set to 1 .
6. Characteristics of the algorithm.

LMDIF is a modification of the Levenberg-Marquardt algorithm. Two of its main characteristics involve the proper use of implicitly scaled variables (if MODE \(=1\) ) and an optimal choice for the correction. The use of implicitly scaled variables achieves scale invariance of LMDIF and limits the size of the correction in any direction where the functions are changing rapidly. The optimal choic of the correction guarantees (under reasonable conditions) global convergence from starting points far from the solution and a fast rate of convergence for problems with small residuals.

Timing. The time required by LMDIF to solve a given problem depends on \(M\) and \(N\), the behavior of the functions, the accuracy requested, and the starting point. The number of arithmetic operations needed by LMDIF is about \(N * * 3\) to process each evaluation of the functions (one call to \(F C N\) ) and \(M *(N * * 2)\) to process each approximation to the Jacobian (N calls to FCN). Unless FCN can be evaluated quickly, the timing of LMDIE will be strongly influenced by the time spent in FCN.

Storage. LMDIF reguires \(M * N+2 * M+6 * N\) double precision storage locations and \(N\) integer storage locations, in addition to the storage required by the program. There are no internally declared storage arrays.
7. Subprograms required.

USER-supplied ...... ECN
MINPACK-supplied ... DPMPAR, ENORM, FDJAC2, LMPAR, QRFAC, QRSOLV
EORTRAN-supplied ... DABS,DMAXI,DMIN1,DSQRT,MOD
8. References.

Jorge J. More, The Levenberg-Marquardt Algorithm, Implementation and Theory. Numerical Analysis, G. A. Watson, editor. Lecture Notes in Mathematics 630, Springer-Verlag, 1977.
9. Example.

The problem is to determine the values of \(x(1), x(2)\), and \(x(3)\) which provide the best fit (in the least squares sense) of
\[
x(1)+u(i) /(v(i) * x(2)+w(i) * x(3)), i=1,15
\]
to the data
\[
\begin{aligned}
y= & (0.14,0.18,0.22,0.25,0.29,0.32,0.35,0.39, \\
& 0.37,0.58,0.73,0.96,1.34,2.10,4.39),
\end{aligned}
\]
where \(u(i)=i, v(i)=16-i\), and \(w(i)=\min (u(i), v(i))\). The i-th component of EVEC is thus defined by
\[
y(i)-(x(1)+u(i) /(v(i) * x(2)+w(i) * x(3))) .
\]
\(M=15\)
\(\mathrm{N}=3\)
THE FOLLOWING STARTING VALUES PROVIDE A ROUGH EIT.
\(X(1)=1 . D 0\)
\(X(2)=1 . D 0\)
\(X(3)=1 . D 0\)
LDEJAC \(=15\)
SET ETOL AND XTOL TO THE SQUARE ROOT OE THE MACHINE PRECISION AND GTOL TO ZERO. UNLESS HIGH PRECISION SOLUTIONS ARE REQUIRED, THESE ARE THE RECOMMENDED SETTINGS.
```

```
    MAXEEV = 800
```

```
    MAXEEV = 800
    EPSFCN = O.DO
    EPSFCN = O.DO
    MODE = 1
    MODE = 1
    FACTOR = 1.D2
    FACTOR = 1.D2
    NPRINT = 0
```

```
    NPRINT = 0
```

```
C
    DRIVER FOR LMDIE EXAMPLE.
    DOUBLE PRECISION VERSION
    INTEGER J,M,N,MAXFEV,MODE,NPRINT, INFO, NEEV, LDFJAC, NWRITE
    INTEGER IPVT(3)
    DOUBLE PRECISION FTOL,XTOL, GTOL,EPSFCN, EACTOR,ENORM
    DOUBLE PRECISION X(3), \(\operatorname{FVEC}(15), \operatorname{DIAG}(3), \operatorname{FJAC}(15,3), \operatorname{QTE}(3)\),
    *
    WA1 (3), WA2 (3), WA3 (3) ,WA4 (15)
    DOUBLE PRECISION ENORM,DPMPAR
    EXTERNAL FCN
    LOGICAL OUTPUT UNIT IS ASSUMED TO BE NUMBER 6.
    DATA NWRITE /6/
```

 FTOL = DSQRT(DPMPAR(1))
    ```
    FTOL = DSQRT(DPMPAR(1))
    XTOL = DSQRT(DPMPAR(1))
    GTOL = O.DO
```

 CALL LMDIF(FCN,M,N,X, EVEC, ETOL,XTOL, GTOL, MAXEEV, EPSFCN,
    ```
            ENORM = ENORM(M,FVEC)
            WRITE (NWRITE,1000) FNORM,NFEV,INEO,(X(J),J=1,N)
            STOP
1000 FORMAT
    *
    * 5X,15H EXIT PARAMETER,16X,I10 //
    * 5X,27H FINAI, APPROXIMATE SOLUTION // 5X,3D15.7)
```

LAST CARD OF DRIVER FOR LMDIF EXAMPLE.
END
SUBROUTINE FCN(M,N,X, FVEC,IELAG)
INTEGER M,N, IFLAG
DOUBLE PRECISION X(N), FVEC(M)
SUBROUTINE FCN FOR LMDIE EXAMPLE.
INTEGER I
DOUBLE PRECISION TMP1,TMP2,TMP3
DOUBLE PRECISION Y(15)
DATA $Y(1), Y(2), Y(3), Y(4), Y(5), Y(6), Y(7), Y(8)$,

* $Y(9), Y(10), Y(11), Y(12), Y(13), Y(14), Y(15)$
* /1.4D-1,1.8D-1,2.2D-1,2.5D-1,2.9D-1,3.2D-1,3.5D-1,3.9D-1,
* 3.7D-1,5.8D-1,7.3D-1,9.6D-1,1.34DO,2.1DO,4.39DO/

IF (IFLAG .NE. O) GO TO 5
INSERT PRINT STATEMENTS HERE WHEN NPRINT IS POSITIVE.
RETURN
5 CONTINUE
DO 10 I $=1,15$
TMPI = I
TMP2 $=16-I$
TMP3 $=$ TMP1
IF (I .GT. 8) TMP3 = TMP2
$\operatorname{EVEC}(I)=Y(I)-(X(1)+\operatorname{TMP1/(X(2)*TMP2+X(3)*TMP3))}$
CONTINUE
RETURN

LAST CARD OE SUBROUTINE FCN.
END
Results obtained with different compilers or machines may be slightly different.

EINAL L2 NORM OE THE RESIDUALS 0.9063596D-01
NUMBER OF EUNCTION EVALUATIONS 21
EXIT PARAMETER

```
EINAL APPROXIMATE SOLUTION
```

$0.8241057 \mathrm{D}-01 \quad 0.1133037 \mathrm{D}+01 \quad 0.2343695 \mathrm{D}+01$

Documentation for MINPACK subroutine CHKDER
Double precision version
Argonne National Laboratory
Burton S. Garbow, Kenneth E. Hillstrom, Jorge J. More
March 1980

1. Purpose.

The purpose of CHKDER is to check the gradients of M nonlinear functions in N variables, evaluated at a point X, for consistency with the functions themselves. The user must call CHKDER twice, first with MODE $=1$ and then with MODE $=2$.
2. Subroutine and type statements.

SUBROUTINE CHKDER(M,N,X, EVEC, FJAC, LDEJAC, XP, FVECP, MODE, ERR) INTEGER M, N, LDEJAC, MODE DOUBLE PRECISION X(N), FVEC(M), EJAC(LDEJAC,N),XP(N), FVECP(M), * ERR(M)
3. Parameters.

Parameters designated as input parameters must be specified on entry to CHKDER and are not changed on exit, while parameters designated as output parameters need not be specified on entry and are set to appropriate values on exit from CHKDER.
M is a positive integer input variable set to the number of functions.

N is a positive integer input variable set to the number of variables.
X is an input array of length N.
EVEC is an array of length M. On input when MODE $=2$, EVEC must contain the functions evaluated at X.

EJAC is an M by N array. On input when MODE $=2$, the rows of EJAC must contain the gradients of the respective functions evaluated at X.

LDFJAC is a positive integer input variable not less than M which specifies the leading dimension of the array FJAC.

XP is an array of length N. On output when MODE $=1$, XP is set to a neighboring point of X.

FVECP is an array of length M. On input when MODE $=2$, FVECP must contain the functions evaluated at XP.

MODE is an integer input variable set to 1 on the first call and 2 on the second. Other values of MODE are equivalent to MODE $=1$.

ERR is an array of length M. On output when MODE = 2, ERR contains measures of correctness of the respective gradients. If there is no severe loss of significance, then if ERR(I) is 1.0 the I-th gradient is correct, while if ERR(I) is 0.0 the I-th gradient is incorrect. For values of ERR between 0.0 and 1.0, the categorization is less certain. In general, a value of ERR(I) greater than 0.5 indicates that the I-th gradient is probably correct, while a value of ERR(I) less than 0.5 indicates that the I-th gradient is probably incorrect.
4. Successful completion.

CHKDER usually guarantees that if ERR(I) is 1.0 , then the $I-t h$ gradient at X is consistent with the I-th function. This suggests that the input X be such that consistency of the gradient at X implies consistency of the gradient at all points of interest. If all the components of X are distinct and the fractional part of each one has two nonzero digits, then X is likely to be a satisfactory choice.

If ERR(I) is not 1.0 but is greater than 0.5 , then the I-th gradient is probably consistent with the I-th function (the more so the larger $\operatorname{ERR}(\mathrm{I})$ is), but the conditions for ERR(I) to be 1.0 have not been completely satisfied. In this case, it is recommended that CHKDER be rerun with other input values of X. If $\operatorname{ERR}(I)$ is always greater than 0.5, then the I-th gradient is consistent with the I-th function.
5. Unsuccessful completion.

CHKDER does not perform reliably if cancellation or rounding errors cause a severe loss of significance in the evaluation of a function. Therefore, none of the components of X should be unusually mall (in particular, zero) or any other value which may cause loss of significance. The relative differences between corresponding elements of FVECP and EVEC should be at least two orders of magnjtude greater than the machine precision (as defined by the MINPACK function DPMPAR(1)). If there is a severe loss of significance in the evaluation of the I-th function, then ERR(I) may be 0.0 and yet the I-th gradient could be correct.

If $\operatorname{ERR}(I)$ is not 0.0 but is less than 0.5 , then the $I=t h$ gradient is probably not consistent with the I-th function (the more so the maller ERR(I) is), but the conditions for ERR(I) to
be 0.0 have not been completely satisfied. In this case, it is recommended that CHKDER be rerun with other input values of X. If $\operatorname{ERR}(I)$ is always less than 0.5 and if there is no severe loss of significance, then the $I-t h$ gradient is not consistent with the I-th function.
6. Characteristics of the algorithm.

CHKDER checks the I-th gradient for consistency with the I-th function by computing a forward-difference approximation along a suitably chosen direction and comparing this approximation with the user-supplied gradient along the same direction. The principal characteristic of CHKDER is its invariance to changes in scale of the variables or functions.

Timing. The time required by CHKDER depends only on M and N. The number of arithmetic operations needed by CHKDER is about N when MODE $=1$ and $\mathrm{M} * \mathrm{~N}$ when $\mathrm{MODE}=2$.

Storage. CHKDER requires $\mathrm{M} * \mathrm{~N}+3 * \mathrm{M}+2 * \mathrm{~N}$ double precision storage locations, in addition to the storage required by the program. There are no internally declared storage arrays.
7. Subprograms required.

MINPACK-supplied ... DPMPAR
EORTRAN-supplied ... DABS,DLOG10,DSQRT

8. References.

None.
9. Example.

This example checks the Jacobian matrix for the problem that determines the values of $x(1), x(2)$, and $x(3)$ which provide the best fit (in the least squares sense) of

$$
x(1)+u(1) /(v(i) * x(2)+w(i) * x(3)), \quad i=1,15
$$

to the data

$$
\begin{aligned}
y= & (0.14,0.18,0.22,0.25,0.29,0.32,0.35,0.39, \\
& 0.37,0.58,0.73,0.96,1.34,2.10,4.39),
\end{aligned}
$$

where $u(i)=1, v(i)=16-i$, and $w(i)=\min (u(i), v(i))$. The i-th component of EVEC is thus defined by

$$
y(i)=(x(1)+u(i) /(v(i) * x(2)+w(i) * x(3))) .
$$

$X(1)=9.2 \mathrm{D}-1$
$X(2)=1.3 D-1$
$X(3)=5.4 D-1$
C

C
LDEJAC $=15$

MODE $=1$
CALL CHKDER (M, N, X, FVEC, EJAC, LDEJAC, XP, FVECP, MODE, ERR)
MODE $=2$
CALL ECN(M, N, X, EVEC, EJAC, LDEJAC, 1)
CALL ECN (M, N, X, EVEC, EJAC, LDEJAC, 2)
CALL ECN(M,N, XP, EVECP, EJAC, LDEJAC, 1)
CALL CHKDER (M,N,X, EVEC, EJAC,LDEJAC, XP, EVECP, MODE, ERR)
C
DO $10 I=1, M$ $\operatorname{EVECP}(I)=\operatorname{EVECP}(I)-\operatorname{EVEC}(I)$
CONTINUE
WRITE (NWRITE, 1U00) (EVEC(I),I=1,M)
WRITE (NWRITE, 2000) (EVECP (I), I=1,M)
WRITE (NWRITE, 3000) (ERR(I),I=1,M)
STOP
1000 EORMAT (/5X,5H EVEC // (5X,3D15.7))
2000 EORMAT (/5X, 13H EVECP - EVEC // (5X, 3D15.7))
3000 EORMAT (/5X, 4H ERR // (5X,3D15.7))
LAST CARD OE DRIVER FOR CHKDER EXAMPLE.
END
SUBROUTTNE ECN(M,N,X, EVEC, EJAC, LDEJAC,IELAG)
INTEGER M,N,LDEJAC, IELAG
DOUBLE PRECISION X(N), EVEC(M), EJAC(LDEJAC,N)
SUBROUTINE FCN EOR CHKDER EXAMPLE.

INTEGER I
DOUBLE PRECISION TMP1,TMP2,TMP3,TMP4
DOUBLE PRECISION Y(15)
DATA $Y(1), Y(2), Y(3), Y(4), Y(5), Y(6), Y(7), Y(8)$,

* $Y(9), Y(10), Y(11), Y(12), Y(13), Y(14), Y(15)$
* /1.4D-1,1.8D-1,2.2D-1,2.5D-1,2.9D-1,3.2D-1,3.5D-1,3.9D-1,

IF (IFLAG .EQ. 2) GO TO 20
DO 10 I $=1,15$
TMP1 = I
TMP2 $=16-\mathrm{I}$
TMP3 $=$ TMP1
IF (I .GT. 8) TMP3 = TMP2
$\operatorname{EVEC}(I)=Y(I)-(X(1)+T M P 1 /(X(2) * T M P 2+X(3) * T M P 3))$
10 CONTINUE
GO TO 40
20 CONTINUE
DO $30 \mathrm{I}=1,15$
TMP1 $=\mathrm{I}$
TMP2 $=16-\mathrm{I}$
ERROR INTRODUCED INTO NEXT STATEMENT FOR ILLUSTRATION.
CORRECTED STATEMENT SHOULD READ TMP3 = TMPI.
TMP3 $=$ TMP2
IE (I .GT. 8) TMP3 = TMP2
TMP4 $=(\mathrm{X}(2) * T M P 2+X(3) * T M P 3) * * 2$
$\operatorname{FJAC}(1,1)=-1 . D 0$
$\operatorname{FJAC}(\mathrm{I}, 2)=$ TMP1*TMP2/TMP4
$\operatorname{EJAC}(I, 3)=$ TMP1*TMP3/TMP4
30 CONTINUE
40 CONTINUE
RETURN
LAST CARD OE SUBROUTINE FCN.
END
Results obtained with different compilers or machines may be different. In particular, the differences FVECP - EVEC are machine dependent.

FVEC
$-0.1181606 \mathrm{D}+01-0.1429655 \mathrm{D}+01-0.1606344 \mathrm{D}+01$
$-0.1745269 D+01-0.1840654 D+01-0.1921586 D+01$
-0.1984141D+01 -0.2022537D+01 -0.2468977D+01
$-0.2827562 \mathrm{D}+01-0.3473582 \mathrm{D}+01-0.4437612 \mathrm{D}+01$
$-0.6047662 D+01-0.9267761 D+01-0.1891806 D+02$
FVECP - EVEC
$-0.7724666 D-08-0.3432405 D-08-0.2034843 D-09$
$0.2313685 \mathrm{D}-08$
$0.4331078 \mathrm{D}-08$
0.5984096D-08
$0.7363281 D-08$
$0.8531470 \mathrm{D}-08$
0.1488591م-07
$0.2335850 \mathrm{D}-07$
$0.3522012 \mathrm{D}-07$
$0.5301255 \mathrm{D}-07$
0.8266660D-07
0.1419747D-06 0.3198990D-06

ERR
$0.1141397 \mathrm{D}+00$
$0.9943516 \mathrm{D}-01$
$0.9674474 \mathrm{D}-01$
$0.9980447 \mathrm{D}-\mathrm{Cl}$
$0.1526814 \mathrm{D}+00$
$0.1000000 \mathrm{D}+01$
$0.1073116 \mathrm{D}+00$
$0.1220445 \mathrm{D}+00$
$0.1000000 \mathrm{D}+01$
$0.1000000 \mathrm{D}+01$
$0.1000000 \mathrm{D}+01 \quad 0.1000000 \mathrm{D}+01$
$0.1000000 \mathrm{D}+01$
$0.10000 .00 \mathrm{D}+01 \quad 0.1000000 \mathrm{D}+01$

CHAPTER 5
 Program Listings

This chapter contains the double precision version of the MINPACK-1 program listings; both single and double precision versions of the subprograms are available with the MINPACK-1 package. The listings appear in the following (alphanumeric) order:

CHKDER, DOGLEG, ENORM, FDJAC1, FDJAC2, HYBRD, HYBRDI, HYBRJ, HYBRJI, LMDER, LMDER1, LMDIF, LMDIFl, LMPAR, LMSTR, LMSTRI, QFORM, QRFAC, QRSOLV, RWUPDT, RIMPYQ, RIUPDT.

Functions SPMPAR (single precision) and DPMPAR (double precision), which provide the machine-dependent constants, appear at the end.

```
SUBROUTINE CHKDER(M,N,X,FVEC,FJAC,LDFJAC,XP,FVECP,MODE,ERR) CHDR0010
INTEGER M,N,LDFJAC,MODE
    DOUBLE PRECISION X(N),FVEC(M),FJAC(LDFJAC,N),XP(N),FVECP(M),
*
    ERR(M)
```



```
SUBROUTINE CHKDER
THIS SUBROÜTINE CHECKS THE GRADIENTS OF M NONLINEAR FUNCTIONS
IN N VARIABLES, EVALUATED AT A POINT X, FOR CONSISTENCY WITH
THE FUNCTIONS THEMSELVES. THE USER MUST CALL CHKDER TWICE,
FIRST WITH MODE = 1 AND THEN WITH MODE = 2.
MODE = 1. ON INPUT, X MUST CONTAIN THE POINT OF EVALUATION.
    ON OUTPUT, XP IS SET TO A NEIGHBORING POINT.
MODE = 2. ON INPUT, FVEC MUST CONTAIN THE FUNCTIONS AND THE
                    ROWS OF FJAC MUST CONTAIN THE GRADIENTS
                    OF THE RESPECTIVE FUNCTIONS EACH EVALUATED
                    AT X, and FVECP MUST CONTAIN THE FUNCTIONS
                    EVALUATED AT XP.
        ON OUTPUT, ERR CONTAINS MEASURES OF CORRECTNESS OF
                        THE RESPECTIVE GRADIENTS.
THE SUBROUTINE DOES NOT PERFORM RELIABLY IF CANCELLATION OR
ROUNDING ERRORS CAUSE A SEVERE LOSS OF SIGNIFICANCE IN THE
EVALUATION OF A FUNCTION. THEREFORE, NONE OF THE COMPONENTS
OF X SHOULD BE UNUSUALLY SMALL (IN PARTICULAR, ZERO) OR ANY
OTHER VALUE WHICH MAY CAUSE LOSS OF SIGNIFICANCE.
THE SUBROUTINE STATEMENT IS
    SUBROUTINE CHKDER(M,N,X,FVEC,FJAC,LDFJAC,XP,FVECP,MODE,ERR)
WHERE
    M IS A POSITIVE INTEGER INPUT VARIABLE SET TO THE NUMBER
        OF FUNCTIONS.
    N IS A POSITIVE INTEGER INPUT VARIABLE SET TO THE NUMBER
        OF VARIABLES.
    X IS AN INPUT ARRAY OF LENGTH N.
    FVEC IS AN ARRAY OF LENGTH M. ON INPUT WHEN MODE = 2,
        FVEC MUST CONTAIN THE FUNCTIONS EVALUATED AT X.
    FJAC IS AN M BY N ARRAY. ON INPUT WHEN MODE = 2,
        THE ROWS OF FJAC MUST CONTAIN THE GRADIENTS OF
        THE RESPECTIVE FUNCTIONS EVALUATED AT X.
            LDFJAC IS A YOSITIVE INTEGER INPUT PARAMETER NOT LESS THAN M
        WHICH SPECIFIES THE LEADING DIMENSION OF THE ARRAY FJAC.
```

CHDR0010
CHDR0020
CHDR0030
CHDR0040
CHDR0050
CHDR0060
CHDR0070
CHDR0080
CHDR0090
CHDR0100
CHDR0110
CHDRO120
CHDR0130
CHDR0140
CHDR0150
CHDR0160
CHDR0170
CHDR0180
CHDRO190
CHDR0200
CHDR0210
CHDDR0220
CHDR0230
CHDR0240
CHDR0250
CHDR0260
CHDR0270
CHDR0280
CHDR0290
CHDR0300
CHDR0310
CHDR0320
CHDR0330
CHDR0340
CHDR0350
CHDR0360
CHDR0370
CHDR0380
CHDR0390
CHDR0400
CHDR0410
CHDR0420
CHDR0430
CHDR0440
CHDR0450
CHDR0460
CHDR 0470
CHDR0480
CHDR0490
CHDR0500
CHDRO5 10
CHDR0520
CHDR0530
CHDR0540

C	XP IS AN ARRAY OF LENGTH N . ON OUTPUT WHEN MODE $=1$,	CHDR0550
C	XP IS SET TO A NEIGHBORING POINT OF X.	CHDR0560
C		CHDR0570
C	FVECP IS AN ARRAY OF LENGTH M. ON INPUT WHEN MODE $=2$,	CHDR0580
C	FVECP MUST CONTAIN THE FUNCTIONS EVALUATED AT XP.	CHDR0590
C		CHDR0600
C	MODE IS AN INTEGER INPUT VARIABLE SET TO 1 ON THE FIRST CALL	CHDR0610
C	AND 2 ON THE SECOND. OTHER VALUES OF MODE ARE EQUIVALENT	CHDR0620
C	TO MODE $=1$.	CHDR0630
C		CHDR0640
C	ERR IS AN ARRAY OF LENGTH M. ON OUTPUT WHEN MODE $=2$,	CHDR0650
C	ERR CONTAINS MEASURES OF CORRECTNESS OF THE RESPECTIVE	CHDR0660
C	GRadients. If There is no Severe loss of Significance,	CHDR0670
C	THEN IF ERR(I) IS 1.0 THE I-TH GRADIENT IS CORRECT,	CHDR0680
C	WHILE IF ERR(I) IS 0.0 THE I-TH GRADIENT IS INCORRECT.	CHDR0690
C	FOR VALUES OF ERR BETWEEN 0.0 AND 1.0, THE CATEGORIZATION	CHDR0700
C	IS LESS CERTAIN. IN GENERAL, A VALUE OF ERR(I) GREATER	CHDR0710
C	THAN 0.5 IndiCates that the I-TH GRadient is probably	CHDR0720
C	CORRECT, WHILE A VALUE OF ERR(I) LESS THAN 0.5 INDICATES	CHDR0730
C	THAT THE I-TH GRADIENT IS PROBABLY INCORRECT.	CHDR0740
C		CHDR0750
C	SUBPROGRAMS CALLED	CHDR0760
C		CHDR0770
C	MINPACK SUPPLIED ... DPMPAR	CHDR0780
C		CHDR0790
C	FORTRAN SUPPLIED ... DABS,DLOG10,DSQRT	CHDR0800
C		CHDR0810
C	ARGONNE NATIONAL LABORATORY. MINPACK PROJECT. MARCH 1980.	CHDR0820
C	BURTON S. GARBOW, KENNETH E. HILLSTROM, JORGE J. MORE	CHDR0830
C		CHDR0840
C		CHDR0850
	INTEGER I, J	CHDR0860
	DOUBLE PRECISION EPS, EPSF, EPSLOG, EPSMCH, FACTOR, ONE, TEMP, ZERO	CHDR0870
	DOUBLE PRECISION DPMPAR	CHDR0880
	DATA FACTOR, ONE, ZERO / 1.0D2,1.0D0,0.0D0/	CHDR0890
C		CHDR0900
C	EPSMCH IS THE MACHINE PRECISION.	CHDR0910
C		CHDR0920
	EPSMCH $=$ DPMPAR(1)	CHDR0930
C		CHDR0940
	EPS $=$ DSQRT (EPSMCH)	CHDR0950
C		CHDR0960
	IF (MODE .EQ. 2) GO TO 20	CHDR0970
C		CHDR0980
C	MODE $=1$.	CHDR0990
C		CHDR1000
	DO $10 \mathrm{~J}=1, \mathrm{~N}$	CHDR1010
	TEMP $=$ EPS ${ }^{\text {P }}$ DABS $(X(J))$	CHDR1020
	IF (TEMP .EQ. ZERO) TEMP = EPS	CHDR1030
	$\mathrm{XP}(\mathrm{J})=\mathrm{X}(\mathrm{J})+$ TEMP	CHDR1040
10	CONTINUE	CHDR1050
	GO TO 70	CHDR1060
20	CONTIIUE	CHDR1070
C		CHDR1080

SUBROUTINE DOGLEG(N,R,LR,DIAG,QTB,DELTA, X , WA1, WA 2)	DOGLOO10
INTEGER N,LR	DOGL0020
DOUBLE PRECISION DELTA	DOGL0030
DOUBLE PRECISION R(LR), DIAG(N), QTB (N), X (N$)$, WA1 (N), WA2 (N$)$	DOGL0040
	DOGL0050
	DOGL0060
SUBROUTINE DOGLEG	DOGL0070
	DOGL0080
GIVEN AN M BY N MATRIX A, AN N BY N NONSINGULAR DIAGONAL	DOGL0090
MATRIX D, AN M-VECTOR B, AND A POSITIVE NUMBER DELTA, THE	DOGLO100
PROBLEM IS TO DETERMINE THE CONVEX COMBINATION X OF THE	DOGL0110
GAUSS-NEWTON AND SCALED GRADIENT DIRECTIONS THAT MINIMIZES	DOGLO120
(${ }^{*}$ - X - B) IN THE LEAST SQUARES SENSE, SUBJECT TO THE	DOGLO130
RESTRICTION THAT THE EUCLIDEAN NORM OF D*X BE AT MOST DELTA.	DOGLO140
	DOGL0150
THIS SUBROUTINE COMPLETES THE SOLUTION OF THE PROBLEM	DOGL0160
IF IT IS PROVIDED WITH THE NECESSARY INFORMATION FROM THE	DOGL0170
QR FACTORIZATION OF A. THAT IS, IF $A=Q * R$, WHERE Q HAS	DOGL0180
ORTHOGONAL COLUMNS AND R IS AN UPPER TRIANGULAR MATRIX,	DOGL0190
THEN DOGLEG EXPECTS THE FULL UPPER TRIANGLE OF R AND	DOGL0200
THE FIRST N COMPONENTS OF (Q TRANSPOSE)*B.	DOGL0210
	DOGLO220
THE SUBROUTINE STATEMENT IS	DOGLO230
	DOGLO240
SUBROUTINE DOGLEG(N,R,LR,DIAG, QTB, DELTA X , WA1, WA 2)	DOGLO250
	DOGL0260
WHERE	DOGL0270
	DOGLO280
N IS A POSITIVE INTEGER INPUT VARIABLE SET TO THE ORDER OF R.	DOGL0290
	DOGL0300
R IS AN INPUT ARRAY OF LENGTH LR WHICH MUST CONTAIN THE UPPER	DOGL0310
TRIANGULAR MATRIX R STORED BY ROWS.	DOGL0320
	DOGL0330
LR IS A POSITIVE INTEGER INPUT VARIABLE NOT LESS THAN	DOGL0340
$\left(N^{*}(N+1)\right) / 2$.	DOGL0350
	DOGL0360
diag is an input array of lengit N Which must contain the	DOGL0370
DIAGONAL ELEMENTS OF THE MATRIX D.	DOGL0380
	DOGL0390
QTB IS AN INPUT ARRAY OF LENGTH N WHICH MUST CONTAIN THE FIRST	DOGL0400
N ELEMENTS OF THE VECTOR (Q TRANSPOSE)*B.	DOGL0410
	DOGL0420
DELTA IS A POSITIVE INPUT VARIABLE WHICH SPECIFIES AN UPPER	DOGL0430
BOUND ON THE EUCLIDEAN NORM OF D*X.	DOGL0440
	DOGL0450
X IS AN OUTPUT ARRAY OF LENGTH N Which Contains the desired	DOGL0460
CONVEX COMBINATION OF THE GAUSS-NEWTON DIRECTION AND THE	DOGL0470
SCALED GRADIENT DIRECTION.	DOGL0480
	DOGL0490
WA1 AND WA2 ARE WORK ARRAYS OF LENGTH N.	DOGL0500
	DOGLOS 10
SUBPROGRAMS CALLED	DOGL0520
	DOGL0530
MINPACK-SUPPLIED ... DPMPAR,ENORM	DOGL0540

$\begin{array}{lll}\text { C THE GALSS-NEk'TON DIRECTION IS NOT ACCEPTABLE. } & \text { DOGL1090 } \\ \text { C NEXT, CALCULATE THE SCALED GRADIENT DIRECTION. } & \text { DOGL1100 }\end{array}$
$\begin{array}{lll}\text { C THE GALSS-NELTON DIRECTION IS NOT ACCEPTABLE. } & \text { DOGL1090 } \\ \text { C } & \text { NEXT, CALCULATE THE SCALED GRADIENT DIRECTION. } & \text { DOGL1100 }\end{array}$
$\mathrm{L}=1$
DO $80 \mathrm{~J}=1$, N
TEMP $=\operatorname{QTB}(\mathrm{J})$
DO $70 \mathrm{I}=\mathrm{J}, \mathrm{N}$ WA1 (I) $=$ WA1 (I) $+R(L)$ FTEMP $\mathrm{L}=\mathrm{L}+1$ CONTINUE
WAl(J) = WA1(J)/DIAG(J) DOGL1110 DOGL1120 DOGL1130 DOGL1140 DOGL1150 DOGL1160 DOGL1170 DOGL1180

CONTINUE
DOGL1190

CALCULATE THE NORM OF THE SCALED GRADIENT AND TEST FOR
THE SPECIAL CASE IN WHICH THE SCALED GRADIENT IS ZERO.
GNORM $=\operatorname{ENORM}$ (N,WA1)
SGNORM = 2ERO
ALPHA $=$ DELTA/QNORM
IF (GNORM .EQ. ZERO) GO TO 120
Calculate the point along the scaled gradient
AT WHICH THE QUADRATIC IS MINIMIZED.
DO $90 \mathrm{~J}=1, \mathrm{~N}$
WA1 (J) $=$ (WA1 (J)/GNORM)/DIAG(J)
CONTINUE
$\mathrm{L}=1$
DO $110 \mathrm{~J}=1, \mathrm{~N}$
SUM $=$ ZERO
DO $100 \mathrm{I}=\mathrm{J}, \mathrm{N}$
SUM $=$ SUM + R(L)*WA1 (I)
$\mathrm{L}=\mathrm{L}+1$
CONTINUE
WA2 (J) = SUM
110 CONTINUE
TEMP $=\operatorname{ENORM}(N, W A 2)$
SGNORM $=($ GNORM/TEMP)/TEMP
TEST WHETHER THE SCALED GRADIENT DIRECTION IS ACCEPTABLE.
ALPHA $=$ ZERO
IF (SGNORM .GE. DELTA) GO TO 120
120 CONTINUE DOGL1630

C

C FORM APPROPRIATE CONVEX COMBINATION OF THE GAUSS-NEHTON C DIRECTION AND THE SCALED GRADIENT DIRECTION.

TEMP $=$ (ONE - ALPHA)*DMIN1 (SGNORM,DELTA)
DO $130 \mathrm{~J}=1$, N
$\mathrm{X}(\mathrm{J})=$ TEMP*WA1 $(\mathrm{J})+$ ALPHA*X(J) CONTINUE

130
 140 CONTINUE

RETURN

C

C LAST CARD OF SUBROUTINE DOGLEG. DOGL1650 DOGL1660 DOGL1670 DOGL1680 DOGL1690 DOGL1700 DOGL1710
END

	DOUBLE PRELISION FUNCTION ENORM (N, X)	ENRM0010
	INTEGER N	ENRM0020
	DOUBLE PRECISION X (N)	ENRM0030
C		ENRM0040
C		ENRM0050
C	FUNCTION ENORM	ENRM0060
C		ENRM0070
C	GIVEN AN N-VECTOR X, THIS FUNCTION CALCULATES THE	ENRM0080
C	EUCLIDEAN NORM OF X.	ENRM0090
C		ENRM0100
C	THE EUCLIDEAN NORM IS COMPUTED BY ACCUMULATING THE SUM OF	ENRMO110
C	SQUARES IN THREE DIFFERENT SUMS. THE SUMS OF SQUARES FOR THE	ENRM0120
C	SMALL AND LARGE COMPONENTS ARE SCALED SO THAT NO OVERFLOWS	ENRMO130
C	OCCUR. NON-DESTRUCTIVE UNDERFLOWS ARE PERMITTED. UNDERFLOWS	ENRM0140
C	AND OVERFLOWS DO NOT OCCUR IN THE COMPUTATION OF THE UNSCALED	ENRM0150
C	SUM OF SQUARES FOR THE INTERMEDIATE COMPONENTS.	ENRM0160
C	THE DEFINITIONS OF SMALL, INTERMEDIATE AND LARGE COMPONENTS	ENRM0170
C	DEPEND ON TWO CONSTANTS, RDWARF AND RGIANT. THE MAIN	ENRM0180
C	RESTRICTIONS ON THESE CONSTANTS ARE THAT RDWARF**2 NOT	ENRM0190
C	UNDERFLOW AND RGIANT**2 NOT OVERFLOW. THE CONSTANTS	ENRM0200
C	GIVEN HERE ARE SUITABLE FOR EVERY KNOWN COMPUTER.	ENRM0210
C		ENRM0220
C	THE FUNCTION STATEMENT IS	ENRM0230
C		ENRM0240
C	DOUBLE PRECISION FUNCTION ENORM (N, X)	ENRM0250
C		ENRM0260
C	WHERE	ENRM0270
C		ENRM0280
C	N IS A POSITIVE INTEGER INPUT VARIABLE.	ENRM0290
C		ENRM0300
C	X IS AN INPUT ARRAY OF LENGTH N .	ENRM0310
C		ENRM0320
C	SUBPROGRAMS CALLED	ENRM0330
C		ENRM0340
C	FORTRAN-SUPPLIED . . . DABS,DSQRT	ENRM0350
C		ENRM0360
C	ARGONNE NATIONAL LABORATORY. MINPACK PROJECI. MARCH 1980.	ENRM0370
C	BURTON S. GARBOW, KENNETH E. HILLSTROM, JORGE J. MORE	ENRM0380
C		ENRM0390
C	***かれ******	ENRM0400
	INTEGER I	ENRM0410
	DOUBLE PRECISION AGIANT,FLOATN, ONE, RDWARF, RGIANT, S1, S2, S3, XABS,	ENRM0420
	* XIMAX,X3MAX, ZERO	ENRM0430
	DATA ONE, ZERO,RDWARF,RGIANT /1.0D0,0.0D0,3.834D-20,1.304D19/	ENRM0440
	S1 $=$ ZERO	ENRM0450
	S2 = ZERO	ENRM0460
	S3 = ZERO	ENRM0470
	X1MAX = ZERO	ENRM0480
	X3MAX = ZERO	ENRM0490
	FLOATN $=\mathrm{N}$	ENRM0500
	AGIANT $=$ RGIANT/FLOATN	ENRM0510
	DO $90 \mathrm{I}=1, \mathrm{~N}$	ENRM0520
	$X A B S=\operatorname{DABS}(X(I))$	ENRM0530
	IF (XABS .GT. RDWARF .AND. XABS .LT. AGIANT) GO TO 70	ENRM0540

	IF (XABS .LE. RDWARF) GO TO 30	ENRM0550
C		ENRM0560
C	SUM FOR LȦ̃̇GE COMPONENTS.	ENRM0570
C		ENRM0580
	IF (XABS . LE. X1MAX) GO TO 10	ENRMO590
	S1 = ONE + S $1 *($ X1MAX $/ \mathrm{XABS}) * * 2$	ENRM0600
	XIMAX $=$ XABS	ENRM0610
	GO TO 20	ENRM0620
10	CONTINUE	ENRM0630
	S1 = S1 + (XABS/X1MAX)**2	ENRM0640
20	CONTINUE	ENRM0650
	GO TO 60	ENRM0660
30	CONTINUE	ENRM0670
C		ENRM0680
C	SUM FOR SMALL COMPONENTS.	ENRM0690
C		ENRM0700
	IF (XABS . LE. X3MAX) G0 TO 40	ENRM0710
	S3 $=0 \mathrm{NE}+\mathrm{S} 3 *(\mathrm{X} 3 \mathrm{MAX} / \mathrm{XABS}) * * 2$	ENRM0720
	X3MAX $=$ XABS	ENRM0730
	GO TO 50	ENRM0740
40	CONTINUE	ENRM0750
	IF (XABS . NE. ZERO) S3 = S3 + (XABS/X3MAX) ${ }^{*} \times 2$	ENRM0760
50	CONTINUE	ENRM0770
60	CONTINUE	ENRM0780
	GO TO 80	ENRM0790
70	CONTINUE	ENRMO800
C		ENRM0810
C	SUM FOR INTERMEDIATE COMPONENTS.	ENRM0820
C		ENRM0830
	$\mathrm{S} 2=\mathrm{S} 2+\mathrm{XABS}$ **2	ENRM0840
80	CONTINUE	ENRM0850
90	CONTINUE	ENRM0860
C		ENRM0870
C	CALCULATION OF NORM.	ENRM0880
C		ENRM0890
	IF (S1 .EQ. ZERO) GO TO 100	ENRM0900
	ENORM = X1MAX*DSQRT $($ S $1+(S 2 / X 1 M A X) / X 1 M A X) ~$	ENRM0910
	GO TO 130	ENRN0920
	CONTINUE	ENRM0930
	IF (S2 .EQ. ZERO) GO TO 110	ENRM0940
	IF (S2 .GE. X3MAX)	ENRM0950
		ENRM0960
	IF (S2 .LT. X3MAX)	ENRM0970
	ENORM $=$ DSQRT $(X 3 M A X *((S 2 / X 3 M A X)+(X 3 M A X * S 3)))$	ENRM0980
	GO TO 120	ENRM0990
110	CONTINUE	ENRM1000
	ENORM $=$ X3MAX ${ }^{\text {d }}$ DSQRT $(S 3)$	ENRM1010
120	CONTINUE	ENRM1020
130	CONTINUE	ENRM1030
	RETURN	ENRM1040
C		ENRM1050
C	LAST CARD OF FUNCTION ENORM.	ENRM1060
C		ENRM1070
	END	ENRM1080

