
ANL-80-74

USER GUIDE FOR MINPACK-1

by

Jorge J. More, Burton S. Garbow,

Kenneth E. Hillstrom

AAGONNE
t4AT1ONAL
ABRATORY

J L.

ARGONNE NATIONAL LABORATORY,

Prepared for the U. S.

ARGONAE, ILLINOIS

DEPARTMENT OF ESRY
under Contract W-31-109-Eng-38

ANL-80-74

a 
Ti.*1j1





Distribution Category:
Mathematics and Computers

(UC-32)

ANL-80-74

ARGONNE NATIONAL LABORATORY
9700 South Cass Avenue

Argonne, Illinois 60439

USER GUIDE FOR MINPACK-1

by

Jorge J. More, Burton S. Garbow, Kenneth E. Hillstrom

Applied Mathematics Division

August 1980





3

TABLE OF CONTENTS

Abstract .................................................................. 5

Preface ................................................................... 5

Acknowledgments ........................................................... 8

CHAPTER 1. Introduction to MINPACK-1......................................9

1.1 Systems of Nonlinear Equations......................................9

1.2 Nonlinear Least Squares Problems....................................9

1.3 Derivative Checking ............................................... 10

1.4 Algorithmic Paths: Core Subroutines and Easy-to-Use Drivers........ 10

1.5 MINPACK-1 Subroutines: Systems of Nonlinear Equations.............. 10

1.6 MINPACK-1 Subroutines: Nonlinear Least Squares Problems............ 12

1.7 Machine-Dependent Constants....................................... 13

1.8 MINPACK-1 Internal Subprograms.....................................14

CHAPTER 2. Algorithmic Details.......................................... 17

2.1 Mathematical Background............................................17

2.2 Overview of the Algorithms.........................................19

2.3 Convergence Criteria...............................................21

2.4 Approximations to the Jacobian Matrix.............................. 26

2.5 Scaling ........................................................... 28

2.6 Stbroutine FCN: Calculation of the Function and Jacobian Matrix ... 30

2.7 Constraints ....................................................... 33

2.8 Error Bounds......................................................35

2.9 Printing .......................................................... 43

CHAPTER 3. Notes and References..........................................45

CHAPTER 4. Documentation ................................................ 49

CHAPTER 5. Program Listings ............................................ 139





5

ABSTRACT

MINPACK-1 is a package of Fortran subprograms for the
numerical solution of systems of nonlinear equations and
nonlinear least squares problems. This report provides an
overview of the algorithms and software in the package and
includes the documentation and program listings.

Preface

The MINPACK Project is a research effort whose goal is the development of

a systematized collection of quality optimizatiPn software. The first step

towards this goal has been realized in MINPACK-1, a package of Fortran

programs for the numerical solution of systems of nonlinear equations and

nonlinear least squares problems.

The design of the algorithms and software in MINPACK-1 has several

objectives; the main ones are reliability, ease of use, and transportability.

At the algorithmic level, reliability derives from the underlying

algorithms having a sound theoretical basis. Entirely satisfactory global

convergence results are available for the MINPACK-1 algorithms and, in

addition, their properties allow scale invariant implementations.

At the software level, reliability derives from extensive testing. The

heart of the testing aids is a large collection of test problems (More,

Garbow, and Hillstrom [1978]). These test problems have been used to measure

the performance of the software on the following computing systems: IBM

360/370, CDC 6000-7000, Univac 1100, Cray-1, Burroughs 6700, DEC PDP-10,

Honeywell 6000, Prime 400, Itel AS/6, and ICL 2980. At Argonne, software

performance has been further measured with the help of WATFIV and BRNANL

(Fcsdick [1974]). WATFIV detects run-time errors such as undefined variables

and out-of-range subscripts, while BRNANL provides execution counts for each

block of a program and, 'i particular, has established that the MINPACK-1 test

problems execute every non-trivial program block.

Reliability further implies efficient and robust implementations. For

example, MINPACK-1 programs access matrices sequentially along columns (rather

than rows), since this improves efficiency, especially on paged systems.

Also, there are extensive checks on the input parameters, and computations are



6

formulated to avoid destructive underflows and overflows. Underflows can then

be safely ignored; overflows due to the problem should of course be

investigated.

Ease of use derives from the design of the user interface. Each

algorithmic path in MINPACK-1 includes a core subroutine and a driver with a

simplified calling sequence made possible by assuming default settings for

certain parameters and by returning a limited amount of information; many

applications do not require full flexibility and in these cases the drivers

can be invoked. On the other hand, the core subroutines enable, for example,

scaling of the variables and printing of intermediate results at specified

iterations.

Ease of use is also facilitated by the documentation. Machine-readable

documentation is provided for those programs normally called by the user. The

documentation includes discussions of all calling sequence parameters and an

actual example illustrating the use of the corresponding algorithm. In

addition, each program includes detailed prologue comments on its purpose and

the roles of its parameters; in-line comments introduce major blocks in the

body of the program.

To further clarify the underlying structure of the algorithms, the

programs have been formatted by the TAMPR system of Boyle and Dritz [1974].

TAMPR produces implementations in which the loops and logical structure of the

programs are clearly delineated. In addition, TAMPR has been used to produce

the single precision version of the programs from the master (double

precision) version.

Transportability requires that a satisfactory transfer to a different

computing system be possible with only a small number of changes to the

software. In MINPACK-1, a change to a new computing system only requires

changes to one program in each precision; all other programs are written in a

portable subset of ANSI standard Fortran acceptable to the PFORT verifier

(Ryder [1974]). This one machine-dependent program provides values of the

machine precision, the smallest magnitude, and the largest magnitude. Most of

the values for these parameters were obtained from the corresponding PORT

library program (Fox, Hall, and Schryer [1978]); in particular, values are

provided for all of the computing systems on which the programs were tested.



7

MINPACK-1 is fully supported. Comments, questions, and reports of poor

or incorrect performance of the MINPACK-1 programs should be directed to

Burton S. Garbow
Applied Mathematics Division
Argonne National Laboratory
9700 South Cass Avenue
Argonne, IL 60439
Phone: (312) 972-7184

Of particular interest would be reports of performance of the MINPACK-1

package on machines not covered in the testing.

The MINPACK-1 package consists of the programs, their documentation, and

the testing aids. The package comprises approximately 28,000 card images and

is transmitted on magnetic tape. The tape is available from the following two

sources.

National Energy Software Center
Argonne National Laboratory
9700 South Cass Avenue
Argonne, IL 60439
Phone: (312) 972-7250

IMSL
Sixth Floor-NBC Building
7500 Bellaire Blvd.
Houston, TX 77036
Phone: (713) 772-1927

The package includes both single and double precision versions of the

programs, and for those programs normally called by the user machine-readable

documentation is provided in both single and double precision forms. An

implementation guide (Garbow, Hillstrom, and More [1980]) is also included

with the tape.



8

Acknowledgments

The MINPACK-1 testing was conducted by the following individuals; their

assistance and suggestions were invaluable to the project.

Poul Arendal, The World Bank (Burroughs)

Richard Bartels, University of Waterloo (Honeywell)

Mary Ann Berg, University of Illinois at Urbana-Champaign (CDC)

W. Robert Boland, Air Force Weapons Laboratory (CDC)

Roger Crane, RCA Laboratories (IBM)

Dona Crawford, Sandia Laboratories, Livermore (CDC)

John Dennis, Rice University (Itel)

Jeremy DuCroz, Numerical Algorithms Group Ltd. (ICL)

Jay Fleisher, The University of Wisconsin (Univac)

Fred Fritsch, Lawrence Livermore Laboratory (CDC,Cray)

Patrick Gaffney, Union Carbide Corporation (CDC,Cray,DEC,IBM)

David Gay, Massachusetts Institute of Technology (IBM)

Kathie Hiebert, Sandia Laboratories, Albuquerque (CDC)

L. W. Lucas, Naval Weapons Center (Univac)

Dan O'Reilly, Data Resources, Inc. (Burroughs)

Gerald Ruderman, Management Decision Systems, Inc. (Prime)

Nora Sabelli, University of Illinois at Chicago Circle (IBM)

Susan Sherry, Federal Reserve Board (IBM)

Danny Sorensen, University of Kentucky (IBM)

Jesse Wang, Argonne National Laboratory (IBM)

Many others have contributed to the package in various ways; in particu-

lar, we acknowledge Beverly Arnoldy, Jim Boyle, Ken Brown, Wayne Cowell,

Jim Cody, Tom Coleman, Bill Davidon, Jack Dongarra, Dudley Goetschel, Jerry

Kreuser, James Lyness, Mike Minkoff, Larry Nazareth, Mike Powell,

Rich Raffenetti, Bob Schnabel, Greg Shubert, Brian Smith, David Thuente, and

Richard Wilk.

Special thanks go to Jim Pool, the originator of the project, and to

Paul Messina, the head of the Applied Mathematical Sciences section of the

Applied Mathematics Division at Argonne. Finally, thanks to Judy Beumer for

her usual outstanding job of typing this report.



9

CHAPTER 1

Introduction to MINPACK-1

The purpose of this chapter is to provide an overview of the algorithms

and software in MINPACK-1. Most users need only be acquainted with the first

six sections of this chapter; the remaining two sections describe lower-level

software called from the main programs.

1.1 Systems of Nonlinear Equations

If n functions f,f2''''n of the n variables xl,x2.'''xn are

specified, then MINPACK-1 subroutines can be used to find values for

x1 ,x2,. 'xn that solve the system of nonlinear equations

fi(x1 ,x2,. ''Xn) = 0 , 1 < i < n .

To solve this system we have implemented a modification of Powell's hybrid

algorithm. There are two variants of this algorithm. The first variant only

requires that the user calculate the functions fi, while the second variant

requires that the user calculate both the functions fi and the n by n Jacobian

matrix

af.(x)

, /

1.2 Nonlinear Least Squares Problems

If m functions fif2 1 .''''m of the n variables x 1 ,x 2 ,...,xn are specified

with m > n, then MINPACK-1 subroutines can be used to find values for

x1,x2,...,xn that solve the nonlinear least squares problem

(mmin f.()2:x e Rn}

To solve this problem we have implemented a mod.fication of the Levenberg-

Marquardt algorithm. There are three variants of this algorithm. The first



10

variant only requires that the user calculate the functions fi, while the

second variant requires that the user calculate both the functions fi and the

m by n Jacobian matrix

a f. (x)af1 1
,x 1 1 < i<m, 1 <j< n.

ax. - - - -

j/
The third variant also requires that the user calculate the functions and

the Jacobian matrix, but the latter only one row at a time. This organization

only requires the storage of an n by n matrix (rather than m by n), and is

thus attractive for nonlinear least squares problems with a large number of

functions and a moderate number of variables.

1.3 Derivative Checking

The main advantage of providing the Jacobian matrix is increased

reliability; for example, .he algorithm is then much less sensitive to

functions subject to errors. However, providing the Jacobian matrix is an

error-prone task. To help identify errors, MINPACK-1 also contains a

subroutine CHKDER that checks the Jacobian matrix for consistency with the

function values.

1.4 Algorithmic Paths: Core Subroutines and Easy-to-Use Drivers

There are five general algorithmic paths in MINPACK-1. Each path

includes a core subroutine and an easy-to-use driver with a simplified calling

sequence made possible by assuming default settings for certain parameters and

by returning a limited amount of information; many applications do not require

full flexibility and in these cases easy-to-use drivers can be invoked. On

the other hand, the core subroutines enable, for example, scaling of the

variables and printing of intermediate results at specified iterations.

1.5 MINPACK-1 Subroutines: Systems of Nonlinear Equations

The MINPACK-1 subroutines for the numerical solution of systems of

nonlinear equations are HYBRD1, HYBRD, HYBRJ1, and HYBRJ. These subroutines

provide alternative ways to solve the system of nonlinear equations

fi(xl,x2,..,xn) - 0 , 1 < i < n



11

by a modification of Powell's hybrid algorithm. The principal requirements of

the subroutines are as follows (see also Figure 1).