```
    SUBROUTINE FDJAC1(FCN,N,X,FVEC,FJAC,LDFJAC,IFLAG,ML,MU,EPSFCN,
    * WA1,WA2)
    INTEGER N,LDFJAC,IFLAG,ML,MU
    DOUBLE PRECISION EPSFCN
    DOUBLE PRECISION X(N),FVEC(N),FJAC(LDFJAC,N),WA1(N),WA2(N)
    *************
    SUBROUTINE FDJAC1
    THIS SUBROUTINE COMPUTES A FORWARD-DIFFERENCE APPROXIMATION
    TO THE N BY N JACOBIAN MATRIX ASSOCIATED WITH A SPECIFIED
    PROBLEM OF N FUNCTIONS IN N VARIABLES. IF THE JACOBIAN HAS
    A BANDED FORM, THEN FUNCTION EVALUATIONS ARE SAVED BY ONLY
    APPROXIMATING THE NONZERO TERMS.
    THE SUBROUTINE STATEMENT IS
        SUBROUTINE FDJACI(FCN,N,X,FVEC,FJAC,LDFJAC,IFLAG,ML,MU,EPSFCN,
        WA1,WA2)
    WHERE
    FCN IS THE NAME OF THE USER-SUPPLIED SUBROUTINE WHICH
        CALCULATES THE FUNCTIONS. FCN MUST BE DECLARED
        IN AN EXTERNAL STATEMENT IN THE USER CALLING
        PROGRAM, AND SHOULD BE WRITTEN AS FOLLOWS.
        SUBROUTINE FCN(N,X,FVEC,IFLAG)
        INTEGER N,IFLAG
        DOUBLE PRECISION X(N),FVEC(N)
        CALCULATE THE FUNCTIONS AT X AND
        RETURN THIS VECTOR IN FVEC.
        RETURN
        END
        THE VALUE OF IFLAG SHOULD NOT BE CHANGED BY FCN UNLESS
        THE USER WANTS TO TERMINATE EXECUTION OF FDJAC1.
        IN THIS CASE SET IFLAG TO A NEGATIVE INTEGER.
            N IS A POSITIVE INTEGER INPUT VARIABLE SET TO THE NUMBER
        OF FUNCTIONS AND VARIABLES.
            X IS AN INPUT ARRAY OF LENGTH N.
            FVEC IS AN INPUT ARRAY OF LENGTH N WHICH MUST CONTAIN THE
        FUNCTIONS EVALUATED AT X.
            FJAC IS AN OUTPUT N BY N ARRAY WHICH CONTAINS THE
        APPROXIMATION TO THE JACOBIAN MATRIX EVALUATED AT X.
            LDFJAC IS A POSITIVE INTEGER INPUT VARIABLE NOT LESS THAN N
        WHICH SPECIFIES THE LEADING DIMENSION OF THE ARRAY FJAC.
```

FDJ10010
FDJ10020
FDJ10030
FDJ10040
FDJ10050
FDJ 10060
FDJ10070
FDJ10080
FDJ10090
FDJ10100
FDJ10110
FDJ10120
FDJ10130
FDJ10140
FDJ10150
FDJ10160 FDJ10170
FDJ10180
FDJ10190
FDJ10200
FDJ10210
FDJ10220
FDJ10230
FDJ10240
FDJ10250
FDJ10260
FDJ10270
FDJ10280
FDJ10290
FDJ10300
FDJ10310
FDJ10320
FDJ10330
FDJ10340
FDJ10350
FDJ10360
FDJ10370
FDJ10380
FDJ 10390
FDJ 10400
FDJ10410
FDJ 10420
FDJ10430
FDJ 10440
FDJ 10450
FDJ 10460
FDJ10470
FDJ 10480
FDJ 10490
FDJ10500
FDJ10510
FDJ 10520
FDJ10530
FDJ10540

C

IFLAG IS AN INTEGER VARIABLE WHICH CAN BE USED TO TERMINATE THE EXECUTION OF FDJAC1. SEE DESCRIPTION OF FCN.

ML IS A NONNEGATIVE INTEGER INPUT VARIABLE WHICH SPECIFIES THE NUMBER OF SUBDIAGONALS WITHIN THE BAND OF THE Jacobian matrix. if the Jacobian is not banded, set mL TO at LEAST N - 1.

EPSFCN IS AN INPUT VARIABLE USED IN DETERMINING A SUITABLE STEP LENGTH FOR THE FORWARD-DIFFERENCE APPROXIMATION. THIS approximation assumes that the relative errors in the FUNCTIONS ARE OF THE ORDER OF EPSFCN. IF EPSFCN IS LESS THAN THE MACHINE PRECISION, IT IS ASSUMED THAT THE RELATIVE ERRORS IN THE FUNCTIONS ARE OF THE ORDER OF THE MACHINE PRECISION.

MU IS A NONNEGATIVE INTEGER INPUT VARIABLE WHICH SPECIFIES THE NUMBER OF SUPERDIAGONALS WITHIN THE BAND OF THE JACOBIAN MATRIX. IF THE JACOBIAN IS NOT BANDED, SET MU TO AT LEAST N - 1.

WA1 AND WA2 ARE WORK ARRAYS OF LENGTH N. IF ML + MU + 1 IS AT LEAST N, THEN THE JACOBIAN IS CONSIDERED DENSE, AND WA2 IS NOT REFERENCED.

SUBPROGRAMS CALLED
MINPACK-SUPPLIED ... DPMPAR
FORTRAN-SUPPLIED ... DABS, DMAX1,DSQRT
ARGONNE NATIONAL LABORATORY. MINPACK PROJECT. MARCH 1980.
burton s. garbow, kenneth e. hillstrom, Jorge j. More

INTEGER I, J, K, MSUM
DOUBLE PRECISION EPS, EPSMCH,H,TEMP,ZERO
DOUBLE PRECISION DPMPAR
DATA ZERO /O.ODO/
EPSMCH IS THE MACHINE PRECISION.
EPSMCH $=\operatorname{DPMPAR(1)}$
EPS = DSQRT(DMAX1 (EPSFCN,EPSMCH))
MSUM $=M L+M U+1$
IF (MSUM .LT. N) GO TO 40
COMPUTATION OF DENSE APPROXIMATE JACOBIAN.
DO $20 \mathrm{~J}=1, \mathrm{~N}$ TEMP $=X(J)$ $\mathrm{H}=\mathrm{EPS}{ }^{*}$ DABS (TEMP)

FDJ10550
FDJ10560
FDJ10570
FDJ10580
FDJ10590
FDJ10600
FDJ10610
FDJ10620
FDJ10630
FDJ10640
FDJ10650
FDJ10660
FDJ10670
FDJ10680
FDJ10690
FDJ10700
FDJ10\%10
FDJ10720
FDJ10730
FDJ10740
FDJ10750
FDJ10760
FDJ10770
FDJ10780
FDJ10790
FDJ10800
FDJ10810
FDJ10820
FDJ10830
FDJ10840
FDJ10850
FDJ10860
FDJ10870
FDJ10880
FDJ10890
FDJ10900
FDJ10910
FDJ10920
FDJ10930
FDJ10940
FDJ10950
FDJ10960
FDJ10970
FDJ10980
FDJ10990
FDJ11000
FDJ11010
FDJ11020
FDJ11030
FDJ11040
FDJ11050
FDJ11060
FDJ11070
FDJ11080

```
            IF (H .EQ. ZERO) H = EPS FDJ11090
            X(J) = TEMP + H FDJ11100
            CALL FCN(N,X,WA1,IFLAG) FDJ11110
            IF (IFLAG .LT. 0) GO TO 30 FDJ11120
            X(J) = TEMP FDJ11130
            DO 10I = 1,N
                FJAC(I,J) = (WA1(I) - FVEC(I))/H
                    CONTINUE
            CONTINUE
            CONTINUE
            GO TO 110
            40 CONTINUE
C
C
            COMPUTATION OF BANDED APPROXIMATE JACOBIAN.
            DO 90 K = 1, MSUM
            DO 60 J = K, N, MSUM
                WA2(J) = X(J)
                H = EPS*DABS(WA2(J))
                IF (H .EQ. ZERO) H = EPS
                X(J) = WA2(J) + H
    60 CONTINUE
            CALL FCN(N,X,WA1,IFLAG)
            IF (IFLAG .LT. 0) GO TO 100
            DO 80 J = K, N, MSUM
            X(J) = WA2(J)
            H = EPS*DABS(WA2(J))
                    IF (H .EQ. ZERO) H = EPS
            DO 70 I = 1, N
                    FJAC(I,J) = ZERO
                    IF (I .GE. J - MU .AND. I .IE. J + ML)
                    FJAC(I,J) = (WA1(I) - FVEC(I))/H
                    CONTINUE
            CONTINUE
            cONTINUE
    100 CONTINUE
    110 CONTINUE
    RETURN
C
C
    LAST CARD OF SUBROUTINE FDJAC1.
    END
    FDJ11140
C
    FDJ11150
    FDJ11160
    FDJ11170
    FDJ11180
    FDJ11190
    FDJ11200
    FDJ11210
    FDJ11220
    FDJ11230
    FDJ11240
    FDJ11250
    FDJ11260
    FDJ11270
    FDJ11280
    FDJ11290
    FDJ11300
    FDJ11310
    FDJ11320
    FDJ11330
    FDJ11340
    FDJ11350
    FDJ11360
    FDJ11370
    FDJ11380
    FDJ11390
    FDJ11400
    FDJ11410
    FDJ11420
    FDJ11430
    FDJ11440
    FDJ11450
    FDJ11460
    FDJ11470
    FDJ11480
    FDJ11490
    FDJ11500
```

```
SUBROUTINE FDJAC2(FCN,M,N,X,FVEC,FJAC,LDFJAC,IFLAG,EPSFCN,WA) FDJ20010
INTEGER M,N,LDFJAC,IFLAG
DOUBLE PRECISION EPSFCN
DOUBLE PRECISION X(N),FVEC(M),FJAC(LDFJAC,N),WA(M)
*****:%******
SUBROUTINE FDJAC2
THIS SUBROUTINE COMPUTES A FORWARD-DIFFERENCE APPROXIMATION
TO THE M BY N JACOBIAN MATRIX ASSOCIATED WITH A SPECIFIED
PROBLEM OF M FUNCTIONS IN N VARIABLES.
THE SUBROUTINE STATEMENT IS
    SUBROUTINE FDJAC2(FCN,M,N,X,FVEC,FJAC,LDFJAC,IFLAG,EPSFCN,WA)
WHERE
    FCN IS THE NAME OF THE USER-SUPPLIED SUBROUTINE WHICH
        CALCULATES THE FUNCTIONS. FCN MUST BE DECLARED
        IN AN EXTERNAL STATEMENT IN THE USER CALLING
        PROGRAM, AND SHOULD BE WRITTEN AS FOLLOWS.
        SUBROUTINE FCN(M,N,X,FVEC,IFLAG)
        INTEGER M,N,IFLAG
        DOUBLE PRECISION X(N),FVEC(M)
        CALCULATE THE FUNCTIONS AT X AND
        RETURN THIS VECTOR IN FVEC.
        ----------
        RETURN
        END
        THE VALUE OF IFLAG SHOULD NOT BE CHANGED BY FCN UNLESS
        THE USER WANTS TO TERMINATE EXECUTION OF FDJAC2.
        IN THIS CASE SET IFLAG TO A NEGATIVE INTEGER.
    M IS A POSITIVE INTEGER INPU'? VARIABLE SET TO THE NUMBER
        OF FUNCTIONS.
    N IS A POSITIVE INTEGER INPUT VARIABLE SET TO THE NUMBER
        OF VARIABLES. N MUST NOT EXCEED M.
    X IS AN INPUT ARRAY OF LENGTH N.
    FVEC IS AN INPUT ARRAY OF LENGTH M WHICH MUST CONTAIN THE
        FUNCTIONS EVALUATED AT X.
    FJAC IS AN OUTPUT M BY N ARRAY WHICH CONTAINS THE
        APPROXIMATION TO THE JACOBIAN MATRIX EVALUATED AT X.
        LDFJAC IS A POSITIVE INTEGER INPUT VARIABLE NOT LESS THAN M
        WHICH SPECIFIES THE LEADING DIMENSION OF THE ARRAY FJAC.
    FDJ20020
    FDJ20030
    FDJ20040
    FDJ20050
    FDJ20060
    FDJ20070
    FDJ20080
    FDJ20090
    FDJ20100
    FDJ20110
    FDJ20120
    FDJ20130
    FDJ20140
    FDJ20150
    FDJ20160
    FDJ20170
    FDJ20180
    FDJ2^190
    FDJ20200
    FDJ20210
    FDJ20220
    FDJ20230
    FDJ20240
    FDJ20250
    FDJ20260
    FDJ20270
    FDJ20280
    FDJ20290
    FDJ20300
    FDJ20310
    FDJ20320
    FDJ20330
    FDJ20340
    FDJ20350
    FDJ20360
    FDJ20370
    FDJ20380
    FDJ20390
    FDJ20400
    FDJ20410
    FDJ20420
    FDJ20430
    FDJ20440
    FDJ20450
    FDJ20460
    FDJ20470
    FDJ20480
    FDJ20490
    FDJ20500
    FDJ20510
    FDJ20520
    FDJ20530
    FDJ20540
```

RETURN
\%
INTEGER I, J

IFLAG IS AN INTEGER VARIABLE WHICH CAN BE USED TO TERMINATE
FDJ20550 THE EXECUTION OF FDJAC2. SEE DESCRIPTION OF FCN.

FDJ20560
FDJ20570
EPSFCN IS AN INPUT VARIABLE USED IN DETERMINING A SUITABLE STEP LENGTH FOR THE FORWARD-DIFFERENCE APPROXIMATION. THIS approximation assumes that the relative errors in the

FDJ20580
FDJ20590
FDJ20600 FUNCTIONS ARE OF THE ORDER OF EPSFCN. IF EPSFCN IS LESS THAN THE MACHINE PRECISIGN, IT IS ASSUMED THAT THE RELATIVE

FDJ20610 ERRORS IN THE FUNCTIONS ARE OF THE ORDER OF THE MACHINE PRECISION.

WA IS A WORK ARRAY OF LENGTH M.
SUBPROGRAMS CALLED
USER-SUPPLIED FCN
MINPACK-SUPPLIED ... DPMPAR
FORTRAN-SUPPLIED ... DABS,DMAX1,DSQRT
ARGONNE NATIONAL LABORATORY. MINPACK PROJECT. MARCH 1980. burton s. Garbow, kenneth e. hillstrom, Jorge J. More

DOUBLE PRECISION EPS, EPSMCH,H,TEMP,ZERO
DOUBLE PRECISION DPMPAR
DATA ZERO / O.ODO/
EPSMCH IS THE MACHINE PRECISION.
$\operatorname{EPSMCH}=\operatorname{DPMPAR}(1)$
$\operatorname{EPS}=\operatorname{DSQRT}(D M A X 1(E P S F C N, E P S M C H))$
DO $20 \mathrm{~J}=1$, N
TEMP $=X(J)$
H = EPS \because DABS (TEMP)
IF (H . EQ. ZERO) $\mathrm{H}=\mathrm{EPS}$
$X(J)=$ TEMP +H
CALL FCN(M,N,X,WA,IFLAG)
IF (IFLAG .LT. 0) GO TO 30
$X(J)=$ TEMP
DO $10 \mathrm{I}=1, \mathrm{M}$ $\operatorname{FJAC}(\mathrm{I}, \mathrm{J})=(\mathrm{WA}(\mathrm{I})-\operatorname{FVEC}(\mathrm{I})) / \mathrm{H}$ CONTINUE

FDJ20620
FDJ20630
FDJ20640
FDJ20650
FDJ20660
FDJ20670
FDJ20680
FDJ20690
FDJ20700
FDJ20710
FDJ20720
FDJ20730
FDJ20740
FDJ20750
FDJ20760
FDJ20770
FDJ20780
FDJ20790
FDJ20800
FDJ20810
FDJ20820
FDJ20830
FDJ20840
FDJ20850
FDJ20860
FDJ20870
FDJ20880
FDJ20890
FDJ20900
FDJ20910
FDJ20920
FDJ20930
FDJ20940
FDJ20950
FDJ20960
FDJ20970
FDJ20980
FDJ20990
FDJ21000
FDJ21010
FDJ21020
FDJ21030
FDJ2 1040
LAST CARD OF SUBROUTINE FDJAC2.
FDJ21050
FDJ21060
END
SUBROUTINE HYBRD(FCN,N,X,FVEC,XTOL,MAXFEV,ML,MU,EPSFCN,DIAG, HYBD0010
*
*
MODE , FACTOR, NPRINT, INFO, NFEV, FJAC, LDFJAC , R, LR ,
QTF,WA1,WA2,WA3,WA4)
INTEGER N, MAXFEV, ML, MU, MODE, NPRINT, INFO, NFEV, LDFJAC, LR
DOUBLE PRECISION XTOL,EPSFCN,FACTOR
DOUBLE PRECISION X(N),FVEC(N),DIAG(N),FJAC(LDFJAC,N),R(LR),
*
EXTERNAL FCN

SUBROUTINE HYBRD
THE PURPOSE OF HYBRD IS TO FIND A ZERO OF A SYSTEM OF
N NONLINEAR FUNCTIONS IN N VARIABLES BY A MODIFICATION
OF THE PDWELL HYBRID METHOD. THE USER MUST PROVIDE A
SUBROUTINE WIIICH CALCULATES THE FUNCTIONS. THE JACOBIAN IS
THEN CALCULATED BY A FORWARD-DIFFERENCE APPROXIMATION.
THE SUBROUTINE STATEMENT IS
SUBROUTINE HYBRD(FCN,N,X,FVEC,XTOL,MAXFEV,ML,MU,EPSFCN,
DIAG, MODE , FACTOR, NPRINT, INFO, NFEV, FJAC,
LDFJAC, R, LR, QTF, WA1, WA2, WA3,WA4)
WHERE
FCN IS THE NAME OF THE USER-SUPPLIED SUBROUTINE WHICH
CALCULATES THE FUNCTIONS. FCN MUST BE DECLARED
IN AN EXTERNAL STATEMENT IN THE USER CALLING
PROGRAM, AND SHOULD BE WRITTEN AS FOLLOWS.
SUBROUTINE FCN(N,X,FVEC,IFLAG)
INTEGER N, IFLAG
DOUBLE PRECISION X(N), FVEC(N)
CALCULATE THE FUNCTIONS AT X AND
RETURN THIS VECTOR IN FVEC.

RETURN
END
THE VALUE OF IFLAG SHOULD NOT BE CHANGED BY FCN UNLESS
THE USER WANTS TO TERMINATE EXECUTION OF HYBRD.
IN THIS CAASE SET IFLAG TO A NEGATIVE INTEGER.
N IS A POSITIVE INTEGER INPUT VARIABLE SET TO THE NUMBER
of FUNCTIONS aND VARIABLES.
X IS AN ARRAY OF LENGTH N. ON INPUT X MUST CONTAIN
an INITIAL ESTIMATE OF THE SOLUTION VECTOR. ON OUTPUT X
CONTAINS THE FINAL ESTIMATE OF THE SOLUTION VECTOR.
FVEC IS AN OUTPUT ARRAY OF LENGTH N WHICH CONTAINS
THE FUNCTIONS EVALUATED AT THE OUTPUT X.

HYBD0020
HYBDOO30
HYBD0040
HYBD0050
HYBD0060
HYBD0070
HYBD0080
HYBD0090
HYBD0100
HYBD0110
HYBD0120
HYBD0130
HYBD0140
HYBD0150
HYBD0160
HYBD0170
HYBD0180
HYBDO190
HYBDO200
HYBD0210
HYBD0220
HYBD0230
HYBDO240
HYBD0250
HYBD0260
HYBD0270
HYBD0280
HYBD0290
HYBD0300
HYBD0310
HYBD0320
HYBD0330
HYBD0340
HYBD0350
HYBD0360
HYBD0370
HYBD0380
HYBD0390
HYBD0400
HYBDO410
HYBD0420
HYBDO430
HYBD0440
HYBD0450
HYBD0460
HYBD0470
HYBD0480
HYBD0490
HYBD0500
HYBD0510
HYBD0520
HYBD0530
HYBD0540

C
XTOL IS A NONNEGATIVE INPUT VARIABLE. TERMINATION
OCCURS WHEN THE RELATIVE ERROR BETWEEN TWO CONSECUTIVE
ITERATES IS AT MOST XTOL.

MAXFEV IS A POSITIVE INTEGER INPUT VARIABLE. TERMINATION
OCCURS WHEN THE NUMBER OF CALLS TO FCN IS AT LEAST MAXFEV
BY THE END OF AN ITERATION.

ML IS A NONNEGATIVE INTEGER INPUT VARIABLE WHICH SPECIFIES THE NUMBER OF SUBDIAGONALS WITHIN THE BAND OF THE Jacobian matrix. if the Jacobian is not banded, set ML TO AT LEAST N - 1 .

MU IS A NONNEGATIVE INTEGER INPUT VARIABLE WHICH SPECIFIES THE NUMBER OF SUPERDIAGONALS WITHIN THE BAND OF THE Jacobian matrix. if the Jacobian is not banded, set MU TO AT LEAST N - 1 .

EPSFCN IS AN INPUT VARIABLE USED IN DETERMINING A SUITABLE STEP LENGTH FOR THE FORWARD-DIFFERENCE APPROXIMATION. THIS APPROXIMATION ASSUMES THAT THE RELATIVE ERRORS IN THE FUNCTIONS ARE OF THE ORDER OF EPSFCN. IF EPSFCN IS LESS THAN THE MACHINE PRECISION, IT IS ASSUMED THAT THE RELATIVE ERRORS IN THE FUNCTIONS ARE OF THE ORDER OF THE MACHINE PRECISION.
diag is an array of length n. IF MODE = 1 (SEE BELOW), DIAG IS INTERNALLY SET. IF MODE $=2$, DIAG MUST CONTAIN POSITIVE ENTRIES THAT SERVE AS MULTIPLICATIVE SCALE FACTORS FOR THE VARIABLES.

MODE IS AN INTEGER INPUT VARIABLE. IF MODE $=1$, THE VARIABLES WILL BE SCALED INTERNALLY. IF MODE $=2$, THE SCALING IS SPECIFIED BY THE INPUT DIAG. OTHER VALUES OF MODE ARE EQUIVALENT TO MODE $=1$.

FACTOR IS A POSITIVE INPUT VARIABLE USED IN DETERMINING THE INITIAL STEP BOUND. THIS BOUND IS SET TO THE PRODUCT OF FACTOR AND THE EUCLIDEAN NORM OF DIAG*X IF NONZERO, OR ELSE TO FACTOR ITSELF. IN MOST CASES FACTOR SHOULD LIE IN THE INTERVAL (.1,100.). 100. IS A GENERALLY RECOMMENDED VALUE.

NPRINT IS AN INTEGER INPUT VARIABLE THAT ENABLES CONTROLLED PRINTING OF ITERATES IF IT IS POSITIVE. IN THIS CASE, FCN IS CALLED WITH IFLAG $=0$ at THE BEGINNING OF THE FIRST ITERATION AND EVERY NPRINT ITERATIONS THEREAFTER AND IMMEDIATELY PRIOR TO RETURN, WITH X AND FVEC AVAILABLE FOR PRINTING. IF NPRINT IS NOT POSITIVE, NO SPECIAL CALLS OF FCN WITH IFLAG $=0$ ARE MADE.

INFO IS AN INTEGER OUTPUT VARIABLE. IF THE USER HAS TERMINATED EXECUTION, INFO IS SET TO THE (NEGATIVE) VALUE OF IFLAG. SEE DESCRIPTION OF FCN. OTHERWISE,

HYBD0550
HYBD0560
HYBD0570
HYBD0580
HYBD0590
HYBD0600
HYBD0610
HYBD0620
HYBD0630
HYBD0640
HYBD0650
HYBD0660
HYBD0670
HYBD0680
HYBD0690
HYBD0700
HYBD0710
HYBD0720
HYBD0730
HYBD0740
HYBD0750
HYBDO760
HYBD0770
HYBD0780
HYBD0790
HYBD0800
HYBD0810
HYBD0820
HYBD0830
HYBD0840
HYBD0850
HYBD0860
HYBD0870
HYBD0880
HYBD0890
HYBD0900
HYBD0910
HYBD0920
HYBD0930
HYBD0940
HYBD0950
HYBD0960
HYBD0970
HYBD0980
HYBD0990
HYBD 1000
HYBD1010
HYBD1020
HYBD1030
HYBL 1440
HYBD1050
HYBD 1060
HYBD1070
HYBD1080

HYBD1090
HYBD1100
HYBD1110
HYBD 1120
HYBD1130
HYBD1140
HYBD1150
HYBD 1160
HYBD 1170
HYBD1180
HYBD1190
HYBD1200
HYBD1210
HYBD1220
HYBD1230
HYBD1240
HYBD 1250
HYBD1260
HYBD1270
HYBD 1280
HYBD1290
HYBD 1300
HYBD1310
HYBD1320
HYBD132n
HYBD 1340
HYBD 1350
HYBD1360
HYBD1370
HYBD 1380
HYBD1390
HYBD 1400
HYBD 1410
HYBD 1420
HYBD 1430
HYBD 1440
HYBD 1450
HYBD 1460
HYBD 1470
HYBD1480
HYBD 1490
HYBD 1500
HYBD 1510
HYBD 1520
HYBD 1530
HYBD 1540
HYBD1550
HYBD1560
HYBD1570
HYBD1580
HYBD1590
HYBD1600
HYBD1610
HYBD1620

C

$$
\text { INFO }=0
$$

IFLAG $=0$
NFEV $=0$
CHECK THE INPUT PARAMETERS FOR ERRORS.
IF (N . LE. O .OR. XTOL .LT. ZERO . OR. MAXFEV .LE. 0

* . OR. ML .LT. O .OR. MU .LT. O . OR. FACTOR . LE. ZERO
* . OR. LDFJAC .LT. N .OR. LR .LT. $(\mathrm{N} *(\mathrm{~N}+1)) / 2)$ GO TO 300

IF (MODE .NE. 2) GO TO 20
DO $10 \mathrm{~J}=1$, N
IF (DIAG(J) .LE. ZERO) GO TO 300
10 CONTINUE
20 CONTINUE
EVALUATE THE FUNCTION AT THE STARTING POINT
and Calculate its norm.
IFLAG $=1$
CALL FCN(N,X,FVEC,IFLAG)
$\mathrm{NFEV}=1$
IF (IFLAG .LT. 0) GO TO 300
FNORM $=\operatorname{ENORM}(N, F V E C)$
C
C DETERMINE THE NUMBER OF CALLS TO FCN NEEDED TO COMPUTE
C
$\operatorname{MSUM}=\operatorname{MINO}(M L+M U+1, N)$
INITIALIZE ITERATION COUNTER AND MONITORS.
ITER = 1
NCSUC $=0$
NCFAIL $=0$
NSLOW1 $=0$
NSLOW2 = 0
INTEGER I, IFLAG, ITER, J, JM1, L, MSUM, NCFAIL, NCSUC, NSLOW1, NSLOW2 INTEGER IWA(1)
LOGICAL JEVAL,SING
DOUBLE PRECISION ACTRED,DELTA,EPSMCH,FNORM,FNORM1,ONE,PNORM, PRERED, P1, P5, P001, P0001, RATIO, SUM, TEMP, XNORM, ZERO
DOUBLE PRECISION DPMPAR,ENORM
DATA ONE,P1,P5,P001,P0001,ZERO

* / $1.0 \mathrm{DO}, 1.0 \mathrm{D}-1,5.0 \mathrm{D}-1,1.0 \mathrm{D}-3,1.0 \mathrm{D}-4,0.0 \mathrm{DO} /$

EPSMCH IS THE MACHINE PRECISION.
EPSMCH $=\operatorname{DPMPAR}(1)$

BEGINNING OF THE OUTER LOOP.

HYBD1630
HYBD1640
HYBD1650
HYBD1660
HYBD1670
HYBD1680
HYBD1690
HYBD1700
HYBD1710
HYBD1720
HYBD1730
HYBD1740
HYBD1750
HYBD 1760
HYBD1770
HYBD1780
HYBD1790
HYBD1800
HYBD1810
HYBD1820
HYBD1830
HYBD1840
HYBD 1850
HYBD1860
HYBD 1870
HYBD 1880
HYBD 1890
HYBD 1900
HYBD1910
HYBD1920
HYBD1930
HYBD1940
HYBD1950
HYBD1960
HYBD1970
HYBD1980
HYBD1990
HYBD2000
HYBD2010
HYBD2020
HYBD2030
HYBD2040
HYBD2050
HYBD2060
HYBD2070
HYBD2080
HYBD2090
HYBD2100
HYBD2110
HYBD2120
HYBD2130
HYBD2140
HYBD2150
HYBD2160

```
C
    30 CONTINUE
    JEVAL = .TRUE.
C
C
C
    *
C
C
C
C
C
C
C
    40
CALCULATE THE JACOBIAN MATRIX.
IFLAG \(=2\)
CALL FDJAC1 (FCN,N,X,FVEC,FJAC,LDFJAC,IFLAG,ML,MU,EPSFCN,WA1, WA2)
NFEV = NFEV + MSUM
IF (IFLAG .LT. 0) GO TO 300
COMPUTE THE QR FACTORIZATION OF THE JACOBIAN.
CALL QRFAC(N,N,FJAC,LDFJAC,.FALSE.,IWA,1,WA1,WA2,WA3)
ON THE FIRST ITERATION AND IF MODE IS 1, SCALE ACCORDING
TO THE NORMS OF THE COLUMNS OF THE INITIAL JACOBIAN.
IF (ITER .NE. 1) GO TO 70
IF (MODE .EQ. 2) GO TO 50
DO \(40 \mathrm{~J}=1\), N
DIAG(J) = WA2(J)
IF ( \(\mathrm{K} A 2\) 2(J) .EQ. ZERO) DIAG(J) \(=\) ONE
CONTINUE
CONTINUE
ON THE FIRST ITERATION, CALCULATE THE NORM OF THE SCALED X AND INITIALIZE THE STEP BOUND DELTA.
DO \(60 \mathrm{~J}=1\), N
WA3 \((\mathrm{J})=\operatorname{DIAG}(\mathrm{J}) * X(\mathrm{~J})\)
CONTINUE
XNORM \(=\) ENORM (N,WA3)
DELTA \(=\) FACTOR*XNORM
IF (DELTA .EQ. ZERO) DELTA = FACTOR
continue
FORM (Q TRANSPOSE) if FVEC AND STORE IN QTF.
DO \(80 \mathrm{I}=1\), N
\(\operatorname{QTF}(\mathrm{I})=\operatorname{FVEC}(\mathrm{I})\)
CONTINUE
DO \(120 \mathrm{~J}=1\), N
IF (FJAC(J,J) .EQ. ZERO) GO TO 110
SUM \(=\) ZERO
DO \(90 \mathrm{I}=\mathrm{J}, \mathrm{N}\) SUM \(=\) SUM + FJAC \((I, J) * Q T F(I)\) CONTINUE
TEMP \(=-\) SUM/FJAC(J, J)
DO \(100 \mathrm{I}=\mathrm{J}, \mathrm{N}\) \(\mathrm{QTF}(\mathrm{I})=\mathrm{QTF}(\mathrm{I})+\operatorname{FJAC}(\mathrm{I}, \mathrm{J}) * T E M P\) CONTINUE
CONTINUE
```

HYBD2170
HYBD2180
HYBD2190
HYBD2200
HYBD2210
HYBD2220
HYBD2230
HYBD2240
HYBD2250
HYBD2260
HYBD2270
HYBD2280
HYBD2290
HYBD2300
HYBD2310
HYBD2320
HYBD2330
HYBD2340
HYBD2350
HYBD2360
HYBD2370
HYBD2380
HYBD2390
HYBD2400
HYBD2410
HYBD2420
HYBD2430
HYBD2440
HYBD2450
HYBD2460
HYBD2470
HYBD2480
HYBD2490
HYBD2500
HYBD2510
HYBD 2520
HYBD2530
HYBD2540
HYBD2550
HYBD2560
HYBD2570
HYBD2580
HYBD2590
HYBD2600
HYBD2610
HYBD2620
HYBD2630
HYBD2640
HYBD2650
HYBD2660
HYBD2670
HYBD2680
HYBD2690
HYBD2700

120	CONTINUE	
C		
C	COPY THE TRIANGULAR FACTOR OF THE QR FACTORIZATION INTO R.	
C		
SING $=$. FALSE.		
JM1 = J - 1		
IF (JM1 .LT. 1) GO TO 140		
D0 $130 \mathrm{I}=1$, JM1		
$\mathrm{R}(\mathrm{L})=\operatorname{FJAC}(\mathrm{I}, \mathrm{J})$		
$L=L+N-I$		
130 CONTINUE		
140	CONTINUE	
	$\mathrm{R}(\mathrm{L})=$ WA1 (J)	
IF (WAI (J) .EQ. ZERO) SING = .TRUE.		
150	CONTINUE	
C		
C	ACCUMULATE THE ORTHOGONAL FACTOR IN FJAC.	
C		
	CALI QFORM (N, N, FJAC , LDFJAC , WA1)	
C		
C	RESCALE IF NECESSARY.	
C		
	IF (MODE .EQ. 2) GO TO 170	
	DO $160 \mathrm{~J}=1, \mathrm{~N}$	
	DIAG(J) = DMAX1 (DIAG(J), WA2 (J))	
160	CONTINUE	
170	CONTINUE	
C		
C	BEGINNING OF THE INNER LOOP.	
C		
180	CONTINUE	
C		
C	IF REQUESTED, CALL FCN TO ENABLE PRINTING OF ITERATES.	
C		
IF (NPRINT .LE. 0) GO TO 190 IFLAG $=0$		
IF (MOD (ITER-1,NPRINT) .EQ. 0) CALL FCN(N,X,FVEC, IFLAG)		
IF (IFLAG .LT. 0) GO T0 300		
190	CONTINUE	
C		
C	DETERMINE THE DIRECTION P.	
C		
	CALL DOGLEG(N,R,LR,DIAG, QTF, DELTA, WA1,WA2, WA 3)	
C		
C	STORE THE DIRECTION P AND X + P. CALCULATE THE NORM OF P.	
C		
	$\text { DO } 200 \mathrm{~J}=1, \mathrm{~N}$	
$\text { WA1 }(\mathrm{J})=-W A 1(\mathrm{~J})$		
WA2 $(\mathrm{J})=\mathrm{X}(\mathrm{J})+$ WA1 (J)		
WA3 $(\mathrm{J})=$ DIAG (J) 'WA1 (J)		
200 CONTINUE		
PNORM = ENORM(N,WA3)		

HYBD2710 HYBD2720 HYBD2730 HYBD2740 HYBD2750 HYBD2760 HYBD2770 HYBD2780 HYBD2790 HYBD2800 HYBD2810 HYBD2820 HYBD2830 HYBD2840 HYBD2850 HYBD2860 HYBD2870 HYBD2880 HYBD2890 HYBD2900 HYBD2910 HYBD2920 HYBD2930
HYBD2940
HYBD2950
HYBD2960
HYBD2970
HYBD2980
HYBD2990
HYBD3000
HYBD3010
HYBD3020
HYBD3030
HYBD3040
HYBD3050
HYBD3060
HYBD3070
HYBD3080
HYBD3090
HYBD3100
HYBD3110
HYBD3120
HYBD3130
HYBD3140
HYB: 3150
HYBD3160
HYBD3170
HYBD3180
HYBD3190
HYBD3200
HYBD3210
HYBD3220
HYBD3230
HYBD3240

```
C
C
C
C
C
C
C
C
C
ON THE FIRST ITERATION, ADJUST THE INITIAL STEP BOUND.
IF (ITER .EQ. 1) DELTA \(=\) DMIN1 (DELTA, PNORM)
EVALUATE THE FUNCTION AT \(X+P\) AND CALCULATE ITS NORM.
IFLAG \(=1\)
CALL \(\operatorname{FCN}(\mathrm{N}, \mathrm{WA} 2, \mathrm{WA} 4\), IFLAG)
NFEV = NFEV + 1
IF (IFLAG .LT. 0) GO TO 300
FNORM1 \(=\operatorname{ENORM(N,WA4)}\)
COMPUTE THE SCALED ACTUAL REDUCTION.
ACTRED = -ONE
IF (FNORM1 .LT. FNORM) ACTRED = ONE - (FNORM1/FNORM) **2
COMPUTE THE SCALED PREDICTED REDUCTION.
\(\mathrm{L}=1\)
DO 220 I = 1, N
SUM \(=\) ZERO
DO \(210 \mathrm{~J}=\mathrm{I}, \mathrm{N}\)
SUM \(=\) SUM + R(L)*WA1 (J)
\(\mathrm{L}=\mathrm{L}+1\)
CONTINUE
WA3(I) = QTF (I) + SUM
CONTINUE
TEMP \(=\operatorname{ENORM}(\mathrm{N}, \mathrm{WA} 3)\)
PRERED = ZERO
IF (TEMP . LT. FNORM) PRERED = ONE - (TEMP/FNORM) \(* * 2\)
COMPUTE THE RATIO OF THE ACTUAL TO THE PREDICTED REDUCTION.
RATIO \(=\) ZERO
IF (PRERED .GT. ZERO) RATIO = ACTRED/PRERED
UPDATE THE STEP BOUND.
IF (RATIO .GE. P1) GO TO 230
NCSUC \(=0\)
NCFAIL \(=\) NCFAIL +1
DELTA \(=\) P5 \({ }^{*}\) DELTA
GO TO 240
CONTINUE
NCFAIL \(=0\)
NCSUC \(=\) NCSUC +1
IF (RATIO .GE. PS .OR. NCSUC .GT. 1)
DELTA \(=\) DMAX1(DELTA, PNORM/P5)
IF (DABS (RATIO-ONE) .LE. P1) DELTA = PNORM/P5
CONTINUE
```

HYBD3250
HYBD3260
HYBD3270
HYBD3280
HYBD3290
HYBD3300
HYBD3310
HYBD3320
HYBD3330
HYBD3340
HYBD3350
HYBD3360
HYBD3370
HYBD3380
HYBD3390
HYBD3400
HYBD3410
HYBD3420
HYBD3430
HYBD3440
HYBD3450
HYBD3460
HYBD3470
HYBD3480
HYBD3490
HYBD3500
HYBD3510
HYBD3520
HYBD3530
HYBD3540
HYBD3550
HYBD3560
HYBD3570
HYBD3580
HYBD 3590
HYBD3600
HYBD3610
HYBD3620
HYBD3630
HYBD3640
HYBD3650
HYBD3660
HYBD3570
HYBD3680
HYBD3690
HYBD3700
HYBD3710
HYBD3720
HYBD3730
HYBD3740
HYBD3750
HYBD3760
HYBD3770
HYBD3780

C
C

TEST FOR SUCCESSFUL ITERATION.
HYBD3790
IF (RATIO .LT. P0001) GO TO 260
HYBD3800
HYBD3810
HYBD3820
SUCCESSFUL ITERATION. UPDATE X, FVEC, AND THEIR NORMS.
HYBD3830
HYBD3840
DO $250 \mathrm{~J}=1, \mathrm{~N}$
HYBD3850
$X(J)=$ WA2 (J)
HYBD3860
WA2 $(\mathrm{J})=\operatorname{DIAG}(\mathrm{J}) * X(\mathrm{~J})$
$\operatorname{FVEC}(\mathrm{J})=$ WA4 (J)
CONTINUE
XNORM $=\operatorname{ENORM}(\mathrm{N}, \mathrm{WA} 2)$
FNORM = FNORMI
ITER = ITER + 1
CONTINUE
DETERMINE THE PROGRESS OF THE ITERATION.
NSLOW1 = NSLOW1 + 1
IF (ACTRED .GE. P001) NSLOW1 $=0$
IF (JEVAL) NSLOW2 $=$ NSLOW2 +1
IF (ACTRED .GE. P1) NSLOW2 = 0
TEST FOR CONVERGENCE.
IF (DELTA .LE. XTOL*XNORM .OR. FNORM .EQ. ZERO) INFO = 1
IF (INFO .NE. O) GO TO 300
TESTS FOR TERMINATION AND STRINGENT TOLERANCES.
IF (NFEV . GE. MAXFEV) INFO = 2
IF (P1*DMAX1 (P1*DELTA, PNORM) .LE. EPSMCH*XNORM) INFO $=3$
IF (NSLOW2 .EQ. 5) INFO = 4
IF (NSLOW1 .EQ. 10) INFO = 5
IF (INFO .NE. 0) GO TO 300
CRITERION FOR RECALCULATING JACOBIAN APPROXIMATION BY FORWARD DIFFERENCES.

IF (NCFAIL .EQ. 2) GO TO 290
CALCULATE THE RANK ONE MODIFICATION TO THE JACOBIAN AND UPDATE QTF IF NECESSARY.

DO $280 \mathrm{~J}=1$, N
SUM $=$ ZERO
DO $270 \mathrm{I}=1$, N
SUM $=\operatorname{SUM}+\operatorname{FJAC}(I, J) * W A 4(I)$
CONTINUE
WA2 $(\mathrm{J})=$ (SUM - WA3(J))/PNORM
WA1 $(\mathrm{J})=$ DIAG(J)*((DIAG(J)*WA1(J))/PNORM)
IF (RATIO .GE. POOO1) QTF(J) = SUM
CONTINUE

HYBD3880
HYBD3890
HYBD3900
HYBD3910
HYBD3920
HYBD3930
HYBD3940
HYBD3950
HYBD3960
HYBD3970
HYBD3980
HYBD3990
HYBD4000
HYBD4010
HYBD4020
HYBD4030
HYBD4040
HYBD4050
HYBD4060
HYBD4070
HYBD4080
HYBD4090
HYBD4100
HYBD4110
HYBD4 120
HYBD4130
HYBD4 140
HYBD4150
HYBD4160
HYBD4170
HYBD4180
HYBD4190
HYBD4200
HYBD4210
HYBD4220
HYBD4230
HYBD4240
HYBD4250
HYBD4260
HYBD4270
HYBD4280
HYBD4290
HYBD4300
HYBD4310
HYBD4320

	SUBROUTINE HYBRD1(FCN, N, X, FVEC, TOL, INFO, WA, LWA)	HYD10010
	INTEGER N, INFO, LWA	HYD10020
	DOUBLE PRECISION TOL	HYD10030
	DOUBLE PRECISION X (N), FVEC (N), WA (LWA)	HYD10040
	EXTERNAL FCN	HYD10050
C		HYD10060
C		HYD10070
C	SUBROUTINE HYBRD1	HYD10080
C		HYD10090
C	THE PURPOSE OF HYBRD1 IS TO FIND A 2ERO OF A SYSTEM OF	HYD10100
C	N NONLINEAR FUNCTIONS IN N VARIABLES BY A MODIFICATION	HYD10110
C	OF THE POWELL HYBRID METHOD. THIS IS DONE BY USING THE	HYD10120
C	MORE GENERAL NONLINEAR EQUATION SOLVER HYBRD. THE USER	HYD10130
C	MUST PROVIDE A SUBROUTINE WHICH CALCULATES THE FUNCTIONS.	HYD10140
C	THE JACOBIAN IS THEN CALCULATED BY A FORWARD-DIFFERENCE	HYD10150
C	APPROXIMATION.	HYD10160
C		HYD10170
C	THE SUBROUTINE STATEMENT IS	HYD10180
C		HYD10190
C	SUBROUTINE HYBRD1 (FCN, N, X,FVEC, TOL, INFO, WA, LWA)	HYD10200
C		HYD10210
C	WHERE	HYD10220
C		HYD10230
C	FCN IS THE NAME OF THE USER-SUPPLIED SUBROUTINE WHICH	HYD 10240
C	CALCULATES THE FUNCTIONS. FCN MUST BE DECLARED	HYD10250
C	In an external statement in the user calling	HYD10260
C	PROGRAM, AND SHOULD BE WRITTEN AS FOLLOWS.	HYD10270
C		HYD10280
C	SUBROUTINE FCN(N,X,FVEC, IFLAG)	HYD10290
C	INTEGER N, IFLAG	HYD 10300
C	DOUBLE PRECISION X(N), FVEC(N)	HYD 10310
C		HYD 10320
C	CALCULATE THE FUNCTIONS AT X AND	HYD 10330
C	RETURN THIS VECTOR IN FVEC.	HYD 10340
C		HYD 10350
C	RETURN	HYD 10360
C	END	HYD 10370
C		HYD10380
C	THE VALUE OF IFLAG Should not be changed by fci unless	HYD10390
C	THE USER WANTS TO TERMINATE EXECUTION OF HYBRD1.	HYD 10400
C	IN THIS CASE SET IfLAG TO A NEGATIVE INTEGER.	HYD 10410
C		HYD 10420
C	N I A A POSITIVE INTEGER InPUT VARIABLE SET TO THE NUMBER	HYD 10430
C	OF FUNCTIONS AND VARIALLES.	HYP10440
C		HYD 10450
C	X IS AN ARRAY OF LENGTH N . ON INPUT X MUST CONTAIN	HYD 10460
C	an initial estimate of the solution vector. on output X	HYD10470
C	CONTAINS THE FINAL ESTIMATE OF THE SOLUTION VECTOR.	HYD 10480
C		HYD10490
C	FVEC IS AN OUTPUT ARRAY OF LENGTH N WHICH CONTAINS	HYD 10500
C	THE FUNCTIONS EVALCATED AT THE OUTPUT X.	HYD10510
C		HYD10520
C	TOL IS A NONNEGATIVE INPUT VARIABLE. TERMINATION OCCURS	HYD10530
C	WHEN THE ALGORITHM ESTIMA IES THAT THE RELATIVE ERROR	HYD10540

ARGONNE NATIONAL LABORATORY. MINPACK PROJECT. MARCH 1980. BURTON S. GARBOW, KENNETH E. HILLSTROM, JORGE J. MORE
*
INTEGER INDEX, J, LR, MAXFEV,ML, MODE, MU, NFEV, NPRINT
DOUBLE PRECISION EPSFCN,FACTOR,ONE,XTOL,ZERO
DATA FACTOR, ONE, ZERO / 1.0D2,1.0DO,0.0DO/
INFO $=0$
CHECK THE INPUT PARAMETERS FOR ERRORS.
IF (N .LE. 0 .OR. TOL .LT. ZERO .OR. LWA .LT. $\left.\left(\mathrm{N}^{*}(3 * \mathrm{~N}+13)\right) / 2\right)$ * GO TO 20

CALL HYBRD.
MAXFEV $=200 \%(\mathrm{~N}+1)$
XTOL $=$ TOL
ML $=\mathrm{N}$ - 1
$M U=N-1$
EPSFCN = ZERO
MODE $=2$
DO $10 \mathrm{~J}=1, \mathrm{~N}$

HYD10550
HYD10560
HYD10570
HYD10580
HYD10590
HYD10600
HYD10610
HYD10620
HYD10630
HYD10640
HYD10650
HYD10660
HYD10670
HYD10680
HYD10690
HYD10700
HYD10710
HYD10720
HYD10730
HYD10740
HYD10750
HYD10760
HYD10770
HYD10780
HYD10790
HYD10800
HYD10810
HYD10820
HYD10830
HYD10840
HYD10850
HYD10860
HYD10870
HYD10880
HYD10890
HYD10900
HYD10910
HYD10920
HYD10930
HYD10940
HYD10950
HYD10960
HYD10970
HYD10980
HYD10990
HYD11000
HYD11010
HYD11020
HYD11030
HYD11040
HYD11050
HYD11060
HYD11070
HYD11080

```
                WA(J) = ONE HYD11090
    CONTINUE HYD11100
        NPRINT = 0
        LR = (N*(N + 1))/2 HYD11120
        INDEX = 6%N + LR
        CALL HYBRD(FCN,N,X,FVEC,XTOL,MAXFEV,ML,MU,EPSFCN,WA(1),MODE, HYD11140
        * FACTOR,NPRINT,INFO,NFEV,WA(INDEX+1),N,WA(6*N+1),LR,
        *
        IF (INFO .EQ. 5) INFO = 4
20 CONTINUE
    RETURN
C
C LAST CARD OF SUBROUTINE HYBRD1.
C
    END
        HYD11110
        HYD11130
        *
        HYD11150
            WA(N+1),WA(2*N+1),WA(3*N+1),WA(4*N+1),WA(5*N+1))
        HYD11160
        HYD11170
HYD11180
HYD1.190
END
```

HYD11200
HYD11210
HYD11220
HYD11230

```
    SUBROUTINE HYBRJ(FCN,N,X,FVEC,FJAC,LDFJAC,XTOL,MAXFEV,DIAG,MODE,
#
*
    FACTOR,NPRINT, INFO,NFEV,NJEV,R, LR , QTF ,WA1,WA2,
    WA3,WA4)
    INTEGER N,LDFJAC,MAXFEV,MODE,NPRINT,INFO,NFEV,NJEV,LR
    DOUBLE PRECISION XTOL,FACTOR
    DOUBLE PRECISION X(N),FVEC(N),FJAC(LDFJAC,N),DIAG(N),R(LR),
*
    *************
    SUBROUTINE HYBRJ
```

 THE PURPOSE OF HYBRJ IS TO FIND A ZERO OF A SYSTEM OF
 N NONLINEAR FUNCTIONS IN N VARIABLES BY A MODIFICATION
 OF THE POWELL HYBRID METHOD. THE USER MUST PROVIDE A
 SUBROUTINE WHICH CALCULATES THE FUNCTIONS AND THE JACOBIAN.
 THE SUBROUTINE STATEMENT IS
 SUBROUTINE HYBRJ (FCN,N,X,FVEC,FJAC, LDFJAC, XTOL, MAXFEV, DIAG,
 MODE , FACTOR , NPRINT , INFO, NFEV, NJEV , R, LR , QTF ,
 WA1, WA2, WA3,WA4)
 WHERE
 FCN IS THE NAME OF THE USER-SUPPLIED SUBROUTINE WHICH
 CALCULATES THE FUNCTIONS AND THE JACOBIAN. FCN MUST
 BE DECLARED IN AN EXTERNAL STATEMENT IN THE USER
 CALLING PROGRAM, AND SHOULD BE WRITTEN AS FOLLOWS.
 SUBROUTINE FCN(N,X,FVEC,FJAC,LDFJAC,IFLAG)
 INTEGER N,LDFJAC,IFLAG
 DOUBLE PRECISION X (N),FVEC(N),FJAC(LDFJAC,N)

 IF IFLAG \(=1\) CALCULATE THE FUNCTIONS AT X AND
 RETURN THIS VECTOR IN FVEC. DO NOT ALTER FJAC.
 IF IFLAG \(=2\) CALCULATE THE JACOBIAN AT X AND
 RETURN THIS MATRIX IN FJAC. DO NOT ALTER FVEC.
 RETURN
 END
 THE VALUE OF IFLAG SHOULD NOT BE CHANGED BY FCN UNLESS
 THE USER WANTS TO TERMINATE EXECUTION OF HYBRJ.
 IN THIS CASE SET IFLAG TO A NEGATIVE INTEGER.
 N IS A POSITIVE INTEGER INPUT VARIABLE SET TO THE NUMBER
 OF FUNCTIONS AND VARIABLES.
 X IS AN ARRAY OF LENGTH N. ON INPUT X MUST CONTAIN
 AN INITIAL ESTIMATE OF THE SOLUTION VECTOR. ON OUTPUT X
 CONTAINS THE FINAL ESTIMATE OF THE SOLUTION VECTOR.
 FVEC IS AN OUTPUT ARRAY OF LENGTH N WHICH CONTAINS
 THE FUNCTIONS EVALUATED AT THE OUTPUT X.
 THE SUBROUTINE STATEMENT IS
SUBROUTINE HYBRJ(FCN,N,X,FVEC,FJAC, LDFJAC, XTOL, MAXFEV, DIAG, WA1, WA2, WA3, WA4)

WHERE
FCN IS THE NAME OF THE USER-SUPPLIED SUBROUTINE WHICH CALCULATES THE FUNCTIONS AND THE JACOBIAN. FCN MUST BE DECLARED IN AN EXTERNAL STATEMENT IN THE USER CALLING PROGRAM, AND SHOULD BE WRITTEN AS FOLLOWS.

SUBROUTINE FCN(N,X,FVEC,FJAC,LDFJAC,IFLAG)
INTEGER N,LDFJAC,IFLAG
DOUBLE PRECISION X (N), FVEC (N) ,FJAC(LDFJAC,N)

IF IFIAG $=1$ CALCULATE THE FUNCTIONS AT X AND
RETURN THIS VECTOR IN FVEC. DO NOT ALTER FJAC.
IF IFLAG $=2$ CALCULATE THE JACOBIAN AT X AND
RETURN THIS MATRIX IN FJAC. DO NOT ALTER FVEC.

RETURN
END

THE VALUE OF IFLAG SHOULD NOT BE CHANGED BY FCN UNLESS THE USER WANTS TO TERMINATE EXECUTION OF HYBRJ. IN THIS CASE SET IFLAG TO A NEGATIVE INTEGER.

N IS A POSITIVE INTEGER INPUT VARIABLE SET TO THE NUMBER OF FUNCTIONS AND VARIABLES.
X IS AN ARRAY OF LENGTH N. ON INPUT X MUST CONTAIN AN INITIAL ESTIMATE OF THE SOLUTION VECTOR. ON OUTPUT X CONTAINS THE FINAL ESTIMATE OF THE SOLUTION VECTOR.

FVEC IS AN OUTPUT ARRAY OF LENGTH N WHICH CONTAINS THE FUNCTIONS EVALUATED AT THE OUTPUT X.

HYBJ0010 HYBJOO20 HYBJ0030 HYBJ0040 HYBJ0050 HYBJ0060 HYBJ0070 HYBJ0080 HYBJ0090 HYBJ0100 HYBJ0110
HYBJ0120
HYBJ0130
HYBJ0140
HYBJ0150
HYBJ0160

HYBJ0170
HYBJ0180
HYBJ0190
HYBJO200
HYBJ0210
HYBJ0220
HYBJ0230
HYBJ0240
HYBJ0250
HYBJ0260
HYBJ0270
HYBJ0280
HYBJ0290
HYBJ0300
HYBJ0310
HYBJ0320
HYBJ0330
HYBJ0340
HYBJ0350
HYBJ0360
HYBJ0370
HYBJ0380
HYBJ0390
HYBJ0400
HYBJ0410
HYBJ0420
HYBJ0430
HYBJC440
HYBJ0450
HYBJ0460
HYBJ0470
HYBJ0480
HYBJ0490
HYBJ0500
HYBJ0510
HYBJ0520
HYBJ0530
HYBJ0540

C		HYBJ0550
C	FJac is an output n by n array which contains the	HYBJ0560
C	ORTHOGONAL MATRIX Q PRODUCED BY THE QR FACTORIZATION	HYBJ0570
C	OF THE FINAL APPROXIMATE JACOBIAN.	HYBJ0580
C		HYBJ0590
C	LDFJAC IS A POSITIVE INTEGER INPUT VARIABLE NOT LESS THAN N	HYBJ0600
C	WHICH SPECIFIES THE LEADING DIMENSION OF THE ARRAY FJAC.	HYBJ0610
C		HYBJ0620
C	XTOL IS A NONNEGATIVE INPUT VARIABLE. TERMINATION	HYBJ0630
C	OCCURS WHEN THE RELATIVE ERROR BETWEEN TWO CONSECUTIVE	HYBJ0640
C	ITERATES IS AT MOST XTOL.	HYBJ0650
C		HYBJ0660
C	MAXFEV IS A POSITIVE INTEGER INPUT VARIABLE. TERMINATION	HYBJ0670
C	OCCURS WHEN THE NUMBER OF CALLS TO FCN WITH IFLAG $=1$	HYBJ0680
C	HAS REACHED MAXFEV.	HYBJ0690
C		HYBJ0700
C	diag is an array of length N . IF MODE $=1$ (SEE	HYBJ0710
C	BELOW), DIAG IS INTERNALLY SET. IF MODE $=2$, DIAG	HYBJ0720
C	MUST CONTAIN POSITIVE ENTRIES THAT SERVE AS	HYBJ0730
C	MULTIPLICATIVE SCALE FACTORS FOR THE VARIABLES.	HYBJ0740
C		HYBJ0750
C	MODE IS AN INTEGER INPUT VARIABLE. IF MODE $=1$, THE	HYBJ0760
C	VARIABLES WILL BE SCALED INTERNALLY. IF MODE $=2$,	HYBJ0770
C	THE SCALING IS SPECIFIED BY THE INPUT DIAG. OTHER	HYBJ0780
C	VALUES OF MODE ARE EQUIVALENT TO MODE $=1$.	HYBJ0790
C		HYBJ0800
C	FACTOR IS A POSITIVE INPUT VARIABLE USED IN DETERMINING THE	HYBJ0810
C	INITIAL STEP BOUND. THIS BOUND IS SET TO THE PRODUCT OF	HYBJ0820
C	FACTOR AND THE EUCLIDEAN NORM OF DIAG*X IF NONZERO, OR ELSE	HYBJ0830
C	TO FACTOR ITSELF. IN MOST CASES FACTOR SHOULD LIE IN THE	HYBJ0840
C	INTERVAL (.1,100.). 100. IS A GENERALLY RECOMMENDED VALUE.	HYBJ0850
C		HYBJ0860
C	NPRINT IS AN INTEGER INPUT VARIABLE THAT ENABLES CONTROLLED	HYBJ0870
C	PRINTING OF ITERATES IF IT IS POSITIVE. In this case,	HYBJ0880
C	FCN IS CALLED WITH IFLAG $=0$ at The BEginning OF THE FIRST	HYBJ0890
C	ITERATION AND EVERY NPRINT ITERATIONS THEREAFTER AND	HYBJ0900
C	IMMEDIATELY PRIOR TO RETURN, WITH X AND FVEC AVAILABLE	HYBJ0910
C	FOR PRINTING. FVEC AND FJAC ShOULD NOT BE ALTERED.	HYBJ0920
C	IF NPRINT IS NOT POSITIVE, NO SPECIAL CALLS OF FCN	HYBJ0930
C	WITH IFLAG $=0$ ARE MADE .	HYBJ0940
C		HYBJ0950
C	INFO IS AN INTEGER OUTPUT VARIABLE. IF THE USER HAS	HYBJ0960
C	TERMINATED EXECUTION, INFO IS SET TO THE (NEGATIVE)	HYBJ0970
C	VALUE OF IFLAG. SEE DESCRIPTION OF FCN. OTHERWISE,	HYBJ0980
C	INFO IS SET AS FOLLOWS.	HYBJ0990
C		HYBJ1000
C	INFO $=0$ IMPROPER INPUT PARAMETERS	HYBJ1010
C		HYBJ1020
C	INFO = 1 RELATIVE ERROR BETWEEN TWO CONSECUTIVE ITERATES	HYBJ1030
C	IS AT MOST XTOL.	HYBJ1040
C		HYBJ 1050
C	INFO $=2$ NUMBER OF CALLS TO FCN WITH IFLAG $=1$ HAS	HYBJ 1060
C	REACHED MAXFEV.	HYBJ 1070
		HYBJ1080

HYBJ1090
HYBJ1100
HYBJ1110
HYBJ 1120
HYBJ1130
HYBJ1140
HYBJ1150
HYBJ1160
HYBJ 1170
HYBJ1180
HYBJ1190
HYBJ1200
HYBJ1210
HYBJ1220
HYBJ 1230
HYBJ 1240
HYBJ1250
HYBJ1260
HYBJ1270
HYBJ 1280
HYBJ1290
HYBJ 1300
HYBJ 1310
HYBJ1320
HYBJ1330
HYBJ 1340
HYBJ1350
HYBJ1360
HYBJ 1370
HYBJ 1380
HYBJ1390
HYBJ 1400
HYBJ 1410
HYBJ 1420
HYBJ1430
HYBJ 1440
HYBJ 1450
HYBJ 1460
HYBJ 1470
HYBJ 1480
HYBJ1490
HYBJ 1500
HYBJ1510
HYBJ 1520
HYBJ1530
HYBJ1540
HYBJ1550
HYBJ1560
HYBJ1570
HYBJ1580
HYBJ1590
HYBJ1600
HYBJ1610
HYBJ 1620

	IF (ITER .NE. 1) GO TO 70	HYBJ 2170
	IF (MODE . EQ. 2) GO TO 50	HYBJ2180
	D0 $40 \mathrm{~J}=1, \mathrm{~N}$	HYBJ2190
	DIAG(J) = WA2 (J)	HYBJ2200
	IF (WA2 (J) .EQ. ZERO) DIAG(J) = ONE	HYBJ2210
40	CONTINUE	HYBJ2220
50	CONTINUE	HYBJ2230
C		HYBJ2240
C	ON THE FIRST ITERATION, CALCULATE THE NORM OF THE SCALED X	HYBJ2250
C	and initialize the step bound delta.	HYBJ2260
C		HYBJ2270
	DO $60 \mathrm{~J}=1, \mathrm{~N}$	HYBJ2280
	WA3 J$)=\operatorname{DIAG}(\mathrm{J}) *$ X ${ }^{\text {(J) }}$	HYBJ2290
60	CONTINUE	HYBJ2300
	XNORM $=\operatorname{ENORM}$ ($\mathrm{N}, \mathrm{WA3}$)	HYBJ2310
	DELTA $=$ FACTOR ${ }^{*} \times$ XNORM	HYBJ2320
	IF (DELTA . EQ. ZERO) DELTA $=$ FACTOR	HYBJ2330
70	CONTINUE	HYBJ2340
C		HYBJ2350
C	FORM (Q TRANSPOSE)*FVEC AND STORE IN QTF.	HYBJ2360
C		HYBJ2370
	DO $80 \mathrm{I}=1, \mathrm{~N}$	HYBJ2380
	QTF (I) = FVEC(I)	HYBJ2390
80	CONTINUE	HYBJ 2400
	DO $120 \mathrm{~J}=1, \mathrm{~N}$	HYBJ2410
	IF (FJAC (J, J) .EQ. ZERO) GO TO 110	HYBJ 2420
	SUM $=$ ZERO	HYBJ 2430
	DO $90 \mathrm{I}=\mathrm{J}, \mathrm{N}$	HYBJ2440
	SUM $=\operatorname{SUM}+\operatorname{FJAC}(\mathrm{I}, \mathrm{J}) * \mathrm{QTF}(\mathrm{I})$	HYBJ2450
90	CONTINUE	HYBJ2460
	TEMP $=-\operatorname{SUM} / \mathrm{FJAC}(\mathrm{J}, \mathrm{J})$	HYBJ2470
	DO $100 \mathrm{I}=\mathrm{J}, \mathrm{N}$	HYBJ2480
	$\mathrm{QTF}(\mathrm{I})=\mathrm{QTF}(\mathrm{I})+\operatorname{FJAC}(\mathrm{I}, \mathrm{J}) *$ TEMP	HYBJ2490
100	CONTINUE	HYBJ2500
110	CONTINUE	HYBJ2510
120	CONTINUE	HYBJ2520
C		HYBJ2530
C	COPY THE TRIANGULAR FACTOR OF THE QR FACTORIZATION INTO R.	HYBJ2540
C		HYBJ2550
	SING = . FALSE.	HYBJ2560
	DO $150 \mathrm{~J}=1, \mathrm{~N}$	HYBJ2570
	$\mathrm{L}=\mathrm{J}$	HYBJ2580
	JM1 = J - 1	HYBJ2590
	IF (JM1 .LT. 1) GO TO 140	HYBJ2600
	DO $130 \mathrm{I}=1$, JM1	HYBJ2610
	$\mathrm{R}(\mathrm{L})=\mathrm{FJAC}(\mathrm{I}, \mathrm{J})$	HYBJ2620
	$\mathrm{L}=\mathrm{L}+\mathrm{N}-\mathrm{I}$	HYBJ2630
130	CONTINUE	HYBJ2640
140	CONTINUE	HYBJ2650
	$\mathrm{R}(\mathrm{L})=$ WA1 (J)	HYBJ2660
	IF (WAl(J) .EQ. ZERO) SING = .TRUE.	HYBJ2670
150	CONTINUE	HYBJ2680
C		HYBJ2690
C	ACCUMULATE THE ORTHOGONAL FACTOR IN FJAC.	HYBJ2700

```
C
    CALL QFORM(N,N,FJAC,LDFJAC,WA1)
C
C
C
    1 6 0

HYBJ2710
HYBJ2720
HYBJ2730
HYBJ2740
HYBJ2750
HYBJ2760
HYBJ2770
HYBJ2780
HYBJ2790
HYBJ2800
HYBJ2810
HYBJ 2820
HYBJ 2830
HYBJ2840
HYBJ2850
HYBJ2860
HYBJ2870
HYBJ2880
HYBJ2890
HYBJ2900
HYBJ2910
HYBJ2920
HYBJ2930
HYBJ2940
HYBJ2950
HYBJ2960
HYBJ2970
HYBJ2980
HYBJ2990
HYBJ3000
HYBJ3010
HYBJ3020
HYBJ3030
HYBJ3040
HYBJ3050
HYBJ3060
HYBJ3070
HYBJ3080
HYBJ3090
HYBJ3100
HYBJ3110
HYBJ3120
HYBJ3130
HYBJ3140
HYBJ3150
HYBJ3160
HYBJ3170
HYBJ3180
HYBJ3190
HYBJ3200
HYBJ3210
HYBJ3220
HYBJ 3230
HYBJ3240
\begin{tabular}{|c|c|c|}
\hline \multirow[t]{8}{*}{C} & COMPUTE THE SCALED PREDICTED REDUCTION. & HYBJ3250 \\
\hline & & HYBJ3260 \\
\hline & \(\mathrm{L}=1\) & HYBJ3270 \\
\hline & DO \(220 \mathrm{I}=1\), N & HYBJ3280 \\
\hline & SUM \(=\) ZERO & HYBJ3290 \\
\hline & DO \(210 \mathrm{~J}=\mathrm{I}, \mathrm{N}\) & HYBJ3300 \\
\hline & SUM \(=\) SUM + R(L)*WA1 (J) & HYBJ3310 \\
\hline & \(\mathrm{L}=\mathrm{L}+1\) & HYBJ3320 \\
\hline \multirow[t]{2}{*}{210} & CONTINUE & HYBJ3330 \\
\hline & WA3 \((\mathrm{I})=\) QTF (I) + SUM & HYBJ3340 \\
\hline \multirow[t]{4}{*}{220} & CONTINUE & HYBJ3350 \\
\hline & TEMP \(=\operatorname{ENORM}\) ( \(\mathrm{N}, \mathrm{WA} 3)\) & HYBJ3360 \\
\hline & PRERED \(=\) ZERO & HYBJ3370 \\
\hline & IF (TEMP .LT. FNORM) PRERED \(=\) ONE - (TEMP/FNORM)**2 & HYBJ3380 \\
\hline C & & HYBJ3390 \\
\hline C & COMPUTE THE Ratio of the actual to the prenicted & HYBJ3400 \\
\hline C & REDUCTION. & HYBJ3410 \\
\hline \multirow[t]{3}{*}{C} & & HYBJ3420 \\
\hline & RATIO \(=\) 2ERO & HYBJ3430 \\
\hline & IF (PRERED .GT. 2ERO) RATIO = ACTRED/PRERED & HYBJ3440 \\
\hline C & & HYBJ3450 \\
\hline C & UPDATE THE STEP BOUND. & HYBJ3460 \\
\hline \multirow[t]{6}{*}{C} & & HYBJ3470 \\
\hline & IF (RATIO .GE. P1) GO TO 230 & HYBJ3480 \\
\hline & NCSUC \(=0\) & HYBJ3490 \\
\hline & NCFAIL \(=\) NCFAIL +1 & HYBJ3500 \\
\hline & DELTA \(=\) P5*DELTA & HYBJ3510 \\
\hline & GO TO 240 & HYBJ3520 \\
\hline \multirow[t]{4}{*}{230} & CONTINUE & HYBJ3530 \\
\hline & NCFAIL \(=0\) & HYBJ3540 \\
\hline & NCSUC = NCSUC + 1 & HYBJ3550 \\
\hline & IF (RATIO .GE. P5 .OR. NCSUC .GT. 1) & HYBJ 3560 \\
\hline \multirow[t]{2}{*}{*} & DELTA \(=\) DMAX1 (DELTA, PNORM/P5) & HYBJ3570 \\
\hline & IF (DABS (RATIO-ONE) .LE. P1) DELTA = PNORM/P5 & HYBJ3580 \\
\hline 240 & CONTINUE & HYBJ3590 \\
\hline C & & HYBJ3600 \\
\hline C & TEST FOR SUCCESSFUL ITERATION. & HYBJ3610 \\
\hline \multirow[t]{2}{*}{C} & & HYBJ3620 \\
\hline & IF (RATIO .LT. P0001) GO TO 260 & HYBJ3630 \\
\hline C & & HYBJ3640 \\
\hline C & SUCCESSFUL ITERATION. UPDATE X, FVEC, AND THEIR NORMS. & HYBJ3650 \\
\hline \multirow[t]{5}{*}{C} & & HYBJ3660 \\
\hline & DO \(250 \mathrm{~J}=1, \mathrm{~N}\) & HYBJ3670 \\
\hline & X \((\mathrm{J})=\) WA2 \({ }^{(J)}\) & HYBJ3680 \\
\hline & WA2 \((\mathrm{J})=\operatorname{DIAG}(\mathrm{J}) \times \mathrm{X}(\mathrm{J})\) & HYBJ3690 \\
\hline & FVEC (J) \(=\) WA4(J) & HYBJ 3700 \\
\hline \multirow[t]{4}{*}{250} & CONTINUE & HYBJ3710 \\
\hline & XNORM \(=\) ENORM ( \(\mathrm{N}, \mathrm{WA2}\) ) & HYBJ3720 \\
\hline & FNORM \(=\) FNORM & HYBJ3730 \\
\hline & ITER = ITER + 1 & HYBJ3740 \\
\hline 260 & CONTINUE & HYBJ3750 \\
\hline C & & HYBJ3760 \\
\hline C & DETERMINE THE PROGRESS OF THE ITERATION. & HYBJ3770 \\
\hline C & & HYBJ3780 \\
\hline
\end{tabular}

NSLOW1 = NSLOW1 \(+1 \quad\) HYBJ3790
IF (ACTRED .GE. P001) NSLOW1 = 0 HYBJ3800
IF (JEVAL) NSLOW2 = NSLOW2 +1 HYBJ3810
IF (ACTRED .GE. P1) NSLOW2 \(=0\) HYBJ3820
C
TEST FOR CONVERGENCE.

IF (DELTA .LE. XTOL*XNORM .OR. FNORM .EQ. ZERO) INFO = 1
IF (INFO .NE. 0) GO TO 300
TESTS FOR TERMINATION AND STRINGENT TOLERANCES.
IF (NFEV .GE. MAXFEV) INFO \(=2\)
IF (P1*DMAX1 (P1*DELTA, PNORM) . LE . EPSMCH*XNORM) INFO \(=3\)
IF (NSLOW2 .EQ. 5) INFO \(=4\)
IF (NSLOW1 .EQ. 10) INFO \(=5\)
IF (INFO .NE. 0) GO TO 300
HYBJ3830
HYBJ3840
HYBJ3850
HYBJ3860
HYBJ3870
HYBJ3880
HYBJ3890
HYBJ3900
HYBJ3910
HYBJ3920
HYBJ3930
HYBJ3940
HYBJ3950
HYBJ3960
HYBJ3970
HYBJ3980
HYBJ3990
HYBJ4000
HYBJ4010
HYBJ4020
HYBJ4030
HYBJ4040
HYBJ4050
HYBJ4060
HYBJ4070
270
CRITERION FOR RECALCULATING JACOBIAN.

IF (NCFAIL .EQ. 2) GO TO 290
CALCULATE THE RAiNK ONE MODIFICATION TO THE JACOBIAN AND UPDATE QTF IF NECESSARY.

DO \(280 \mathrm{~J}=1, \mathrm{~N}\)
SUM \(=\) ZERO
DO \(270 \mathrm{I}=1, \mathrm{~N}\)
\(\operatorname{SUM}=\operatorname{SUM}+\operatorname{FJAC}(I, J) * W A 4(I)\)
CONTINUE
WA2 \((\mathrm{J})=\) (SUM - WA3 \((\mathrm{J})\) ) /PNORM
WA1 \((\mathrm{J})=\) DIAG \((\mathrm{J}) \div((\mathrm{DIAG}(\mathrm{J}) \div W A 1(\mathrm{~J})) /\) PNORM \()\)
IF (RATIO .GE. P0001) QTF (J) \(=\) SUM
280 CONTINUE

COMPLTE THE QR FACTORIZATION OF THE UPDATED JACOBIAN.
CALL R1UPDT(N,N,R,LR,WA1,WA2,WA3,SING)
CALL RIMPYQ(N,N,FJAC,LDFJAC,WA2,WA3)
CALL R1MPYQ(1,N,QTF,1,WA2,WA3)
C
C

C
END OF THE INNER LOOP.
JEVAL \(=\). FALSE.
GO TO 180
290
CONTINUE
C
C END OF THE OUTER LOOP.
C
GO TO 30
300 CONTINUE
C
C TERMINATION, EITHER NORMAL OR USER IMPOSED.
HYBJ4080
HYBJ4090
HYBJ4 100
HYBJ4110
HYBJ4 120
HYBJ4 130
HYBJ4 440
HYBJ4 150
HYBJ4160
HYBJ4170
HYBJ4180
HYBJ4190
HYBJ4200
HYBJ4210
HYBJ4220
HYBJ4230
HYBJ4240
HYBJ4250
HYBJ4260
HYBJ4270
HYBJ4280
HYBJ4290
HYBJ4300
HYBJ4310
HYBJ4320

179
```

 IF (IFLAG .LT. 0) INFO = IFLAG HYBJ4330
 IFLAG = 0 HYBJ4340
IF (NPRINT .GT. 0) CALL FCN(N,X,FVEC,FJAC,LDFJAC,IFLAG) HYBJ4350
RETURN
C
C LAST CARD OF SUBROUTINE HYBRJ.
C
END

```

HYBJ4330 HYBJ4340 HYBJ4350 HYBJ4360 HYBJ4370 HYBJ4380 HYBJ4390 HYBJ4400
```

SUBROLTINE HYBRJ1(FCN,N,X,FVEC,FJAC,LDFJAC,TOL,INFO,WA,LWA) HYJ10010
INTEGER N,LDFJAC,INFO,LWA HYJ10020
DOUBLE PRECISION TOL
DOLBLE PRECISION X(N),FVEC(N),FJAC(LDFJAC,N),WA(LWA)
EXTERNAL FCN
*w:%%w:*****
SUBROUTINE HYBRJ1
THE PURPOSE OF HYBRJ1 IS TO FIND A ZERO OF A SYSTEM OF
N NONLINEAR FUNCTIONS IN N VARIABLES BY A MODIFICATION
OF THE POWELL HYBRID METHOD. THIS IS DONE BY USING THE
MORE GENERAL NONLINEAR EQUATION SOLVER HYBRJ. THE USER
MUST PROVIDE A SUBROUTINE WHICH CALCULATES THE FUNCTIONS
AND THE JACOBIAN.
THE SUBROUTINE STATEMENT IS
SUBROUTINE HYBRJ1(FCN,N,X,FVEC,FJAC,LDFJAC,TOL,INFO,WA,LWA)
WHERE
FCN IS THE NAME OF THE USER-SUPPLIED SUBROUTINE WHICH
CALCULATES THE FUNCTIONS AND THE JACOBIAN. FCN MUST
bE DECLARED IN AN EXTERNAL STATEMENT IN THE USER
CALLING PROGRAM, AND SHOULD BE WRITTEN AS FOLLOWS.
SUBROUTINE FCN(N,X,FVEC,FJAC,LDFJAC,IFLAG)
INTEGER N, LDFJAC, IFLAG
DOLBLE PRECISION X(N),FVEC(N),FJAC(LDFJAC,N)
IF IFLAG = 1 CALCULATE THE FUNCTIONS AT X AND
RETURN THIS VECTOR IN FVEC. DO NOT ALTER FJAC.
IF IFLAG = 2 CALCULATE THE JACOBIAN AT X AND
RETURN THIS MATRIX IN FJAC. DO NOT ALTER FVEC.
---.--.--
RETURN
END
THE VALUE OF IFLAG SHOULD NOT BE CHANGED BY FCN UNLESS
THE USER WANTS TO TERMINATE EXECUTION OF HYBRJ1.
IN THIS CASE SET IFLAG TO A NEGATIVE INTEGER.
N IS A POSITIVE INTEGER INPUT VARIABLE SET TO THE NUMBER
OF FUNCTIONS AND VARIABLES.
X IS AN ARRAY OF LENGTH N. ON INPUT X MUST CONTAIN
aN INITIAL ESTIMATE OF THE SOLUTION VECTOR. ON OLTTPUT X
CONTAINS THE FINAL ESTIMATE OF THE SOLUTION VECTOR.
FVEC IS AN OUTPUT ARRAY OF LENGTH N WHICH CONTAINS
THE FUNCTIONS EVALUATED AT THE OUTPUT X.
FJAC IS AN OUTPUT N BY N ARRAY WHICH CONTAINS THE
HYJ10030
HYJ10040
HYJ10050
HYJ10060
HYJ10070
HYJ10080
HYJ10090
HYJ10100
HYJ10110

HYJ10210
HYJ10220
HYJ10230
HYJ10240
HYJ10250
HYJ10260
HYJ10270
HYJ 10280
HYJ10290
HYJ10300
HYJ10310
HYJ10320
HYJ10330
HYJ 10340
HYJ10350
HYJ 10360
HYJi0370
HYJ 10380
HYJ10390
HYJ10400
HYJ10410
HYJ10420
HYJ 10430
HYJ 10440
HYJ10450
HYJ10460
HYJ10470
HYJ 10480
HYJ10490
HYJ 10500
HYJ10510
HYJ10520
HYJ10530
HYJ 10540

INTECER J,LR, MAXFEV,MODE,NFEV,NJEV,NPRINT
DOUBLE PRECISION FACTOR,ONE,XTOL,ZERO
DATA FACTOR,ONE,ZERO / 1.OD2,1.0DO,O.ODO/
INFO $=0$
C CHECK THE INPUT PARAMETERS FOR ERRORS.
ORTHOGONAL MATRIX Q PRODUCED BY THE QR FACTORI: ATION OF THE FINAL APPROXIMATE JACOBIAN.

LDFJAC IS A POSITIVE INTEGER INPUT VARIABLE NOT LESS THAN N WHICH SPECIFIES THE LEADING DIMENSION OF THE ARRAY FJAC.

TOL IS A NONNEGATIVE INPUT VARIABLE. TERMINATION OCCURS WHEN THE ALGORITHM ESTIMATES THAT THE RELATIVE ERROR BETVEEN X AND THE SOLUTION IS AT MOST TOL.

INFO IS AN INTEGER OUTPUT VARIABLE. IF THE USER HAS TERMINATED EXECUTION, INFO IS SET TO THE (NEGATIVE) VALUE OF IFLAG. SEE DESCRIPTION OF FCN. OTHERWISE, INFO IS SET AS FOLLOWS.

INFO $=0 \quad$ IMPROPER INPUT PARAMETERS.
INFO = 1 ALGORITHM ESTIMATES THAT THE RELATIVE ERROR between X and the solution is at most tol.

INFO $=2$ NUMBER OF CALLS TO FCN WITH IFLAG = 1 HAS REACHED $100 *(\mathrm{~N}+1)$.

INFO $=3$ TOL IS TOO SMALL. NO FURTHER IMPROVEMENT IN THE APPROXIMATE SOLUTION X IS POSSIBLE.

INFO $=4$ ITERATION IS NOT MAKING GOOD PROGRESS.
WA IS A WORK ARRAY OF LENGTH LWA.
LWA IS A POSITIVE INTEGER INPUT VARIABLE NOT LESS THAN ($\mathrm{N} *(\mathrm{~N}+13)) / 2$.

SUBPROGRAMS CALLED
USER-SUPPLIED FCN
MINPACK-SUPPLIED ... HYBRJ
ARGONNE NATIONAL LABORATORY. MINPACK PROJECT. MARCH 1980.
burton s. Garbow, Kenneth e. hillstrom, Jorge j. More
*

IF (N . LE. O .OR. LDFJAC .LT. N .OR. TOL .LT. ZERO

* .OR. LWA .LT. $\left.\left(\mathrm{N}^{*}(\mathrm{~N}+13)\right) / 2\right)$ GO TO 20

CALL HYBRJ.

HYJ10550
HYJ10560
HYJ10570
HYJ10580
HYJ10590
HYJ10600
HYJ10610
HYJ10620
HYJ10630
HYJ10640
HYJ10650
HYJ10660
HYJ10670
HYJ10680
HYJ10690
HYJ10700
HYJ10710
HYJ10720
HYJ10730
HYJ10740
HYJ10750
HYJ10760
HYJ10770
HYJ10780
HYJ10790
HYJ10800
HYJ10810
HYJ10820
HYJ10830
HYJ10840
HYJ10850
HYJ10860
HYJ10870
HYJ10880
HYJ10890
HYJ10900
HYJ10910
HYJ10920
HYJ10930
HYJ10940
HYJ10950
HYJ10960
HYJ10970
HYJ10980
HYJ10990
HYJ11000
HYJ11010
HYJ11020
HYJ11030
HYJ11040
HYJ11050
HYJ11060
HYJ11070
HYJ11080

```
C HYJ11090
    MAXFEV = 100*(N + 1) HYJ11100
    XTOL = TOL HYJ111110
    MODE =2 HYJ11120
    DO 10 J = 1,N HYJ111130
            WA(J) = ONE HYJ11140
        10 CONTINUE HYJ11150
            NPRINT = 0
            LR = (N*(N + 1))/2
            CALL HYBRJ(FCN,N,X,FVEC,FJAC,LDFJAC,XTOL,MAXFEV,WA (1),MODE,
            *
                    FACTOR,NPRINT, INFO,NFEV,NJEV,WA (6%N+1),LR,WA(N+1) ,
            * WA(2*N+1),WA(3*N+1),WA(4*N+1),WA(5*N+1))
                    HYJ11160
                                    HYJ11170
                        HYJ11180
                        HYJ11190
        HYJ11200
        IF (INFO .EQ. 5) INFO = 4 HYJ111210
    20 CONTINUE
        HYJ11220
        RETURN
    HYJ11230
C
HYJ11240
C LAST CARD OF SUBROUTINE HYBRJ1.
C
END
\begin{tabular}{|c|c|}
\hline SUBROUTINE LMDER(FCN, M,N,X,FVEC,FJAC, LDFJAC,FTOL, XTOL, GTOL, & LMDR0010 \\
\hline \% MAXFEV, DIAG, MODE, FACTOR, NPRINT, INFO, NFEV, NJEV, & LMDR0020 \\
\hline * IPVT, QTF,WA1,WA2,WA3,WA4) & LMDR0030 \\
\hline INTEGER M, N, LDFJAC, MAXFEV, MODE, NPRINT, INFO, NFEV,NJEV & LMDR0040 \\
\hline INTEGER IPVT(N) & LMDR0050 \\
\hline DOUBLE PRECISION FTOL,XTOL,GTOL, FAC'TOR & LMDR0060 \\
\hline  & LMDR0070 \\
\hline * WA1(N),WA2(N), WA3 (N),WA4 (M) & LMDR0080 \\
\hline \% & LMDR0090 \\
\hline & LMDR0100 \\
\hline SUBROUTINE LMDER & LMDR0110 \\
\hline & LMDR0120 \\
\hline THE PURPOSE OF LMDER IS TO MINIMIZE THE SUM OF THE SQUARES OF & LMDR0130 \\
\hline M NONLINEAR FUNCTIONS IN N VARIABLES BY A MODIFICATION OF & LMDR0 140 \\
\hline THE LEVENBERG-MARQUARDT ALGORITHM. THE USER MUST PROVIDE A & LMDR0150 \\
\hline SUBROUTINE WHICH CALCULATES THE FUNCTIONS AND THE JACOBIAN. & LMDR0160 \\
\hline & LMDR0170 \\
\hline THE SUBROUTINE STATEMENT IS & LMDR0180 \\
\hline & LMDR0190 \\
\hline SUBROUTINE LMDER(FCN,M,N,X,FVEC,FJAC, LDFJAC, FTOL, XTOL, GTOL, & LMDR0200 \\
\hline MAXFEV, DIAG , MODE , FACTOR, NPRINT, INFO, NFEV, & LMDR0210 \\
\hline NJEV, IPVT, QTF, WA1, WA 2, WA3, WA \({ }^{\text {a }}\) & LMDR0220 \\
\hline & LMDR0230 \\
\hline WHERE & LMDR0240 \\
\hline & LMDR0250 \\
\hline FCN IS THE NAME OF THE USER-SUPPLIED SUBROUTINE WHICH & LMDR0260 \\
\hline CALCULATES THE FUNCTIONS AND THE JACOBIAN. FCN MUST & LMDR0270 \\
\hline be declared in an external statement in the user & LMDR0280 \\
\hline CALLING PROGRAM, AND SHOULD BE WRITTEN AS FOLLOWS. & LMDR0290 \\
\hline & LMDR0300 \\
\hline SUBROUTINE FCN(M,N, X, FVEC, FJAC, LDFJAC, IFLAG) & LMDR0310 \\
\hline INTEGER M, \(\mathrm{N}, \mathrm{LDFJAC}\), IFLAG & LMDR0320 \\
\hline DOUBLE PRECISION X (N), FVEC (M), FJAC (LDFJAC, N ) & LMDR0330 \\
\hline & LMDR0340 \\
\hline IF IFLAG \(=1\) CALCULATE THE FUNCTIONS AT X AND & LMDR0350 \\
\hline RETURN THIS VECTOR IN FVEC. DO NOT ALTER FJAC. & LMDR0360 \\
\hline IF IFLAG \(=2\) CALCULATE THE JACOBIAN AT X and & LMDR0370 \\
\hline RETURN THIS MATRIX IN FJAC. DO NOT ALTER FVEC. & LMDR0380 \\
\hline & LMDR0390 \\
\hline RETURN & LMDR0400 \\
\hline END & LMDR0410 \\
\hline & LMDR0420 \\
\hline THE VALUE OF Iflag should not be changed by fcn unless & LMDR0430 \\
\hline THE USER WANTS TO TERMINATE EXECUTION OF LMDER. & LMDR0440 \\
\hline IN THIS CASE SET IfLAG to a negative integer. & LMDR0450 \\
\hline & LMDR 0460 \\
\hline M IS A POSITIVE INTEGER INPUT VARIABLE SET TO THE NUMBER & LMDR0470 \\
\hline OF FUNCTIONS. & LMDR0480 \\
\hline & LMDR0490 \\
\hline N IS A POSITIVE INTEGER INPUT VARIABLE SET TO THE NUMBER & LMDR0500 \\
\hline OF VARIABLES. N MUST NOT EXCEED M. & LMDR0510 \\
\hline & LMDR0520 \\
\hline \(X\) IS an array of lengit N . ON InPUT X MUST CONTAIN & LMDR0530 \\
\hline an initial estimate of the solution vector. On OUTPUT \(X\) & LMDR0540 \\
\hline
\end{tabular}

C

\section*{CONTAINS THE FINAL ESTIMATE OF THE SOLUTION VECTOR.}
fVEC IS an octput array of lengTh M which contains ThE FLNCTIONS EVALUATED at the OUTPUT X.