HYBRD1, HYBRD

The user must provide a subroutine to calculate the functions

f ,f2''' ' n. The Jacobian matrix is then calculated by a forward-

difference approximation or by an update formula of Broyden. HYBRD1 is

the easy-to-use driver for the core subroutine HYBRD.

HYBRJ1, HYBRJ

The user must provide a subroutine to calculate the functions

f , f2,'' 'n and the Jacobian matrix

aff.(x)
,1 i<n <j

3
x. (-

j/
(Subroutine CHKDER can be used to check the Jacobian matrix for

consistency with the function values.) HYBRJ1 is the easy-to-use driver

for the core subroutine HYBRJ.

Is the Jacobian
Yes matrix available? No

Yes Is flexibility Is flexibility NoIs No Yes requred
required?-required?

HYBRJ HYBRJI HYBRD LHYBRD1

Figure 1
Decision Tree for Systems of Nonlinear Equations



12

1.6 MINPACK-1 Subroutines: Nonlinear Least Squares Problems

The MINPACK-1 subroutines for the numerical solution of nonlinear least

squares problems are LMDIF1, LMDIF, IMDER1, LMDER, LMSTR1, and LMSTR. These

subroutines provide alternative ways to solve the nonlinear least squares

problem

min{Zf.(x)2: x E Rn
i=1

by a modification of the Levenberg-Marquardt algorithm. The principal

requirements of the subroutines are as follows (see also Figure 2).

LMDIF1, LMDIF

The user must provide a subroutine to calculate the functions

fl,f2,'''' m. The Jacobian matrix is then calculated by a forward-

difference approximation. LMDIF1 is the easy-to-use driver for the core

subroutine LMDIF.

LMDER1, LMDER

The user must provide a subroutine to calculate the functions

fl, f2,.'''fm and the Jacobian matrix

af.(x)

x , 1 < i <(m , 1 <j < n.

(Subroutine CHKDER can be used to check the Jacobian matrix for

consistency with the function values.) LMDER1 is the easy-to-use driver

for the core subroutine LMDER.

LMSTR1, LMSTR

The user must provide a subroutine to calculate the functions

f i, f2''''fmand the rows of the Jacobian matrix

af.(x))I 1 < i <m , i < j < n,fix.- -- -

J

one row per call. (Subroutine CHKDER can be used to check the row of the

Jacobian matrix for consistency with the corresponding function value.)

LMSTR1 is the easy-to-use driver for the core subroutine IMSTR.



13

Yes Is the Jacobian No
matrix available?

storage No Yes Is flexibility No
-- united? --- s required? -

IMDIF IMDIFI

Yes Is flexibility No Yes Is flexibility No
required? -L required? -

IMSTR IMSTRl I4DER LMDER1

Figure 2
Decision Tree for Nonlinear Least Squares Problems

1.7 Machine-Dependent Constants

There are three machine-dependent constants that have to be set before

the single or double precision version of MINPACK-1 can be used; for most

machines the correct values of these constants are encoded into DATA state-

ments in functions SPMPAR (single precision) and DPMPAR (double precision).

These constants are:

1 , the machine precision

Semn , the smallest magnitude

(1 - s-)Semax, the largest magnitude

where k is the number of base a digits on the machine, emin is the smallest

machine exponent, and emax is the largest machine exponent.

The most critical of the constants is the machine precision CM, since the

MINPACK-1 subroutines treat two numbers a and b as equal if they satisfy

lb-al <cMlal ,



14

and the above test forms the basis for deciding that no further improvement is

possible with the algorithm.

1.8 MINPACK-1 Internal Subprograms

Most users of MINPACK-1 need only be acquainted with the core subroutines

and easy-to-use drivers described in the previous sections. Some users,

however, may wish to experiment by modifying an algorithmic path to improve

the performance of the algorithm on a particular application. A modification

to an algorithmic path can ofte:L be achieved by modifying or replacing one of

the internal subprograms. Additionally, the internal subprograms may be

useful independent of the MINPACK-1 algorithmic paths in which they are

employed.

For these reasons brief descriptions of the MINPACK-1 internal

subprograms are included below; more complete descriptions can be found in the

prologue comments in the program listings of Chapter 5.

DOGLEG

Given the QR factorization of an m by n matrix A, an n by n nonsingular

diagonal matrix D, an m-vector b, and a positive number A, this

subroutine determines the convex combination of the Gauss-Newton and

scaled gradient directions that solves the problem

min{UAx-bil : IIDxII < A}.

ENORM

This function computes the Euclidean norm of a vector x.

FDJAC1

This subroutine computes a forward-difference approximation to the

Jacobian matrix associated with n functions in n variables. It includes

a banded Jacobian option.

FDJAC2

This subroutine computes a forward-difference approximation to the

Jacobian matrix associated with m functions in n variables.



15

LMPAR

Given the QR factorization of an m by n matrix A, an n by n nonsingular

diagonal matrix D, an m-vector b, and a positive number t, this subrou-

tine is used to solve the problem

minilAx-bil : IIDxII < A .

QFORM

Given the QR factorization of a rectangular matrix, this subroutine

accumulates the orthogonal matrix Q from its factored form.

QRFAC

This subroutine uses Householder transformations with optional column

pivoting to compute a QR factorization of an arbitrary rectangular

matrix.

QRSOLV

Given the QR factorization of an m by n matrix A, an n by n diagonal

matrix D, and an m-vector b, this subroutine solves the linear least

squares problem

(A)x ().

RWUPDT

This subroutine is used in updating the upper triangular part of the QR

decomposition of a matrix A after a row is added to A.

RIMPYQ

This subroutine multiplies a matrix by an orthogonal matrix given as a

product of Givens rotations.

RIUPDT

This subroutine is used in updating the lower triangular part of the LQ

decomposition of a matrix A after a rank-1 matrix is added to A.



16



17

CHAPTER 2

Algorithmic Details

The purpose of this chapter is to provide information about the

algorithms and to point out some of the ways in which this information can be

used to improve their performance. The first two sections are essential for

the rest of the chapter since they provide the necessary background, but the

other sections are independent of each other.

2.1 Mathematical Background

To describe the algorithms for the solution of systems of nonlinear

equations and nonlinear least squares problems, it is necessary to introduce

some notation.

Let Rn represent the n-dimensional Euclidean space of real n-vectors

xl

x2

n

and lxiIl the Euclidean norm of x,

n 2

IixIl = L X .
j=1 J

A function F with domain in Rn and range in Rm is denoted by F: Rn + Rm. Such

a function can be expressed as

f1(x)

f2(x

F(x) = .

fm 1

where the component function fj: Rn + R is sometimes called the i-th residual

of F. The terminology derives from the fact that a common problem is to fit a

model g(t,x) to data y, in which case the. fi are of the form



18

fi(x) = yi - g(ti,x) ,

where yi is measured at ti and x is the set of fit parameters.

In this o tion a system of nonlinear equations is specified by a

function F: Rn Rn, and a solution vector x* in Rn is such that

F(x*) = 0 .

Similarly, a nonlinear least squares problem is specified by a function

F: Rn + Rm with m > n, and a solution vector x* in Rn is such that

IIF(x*) II < IF(x)I for x N(x*) ,

where N(x*) is a neighborhood of x*. If N(x*) is the entire domain of

definition of the function, then x* is a global solution; otherwise, x* is a

local solution.

Some of the MINPACK-1 algorithms require the specification of the

Jacobian matrix of the mapping F: Rn + Rm; that is, the m by n matrix F'(x)

whose (i,j) entry is

af.(x)

ax.
J

A related concept is the gradient of a function f: Rn + R, which is the

mapping Vf: Rn + Rn defined by

VfCx)

af(x)

exl

af~x)
ax2

af(x)
ax
n

Note that the i-th row of the Jacobian matrix F'(x) is the gradient V f (x) of

the i-th residual.

.



19

It is well-known that if x* is a solution of the nonlinear least squares

problem, then x* solves the system of nonlinear equations

m

2. fi(x)Vfi(x) = 0
i=1

In terms of the Jacobian matrix this implies that

F'(x*)TF(x*) = 0 ,

and shows that at the solution the vector of residuals is orthogonal to the

columns of the Jacobian matrix. This orthogonality condition is also

satisfied at maximizers and saddle points, but algorithms usually take

precautions to avoid these critical points.

2.2 Overview of the Algorithms

Consider a mapping F: Rn + Rm, where m = n for systems of nonlinear

equations and m > n for nonlinear least squares problems. The MINPACK-1

algorithms in these two problem areas seek a solution x* of the problem

(1) min{IlF(x)II: x e Rn .

In particular, if m = n it is expected that F(x*) = 0.

Our initial description of the algorithms will be at the macroscopic

level where the techniques used in each problem area are similar.

With each algorithm the user provides an initial approximation x s x 0to
the solution of the problem. The algorithm then determines a correction p to

x that produces a sufficient decrease in the residuals of F at the new point

x+p; it then sets

X..- x + p

and begins a new iteration with x.,. replacing x.

A sufficient decrease in the residuals implies, in particular, that

MF(x+p)N < IF(x)l ,



20

and thus the algorithms guarantee that

IF(x+)II < IIF(x)II .

The correction p depends upon a diagonal scaling matrix D, a step bound

A, and an approximation J to the Jacobian matrix of F at x. Users of the core

subroutines can specify initial values Do and AO; in the easy-to-use drivers

Do and AO are set internally. If the user is providing the Jacobian matrix,

then Jo = F'(xo); otherwise the algorithm sets Jo to a forward difference

approximation to F'(x ).

To compute p, the algorithm solves (approximately) the problem

(2) minIllf+JpII: NDpII < A ,

where f is the m-vector of residuals of F at x. If the solution of this

problem does not provide a suitable correction, then A is decreased and, if

appropriate, J is updated. A new problem is now solved, and this process is

repeated (usually only once or twice) until a p is obtained at which there is

sufficient decrease in the residuals, and then x is replaced by x+p. Before

the start of the next iteration, D, A, and J are also replaced.

The motivation for using C to obtain the correction r is that for

appropriate choices of J and A, the solution of (2) is an approximate solution

of

min{'lF(x+p)N: NDpi < A .

It follows that if there is a solution x* such that

(3) ID(x-x*)U < A ,

then x+p is close to x*. If this is not the case, then at least x+p is a

better approximation to x* than x. Under reasonable conditions, it can be

shown that (3) eventually holds.

The algorithms for systems of nonlinear equations and for nonlinear least

squares problems differ, for example, in the manner in which the correction p



21

is obtained as an approximate solution of (2). The nonlinear equations

algorithm obtains a p that minimizes IIf+JpII in a two-dimensional subspace of

the ellipsoid {p: IIDpII ( A}. The nonlinear least squares algorithm obtains a

p that is the exact solution of (2) with a small (10%) perturbation of A.

Other differences in the algorithms include convergence criteria (Section 2.3)

and the manner in which J is computed (Section 2.4).

It is )propriate to close this overview of the algorithms by discussing

two of their limitations. First, the algorithms are limited by the precision

of the computations. Although the algorithms are globally convergent under

reasonable conditions, the convergence proofs are only valid in exact

arithmetic and the algorithms may fail in finite precision due to roundoff.

This implies that the algorithms tend to perform better iu higher precision.

It also implies that the calculation of the function and the Jacobian matrix

should be as accurate as possible and that improved performance results when

the user can provide the Jacobian analytically.

Second, the algorithms are only designed to find local solutions. To

illustrate this point, consider

F(x) = x3 - 3x + 18

In this case, problem (1) has the global solution x* _ -3 with F(x*) = 0 and

the local solution x* = 1 with F(x*) = 16; depending on the starting point,

the algorithms may converge either to the global solution or to the local

solution.

2.3 Convergence Criteria

The convergence test in the MINPACK-1 algorithms for systems of nonlinear

equations is based on an estimate of the distance between the current approxi-

mation x and an actual solution x* of the problem. If D is the current

scaling matrix, then this convergence test (X-convergence) attempts to

guarantee that

(1) ID(x-x*)I < XTOLIDx*I

where XTOL is a user-supplied tolerance.



22

There are three convergence tests in the MINPACK-1 algorithms for

nonlinear least squares problems. One test is again for X-convergence, but

the main convergence test is based on an estimate of the distance between the

Euclidean norm IIF(x)II of the residuals at the current approximation x and the

optimal value IIF(x*)II at an actual solution x* of the problem. This conver-

gence test (F-convergence) attempts to guarantee that

(2) IIF(x)II < (1 + FTOL)eIIF(x*)II ,

where FTOL is a second user-supplied tolerance.

The third convergence test for the nonlinear least squares problem

(G-convergence) guarantees that

|a.Ifl
(3) max : 1 < i < n < GTOL,

where a1,a2,...,an are the columns of the current approximation to the

Jacobian matrix, f is the vector of residuals, and GTOL is a third user-

supplied tolerance.

Note that individual specification of the above three tolerances for the

nonlinear least squares problem requires direct user call of the appropria-e

core subroutine. The easy-to-use driver only accepts the single value TOL.

It then internally sets FTOL = XTOL = TOL and GTOL = 0.

The X-convergence condition (1) is a relative error test; it thus fails

when x* = 0 unless x = 0 also. Also note that if (1) is satisfied with

XTOL = 10-k, then the larger components of Dx have k significant digits, but

smaller components may not be as accurate. For example, if D is the identity

matrix, XTOL = 0.001, and

x* _(2.0, 0.003) ,

then

x * (2.001, 0.002)

satisfies (1), yet the second component of x has no significant digits. This

may or may not be important. However, note that if instead



23

D = diag(1,1000) ,

then (1) is not satisfied even for XTOL = 0.1. These scaling considerations

can make it important to choose D carefully. See Section 2.5 for more

information on scaling.

Since x* is unknown, the actual criterion for X-convergence cannot be

based on (1); instead it depends on the step bound A. That is, the actual

convergence test is

A < XTOLIIDxI.

The F-convergence condition (2) is a relative error test; it thus fails

when F(x*) = 0 unless F(x) = 0 also. It is for this reason that F-convergence

is not tested for systems of nonlinear equations where F(x*) = 0 is the

expected result. Also note that if (2) is satisfied with FTOL = 10-k

then IIF(x)I has k significant digits, but x may not be as accurate. For

example, if FTOL = 10-6 and

F(x) = (x 1 ,

then x* = 1, UF(x*)II = 1, and if x = 1.001 then (2) is satisfied with

FTOL = 10-6, but (1) is only satisfied with XTOL = 10-3.

In many least squares problems, if 'TOL = (XTOL)2  then X-convergence

implies F-convergence. This result, however, does not hold if UF(x*)I is very

small. For example, if

x - 1

F(x) ,
0.0001

then x* = 1 and IF(x*)U = 0.0001, but if x s 1.001 then (1) is satisfied with

XTOL - 10-3 and yet

UF(x)U _ 10NF(x*)N

Since NF(x*)I is unknown, the actual criterion for F-convergence cannot

be literally (2); instead it is based on estimates of the terms in (2). If f



24

and f+ are the vectors of residuals at the current solution approximation x

and at x+p, respectively, thn the (relative) actual reduction is

ACTRED = (Ilfit - IIf+I)/IIfII

while the (relative) predicted reduction is

PRERED = (Ilfil - IIf+JpII)/IIfII

The F-convergence test then requires that

PRERED < FTOL

|ACTREDI < FTOL

ACTRED < 2'PRERED

all hold.

The X-convergence and F-convergence tests are quite reliable, but it is

important to note that their validity depends critically on the correctness of

the Jacobian. If the user is providing the Jacobian, he may make an error.

(CHKDER can be used to check the Jacobian.) If the algorithm is estimating

the Jacobiai. matrix, then the approximation may be incorrect if, for example,

the function is subject to large errors and EPSFCN is chosen poorly. (For

more details see Section 2.4.) In either case the algorithm usually

terminates suspiciously near the starting point; recommended action if this

occurs is to rerun the problem from a different starting point. If the

algorithm also terminates near the new starting point, then it is very likely

that the Jacobian is being determined incorrectly.

The X-convergence and F-convergence tests may also fail if the tolerances

are too large. In general, XTOL and FTOL should be smaller than 10-5;

recommended values for these tolerances are o.1 the order of the square root of

the machine precision. As described in Section 1.7, the single precision

value of the machine precision can be obtained from the MINPACK-1 function

SPMPAR and the double precision value from DPMPAR. Note, however, that on

some machines the square root of machine precision is larger than 10-5.



25

The G-convergence test (3) measures the angle between the residual vector

and the columns of the Jacobian matrix and thus can be expected to fail if

either F(x*) = 0 or any column of F'(x*) is zero. Also note that there is no

clear relationship between G-convergence and either X-convergence or

F-convergence. Furthermore, the G-convergence test detects other critical

points, namely maximizers and saddle points; therefore, termination with

G-convergence should be examined carefully.

An important property of the tests described above is that they are scale

invariant. (See Section 2.5 for more details on scaling.) Scale invariance

is a feature not shared by many cther convergence tests. For example, the

convergence test

(4) Il fIl < AFTOL,

where AFTOL is a user-supplied tolerance, is not scale invariant, and this

makes it difficult to choose an appropriate AFTOL. As an illustration of the

difficulty with this test, consider the function

F(x) = (3x - 10)exp(10x)

On a computer with 15 decimal digits

IF(xk)I > 1,

where x* is the closest machine-representable number to 10/3, and thus a

suitable AFTOL is not apparent.

If the user, however, wants to use (4) as a termination test, then he can

do this by setting NPRINT positive in the call to the respective core

subroutine. (See Section 2.9 for more information on NPRINT.) This provides

him periodic opportunity, through subroutine FCN with IFLAG = 0, to affect the

iteration sequence, and in this instance he might insert the following program

segment into FCN.



26

IF (IFLAG .NE. 0) GO TO 10

FNORM = ENORM(LFVEC,FVEC)

IF (FNORM .LE. AFTOL) IFLAG = -1

RETURN

10 CONTINUE

In this program segment it is assumed that LFVEC = N for systems of nonlinear

equations and LFVEC = M for nonlinear least squares problems. It is also

assumed that MINPACK-1 function ENORM is declared to the precision of the

computation.

2.4 Approximations to the Jacobian Matrix

If the user does not provide the Jacobian matrix, then the MINPACK-1

algorithms compute an approximation J. In the algorithms for nonlinear least

squares problems, J is always determined by a forward difference approxima-

tion, while in the algorithms for systems of nonlinear equations, J is

sometimes determined by a forward-difference approximation but more often by

an update formula of Broyden. It is important to note that the update formula

is also used in the algorithms for systems of nonlinear equations where the

user is providing the Jacobian matrix, since the updating tends to improve the

efficiency of the algorithms.

The forward-difference approximation to the j-th column of the Jacobian

matrix can be written

F(x+h.e.) - F(x)

(1) h.Jh.

where e is the j-th column of the identity matrix and h. is the difference

parameter. The choice of h. depends on the precision of the function

evaluations, which is specified in the MINPACK-1 algorithms by the parameter

EPSFCN. To be specific,

h = (EPSFCN) |xj|

unless xJ - 0, in which case



27

h. = (EPSFCN).

In the easy-to-use drivers EPSFCN is set internally to the machine

precision (see Section 1.7), since these subroutines assume that the functions

can be evaluated accurately. In the core subroutines EPSFCN is a user-

supplied parameter; if there are errors in the evaluations of the functions,

then EPSFCN may need to be much larger than the machine precision. For

example, if the specification of the function requires the numerical

evaluation of an integral, then EPSFCN should probably be on the order of the

tolerance in the integration routine.

One advantage of approximation (1) is that it is scale invariant. (See

Section 2.5 for more details on scaling.) A disadvantage of (1) is that it

assumes EPSFCN the same for each variable, for each component function of F,

and for each vector x. These assumptions may make it difficult to determine a

suitable value for EPSFCN. The user who is uncertain of an appropriate value

of EPSFCN can run the algorithm with two or three values of EPSFCN and retain

the value that gives the best results. In general, overestimates are better

than underestimates.

The update formula of Broyden depends on the current approximation x, the

correction p, and J. Since

F(x+p) - F(x) = f F'(x+ep)d9 p

it is natural to ask that the approximation J+ at x+p satisfy the equation

J+p = F(x+p) - F(x) ,

and among the possible choices be the one closest to J. To define an

appropriate measure of distance, let D be the current diagonal scaling matrix

and define the matrix norm

n la.ll 2 /
II A aIII=
D ( (d.

where a1 ,a2 ,....,an are the columns of A. It is now easy to verify that the

solution of the problem



28

minillJ-JIID: Jp = F(x+p)-F(x)}

is given by

S= + (F(x+p)-F(x)-Jp)(DTDp)T

IIDpii2

There are many properties of this formula that justify its use in algorithms

for systems of nonlinear equations, but a discussion of these properties is

beyond the scope of this work.

2.5 Scaling

Scale invariance is a desirable feature of an optimization algorithm.

Algorithms for systems of nonlinear equations and nonlinear least squares

problems are scale invariant if, given problems related by the change of scale

F(x) = aF(Dx)
-1

x =Dx,
o v o

where a is a positive scalar and DV is a diagonal matrix with positive

entries, the approximations x and x generated by the algorithms satisfy

x = Dy x

Scale invariance is a natural requirement that can have a significant

effect on the implementation and performance of an algorithm. To the user

scale invariance means, in particular, that he can work with either problem

and obtain equivalent results.

The core subroutines in MINPACK-1 are scale invariant provided that the

initial choice of the scaling matrix satisfies

(1) D = aD.D,
o V o

where Do and Doare the initial scaling matrices of the respective problems

defined by F and x0 and by F and x. If the user of the core subroutines has



29

requested internal scaling (MODE = 1), then the internal scaling matrix is set

to

diag(Ia 1 I1,IIa 2 11,..., ,an ')

where ai is the i-th column of the initial Jacobian approximation, and (1)

holds. If the user has stipulated external scaling (MODE = 2), then the

initial scaling matrix is specified by the contents of the array DIAG, and

scale invariance is only achieved if the user's choice satisfies (1).

There are certain cases in which scale invariance may be lost, as when

the Jacobian matrix at the starting point has a column of zeroes and internal

scaling is requested. In this case D would have a zero element and be

singular, but this possibility is not catered to in the current

implementation. Instead, the zero element is arbitrarily set to 1, preserving

nonsingularity but giving up scale invariance. In practice, however, these

cases seldom arise and scale invariance is usually maintained.

Our experience is that i1iternal scaling is generally preferable for

nonlinear least squares problems and external scaling for systems of nonlinear

equations. This experience is reflected in the settings built into the easy-

to-use drivers; MODE = 1 is specified in the drivers for nonlinear least

squares problems and MODE = 2 for systems of nonlinear equations. In the

latter case, Do is set to the identity matrix, a choice that generally works

out well in practice; if this choice is not appropriate, recourse to the core

subroutine would be indicated.

It is important to note that scale invariance does not relieve the user

of choosing an appropriate formulation of the problem or a reasonable starting

point. In particular, note that an appropriate formulation may involve a

scaling of the equations or a nonlinear transformation of the variables and

that the performance of the MINPACK-1 algorithms can be affected by these

transformations. For example, the algorithm for systems of nonlinear

equations usually generates different approximations for problems defined by

functions F and F, where

F(x) = DEF(x)

x = x,
0 0



30

and DE is a diagonal matrix with positive entries. The main reason for this

is that the algorithm usually decides that x+ is a better approximation than x

if

IIF(x+)II < IF(x) I

and it is entirely possible that

IIF(x+)II > IIF(x)II

The user should thus scale his equations (i.e., choose DE) so that the

expected errors in the residuals are of about the same order of magnitude.

2.6 Subroutine FCN: Calculation of the Function and Jacobian Matrix

The MINPACK-1 algorithms require that the user provide a subroutine with

name of his choosing, say FCN, to calculate the residuals of the function

F: Rn + Rm, where m = n for systems of nonlinear equations and m > n for

nonlinear least squares problems. Some of the algorithms also require that

FCN calculate the Jacobian matrix of the mapping F.