FJAC IS AN OUTPUT \(M\) by \(N\) array. THE UPPER \(N\) BY \(N\) SUBMATRIX OF FJAC CONTAINS AN UPPER TRIANGULAR MATRIX R WITH DIAGONAL ELEMENTS OF NONINCREASING NAGNITUDE SUCH THAT

WHERE P IS A PERMUTATION MATRIX AND JAC IS THE FINAL CALCLLATED JACOBIAN. COLLMN J OF P IS COLUMN IPVT(J) (SEE BELOW) OF THE IDENTITY MATRIX. THE LOWER TRAPEZOIDAL PART OF FJAC CONTAINS INFORMATION GENERATED DURING THE COMPUTATION OF R.

LDFJAC IS A POSITIVE INTEGER INPUT VARIABLE NOT LESS THAN M WHICH SPECIFIES THE LEADING DIMENSION OF THE ARRAY FJAC.

FTOL IS A NONNEGATIVE INPUT VARIABLE. TERMINATION OCCURS WHEN BOTH THE ACTUAL AND PREDICTED RELATIVE REDUCTIONS IN THE SUM OF SQUARES ARE AT MOST FTOL. THEREFORE, FTOL MEASURES THE RELATIVE ERROR DESIRED IN THE SUM OF SQUARES.

XTOL IS A NONNEGATIVE INPUT VARIABLE. TERMINATION OCCURS WHEN THE RELATIVE ERROR BETWEEN TWO CONSECUTIVE iterates is at most xtol. therefore, xtol measures the RELATIVE ERROR DESIRED IN THE APPROXIMATE SOLUTION.

GTOL IS A NONNEGATIVE INPUT VARIABLE. TERMINATION OCCURS WHEN THE COSINE OF THE ANGLE BETWEEN FVEC AND any column of the jacobian is at most gTol in absolute VALUE. THEREFORE, GTOL MEASURES THE ORTHOGONALITY dESIRED BETKEEN THE FUNCTION VECTOR AND THE COLUMNS OF THE JACOBIAN.

MAXFEV IS A POSITIVE INTEGER INPUT VARIABLE. TERMINATION OCCURS WHEN THE NUMBER OF CALLS TO FCN WITH IFLAG = 1 HAS REACHED MAXFEV.

DIAG IS AN ARRAY OF LENGTH N . IF MODE \(=1\) (SEE BELOW), DIAG IS INTERNALLY SET. IF MODE \(=2\), DIAG MUST CONTAIN POSITIVE ENTRIES THAT SERVE AS MULTIPLICATIVE SCALE FACTORS FOR THE VARIABLES.

MODE IS AN INTEGER INPUT VARIABLE. IF MODE \(=1\), THE VARIABLES WILL BE SCALED INTERNALLY. IF MODE \(=2\), THE SCALING IS SPECIFIED BY THE INPUT DIAG. OTHER VALUES OF MODE ARE EQUIVALENT TO MODE \(=1\).

FACTOR IS A POSITIVE INPUT VARIABLE USED IN DETERMINING THE

LMDR0550
LMDR0560
LMDR0570
LMDRO580
LMDR0590
LMDR0600
LMDR0610
LMDR0620
LMDR0630
LMDR0640
LMDR0650
LMDR0660
LMDR0670
LMDR0680
LMDR0690
LMDR0700
LMDR0710
LMDR0720
LMDRO730
LMDR0740
LMDR0750
LMDR0760
LMDR0770
LMDR0780
LMDR0790
LMDR0800
LMDR0810
LMDRC820
LMDR0830
LMDR0840
LMDR0850
LMDR0860
LMDR0870
LMDR0880
LMDR0890
LMDR0900
LMDR0910
LMDRO920
LMDR0930
LMDR0940
LMDR0950
LMDR0960
LMDR0970
LMDR0980
LMDR0990
LMDR1000
LMDR1010
LMDR1020
LMDR1030
LMDR1040
LMDR1050
LMDR1060
LMDR1070
LMDR1080
\begin{tabular}{|c|c|c|}
\hline C & INITIAL STEP BOUND. THIS BOUND IS SET TO THE PRODUCT OF & LMDR1090 \\
\hline C & FACTOR AND THE EUCLIDEAN NORM OF DIAG*X IF NONZERO, OR ELSE & LMDR1100 \\
\hline C & TO FACTOR ITSELF. In MOST CASES FACTOR SHOULD LIE IN THE & LMDR1110 \\
\hline C & INTERVAL ( \(1,100)\)..100 . IS A GENERALLY RECOMMENDED VALUE. & LMDR1120 \\
\hline C & & LMDR1130 \\
\hline C & NPRINT IS AN INTEGER INPUT VARIABLE THAT ENABLES CONTROLLED & LMDR1140 \\
\hline C & PRINTING OF Iterates if it is positive. In This case, & LMDR1150 \\
\hline C & FCN IS CALLED WITH IFLAG \(=0\) AT THE BEGINNING OF THE FIRST & LMDR1160 \\
\hline C & ITERATION AND EVERY NPRINT ITERATIONS THEREAFTER AND & LMDR1170 \\
\hline C & IMMEDIATELY PRIOR TO RETURN, WITH X, FVEC, AND FJAC & LMDR1180 \\
\hline C & AVAILABLE FOR PRINTING. FVEC AND FJAC SHOULD NOT BE & LMDR1190 \\
\hline C & ALTERED. IF NPRINT IS NOT POSITIVE, NO SPECIAL CALLS & LMDR1200 \\
\hline C & OF FCN WITH IFLAG \(=0\) ARE MADE. & LMDR1210 \\
\hline C & & LMDR1220 \\
\hline C & INFO IS AN INTEGER OUTPUT VARIABLE. IF THE USER HAS & LMDR1230 \\
\hline C & TERMINATED EXECUTION, INFO IS SET TO THE (NEGATIVE) & LMDR1240 \\
\hline C & VALUE OF IFLAG. SEE DESCRIPTION OF FCN. OTHERWISE, & LMDR1250 \\
\hline C & INFO IS SET AS FOLLOWS. & LMDR1260 \\
\hline C & & LMDR1270 \\
\hline C & INFO \(=0\) IMPROPER INPUT PARAMETERS. & LMDR 1280 \\
\hline C & & LMDR1290 \\
\hline C & INFO = 1 BOTH ACTUAL AND PREDICTED RELATIVE REDUCTIONS & LMDR 1300 \\
\hline C & IN THE SUM OF SQUARES ARE AT MOST FTOL. & LMDR1310 \\
\hline C & & LMDR1320 \\
\hline C & INFO \(=2\) RELATIVE ERROR BETWEEN TWO CONSECUTIVE ITERATES & LMDR1330 \\
\hline C & IS AT MOST XTOL. & LMDR1340 \\
\hline C & & LMDR 1350 \\
\hline C & INFO \(=3\) CONDITIONS FOR INFO \(=1\) AND INFO \(=2\) BOTH HOLD . & LMDR1360 \\
\hline C & & LMDR1370 \\
\hline C & INFO \(=4\) THE COSINE OF THE ANGLE BETWEEN FVEC AND ANY & LMDR1380 \\
\hline C & COLUMN OF THE JACOBIAN IS AT MOST GTOL IN & LMDR1390 \\
\hline C & ABSOLUTE VALUE. & LMDR1400 \\
\hline C & & LMDR1410 \\
\hline C & INFO = 5 NUMBER OF CALLS TO FCN WITH IFLAG = 1 HAS & LMDR1420 \\
\hline C & REACHED MAXFEV. & LMDR1430 \\
\hline C & & LMDR1440 \\
\hline C & INFO \(=6\) FTOL IS TOO SMALL. NO FURTHER REDUCTION IN & LMDR1450 \\
\hline C & THE SUM OF SQUARES IS POSSIBLE. & LMDR1460 \\
\hline C & & LMDR1470 \\
\hline C & INFO \(=7\) XTOL IS TOO SMALL. NO FURTHER IMPROVEMENT IN & LMDR1480 \\
\hline C & THE APPROXIMATE SOLUTION X IS FOSSIBLE. & LMDR1490 \\
\hline C & & LMDR1500 \\
\hline C & INFO \(=8\) GTOL IS TOO SMALL. FVEC IS ORTHOGONAL TO THE & LMDR1510 \\
\hline C & COLUMNS OF THE JACOBIAN TO MACHINE PRECISION. & LMDR1520 \\
\hline C & & LMDR1530 \\
\hline C & NFEV IS AN INTEGER OUTPUT VARIABLE SET TO THE NUMBER OF & LMDR1540 \\
\hline C & CALLS TO FCN WITH IFLAG \(=1\). & LMDR1550 \\
\hline C & & LMDR 1560 \\
\hline C & NJEV IS AN INTEGER OUTPUT VARIABLE SET TO THE NUMBER OF & LMDR1570 \\
\hline C & CALLS \(T O\) FCN WITH IFLAG \(=2\). & LMDR1580 \\
\hline C & & LMDR1590 \\
\hline C & IPVT IS AN INTEGER OUTPUT ARRAY OF LENGTH N. IPVT & LMDR 1600 \\
\hline C & DEFINES A PERMUTATION MATRIX P SUCH THAT JAC*P \(=\mathrm{Q} * \mathrm{R}\), & LMDR1610 \\
\hline C & WHERE JAC IS THE FINAL CALCULATED JACOBIAN, Q IS & LMDR1620 \\
\hline
\end{tabular}

```

 IFLAG = 1 LMDR2170
 CALL FCN(M,N,X,FVEC,FJAC, LDFJAC, IFLAG)
 CALL FCN(M,N,X,FVEC,FJAC, LDFJAC,IFLAG)
 IF (IFLAG .LT. 0) GO TO 300
 FNORM = ENORM(M,FVEC) LMDR2210
 C
C
C
C
30 CONTINUE
CALCULATE THE JACOBIAN MATRIX.
IFLAG = 2
CALL FCN(M,N,X,FVEC,FJAC,LDFJAC,IFLAG)
NJEV = NJEV + 1
IF (IFLAG .LT. O) GO TO 300
IF REQUESTED, CALL FCN TO ENABLE PRINTING OF ITERATES.
IF (NPRINT .LE. 0) GO TO 40
IFLAG = 0
IF (MOD(ITER-1,NPRINT) .EQ. 0)
CALL FCN(M,N,X,FVEC,FJAC,LDFJAC,IFLAG)
IF (IFLAG .LT. 0) GO TO 300
40 CONTINUE
COMPUTE THE QR FACTORIZATION OF THE JACOBIAN.
CALL QRFAC(M,N,FJAC, LDFJAC,.TRUE., IPVT,N,WA1,WA2,WA3)
ON THE FIRST ITERATION AND IF MODE IS 1, SCALE ACCORDING
TO THE NORMS OF THE COLUMNS OF THE INITIAL JACOBIAN.
IF (ITER .NE. 1) GO TO 80
IF (MODE .EQ. 2) GO TO 60
DO 50 J = 1, N
DIAG(J) = WA2(J)
IF (WA2(J) .EQ. ZERO) DIAG(J) = ONE
5 0 ~ C O N T I N U E ~
60 CONTINUE
C
C
C
C
ON THE FIRST ITERATION, CALCULATE THE NORM OF THE SCALED X
ON THE FIRST ITERATION, CALCULATE THE NORM OF THE SCALED X
DO 70 J = 1, N
WA3(J) = DIAG(J)*X(J)
CONTINUE
XNORM = ENORM(N,WA3)
DELTA = FACTOR*XNORM
LMDR2200
INITIALIZE LEVENBERG-MARQUARDT PARAMETER AND ITERATION COUNTER. LMDR2230
PAR = ZERO
ITER = 1
BEGINNING OF THE OUTER LOOP.
LMDR2220
LMDR2240
LMDR2250
LMDR2260
LMDR2270
LMDR2280
LMDR2290
LMDR2300
R2300
LMDR2310
LMDR2320
LMDR2330
LMDR2340
LMDR2350
LMDR2360
LMDR2370
LMDR2380
LMDR2390
LMDR2400
LMDR2410
LMDR2420
LMDR2430
LMDR2440
LMDR2450
C
C
C
C
C
C
C
*
LMDR2460
LMDR2470
LMDR2480
LMDR2490
LMDR2500
LMDR2510
LMDR2520
LMDR2530
LMDR2540
LMDR2550
LMDR2560
LMDR2570
LMDR2580
LMDR2590
LMDR2600
LMDR2610
LMDR2620
LMDR2630
LMDR2640
LMDR2650
LMDR2660
LMDR2670
70
LMDR2680
LMDR2690
LMDR2700

```

\begin{tabular}{|c|c|c|}
\hline C & & LMDR3250 \\
\hline 200 & CONTINUE & LMDR3260 \\
\hline C & & LMDR3270 \\
\hline C & DETERMINE THE LEVENBERG-MARQUARDT PARAMETER. & LMDR3280 \\
\hline C & & LMDR3290 \\
\hline & CALL LMPAR (N,FJAC,LDFJAC, IPVT,DIAG, QTF, DELTA, PAR, WA1, WA2, & LMDR3300 \\
\hline * & WA3,WA4) & LMDR3310 \\
\hline C & & LMDR3320 \\
\hline C & STORE THE DIRECTION P AND \(\mathrm{X}+\mathrm{P}\). CALCULATE THE NORM OF P. & LMDR3330 \\
\hline C & & LMDR 3340 \\
\hline & DO \(210 \mathrm{~J}=1\), N & LMDR3350 \\
\hline & WA1 \((\mathrm{J})=-\mathrm{WA1}(\mathrm{~J})\) & LMDR3360 \\
\hline & WA2 \((\mathrm{J})=\mathrm{X}(\mathrm{J})+\) WA1 \((\mathrm{J})\) & LMDR3370 \\
\hline & WA3 \((\mathrm{J})=\operatorname{DIAG}(\mathrm{J}) *\) WA1 \((\mathrm{J})\) & LMDR3380 \\
\hline 210 & CONTINUE & LMDR3390 \\
\hline & PNORM \(=\) ENORM ( \(\mathrm{N}, \mathrm{WA} 3\) ) & LMDR3400 \\
\hline C & & LMDR3410 \\
\hline C & ON THE FIRST ItERATION, ADJUST THE INITIAL STEP BOUND. & LMDR3420 \\
\hline C & & LMDR3430 \\
\hline & IF (ITER .EQ. 1) DELTA = DMIN1 (DELTA PNORM) & LMDR3440 \\
\hline C & & LMDR3450 \\
\hline C & EVALUATE THE FUNCTION AT \(\mathrm{X}+\mathrm{P}\) and Calculate its norm. & LMDR3460 \\
\hline C & & LMDR3470 \\
\hline & IFLAG \(=1\) & LMDR3480 \\
\hline & CALL FCN(M,N,WA2,WA4,FJAC, LDFJAC, IFLAG) & LMDR3490 \\
\hline & \(\mathrm{NFEV}=\mathrm{NFEV}+1\) & LMDR3500 \\
\hline & IF (IFLAG .LT. 0) GO TO 300 & LMDR3510 \\
\hline & FNORM1 \(=\) ENORM (M,WA4) & LMDR3520 \\
\hline C & & LMDR3530 \\
\hline C & COMPUTE THE SCALED ACTUAL REDUCTION. & LMDR3540 \\
\hline C & & LMDR3550 \\
\hline & ACTRED \(=-\) ONE & LMDR3560 \\
\hline & IF (P1*FNORM1 .LT. FNORM) ACTRED = ONE - (FNORM1/FNORM) \(\because \div 2\) & LMDR3570 \\
\hline C & & LMDR3580 \\
\hline C & COMPUTE THE SCALED PREDICTED REDUCTION AND & LMDR3590 \\
\hline C & THE SCALED DIRECTIONAL DERIVATIVE. & LMDR3600 \\
\hline C & & LMDR3610 \\
\hline & DO \(230 \mathrm{~J}=1, \mathrm{~N}\) & LMDR3620 \\
\hline & WA3 \((J)=\) ZERO & LMDR3630 \\
\hline & \(\mathrm{L}=\mathrm{IPVT}(\mathrm{J})\) & LMDR3640 \\
\hline & TEMP = WA1 (L) & LMDR3650 \\
\hline & DO \(220 \mathrm{I}=1\), J & LMDR3660 \\
\hline & WA3 \((\mathrm{I})=\) WA3 \((\mathrm{I})+\) FJAC \((\mathrm{I}, \mathrm{J}) *\) TEMP & LMDR3670 \\
\hline 220 & CONTINUE & LMDR3680 \\
\hline 230 & CONTINUE & LMDR3690 \\
\hline & TEMP1 = ENORM (N, WA3) /FNORM & LMDR3700 \\
\hline & TEMP2 \(=(\) DSQRT \((\) PAR \() *\) PNORM \() /\) FNORM & LMDR3710 \\
\hline & PRERED \(=\) TEMP \({ }^{* * * 2}+\) TEMP \(2 * * 2 /\) P5 & LMDR3720 \\
\hline & DIRDER \(=-(\) TEMP \(1 * * 2+\) TEMP2**2) & LMDR3730 \\
\hline C & & LMDR3740 \\
\hline C & COMPUTE THE RATIO OF THE ACTUAL TO THE PREDICTED & LMDR3750 \\
\hline C & REDUCTION. & LMDR3760 \\
\hline C & & LMDR3770 \\
\hline & RATIO \(=\) 2ERO & LMDR3780 \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|}
\hline C & & LMDR4330 \\
\hline C & END OF THE INNER LOOP. REPEAT IF ITERAT: 3 N UNSUCCESSFUL. & LMDR4340 \\
\hline c & & LMDR4350 \\
\hline & IF (RATIO .LT. P0001) GO TO 200 & LMDR4360 \\
\hline C & & LMDR4370 \\
\hline c & END OF THE OUTER LOOP. & LMDR4380 \\
\hline C & & LMDR4390 \\
\hline & GO TO 30 & LMDR4400 \\
\hline & CONTINUE & LMDR4410 \\
\hline 0 & & LMDR4420 \\
\hline C & TERMINATION, EITHER NORMAL OR USER IMPOSED. & LMDR4430 \\
\hline c & & LMDR4440 \\
\hline & IF ( IFLAG . LT. 0) INFO = IFLAG & LMDR4450 \\
\hline & IFLAG \(=0\) & LMDR4460 \\
\hline & IF (NPRINT .GT. 0) CALL FCN(M,N,X,FVEC,FJAC,LDFJAC,IFLAG) & LMDR4470 \\
\hline & RETURN & LMDR4480 \\
\hline C & & LMDR4490 \\
\hline & LAST CARD OF SUBROUTINE LMDER. & LMDR4500 \\
\hline c & & LMDR4510 \\
\hline & END & LMDR4520 \\
\hline
\end{tabular}
```

 SUBROUTINE LMDER1(FCN,M,N,X,FVEC,FJAC,LDFJAC,TOL,INFO,IPVT,WA,
 * LWA)
 INTEGER M,N,LDFJAC,INFO,LWA
 INTEGER IPVT(N)
 DOUBLE PRECISION TOL
 DOUBLE PRECISION X(N),FVEC(N),FJAC(LDFJAC,N),WA(LWA)
 EXTERNAL FCN
    ```

```

 SUBROUTINE LMDER1
 THE PURPOSE OF LMDER1 IS TO MINIMIZE THE SUM OF THE SQUARES OF
 M NONLINEAR FUNCTIONS IN N VARIABLES BY A MODIFICATION OF THE
 LEVENBERG-MARQUARDT ALGORITHM. THIS IS DONE BY USING THE MORE
 gENERAL LEAST-SQUARES SOLVER LMDER. THE USER MUST PROVIDE A
 SUBROUTINE WHICH CALCULATES THE FUNCTIONS AND THE JACOBIAN.
 THE SUBROUTINE STATEMENT IS
 SUBROUTINE LMDERI(FCN,M,N,X,FVEC,FJAC,LDFJAC,TOL,INFO,
 IPVT,WA,LWA)
    ```
    WHERE
    FCN IS THE NAME OF THE USER-SUPPLIED SUBROUTINE WHICH
        CALCULATES THE FUNCTIONS AND THE JACOBIAN. FCN MUST
        BE DECLARED IN AN EXTERNAL STATEMENT IN THE USER
        CALLING PROGRAM, AND SHOULD BE WRITTEN AS FOLLOWS.
        SUBROUTINE FCN(M,N,X,FVEC,FJAC,LDFJAC, IFLAG)
        INTEGER M,N,LDFJAC,IFLAG
        DOUBLE PRECISION X(N),FVEC(M),FJAC(LDFJAC,N)
        ----------
        IF IFLAG = 1 CALCULATE THE FUNCTIONS AT X AND
        RETURN THIS VECTOR IN FVEC. DO NOT ALTER FJAC.
        IF IFLAG \(=2\) CALCULATE THE JACOBIAN AT X AND
        RETURN THIS MATRIX IN FJAC. DO NOT ALTER FVEC.
        RETURN
        END
        the value of iflag should not be changed by fcn unlass
        THE USER WANTS TO TERMINATE EXECUTION OF LMDER1.
        in this case set iflag to a negative integer.
        M IS A POSITIVE INTEGER INPUT VARIABLE SET TO THE NUMBER
        OF FUNCTIONS.
    N IS A POSITIVE INTEGER INPUT VARIABLE SET TO THE NUMBER
        of Variables. N MUST NOT EXCEED M.
    X IS AN ARRAY OF LENGTH N. ON INPUT X MUST CONTAIN
        an initial estimate of the solution vector. On OUTPUT X
        CONTAINS THE FINAL ESTIMATE OF THE SOLUTION VECTOR.

LMR 10010
LMR10020
LMR10030
LMR10040
LMR 10050
LMR10060
LMR10070
LMR 10080
LMR10090
LMR10100
LMR10110
LMR10120
LMR10130
LMR10140
LMR10150
LMR10160
LMR10170
LMR10180
LMR10190
LMR10200
LMR10210
LMR10220
LMR10230
LMR10240
LMR10250
LMR10260
LMR10270
LMR 10280
LMR10290
LMR 10300
LMR 10310
LMR10320
LMR 10330
LMR 10340
LMR 10350
LMR10360
LMR 10370
LMR 10380
LMR 10390
LMR 10400
LMR10410
LMR 10420
LMR 10430
LMR10440
LMR 10450
LMR 10460
LMR 10470
LMR10480
LMR10490
LMR10500
LMR10510
LMR10520
LMK 10530
LMR10540
\begin{tabular}{|c|c|c|}
\hline C & & LMR10550 \\
\hline C & FVEC IS AN OUTPUT ARRAY OF LENGTH M WHICH CONTAINS & LMR10560 \\
\hline C & THE FUNCTIONS EVALUATED AT THE OUTPUT X. & LMR10570 \\
\hline C & & LMR10580 \\
\hline C & FJAC IS AN OUTPUT M BY N ARRAY. THE UPPER N BY N SUBMATRIX & LMR10590 \\
\hline C & OF FJAC CONTAINS AN UPPER TRIANGULAR MATRIX R WITH & LMR10600 \\
\hline C & diagonal elements of nonincreasing magnitude such that & LMR10610 \\
\hline \(\checkmark\) & & LMR10620 \\
\hline C & T T T & LMR10630 \\
\hline C & \(\mathrm{P} *(\mathrm{JAC} * J A C) * P=\mathrm{R} * \mathrm{R}\), & LMR10640 \\
\hline C & & LMR10650 \\
\hline C & WhERE P IS A PERMUTATION MATRIX AND JAC IS THE FINAL & LMR10660 \\
\hline C & CALCULATED JACOBIAN. COLUMN J JF P IS COLUMN IPVT(J) & LMR10670 \\
\hline C & (SEE BELOW) OF THE IDENTITY MATRIX. THE LOWER TRAPEZOIDAL & LMR10680 \\
\hline (: & PART OF FJAC CONTAINS INFORMATION GENERATED DURING & LMR10690 \\
\hline C & THE COMPUTATION OF R. & LMR10700 \\
\hline C & & LMR10710 \\
\hline C & LDFJAC IS A POSITIVE INTEGER INPUT VARIABLE NOT LESS THAN M & LMR10720 \\
\hline C & WHICH SPECIFIES THE LEADING DIMENSION OF THE ARRAY FJAC. & LMR10730 \\
\hline C & & LMR10740 \\
\hline C & TOL IS A NONNEGATIVE INPUT VARIABLE. TERMINATION OCCURS & LMR10750 \\
\hline C & WHEN THE ALGORITHM ESTIMATES EITHER THAT THE RELATIVE & LMR10760 \\
\hline C & ERROR IN THE SUM OF SQUARES IS AT MOST TOL OR THAT & LMR10770 \\
\hline C & THE RELATIVE ERROR BETWEEN X AND THE SOLUTION IS AT & LMR10780 \\
\hline C & MOST TOL. & LMR10790 \\
\hline C & & LMR10800 \\
\hline C & INFO IS AN INTEGER OUTPUT VARIABLE. IF THE USER HAS & LMR10810 \\
\hline C & TERMINATED EXECUTION, INFO IS SET TO THE (NEGATIVE) & LMR10820 \\
\hline C & VALUE OF IFLAG. SEE DESCRIPTION OF FCN. OTHERWISE, & LMR10830 \\
\hline C & INFO IS SET AS FOLLOWS. & LMR10840 \\
\hline C & & LMR10850 \\
\hline C & INFO \(=0\) IMPROPER INPUT PARANETERS. & LMR10860 \\
\hline C & & LMR10870 \\
\hline C & INFO \(=1\) ALGORITHM ESTIMATES THAT THE RELATIVE ERROR & LHR10880 \\
\hline C & IN THE SUM OF SQUARES IS AT MOST TOL. & LMR10890 \\
\hline C & & LMR10900 \\
\hline C & INFO \(=2\) ALGORITHM ESTIMATES THAT THE RELATIVE ERROR & LMR10910 \\
\hline C & BETWEEN X AND THE SOLUTION IS AT MOST TOL. & LMR10920 \\
\hline C & & LMR10930 \\
\hline C & INFO \(=3\) CONDITIONS FOR INFO \(=1\) AND \(\mathrm{INFO}=2 \mathrm{BOTH}\) HOLD. & LMR10940 \\
\hline C & & LMR10950 \\
\hline C & INFO \(=4\) FVEC IS ORTHOGONAL TO THE COLUMNS OF THE & LMR10960 \\
\hline C & JACOBIAN TO MACHINE PRECISION. & LMR10970 \\
\hline C & & LMR10980 \\
\hline C & INFO \(=5\) NUMBER OF CALLS TO FCN WITH IFLAG \(=1\) HAS & LMR10990 \\
\hline C & REACHED 100* ( \(\mathrm{N}+1\) ). & LMR11000 \\
\hline C & & LMR11010 \\
\hline C & INFO \(=6\) TOL IS TOO SMALL. NO FURTHER REDUCTION IN & LMR11020 \\
\hline C & THE SUM OF SQUARES IS POSSIBLE. & LMR11030 \\
\hline C & & LMR11040 \\
\hline C & INFO \(=7\) TOL IS TOO SMALL. NO FURTHER IMPROVEMENT IN & LMR11050 \\
\hline C & THE APPROXIMATE SOLUTION X IS POSSIBLE. & LMR11060 \\
\hline C & & LMR11070 \\
\hline C & IPVT IS AN INTEGER OUTPUT ARRAY OF LENGTH N. IPVT & LMR11080 \\
\hline
\end{tabular}

CALL LMDER.
MAXFEV \(=100^{*}(\mathrm{~N}+1)\)
FTOL = TOL
XTOL \(=\) TOL
GTOL \(=\) 2ERO
MODE \(=1\)
NPRINT \(=0\)
CALL LMDER(FCN,M,N,X,FVEC,FJAC,LDFJAC,FTOL,XTOL,GTOL,MAXFEV, WA (1), MODE , FACTOR, NPRINT, INFO, NFEV, NJEV, IPVT, WA ( \(\mathrm{N}+1\) ), \(\left.W A\left(2^{*} N+1\right), W A\left(3^{*} N+1\right), W A\left(4^{*} N+1\right), W A\left(5^{*} N+1\right)\right)\)
IF (INFO .EQ. 8) INFO = 4
10 CONTINUE
RETURN
LAST CARD OF SUBROUTINE LMDER1.
END