It is important that the calculation of the function and Jacobian matrix

be as accurate as possible. It is also important that the coding of FCN be as

efficient as possible, since the timing of the algorithm is strongly

influenced by the time spent in FCN. In particular, when the residuals fi

have common subexpressions it is usually worthwhile to organize the computa-

tion so that these subexpressions need be evaluated only once. For example,

if the residuals are of the form

f.(x) = g(x) + h.(x) , 1 < i < m

with g(x) common to all of them, then the coding of FCN is best expressed in

the following form.

T = g(x)
For i = 1,2,...,m

f.(x) = T + h.(x)

As another example, assume that the residuals are of the form



31

n
f.(x) = Z (a. .cos(x.) + 8. .sin(x.))

j=l I J

where the aij and Si are given constants. The following program segment

evaluates the fi efficiently.

For i = 1,2,...,m

fi(x) = 0

For j = 1,2,...,n

Y = cos(x.)

a = sin(x.)

For i = 1,2,...,m

fi(x) = f-(x) + Ya.. + a...

If the user is providing the Jacobian matrix of the mapping F, then it is

important that its calculation also be as efficient as possible. In

particular, when the elements of the Jacobian matrix have common sub-

expressions, it is usually worthwhile to organize the computation so that

these subexpressions need be evaluated only once. For example, if

fi(x) = g(x) + hi(x) , 1 < i < m,

then the rows of the Jacobian matrix are

Vf.(x) V=g(x) + Vh.(x) , 1 < i < m

and the subexpression Vg(x) is thus common to all the rows of the Jacobian

matrix.

As another example, assume that

n

f.(x) = , (a. .cos(x.) + 8. .sin(x.) ,
j=l l

where the ai and 8i aie given constants. In this case,

af.(x)
- - a..sin(x.) + 8..cos(x.) ,

J



32

and the following program segment evaluates the Jacobian matrix efficiently.

For j = 1,2,...,n

Y = cos(x.)

a = sin(x )

For i = 1,2,...,m

af.(x)af()= -aa.. + Y.
ax. 13 ij

The previous example illustrates further the possibility of common sub-

expressions between the function and the Jacobian matrix. For the nonlinear

least squares algorithms advantage can be taken of this, because a call to FCN

to evaluate the Jacobian matrix at x is always preceded by a call to evaluate

the function at x. This is not the case for the nonlinear equations

algorithms.

To specifically illustrate this possibility of sharing information

between function and Jacobian matrix, assume that

fi(x) = g(x)2 + hi(x) , 1 < i < m

Then the rows of the Jacobian matrix are

Vf.(x) = 2g(x)Vg(x) + Vh.(x) , 1 < i < m

and the coding of FCN is best done as follows.

If FUNCTION EVALUATION then

T = g(x)

Save T in COMMON

For i = 1,2,...,m

fi(x) -=T2 + hi(x)

If JACOBIAN EVALUATION then

v - Vg(x)

For i -=1,2,...,m

Vfi(x) - 2Tv + Vhi(x)



33

2.7 Constraints

Systems of nonlinear equations and nonlinear least squares problems often

impose constraints on the solution. For example, on physical grounds it is

sometimes necessary that the solution vector have positive components.

At present there are no algorithms in MINPACK that formally admit

constraints, but in some cases they can be effectively achieved with ad hoc

strategies. In this section we describe two strategies for restricting the

solution approximations to a region D of Rn.

The user has control over the initial approximation x0. It may happen,

however, that x is in D but the algorithm computes a correction p such that

x+p is not in D. If this correction is permitted, the algorithm may never

recover; that is. the approximations may now converge to an unacceptable

solution outside of D.

The simplest strategy to restrict the corrections is to impose a penalty

on the function if the algorithm attempts to step outside of D. For example,

let P be any number such that

|fi(xo)| < P , 1 <i < im,

and in FCN define

fi(x) s P , 1<i< m

whenever x does not belong to D. If FCN is coded in this way, a correction p

for which x+p lies outside of D will not decrease the residuals and is

therefore not acceptable. It follows that this penalty on FCN forces all the

approximations x to lie in D.

Note that this strategy restricts all the corrections, and as a conse-

quence may lead to very slow convergence if the solution is nenr the boundary

of D. It usually suffices to only restrict the initial correction, and users

of the core subroutines can do this in several ways.

Recall from Section 2.2 that the initial correction p0 satisfies a bound

of the form



34

0D 0p 0 P< A o,
00-0

where Do is a diagonal scaling matrix and D is a step bound. The contents of

Do are governed by the parameter MODE. If MODE = 1 then Do is internally set,

while if MODE = 2 then D0 is specified by the user through the array DIAG.

The step bound A0 is determined from the parameter FACTOR. By definition

A - FACTOR*HD x H,
o 00o

unless x0 is the zero vector, in which case

A = FACTOR
0

It is clear from this definition that smaller values of FACTOR lead to smaller

steps. For a sufficiently small value of FACTOR (usually 0.01 suffices), an

improved point x0+p0 will be found that belongs to D.

Be aware that the step restriction is on Dop0 and not on p0 directly. A

small element of Do, which can be set by internal scaling when MODE " 1, may

lead to a large component in the correction p0 . In many cases it is not

necessary to control p0 directly, but if this is desired then MODE = 2 must be

used.

When MODE s 2, the contents

allows direct control of p0 . If,

components of p0 to small relative

of x0 (assumed nonzero), then this

where 4. is the

To justify this

of D0 are specified by the user, and this

for example, it is desired to restrict the

corrections of the corresponding components

can be done by setting

D s diag ,1 ,... 10 11

i-th component of xo, and by chooz.ng FACTOR appropriately.

choice, note that p0 satisfies

AD p I <A 0*"FACTOR ID x0I ,
00o-0 00o

and that the choice of Do guarantees that



35

ID x I = n.
0 0

Thus, if P is the i-th component of p0, then

|P.| < n *FACTOR'|1~i|I

which justifies the choice of Do.

2.8 Error Bounds

A problem of general interest is the determination of error bounds on the

components of a solution vector. It is beyond the scope of this work to

discuss this topic in depth, so the discussion below is limited to the compu-

tation of bounds on the sensitivity of the parameters, and of the covariance

matrix. The discussion is in terms of the nonlinear least squares problem,

but some of the results also apply to systems of nonlinear equations.

Let F: Rn + Rm define a nonlinear least squares problem (m > n), and let

x* be a solution. Given C > 0, the problem is to determine sensitivity

(upper) bounds (1,0 2''''' 0n such that, for each i, the condition

lxi-xt| < ai , with x. = x*forj i

implies that

IF(x)I < (1 + C)IF(x*)I.

Of particular interest are values of a which are large relative to lxil,

since then the residual norm F(x)I is insensitive to changes in the i-th

parameter and may therefore indicate a possible deficiency in the formulation

of the problem.

A first order estimate of the sensitivity bounds ai shows that

(1) a.= sig IF(x*)I
(1) i = E F'x* *e.I

where F'(x*) is the Jacobian matrix of F at x* and e[ is the i-th column of

the identity matrix. Note that if IF'(x*)*e.i is small relative to IF(x*)I,

then the residual norm is insensitive to changes in the i-th parameter.



36

If x is an approximation to the solution x* and J is an approximation to

F'(x*), then the bounds (1) can usually be replaced by

(2) o. - E (F(x)
i~ -eI)

The MINPACK-1 nonlinear least squares programs (except IMDIFl) return enough

information to compute the sensitivity bounds (2). On a normal exit, these

programs return F(x) and part of the QR decomposition of J; namely, an upper

triangular matrix R and a permutation matrix P such that

(3) JP = QR

for some matrix Q with orthogonal columns. The vector F(x) is returned in the

array FVEC and the matrix R is returned in the upper triangular part of the

array FJAC. The permutation matrix P is defined by the contents of the

integer array IPVT; if

IPVT - (p(1),p(2),...,p(n))

then the j-th column of P is the p(j)-th column of the identity matrix.

The norms of the columns of the Jacobian matrix can be computed by noting

that (3) implies that

Jep(j) * QRe ,

and hence,

IJe I * IRe.I
p(j) j

The following loop uses this relationship to store IJe&I in the g-th position

of an array FJNORM; with this information it is then easy to compute the

sensitivity bounds (2).

DO 10 J " 1, N

L * IPVT(J)

FJNORM(L) * ENORM(J,FJAC(1,J))

10 CONTINUE



37

This loop assumes that ENORM and FJNORM have been declared to the precision of

the computation.

In addition to sensitivity bounds for the individual parameters, it is

sometimes desirable to determine a bound for the sensitivity of the residual

norm to changes in some linear combination of the parameters. Given E > 0 and

a vector v with Uvi = 1, the problem is to determine a bound a such that

UF(x*+av)I ( (1 + E)fF(x*) .

A first order estimate of a is now

a = EIs F(x*)M

if IF'(x*)*vI is small relative to IF(x*)I, then a is large and the residual

norm is insensitive to changes in the linear combination of the parameters

specified by v.

For example, if the level set

{x: IF(x)I < (1 + C)MF(x*)M}

is as in Figure 3, then the residual norm, although sensitive to changes in xl

and x2, is relatively insensitive to changes along v = (1,1).

If the residual norm is relatively insensitive to changes in some linear

combination of the parameters, then the Jacobian matrix at the solution is

nearly rank-deficient, and in these cases it may be worthwhile to attempt to

determine a set of linearly independent parameters. In some statistical

applications, the covariance matrix

(JTj)-1

is used for this purpose.



38

X2

xi= x2

xl X

Figure 3

Subroutine COVAR, which appears at the end of this section, will compute

the covariance matrix. The computation of the covariance matrix from the QR

factorization of J depends on the relationship

(4) (JTj)-l * P(RTR)-lPT

which is an easy consequence of (3). Subroutine COVAR overwrites R with the

upper triangular part of (RTR)" and then computes the covariance matrix

from (4).

Note that for proper execution of COVAR the QR factorization of J must

have used column pivoting. This guarantees that for the resulting R

(5) Irkkl > Ir. . , k < i < j ,



39

thereby allowing a reasonable determination of the numerical rank of J. Most

of the MINPACK-1 nonlinear least squares subroutines return the correct

factorization; the QR factorization in U4STR1 and LMSTR, however, satisfies

JP1 = Q1R1

but R1 does not usually satisfy (5). To obtain the correct factorization,

note that the QR factorization with column pivoting of R1 satisfies

R1 P2 = Q2R2

where R2 satisfies (5), and therefore

J(P1P2) = (Q1Q2)R2

is the desired factorization of J. The program segment below uses the

MINPACK-1 subroutine QRFAC to compute R2 from R1 .

DO 30 J = 1, N

JP1 = J + 1

IF (N .LT. JP1) GO TO 20

DO 10 I = JP1, N

FJAC(I,J) - ZERO

10 CONTINUE

20 CONTINUE

30 CONTINUE

CALL QRFAC(N,N,FJAC,LDFJAC,.TRUE.,IPVT2,N,WA1,WA2,WA3)

DO 40 J - 1, N

FJAC(J,J) * WA1(J)

L - IPVT2(J)

IPVT2(J) IPVTI(L)

40 CONTINUE

Note that QRFAC sets the contents of the array IPVT2 to define the permutation

matrix P2, and the final loop in the program segment overwrites IPVT2 to

define the permutation matrix P1P2'



40

SUBROUTINE COVAR(N,R,LDR,IPVT,TOL,WA)
INTEGER N,LDR
INTEGER IPVT(N)
DOUBLE PRECISION TOL
DOUBLE PRECISION R(LDR,N),WA(N)C **I*******I

C
C SUBROUTINE COVAR
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C

GIVEN AN M BY N MATRIX A, THE PROBLEM IS TO DETERMINE
THE COVARIANCE MATRIX CORRESPONDING TO A, DEFINED AS

T
INVERSE(A *A)

THIS SUBROUTINE COMPLETES THE SOLUTION OF THE PROBLEM
IF IT IS PROVIDED WITH THE NECESSARY INFORMATION FROM THE
QR FACTORIZATION, WITH COLUMN PIVOTING, OF A. THAT IS, IF
A*P = Q*R, WHERE P IS A PERMUTATION MATRIX, Q HAS ORTHOGONAL
COLUMNS, AND R IS AN UPPER TRIANGULAR MATRIX WITH DIAGONAL
ELEMENTS OF NONINCREASING MAGNITUDE, THEN COVAR EXPECTS
THE FULL UPPER TRIANGLE OF R AND THE PERMUTATION MATRIX P.
THE COVARIANCE MATRIX IS THEN COMPUTED AS

T T
P*INVERSE(R *R)*P

IF A IS NEARLY RANK DEFICIENT, IT MAY BE DESIRABLE TO COMPUTE
THE COVARIANCr MATRIX CORRESPONDING TO THE LINEARLY INDEPENDENT
COLUMNS OF A. TO DEFINE THE NUMERICAL RANK OF A, COVAR USES
THE TOLERANCE TOL. IF L IS THE LARGEST INTEGER SUCH THAT

ABS(R(L,L)) .GT. TOL*ABS(R(1,1)) ,

THEN COVAR COMPUTES THE COVARIANCE MATRIX CORRESPONDING TO
THE FIRST L COLUMNS OF R. FOR K GREATER THAN L, COLUMN
AND ROW IPVT(K) OF THE COVARIANCE MATRIX ARE SET TO ZERO.