LMR11090
LMR11100
LMR11110
LMR11120
LMR11130
LMR11140
LMR11150
LMR11160
LMR11170
LMR11180
LMR11190
LMR11200
LMR11210
LMR11220
LMR11230
LMR11240
LMR11250
LMR11260
LMR11270
LMR11280
LMR11290
LMR11300
LMR11310
LMR11320
LMR11330
LMR11340
LMR11350
LMR11360
LMR11370
LMR11380
LMR11390
LMR11400
LMR11410
LMR11420
LMR11430
LMR11440
LMR11450
LMR1 1460
LMR11470
LMR1 1480
LMR11490
LMR11500
LMR11510
LMR11520
LMR11530
LMR1 1540
LMR11550
LMR11560
\begin{tabular}{|c|c|}
\hline SUBROUTINE LMDIF(FCN,M,N,X,FVEC,FTOL,XTOL, GTOL, MAXFEV, EPSFCN, & LMDF0010 \\
\hline * DIAG, MODE, FACTOR,NPRINT, INFO, NFEV,FJAC, LDFJAC, & LMDF0020 \\
\hline * IPVT, QTF,WA1,WA2,WA3,WA4) & LMDF0030 \\
\hline INTEGER M,N,MAXFEV,MODE, ,SPRINT, INFO, NFEV,LDFJAC & LMDF0040 \\
\hline INTEGER IPVT(N) & LMDF0050 \\
\hline DOUBLE PRECISION FTOL, XTOL,GTOL, EPSFCN,FACTOR & LMDF0060 \\
\hline DOUBLE PRECISION X (N),FVEC(M), DIAG(N),FJAC (LDFJAC, N ), QTF( N ), & LMDF0070 \\
\hline * WA1 (N), WA2 (N), WA3 (N), WA4 (M) & LMDF0080 \\
\hline EXTERNAL FCN & LMDF0090 \\
\hline  & LMDF0100 \\
\hline & LMDF0110 \\
\hline SUBROUTINE LMDIF & LMDF0.120 \\
\hline & LMDF0130 \\
\hline THE PURPOSE OF LMDIF IS TO MINIMIZE THE SUM OF THE SQUARES OF & LMDF0140 \\
\hline M NONLINEAR FUNCTIONS IN N VARIABLES BY A MODIFICATION OF & LMDF0150 \\
\hline THE LEVENBERG-MARQUARDT ALGORITHM. THE USER MUST PIROVIDE A & LMDF0160 \\
\hline SUBROUTINE WHICH CALCULATES THE FUNCTIONS. THE JACOBIAN IS & LMDF0170 \\
\hline THEN CALCULATED BY A FORWARD-DIFFERENCE APPROXIMATION. & LMidF0180 \\
\hline & LMDF0190 \\
\hline THE SUBROUTINE STATEMENT IS & LMDF0200 \\
\hline & LMDF0210 \\
\hline SUBROUTINE LMDIF(FCN,M,N,X,FVEC,FTOL,XTOL,GTOL,MAXFEV,EPSFCN, & LMDF0220 \\
\hline DIAG, MODE, FACTOR, NPRINT, INFO, NFEV, FJAC, & LMDF0230 \\
\hline LDFJAC , IPVT, QTF, WA1, WA2, WA3, WA4) & LMDF0240 \\
\hline & LMDF0250 \\
\hline WHERE & LMDF0260 \\
\hline & LMDF0270 \\
\hline FCN IS THE NAME OF THE USER-SUPPLIED SUBROUTINE WHICH & LMDF0280 \\
\hline CALCULATES THE FUNCTIONS. FCN MUST BE DECLARED & LMDF0290 \\
\hline IN AN EXTERNAL STATEMENT IN THE USER CALLING & LMDF0300 \\
\hline PROGRAM, AND SHOULD BE WRITTEN AS FOLLOWS. & LMDF0310 \\
\hline & LMDF0320 \\
\hline SUBROUTINE FCN(M,N,X,FVEC, IFLAG) & LMDF0330 \\
\hline INTEGER M,N, IFLAG & LMDF0340 \\
\hline DOUBLE PRECISION X(N), FVEC(M) & LMDF0350 \\
\hline & LMDF0360 \\
\hline CALCULATE THE FUNCTIONS AT X AND & LMDF0370 \\
\hline RETURN THIS VECTOR IN FVEC. & LMDF0380 \\
\hline & LMDF0390 \\
\hline RETURN & LMDF0400 \\
\hline END & LMDF0410 \\
\hline & LMDF0420 \\
\hline THE VALUE OF IFLAG ShOULD NOT BE CHANGED BY FCN UNLESS & LMDF0430 \\
\hline THE USER WANTS TO TERMINATE EXECUTION OF LMDIF. & LMDF0440 \\
\hline In this case set iflag to a negative integer. & LMDF0450 \\
\hline & LMDF0460 \\
\hline M IS A POSITIVE INTEGER INPUT VARIABLE SET TO THE NUMBER & LMDF0470 \\
\hline OF FUNCTIONS. & LMDF0480 \\
\hline & LMDF0490 \\
\hline N IS A POSITIVE INTEGER INPUT VARIABLE SET TO THE NUMBER & LMDF0500 \\
\hline Of Variables. N must not exceed m. & LMDF0510 \\
\hline & LMDF0520 \\
\hline \(X\) IS an array of length N . ON INPUT X MUST CONTAIN & LMIDF0530 \\
\hline an initial sstimate of the solution vector. on output \(x\) & LMDF0540 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline C & CONTAINS THE FINAL ESTIMATE OF THE SOLUTION VECTOR. & LMDF0550 \\
\hline C & & LMDF0560 \\
\hline C & FVEC IS AN OUTPUT ARRAY OF LENGTH M WHICH CONTAINS & LMDF0570 \\
\hline C & THE FUNCTIONS EVALUATED AT THE OUTPUT X. & LMDF0580 \\
\hline C & & LMDF0590 \\
\hline C & FTOL IS A NONNEGATIVE INPUT VARIABLE. TERMINATION & LMDF0600 \\
\hline C & OCCURS WHEN BOTH THE ACTUAL AND PREDICTED RELATIVE & LMDF0610 \\
\hline C & REDUCTIONS IN THE SUM OF SQUARES ARE AT MOST FTOL. & LMDF0620 \\
\hline C & THEREFORE, FTOL MEASURES THE RELATIVE ERROR DESIRED & LMDF0630 \\
\hline C & IN THE SUM OF SQUARES. & LMDF0640 \\
\hline C & & LMDF0650 \\
\hline C & XTOL IS A NONNEGATIVE INPUT VARIABLE. TERMINATION & LMDF0660 \\
\hline C & OCCURS WHEN THE RELATIVE ERROR BETWEEN TWO CONSECUTIVE & LMDF0670 \\
\hline C & ITERATES IS AT MOST XTOL. THEREFORE, XTOL MEASURES THE & LMDF0680 \\
\hline C & RELATIVE ERROR DESIRED IN THE APPROXIMATE SOLUTION. & LMDF0690 \\
\hline C & & LMDF0700 \\
\hline C & GTOL IS A NONNEGATIVE INPUT VARIABLE. TERMINATION & LMDF0710 \\
\hline C & OCCJRS WHEN THE COSINE OF THE ANGLE BETWEEN FVEC AND & LMDF0720 \\
\hline C & ANY COLUMN OF THE JACOBIAN IS AT MOST GTOL IN ABSOLUTE & LMDF0730 \\
\hline C & VALUE. THEREFORE, GTOL MEASURES THE ORTHOGONALITY & LMDF0740 \\
\hline C & desired between the function vector and the columns & LMDF0750 \\
\hline C & OF THE JACOBIAN. & LMDF0760 \\
\hline C & & LMDF0770 \\
\hline C & MAXFEV IS A POSITIVE INTEGER INPUT VARIABLE. TERMINATION & LMDF0780 \\
\hline C & OCCURS WHEN THE NUMBER OF CALLS TO FCN IS AT LEAST & LMDF0790 \\
\hline C & MAXFEV BY THE END OF AN ITERATION. & LMDF0800 \\
\hline C & & LMDF0810 \\
\hline C & EPSFCN IS AN INPUT VARIABLE USED IN DETERMINING A SUITABLE & LMDF0820 \\
\hline C & STEP LENGTH FOR THE FORWARD-DIFFERENCE APPROXIMATION. THIS & LMDF0830 \\
\hline c & APPROXIMATION ASSUMES THAT THE RELATIVE ERRORS IN THE & LMDF0840 \\
\hline C & FUNCTIONS ARE OF THE ORDER OF EPSFCN. IF EPSFCN IS LESS & LMDF0850 \\
\hline C & THAN THE MACHINE PRECISION, IT IS ASSUMED THAT THE RELATIVE & LMDF0860 \\
\hline C & ERRORS IN THE FUNCTIONS ARE OF THE ORDER OF THE MACHINE & LMDF0870 \\
\hline C & PRECISION. & LMDF0880 \\
\hline C & & LMDF0890 \\
\hline C & DIAG IS AN ARRAY OF LENGTH N. IF MODE \(=1\) (SEE & LMDF0900 \\
\hline C & BELOW), DIAG IS INTERNALLY SET. IF MODE \(=2\), DIAG & LMDF0910 \\
\hline C & NUST CONTAIN POSITIVE ENTRIES THAT SERVE AS & LMDF0920 \\
\hline C & MULTIPLICATIVE SCALE FACTORS FOR THE VARIABLES. & LMDF0930 \\
\hline C & & LMDF0940 \\
\hline C & MODE IS AN INTEGER INPU「 VARIABLE. IF MODE \(=1\), THE & LMDF0950 \\
\hline C & VARIABLES WILL BE SCALED INTERNALLY. IF MODE \(=2\), & LMDF0960 \\
\hline C & THE SCALING IS SPECIFIED BY THE INPUT DIAG. OTHER & LMDF0970 \\
\hline C & VALUES OF MODE ARE EQUIVALENT TO MODE \(=1\). & LMDF0980 \\
\hline C & & LMDF0990 \\
\hline C & FACTOR IS A POSITIVE INPUT VARIABLE USED IN DETERMINING THE & LMDF 1000 \\
\hline C & INITIAL STEP BOUND. THIS BOUND IS SET TO THE PRODUCT OF & LMDF1010 \\
\hline C & FACTOR AND THE EUCLIDEAN NORM OF DIAG*X IF NONZERO, OR ELSE & LMDF1020 \\
\hline C & TO FACTOR ITSELF. IN MOST CASES FACTOR SHOULD LIE IN THE & LMDF1030 \\
\hline C & INTERVAL (.1,100.). 100. IS A GENERALLY RECOMMENDED VALUE. & LMDF1040 \\
\hline C & & LMDF1050 \\
\hline C & NPRINT IS AN INTEGER INPUT VARIABLE THAT ENABLES CONTROLLED & LMDF1060 \\
\hline C & PRINTING OF ITERATES IF IT IS POSITIVE. IN THIS CASE, & LMDF1070 \\
\hline C & FCN IS CALLED WITH IFLAG \(=0\) at THE BEGINNING OF THE FIRST & LMDF 1080 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline C & ITERATION AND EVERY NPRINT ITERATIONS THEREAFTER AND & LMDF1090 \\
\hline C & IMMEDIATELY PRIOR TO RETURN, WITH X AND FVEC AVAILABLE & LMDF1100 \\
\hline C & FOR PRINTING. IF NPRINT IS NOT POSITIVE, NO SPECIAL CALLS & LMDF1110 \\
\hline C & OF FCN WITH IFLAG \(=0\) ARE MADE. & LMDF1120 \\
\hline C & & LMDF1130 \\
\hline C & INFO IS AN INTEGER OUTPUT VARIABLE. IF THE USER HAS & LMDF 1140 \\
\hline C & TERMINATED EXECUTION, INFO IS SET TO THE (NEGATIVE) & LMDF1150 \\
\hline C & VALUE OF IFLAG. SEE DESCRIPTION OF FCN. OTHERWISE, & LMDF1160 \\
\hline C & INFO IS SET AS FOLLOWS. & LMDF1170 \\
\hline C & & LMDF1180 \\
\hline C & INFO \(=0\) IMPROPER INPUT PARAMETERS. & JMDF1190 \\
\hline C & & LMDF1200 \\
\hline C & INFO \(=1\) BOTH ACTUAL AND PREDICTED RELATIVE REDUCTIONS & LMDF1210 \\
\hline C & IN THE SUM OF SQUARES ARE AT MOST FTOL. & LMDF1220 \\
\hline C & & LMDF1230 \\
\hline C & INFU \(=2\) RELATIVE ERROR BETWEEN TWO CONSECUTIVE ITERATES & LMDF 1240 \\
\hline C & IS AT MOST XTOL. & LMDF 1250 \\
\hline C & & LMDF 1260 \\
\hline C & INFO = 3 CONDITIONS FOR INFO = 1 AND INFO = 2 BOTH HOLD. & LMDF 1270 \\
\hline C & & LMDF 1280 \\
\hline C & INFO \(=4\) THE COSINE OF THE ANGLE BETWEEN FVEC AND ANY & LMDF 1290 \\
\hline C & COLUMN OF THE JACOBIAN IS AT MOST GTOL IN & LMDF 1300 \\
\hline C & ABSOLUTE VALUE. & LMDF1310 \\
\hline C & & LMDF 1320 \\
\hline C & INFO \(=5\) NUMBER OF CALLS TO FCN HAS REACHED OR & LMDF 1330 \\
\hline C & EXCEEDED MAXFEV. & LMDF 1340 \\
\hline C & & LMDF 1350 \\
\hline C & INFO = 6 FTOL IS TOO SMALL. NO FURTHER REDUCTION IN & LMDF1360 \\
\hline C & THE SUM OF SQUARES IS POSSIBLE. & LMDF 1370 \\
\hline C & & LMDF 1380 \\
\hline C & INFO \(=7\) XTOL IS TOO SMALL. NO FURTHER IMPROVEMENT IN & LMDF 1390 \\
\hline C & THE APPROXIMATE SOLUTION \(X\) IS POSSIBLE. & LMDF 1400 \\
\hline C & & LMDF1410 \\
\hline C & INFO \(=8\) GTOL IS TOO SMALL. FVEC IS ORTHOGONAL TO THE & LMDF 1420 \\
\hline C & COLUMNS OF THE JACOBIAN TO MACHINE PRECISION. & LMDF 1430 \\
\hline C & & LMDF1440 \\
\hline C & NFEV IS AN INTEGER OUTPUT VARIABLE SET TO THE NUMBER OF & LMDF 1450 \\
\hline C & CALLS TO FCN. & LMDF 1460 \\
\hline C & & LMDF 1470 \\
\hline C & FJAC IS AN OUTPUT M BY N ARRAY. THE UPPER N BY N SUBMATRIX & LMDF 1480 \\
\hline C & OF FJac Contains an upper triangular matrix r WITH & LMDF 1490 \\
\hline C & DIAGONAL ELEMENTS OF NONINCREASING MAGNITUDE SUCH THAT & LMDF 1500 \\
\hline C & & LMDF 1510 \\
\hline C & & LMDF 1520 \\
\hline C & P *(JAC *JAC)*P = R *R, & LMDF 1530 \\
\hline C & & LMDF 1540 \\
\hline C & WHERE P IS A PERMUTATION MATRIX AND JAC IS THE FINAL & LMDF1550 \\
\hline C & CALCULATED JACOBIAN. COLUM J OF P IS COLUMN IPVT(J) & LMDF 1560 \\
\hline C & (SEE BELOW) OF THE IDENTITY MATRIX. THE LOWER TRAPEZOIDAL & LMDF 1570 \\
\hline C & PART OF FJAC CONTAINS INFORMATION GENERATED DURING & LMDF 1580 \\
\hline C & THE COMPUTATION OF R. & LMDF1590 \\
\hline C & & LMDF1600 \\
\hline C & LDFJAC IS A POSITIVE INTEGER INPUT VARIABLE NOT LESS THAN M & LMDF1610 \\
\hline C & WHICH SPECIFIES THE LEADING DIMENSION OF THE ARRAY FJAC. & LMDF1620 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline & & LMDF1630 \\
\hline C & IPVT IS AN INTEGER OUTPUT ARRAY OF LENGTH N. IPVT & LMDF 1640 \\
\hline C & DEFINES A PERMUTATION MATRIX P SUCH THAT JAC*P \(=\) Q \({ }^{\circ} \mathrm{R}\), & LMDF1650 \\
\hline C & WHERE JAC IS THE FINAL CALCULATED JACOBIAN, Q IS & LMDF1660 \\
\hline C & ORTHOGONAL (NOT STORED), AND R IS UPPER TRIANGULAR & LMDF 1670 \\
\hline C & WITH DIAGONAL ELEMENTS OF NONINCREASING MAGNITUDE. & LMDF1680 \\
\hline c & COLUMN J OF P IS COLUMN IPVT(J) OF THE IDENTITY MATRIX. & LMDF1690 \\
\hline C & & LMDF 1700 \\
\hline C & QTF IS AN OUTPUT ARRAY OF LENGTH N WHICH CONTAINS & LMDF 1710 \\
\hline C & THE FIRST N ELEMENTS OF THE VECTOR (Q TRANSPOSE)*FVEC. & LMDF1720 \\
\hline C & & LMDF1730 \\
\hline C & WA1, WA2, AND WA3 ARE WORK ARRAYS OF LENGTH N. & LMDF1740 \\
\hline C & & LMDF1750 \\
\hline C & WA4 IS A WORK ARRAY OF LENGTH M. & LMDF1760 \\
\hline C & & LMDF1770 \\
\hline C & SUBPROGRAMS CALLED & LMDF 1780 \\
\hline C & & LMDF1790 \\
\hline C & USER-SUPPLIED ...... FCN & LMDF 1800 \\
\hline C & & LMDF 1810 \\
\hline C & MINPACK-SUPPLIED . . . DPMPAR,ENORM,FDJAC2, LMPAR, QRFAC & LMDF 1820 \\
\hline C & & LMDF 1830 \\
\hline C & FORTRAN-SUPPLIED ... DABS,DMAX1,DMIN1,DSQRT,MOD & LMDF 1840 \\
\hline C & & LMDF 1850 \\
\hline C & ARGONNE NATIONAL LABORATORY. MINPACK PROJECT. MARCH 1980. & LMDF1860 \\
\hline C & BURTON S. GARBOW, KENNETH E. HILLSTROM, JORGE J. MORE & LMDF 1870 \\
\hline C & & LMDF 1880 \\
\hline C & \%*********** & LMDF 1890 \\
\hline & INTEGER I, IFLAG, ITER, J, J & LMDF 1900 \\
\hline & DOUBLE PRECISION ACTRED, DELTA, DIRDER,EPSMCH,FNORM, FNORM1,GNORM, & LMDF 1910 \\
\hline & * ONE, PAR, PNORM, PRERED, P1, P5, P25, P75, P0001,RATIO, & LMDF 1920 \\
\hline & * SUM, TEMP, TEMP1,TEMP2 . XNORM , ZERO & LMDF 1930 \\
\hline & DOUBLE PRECISION DPMPAR,ENORM & LMDF 1940 \\
\hline & DATA ONE, P1, P5, P25, 7 7, P0001, 2ERO & LMDF1950 \\
\hline & * /1.0DO,1.0D-1, 5.OD-1,2.5D-1,7.5I-..1.0D-4. .ODO/ & LMDF 1960 \\
\hline C & & LMDF 1970 \\
\hline & EPSMCH IS THE MACHINE PRECISION. & LMDF 1980 \\
\hline c & & LMDF 1990 \\
\hline & EPSMCH \(=\) DPMPAR(1) & LMDF 2000 \\
\hline 0 & & LMDF 2010 \\
\hline & \(\mathrm{INFO}=0\) & LMDF 2020 \\
\hline & IFLAG \(=0\) & LMDF2030 \\
\hline & NFEV \(=0\) & LMDF2040 \\
\hline C & & LMDF2050 \\
\hline & CHECK THE INPUT PARAMETERS FOR ERRORS. & LMDF2060 \\
\hline C & & LMDF2070 \\
\hline & IF (N .LE. O .OR. M .LT. N .OR. LDFJAC .LT. M & LMDF2080 \\
\hline & * .OR. FTOL . LT. ZERO .OR. XTOL . LT. ZERO . OR. GTOL . LT. ZERO & LMDF2090 \\
\hline & * .UR. MAXFEV .LE. O .OR. FACTOR .LE. ZERO) GO TO 300 & LMDF2100 \\
\hline & IF (MODE .NE. 2) GO TO 20 & LMDF2110 \\
\hline & DO \(10 \mathrm{~J}=1, \mathrm{~N}\) & LMDF2120 \\
\hline & IF (DIAG(J) .LE. ZERO) GO TO 300 & LMDF2130 \\
\hline & 10 CONTINUE & LMDF2140 \\
\hline & 20 CONTINUE & LMDF2150 \\
\hline c & & LMDF2160 \\
\hline
\end{tabular}
```

C EVALUATE THE FUNCTION aT THE STARTING POINT
LMDF2170
AND CALCULATE ITS NORM.
IFLAG = 1
CALL FCN(M,N,X,FVEC,IFLAG)
NFEV = 1
IF (IFLAG .LT. 0) GO TO 300
FNORM = ENORM(M,FVEC)
INITIALIZE LEVENBERG-MARQUARDT PARAMETER AND ITERATION COUNTER.
PAR = ZERO
ITER = 1
C
C BEGINNING OF THE OUTER LOOP.
C
30 CONTINUE
CALCULATE THE JACOBIAN MATRIX.
IFLAG = 2
CALL FDJAC2(FCN,M,N,X,FVEC,FJAC,LDFJAC,IFLAG,EPSFCN,WA4)
NFEV = NFEV + N
IF (IFLAG .LT. 0) GO TO 300
IF REQUESTED, CALL FCN TO ENABLE PRINTING OF ITERATES.
IF (NPRINT .LE. 0) GO TO 40
IFLAG = 0
IF (MOD(ITER-1,NPRINT) .EQ. 0) CALL FCN(M,N,X,FVEC,IFLAG)
IF (IFLAG .LT. 0) GO TO 300
40 CONTINUE
COMPUTE THE QR FACTORIZATION OF THE JACOBIAN.
CALL QRFAC(M,N,FJAC,LDFJAC,.TRUE.,IPVT,N,WA1,WA2,WA3)
ON THE FIRST ITERATION AND IF MODE IS 1, SCALE ACCORDING
TO THE NORMS OF THE COLUMNS OF THE INITIAL JACOBIAN.
IF (ITER .NE. 1) GO TO }8
IF (MODE .EQ. 2) GO TO 60
DO 50 J = 1, N
DIAG(J) = WA2(J)
IF (WA2(J) .EQ. ZERO) DIAG(J) = ONE
CONTINUE
CONTINUE
ON THE FIRST ITERATION, CALCULATE THE NORM OF THE SCALED X
AND INITIALIZE THE STEP BOUND DELTA.
DO 70 J = 1, N
WA3(J) = DIAG(J)*X(J)
CONTINUE

LMDF2180
LMDF2190
LMDF2200
LMDF2210
LMDF2220
LMDF2230
LMDF2240
LMDF2250
LMDF2260
LMDF2270
LMDF2280
LMDF2290
LMDF2300
LMDF2310
LMDF2320
LMDF2330
LMDF2340
LMDF2350
LMDF2360
LMDF2370
LMDF2380
LMDF2390
LMDF2400
LMDF2410
LMDF2420
LMDF2430
LMDF2440
LMDF2450
LMDF2460
LMDF 2470
LMDF2480
LMDF2490
LMDF2500
LMDF2510
LMDF2520
LMDF2530
LMDF2540
LMDF2550
LMDF2560
LMDF2570
LMDF2580
LMDF2590
LMDF2600
LMDF2610
LMDF2620
50
CONTINUE
LMDF2630

LMDF2640
LMDF2650
LMDF2660
LMDF2670
LMDF2680
LMDF2690
LMDF2700

```
    XNORM = ENORM(N,WA3) LMDF2710
DELTA = FACTOR*XNORM
IF (DELTA .EQ. ZERO) DELTA = FACTOR
cONTINUE
FORM (Q TRANSPOSE)*FVEC AND STORE THE FIRST N COMPONENTS IN
QTF.
DO 90 I = 1, M
    WA4(I) = FVEC(I)
    CONTINUE
DO 130 J = 1, N
    IF (FJAC(J,J) .EQ. ZERO) GO TO 120
    SUM = ZERO
    DO 100 I = J, M
        SUM = SUM + FJAC(I,J)*WA4(I)
        CONTINUE
    TEMP = -SUM/FJAC(J,J)
    DO 110 I = J, M
        WA4(I) = WA4(I) + FJAC(I,J)*TEMP
        CONTINUE
    CONTINUE
    FJAC(J,J) = WAl(J)
    QTF(J) = WA4(J)
    CONTINUE
COMPUTE THE NORM OF THE SCALED GRADIENT.
GNORM = ZERO
IF (FNORM .EQ. ZERO) GO TO 170
DO 160 J = 1, N
    L = IPVT(J)
    IF (WA2(L) .EQ. ZERO) GO TO 150
    SUM = 2ERO
    DO 140 I = 1, J
        SUM = SUM + FJAC(I,J)*(QTF(I)/FNORM)
        CONTINUE
    GNORM = DMAX1(GNORM,DABS(SUM/WA2(L)))
    CONTINUE
    CONTINUE
CONTINUE
C TEST FOR CONVERGENCE OF THE GRADIENT NORM.
IF (GNORM .LE. GTOL) INFO = 4
IF (INFO .NE. O) GO TO 300
RESCALE IF NECESSARY.
IF (MODE .EQ. 2) GO TO 190
DO 180 J = 1,N
    DIAG(J) = DMAX1(DIAG(J),WA2(J))
    CONTINUE
CONTINUE
LMDF2720
```

```
\[
\text { XNORM }=\operatorname{ENORM}(N, W A 3)
\]
LMDF2710
DELTA \(=\) FACTOR*XNORM
LMDF2720
FACTOR
LMDF2730
CONTINUE
LMDF2740
FORM (Q TRANSPOSE)*FVEC AND STORE THE FIRST N COMPONENTS IN QTF .
DO \(90 \mathrm{I}=1\), M WA4(I) \(=\) FVEC(I)
LMDF2750
LMDF2760
LMDF2770
LMDF2780
LMDF2790
LMDF2800
LMDF2810
DO \(130 \mathrm{~J}=1\), N
IF (FJAC(J,J) .EQ. ZERO) GO TO 120
SUM = ZERO
DO \(100 \mathrm{I}=\mathrm{J}, \mathrm{M}\)
SUM \(=\operatorname{SUM}+\operatorname{FJAC}(\mathrm{I}, \mathrm{J}) * W A 4(\mathrm{I})\)
CONTINUE
TEMP = -SUM/FJAC(J, J)
DO 110 I = J, M
WA4 \((\mathrm{I})=\) WA4 \((\mathrm{I})+\) FJAC \((\mathrm{I}, \mathrm{J}) *\) TEMP
CONTINUE
LMDF2820
LMDF2830
LMDF2840
LMDF 2850
LMDF2860
LMDF2870
LMDF 2880
LMDF2890
LMDF2900
LMDF2910
LMDF2920
FJAC(J,J) = WA1(J) LMDF2930
QTF \((\mathrm{J})=\) WA4(J) LMDF2940
LMDF2950
LMDF2960
LMDF2970
LMDF2980
LMDF2990
LMDF3000
LMDF3010
LMDF3020
LMDF3030
LMDF3040
LMDF3050
LMDF3060
LMDF3070
LMDF3080
LMDF3090
LMDF3100
LMDF3110
IMDF3120
LMDF3130
LMDF3140
LMDF3150
LMDF3160
LMDF3170
LMDF3180
LMDF3190
LMDF3200
LMDF3210
LMDF3220
LMDF3230
LMDF3240
\begin{tabular}{|c|c|c|}
\hline C & & LMDF3250 \\
\hline C & BEGINNING OF THE INNER LOOP. & LMDF3260 \\
\hline C & & LMDF3270 \\
\hline 200 & CONTINUE & LMDF3280 \\
\hline C & & LMDF3290 \\
\hline C & DETERMINE THE LEVENBERG-MARQUARDT PARAMETER. & LMDF3300 \\
\hline C & & LMDF3310 \\
\hline & CALL LMPAR(N,FJAC,LDFJAC, IPVT, DIAG, QTF, DELTA, PAR, WA1, WA2, & LMDF3320 \\
\hline * & WA3,WA4) & LMDF3330 \\
\hline C & & LMDF3340 \\
\hline C & STORE THE DIRECTION P AND \(\mathrm{X}+\mathrm{P}\). CALCULATE THE NORM OF P. & LMDF3350 \\
\hline C & & LMDF3360 \\
\hline & DO \(210 \mathrm{~J}=1, \mathrm{~N}\) & LMDF3370 \\
\hline & WA1 \((\mathrm{J})=-\mathrm{WA1}(\mathrm{~J})\) & LMDF3380 \\
\hline & WA2 \((\mathrm{J})=\mathrm{X}(\mathrm{J})+\) WA1 \((\mathrm{J})\) & LMDF3390 \\
\hline & WA3 \((\mathrm{J})=\) DIAG(J)*WA1 \((\mathrm{J})\) & LMDF3400 \\
\hline 210 & CONTINUE & LMDF3410 \\
\hline & PNORM \(=\) ENORM ( \(\mathrm{N}, \mathrm{WA} 3\) ) & LMDF3420 \\
\hline C & & LMDF3430 \\
\hline C & ON THE FIRST ITERATION, ADJUST THE INITIAL STEP BOUND. & LMDF3440 \\
\hline C & & LMDF3450 \\
\hline & IF (ITER .EQ. 1) DELTA = DMIN1 (DELTA, PNORM) & LMDF3460 \\
\hline C & & LMDF3470 \\
\hline C & EVALUATE THE FUNCTION AT \(\mathrm{X}+\mathrm{P}\) and Calculate its norm. & LMDF3480 \\
\hline C & & LMDF3490 \\
\hline & IFLAG \(=1\) & LMDF3500 \\
\hline & CALL FCN(M,N,WA2,WA4, IFLAG) & LMDF3510 \\
\hline & NFEV \(=\) NFEV + 1 & LMDF3520 \\
\hline & IF (IFLAG .LT. 0) GO TO 300 & LMDF3530 \\
\hline & FNORM1 \(=\) ENORM (M, WA4) & LMDF3540 \\
\hline C & & LMDF3550 \\
\hline C & COMPUTE THE SCALED ACTUAL REDUCTION. & LMDF3560 \\
\hline C & & LMDF3570 \\
\hline & ACTRED \(=-\) ONE & LMDF3580 \\
\hline & IF (P1*FNORM1 .LT. FNORM) ACTRED = ONE - (FNORM1/FNORM)**2 & LMDF3590 \\
\hline C & & LMDF3600 \\
\hline C & COMPUTE THE SCALED PREDICTED REDUCTION AND & LMDF3610 \\
\hline C & THE SCALED DIRECTIONAL DERIVATIVE. & LMDF3620 \\
\hline C & & LMDF3630 \\
\hline & DO \(230 \mathrm{~J}=1, \mathrm{~N}\) & LMDF3640 \\
\hline & WA3 \((\mathrm{J})=\) ZERO & LMDF3650 \\
\hline & \(\mathrm{L}=\operatorname{IPVT}(\mathrm{J})\) & LMDF3660 \\
\hline & TEMP = WA1 (L) & LMDF3670 \\
\hline & \[
\text { DO } 220 \mathrm{I}=1, \mathrm{~J}
\] & LMDF3680 \\
\hline & WA3 \((\mathrm{I})=\) WA3 \((\mathrm{I})+\mathrm{FJAC}(\mathrm{I}, \mathrm{J}) *\) TEMP & LMDF3690 \\
\hline 220 & CONTINUE & LMDF3700 \\
\hline 230 & CONTINUE & LMDF3710 \\
\hline & TEMP1 = ENORM (N, W43)/FNORM & LMDF3720 \\
\hline & TEMP \(2=\) (DSQRT (PAR)*PNORM)/FNORM & LMDF3730 \\
\hline & PRERED \(=\) TEMP1**2 + TEMP2**2/P5 & LMDF3740 \\
\hline &  & LMDF3750 \\
\hline C & & LMDF3760 \\
\hline C & COMPUTE THE RATIO OF THE ACTUAL TO THE PREDICTED & LMDF3770 \\
\hline C & REDUCTION. & LMDF3780 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline \multirow[t]{3}{*}{C} & & LMDF3790 \\
\hline & RATIO \(=\) ZERO & LMDF3800 \\
\hline & IF (PRERED .NE. ZERO) RATIO = ACTRED/PRERED & LMDF3810 \\
\hline C & & LMDF3820 \\
\hline C & UPDATE THE STEP BOUND. & LMDF3830 \\
\hline \multirow[t]{4}{*}{C} & & LMDF 3840 \\
\hline & IF (RATIO .GT. P25) G0 TO 240 & LMDF3850 \\
\hline & IF (ACTRED .GE. ZERO) TEMP = P5 & LMDF3860 \\
\hline & IF (ACTRED .LT. ZERO) & LMDF3870 \\
\hline \multirow[t]{5}{*}{*} & TEMP \(=\) P5 \(\%\) DIRDER/ (DIRDER + P5\%ACTRED \()\) & LMDF3880 \\
\hline & IF (P1*FNORM1 . GE. FNORM . OR. TEMP . LT. P1) TEMP = P1 & LMDF3890 \\
\hline & DELTA \(=\) TEMP \(*\) DMIN1 (DELTA, PNORM/P1) & LMDF3900 \\
\hline & PAR \(=\) PAR/TEMP & LMDF3910 \\
\hline & GO TO 260 & LMDF3920 \\
\hline \multirow[t]{4}{*}{240} & CONTINUE & LMDF3930 \\
\hline & IF (PAR .NE. ZERO .AND. RATIO .LT. P75) GO TO 250 & LMDF3940 \\
\hline & DELTA \(=\) PNORM/P5 & LMDF3950 \\
\hline & PAR \(=P 5 \%\) PAR & LMDF3960 \\
\hline 250 & CONTINUE & LMDF3970 \\
\hline 260 & CONTINUE & LMDF3980 \\
\hline C & & LMDF3990 \\
\hline C & TEST FOR SUCCESSFUL ITERATION. & LMDF4000 \\
\hline \multirow[t]{2}{*}{C} & & LMDF4010 \\
\hline & IF (RATIO .LT. P0001) GO TO 290 & LMDF4020 \\
\hline C & & LMDF4030 \\
\hline C & SUCCESSFUL ITERATION. UPDATE X, FVEC, AND THEIR NORMS. & LMDF4040 \\
\hline \multirow[t]{4}{*}{C} & & LMDF4050 \\
\hline & D0 \(270 \mathrm{~J}=1, \mathrm{~N}\) & LMDF4060 \\
\hline & X \((\mathrm{J})=\) WA2 \((\mathrm{J})\) & LMDF4070 \\
\hline & WA2 \((\mathrm{J})=\operatorname{DIAG}(\mathrm{J}) * \mathrm{X}(\mathrm{J})\) & LMDF4080 \\
\hline \multirow[t]{3}{*}{270} & CONTINUE & LMDF4090 \\
\hline & DO \(280 \mathrm{I}=1, \mathrm{M}\) & LMDF4100 \\
\hline & \(\cdots \mathrm{EC}(\mathrm{I})=\) WA4 (I) & LMDF4110 \\
\hline \multirow[t]{4}{*}{280} & CONTINUE & LMDF4120 \\
\hline & XNORM \(=\) ENORM ( \(\mathrm{N}, \mathrm{WA} 2)\) & LMDF4130 \\
\hline & FNORM \(=\) FNORM1 & LMDF4140 \\
\hline & ITER \(=\) ITER + 1 & LMDF4150 \\
\hline 290 & CONTINUE & LMDF4160 \\
\hline C & & LMDF4170 \\
\hline C & TESTS FOR CONVERGENCE. & LMDF4180 \\
\hline \multirow[t]{2}{*}{C} & & LMDF4190 \\
\hline & IF (DABS (ACTRED) . LE. FTOL . AND. PRERED .LE. FTOL & LMDF4200 \\
\hline \multirow[t]{3}{*}{*} & . AND. P5*RATIO . LE. ONE) INFO = 1 & LMDF4210 \\
\hline & IF ( \({ }^{\text {dELTA }}\). LE. XTOL*XNORM) INFO \(=2\) & LMDF4220 \\
\hline & IF (DABS (ACTRED) .LE. FTOL . AND. PRERED .LE. FTOL & LMDF4230 \\
\hline \multirow[t]{2}{*}{*} & .AND. P5*RATIO .LE. ONE .AND. INFO .EQ . 2) INFO = 3 & LMDF4240 \\
\hline & IF (INFO .NE. O) GO TO 300 & LMDF4250 \\
\hline C & & LMDF4260 \\
\hline C & TESTS FOR TERMINATION AND STRINGENT TOLERANCES. & LMDF4270 \\
\hline C & & LMDF4280 \\
\hline & IF (NFEV .GE. MAXFEV) \(\mathrm{INFO}=5\) & LMDF42.90 \\
\hline & IF (DABS (ACTRED) . LE. EPSMCH .AND. PRERED . LE. EPSMCH & LMDF4300 \\
\hline * & .AND. P5\%RATIO . LE. ONE) INFO \(=6\) & LMDF4310 \\
\hline & IF (DELTA . LE. EPSMCH*XNORM) INFO \(=7\) & LMDF4320 \\
\hline
\end{tabular}
```

 IF (GNORM .LE. EPSMCH) INFO = 8 LMDF4330
 IF (INFO .NE. 0) GO TO 300 LMDF4340
 C END OF THE OUTER LOOP.
C
GO TO }3
C
C TERMINATION, EITHER NORMAL OR USER IMPOSED.
C
IF (I. 'rAG .LT, 0) INFO = IFLAG
IFLAG
IF (NPF !". !T. 0) CALL FCN(M,N,X,FVEC,IFLAG)
RETURN
LAST CARD OF SUBROUTINE LMDIF.
END

```

LMDF4330
LMDF4340
LMDF4350
LMDF4360
LMDF4370
LMDF4380
LMDF4390
LMDF4400
LMDF4410
IMDF4420
LMDF4430
LMDF4440
LMDF4450
LMDF4460
LMDF4470
LMDF4480
LMDF4490
LMDF4500
LMDF4510
LMDF4520
LMDF4530
LMDF4540
    SUBROUTINE LMDIF1(FCN,M,N,X,FVEC,TOL, INFO, IWA,WA, LWA) LMF10010
    INTEGER M,N,INFO,LWA
    INTEGER IWA(N)
    DOUBLE PRECISION TOL
    DOUBLE PRECISION X(N),FVEC(M),WA(LWA)
    EXTERNAL FCN

    SUBROUTINE LMDIF1
    THE PURPOSE OF LMDIF1 IS TO MINIMIZE THE SUM OF THE SQUARES OF
    M NONLINEAR FUNCTIONS IN N VARIABLES BY A MODIFICATION OF THE
    LEVENBERG-MARQUARDT ALGORITHM. THIS IS DONE BY USING THE MORE
    general least-SQuares solver lidif. The user must provide a
    SUBROUTINE WHICH CALCULATES THE FUNCTIONS. THE JACOBIAN IS
    THEN CALCULATED BY A FORWARD-DIFFERENCE APPROXIMATION.
    THE SUBROUTINE STATEMENT IS
    SUBROUTINE LMDIFI(FCN,M,N,X,FVEC,TOL, INFO, IWA,WA, LWA)
    WHERE
    FCN IS THE NAME OF THE USER-SUPPLIED SUBROUTINE WHICH
        CALCULATES THE FUNCTIONS. FCN MUST BE DECLARED
        IN AN EXTERNAL STATEMENT IN THE USER CALLING
        PROGRAM, AND SHOULD BE WRITTEN AS FOLLOWS.
        SUBROUTINE FCN(M,N,X,FVEC, IFLAG)
        INTEGER M,N,IFLAG
        DOUBLE PRECISION X(N),FVEC(M)
        ----------
        CALCULATE THE FUNCTIONS AT X AND
        RETURN THIS VECTOR IN FVEC.
        ----------
        RETURN
        END
        the value of iflag should not be changed by fcn unless
        THE USER WANTS TO TERMINATE EXECUTION OF LMDIF1.
        in this case set iflag to a negative integer.
            M I: A POSITIVE INTEGER INPUT VARIABLE SET TO THE NUMBER
        OF FUNCTIONS.
            N IS A POSITIVE INTEGER INPUT VARIABLE SET TO THE NUMBER
        of Variables. N MUST NOT EXCEED M.
            \(X\) IS an array of LENGTH \(N\). ON INPUT X MUST CONTAIN
        an INITIAL ESTIMATE OF THE SOLUTION VECTOR. ON OUTPUT X
        CONTAINS THE FINAL ESTIMATE OF THE SOLUTION VECTOR.
            FVEG IS AN OUTPUT ARRAY OF LENGTH M WHICH CONTAINS
        THE FUNCTIONS EVALUATED AT THE OUTPUT X.

LMF10010
LMF 10020
LMF10030
LMF 10040
LMF 10050
LMF 10060
LMF10070
LMF 10080
LMF 10090
LMF 10100
LMF10110
LMF10120
LMF10130
LM? 10140
LMF10150
LMF 10160
LMF10170
LMF10180
LMF 10190
LMF10200
LMF 10210
LMF10220
LMF 10230
LMF10240
LMF 10250
LMF10260
LMF 10270
LMF 10280
LMF10290
LMF10300
LMF10310
LMF10320
LMF10330
LMF 10340
LMF10350
LMF10360
LMF10370
LMF10380
LMF10390
LMF10400
LMF10410
LMF10420
LMF10430
LMF 10440
LMF 10450
LMF10460
LMF 10470
LMF 10480
LMF10490
LMF10500
LMF 10510
LMF 10520
LMF 10530
LMF10540
\begin{tabular}{|c|c|}
\hline TOL IS A NONNEGATIVE INPUT VARIABLE. TERMINATION OCCURS & \[
\begin{aligned}
& \text { LMF } 10550 \\
& \text { LMF } 10560
\end{aligned}
\] \\
\hline WHEN THE ALGORITHM ESTIMATES EITHER THAT THE KELATIVE & LMF10570 \\
\hline ERROR IN THE SUM OF SQUARES IS AT MOST TOL OR THAT & LMF 10580 \\
\hline The relative error between \(X\) and the solution is at & LMF10590 \\
\hline MOST TOL. & LMF 10600 \\
\hline & LMF10610 \\
\hline INFO IS AN INTEGER OUTPU' VARIABLE. If the user has & LMF10620 \\
\hline TERMINATED EXECUTION, INFO IS SET TO THE (NEGATIVE) & LMF10630 \\
\hline VALUE OF IFLAG. SEL DESCRIPTION OF FCN. OTHERWISE, & LMF10640 \\
\hline INTO IS SET AS FOLLOWS. & LMF10650 \\
\hline & LMF10660 \\
\hline INFO \(=0\) IMPROPER INPUT PARAMETERS. & LMF10670 \\
\hline & LMF10680 \\
\hline TNFO \(=1\) ALGORITHM ESTIMATES THAT THE RELATIVE ERROR & LMF10690 \\
\hline IN THE SUM OF SQUARES IS AT MOST TOL. & LMF10700 \\
\hline & LMF10710 \\
\hline INFO \(=2\) ALGORITHM ESTIMATES THAT THE RELATIVE ERROR & LMF 10720 \\
\hline BETWEEN X AND THE SOLUTION IS AT MOST TOL. & LMF 10730 \\
\hline & LMF10740 \\
\hline INFO \(=3\) CONDITIONS FOR INFO \(=1\) AND INFO \(=2\) BOTH HOLD. & LMF10750 \\
\hline & LMF 10760 \\
\hline INFO \(=4\) FVEC IS ORTHOGONAL TO THE COLUMNS OF THE & LMF10770 \\
\hline JACOBIAN TO MACHINE PRECISION. & LMF10780 \\
\hline & LMF10790 \\
\hline INFO \(=5\) NUMBER OF CALLS TO FCN HAS REACHED OR & LIF 10800 \\
\hline EXCEEDED 200\% \({ }^{(N+1) .}\) & LMF10810 \\
\hline & LMF10820 \\
\hline INFO \(=6\) TOL IS TOO SMALL. NU FURTHER REDUCTION IN & LINF 10830 \\
\hline THE SUM OF SQUARES IS POSSIBLE. & LMF 10840 \\
\hline & LMF 10850 \\
\hline INFO \(=7\) TOL IS TOO SMALL. NO FURTHER IMPROVEMENT IN & LMF10860 \\
\hline THE APPROXIMATE SOLUTION X IS POSSIBLE. & LMF 10870 \\
\hline & LMF10880 \\
\hline IWA IS AN INTEGER WORK ARRAY OF LENGTH N. & LMF10890 \\
\hline & LMF10900 \\
\hline WA IS A WORK ARray of length lwa. & LMF10910 \\
\hline & LMF10920 \\
\hline Lha is a positive integer input variable not less than & LMF10930 \\
\hline \(\mathrm{M} \% \mathrm{~N}+5 \% \mathrm{~N}+\mathrm{M}\). & LMF10940 \\
\hline & LMF10950 \\
\hline UBPROGRAMS CALLED & LMF 10960 \\
\hline & LMF10970 \\
\hline USER-SUPPLIED ...... FCN & LMF10980 \\
\hline & LMF10990 \\
\hline MINPACK-SUPPLIED . . . LMDIF & LMF11000 \\
\hline & LMF11010 \\
\hline RGONNE NATIONAL LABORATORY. MINPACK PROJECT. MARCH 1980. & LMF11020 \\
\hline URTON S. GARBOW, KENNETH E. HILLSTROM, JORGE J. MORE & LMF11030 \\
\hline & LMF11040 \\
\hline  & LMF11050 \\
\hline NTEGER MAXFEV,MODE,MP5N,NFEV,NPRINT & LMF11060 \\
\hline OUUBLE PRECISION EPSFCN, FACTOR,FTOL,GTOL,XTOL,ZERO & LMF11070 \\
\hline DATA FACTOR, ZERO /1.0D2,0.0DO/ & LMF11080 \\
\hline
\end{tabular}
```

 INFO = 0 LMF11090
 C
C CHECK THE INPUT PARAMETERS FOR ERRORS.
C
IF (N .LE. O .OR. M .LT. N .OR. TOL .LT. ZERO
* .OR. LWA .LT. M*N + 5*N + M) GO TO 10
C
C CALL LMDIF.
C
MAXFEV = 200%(N + 1)
FTOL = TOL
XTOL = TOL
GTOL = ZERO
EPSFCN = ZERO
MODE = 1
NPRINT = 0
MP5N = M + 5*N
CALL IMDIF(FCN,M,N,X,FVEC,FTOL,XTOL,GTOL,MAXFEV,EPSFCN,WA(1),
* MODE,FACTOR,NPRINT,INFO,NFEV,WA(MP5N+1),M,IWA,
WA(N+1),WA(2*N+1),WA(3*N+1),WA(4*N+1),WA(5*N+1))
IF (INFO .EQ. 8) INFO = 4
10 CONTINUE
RETURN
C
C LAST CARD OF SUBROUTINE LMDIF1.
C
END

```

LMF11100
LMF11110
LMF11120
LMF11130
LMF 11140
LMF11150
LMF11160
LMF 11170
LMF11180
LMF 11190
LMF 11200
LMF11210
LMF 11220
LMF 11230
LMF11240
LMF11250
LMF11260
LMF11270
LMF11280
LMF11290
10 CONTINUE
LMF 11300
LMF11310
LMF 11320
LMF11330
LMF 11340
LMF11350
\begin{tabular}{|c|c|}
\hline SUBRDUTINE LMPAR(N,R,LDR, IPVT, DIAG, QTB, DELTA, PAR, X , SDIAG, WA1, & LMPR0010 \\
\hline * WA2) & LMPR0020 \\
\hline INTEGER N,LDR & LMPR0030 \\
\hline INTEGER IPVT(N) & LMPR0040 \\
\hline DOUBLE PRECISION DELTA, PAR & LMPR0050 \\
\hline DOUBLE PRECISION R(LDR,N), DIAG(N), QTB ( N\(), \mathrm{X}(\mathrm{N}), \mathrm{SDIAG}(\mathrm{N})\), WA1 ( N\()\), & LMFR0060 \\
\hline * WA2(N) \({ }^{\text {( }}\) ( \({ }^{\text {a }}\) & LMPR0070 \\
\hline  & LMPR0080 \\
\hline & LMPR0090 \\
\hline SUBROUTINE LMPAR & IMPRO100 \\
\hline & LMPR0110 \\
\hline GIVEN AN M BY N MATRIX A, AN N BY N NONSINGULAR DIAGONAL & LMPR0120 \\
\hline MATRIX D, AN M-VECTOR B, AND A POSITIVE NUMBER DELTA, & LMPR0130 \\
\hline the problem is to determine a value for the parameter & LMPR0140 \\
\hline PAR SUCH THAT IF X SOLVES THE SYSTEM & LMPR0150 \\
\hline & LMPR0160 \\
\hline \(A^{*} \times=B, \quad \operatorname{SQRT}(\mathrm{PAR}) * \mathrm{D} * \mathrm{X}=0\), & LMPR0170 \\
\hline & LMPR0180 \\
\hline IN THE LEAST SQUARES SENSE, AND DXNORM IS THE EUCLIDEAN & LMPR0190 \\
\hline NORM OF D*X, THEN EITHER PAR IS ZERO AND & LMPR0200 \\
\hline & LMPR0210 \\
\hline (DXNORM-DELTA) .LE. 0.1*DELTA & LMPR0220 \\
\hline & LMPR0230 \\
\hline OR PAR IS POSITIVE AND & LMPR0240 \\
\hline & LMPR0250 \\
\hline ABS (DXNORM-DELTA) .LE. 0.1^DELTA & LMPR0260 \\
\hline & LMPR0270 \\
\hline THIS SUBROUTINE COMPLETES THE SOLUTION OF THE PROBLEM & LMPR0280 \\
\hline If IT IS PROVIDED WITH THE NECESSARY INFORMATION FROM THE & LMPR0290 \\
\hline QR FACTORIZATION, WITH COLUMN PIVOTING, OF A. THAT IS, IF & LMPR0300 \\
\hline \(A^{*} \mathrm{P}=\mathrm{Q}\) (R, WHERE \(P\) IS A PERMUTATION MATRIX, Q HAS ORTHOGONAL & LMPR0310 \\
\hline COLUMNS, AND R IS AN UPPER TRIANGULAR MATRIX WITH DIAGONAL & LMPR0320 \\
\hline ELEMENTS OF NONINCREASING MAGNITUDE, THEN LMPAR EXPECTS & LMPR0330 \\
\hline THE FULL UPPER TRIANGLE OF R, THE PERMUTATION MATRIX P, & LMPR0340 \\
\hline AND THE FIRST N COMPONENTS OF (Q TRANSPOSE)*B. ON OUTPUT & LMPR0350 \\
\hline LMPAR alSo provides an upper triangular matrix s such that & LMPR0360 \\
\hline & LMPR0370 \\
\hline \(T\) T \(T\) & LMPR0380 \\
\hline \(P\) * \(\left(\begin{array}{l}\text { * }\end{array}\right.\) & LMPR0390 \\
\hline & LMPR0400 \\
\hline S IS Employed within lmpar and may be of separate interest. & LMPR0410 \\
\hline & LMPR 0420 \\
\hline ONLY A FEW ITERATIONS ARE GENERALLY NEEDED FOR CONVERGENCE & LMPR0430 \\
\hline OF THE ALGORITHM. IF, HOWEVER, THE LIMIT OF 10 ITERATIONS & LMPR0440 \\
\hline IS REACHED, THEN THE OUTPUT PAR WILL CONTAIN THE BEST & LMPR0450 \\
\hline VALUE OBTAINED SO FAR. & LMPR0460 \\
\hline & LMPR0470 \\
\hline THE SUBROUTINE STATEMENT IS & LMPR0480 \\
\hline & LMPR0490 \\
\hline SUBROUTINE LMPAR(N,R,LDR,IPVT,DIAG,QTB,DELTA,PAR,X,SDIAG, & LMPR0500 \\
\hline WA1,WA2) & LMPR05 10 \\
\hline & LMPR 0520 \\
\hline WHERE & LMPR0530 \\
\hline & LMPR0540 \\
\hline
\end{tabular}
            N IS A POSITIVE INTEGER INPUT VARIABLE SET TO THE ORDER OF R. LMPR0550
                                    LMPRO560
    R IS AN N BY N ARRAY. ON INPUT THE FULL UPPER TRIANGLE LMPR0570
        MUST CONTAIN THE FULL UPPER TRIANGLE OF THE MATRIX R. LMPRO580
        ON OUTPUT THE FULL UPPER TRIANGLE IS UNALTERED, AND THE LMPR0590
        STRICT LOWER TRIANGLE CONTAINS THE STRICT UPPER TRIANGLE LMPR0600
        (TRANSPOSED) OF THE UPPER TRIANGULAR MATRIX S.
    LDR IS A POSITIVE INTEGER INPUT VARIABLE NOT LESS THAN N
        WHICH SPECIFIES THE LEADING DIMENSION OF THE ARRAY R.
    IPVT IS AN INTEGER INPUT ARRAY OF LENGTH N WHICH DEFINES THE
        PERMUTATION MATRIX P SUCH THAT A*P = \(Q * R\). COLUMN J OF P
        IS COLUMN IPVT(J) OF THE IDENTITY MATRIX.
    diag is an input array of lengit n which must contain the
        diagonal elements of the matrix d.
        QTB IS AN INPUT ARRAY OF LENGTH N WHICH MUST CONTAIN THE FIRST
        N ELEMENTS OF THE VECTOR (Q TRANSPOSE)*B.
    DELTA IS A POSITIVE INPUT VARIABLE WHICH SPECIFIES AN UPPER
        BOUND ON THE EUCLIDEAN NORM OF D*X.
    PAR IS A NONNEGATIVE VARIABLE. ON INPUT PAR CONTAINS AN
        INITIAL ESTIMATE OF THE LEVENBERG-MARQUARDT PARAMETER.
        ON OUTPUT PAR CONTAINS THE FINAL ESTIMATE.
    \(X\) is an output array of .eng \(n\) Which Contains the least
        SQUARES SOLUTION OF THE SYSTEM \(A * X=B, S Q R T(P A R) * D * X=0\),
        FOR THE OUTPUT PAR.
    SDiag is an output array of lengit n which contains the
        diagonal elements of the upper triangular matrix s.
            Wal and waz are work arrays of length n.
            SUBPROGRAMS CALLED
        MINPACK-SUPPLIED ... DPMPAR,ENORM,QRSOLV
        FORTRAN-SUPPLIED ... DABS,DMAX1,DMIN1,DSQRT
        ARGONNE NATIONAL LABORATORY. MINPACK PROJECT. MARCH 1980.
        BURTON S. GARBOW, KENNETH E. HILLSTROM, JORGE J. MORE

        INTEGER I, ITER,J,JM1,JP1,K,L,NSING
        DOUBLE PRECISION DXNORM,DWARF,FP,GNORM,PARC,PARL,PARU,P1,POO1,
        * SUM,TEMP,ZERO
        DOUBLE PRECISION DPMPAR,ENORM
        DATA P1,P001,2ERO /1.0D-1,1.0D-3,0.0D0/
    DWARF IS THE SMALLEST POSITIVE MAGNITUDE.
    LMPR0610
    LMPR0620
    LMPR0630
    LMPR0640
    LMPR0650
    LMPR0660
    LMPR0670
    LMPR0680
    LMPR0690
    LMPR0700
    LMPR0710
    LMPR0720
    LMPR0730
    LMPR074
    LMPR0750
    LMPR0760
    LMPR0770
    LMPR0780
    LMPR0790
    LMPR0800
    LMPR0810
    LMPR0820
LMPR0830
LMPR0840
LMPR0850
LMPR0860
LMPR0870
LMPR0880
LMPR0890
LMPR0900
LMPR0910
LMPR0920
LMPR0930
LMPR0940
LMPR0950
LMPR0960
LMPR0970
LMPR0980
LMPR0990
LMPR1000
LMPR1010
LMPR1020
LMPR1030
LMPR1040
LMPR1050
LMPR1060
LMPR1070
LMPR1080

```

 JM1 = J - 1 LMPR1630
 IF (JM1 .LT. 1) GO TO 100
 DO 90 I = 1, JM1
 SUM = SUM + R(I,J)*WA1(I)
 CONTINUE
 CONTINUE
 WA1(J) = (NA1(J) - SUM)/R(J,J)
 CONTINUE
 TEMP = ENORM(N,WA1)
 PARL = ((FP/DELTA)/TEMP)/TEMP
 120 CONTINUE
 C
C CALCULATE AN UPPER BOUND, PARU, FOR THE ZERO OF THE FUNCTION.
C
DO 140 J = 1, N
SUM = ZERO
DO 130 I = 1, J
SUM = SUM + R(I,J)*QTB(I)
CONTINUE
L = IPVT(J)
WAl(J) = SUM/DIAG(L)
CONTINUE
GNORM = ENORM(N,WA1)
PARU = GNORM/DELTA
IF (PARU .EQ. ZERO) PARU = DWARF/DMIN1(DELTA,P1)
C
C IF THE INPUT PAR LIES OUTSIDE OF THE INTERVAL (PARL,PARU),
C
C
SET PAR TO THE CLOSER ENDPOINT.
PAR = DMAX1(PAR,PARL)
PAR = DMIN1(PAR,PARU)
IF (PAR .EQ. ZERO) PAR = GNORM/DXNORM
C
C BEGINNING OF AN ITERATION.
C
150 CONTINUE
ITER = ITER + 1
evallate the function at the current value of par.
IF (PAR .EQ. 2ERO) PAR = DMAXI(DWARF,POO1*PARU)
TEMP = DSQRT(PAR)
DO 160 J = 1,N
WA1(J) = TEMP*DIAG(J)
CONTINUE
CALL QRSOLV(N,R,LDR,IPVT,Wh1,QTB,X,SDIAG,WA2)
DO 170 J = 1, N
WA2(J) = DIAG(J)*X(J)
CONTINUE
DXNORM = ENORM(N,WA2)
TEMP = FP
FP = DXNORM - DEL'SA

LMPR1640
LMPR1650
LMPR1660
LMPR1670
LMPR1680
LMPR1690
LMPR1700
LMPR1710
LMPR1720
LMPR1730
LMPR1740
LMPR1750
LMPR1760
LMPR1770
LMPR1780
LMPR1790
LMPR1800
LMPR1810
LMPR1820
LMPR1830
LMPR1840
LMPR1850
LMPR1860
LMPR1870
LMPR1880
LMPR1890
TMPR1900
.MPR1910
LMPR1920
LMPR1930
LMPR1940
LMPR1950
LMPR1960
LMPR1970
LMPR1980
LMPR1990
LMPR2000
LMPR2010
LMPR2020
LMPR2030
LMPR2040
LMPR2050
LMPR2060
LMPR2070
LMPR2080
LMPR2090
LMPR2100
LMPR2110
LMPR2120
LMPR2130
LMPR2140
LMPR2150
LMPR2160

```
C OF PAR. ALSO TEST FOR THE EXCEPTIONAL CASES WHERE PARL LMPR2170
C IS ZERO OR THE NUMBER OF ITERATIONS HAS REACHED 10. LMPR2180
C
    IF (DABS(FP) .LE. P1*DELTA
LMPR2190
LMPR2200
```

COMPUTE THE NEWTON CORRECTION.
DO $180 \mathrm{~J}=1$, N
$\mathrm{L}=\operatorname{IPVT}(\mathrm{J})$
WA1 $(\mathrm{J})=$ DIAG(L)*(WA2(L)/DXNORM)
CONTINUE
D0 $210 \mathrm{~J}=1$, N
WA1 $(\mathrm{J})=$ WA1 $(\mathrm{J}) /$ SDIAG(J$)$
TEMP $=$ WA1 (J)
$\mathrm{JP} 1=\mathrm{J}+1$
IF (N .LT. JF1) GO TO 200
DO $190 \mathrm{I}=\mathrm{JP} 1, \mathrm{~N}$
WA1 (I) $=$ WA1 (I) $-R(I, J) * T E M P$
CONTINUE
CONTINUE
CONTINUE
TEMP $=\operatorname{ENORM}(N, W A 1)$
PARC $=((F P / D E L T A) / T E M P) / T E M P$
depending on the sign of the function, update parl or paru.
IF (FP .GT. ZERO) PARL $=$ DMAX1 (PARL, PAR)
IF (FP .LT. ZERO) PARU = DMIN1(PARU, PAR)
COMPUTE AN IMPROVED ESTIMATE FOR PAR.
PAR $=$ DMAX1 $($ PARL, PAR+PARC $)$
C
C
C
END OF AN ITERATION.
GO TO 150
220 CONTINUE
C
C TERMINATION.
IF (ITER .EQ. 0) PAR = 2ERO
RETURN
LAST CARD OF SUBROUTINE IMPAR.
END

LMPR2170
LMPR2180
LMPR2190
LMPR2200
LMPR2210
LMPR2220
LMPR2230
LMPR2240
LMPR2250
LMPR2260
LMPR2270
LMPR2280
LMPR2290
LMPR2300
LMPR2310
LMPR2320
LMPR2330
LMPR2340
LMPR2350
LMPR2360
LMPR2370
LMPR2380
LMPR2390
LMPR2400
LMPR2410
LMPR2420
LMPR2430
LMPR2440
LMPR2450
LMPR2460
LMPR2470
LMPR2480
LMPR2490
LMPR2500
LMPR2510
LMPR2520
LMPR2530
LMPR2540
LMPR2550
LMPR2560
LMPR2570
LMPR2580
LMPR2590
LMPR2600
LMPR2610
LMPR2620
LMPR2630
LMPR2640

```
    SUBROUTINE LMSTR(FCN,M,N,X,FVEC,FJAC,LDFJAC,FTOL,XTOL,GTOL, LMSR0010
    * MAXFEV,DIAG,MODE,FACTOR,NPRINT, INFO,NFEV,NJEV,
    * IPVT,QTF,WA1,WA2,WA3,WA4)
    INTEGER M,N,LDFJAC,MAXFEV,MODE,NPRINT,INFO,NFEV,NJEV
    INTEGER IPVT(N)
    LOGICAL SING
    DOUBLE PRECISION FTOL,XTOL,GTOL,FACTOR
    DOUBLE PRECISION X(N),FVEC(M),FJAC(LDFJAC,N),DIAG(N),QTF(N),
*
                                    WA1(N),WA2(N),WA3(N),WA4(M)
```



```
    SUBROUTINE LMSTR
    THE PURPOSE OF LMSTR IS TO MINIMIZE THE SUM OF THE SQUARES OF
    M NONLINEAR FUNCTIONS IN N VARIABLES BY A MODIFICATION OF
    THE LEVENBERG-MARQUARDT ALGORITHM WHICH USES MINIMAL STORAGE.
    THE USER MUST PROVIDE A SUBROUTINE WHICH CALCULATES THE
    FUNCTIONS AND THE ROWS OF THE JACOBIAN.
    THE SUBROUTINE STATEMENT IS
    SUBROUTINE LMSTR(FCN M,N,X,FVEC,FJAC,LDFJAC,FTOL,XTOL,GTOL,
        MAXFEV,DIAG,MODE,FACTOR,NPRINT, INFO,NFEV,
        NJEV, IPVT,QTF,WA1,WA2,WA3,WA4)
    WHERE
    FCN IS THE NAME OF THE USER-SUPPLIED SUBROUTINE WHICH
        CALCULATES THE FUNCTIONS AND THE ROWS OF THE JACOBIAN.
        FCN MUST BE DECLARED IN AN EXTERNAL STATEMENT IN THE
        USER CALLING PROGRAM, AND SHOULD BE WRITTEN AS FOLLOWS.
        SUBROUTINE FCN(M,N,X,FVEC,FJROW,IFLAG)
        INTEGER M,N,IFLAG
        DOUBLE PRECISION X(N),FVEC(M),FJROW(N)
        IF IFLAG = 1 CALCULATE THE FUNCTIONS aI X and
        RETURN THIS VECTOR IN FVEC.
        IF IFLAG = I CALCULATE THE (I-1)-ST ROW OF THE
        jacobIAN AT X AND RETURN THIS VECTOR IN FJROW.
        ----------
        RETURN
        END
        THE VALUE OF IFLAG SHOULD NOT BE CHANGED BY FCN UNLESS
        THE USER WANTS TO TERMINATE EXECUTION OF LMSTR.
        IN THIS CASE SET IFLAG TO A NEGATIVE INTEGER.
        M IS A POSITIVE INTEGER INPUT VARIABLE SET TO THE NUMBER
        OF FUNCTIONS.
    N IS A POSITIVE INTEGER INPUT VARIABLE SET TO THE NUMBER
        OF VARIABLES. N MUST NOI EXCEED M.
```

LMSR0020
LMSR0030
LMSR0040
LMSR0050
LMSR0060
LMSR0070
LMSR0080
LMSR0090
LMSR0100
LMSR0110
LMSR0120
LMSR0130
LMSR0140
LMSR0150
LMSR0160
LMSR0170
LMSR0180
LMSR0190
LMSR0200
LMSR0210
LMSR0220
LMSR0230
LMSR0240
LMSR0250
LMSR0260
LMSR0270
LMSR0280
LMSR0290
LMSR0300
LMSR0310
LMSR0320
LMSR0330
LMSR0340
LMSR0350
LMSR0360
LMSR0370
LMSR0380
LMSR0390
LMSR0400
LMSR0410
LMSR0420
LMSR0430
LMSR0440
LMSR0450
LMSR0460
LMSR0470
LMSR0480
LMSR0490
LMSROSON
LMSR0510
LMSR0520
LMSR0530
LMSR0540

X IS AN ARRAY OF LENGTH N. ON INPUT X MUST CONTAIN an initial estimate of the solution vector. on output X CONTAINS THE FINAL ESTIMATE OF THE SOLUTION VECTOR.

FVEC IS AN OUTPUT ARRAY OF LENGTH M WHICH CONTAINS THE FUNCTIONS EVALUATED AT THE OUTPUT X.

FJAC IS AN OUTPUT N BY N ARRAY. THE UPPER TRIANGLE OF FJAC CONTAINS AN UPPER TRIANGULAR MATRIX R SUCH THAT

$$
\stackrel{T}{T}{ }^{T} *(J A C * J A C) * P=R^{T} * R,
$$

WHERE P IS A PERMUTATION MATRIX AND JAC IS THE FINAL SALCULATED JACOBIAN. COLUMN J OF P IS COLUMN IPVT(J) (SEE BELOW) OF THE IDENTITY MATRIX. THE LOWER TRIANGULAR PART OF FJAC CONTAINS INFORMATION GENERATED DURING THE COMPUTATION OF R.

Ir.rJAC IS A POSITIVE INTEGER INPUT VARIABLE NOT LESS THAN N WHICH SPECIFIES THE LEADING DIMENSION OF THE ARRAY FJAC.

FTOL IS A NONNEGATIVE INPUT VARIABLE. TERMTNATION OCCURS WHEN BOTH THE ACTUAL AND PREDICTED RELATIVE REDUCTIONS IN THE SUM OF SQUARES ARE AT MOST FTOL. THEREFORE, FTOL MEASURES THE RELATIVE ERROR DESIRED IN THE SUM OF SQUARES.

XTOL IS A NONNEGATIVE INPUT VARIABLE. TERMINATION OCCURS WHEN THE RELATIVE ERROR BEThEEN TWO CONSECUTIVE ITERATES IS AT MOST XTOL. THEREFORE, XTOL MEASURES THE RELATIVE ERROR DESIRED IN THE APPROXIMATE SOLUTION.

GTOL IS A NONNEGATIVE INPUT VARIABLE. TERMINATION OCCURS WHEN THE COSINE OF THE ANGLE BETwEEN FVEC AND any column of the jacobian is at most gTol in absolute VALUE. THEREFORE, GTOL MEASURES THE ORTHOGONALITY DESIRED BETVEEN THE FUNCTION VECTOR AND THE COLUMNS OF THE JACOBIAN.

MAXFEV IS A POSITIVE INTEGER INPUT VARIABLE. TERMINATION OCCLRS WHEN THE NUMBER OF CALLS TO FCN WITH IFLAG = 1 has reached maxfev.
diag is an array of lengit N. If mode = 1 (SEE BELOW), DIAG IS INTERNALLY SET. IF MODE $=2$, DIAG MUST CONTAIN POSITIVE ENTRIES THAT SERVE AS MULTIPLICATIVE SCALE FACTORS FOR THE VARIABLES.

MODE IS AN INTEGER INPUT VARIABLE. IF MODE $=1$, THE VArIABLES WILL BE SCALED INTERNALLY. IF MODE = 2, THE SCALING IS SPECIFIED BY THE INPUT DIAG. OTHER VALUES OF MODE ARE EQUIVALENT TO MODE $=1$.

LMSR0550
LMSR0560
LMSR0570
LMSR0580
LMSR0590
LMSR0600
LMSR0610
LMSR0620
LMSR0630
LMSR0640
LMSR0650
LMSR0660
LMSR0670
LMSR0680
LMSR0690
LMSR0700
LMSR0710
LMSR0720
LMSR0730
LMSR0740
LMSR0750
LMSR0760
LMSR0770
LMSR0780
LMSR0790
LMSR0800
LMSR0810
LMSR0820
LMSR0830
LMSR0840
LMSR0850
LMSR0860
LMSR0870
LMSR0880
LMSR0890
LMSR0900
LMSR0910
LMSR0920
LMSR0930
LMSR0940
LMSR0950
LiHSR0960
LMSR0970
LMSR0980
LMSR0990
LMSR1000
LMSR1010
LMSR1020
LMSR 1030
LMSR 1040
LMSR1050
LMSR1060
LMSR1070
LMSR1080

C	FACTOR IS A POSITIVE INPUT VARIABLE USED IN DETERMINING THE	LMSR1090
C	INITIAL STEP BOUND. THIS BOUND IS SET TO THE PRODUCT OF	LMSR1100
C	FACTOR AND THE EUCLIDEAN NORM OF DIAG*X IF NONZERO, OR ELSE	LMSR1110
C	TO FACTOR ITSELF. IN MOST CASES FACTOR SHOULD LIE IN THE	LMSR1120
C	INTERVAL (.1,100.). 100. IS A GENERALLY RECOMMENDED VALUE.	LMSR1130
C		LMSR1140
C	NPRINT IS AN INTEGER INPUT VARIABLE THAT ENABLES CONTROLLED	LMSR1150
C	PRINTING OF ITERATES IF IT IS POSITIVE. In THis Case,	LMSR1160
C	FCN IS CALLED WITH IFLAG $=0$ at THE BEGINNING OF THE FIRST	LMSR1170
C	ITERATION AND EVERY NPRINT ITERATIONS THEREAFTER AND	LMSR1180
C	IMMEDIATELY PRIOR TO RETURN, WITH X AND FVEC AVAILABLE	LMSR1190
C	FOR PRINTING. IF NPRINT IS NOT POSITIVE, NO SPECIAL CALLS	LMSR1200
C	OF FCN WITH IFLAG = 0 ARE MADE.	LMSR1210
C		LMSR1220
C	INFO IS AN INTEGER OUTPUT VARIABLE. IF THE USER HAS	LMSR1230
C	TERMINATED EXECUTION, INFO IS SET TO THE (NEGATIVE)	LMSR1240
C	VALUE OF IFLAG. SEE DESCRIPTION OF FCN. OTHERWISE,	LMSR1250
C	INFO IS SET AS FOLLOWS.	LMSR1260
C		LMSR1270
C	INFO $=0$ IMPROPER INPUT PARAMETERS.	LMSR1280
C		LMSR1290
C	INFO = 1 BOTH ACTUAL AND PREDICTED RELATIVE REDUCTIONS	LMSR1300
C	IN THE SUM OF SQUARES ARE AT MOST FTOL.	LMSR1310
C		LMSR1320
C	INFO $=2$ RELATIVE ERROR BETWEEN TWO CONSECUTIVE ITERATES	LMSR1330
C	IS AT MOST XTOL.	LMSR1340
C		LMSR1350
C	INFO $=3$ CONDITIONS FOR INFO $=1$ AND INFO $=2$ BOTH HOLD.	LMSR1360
C		LMSR1370
C	INFO $=4$ THE COSINE OF THE ANGLE BETWEEN FVEC AND ANY	LMSR1380
C	COLUMN OF THE JACOBIAN IS AT MOST GTOL IN	LMSR1390
C	ABSOLUTE VALUE.	LMSR1400
C		LMSR1410
C	INFO = 5 NUMBER OF CALLS TO FCN WITH IFLAG = 1 HAS	LMSR1420
C	REACHED MAXFEV.	LMSR1430
C		LMSR1440
C	INFO $=6$ FTOL IS TOO SMALL. NO FURTHER REDUCTION IN	LMSR1450
C	THE SUM OF SQUARES IS POSSIBLE.	LMSR 1460
C		LMSR1470
C	INFO $=7$ XTOL IS TOO SMALL. NO FURTHER IMPROVEMENT IN	LMSR1480
C	THE APPROXIMATE SOLUTION X IS POSSIBLE.	LMSR 1/90
C		LMSR1500
C	INFO $=8$ GTOL IS TOO SMALL. FVEC IS ORTHOGONAL TO THE	LMSR1510
C	COLUMNS OF THE JACOBIAN TO MACHINE PRECISION.	LMSR1520
C		LMSR1530
C	NFEV IS AN INTEGER OUTPUT VARIABLE SET TO THE NUMBER OF	LMSR1540
C	CALLS TO FCN WITH IFLAG $=1$.	LMSR1550
C		LMSR 1560
C	NJEV IS AN INTEGER OUTPUT VARIABLE SET TO THE NUMBER OF	LMSR1570
C	CALLS TO FCN WITH IFLAG $=2$.	LMSR1580
C		LMSRi590
C	IPVT IS AN INTEGER OUTPUT ARRAY OF LENGTH N. IPVT	LMSR1600
C	DEFINES A PERMUTATION MATRIX P SUCH THAT JAC*P = Q ${ }^{\text {d }}$,	LMSR?610
C	WHERE JAC IS THE FINAL !aLCULATED JACOBIAN, Q IS	LIMSR 1620

C	ORTHOGONAL (NOT STORED), AND R IS UPPER TRIANGULAR.	LMSR1630
C	COLUMN J OF P IS COLUMN IPVT(J) OF THE IDENTITY MATRIX.	LMSR 1640
C		LMSR1650
C	QTF IS AN OUTPUT ARRAY OF LENGTH N WHICH CONTAINS	LMSR1660
C	THE FIRST N ELEMENTS OF THE VECTOR (Q TRANSPOSE)*FVEC.	LMSR1670
C		LMSR1680
C	WA1, WA2, AND WA3 ARE WORK ARRAYS OF LENGTH N.	LMSR1690
C		LMSR1700
C	WA't IS A WORK ARRAY OF LENGTH M.	LMSR1710
C		LMSR1720
C	SUBPROGRAMS CALLED	LMSR1730
C		LMSR1740
C	USER-SUPPLIED FCN	LMSR1750
C		LMSR1760
C	MINPACK-SUPPLIED . . . DPMPAR, ENORM, LMPAR, QRFAC,RWUPDT	LMSR1770
C		LMSR1780
C	FORTRAN-SUPPLIED ... DABS, DMAX1,DMIN1,DSQRT, MOD	LMSR1790
C		LMSR1800
C	ARGONNE NATIONAL LABORATORY. MINPACK PROJECT. MARCH 1980.	LMSR1810
C	BURTON S. GARBOW, DUDLEY V. GOETSCHEL, KENN ${ }^{-1}$ TH E. HILLSTROM,	LMSR1820
C	JORGE J. MORE	LMSR1830
C		LMSR1840
C		LMSR1850
	INTEGER I, IFLAG, ITER, J, L	LMSR1860
	DOUBLE PRECISION ACTRED, DELTA,DIRDER,EPSMCH,FNORM,FNORM1,GNORM,	LMSR1870
	* ONE, PAR, PNORM, PRERED, P1, P5, P25, P75, P0001,RATIO,	LMSR1880
	* SUM,TEMP, TEMP1,TEMP2, XNORM, ZERO	LMSR1890
	DOUBLE PRECISION DPMPAR, ENORM	LMSR1900
	DATA ONE, P1, P5, P25, P75, P0001, ZERO	LMSR1910
	* /1.0D0,1.0D-1,5.0D-1,2.5D-1,7.5D-1,1.0D-4,0.0D0/	LMSR1920
C		LMSR1930
C	EPSMCH IS THE MACHINE PRECISION.	LMSR1940
C		LMSR1950
	EPSMCH $=$ DPMPAR(1)	LMSR1960
C		LMSR1970
	$\mathrm{INFO}=0$	LMSR1980
	IFLAG $=0$	LMSR1990
	NFEV $=0$	LMSR2000
	NJEV $=0$	LMSR2010
C		LMSR2020
C	CHECK THE INPUT PARAMETERS FOR ERRORS.	LMSR2030
C		LMSR2040
	IF (N .LE. 0 . OR. M .LT. N .OR. LDFJAC .LT. N	LMSR2050
	* .OR. FTOL .LT. ZERO .OR. XTOL .LT. ZERO .OR. GTOL . LT. ZERO	LMSR2060
	* .OR. MAXFEV .LE. 0 . OR. FACTOR .LE. ZERO) GO TO 340	LMSR2070
	IF (MODE .NE. 2) GO TO 20	LMSR2080
	DO $10 \mathrm{~J}=1, \mathrm{~N}$	LMSR2090
	IF (DIAG(J) .LE. ZERO) GO TO 340	LMSR2100
	10 CONTINUE	LMSR2110
	20 CONTINUE	LMSR2120
C		LMSR2130
C	EVALUATE THE FUNCTION AT THE STARTING POINT	LMSR2140
C	AND CALCULATE ITS NORM.	LMSR2150
C		LMSR2160

	IFLAG $=1$	LMSR2170
	CALL $F C N(M, N, X, F V E C, W A 3, I F L A G) ~$	LMSR2180
	NFEV = 1	LMSR2190
	IF (IFLAG .LT. 0) GO T0 340	LMSR2200
	FNORM $=$ ENORM (M,FVEC)	LMSR2210
C		LMSR2220
C	INITIALIZE LEVENBERG-MARQUARDT PARANETER AND ITERATION COUNTER.	LMSR2230
C		LMSR2240
	PAR $=$ ZERO	LMSR2250
	ITER $=1$	LMSR2260
C		LMSR2270
C	BEGINNING OF THE OUTER LOOP.	LMSR2280
C		LMSR2290
30	CONTINUE	LMSR2300
C		LMSR2310
C	IF REQUESTED, CALL FCN TO ENABLE RRINTING OF ITERATES.	LMSR2320
C		LMSR2330
	IF (NPRINT .LE. O) GO TO 40	IMSR2340
	IFLAG $=0$	MSR2350
	IF (MOD (ITER-1,NPRINT) .EQ. 0) CALL FCN(M,N,X,FVEC, WA3, IFLAG)	LMSR2360
	IF (IFLAG .LT. 0) GO TO 340	LMSR2370
40	CONTINUE	LMSR2380
C		LMSR2390
C	COMPUTE THE QR FACTORIZATION OF THE JACOBIAN MATRIX	LMSR2400
C	CALCULATED ONE ROW AT A TIME, WHILE SIMULTANEOUSLY	LMSR2410
C	FORMING (Q TRANSPOSE)*FVEC AND STORING THE FIRST	LMSR2420
C	N COMPONENTS IN QTF.	LMSR2430
C		LMSR2440
	DO $60 \mathrm{~J}=1, \mathrm{~N}$	LMSR2450
	$\operatorname{QTF}(\mathrm{J})=$ ZERO	LMSR2460
	DO $50 \mathrm{I}=1$, N	LMSR2470
	$\operatorname{FJAC}(\mathrm{I}, \mathrm{J})=2 \mathrm{ERO}$	LMSR2480
50	CONTINUE	LMSR2490
60	CONTINUE	LMSR2500
	IFLAG $=2$	LMSR2510
	DO $70 \mathrm{I}=1, \mathrm{M}$	LMSR2520
	CALL FCN(M, N, X, FVEC, WA 3 , IFLAG)	LMSR2530
	IF (IFLAG .LT. 0) GO TO 340	LMSR2540
	TEMP $=$ FVEC (I)	LMSR2550
	CALL RWUPDT(N,FJAC,LDFJAC, WA3, QTF, TEMP, WA1, WA2)	LMSR2560
	IFLAG $=$ IFLAG +1	LMSR2570
70	CONTINUE	LMSR2580
	NJEV $=$ NJEV + 1	LMSR2590
C		LMSR2600
C	IF THE JACOBIAN IS RANK DEFICIENT, CALL QRFAC TO	LMSR2610
C	REORDER ITS COLUMNS AND UPDATE THE COMPONENTS OF QTF.	LMSR2620
C		LMSR2630
	SING $=$. FALSE.	LMSR2640
	DO $80 \mathrm{~J}=1, \mathrm{~N}$	LMSR2650
	IF (FJAC (J, J) . EQ . 2 ERO) SING = .TRUE.	LMSR2660
	$\operatorname{IPVT}(\mathrm{J})=\mathrm{J}$	LMSR2670
	WA2 $(\mathrm{J})=\operatorname{ENORM}(\mathrm{J}, \operatorname{FJAC}(1, \mathrm{~J})$)	LMSR2680
80	CONTINUE	LMSR2690
	IF (.NOT.SING) GO TO 130	LMSR2700