THE SUBROUTINE STATEMENT IS

SUBROUTINE COVAR(N,R,LDR,IPVT,TOL,WA)

WHERE

N IS A POSITIVE INTEGER INPUT VARIABLE SET TO THE ORDER OF R.

R IS AN N BY N ARRAY. ON INPUT THE FULL UPPER TRIANGLE MUST
CONTAIN THE FULL UPPER TRIANGLE OF THE MATRIX R. ON OUTPUT
R CONTAINS THE SQUARE SYMMETRIC COVARIANCE MATRIX.

LDR IS A POSITIVE INTEGER INPUT VARIABLE NOT LESS THAN N

WHICH SPECIFIES THE LEADING DIMENSION OF THE ARRAY R.

IPVT IS AN INTEGER INPUT ARRAY OF LENGTH N WHICH DEFINES THE

COVROO10
COVROO20
COVROO30
COVRO040
COVROO50
COViVO60
COVROO70
COVROO80
COVROO90
COVRO100
COVRO110
COVRO120
COVRO130
COVRO140
COVRO150
COVRO160
COVRO170
COVRO180
COVRO190
COVRO200
COVRO210
COVRO220
COVRO230
COVRO240
COVRO250
COVRO260
COVRO270
COVRO280
COVRO290
COVRO300
COVRO310
COVRO320
COVRO330
COVRO340
COVRO350
COVRO360
COVRO370
COVRO380
COVRO390
COVRO400
COVRO410
COVRO420
COVRO430
COVRO440
COVRO450
COVRO460
COVRO470
COVRO480
COVRO490
COVRO500
COVRO510
COVRO520
COVRO530
CUVR0540



41

C PERMUTATION MATRIX P SUCH THAT A*P = Q*R. COLUMN J OF P
C IS COLUMN IPVT(J) OF THE IDENTITY MATRIX.
C
C TOL IS A NONNEGATIVE INPUT VARIABLE USED TO DEFINE THE
C NUMERICAL RANK OF A IN THE MANNER DESCRIBED ABOVE.
C
C WA IS A WORK ARRAY OF LENGTH N.
C
C SUBPROGRAMS CALLED
C
C FORTRAN-SUPPLIED ... DABS
C
C ARGONNE NATIONAL LABORATORY. MINPACK PROJECT. AUGUST 1980.
C BURTON S. GARBOW, KENNETH E. HILLSTROM, JORGE J. MORE
C
C **********

INTEGER I,II,J,JJ,K,KM1,L
LOGICAL SING
DOUBLE PRECISION ONE,TEMP,TOLR,ZERO
DATA ONE,ZERO /1.ODO,O.ODO/

C
C FORM THE INVERSE OF R IN THE FULL UPPER TRIANGLE OF R.
C

TOLR = TOL*DABS(R(1,1))
L = 0
DO 40 K = 1, N

IF (DABS(R(K,K)) .LE. TOLR) GO TO 50
R(K,K) = ONE/R(K,K)
KM1 = K - 1
IF (KM1 .LT. 1) GO TO 30
DO 20 J = 1, KM1

TEMP = R(K,K)*R(J,K)
R(J,X) = ZERO
DO 10 I = 1, J

R(I,K) = R(I,K) - TEMP*.R(I,J)
10 CONTINUE
20 CONTINUE
30 CONTINUE

L = K
40 CONTINUE
50 CONTINUE

C
C FORM THE FULL UPPER TRIANGLE OF THE INVERSE OF (R TRANSPOSE)*R
C IN THE FULL UPPER TRIANGLE OF R.
C

IF (L .LT. 1) GO TO 110
DO 100 K = 1, L

KM1 = K - 1
IF (KM1 .LT. 1) GO TO 80
DO 70 J = 1, KM1

TEMP = R(J,K)
DO 60 I = 1, J

R(I,J) = R(I,J) + TEMP*R(I,K)
60 CONTINUE

COVR0550
COVR0560
COVR0570
COVR0580
COVRO590
COVRO600
COVRO610
COVRO620
COVRO630
COVRO640
COVRO650
COVRO660
COVRO670
COVRO680
COVRO690
COVRO700
COVRO710
COVR0720
COVRO730
COVRO740
COVR0750
COVRO760
COVRO770
COVR0780
COVRO790
COVRO800
COVR0810
COVRO820
COVR0830
COVR0840
COVRO850
COVR0860
COVR0870
COVRO880
COVRO890
COVRO900
COVR0910
COVRO920
COVRO930
COVRO940
COVRO950
COVR0960
COVR0970
COVRO980
COVRO990
COVR1000
COVR1010
COVR1020
COVR1030
COVR1040
COVR1050
COVR1060
COVR1070
COVR1080



42

70 CONTINUE COVR1090
80 CONTINUE COVR1100

TEMP = R(K,K) COVR1110
DO 90 I = 1, K COVR1120

R(I,K) = TEMP*R(I,K) COVR1130
90 CONTINUE COVR1140

100 CONTINUE COVR1150
110 CONTINUE COVR1160

C COVR1170
C FORM THE FULL LOWER TRIANGLE OF THE COVARIANCE MATRIX COVR1180
C IN THE STRICT LOWER TRIANGLE OF R AND IN WA. COVR1190
C COVR1200

DO 130 J = 1, N COVR1210
JJ = IPVT(J) COVR1220
SING = J .GT. L COVR1230
DO 120 I = 1, J COVR1240

IF (SING) R(I,J) = ZERO COVR1250
II = IPVT(I) COVR1260
IF (II .GT. JJ) R(II,JJ) = R(I,J) COVR1270
IF (II .LT. JJ) R(JJ,II) = R(I,J) COVR1280

120 CONTINUE COVR1290
WA(JJ) = R(J,J) COVR1300

130 CONTINUE COVR1310
C COVR1320
C SYMMETRIZE THE COVARIANCE MATRIX IN R. COVR1330
C COVR1340

DO 150 J = 1, N COVR1350
DO 140 I = 1, J COVR1360

R(I,J) = R(J,I) COVR1370
140 CONTINUE COVR1380

R(J,J) = WA(J) COVR1390
150 CONTINUE COVR1400

RETURN COVR1410
C COVR1420
C LAST CARD OF SUBROUTINE COVAR. COVR1430
C COVR1440

END COVR1450



43

2.9 Printing

No printing is done in any of the MINPACK-1 subroutines. However,

printing of certain parameters through FCN can be facilitated with the integer

parameter NPRINT that is available to users of the core subroutines. For

these subroutines, setting NPRINT positive results in special calls to FCN

with IFLAG = 0 at the beginning of the first iteration and every NPRINT

iterations thereafter and immediately prior to return. On these calls to FCN,

the parameters X and FVEC are available for printing; FJAC is additionally

available if using LMDER.

Often it suffices to print some simple measure of the iteration progress,

and the Euclidean norm of the residuals is usually a good choice. 'nis norm

can be printed by inserting the following program segment into FCN.

IF (IFLAG .NE. 0) GO TO 10

FNORM = ENORM(LFVEC,FVEC)

WRITE (---,1000) FNORM

1000 FORMAT (---)

RETURN

10 CONTINUE

In this program segment it is assumed that LFVEC = N for systems of nonlinear

equations and LFVEC = M for nonlinear least squares problems. It is also

assumed that the MINPACK-1 function ENORM is declared to the precision of the

computation.



44



45

CHAPTER 3

Notes and References

This chapter provides notes relating the MINPACK-1 algorithms and

software to other work. The list of references appears at the end.

Powell's Hybrid Method

The MINPACK-1 version of Powell's [1970] hybrid method differs in many

respects from the original version. For example, the "special iterations"

used in the original algorithm proved to be inefficient and have been

replaced. The updating method used is due to Broyden [1965]; the MINPACK-1

algorithm is a scaled version of the original. A comparison of an earlier

version of the MINPACK-1 algorithm with other algorithms for systems of non-

linear equations has been made by Hiebert [1980].

The Levenberg-Marquardt Algorithm

There are many versions of the algorithm proposed by Levenberg [1944] and

modified by Marquardt [1963]. An advantage of the MINPACK-1 version is that

it avoids the difficulties associated with choosing the Levenberg-Marquardt

parameter, and this allows a very strong global convergence result. The

MINPACK-1 algorithm is based on the work of Hebden [1973] and follows the

ideas of More [1977]. A comparison of an earlier version of the MINPACK-1

algorithm with other algorithms for nonlinear least squares problems has been

made by Hiebert [1979].

Derivative Checking

Subroutine CHKDER is new, but similar routines exist in the Numerical

Algorithms Group (NAG) library. An advantage of CHKDER is its generality; it

can be used to check Jacobians, gradients, and Hessians (second deriva-

tives). To enable this generality, CHKDER presumes no specific parameter

sequence for the function evaluation program, returning control instead to the

user. This in turn makes necessary a second call to CHKDER for each check.



46

MINPACK-1 Internal Subprograms

Subroutines DOGLEG and LMPAR are used to generate search directions in

the algorithms for systems of nonlinear equations and nonlinear least squares

problems, respectively. The algorithm used in DOGLEG is a fairly straight-

forward implementation of the ideas of Powell [1970], while LMPAR is a refined

version of the algorithm described by More [1977]. The LMPAR algorithm is the

more complicated; in particular, it requires the solution of a sequence of

linear least squares problems of special form. It is for this purpose that

subroutine QRSOLV is used.

The algorithm used in ENORM is a simplified version of Blue's [1978]

algorithm. An advantage of the MINPACK-1 version is that it does not require

machine constants; a disadvantage is that nondestructive underflows are

allowed.

The banded Jacobian option in FDJAC1 is based on the work of Curtis,

Powell, and Reid [1974].

QRFAC and RWUPDT are based on the corresponding algorithms in LINPACK

(Dongarra, Bunch, Moler, and Stewart [1979]).

The algorithm used in R1UPDT is based on the work of Gill, Golub, Murray,

and Saunders [1974].

References

Blue, J. L. [1978]. A portable Fortran program to find the Euclidean norm of

a vector, ACM Transactions on Mathematical Software 4, 15-23.

Boyle, J. M. and Dritz, K. W. [1974]. An automated programming system to

facilitate the development of quality mathematical software, Proceedings

IFIP Congress, North-Holland.

Broyden, C. G. [1965]. A class of methods for solving nonlinear simultaneous

equations, Math. Comp. 19, 577-593.

Curtis, A. R., Powell, M. J. D., and Reid, J. K. [1974]. On the estimation of

sparse Jacobian matrices, J. Inst. Maths Applics 13, 117-119.

Dongarra, J. J., Bunch, J. R., Moler, C. B., and Stewart, G. W. [1979].

LINPACK users' guide, SIAM Publications.



47

Fosdick, L. D. [1974]. BRNANL, A Fortran program to identify basic blocks in

Fortran programs, University of Colorado, Computer Science report

CU-CS-040-74.