```
CALL QRFAC(N,N,FJAC,LDFJAC,.TRUE.,IPVT'N,WA1,WA2,WA3) LMSR2710
DO 120 J = 1, N
    IF (FJAC(J,J) .EQ. 2ERO) GO TO 110
    SUM = 2ERO
    DO 90 I = J, N
        SUM = SUM + FJAC(I,J)*QTF(I)
        CONTINUE
    TEMP = -SUN/FJAC(J,J)
    DO 100 I = J,N
        QTF}(\textrm{I})=QTF(I)+FJAC(I,J)*TEM
        CONTINUE
        CONTINUE
        FJAC(J,J) = WAl(J)
        CONTINUE
    CONTINUE
    ON THE FIRST ITERATION AND IF MODE IS 1, SCALE ACCORDING
    TO THE NORMS OF THE COLUMNS OF THE INITIAL JACOBIAN.
    IF (ITER .NE. 1) GO TO 170
    IF (NODE .EQ. 2) GO TO 150
    DO 140 J = 1, N
        DIAG(J) = WA2(J)
    IF (WA2(J) .EQ. ZERO) DIAG(J) = ONE
    CONTINUE
CONTINUE
    ON THE FIRST ITERATION, CALCULATE THE NORM OF THE SCALED X
    AND INITIALIZE THE STEP BOUND DELTA.
    DO 160 J = 1, N
    WA3(J) = DIAG(J)*X(J)
    CONTINUE
        XNORM = ENORM(N,WA3)
        DELTA = FACTOR:XNORM
        IF (DELTA EQ. ZERO) DELTA = FACTOR
    CONTINUE
    COMPUTE THE NORM OF THE SCALED GRADIENT.
    GNORM = 2ERO
    IF (FNORM .EQ. ZERO) GO TO 210
DO 200 J = 1, N
    L = IPVT(J)
    IF (WA2(L) .EQ. 2ERO) GO TO 190
    SUM = 2ERO
    DO 180 I = 1, J
        SUM = SUM + FJAC(I,J)*(QTF(I)/FNORM)
        CONTINUE
    GNORM = DMAX1(GNORM,DABS(SUM/WA2(L)))
    CONTINUE
    CONTINUE
CONTINUE
C
```

C	TEST FOR CONVERGENCE OF THE GRADIENT NORM.	LMSR3250
C		LMSR3260
	IF (GNORM .LE. GTOL) INFO $=4$	LMSR3270
	IF (INFO .NE. 0) GO TO 340	LMSR3280
C		LISR3290
C	RESCALE IF NECESSARY.	LMSR3300
C		LMSR3310
	IF (MODE .EQ. 2) GO TO 230	LMSR3320
	DO $220 \mathrm{~J}=1$, N	LMSR3330
	DIAG(J) $=$ DMAX1(DIAG(J), WA2 (J))	LMSR3340
220	CONTINUE	LMSR3350
230	CONTINUE	LMSR3360
C		LMSR3370
C	BEGINNING OF THE INNER LOOP.	LMSR3380
C		LMSR3390
240	CONTINUE	LISR3400
C		LMSR3410
C	DETERMINE THE LEVENBERG-MARQUARDT PARAMETER.	LMSR3420
C		LMSR3430
	CALL LMPAR(N,FJAC, LDFJAC, IPVT, DIAG, QTF, DELTA, PAR, WA , WA2,	LMSR3440
*	WA3,WA4)	LMSR3450
C		LMSR3460
C	STORE THE DIRECTION P AND $X+\mathrm{P}$. CALCULATE THE NORM OF P .	LMSR3470
C		LMSR3480
	DO $250 \mathrm{~J}=1$, N	LMSR3490
	WA1 $(\mathrm{J})=-$ WA1(J$)$	LMSR3500
	WA2 $(\mathrm{J})=\mathrm{X}(\mathrm{J})+$ WA1 (J)	LMSR3510
	WA3 $(\mathrm{J})=\operatorname{DIAG}(\mathrm{J}) *$ WA1 (J)	LMSR3520
250	CONTINUE	LMSR3530
	PNORM = ENORM (N,WA3)	LMSR3540
C		LMSR3550
C	ON THE FIRST ITERATION, ADJUST THE INITIAL STEP BOUND.	LNSR3560
C		LMSR3570
	IF (ITER .EQ. 1) DELTA $=$ DMIN1 (DELTA ${ }^{\text {PNORM }}$)	LMSR3580
C		LMSR3590
C	EVALUATE THE FUNCTION AT $\mathrm{X}+\mathrm{P}$ and Calculate its norm.	LMSR3600
C		LMSR3610
	IFLAG $=1$	LMSR3620
	CALL FCN(M,N,WA2, WA4, WA3, IFLAG)	LMSR3630
	NFEV $=$ NFEV + 1	LMSR3640
	IF (IFLAG .LT. O) G0 TO 340	LMSR3650
	FNORM1 = ENORM(M,WA4)	LMSR3660
C		LISR3670
C	COMPUTE THE SCALED ACTUAL REDUCTION.	LMSR3680
C		LMSR3690
	ACTRED $=-$ ONE	LMSR3700
	IF (P1*FNORM1 .LT. FNORM) ACTRED = ONE - (FNORM1/FNORM)**2	LMSR3710
C		LMSR3720
C	COMPUTE THE SCALED PREDICTED REDUCTION AND	LMSR3730
C	THE SCALED DIRECTIONAL DERIVATIVE.	LMSR3740
C		LMSR3750
	DO $270 \mathrm{~J}=1, \mathrm{~N}$	LMSR3760
	WA3 $(\mathrm{J})=$ ZERO	LMSR3770
	$\mathrm{L}=\mathrm{IPVT}(\mathrm{J})$	LMSR3780

	TEMP = WA1 (L)	LMSR3790
	DO $260 \mathrm{I}=1$, J	LMSR3800
	WA3 $(I)=$ WA3 $(\mathrm{I})+\mathrm{FJAC}(\mathrm{I}, \mathrm{J}) \times \mathrm{TEMP}$	LMSR3810
260	CONTINUE	LMSR3820
270	CONTINUE	LMSR3830
	TEMP1 $=$ ENORM (N,WA3)/FNORM	LMSR3840
	TEMP2 = (DSQRT (PAR) \div PNORM) $/$ FNORM	LMSR3850
	PRERED $=$ TEMP $1^{*}+2+$ TEMP $2^{*} \times 2 /$ P5	LMSR3860
	DIRDER $=-\left(\right.$ TEMP1 $\left.{ }^{2}+2+\mathrm{TEMP} 2 \times 2\right)$	LMSR3870
C		LMSR3880
C	COMPUTE THE RATIO OF THE ACTUAL TO THE PREDICTED	LMSR3890
C	REDUCTION.	LMSR3900
C		LMSR3910
	RATIO = ZERO	LMSR3920
	IF (PRERED . NE. ZERO) RATIO = ACTRED/PRERED	LMSR3930
C		LMSR3940
C	UPDATE THE STEP BOUND.	LMSR3950
C		LMSR3960
	IF (RATIO .GT. P25) GO TO 280	LMSR3970
	IF (ACTRED . GE. ZERO) $\mathrm{TEMP}=\mathrm{P} 5$	LMSR3980
	IF (ACTRED . LT. ZERO)	LMSR3990
\%	TEMP = P5*DIRDER/ (DIRDER + P5*ACTRED)	LMSR4000
	IF ($\mathrm{Pl}^{\text {\% F }}$ NORM1 . GE. FNORM . OR. TEMP . LT. P1) TEMP $=$ P1	LMSR4010
	DELTA = TEMPrDMIN1 (DELTA, PNORM/P1)	LMSR4020
	PAR = PAR/TEMP	LMSR4030
	GO TO 300	LMSR4040
280	CONTINUE	LMSR4050
	IF (PAR . NE. ZERO . AND. RATIO .LT. P75) GO TO 290	LMSR4060
	DELTA $=$ PNORM/P5	LMSR4070
	PAR $=~ P 5 * P A R$	LMSR4080
290	CONTINUE	LilSR4090
300	CONTINUE	LMSR4100
C		LMSR4110
C	TEST FOR SUCCESSFUL ITERATION.	LMSR4120
C		LMSR4130
	IF (RATIO .LT. P0001) GO TO 330	LMSR4140
C		LMSR4150
C	SUCCESSFUL ITERATION. UPDATE X, FVEC, AND THEIR NORMS.	LMSR4160
C		LMSR4170
	D0 $310 \mathrm{~J}=1, \mathrm{~N}$	LMSR4180
	$X(\mathrm{~J})=$ WA2 (J)	LMSR4190
	WA2 (J) $=$ DIAG(J)*X(J)	LMSR4200
310	CONTINUE	LMSR4210
	DO $320 \mathrm{I}=1, \mathrm{M}$	LMSR4220
	FVEC(I) $=$ WA4(I)	LMSR4230
320	CONTINUE	LMSR4240
	XNORM = ENORM (N,WA2)	LMSR4250
	FNORM = FNORM1	LMSR4260
	ITER $=$ ITER + 1	LMSR4270
330	CONTINUE	LMSR4280
C		LMSR4290
C	TESTS FOR CONVERGENCE.	LMSR4300
C		LMSR4310
	IF (DABS (ACTRED) .LE. FTOL . AND. PRERED .LE. FTOL	LMSR4320

SUBROUTINE LMSTR1(FCN,M,N,X,FVEC,FJAC, LDFJAC,TOL, INFO, IPVT,WA. LMS 10010

* LWA)
LMS 10020
INTEGER M,N,LDFJAC, INFO,LWA LMS 10030
INTEGER IPVT(N)
DOUBLE PRECISION TOL
DOUBLE PRECISION X(N),FVEC(M),FJAC(LDFJAC,N),WA(LWA)
EXTERNAL FCN

SUBROUTINE LMSTR1
THE PURPOSE OF LMSTR1 IS TO MINIMIZE THE SUM OF THE SQUARES OF
M NONLINEAR FUNCTIONS IN N VARIABLES BY A MODIFICATION OF
THE LEVENBERG-MARQUARDT ALGORITHM WHICH USES MINIMAL STORAGE.
THIS IS DONE BY USING THE MORE GENERAL LEAST-SQUARES SOLVER
LMSTR. THE USER MUST PROVIDE A SUBROUTINE WHICH CALCULATES
THE FUNCTIONS AND THE ROWS OF THE JACOBIAN.
THE SUBROUTINE STATEMENT IS
SUBROUTINE LMSTR1 (FCN,M,N,X,FVEC,FJAC, LDFJAC,TOL, INFO,
IPVT,WA, LWA)
WHERE
FCN IS THE NAME OF THE USER-SUPPLIED SUBROUTINE WHICH
CALCULATES THE FUNCTIONS AND THE ROWS OF THE JACOBIAN.
FCN MUST BE DECLARED IN AN EXTERNAL STATEMENT IN THE
USER CALLING PROGRAM, AND SHOULD BE WRITTEN AS FOLLOWS.
SUBROUTINE FCN(M,N,X,FVEC,FJROW,IFLAG) LMS 10310
INTEGER M,N, IFLAG LMS10320
DOUBLE PRECISION X(N),FVEC(M),FJROW(N) LMS 10330
IF IFLAG $=1$ CALCULATE THE FUNCTIONS AT X AND LMS 10350
RETURN THIS VECTOR IN FVEC.
IF IFLAG $=$ I CALCULATE THE $(I-1)-S T$ ROW OF THE
JACOBIAN AT X AND RETURN THIS VECTOR IN FJROW. LMS 10380
--o--o-o-e
RETURN
END
THE VALUE OF IFLAG SHOULD NOT BE CHANGED BY FCN UNLESS
THE USER WANTS TO TERMINATE EXECUTION OF LMSTRI.
IN THIS CASE SET IFLAG TO A NEGATIVE INTEGER.
M IS A POSITIVE INTEGER INPUI VARIABLE SET TO THE NUMBER
OF FUNCTIONS.
N IS A POSITIVE INTEGER INPUT VARIABLE SET TO THE NUMBER
OF VARIABLES. N MUST NOT EXCEED M.
X IS AN ARRAY OF LENGTH N. ON INPUT X MUST CONTAIN
AN INITIAL ESTIMATE OF THE SOLUTION VECTOR. ON OUTPUT X
LMS 10040
LMS 10050
LMS 10060
LMS 10070
LMS 10080
LMS 10090
LMS 10100
LMS 10110
LMS 10120
LNS 10130
LNS 10140
LMS 10150
LMS 10160
LMS 10170
LMS 10180
LMS 10190
LMS 10200
LMS 10210
LMS 10220
LMS 10230
LMS 10240
LMS 10250
LMS 10260
LMS 10270
LMS 10280
LMS 10290
LMS 10300
-.-.--- LMS10340
LMS 10360
IF IFLAG $=1$ CALCULATE THE (I-1)-ST ROW OF THE LMS 10370
LMS 10390
LMS 10400
M IS A POSITIVE INTEGER INPUT VARIABLE SET TO THE NUMBER OF FUNCTIONS.
N IS A POSITIVE INTEGER INPUT VARIABLE SET TO THE NUMBER of Variables. n MUST not exceed M.
LMS 10410
LMS 10420
LMS 10430
LMS 10440
LMS 10450
LMS 10460
LMS 10470
LMS 10480
LMS10490
LMS10500
LMS 10510
LMS 10520
LMS 10530
LMS10540

C	CONTAINS THE FINAL ESTIMATE Of THE SOLUTION VECTOR.	LMS10550
C		LMS 10560
C	FVEC IS AN OUTPUT ARRAY OF LENGTH M WHICH CONTAINS	LMS 10570
C	THE FUNCTIONS EVALUATED at the output x.	LMS 10580
C		LMS10590
C	FJAC IS AN OUTPUT N BY N ARRAY. THE UPPER TRIANGLE OF FJAC	LMS10600
C	CONTAINS AN UPPER TRIANGULAR MATRIX R SUCH THAT	LMS10610
C		LMS10620
C	T T T	LMS 10630
C	$\mathrm{P} \%(\mathrm{JAC} \% \mathrm{JAC}) * \mathrm{P}=\mathrm{R} \% \mathrm{R}$,	LMS 10640
C		LMS10650
C	WhERE P IS A PERMUTATION MATRIX AND JAC IS THE FINAL	LMS 10660
C	CALCULATED JACOBIAN. COLUMN J OF P IS COLUMN IPVT(J)	LMS10670
C	(SEE BELOW) OF THE IDENTITY MATRIX. THE LOWER TRIANGULAR	LMS 10680
C	PART OF FJAC CONTAINS INFORMATION GENERATED DURING	LMS 10690
C	THE COMPUTATION OF R.	LMS 10700
C		LMS 10710
C	LDFJAC IS A POSITIVE INTEGER INPUT VARIABLE NOT LESS THAN N	LMS 10720
C	WHICH SPECIFIES THE LEADING DIMENSION OF THE ARRAY FJAC.	LMS10730
C		LMS 10740
C	TOL IS A NONNEGATIVE INPUT VARIABLE. TERMINATION OCCURS	LMS10750
C	WHEN THE ALGORITHM ESTIMATES EITHER THAT THE RELATIVE	LMS10760
C	ERROR IN THE SUM OF SQUARES IS AT MOST TOL OR THAT	LMS10770
C	THE RELATIVE ERROR BETWEEN X AND THE SOLUTION IS AT	LMS10780
C	MOST TOL.	LMS10790
C		LMS 10800
C	INFO IS AN INTEGER OUTPUT VARIABLE. IF THE USER HAS	LMS10810
C	TERMINATED EXECUTION, INFO IS SET TO THE (NEGATIVE)	LMS 10820
C	VALUE OF IFLAG. SEE DESCRIPTION OF FCN. OTHERWISE,	LMS10830
C	INFO IS SET AS FOLLOWS.	LMS 10840
C		LMS10850
C	INFO $=0$ IMPROPER INPUT PARAMETERS.	LMS10860
C		LMS10870
C	INFO $=1$ ALGORITHM ESTIMATES THAT THE RELATIVE ERROR	LMS10880
C	IN THE SUM OF SQUARES IS AT MOST TOL.	LMS 10890
C		LMS10900
C	INFO $=2$ ALGORITHM ESTIMATES THAT THE RELATIVE ERROR	LMS10910
C	BETWEEN X AND THE SOLLTION IS AT MOST TOL.	LMS 10920
C		LMS 10930
C	INFO $=3$ CONDITIONS FOR INFO $=1$ AND INFO $=2$ BOTH HOLD.	LMS 10940
C		LMS 10950
C	INFO $=4$ FVEC IS ORTHOGONAL TO THE COLUMNS OF THE	LMS 10960
C	JACOBIAN TO MACHINE PRECISION.	LIS 10970
C		LMS 10980
C	INFO $=5$ NUMBER OF CALLS TO FCN WITH IFLAG $=1$ HAS	LMS10990
C	REACHED 100* $(\mathrm{N}+1)$.	LMS11000
C		LMS 11010
c	INFO $=6$ TOL IS TOO SMALL. NO FURTHER REDUCTION IN	LMS 11020
C	THE SUM OF SQUARES IS POSSIBLE.	LMS11030
C		LMS11040
C	INFO $=7$ TOL IS TOO SMALL. NO FURTHER IMPROVEMENT IN	LHS 11050
C	THE APPROXIMATE SOLUTION X IS POSSIBLE.	LMS11060
C		LMS11070
C	IPVT IS AN INTEGER OUTPUT ARRAY OF LENGTH N. IPVT	LMS11080

dEFINES A PERMUTATION MATRIX P SUCH THAT JAC*P = $Q * R$,
LMS 11090
WHERE JAC IS THE FINAL CALCULATED JACOBIAN, Q IS LMS11100 ORTHOGONAL (NOT STORED), AND R IS UPPER TRIANGULAR. LMS11110 COLUMN J OF P IS COLUMN IPVT(J) OF THE IDENTITY NATRIX. LMS 11120 LMS 11130
WA IS A WORK ARRAY OF LENGTH LWA.
LWA IS A POSITIVE INTEGER INPUT VARIABLE NOT LESS THAN $5 \% \mathrm{~N}+\mathrm{M}$.
SUBPROGRAMS CALLED

SUBPROGRAMS CALLED

```
        USER-SUPPLIED ...... FCN
```

MINPACK-SUPPLIED ... LMSTR
ARGONNE NATIONAL LABORATORY. MINPACK PROJECT. MARCH 1980.
BURTON S. GARBOW, DUDLEY V. GOETSCHEL, KENNETH E. HILLSTROM, LMS 11240 JORGE J. MORE LMS 11250 LMS 11260 LMS 11270
 LMS 11280
INTEGER MAXFEV,MODE,NFEV,NJEV,NPRINT
LMS 11290
DOUBLE PRECISION FACTOR,FTOL,GTOL,XTOL,ZERO LMS11300
DATA FACTOR,ZERO /1.0D2,0.0DO/ LMS11310
INFO $=0$ LMS11320
CHECK THE INPUT PARAMETERS FOR ERRORS. LMS 11340
IF (N .LE. O .OR. M .LT. N .OR. LDFJAC .LT. N .OR. TOL .LT. ZERO LMS 11360

* .OR. LWA .LT. $5 \star$ N + M) GO TO 10 LMS11370

CALL LMSTR. LMS11390
MAXFEV $=100 *(\mathrm{~N}+1)$
FTOL = TOL
XTOL = TOL
GTOL = 2ERO
MODE $=1$
LMS 11400
LMS 11410
LMS 11420
LMS 11430
LMS 11450
NPRINT $=0$ LMS 11460
CALL LMSTR(FCN,M,N,X,FVEC,FJAC,LDFJAC,FTOL,XTOL,GTOL,MAXFEV, LMS11470

* WA(1), MODE, FACTOR,NPRINT, INFO, NFEV,NJEV, IPVT,WA(N+1),
* WA (2*N+1),WA(3*N+1),WA(4*N+1),WA(5*N+1)) LMS11490

LMS 11480
IF (INFO .EQ. 8) INFO $=4$ LMS11500
10 CONTINUE
RETURN
LMS 11510
R LMS11530
LAST CARD OF SUBROUTINE LMSTR1.
END

30 Cuntinue		QFRM0550
INITIALIZE REMAINING COLUMNS TO THOSE OF THE IDENTITY MATRIX.		QFRM0560
		QFRKM0570
		Q'FRM0580
	$N P 1=N+1$	QFRM0590
	IF (M .LT. NP1) GO TO 60	QFRM0600
	DO $50 \mathrm{~J}=\mathrm{NP} 1, \mathrm{M}$	QFRM0610
	DO $40 \mathrm{I}=1, \mathrm{M}$	QFRM0620
	$Q(I, J)=$ ZERO	QFRM0630
40	CONTINUE	QFRM0640
	$Q(J, J)=O N E$	QFRM0650
50	CONTINUE	QFRM0660
C ${ }^{60}$	CONTINUE	QFRM0670
		QFRM0680
C	ACCUMULATE Q FROM ITS FACTORED FORM.	QFRM0690
C		QFRM0700
	DO $120 \mathrm{~L}=1$, MINMN	QFRM0710
	$\mathrm{K}=\mathrm{MINMN}-\mathrm{L}+1$	QFRM0720
	DO $70 \mathrm{I}=\mathrm{K}, \mathrm{M}$	QFRM0730
	$W A(I)=Q(I, K)$	QFRM0740
	$Q(I, K)=$ ZERO	QFRM0750
70	CONTINUE	QFRM0760
	$Q(K, K)=O N E$	QFRM0770
	IF (WA(K) .EQ. ZERO) GO TO 110	QFRM0780
	DO $100 \mathrm{~J}=\mathrm{K}, \mathrm{M}$	QFRM0790
	SUM $=$ ZERO	QFRM0800
	DO $80 \mathrm{I}=\mathrm{K}, \mathrm{M}$	QFRM0810
	SUM $=$ SUM + Q (I, J)*WA(I)	QFRM0820
80	CONTINUE	QFRM0830
	TEMP $=$ SUM/WA(K)	QFRM0840
	DO $90 \mathrm{I}=\mathrm{K}, \mathrm{M}$	QFRM0850
	$Q(\mathrm{I}, \mathrm{J})=\mathrm{Q}(\mathrm{I}, \mathrm{J})-\mathrm{TEMP} * W A(\mathrm{I})$	QFRM0860
90	CONTINUE	QFRM0870
100	CONTINUE	QFRM0880
110	CONTINUE	QFRM0890
120	CONTINUE	QFRM0900
	RETURN	QFRM0910
C		QFRM0920
C	LAST CARD OF SUBROUTINE QFORM.	QFRM0930
C		QFRM0940
	END	QFRM0950

```
SUBROUTINE QRFAC(M,N,A,LDA,PIVOT,IPVT,LIPVT,RDIAG,ACNORM,WA) QRFA0010
INTEGER M,N,LDA,LIPVT QRFAO020
INTEGER IPVT(LIPVT)
LOGICAL PIVOT
DOUBLE PRECISION A(LDA,N),RDIAG(N),ACNORM(N),WA(N)
************
SUBROUTINE QRFAC
THIS SUBROUTINE USES HOUSEHOLDER TRANSFORMATIONS WITH COLUMN
PIVOTING (OPTIONAL) TO COMPUTE A QR FACTORIZATION OF THE
M BY N MATRIX A. THAT IS, QRFAC DETERMINES AN ORTHOGONAL
MATRIX Q, A PERMUTATION MATRIX P, AND AN UPPER TRAPEZOIDAL
MATRIX R WITH DIAGONAL ELEMENTS OF NONINCREASING MAGNITUDE,
SUCH THAT A*P = Q*R. THE HOUSEHOLDER TRANSFORMATION FOR
COLUMN K, K = 1,2,\ldots,MIN(M,N), IS OF THE FORM
                            T
    I - (1/U(K))*U*U
WHERE U HAS ZEROS IN THE FIRST K-1 POSITIONS. THE FORM OF
THIS TRANSFORMATION AND THE METHOD OF PIVOTING FIRST
APPEARED IN THE CORRESPONDING LINPACK SUBROUTINE.
THE SUBROUTINE STATEMENT IS
    SUBROUTINE QRFAC(M,N,A,LDA,PIVOT,IPVT,LIPVT,RDIAG,ACNORM,WA)
WHERE
    M IS A POSITIVE INTEGER INPUT VARIABLE SET TO THE NUMBER
        OF ROWS OF A.
    N IS A POSITIVE INTEGER INPUT VARIABLE SET TO THE NUMBER
        OF COLUMNS OF A.
    A IS AN M BY N ARRAY. ON INPUT A CONTAINS THE MATRIX FOR
        WHICH THE QR FACTORIZATION IS TO BE COMPUTED. ON OUTPUT
        THE STRICT UPPER TRAPEZOIDAL PART OF A CONTAINS THE STRICT
        UPPER TRAPEZOIDAL PART OF R, AND THE LOWER TRAPEZOIDAL
        PART OF A CONTAINS A FACTORED FORM OF Q (THE NON-TRIVIAL
        LLEMENTS OF THE U VECTORS DESCRIBED ABOVE).
    LDA IS is POSITIVE INTEGER INPUT VARIABLE NOT LESS THAN M
        WHICH SPECIFIES THE LEADING DIMENSION OF THE ARRAY A.
    PIVOT IS A LOGICAL INPUT VARIABLE. IF PIVOT IS SET TRUE,
        THEN COLUMN PIVOTING IS ENFORCED. IF PIVOT IS SET FALSE,
        THEN NO COLUMN PIVOTING IS DONE.
    IPVT IS AN INTEGER OUTPUT ARRAY OF LENGTH LIPVT. IPVT
        DEFINES THE PERMUTATION MATRIX P SUCH THAT A*P = Q*R.
        COLUMN J OF P IS COLUMN IPVT(J) OF THE IDENTITY MATRIX.
        IF PIVOT IS FALSE, IPVT IS NOT REFERENCED.
```

QRFA0020
QRFA0030
QRFA0040
QRFA0050
QRFA0060
QRFA0070
QRFA0080
QRFA0090
QRFA0100
QRFA0110
QRFA0120
QRFA0130
QRFA0140
QRFA0150
QRFA0160
QRFA0170
QRFA0180
QRFA0190
QRFA0200
QRFA0210
QRFA0220
QRFA0230
QRFA0240
QRFA0250
QRFA0260
QRFA0270
QRFA0280
QRFA0290
QRFA0300
QRFA0310
QRFA0320
QRFA0330
QRFA0340
QRFA0350
QRFA0360
QRFA0370
QRFA0380
QRFA0390
QRFA0400
QRFA0410
QRFA0420
QRFA0430
QRFA0440
QRFA0450
QRFA0460
QRFA0470
QRFA0480
QRFA0490
QRFA0.500
QRFA0510
QRFA0520
QRFA0530
QRFA0540

C

LIPVT IS A POSITIVE INTEGER INPUT VARIABLE. IF PIVOT IS FALSE, QRFA0560 THEN LIPVT MAY BE AS SMALL AS 1. IF PIVOT IS TRUE, THEN QRFA0570 LIPVT MUST BE AT LEAST N. QRFA0580

RDIAG IS AN OUTPUT ARRAY OF LENGTH N WHICH CONTAINS THE DIAGONAL ELEMENTS OF R.

ACNORM IS AN OUTPUT ARRAY OF LENGTH N WHICH CONTAINS THE NORMS OF THE CORRESPONDING COLUMNS OF THE INPUT MATRIX A. IF THIS INFORMATION IS NOT NEEDED, THEN ACNORM CAN COINCIDE WITH RDIAG.

WA IS A WORK ARRAY OF LENGTH N. IF PIVOT IS FALSE, THEN WA CAN COINCIDE WITH RDIAG.

SUBPROGRAMS CALLED
MINPACK-SUPPLIED ... DPMPAR,ENORM
FORTRAN-SUPPLIED ... DMAX1,DSQRT,MINO
ARGONNE NATIONAL LABORATORY. MINPACK PROJECT. MARCH 1980. BURTON S. GARBOW, KENNETH E. HILLSTROM, JORGE J. MORE
*2.
INTEGER I, J, JP1, K, KMAX, MINMN
DOUBLE PRECISION AJNORM,EPSMCH,ONE,PO5,SUM,TEMP,ZERO
DOUBLE PRECISION DPMPAR,ENORM
DATA ONE,P05,ZERO / 1.0D0,5.0D-2,0.0DO/
EPSMCH IS THE MACHINE PRECISION.
EPSMCH $=\operatorname{DPMPAR}(1)$
COMPUTE THE INITIAL COLUMN NORMS AND INITIALIZE SEVERAL ARRAYS.
DO $10 \mathrm{~J}=1$, N
$\operatorname{ACNORM}(J)=\operatorname{ENORM}(M, A(1, J))$
$\operatorname{RDIAG}(J)=\operatorname{ACNORM}(J)$
WA $(\mathrm{J})=\operatorname{RDIAG}(\mathrm{J})$
IF (PIVOT) IPVT(J) $=\mathrm{J}$
CONTINUE
REDUCE A TO R WITH HOUSEIOLDER TRANSFORMATIONS.
MINMN $=\operatorname{MINO}(M, N)$
DO $110 \mathrm{~J}=1$, MINMN
IF (.NOT.PIVOT) GO TO 40
BRING THE COLUMN OF LARGEST NORM INTO THE PIVOT POSITION.
KMAX $=\mathrm{J}$
DO $20 \mathrm{~K}=\mathrm{J}, \mathrm{N}$

QRFA0590
QRFA0550

QRFA0600
QRFA0610
QRFA0620
QRFA0630
QRFA0640
QRFA0650
QRFA0660
QRFA0670
QRFA0680
QRFA0690
QRFA0700
QRFA0710
QRFA0720
QRFA0730
QRFA0740
QRFA0750
QRFA0760
QRFA0770
QRFA0780
QRFA0790
QRFA0800
QRFA0810
QRFA0820
QRFA0830
QRFA0840
QRFA0850
QRFA0860
QRFA0870
QRFA0880
QRFA0890
QRFA0900
QRFA0910
QRFA0920
QRFA0930
QRFA0940
QRFA0950
QRFA0960
QRFA0970
QRFA0980
QRFA0990
QRFA1000
QRFA1010
QRFA1020
QRFA1030
QRFA1040
QRFA1050
QRFA1060
QRFA1070
QRFA1080
IF (RDIAG(K) .GT. RDIAG(KMAX)) KMAX = K

QRFA1090
CONTINUE
IF (KMAX .EQ. J) GO TO 40
DO $30 \mathrm{I}=1$, M
TEMP $=A(I, J)$
$A(I, J)=A(I, K M A X)$
$\mathrm{A}(\mathrm{I}, \mathrm{KMAX})=\mathrm{TEMP}$
CONTINUE
RDIAG (KMAX) $=$ RDIAG(J)
WA (KMAX) $=W A(J)$
$K=\operatorname{IPVT}(J)$
$\operatorname{IPVT}(\mathrm{J})=\operatorname{IPVT}($ KMAX $)$
IPVT(KMAX) $=K$
CONTINUE
COMPUTE THE HOUSEHOLDER TRANSFORMATION TO REDUCE THE
J-TH COLUMN OF A TO A MULTIPLE OF THE J-TH UNIT ' ECTOR.
AJNORM $=\operatorname{ENORM}(\mathrm{M}-\mathrm{J}+1, \mathrm{~A}(\mathrm{~J}, \mathrm{~J}))$
IF (AJNORM .EQ. ZERO) GO TO 100
IF (A(J,J) .LT. ZERO) AJNORM = -AJNORM
DO $50 \mathrm{I}=\mathrm{J}, \mathrm{M}$
$A(I, J)=A(I, J) / A J N O R M$
CONTINUE
$A(J, J)=A(J, J)+O N E$
APPLY THE TRANSFORMATION TO THE REMAINING COLUMNS
AND UPDATE THE NORMS.
JP1 = J + 1
IF (N .LT. JP1) GO TO 100
DO $90 \mathrm{~K}=\mathrm{JP} 1, \mathrm{~N}$
SUM = 2ERO
DO $60 \mathrm{I}=\mathrm{J}, \mathrm{M}$ SUM $=\operatorname{SUM}+A(I, J) * A(I, K)$ CONTINUE
TEMP = SUM/A (J, J)
DO $70 \mathrm{I}=\mathrm{J}, \mathrm{M}$ $A(I, K)=A(I, K)-T E M P * A(I, J)$

CONTINUE

IF (.NOT.PIVOT .OR. RDIAG(K) .EQ. ZERO) GO TO 80
TEMP $=A(J, K) /$ RDIAG (K)
$\operatorname{RDIAG}(K)=\operatorname{RIIAG}(K) * \operatorname{DSQRT}(D M A X 1(2 E R O, O N E-T E M P * * 2))$
IF (PO5*(RDIAG(K)/WA(K))**2 .GT. EPSMCH) GO TO 80
$\operatorname{RDIAG}(K)=\operatorname{ENORM}(M-J, A(J P 1, K))$
$W A(K)=$ RDIAG (K)
CONTINUE
CONTINUE
CONTINUE
RDIAG(J) $=-$-AJNORM
CONTINUE
RETURN
C LAST CARD OF SUBROUTINE QRFAC.

QRFA1100
QRFA1110
QRFA1120
QRFA1130
QRFA1140
QRFA1150
QRFA1160
QRFA1170
QRFA1180
QRFA1190
QRFA1200
QRFA1210
QRFA1220
QRFA1230
QRFA1240
QRFA1250
QRFA1260
QRFA1270
QRFA1280
QRFA1290
QRFA1300
QRFA1310
QRFA1320
QRFA1330
QRFA1340
QRFA1350
QRFA1360
QRFA1370
QRFA1380
QRFA1390
QRFA1400
QRFA1410
QRFA1420
QRFA1430
QRFA1440
QRFA1450
QRFA1460
QRFA1470
QRFA1480
QRFA1490
QRFA1500
QRFA1510
QRFA1520
QRFA1530
QRFA1540
QRFA1550
QRFA1560
QRFA1570
QRFA1580
QRFA1590
QRFA1600
QRFA1610
QRFA1620

C
QRFA1630
END
QRFA1640

SUBROUTINE QRSOLV(N,R,LDR,IPVT, DIAG,QTB, $\mathrm{X}, \mathrm{SDIAG}, \mathrm{WA}$)	QRSL0010
INTEGER N,LDR	QRSL0020
INTEGER IPVT(N)	QRSL0030
DOUBLE PRECISION R(LDR, N$), \mathrm{DIAG}(\mathrm{N}), \mathrm{QTB}(\mathrm{N}), \mathrm{X}(\mathrm{N}), \mathrm{SDIAG}(\mathrm{N})$, WA(N$)$	QRSL0040
\%	QRSL0050
	QRSL0060
SUBROUTINE QRSOLV	QRSL0070
	QRSL0080
GIVEN AN M BY N MATRIX A, AN N BY N DIAGONAL MATRIX D,	QRSL0090
and an m-vector b, THE PROBLEM IS TO determine an X WHich	QRSL0100
SOLVES THE SYSTEM	QRSL0110
	QRSL0120
$\mathrm{A} * \mathrm{X}=\mathrm{B}, \quad \mathrm{D} * \mathrm{X}=0$	QRSL0130
	QRSL0140
IN THE LEAST SQUARES SENSE.	QRSL0150
	QRSL0160
THIS SUBROUTINE COMPLETES THE SOLUTION OF THE PROBLEM	QRSL0170
If IT IS PROVIDED WITH THE NECESSARY INFORMATION FROM THE	QRSL0180
QR FACTORIZATION, WITH COLUMN PIVOTING, OF A. THAT IS, IF	QRSL0190
A*P $=Q * R$, WHERE P IS A PERMUTATION MATRIX, Q HAS ORTHOGONAL	QRSL0200
COLUMNS, AND R IS AN UPPER TRIANGULAR MATRIX WITH DIAGONAL	QRSL0210
ELEMENTS OF NONINCREASING MAGNITUDE, THEN QRSOLV EXPECTS	QRSL0220
THE FULL UPPER TRIANGLE OF R, THE PERMUTATION MATRIX P,	QRSLO230
AND THE FIRST N COMPONENTS OF (Q TRANSPOSE)*B. THE SYSTEM	QRSL0240
$\mathrm{A} * \mathrm{X}=\mathrm{B}, \mathrm{D} * \mathrm{X}=0$, IS THEN EQUIVALENT TO	QRSL0250
	QRSL0260
$T \quad T$	QRSL0270
$\mathrm{R} * \mathrm{Z}=\mathrm{Q} * \mathrm{~B}, \mathrm{P} * \mathrm{D} * \mathrm{P} * \mathrm{Z}=0$	QRSL0280
	QRSL0290
WhERE $\mathrm{X}=\mathrm{P} \because 2$. If THIS SYSTEM DOES NOT HAVE FULL RANK,	QRSL0300
THEN A LEAST SQUARES SOLUTION IS OBTAINED. ON OUTPUT QRSOLV	QRSL0310
ALSO PROVIDES AN UPPER TRIANGULAR MATRIX S SUCH THAT	QRSL0320
	QRSL0330
$T \mathrm{~T}$ T	QRSL0340
$P *(A * A+D * D) * P=S * S$	QRSL0350
	QRSL0360
S IS COMPUTED WITHIN QRSOLV AND MAY BE OF SEPARATE INTEREST.	QRSL0370
	QRSL0380
THE SUBROUTINE STATEMENT IS	QRSL0390
	QRSL0400
SUBROUTINE QRSOLV(N,R,LDR,IPVT,DIAG,QTB,X,SDIAG,WA)	QRSL0410
	QRSL0420
WHERE	QRSL0430
	QRSL0440
N IS A POSITIVE INTEGER INPUT VARIABLE SET TO THE ORDER OF R.	QRSL0450
	QRSL0460
R IS AN N bY N ARRAY. ON INPUT THE FULL UPPER TRIANGLE	QRSL0470
MUST CONTAIN THE FULL UPPER TRIANGLE OF THE MATRIX R.	QRSL0480
ON OUTPUT THE FULL UPPER TRIANGLE IS UNALTERED, and the	QRSL0490
STRICT LOWER TRIANGLE CONTAINS THE STRICT UPPER TRIANGLE	QRSL0500
(TRANSPOSED) OF THE UPPER TRIANGULAR MATRIX S.	QRSL0510
	QRSL0520
LDR IS A POSITIVE INTEGER INPUT VARIABLE NOT LESS THAN N	QRSL0530
WHICH SPECIFIES THE LEADING DIMENSION OF THE ARRAY R.	QRSL0540

IPVT IS AN INTEGER INPUT ARRAY OF LENGTH N WHICH DEFINES THE
QRSL0550
都

PERMUTATION MATRIX P SUCH THAT A*P $=Q * R$. COLUMN J OF P IS COLUMN IPVT(J) OF THE IDENTITY MATRIX.
diag is an input array of Leng th n whtch must contain the DIAGONAL ELEMENTS OF THE MATRIX D.

QTB IS AN INPUT ARRAY OF LENGTH N WHICH MUST CONTAIN THE FIRST N ELEMENTS OF THE VECTOR (Q TRANSPOSE)*B.
X IS AN OUTPUT ARRAY OF LENGTH N WHICH CONTAINS THE LEAST SQUARES SOLUTION OF THE SYSTEM $A * X=B, D * X=0$.

SDIAG IS AN OUTPUT ARRAY OF LENGTH N WHICH CONTAINS THE diagonal elements of the upper triangular matrix s.

WA IS A WORK ARRAY OF LENGTH N.
SUBPROGRAMS CALLED
FORTRAN-SUPPLIED ... DABS,DSQRT
ARGONNE NATIONAL LABORATORY. MINPACK PROJECT. MARCH 1980.
BURTON S. GARBOW, KENNETH E. HILLSTROM, JORGE J. MORE

INTEGER I, J, JP1,K,KP1,L,NSING
DOUBLE PRECISION COS,COTAN,P5,P25,QTBPJ,SIN,SUM,TAN,TEMP,ZERO
DATA P5,P25,ZERO /5.OD-1,2.5D-1,0.0D0/
COPY R AND (Q TRANSPOSE) $\because B$ TO PRESERVE INPUT AND INITIALIZE S. IN PARTICULAR, SAVE THE DIAGONAL ELEMENTS OF R IN X.

DO $20 \mathrm{~J}=1$, N
DO $10 \mathrm{I}=\mathrm{J}, \mathrm{N}$
$R(I, J)=R(J, I)$
$X(J)=R(J, J)$
$W A(J)=Q T B(J)$
continue

ELIMINATE THE DIAGONAL MATRIX D USING A GIVENS ROTATION.
DO $100 \mathrm{~J}=1$, N
PREPARE THE ROW OF D TO BE ELIMINATED, LOCATING THE dIAGONAL ELEMENT USING P FROM THE QR FACTORIZATION.
$\mathrm{L}=\operatorname{IPVT}(\mathrm{J})$
IF (DIAG(L) .EQ. ZERO) GO TO 90
DO $30 \mathrm{~K}=\mathrm{J}, \mathrm{N}$ SDIAG(K) = ZERO CONTINUE

QRSL0560
QRSL0570
QRSL0580
QRSL0590
QRSL0600
QRSL0610
QRSL0620
QRSL0630
QRSL0640
QRSL0650
QRSL0660
QRSL0670
QRSL0680
QRSL0690
QRSL0700
QRSL0710
QRSL0720
QRSL0730
QRSL0740
QRSL0750
QRSL0760
QRSL0770
QRSL0780
QRSL0790
QRSL0800
QRSL0810
QRSL0820
QRSL0830
QRSL0840
QRSL0850
QRSL0860
QRSL0870
QRSL0880
QRSL0890
QRSL0900
QRSLO9 10
QRSL0920
QRSL0930
QRSL0940
QRSL0950
QRSL0960
QRSL0970
QRSL0980
QRSL0990
QPSL1000
QRSL1010
QRSL1020
QRSL1030
QRSL1040
QRSL1050
QRSL1060
QRSL1070
QRSL1080

$\operatorname{SDIAG}(\mathrm{J})=\operatorname{DIAG}(\mathrm{L})$	QRSL1090
	QRSL1100
THE TRANSFORNATIONS TO ELIMINATE THE ROW OF D	QRSL1110
MODIFY ONLY A SINGLE ELEMENT OF (Q TRANSPOSE)*B	QRSL1120
BEYOND THE FIRST N, WHICH IS INITIALLY ZERO.	QRSL1130
	QRSL11ヶ40
QTBPJ = ZER0	QRSL1150
DO $80 \mathrm{~K}=\mathrm{J}, \mathrm{N}$	QRSL1160
	QRSL1170
determine a givens rotation which eliminates the	QRSL1180
APPROPRIATE ELEMENT IN THE CURRENT ROW OF D.	QRSL1190
	QRSL1200
IF (SDIAG(K) .EQ. 2ERO) GO TO 70	QRSL1210
IF ($\operatorname{DABS}(\mathrm{R}(\mathrm{K}, \mathrm{K})$) . GE . DABS (SDIAG(K))) GO TO 40	QRSL1220
COTAN $=R(K, K) /$ SDIAG (K)	QRSL1230
SIN $=$ P5/DSQRT (P25+P25*COTAN**2)	QRSL1240
COS $=$ SIN \div COTAN	QRSL1250
GO TO 50	QRSL1260
CONTINUE	QRSL1270
TAN $=$ SDIAG $(\mathrm{K}) / \mathrm{R}(\mathrm{K}, \mathrm{K})$	QRSL1280
COS $=$ P5/DSQRT (P25+P25*TAN**2)	QRSL1290
SIN $=$ COS $*$ TAN	QRSL1300
CONTINUE	QRSL1310
	QRSL1320
COMPUTE THE MODIFIED DIAGONAL ELEMENT OF R AND	QRSL1330
THE MODIFIED ELEMENT OF ($(Q$ TRANSPOSE) $* \mathrm{~B}, 0$) .	QRSL1340
	QRSL1350
$\mathrm{R}(\mathrm{K}, \mathrm{K})=$ COS $\% \mathrm{R}(\mathrm{K}, \mathrm{K})+\mathrm{SIN} *$ SDIAG (K)	QRSL1360
TEMP $=$ COS*WA $(\mathrm{K})+\mathrm{SIN} * \mathrm{QTBPJ}$	QRSL1370
QTBPJ $=-S I N * W A(K)+C O S *$ QTBPJ	QRSL1380
WA $(K)=$ TEMP	QRSL1390
	QRSL1400
ACCUMULATE THE TRANFORMATION IN THE ROW OF S.	QRSL1410
	QRSL1420
$\mathrm{KP1}=\mathrm{K}+1$	QKSL1430
IF (N .LT. KP1) GO TO \%	QRSL1440
DO $\begin{aligned} \text { 60 I } & =\mathrm{KP1}, \mathrm{~N} \\ \text { TEMP } & =\operatorname{COS} \times \mathrm{R}(\mathrm{I}, \mathrm{K})+\mathrm{SIN} \% \text { SDTAG(I) }\end{aligned}$	QRSL1450
	QRSL1460
$\operatorname{SDIAG}(\mathrm{I})=-\mathrm{SIN} * \mathrm{R}(\mathrm{I}, \mathrm{K})+\mathrm{COS} *$ SDIAG(I)	QRSL1470
$\mathrm{R}(\mathrm{I}, \mathrm{K})=$ TEMP	QRSL1480
CONTINUE	QRSL1490
CONTINUE	QRSL1500
CONTINUE	QRSL1510
CONTINUE	2RSL1520
	QRSL1530
STORE THE DIAGONAL ELEMENT OF S AND RESTORE	QRSL1540
THE CORRESPONDING DIAGONAL ELEMENT OF R.	QRSL1550
	QRSL1560
SDIAG(J) $=$ R(J, J)	QRSL1570
$\mathrm{R}(\mathrm{J}, \mathrm{J})=\mathrm{X}(\mathrm{J})$	QRSL1580
CONTINUE	QRSL1590
	QRSL1600
LVE THE TRIANGULAR SYSTEM FOR 2. IF THE SYSTEM IS	QRSL1610
NGULAR, THEN OBTAIN A LEAST SQUARES SOLUTION.	QRSL1620