Fox, P. A., Hall, A. D., and Schryer, N. L. [1978]. The PORT mathematical

subroutine library, ACM Transactions on Mathematical Software 4, 104-126.

Garbow, B. S., Hillstrom, K. E., and More, J. J. [1980]. Implementation guide

for MINPACK-1, Argonne National Laboratory report ANL-80-68.

Gill, P. E., Golub, G. H., Murray, W., and Saunders, M. A. [1974]. Methods

for modifying matrix factorizations, Math. Comp. 28, 505-535.

Hebden, M. D. [1973]. An algorithm for minimization using exact second

derivatives, Atomic Energy Research Establishment report TP 515, Harwell,

England.

Hiebert, K. L. [1979]. A comparison of nonlinear least squares software,

Sandia Laboratories report SAND 79-0483, Albuquerque, New Mexico.

Hiebert, K. L. [1980]. A comparison of software which solves systems of

nonlinear equations, Sandia Laboratories report SAND 80-0181,

Albuquerque, New Mexico.

Levenberg, K. [1944]. A method for the solution of certain nonlinear problems

in least squares, Quart. Appl. Math. 2, 164-168.

Marquardt, D. W. [1963]. An algorithm for least-squares estimation of

nonlinear parameters, SIAM J. Appl. Math. 11, 431-441.

More, J. J. [1977]. The Levenberg-Marquardt algorithm: Implementation and

Theory, Numerical Analysis, G. A. Watson, ed., Lecture Notes in

Mathematics 630, Springer-Verlag.

More, J. J., Garbow, B. S., and Hillstrom, K. E. [1978]. Testing

unconstrained optimization software, Argonne National Laboratory, Applied

Mathematics Division Technical Memorandum 324 (to appear in ACM Transac-

tions on Mathematical Software).

Powell, M. J. D. [1970]. A hybrid method for nonlinear equations, in

Numerical Methods for Nonlinear Algebraic Equations, P. Rabinowitz, ed.,

Gordon and Breach.

Ryder, B. G. [1974]. The PFORT verifier, Software Practice and Experience 4,

359-377.





49

CHAPTER 4

Documentation

This chapter contains the double precision version of the MINPACK-1

documentation; both single and double precision versions of the documentation

are available in machine-readable form with the MINPACK-1 package. The docu-

mentation appears in the following order:

Systems of nonlinear equations

HYBRD1, HYBRD, HYBRJ1, HYBRJ

Nonlinear least squares problems

LMDIFl, ULDIF, LMDER1, LMDER, LMSTR1, LMSTR

Derivative checking

CHKDER





51

Page 1

Documentation for MINPACK subroutine HYBRD1

Double precision version

Argonne National Laboratory

Burton S. Garbow, Kenneth E. Hillstrom, Jorge J. More

March 1980

1. Purpose.

The purpose of HYBRD1 is to find a zero of a system of N non-
linear functions in N variables by a modification of the Powell
hybrid method. This is done by using the more general nonlinear
equation solver HYBRD. The user must provide a subroutine which
calculates the functions. The Jacobian is then calculated by a
forward-difference approximation.

2. Subroutine and type statements.

SUBROUTINE HYBRD1(FCN,N,X,FVEC,TOL,INFO,WA,LWA)
INTEGER N,INFO,LWA
DOUBLE PRECISION TOL
DOUBLE PRECISION X(N),FVEC(N),WA(LWA)
EXTERNAL FCN

3. Parameters.

Parameters designated as input parameters must be specified on
entry to HYBRD1 and are not changed on exit, while parameters
designated as output parameters need not be specified on entry
and are set to appropriate values on exit from HYBRD1.

FCN is the name of the user-supplied subroutine which calculates
the functions. FCN must be declared in an EXTERNAL statement
in the user calling program, and should be written as follows.

SUBROUTINE FCN(N,X,FVEC,IFLAG)
INTEGER N,IFLAG
DOUBLE PRECISION X(N),FVEC(N)

CALCULATE THE FUNCTIONS AT X AND
RETURN THIS VECTOR IN FVEC.

RETURN
END

The value of IFLAG should not be changed by FCN unless the
user wants to terminate execution of HYBRD1. In this case set
IFLAG to a negative integer.



52

Page 2

N is a positive integer input variable set to the number of
functions and variables.

X is an array of length N. On input X must contain an initial
estimate of the solution vector. On output X contains the
final estimate of the solution vector.

FVEC is an output array of length N which contains the functions
evaluated at the output X.

TOL is a nonnegative input variable. Termination occurs when
the algorithm estimates that the relative error between X and
the solution is at most TOL. Section 4 contains more details
about TOL.

INFO is an integer output variable. If the user has terminated
execution, INFO is set to the (negative) value of IFLAG. See
description of FCN. Otherwise, INFO is set as follows.

INFO = 0 Improper input parameters.

INFO = 1 Algorithm estimates that the relative error between
X and the solution is at most TOL.

INFO = 2 Number of calls to FCN has reached or exceeded
200*(N+1).

INFO = 3 TOL is too small. No further improvement in the
approximate solution X is possible.

INFO = 4 Iteration is not making good progress.

Sections 4 and 5 contain more details about INFO.

WA is a work array of length LWA.

LWA is a positive integer input variable not less than
(N*(3*N+13))/2.

4. Successful completion.

The accuracy of HYBRD1 is controlled by the convergence parame-
ter TOL. This parameter is used in a test which makes a compar-
ison between the approximation X and a solution XSOL. HYBRD1
terminates when the test is satisfied. If TOL is less than the
machine precision (as defined by the MINPACK function
DPMPAR(1)), then HYBRD1 only attempts to satisfy the test
defined by the machine precision. Further progress is not usu-
ally possible. Unless high precision solutions are required,
the recommended value for TOL is the square root of the machine
precision.

The test assumes that the functions are reasonably well behaved.



53

Page 3

If this condition is not satisfied, then HYBRD1 may incorrectly
indicate convergence. The validity of the answer can be
checked, for example, by rerunning HYBRD1 with a tighter toler-
ance.

Convergence test. If ENORM(Z) denotes the Euclidean norm of a
vector Z, then this test attempts to guarantee that

ENORM(X-XSOL) .LE. TOL*ENORM(XSOL).

If this condition is satisfied with TOL = 10**(-K), then the
larger components of X have K significant decimal digits and
INFO is set to 1. There is a danger that the smaller compo-
nents of X may have large relative errors, but the fast rate
of convergence of HYBRD1 usually avoids this possibility.

5. Unsuccessful completion.

Unsuccessful termination of HYBRD1 can be due to improper input
parameters, arithmetic interrupts, an excessive number of func-
tion evaluations, errors in the functions, or lack of good prog-
ress.

Improper input parameters. INFO is set to 0 if N .LE. 0, or
TOL .LT. O.DO, or LWA .LT. (N*(3*N+13))/2.

Arithmetic interrupts. If these interrupts occur in the FCN
subroutine during an early stage of the computation, they may
be caused by an u.iacceptable choice of X by HYBRD1. In this
case, it may be possible to remedy the situation by not evalu-
ating the functions here, but instead setting the components
of FVEC to numbers that exceed those in the initial FVEC,
thereby indirectly reducing the step length. The step length
can be more directly controlled by using instead HYBRD, which
includes in its calling sequence the step-length- governing
parameter FACTOR.

Excessive number of function evaluations. If the number of
calls to FCN reaches 200*(N+1), then this indicates that the
routine is converging very slowly as measured by the progress
of FVEC, and INFO is set to 2. This situation should be unu-
sual because, as indicated below, lack of good progress is
usually diagnosed earlier by HYBRD1, causing termination with
INFO = 4.

Errors in the functions. The choice of step length in the for-
ward-difference approximation to the Jacobian assumes that the
relative errors in the functions are of the order of the
machine precision. If this is not the case, HYBRD1 may fail
(usually with INFO = 4). The user should then use HYBRD
instead, or one of the programs which require the analytic
Jacobian (HYBRJl and HYBRJ).



54

Page 4

Lack of good progress. HYBRD1 searches for a zero of the system
by minimizing the sum of the squares of the functions. In so
doing, it can become trapped in a region where the minimum
does not correspond to a zero of the system and, in this situ-
ation, the iteration eventually fails to make good progress.
In particular, this will happen if the system does not have a
zero. If the system has a zero, rerunning HYBRD1 from a dif-
ferent starting point may be helpful.

6. Characteristics of the algorithm.

HYBRD1 is a modification of the Powell hybrid method. Two of
its main characteristics involve the choice of the correction as
a convex combination of the Newton and scaled gradient direc-
tions, and the updating of the Jacobian by the rank-1 method of
Broyden. The choice of the correction guarantees (under reason-
able conditions) global convergence for starting points far from
the solution and a fast rate of convergence. The Jacobian is
approximated by forward differences at the starting point, but
forward differences are not used again until the rank-1 method
fails to produce satisfactory progress.

Timing. The time required by HYBRD1 to solve a given problem
depends on N, the behavior of the functions, the accuracy
requested, and the starting point. The number of arithmetic
operations needed by HYBRD1 is about 11.5*(N**2) to process
each call to FCN. Unless FCN can be evaluated quickly, the
timing of HYBRD1 will be strongly influenced by the time spent
in FCN.

Storage. HYBRD1 requires (3*N**2 + 17*N)/2 double precision
storage locations, in addition to the storage required by the
program. There are no internally declared storage arrays.

7. Subprograms required.

USER-supplied........FCN

MINPACK-supplied ... DOGLEG,DPMPAR,ENORM,FDJACi,HYBRD,

QFORM,QRFAC,R1MPYQ,R1UPDT

FORTRAN-supplied ... DABS,DMAX1,DMIN1,DSQRT,MINO,MOD

8. References.

M. J. D. Powell, A Hybrid Method for Nonlinear Equations.
Numerical Methods for 'Nonlinear Algebraic Equations,
P. Rabinowitz, editor. Gordon and Breach, 1970.

9. Example.



55
Page 5

The problem is to determine the values of x(1), x(2), ... , x(9),
which solve the system of tridiagonal equations

(3-2*x(1))*x(1) -2*x(2) = -1
-x(i-1) + (3-2*x(i))*x(i) -2*x(i+1) = -1, i=2-8

-x(8) + (3.-2*x(9))*x(9) = -1

C **********
C
C DRIVER FOR HYBRD1 EXAMPLE.
C DOUBLE PRECISION VERSION
C
C **********

INTEGER J,N,INFO,LWA,NWRITE
DOUBLE PRECISION TOL,FNORM
DOUBLE PRECISION X(9),FVEC(9),WA(180)
DOUBLE PRECISION F.NORM,DPMPAR
EXTERNAL FCN

C
C LOGICAL OUTPUT UNIT IS ASSUMED TO BE NUMBER 6.
C

DATA NWRITE /6/
C

N = 9
C
C THE FOLLOWING STARTING VALUES PROVIDE A ROUGH SOLUTION.
C

DO 10 J = 1, 9
X(J) = -1.DO

10 CONTINUE
C

LWA = 180
C
C SET TOL TO THE SQUARE ROOT OF THE MACHINE PRECISION.
C UNLESS HIGH PRECISION SOLUTIONS ARE REQUIRED,
C THIS IS THE RECOMMENDED SETTING.
C

TOL = DSQRT(DPMPAR(1))
C

CALL HYBRD1(FCN,N,X,FVEC,TOL, INFO, WA, LWA)
FNORM = ENORM(N,FVEC)
WRITE (NWRITE,1000) FNORM,INFO,(X(J),J=1,N)
STOP

1000 FORMAT (5X,31H FINAL L2 NORM OF THE RESIDUALS,D15.7 //
* 5X,15H EXIT PARAMETER,16X, I10 //
* 5X,27H FINAL APPROXIMATE SOLUTION // (5X,3D15.7))

C
C LAST CARD OF DRIVER FOR HYBRD1 EXAMPLE.
C

END
SUBROUTINE FCN(N,X,FVEC,IFLAG)
INTEGER N,IFLAG
DOUBLE PRECISION X(N),FVEC(N)

C



56

Page 6

C SUBROUTINE FCN FOR HYBRD1 EXAMPLE.
C

INTEGER K
DOUBLE PRECISION ONE,TEMPTEMP1,TEMP2,THREE,TWO,ZERO
DATA ZERO,ONE,TWO,THREE /O.DO, 1.DO,2.DO,3.DO/

C
DO 10 K = 1, N

TEMP = (THREE - TWO*X(K))*X(K)
TEMPI = ZERO
IF (K .NE. 1) TEMPI = X(K-1)
TEMP2 = ZERO
IF (K .NE. N) TEMP2 = X(K+1)
FVEC(K) = TEMP - TEMPI - TWO*TEMP2 + ONE

10 CONTINUE
RETURN

C
C LAST CARD OF SUBROUTINE FCN.
C

END

Results obtained with different compilers or machines
may be slightly different.