```
C
    NSING = N
    DO 110 J = 1, N
        IF (SDIAG(J) .EQ. ZERO .AND. NSING .EQ. N) NSING = J - 1
        IF (NSING .LT. N) WA(J) = ZERO
    CONTINUE
    IF (NSING .LT. 1) GO TO 150
    DO 140 K = 1, NSING
        J = NSING - K + 1
    SUM = ZERO
    JPI = J + 1
    IF (NSING .LT. JP1) GO TO 130
    DO 120 I = JP1, NSING
        SUM = SUM + R(I,J)*WA(I)
        CONTINUE
    CONTINUE
    WA(J) = (WA(J) - SUM)/SDIAG(J)
    140 CONTINUE
    150 CONTINUE
C
C PERMUTE THE COMPONENTS OF 2 BACK TO COMPONENTS OF X.
C
    DO 160 J = 1, N
        L = IPVT(J)
    X(L) = WA(J)
    160 CONTINUE
    RETURN
C
C LAST CARD OF SUBROUTINE QRSOLV.
C
    END
```

QRSL1630
QRSL1640 QRSL1650 QRSL1660 QRSL1670 QRSL1680 QRSL1690 QRSL1700 QRSL1710
QRSL1720
QRSL1730
QRSL1740
QRSL1750
QRSL1760
QRSL1770
QRSL1780
QRSL1790
QRSL1800
QRSL1810
QRSL1820
QRSL1830
QRSL1840
QRSL1850
QRSL1860
QRSL1870
QRSL1880
QRSL1890
QRSL1900
QRSL1910
QRSL1920
QRSL1930
SUBROUTINE RWUPDT(N,R,LDR,W,B,ALPHA,COS,SIN) RWUP0010
INTEGER N,LDR
DOUBLE PRECISION ALPHA
DOUBLE PRECISION R(LDR,N),W(N),B(N),COS(N),SIN(N)

SUBROUTINE RWUPDT
GIVEN AN N BY N UPPER TRIANGULAR MATRIX R, THIS SUBROUTINE
COMPUTES THE QR DECOMPOSITION OF THE NATRIX FORNED WHEN A ROW
IS ADDED TO R. IF THE ROW IS SPECIFIED BY THE VECTOR W, THEN
RWUPDT DETERMINES AN ORTHOGONAL MATRIX Q SUCH THAT WHEN THE
$\mathrm{N}+1$ BY N MATRIX COMPOSED OF R AUGMENTED BY W IS PREMULTIPLIED
BY (Q TRANSPOSE), THE RESULTING MATRIX IS UPPER TRAPEZOIDAL.
THE MATRIX (Q TRANSPOSE) IS THE PRODUCT OF N TRANSFORMATIONS
$G(N) * G(N-1) * \ldots * G(1)$
WHERE G(I) IS A GIVENS ROTATION IN THE (I,N+1) PLANE WHICH
eliminates elements in The ($\mathrm{N}+1$)-ST PLANE. RWUPDT also
COMPUTES THE PRODUCT (Q TRANSPOSE)*C WHERE C IS THE
($\mathrm{N}+1$)-VECTOR (B,ALPHA). Q ITSELF IS NOT ACCUMULATED, RATHER
THE INFORMATION TO RECOVER THE G ROTATIONS IS SUPPLIED.
THE SUBROUTINE STATEMENT IS
SUBROUTINE RWUPDT(N,R,LDR,W,B,ALPHA,COS,SIN)
WHERE
N IS A POSITIVE INTEGER INPUT VARIABLE SET TO THE ORDER OF R.
R IS AN N BY N ARRAY. ON INPUT THE UPPER TRIANGULAR PART OF
R MUST CONTAIN THE MATRIX TO BE UPDATED. ON OUTPUT R
CONTAINS THE UPDATED TRIANGULAR MATRIX.
LDR IS A POSITIVE INTEGER INPUT VARIABLE NOT LESS THAN N
WHICH SPECIFIES THE LEADING DIMENSION OF THE ARRAY R.
W IS AN INPUT ARRAY OF LENGTH N WHICH MUST CONTAIN THE ROW
VECTOR TO BE ADDED TO R.
b IS AN ARRAY OF LENGTH N. ON INPUT B MUST CONTAIN THE
FIRST N ELEMENTS OF THE VECTOR C. ON OUTPUT B CONTAINS
THE FIRST N ELEMENTS OF THE VECTOR (Q TRANSPOSE)*C.
alpha is a variable. ON INPUT alpha must CONTAIN THE
($\mathrm{N}+1$)-ST ELEMENT OF THE VECTOR C. ON OUTPUT ALPHA CONTAINS
THE ($\mathrm{N}+1$)-ST ELEMENT OF THE VECTOR (Q TRANSPOS」)*C.
COS IS AN OUTPUT ARRAY OF LENGTH N WHICH CONTAINS THE
COSINES OF THE TRANSFORMING GIVENS ROTATIONS.
SIN IS an OUTPUT ARRAY OF LENGTH N WHICH CONTAINS THE

RWUP0010
RWUP0020
RWUP0030
RWUP0040
RWUP0050
RWUP0060
RWUP0070
RWUP0080
RWUP0090
RWUP0100
RWUP0110
RWUP0120
RWUP0130
RWUPO140
RWUP0150
RWUP0160
RWUPO170
RWUP0180
RWUPO190
RWUP0200
RhUP0210
RWUP0220
RWUP0230
RWUPO240
RWUP0250
Rh'UP0260
RWUP0270
RWUP0280
RWUP0290
RWUP0300
RWUP0310
RWUP0320
RWUP0330
RWUP0340
RWUP0350
RWUP0360
RWUP0370
RWUP0380
RWU'P0390
RWUP0400
RWUP0410
RWUP0420
RWUP0430
RWUP0440
RWUP0450
RWUP0460
RWUP0470
RWUP0480
RWUP0490
RWUP0500
RWUP0510
RWUP0520
RWUP0530
RWUP0540

C

SINES OF THE TRANSFORMING GIVENS ROTATIONS.
SUBPROGRAMS CALLED
FORTRAN-SUPPLIED ... DABS,DSQRT
ARGONNE NATIONAL LABORATORY. MINPACK PROJECT. MARCH 1980.
BURTON S. GARBOW, DUDLEY V. GOETSCHEL, KENNETH E. HILLSTROM,
JORGE J. MORE

INTEGER I,J,JMI
DOUBLE PRECISION COTAN,ONE,P5,P25,ROWJ,TAN,TEMP,ZERO
DATA ONE,P5,P25,ZERO /1.ODO,5.OD-1,2.5D-1,0.0DO/
DO $60 \mathrm{~J}=1, \mathrm{~N}$
ROWJ $=W(\mathrm{~J})$
JM1 = J - 1
APPLY THE PREVIOUS TRANSFORMATIONS TO
$R(I, J), I=1,2, \ldots, J-1$, AND TO $W(J)$.
IF (JM1 .LT. 1) GO TO 20
DO $10 \mathrm{I}=1$, JM1 TEMP $=\operatorname{COS}(\mathrm{I}) * R(I, J)+\operatorname{SIN}(\mathrm{I}) * R O W J$ ROWJ $=-\operatorname{SIN}(I) * R(I, J)+\operatorname{COS}(I) * R O W J$ $R(I, J)=$ TEMP CONTINUE
CONTINUE
determine a givens rotation which eliminates $W(J)$.
$\cos (\mathrm{J})=0 \mathrm{NE}$
$\operatorname{SIN}(\mathrm{J})=$ ZERO
IF (ROWJ .EQ. ZERO) GO TO 50
IF (DABS (R(J,J)) .GE. DABS(ROWJ)) GO TO 30 COTAN $=$ R(J, J)/ROWJ
$\operatorname{SIN}(\mathrm{J})=$ P5/DSQRT(P25+P25*COTAN**2) $\operatorname{COS}(\mathrm{J})=\operatorname{SIN}(\mathrm{J}) * \operatorname{COTAN}$ GO TO 40
CONTINUE
TAN = ROWJ/R(J,J) COS(J) $=$ P5/DSQRT(P25+P25*TAN**2) $\operatorname{SIN}(\mathrm{J})=\operatorname{CUS}(\mathrm{J})^{\hbar T A N}$

40 CONTINUE

APPLY THE CURRENT TRANSFORMATION TO $\mathrm{R}(\mathrm{J}, \mathrm{J}), \mathrm{B}(\mathrm{J})$, AND ALPHA.
$R(J, J)=\cos (J) * R(J, J)+\operatorname{SIN}(J) * R O W J$
TEMP $=\operatorname{COS}(\mathrm{J}) * B(\mathrm{~J})+\operatorname{SIN}(\mathrm{J}) * A L P H A$
ALPHA $=-\operatorname{SIN}(\mathrm{J}) \star \mathrm{B}(\mathrm{J})+\operatorname{COS}(\mathrm{J}) * A L P H A$
$B(J)=$ TEMP
CONTINUE
CONTINUE
RWUP0550
RWUP0560
RWUP0570
RWUP0580
RWUP0590
RWUP0600
RWUP0610
RWUP0620
RWUP0630
RWUP0640
RWUP0650
RWUP0660
RWUP0670
RWUP0680
RWUP0690
RWUP0700
RWUP0710
RWUP0720
RWUP0730
RWUP0740
RWUP0750
RWUP0760
RWUP0770
RWUP0780
RWUP0790
RWUP0800
RWUP0810
RWUP0820
RWUP0830
RWUP0840
RWUP0850
RWUP0860
RWUP0870
TWUP0880
RWUP0890
RWUP0900
RWUP0910
RWUP0920
RWUP0930
RWUP0940
RWUP0950
RWUP0960
RWUP0970
RWUP0980
RWUP0990 RWUP1000
RWUP1010
RWUP1020
RWUP1030
RWUP1040
RWUP1050
RWUP1060
RWUP1070
RWUP1080

RETURN RWUP1090
C
C LAST CARD OF SUBROUTINE RWUPDT.
C
END
RWUP1100
RWUP1110
RWUP1120
RWUP1130

```
SUBROLTINE R1MPYQ(M,N,A,LDA,V,W) R1MQ0010
INTEGER M,N,LDA RIMQ0020
DOUBLE PRECISION A(LDA,N),V(N),W(N) R1MQ0030
%:%%%%%%M%%:% R1MQ0040
RiMQ0050
R1MQ0060
R1MQ0070
R1MQ0080
R1M20090
R1MQ0100
RIMQ0110
R1MQ0120
R1MQ0130
RINQ0140
R1MQ0150
R1MQ0160
R1MQ0170
R1MQ0180
R1MQ0190
R1MQ0200
R1MQ0210
R1MQ0220
R1MQ0230
R1MQ0240
R1MQ0250
R1MQ0260
R1MQ0270
R1MQ0280
R1MQ0290
R1MQ0300
R1MQ0310
R1MQ0320
R1MQ0330
R1MQ0340
R1MQ0350
R1MQ0360
R1MQ0370
R1MQ0380
R1MQ0390
R1MQ0400
R1MQ0410
R1MQ0420
R1MQ0430
R1MQ0440
R1MQ0450
R1MQ0460
R1MQ0470
R1MQ0480
R1MQ0490
R1MQ0500
R1MQ0510
R1MQ0520
R1MQ0530
R1MQ0540
```

```
    DATA ONE /1.0DO/
C
C
    APPLY THE FIRST SET OF GIVENS ROTATIONS TO A..
    NM1 = N - 1
    IF (NM1 .LT. 1) GO TO 50
    DO 20 NMJ = 1, NM1
        J = N - NMJ
        IF (DABS(V(J)) .GT. ONE) COS = ONF,`V(J)
        IF (DABS(V(J)) .GT. ONE) SIN = DSQRT(ONE-COS**2)
        IF (DABS(V(J)) .LE. ONE) SIN = V(J)
        IF (DABS(V(J)) .LE. ONE) COS = DSQRT(ONE-SIN:**2)
        DO 10 I = 1,M
            TEMP = COS*A(I,J) - SIN*A(I,N)
            A(I,N) = SIN*A(I,J) + COS*A(I,N)
            A(I,J) = TEMP
            CONTINUE
        CONTINUE
    APPLY THE SECOND SET OF GIVENS ROTATIONS TO A.
    DO 40 J = 1, NM1
        IF (DABS(W(J)) .GT. ONE) COS = ONE/W(J)
        IF (DABS(W(J)) .GT. ONE) SIN = DSQRT(ONE-COS**2)
        IF (DABS(W(J)) .LE. ONE) SIN = W(J)
        IF (DABS(W(J)) .LE. ONE) COS = DSQRT(ONE-SIN**2)
        DO 30 I = 1, M
            TEMP = COS*A(I,J) + SIN*A(I,N)
            A(I,N) = -SIN*A(I,J) + COS*A(I,N)
            A(I,J) = TEMP
            CONTINUE
        CONTINUE
        CONTINUE
        RETURN
C
C
C
    LAST CARD OF SUBROUTINE RIMPYQ.
    END
```


R1MQ0550
R1MQ0560
R1MQ0570
R1MQ0580
R1MQ0590
R1MQ0600
R1MQ0610
R1MQ0620
R1MQ0630
R1MQ0640
R1MQ0650
R1MQ0660
R1MQ0670
R1MQ0680
R1MQ0690
R1MQ0700
R1MQ0710
R1MQ0720
R1MQ0730
R1MQ0740
R1MQ0750
R1MQ0760
R1MQ0770
R1MQ0780
R1MQ0790
R1MQ0800
R1MQ0810
R1MQ0820
R1MQ0830
R1MQ0840
R1MQ0850
R1MQ0860
R1MQ0870
R1MQ0880
R1MQ0890
R1MQ0900
R1MQ09 10
R1MQ0920

```
SUBROUTINE RIUPDT(M,N,S,LS,U,V,W,SING) R1UP0010
INTEGER M,N,LS R1UP0020
LOGICAL SING
DOUBLE PRECISION S(LS),U(M),V(N),W(M)
N:******:%
SUBROUTINE RIUPDT
GIVEN AN M BY N LOWER TRAPEZOIDAL MATRIX S, AN M-VECTOR U,
AND AN N-VECTOR V, THE PROBLEM IS TO DETERMINE AN
ORTHOGONAL MATRIX Q SUCH THAT
            T
    (S + U*V )*Q
IS AGAIN LOWER TRAPEZOIDAL.
THIS SUBROUTINE DETERMINES Q AS THE PRODUCT OF 2*(N - 1)
TRANSFORMATIONS
    GV(N-1)*\ldots..*GV(1)*GW(1)*. . .*GW(N-1)
WHERE GV(I), GW(I) ARE GIVENS ROTATIONS IN THE (I,N) PLANE
WHICH ELIMINATE ELEMENTS IN THE I-TH aND N-TH PLANES,
RESPECTIVELY. Q ITSELF IS NOT ACCUMULATED, RATHER THE
INFORMATION TO RECOVER THE GV, GW ROTATIONS IS RETURNED.
THE SUBROUTINE STATEMENT IS
    SUBROUTINE R1UPDT(M,N,S,LS,U,V,W,SING)
WHERE
    M IS A POSITIVE INTEGER INPUT VARIABLE SET TO THE NUMBER
        OF ROWS OF S.
    N IS A POSITIVE INTEGER INPUT VARIABLE SET TO THE NUMBER
        OF COLUMNS OF S. N MUST NOT EXCEED M.
    S IS AN ARRAY OF LENGTH LS. ON INPUT S MUST CONTAIN THE LOWER
        TRAPEZOIDAL MATRIX S STORED BY COLUMNS. ON OUTPUT S CONTAINS
        THE LOWER TRAPEZOIDAL MATRIX PRODUCED AS DESCRIBED ABOVE.
    LS IS A POSITIVE INTFGER INPUT VARIABLE NOT LESS THAN
        (N*(2*M-N+1))/2.
    U IS AN INPUT ARRAY OF LENGTH M WHICH MUST CONTAIN THE
        VECTOR U.
    V IS AN ARRAY OF LENGTH N. ON INPUT V MUST CONTAIN THE VECTOR
        V. ON OUTPUT V(I) CONTAINS THE INFORMATION NECESSARY TO
        RECOVER THE GIVENS ROTATION GV(I) DESCRIBED ABOVE.
    W IS AN OUTPUT ARRAY OF LENGTH M. W(I) CONTAINS INFORNATION
```

R1UP0010
R1UP0020
R1UP0030
R1UP0040
R1UP0050
R1UP0060
R1UP0070
R1UP0080
R1UP0090
R1UP0100
R1UP0110
R1UP0120
R1UP0130
R1UP0140
R1UP0150
R1UP0160
R1UP0170
R1UP0180
R1UP0190
R1UP0200
R1UP0210
R1UP0220
R1UP0230
R1UP0240
R1LiP0250
R14.P0260
R1UP0270
R1UP0280
R1UP0290
R1UP0300
R1UP0310
R1UP0320
R1UP0330
R1UP0340
R1UP0350
R1UP0360
R1UP0370
R1UP0380
R1UP0390
R1UP0400
R1UP0410
R1UP0420
R1UP0430
R1UP0440
R1UP0450
R1UP0460
R1UP0470
R1UP0480
R1UP0490
R1UP0500
R1UP0510
R1UP0520
R1UP0530
R1UP0540 *

NECESSARY TO RECOVER THE GIVENS ROTATION GW(I) DESCRIBED R1UP0550 ABOVE.

SING IS A LOGICAL OUTPUT VARIABLE. SING IS SET TRUE IF ANY OF THE DIAGONAL ELEMENTS OF THE OUTPUT S ARE ZERO. OTHERWISE SING IS SET FALSE.

SUBPROGRAMS CALLED
MINPACK-SUPPLIED ... DPMPAR
FORTRAN-SUPPLIED ... DABS,DSQRT
ARGONNE NATIONAL LABORATORY. MINPACK PROJECT. MARCH 1980.
BURTON S. GARBOW, KENNETH E. HILLSTROM, JORGE J. MORE,
JOHN L. NAZARETH
*
INTEGER I, J, JJ , L, NMJ ,NM1
DOUBLE PRECISION COS,COTAN,GIANT,ONE,P5,P25,SIN,TAN,TAU,TEMP,
ZERO
DOUBLE PRECISION DPMPAR
DATA ONE,P5,P25, ZERO /1.0D0,5.0D-1,2.5D-1,0.0DO/
GIANT IS THE LARGEST MAGNITUDE.
GIANT $=$ DPMPAR (3)
INITIALIZE THE DIAGONAL ELEMENT POINTER.
$J J=(N \div(2 * M-N+1)) / 2-(M-N)$
MOVE THE NONTRIVIAL PART OF THE LAST COLUMN OF S INTO W.
$\mathrm{L}=\mathrm{JJ}$
DO $10 \mathrm{I}=\mathrm{N}, \mathrm{M}$
$W(I)=S(L)$
$\mathrm{L}=\mathrm{L}+1$
CONTINUE

ROTATE THE VECTOR V INTO A MULTIPLE OF THE N-TH UNIT VECTOR
IN SUCH A WAY THAT A SPIKE IS INTRODUCED INTO W.
NM1 = N - 1
IF (NM1 .LT. 1) GO TO 70
DO $60 \mathrm{NMJ}=1$, NM1
$\mathrm{J}=\mathrm{N}-\mathrm{NMJ}$
$J J=J J-(M-J+1)$
$W(J)=$ ZERO
IF (V(J) .EQ. ZERO) GO TO 50
DETERMINE A GIVENS ROTATION WHICH ELIMINATES THE J-TH ELEMENT OF V.

```
    IF (DABS(V(N)) .GE. DABS(V(J))) GO TO 20 R1UP1090
        COTAN = V(N)/V(J) R1UP1100
        SIN = P5/DSQRT(P25+P25*COTAN**2) R1UP1110
        COS = SIN*COTAN
        TAU = ONE
        IF (DABS(COS)*GIANT .GT. ONE) TAU = ONE/COS
        GO TO 30
CONTINUE
    TAN = V(J)/V(N)
    COS = P5/DSQRT(P25+P25*TAN**2)
        SIN = COS*TAN
            TAU = SIN
    CONTINUE
        APPLY THE TRANSFORMATION TO V AND STORE THE INFORMATION
        NECESSARY TO RECOVER THE GIVENS ROTATION.
        V(N) = SIN*V(J) + COS%V(N)
        V(J) = TAU
            APPLY THE TRANSFORMATION TO S AND EXTEND THE SPIKE IN W.
        L = JJ
        DO 40 I = J, M
        TEMP = COS*S(L) - SIN*W(I)
        W(I) = SIN*S(L) + COS*W(I)
        S(L) = TEMP
        L = L + 1
        CONTINUE
    CONTINUE
60 CONTINUE
70 CONTINUE
ADD THE SPIKE FROM T'HE RANK 1 UPDATE TO W.
DO 80 I = 1, M
    W(I)=W(I) +V(N)*U(I)
80 CONTINUE
ELIMINATE THE SPIKE.
SING = .FALSE.
IF (NM1 .LT. 1) GO TO }14
DO 130 J = 1, NM1
    IF (W(J) .EQ. ZERO) GO TO 12O
    DETERMINE A GIVENS ROTATION WHICH ELIMINATES THE
    J-TH ELEMENT OF THE SPIKE.
    IF (DABS(S(JJ)) .GE. DABS(W(J))) GO TO 90
        COTAN = S(JJ)/W(J)
        SIN = P5/DSQRT(P25+P25*COTAN***2)
        COS = SIN*COTAN
        TAU = ONE
    R1UP1120
    R1UP1130
    R1UP1140
    R1UP1150
    R1UP1160
    R1UP1170
    R1UP1180
    R1UP1190
    R1UP1200
    R1UP1210
    R1UP1220
    R1UP1230
    R1UP1240
    R1UP1250
    R1UP1260
    R1UP1270
    R1UP1280
    R1UP1290
    R1UP1300
    R1UP1310
    R1UP1320
    R1UP1330
    R1UP1340
    R1UP1350
    R1UP1360
    R1UP1370
    R1UP1380
    R1UP1390
R1UP1400
R1UP1410
R1UP1420
R1UP1430
R1UP1440
R1UP1450
R1UP1460
R1UP1470
R1UP1480
R1UP1490
R1UP1500
R1UP1510
R1UP1520
R1UP1530
R1UP1540
R1UP1550
R1UP1560
R1UP1570
R1UP1580
R1UP1590
R1UP1600
R1UP1610
R1UP1620
```


REAL FUNCTION SPMPAR(I) SPPR0010
INTEGER I SPPR0020

FUNCTION SPMPAR
THIS FUNCTION PROVIDES SINGLE PRECISION MACHINE PARAMETERS
WHEN THE APPROPRIATE SET OF DATA STATEMENTS IS ACTIVATED (BY
REMOVING THE C FROM COLUMN 1) AND ALL OTHER DATA STATEMENTS ARE
RENDERED INACTIVE. MOST OF THE PARAMETER VALUES WERE OBTAINED
FROM THE CORRESPONLING BELL LABORATORIES PORT LIBRARY FUNCTION.
THE FUNCTION STATEMENT IS
REAL FUNCTION SPMPAR(I)
WHERE
I IS AN INTEGER INPUT VARIABLE SET TO 1, 2, OR 3 WHICH
SELECTS THE DESIRED MACHINE PARAMETER. IF THE MACHINE HAS
T BASE b DIGITS and ITS SMALLEST AND LARGEST EXPONENTS ARE
emin and emax, respectively, then these parameters are
$\operatorname{SPMPAR}(1)=\mathrm{B} \stackrel{\because}{*}(1-\mathrm{T}), \mathrm{THE}$ MACHINE PRECISION,
$\operatorname{SPMPAR}(2)=\mathrm{B} * *(E M I N-1)$, THE SMALIEST MAGNITUDE,
$\operatorname{SPMPAR}(3)=\mathrm{B} *=E M A X *(1-\mathrm{B} *(-T))$, THE LARGEST MAGNITUDE.
ARGONNE NATIONAL LABORATORY. MINPACK PROJECT. MARCH 1980.
BURTON S. GARBOW, KENNETH E. HILLSTROM, JORGE J. MORE

INTEGER MCHEPS (2)
INTEGER MINMAG(2)
INTEGER MAXMAG(2)
REAL RMACH (3)
EQUIVALENCE (RMACH(1), MCHEPS (1))
EQUIVALENCE (RMACH (2), MINMAG (1))
EQUIVALENCE (RMACH(3),MAXMAG(1)) SPPR0400
C
C
C
C
C
DATA RMACH(1) / 0716400000000
DATA RMACH(2) / 0402400000000 /
DATA RMACH(3) / 0376777777777 /
SPPR0410

SPPR0020
SPPR0030
SPPR0040
SPPR0050
SPPR0060
SPPR0070
SPPR0080
SPPR0090
SPPR0100
SPPR0110
SPPR0120
SPPRO130
SPPR0140
SPPR0150
SPPR0160
SPPR0170
SPPR0180
SPPR0190
SPPR0200
SPPR0210
SPPR0220
SPPR0230
SPPR0240
SPPR0250
SPPR0260
SPPR0270
SPPR0280
SPPR0290
SPPR0300
SPPR0310
SPPR0320
SPPR0330
SPPR0340
SPPR0350
SPPR0360
SPPR0370
SPPR0380
SPPR0390
SPPR0400
SPPR0410
SPPR0420
SPPR04J0
SPPR 0440
SPPR0450
SPPR0460
SPPR0470
SPPR0480
SPPR0490
SPPR0500
SPPR0510
SPPR0520
SPPR0530
SPPR0540

C		SPPR0550
C	MACHINE CONSTANTS FOR THE CDC 6000/7000 SERIES.	SPPR0560
C		SPPR0570
C	DATA RMACH (1) / 16414000000000000000B /	SPPR0580
C	DATA RMACH (2) / 00014000000000000000B /	SPPR0590
C	DATA RMACH(3) / 37767777777777777777B /	SPPR0600
C		SPPR0S10
C	MACHINE CONSTANTS FOR THE PDP-10 (KA OR KI PROCESSOR).	SPPR0620
C		SPPR0630
C	DATA RMACH(1) / "147400000000 /	SPPR0640
C	DATA RMACH (2) / "000400000000 /	SPPR0650
C	DATA RMACH(3) / "377777777777 /	SPPR0660
C		SPPR0670
C	MACHINE CONSTANTS FOR THE PDP-11 FORTRAN SUPPORTING	SPPR0680
C	32-BIT INTEGERS (EXPRESSED IN INTEGER AND OCTAL).	SPPR0690
C		SPPR0700
C	DATA MCHEPS (1) / 889192448 /	SPPR0710
C	DATA MINMAG (1) / 8388608 /	SPPR0720
C	DATA MAXMAG(1) / 2147483647 /	SPPR0730
C		SPPR0740
C	DATA RMACH (1) / 006500000000 /	SPPR0750
C	DATA RMACH (2) / 000040000000 /	SPPR0760
C	DATA RMACH (3) / 017777777777 /	SPPR0770
C		SPPR0780
C	MACHINE CONSTANTS FOR THE PDP-11 FORTRAN SUPPORTING	SPPR0790
C	16-BIT INTEGERS (EXPRESSED IN INTEGER AND OCTAL).	SPPR0800
C		SPPR0810
C	DATA MCHEPS (1), MCHEPS (2) / 13568, 0 /	SPPR0820
C	DATA MINMAG (1),MINMAG (2) / 128, 0/	SPPR0830
C	DATA MAXMAG (1), MAXMAG(2) / 32767, -1/	SPPR0840
C		SPPR0850
C	DATA MCHEPS (1), MCHEPS (2) / 0032400, $0000000 /$	SPPR0860
C	DATA MINMAG (1),MINMAG (2) / 0000200, 0000000 /	SPPR0870
C	DATA MAXMAG(1),MAXMAG(2) / 0077777, 0177777 /	SPPR0880
C		SPPR0890
C	MACHINE CONSTANTS FOR THE BURROUGHS 5700/6700/7700 SYSTEMS.	SPPR0900
C		SPPR0910
C	DATA RMACH (1) / 01301000000000000 /	SPPR0920
C	DATA RMACH (2) / 01771000000000000 /	SPPR0930
C	DATA RMACH(3) / 00777777777777777 /	SPPR0940
C		SPPR0950
C	MACHINE CONSTANTS FOR THE BURROUGHS 1700 SYSTEM.	SPPR0960
C		SPPR0970
C	DATA RMACH(1) / Z4EA800000 /	SPPR0980
C	DATA RMACH (2) / Z400800000 /	SPPR0990
C	DATA RMACH (3) / Z5FFFFFFFF /	SPPR1000
C		SPPR1010
C	MACHINE CONSTANTS FOR THE UNIVAC 1100 SERIES.	SPPR 1020
C		SPPR1030
C	DATA RMACH (1) / 0147400000000 /	SPPR1040
C	DATA RMACH (2) / 0000400000000 /	SPPR1050
C	DATA RMACH(3) / 0377777777777 /	SPPR1060
C		SPPR1070
C	MACHINE CONSTANTS FOR THE DATA GENERAL ECLIPSE S/200.	SPPR1080

C		SPPR1090
C	NOTE - IT MAY BE APPROPRIATE TO INCLUDE THE FOLLOWING CARD	SPPR1100
C	STATIC RMACH(3)	SPPR1113
C		SPPR1120
C	DATA MINMAG/20K,0/,MAXMAG/77777K, $177777 \mathrm{~K} /$	SPPR1130
C	DATA MCHEPS/36020K,0/	SPPR1140
C		SPPR1150
C	MACHINE CONSTANTS FOR THE HARRIS 220.	SPPR1160
C		SPPR1170
C	DATA MCHEPS (1), MCHEPS (2) / '20000000, '00000353 /	SPPR1180
C	DATA MINMAG(1),MINMAG (2) / '20000000, '00000201 /	SPPR1190
C	DATA MAXMAG (1), MAXMAG (2) / '37777777, '00000177 /	SPPR1200
C		SPPR 1210
C	MACHINE CONSTANTS FOR THE CRAY-1.	SPPR1220
C		SPPR1230
C	DATA RMACH(1) / 0377224000000000000000B /	SPPR1240
C	DATA RMACH(2) / 0200034000000000000000B /	SPPR1250
C	DATA RMACH(3) / 0577777777777777777776B /	SPPR1260
C		SPPR 1270
C	MACHINE CONSTANTS FOR THE PRIME 400.	SPPR1280
C		SPPR1290
C	DATA MCHEPS (1) / : 10000000153 /	SPPR1300
C	DATA MINMAG (1) / : 10000000000 /	SPPR1310
C	DATA MAXMAG(1) / : 17777777777 /	SPPR 1320
C		SPPR 1330
	SPMPAR $=$ RMACH (I)	SPPR 1340
	RETURN	SPPR1350
C		SPPR 1360
C	LAST CARD OF FUNCTION SPMPAR.	SPPR 1370
C		SPPR1380
	END	SPPR1390

DOUBLE PRECISION FUNCTION DPMPAR(I) DPPR0010
INTEGER I
DPPR0020

FUNCTION DPMPAR
DPPR0030
DPPR0040
DPPR0050
DPPR0060
THIS FUNCTION PROVIDES DOUBLE PRECISION MACHINE PARAMETERS
DPPR0070
WHEN THE APPROPRIATE SET OF DATA STATEMENTS IS ACTIVATED (BY
REMOVING THE C FROM COLUMN 1) AND ALL OTHER DATA STATEMENTS ARE
RENDERED INACTIVE. MOST OF THE PARAMETER VALUES WERE OBTAINED
FROM THE CORRESPONDING BELL LABORATORIES PORT LIBRARY FUNCTION.
DPPR0080
DPPR0090
DPPR0100
DPPR0110
DPPR0120
THE FUNCTION STATEMENT IS
DPPR0130
DPPR0140
DOUBLE PRECISION FUNCTION DPMPAR(I)
WHERE
I IS AN INTEGER INPUT VARIABLE SET TO 1, 2, OR 3 WHICH SELECTS THE DESIRED MACHINE PARAMETER. IF THE MACHINE HAS T BASE B DIGITS AND ITS SMALLEST AND LARGEST EXPONENTS ARE emin and emax, respectively, then These parameters are
$\operatorname{DPMPAR}(1)=\mathrm{B}^{\mathrm{B}+(1-\mathrm{T}}$), THE MACHINE PRECISION, DPMPAR(2) $=\mathrm{B}^{\text {b** }}($ EMIN -1$)$, THE SMALLEST MAGNITUDE, DPMPAR(3) $=\mathrm{B}^{*} \because E M A X *(1-\mathrm{B} \because *(-T))$, THE LARGEST MAGNITUDE.

ARGONNE NATIONAL LABORATORY. MINPACK PROJECT. MARCH 1980. BURTON S. GARBOW, KENNETH E. HILLSTROM, JORGE J. MORE
,
INTEGER MCHEPS (4)
DPPR0150
DPPR0160
DPPR0170
DPPR0180
DPPR0190
DPPR0200
DPPR0210
DPPR0220
DPPR0230
DPPR0240
DPPR0250
DPPR0260
DPPR0270
DPPR0280
DPPR0290
DPPR0300
DPPR0310
DPPR0320
DPPR0330
DPPR0340
INTEGER MINMAG(4)
DPPR0350
INTEGER MAXMAG(4)
DOUBLE PRECISION DMACH(3)
EQUIVALENCE (DMACH(1), MCHEPS (1))
EQUIVALENCE (DMACH(2),MINMAG(1))
DPPR0360
DPPR0370
DPPR0380
DPPR0390
EQUIVALENCE (DMACH(3),MAXMAG(1))
DPPR0400
DPPR0410
DPPR0420
DPPR0430
DPPR0440
DPPR0450
DPPR0460
DPPR0470
DPPR0480
DPPR0490

C		DPPR0550
C	MACHINE CONSTANTS FOR THE CDC 6000/7000 SERIES.	DPPR0560
C		DPPR0570
C	DATA MCHEPS (1) / 1561400000000000000B /	DPPR0580
C	DATA MCHEPS (2) / 15010000000000000000 /	DPPR0590
C		DPPR0600
C	DATA MINMAG(1) / 00604000000000000000B /	DPPR0610
C	DATA MINMAG(2) / 00000000000000000000B /	DPPR0620
C		DPPR0630
C	DATA MAXMAG(1) / 37767777777777777777B /	DPPR0640
C	DATA MAXMAG(2) / 37167777777777777777B /	DPPR0650
C		DPPR0660
C	MACHINE CONSTANTS FOR THE PDP-10 (KA PROCESSOR).	DPPR0670
C		DPPR0680
C	DATA MCHEPS (1), MCHEPS (2) / "114400000000, "000000000000 /	DPPR0690
C	DATA MINMAG (1),MINMAG(2) / "033400000000, "000000000000 /	DPPR0700
C	DATA MAXMAG(1), MAXMAG(2) / "37777777'777, "34477777777 /	DPPR0710
C		DPPR0720
C	MACHINE CONSTANTS FOR THE PDP-10 (KI PROCESSOR).	DPPR0730
C		DPPR0740
C	DATA MCHEPS (1), MCHEPS (2) / "104400000000, "000000000000 /	DPPR0750
C	DATA MINMAG (1),MINMAG (2) / "000400000000, "000000000000 /	DPPR0760
C	DATA MAXMAG (1), MAXMAG(2) / "377777777777, "377777777777/	DPPR0770
C		DPPR0780
C	MACHINE CONSTANTS FOR THE PDP-11 FORTRAN SUPPORTING	DPPR0790
C	32-BIT INTEGERS (EXPRESSED IN INTEGER AND OCTAL).	DPPR0800
C		DPPR0810
C	DATA MCHEPS (1), MCHEPS (2) / 620756992, 0/	DPPR0820
C	DATA MINMAG(1),MINMAG(2) / 8388608, 0/	DPPR0830
C	DATA MAXMAG (1), MAXMAG(2) / 2147483647, -1/	DPPR0840
C		DPPR0850
C	DATA MCHEPS (1), MCHEPS (2) / 004500000000, 000000000000 /	DPPR0860
C	DATA MINMAG(1),MINMAG (2) / 000040000000, 00000000000 /	DPPR0870
C	DATA MAXMAG(1), MAXMAG(2) / 017777777777, 03777777777 /	DPPR0880
C		DPPR0890
C	MACHINE CONSTANTS FOR THE PDP-11 FORTRAN SUPPORTING	DPPR0900
C	16-BIT INTEGERS (EXPRESSED IN INTEGER AND OCTAL).	DPPR0910
C		DPPR0920
C	DATA MCHEPS (1), MCHEPS (2) / 9472, 0 /	DPPR0930
C	DATA MCHEPS (3), MCHEPS (4) / 0, 0 /	DPPR0940
C		DPPR0950
C	DATA MINMAG(1),MINMAG (2) / 128, 0 /	DPPR0960
C	DATA MINMAG (3), MINMAG (4) / 0, 0 /	DPPR0970
C		DPPR0980
C	DATA MAXMAG (1), MAXMAG(2) / 32767, -1/	DPPR0990
C	DATA MAXMAG (3), MAXMAG (4) / -1, -1/	DPPR1000
C		DPPR1010
C	DATA MCHEPS (1),MCHEPS (2) / 0022400, 0000000 /	DPPR1020
C	DATA MCHEPS (3), MCHEPS (4) / 0000000, $0000000 /$	DPPR1030
C		DPPR1040
C	DATA MINMAG(1),MINMAG(2) / 0000200, $0000000 /$	DPPR1050
C	DATA MINMAG (3),MINMAG (4) / 0000000, $0000000 /$	DPPR1060
C		DPPR1070
C	DATA MAXMAG(1),MAXMA3(2) / 0077777, 0177777 /	DPPR1080

```
DATA MAXMAG(3),MAXMAG(4) / 0177777, 0177777 /
MACHINE CONSTANTS FOR THE BURROUGHS 6700/7700 SYSTEMS.
DATA MCHEPS(1) / 01451000000000000 /
DATA MCHEPS(2) / 00000000000000000 /
DATA MINMAG(1) / 01771000000000000 /
DATA MINMAG(2) / 07770000000000000 /
DATA MAXMAG(1) / 00777777777777777 /
DATA MAXMAG(2) / 0777777777777777% /
MACHINE CONSTANTS FOR THE BURROUGHS 5700 SYSTEM.
DATA MCHEPS(1) / 01451000000000000 /
DATA MCHEPS(2) / 00000000000000000 /
DATA MINMAG(1) / 01771000000000000 /
DATA MINMAG(2) / 00000000000000000 /
DATA MAXMAG(1) / 00777777777777777 /
DATA MAXMAG(2) / 00007777777777777 /
MACHINE CONSTANTS FOR THE BURROUGHS 1700 SYSTEM.
DATA MCHEPS(1) / 2CC6800000 /
DATA MCHEPS(2) / 2000000000 /
DATA MINMAG(1) / ZC00800000 /
DATA MINMAG(2) / Z000000000 /
DATA MAXMAG(1) / ZDFFFFFFFF /
DATA MAXMAG(2) / ZFFFFFFFFF /
MACHINE CONSTANTS FOR THE UNIVAC 1100 SERIES.
DATA MCHEPS(1),MCHEPS(2) / 0170640000000, 0000000000000 /
DATA MINMAG(1),MINMAG(2) / 0000040000000, 0000000000000 /
DATA MAXMAG(1),MAXMAG(2) / 03777777777777, 0777777777777 /
MACHINE CONSTANTS FOR THE DATA GENtRAL ECLIPSE S/200.
NOTE - IT MAY BE APPROPRIATE TO INCLUDE THE FOLLOWING CARD -
STATIC DMACH(3)
DATA MINMAG/20K,3*0/,MAXMAG/77777K,3*177777K/
DATA MCHEPS/32020K,3*O/
MACHINE CONSTANTS FOR THE HARRIS 220.
DATA MCHEPS(1),MCHEPS(2) / '20000000, '00000334 /
DATA MINMAG(1),MINMAG(2) / '20000000, '00000201 /
DATA MAXMAG(1),MAXMAG(2) / '37777777, '37777577 /
```

DPPR 1090
DPPR1100
DPPR1110
DPPR1120
DPPR1130
DPPR1140
DPPR1150
DPPR1160
DPPR1170
DPPR 1180
DPPR1190
DPPR 1200
DPPR1210
DPPR1220
DPPR 1230
DPPR1240
DPPR1250
DPPR1260
DPPR1270
DPPR1280
DPPR1290
DPPR1300
DPPR1310
DPPR1320
DPPR1330
DPPR1340
DPPR1350
DPPR 1360
DPPR1370
DPPR1380
DPPR1390
DPPR1400
DPPR1410
DPPR1420
DPPR1430
DPPR 1440
DPPR1450
DPPR1460
DPPR1470
DPPR1480
DPPR1490
DPPR1500
DPPR1510
DPPR1520
DPPR1530
DPPR1540
DPPR1550
DPPR1560
DPPR1570
DPPR1580
DPPR1590
DPPR1600
DPPR1610
DPPR1620

```
C
C
C
C
C
C
C
C
C
C
C
C
C MACHINE CONSTANTS FOR THE PRIME 400.
C
C DATA MCHEPS(1),MCHEPS (2) / :10000000000;:00000000123 /
C DATA MINMAG(1),MINMAG(2) / :10000000000, :00000100000 /
C DATA MAXMAG(1),MAXMAG(2) / :17777777777, :37777677776 /
C
DPMPAR = DMACH(I)
RETURN
C
C
C
MACHINE CONSTANTS FOR THE CRAY-1.
```

DPPR1630
DPPR1640
DPPR 1650
DPPR1660
DPPR1670
DPPR1680
DPPR 1690
DPPR1700
DPPR1710
DPPR1720
DPPR1730
DPPR1740
DPPR1750
DPPR1760
DPPR 1770
DPPR1780
DPPR1790
DPPR1800
DPPR1810
DPPR 1820
DPPR1830
DPPR1840
DPPR1850
DPPR1860