FINAL L2 NORM OF THE RESIDUALS 0.1192636D-07

EXIT PARAMETER 1

FINAL APPROXIMATE SOLUTION

-0.5706545D+00 -0.6816283D+00 -0.7017325D+00
-0.7042129D+00 -0.7013690D+00 -0.6918656D+00
-0.6657920D+00 -0.5960342D+00 -0.4164121D+00



57

Page 1

Documentation for MINPACK subroutine HYBRD

Double precision version

Argonne National Laboratory

Burton S. Garbow, Kenneth E. Hillstrom, Jorge J. More

March 1980

1. Purpose.

The purpose of HYBRD is to find a zero of a system of N non-
linear functions in N variables by a modification of the Powell
hybrid method. The user must provide a subroutine which calcu-
laces the functions. The Jacobian is then calculated by a for-
ward-difference approximation.

2. Subroutine and type statements.

SUBROUTINE HYBRD(FCN,N,X,FVEC,XTOL,MAXFEV,ML,MU,EPSFCN,DIAG,
* MODE,FACTOR,NPRINT,INFO,NFEV,FJAC,LDFJAC,
* R,LR,QTF,WA1,WA2,WA3,WA4)
INTEGER N,MAXFEV,ML,MU,MODE,NPRINT,INFO,NFEV,LDFJAC,LR
DOUBLE PRECISION XTOL,EPSFCN,FACTOR
DOUBLE PRECISION X(N),FVEC(N),DIAG(N),FJAC(LDFJAC,N),R(LR),QTF(N),

* WA1(N),WA2(N),WA3(N),WA4(N)
EXTERNAL FCN

3. Parameters.

Parameters designated as input parameters must be specified on
entry to HYBRD and are not changed on exit, while parameters
designated as output parameters need not be specified on entry
and are set to appropriate values on exit from HYBRD.

FCN is the name of the user-supplied subroutine which calculates
the functions. FCN must be declared in an EXTERNAL statement
in the user calling program, and should be written as follows.

SUBROUTINE FCN(N,X,FVEC,IFLAG)
INTEGER N,IFLAG
DOUBLE PRECISION X(N),FVEC(N)

CALCULATE THE FUNCTIONS AT X AND
RETURN THIS VECTOR IN FVEC.

RETURN
END

The value of IFLAG should not be changed by FCN unless the



58

Page 2

user wants to terminate execution of HYBRD. In this case set
IFLAG to a negative integer.

N is a positive integer input variable set to the number of
functions and variables.

X is an array of length N. On input X must contain an initial
estimate of the solution vector. On output X contains the
final estimate of the solution vector.

FVEC is an output array of length N which contains the functions
evaluated at the output X.

XTOL is a nonnegative input variable. Termination occurs when
the relative error between two consecutive iterates is at most
XTOL. Therefore, XTOL measures the relative error desired in
the approximate solution. Section 4 contains more details
about XTOL.

MAXFEV is a positive integer input variable. Termination occurs
when the number of calls to FCN is at least MAXFEV by the end
of an iteration.

ML is a nonnegative integer input variable which specifies the
number of subdiagonals within the band of the Jacobian matrix.
If the Jacobian is not banded, set ML to at least N - 1.

MG is a nonnegative integer input variable which specifies the
number of superdiagonals within the band of the Jacobian
matrix. If the Jacobian is not banded, set MU to at least
N - 1.

EPSFCN is an input variable used in determining a suitable step
for the forward-difference approximation. This approximation
assumes that the relative errors in the functions are of the
order of EPSFCN. If EPSFCN is less than the machine preci-
sion, it is assumed that the relative errors in the functions
are of the order of the machine precision.

DIAG is an array of length N. If MODE = 1 (see below), DIAG is
internally set. If MODE = 2, DIAG must contain positive
entries that serve as multiplicative scale factors for the
variables.

MODE is an integer input variable. If MODE = 1, the variables
will be scaled internally. If MODE = 2, the scaling is speci-
fied by the input DIAG. Other values of MODE are equivalent
to MODE = 1.

FACTOR is a positive input variable used in determining the ini-
tial step bound. This bound is set to the product of FACTOR
and the Euclidean norm of DIAG*X if nonzero, or else to FACTOR
itself. In most cases FACTOR should lie in the interval
(.1,100.). 100. is a generally recommended val.ie.



59

Page 3

NPRINT is an integer input variable that enables controlled
printing of iterates if it is positive. In this case, FCN is
called with IFLAG = 0 at the beginning of the first iteration
and every NPRINT iterations thereafter and immediately prior
to return, with X and FVEC available for printing. If NPRINT
is not positive, no special calls of FCN with IFLAG = 0 are
made.

INFO is an integer output variable. If the user has terminated
execution, INFO is set to the (negative) value of IFLAG. See
description of FCN. Otherwise, INFO is set as follows.

INFO = 0 Improper input parameters.

INFO = 1

INFO = 2

INFO = 3

INFO = 4

INFO = 5

Relative error between two consecutive iterates is
at most XTOL.

Number of calls to FCN has reached or exceeded
MAXFEV.

XTOL is too small. No further improvement in the
approximate solution X is possible.

Iteration is not making good progress, as measured
by the improvement from the last five Jacobian eval-
uations.

Iteration is not making good progress, as measured
by the improvement from the last ten iterations.

Sections 4 and 5 contain more details about INFO.

NFEV is an
FCN.

integer output variable set to the number of calls to

FJAC is an output N by N array which contains the orthogonal
matrix Q produced by the QR factorization of the final approx-
imate Jacobian.

LDFJAC is a positive integer input variable not less than N
which specifies the leading dimension of the array FJAC.

R is an output array of length LR which contains the upper
triangular matrix produced by the QR factorization of the
final approximate Jacobian, stored rowwise.

LR is a positive integer input variable not less than
(N*(N+1))/2.

QTF is an output array of length N which contains the vector
(Q transpose)*FVEC.

WAl, WA2, WA3, and WA4 are work arrays of length N.



60

Page 4

4. Successful completion.

The accuracy of HYBRD is controlled by the convergence parameter
XTOL. This parameter is used in a test which makes a comparison
between the approximation X and a solution XSOL. HYBRD termi-
nates when the test is satisfied. If the convergence parameter
is less than the machine precision (as defined by the MINPACK
function DPMPAR(1)), then HYBRD only attempts to satisfy the
test defined by the machine precision. Further progress is not
usually possible.

The test assumes that the functions are reasonably well behaved..
If this condition is not satisfied, then HYBRD may incorrectly
indicate convergence. The validity of the answer can be
checked, for example, by rerunning HYBRD with a tighter toler-
ance.

Convergence test. If ENORM(Z) denotes the Euclidean norm of a
vector Z and D is the diagonal matrix whose entries are
defined by the array DIAG, then this test attempts to guaran-
tee that

ENORM(D*(X-XSOL)) .LE. XTOL*ENORM(D*XSOL).

If this condition is satisfied with XTOL = 10**(-K), then the
larger components of D*X have K significant decimal digits and
INFO is set to 1. There is a danger that the smaller compo-
nents of D*X may have large relative errors, but the fast rate
of convergence of HYBRD usually avoids this possibility.
Unless high precision solutions are required, the recommended
value for XTOL is the square root of the machine precision.

5. Unsuccessful completion.

Unsuccessful termination of HYBRD can be due to improper input
parameters, arithmetic interrupts, an excessive number of func-
tion evaluations, or lack of good progress.

Improper input parameters. INFO is set to 0 if N .LE. 0, or
XTOL .LT. O.DO, or MAXFEV .LE. 0, or ML .LT. 0, or MU .LT. 0,
or FACTOR .LE. O.DO, or LDFJAC .LT. N, or LR .LT. (N*(N+1))/2.

Arithmetic interrupts. If these interrupts occur in the FCN
subroutine during an early stage of the computation, they may
be caused by an unacceptable choice of X by HYBRD. In this
case, it may be possible to remedy the situation by rerunning
HYBRD with a smaller value of FACTOR.

Excessive number of function evaluations. A reasonable value
for MAXFEV is 200*(N+1). If the number of calls to FCN
reaches MAXFEV, then this indicates that the routine is con-
verging very slowly as measured by the progress of E'VEC, and



61

Page 5

INFO is set to 2. This situation should be unusual because,
as indicated below, lack of good progress is usually diagnosed
earlier by HYBRD, causing termination with INFO = 4 or
INFO = 5.

Lack of good progress. HYBRD searches for a zero of the system
by minimizing the sum of the squares of the functions. In so
doing, it can become trapped in a region where the minimum
does not correspond to a zero of the system and, in this situ-
ation, the iteration eventually fails to make good progress.
In particular, this will happen if the system does not have a
zero. If the system has a zero, rerunning HYBRD from a dif-
ferent starting point may be helpful.

6. Characteristics of the algorithm.

HYBRD is a modification of the Powell hybrid method. Two of its
main characteristics involve the choice of the correction as a
convex combination of the Newton and scaled gradient directions,
and the updating of the Jacobian by the rank-1 method of Broy-
den. The choice of the correction guarantees (under reasonable
conditions) global convergence for starting points far from the
solution and a fast rate of convergence. The Jacobian is
approximated by forward differences at the starting point, but
forward differences are not used again until the rank-1 method
fails to produce satisfactory progress.

Timing. The time required by HYBRD to solve a given problem
depends on N, the behavior of the functions, the accuracy
requested, and the starting point. The number of arithmetic
operations needed by HYBRD is about 1.5*(N**2) to process
each call to FCN. Unless FCN can be evaluated quickly, the
timing of HYBRD will be strongly influenced by the time spent
in FCN.

Storage. HYBRD requires (3*N**2 + 17*N)/2 double precision
storage locations, in addition to the storage required by the
program. There are no internally declared storage arrays.

7. Subprograms required.

USER-supplied........FCN

MINPACK-supplied ... DOGLEG,DPMPAR,ENORM,FDJAC1,
QFORM,QRFAC,R1MPYQ,R1UPDT

FORTRAN-supplied ... DABS,DMAX1,DMIN1,DSQRT,MINO,MOD

8. References.

M. J. D. Powell, A Hybrid Method for Nonlinear Equations.



62

Page 6

Numerical Methods for Nonlinear Algebraic Equations,
P. Rabinowitz, editor. Gordon and Breach, 1970.

9. Example.

The problem is to determine the values of x(1), x(2), ... , x(9),
which solve the system of tridiagonal equations

(3-2*x(1))*x(1) -2*x(2) = -1
-x(i-1) + (3-2*x(i))*x(i) -2*x(i+1) = -1, i=2-8

-x(8) + (3-2*x(9))*x(9) = -1

C **********
C
C DRIVER FOR HYBRD EXAMPLE.
C DOUBLE PRECISION VERSION
C
C **********

INTEGER J,N,MAXFEV,ML,MU,MODE,NPRINT,INFO,NFEV,LDFJAC,LR,NWRITE
DOUBLE PRECISION XTOL,EPSFCN,FACTOR,FNORM
DOUBLE PRECISION X(9),FVEC(9),DIAG(9),FJAC(9,9),R(45),QTF(9),

* WA1(9),WA2(9),WA3(9),WA4(9)
DOUBLE PRECISION ENORM,DPMPAR
EXTERNAL FCN

C
C LOGICAL OUTPUT UNIT IS ASSUMED TO BE NUMBER 6.
C

DATA NWRITE /6/
C

N = 9
C
C THE FOLLOWING STARTING VALUES PROVIDE A ROUGH SOLUTION.
C

DO 10 J = 1, 9
X(J) = -1.DO

10 CONTINUE
C

LDFJAC = 9
LR = 45

C
C SET XTOL TO THE SQUARE ROOT OF THE MACHINE PRECISION.
C UNLESS HIGH PRECISION SOLUTIONS ARE REQUIRED,
C THIS IS THE RECOMMENDED SETTING.
C

XTOL = DSQRT(DPMPAR(1))
C

MAXFEV = 2000
ML = 1
MU = 1
EPSFCN = O.DO
MODE = 2
DO 20 J = 1, 9

DIAG(J) = 1.DO



63
Page 7

20 CONTINUE
FACTOR = 1.D2
NPRINT = 0

C
CALL HYBRD(FCN,N,X,FVEC,XTOL,MAXFEV,ML,MU,EPSFCN,DIAG,

* MODE,FACTOR,NPRINT,INFO,NFEV,FJAC,LDFJAC,
* R,LR,QTF,WA1,WA2,WA3,WA4)
FNORM = ENORM(N,FVEC)
WRITE (NWRITE,1000) FNORM,NFEV,INFO,(X(J),J=1,N)
STOP

1000 FORMAT (5X,31H FINAL L2 NORM OF THE RESIDUALS,D15.7 /
* 5X,31H NUMBER OF FUNCTION EVALUATIONS,I10 //
* 5X,15H EXIT PARAMETER,16X,I10 //
* 5X,27H FINAL APPROXIMATE SOLUTION // (5X,3D15.7))

C
C LAST CARD OF DRIVER FOR HYBRD EXAMPLE.
C

END
SUBROUTINE FCN(N,X,FVEC,IFLAG)
INTEGER N,IFLAG
DOUBLE PRECISION X(N),FVEC(N)

C
C SUBROUTINE FCN FOR HYBRD EXAMPLE.
C

INTEGER K
DOUBLE PRECISION ONE, TEMPTEMP1, TEMP2,THREE, TWO,ZE.O
DATA ZERO,ONE,TWO,THREE /0.DO,1.DO,2.DO,3.D0/

C
IF (IFLAG .NE. 0) GO TO 5

C
C INSERT PRINT STATEMENTS HERE WHEN NPRINT IS POSITIVE.
C

RETURN
5 CONTINUE

DO 10 K = 1, N
TEMP = (THREE - TWO*X(K))*X(K)
TEMP1 = ZERO
IF (K .NE. 1) TEMP1 = X(K-1)
TEMP2 = ZERO
IF (K .NE. N) TEMP2 = X(K+1)
FVEC(K) = TEMP - TEMP1 - TWO*TEMP2 + ONE

10 CONTINUE
RETURN

C
C LAST CARD OF SUBROUTINE FCN.
C

END

Results obtained with different compilers or machines
may be slightly different.

FINAL L2 NORM OF THE RESIDUALS 0.1192636D-07

NUMBER OF FUNCTION EVALUATIONS 14



64

Page 8

EXIT PARAMETER 1

FINAL APPROXIMATE SOLUTION

-0.5706545D+00 -0.6816283D+00 -0.7017325D+00
-0.7042129D+00 -0.7013690D+00 -0.6918656D+00
-0.6657920D+00 -0.5960342D+00 -0.4164121D+00



65

Page 1

Documentation for MINPACK subroutine HYBRJ1

Double precision version

Argonne National Laboratory

Burton S. Garbow, Kenneth E. Hillstrom, Jorge J. More

March 1980

1. Purpose.

The purpose of HYBRJ. is to find a zero of a system of N non-
linear functions in N variables by a modification of the Powell
hybrid method. This is done by using the more general nonlinear
equation solver HYBRJ. The user must provide a subroutine which
calculates the functions and the Jacobian.

2. Subroutine and type statements.

SUBROUTINE HYBRJ1(FCN,N,X,FVEC,FJAC,LDFJAC,TOL,INFO,WA,LWA)
INTEGER N,LDFJAC,INFO,LWA
DOUBLE PRECISION TOL
DOUBLE PRECISION X(N),FVEC(N),FJAC(LDFJAC,N),WA(LWA)
EXTERNAL FCN

3. Parameters.

Parameters designated as input parameters must be specified on
entry to HYBRJ1 and are not changed on exit, while parameters
designated as output parameters need not be specified on entry
and are set to appropriate values on exit from HYBRJ1.

FCN is the name of the user-supplied subroutine which calculates
the functions and the Jacobian. FCN must be declared in an
EXTERNAL statement in the user calling program, and should be
written as follows.

SUBROUTINE FCN(N,X,FVEC,FJAC,LDFJAC,IFLAG)
INTEGER N,LDFJAC,IFLAG
DOUBLE PRECISION X(N),FVEC(N),FJAC(LDFJAC,N)

IF IFLAG = 1 CALCULATE THE FUNCTIONS AT X AND
RETURN THIS VECTOR IN FVEC. DO NOT ALTER FJAC.
IF IFLAG = 2 CALCULATE THE JACOBIAN AT X AND
RETURN THIS MATRIX IN FJAC. DO NOT ALTER FVEC.

RETURN
END

The value of IFLAG should not be changed by FCN unless the



66

Page 2

user wants to terminate execution of HYBRJ1. In this case set
IFLAG to a negative integer.

N is a positive integer input variable set to the number of
functions and variables.

X is an array of length N. On input X must contain an initial
estimate of the solution vector. On output X contains the
final estimate of the solution vector.

FVEC is an output array of length N which contains the functions
evaluated at the output X.

FJAC is an output N by N array which contains the orthogonal
matrix Q produced by the QR factorization of the final approx-
imate Jacobian. Section 6 contains more details about the
approximation to the Jacobian.

LDFJAC is a positive integer input variable not less than N
which specifies the leading dimension of the array FJAC.

TOL is a nonnegative input variable. Termination occurs when
the algorithm estimates that the relative error between X and
the solution is at most TOL. Section 4 contains more details
about TOL.

INFO is an integer output variable. If the user has terminated
execution, INFO is set to the (negative) value of IFLAG. See
description of FCN. Otherwise, INFO is set as follows.

INFO = 0 Improper input parameters.

INFO = 1 Algorithm estimates that the relative error between
X and the solution is at most TOL.

INFO = 2 Number of calls to FCN with IFLAG = 1 has reached
100*(N+1).

INFO = 3 TOL is too small. No further improvement in the
approximate solution X is possible.

INFO = 4 Iteration is not making good progress.

Sections 4 and 5 contain more details about INFO.

WA is a work array of length LWA.

LWA is a positive integer input variable not less than
(N*(N+13))/2.

4. Successful completion.

The accuracy of HYBRJ1 is controlled by the convergence



67
Page 3

parameter TOL. This parameter is used in a test which makes a
comparison between the approximation X and a solution XSOL.
HYBRJ1 terminates when the test is satisfied. If TOL is less
than the machine precision (as defined by the MINPACK function
DPMPAR(1)), then HYBRJ1 only attempts to satisfy the test
defined by the machine precision. Further progress is not usu-
ally possible. Unless high precision solutions are required,
the recommended value for TOL is the square root of the machine
precision.

The test assumes that the functions and the Jacobian are coded
consistently, and that the functions are reasonably well
behaved. If these conditions are not satisfied, then HYBRJ1 may
incorrectly indicate convergence. The coding of the Jacobian
can be checked by the MINPACK subroutine CHKDER. If the Jaco-
bian is coded correctly, then the validity of the answer can be
checked, for example, by rerunning HYBRJ1 with a tighter toler-
ance.

Convergence test. If ENORM(Z) denotes the Euclidean norm of a
vector Z, then this test attempts to guarantee that

ENORM(X-XSOL) .LE. TOL*ENORM(XSOL).

If this condition is satisfied with TOL = 10**(-K), then the
larger components of X have K significant decimal digits and
INFO is set to 1. There is a danger that the smaller compo-
nents of X may have large relative errors, but the fast rate
of convergence of HYBRJ1 usually avoids this possibility.

5. Unsuccessful completion.

Unsuccessful termination of HYBRJ1 can be due to improper input
parameters, arithmetic interrupts, an excessive number of func-
tion evaluations, or lack of good progress.

Improper input parameters. INFO is set to 0 if N .LE. 0, or
LDFJAC .LT. N, or TOL .LT. O.DO, or LWA .LT. (N*(N+13))/2.

Arithmetic interrupts. If these interrupts occur in the FCN
subroutine during an early stage of the computation, they may
be caused by an unacceptable choice of X by HYBRJ1. In this
case, it may be possible to remedy the situation by not evalu-
ating the functions here, but instead setting the components
of FVEC to numbers that exceed those in the initial FVEC,
thereby indirectly reducing the step length. The step length
can be more directly controlled by using instead HYBRJ, which
includes in its calling sequence the step-length- governing
parameter FACTOR.

Excessive number of function e'raluations. If the number of
calls to FCN with IFLAG = 1 reaches 100*(N+1), then this indi-
cates that the routine is converging very slowly as measured



68

Page 4

by the progress of FVEC, and INFO is set to 2. This situation
should be unusual because, as indicated below, lack of good
progress is usually diagnosed earlier by HYBRJ1, causing ter-
mination with INFO = 4.

Lack of good progress. HYBRJ1 searches for a zero of the system
by minimizing the sum of the squares of the functions. In so
doing, it can become trapped in a region where the minimum
does not correspond to a zero of the system and, in this situ-
ation, the iteration eventually fails to make good progress.
In particular, this will happen if the system does not have a
zero. If the system has a zero, rerunning HYBRJ1 from a dif-
ferent starting point may be helpful.

6. Characteristics of the algorithm.

HYBRJ1 is a modification of the Powell hybrid method. Two of
its main characteristics involve the choice of the correction as
a convex combination of the Newton and scaled gradient direc-
tions, and the updating of the Jacobian by the rank-1 method of
Broyden. The choice of the correction guarantees (under reason-
able conditions) global convergence for starting points far from
the solution and a fast rate of convergence. The Jacobian is
calculated at the starting point, but it is not recalculated
until the rank-1 method fails to produce satisfactory progress.

Timing. The time required by HYBRJ1 to solve a given problem
depends on N, the behavior of the functions, the accuracy
requested, and the starting point. The number of arithmetic
operations needed by HYBRJ1 is about ii.5*(N**2) to process
each evaluation of the functions (call to FCN with IFLAG = 1)
and 1.3*(N**3) to process each evaluation of the Jacobian
(call to FCN with IFLAG = 2). Unless FCN can be evaluated
quickly, the timing of HYBRJ1 will be strongly influenced by
the time spent in FCN.

Storage. HYBRJ1 requires (3*N**2 1 27*N)/2 double precision
storage locations, in addition to the storage required by the
program. There are no internally declared storage arrays.

7. Subprograms required.

USER-supplied........FCN

MINPACK-supplied ... DOGLEG,DPMPAR,ENORM,HYBRJ,
QFORM,QRFAC,R1MPYQ,R1UPDT

FORTRAN-supplied ... DABS,DMAX1,DMIN1,DSQRT,MINO,MOD

8. References.



69
Page 5

M. J. D. Powell, A Hybrid Method for Nonlinear Equations.
Numerical Methods for Nonlinear Algebraic Equations,
P. Rabinowitz, editor. Gordon and Breach, 1970.

9. Example.

The problem is to determine the values of x(1), x(2),
which solve the system of tridiagonal equations

(3-2*x(1))*x(1)
-x(i-1)

-2*x(2)
+ (3-2*x(i))*x(i) -2*x(i+1)

-x(8) + (3-2*x(9))*x(9)

... , x(9),

-1
-1, i=2-8
-1

C
C
C DRIVER FOR HYBRJ1 EXAMPLE.
C DOUBLE PRECISION VERSION
C
C **********

INTEGER J,N,LDFJAC,INFO,LWA,NWRITE
DOUBLE PRECISION TOL,FNORM
DOUBLE PRECISION X(9),FVEC(9),FJAC(9,9),WA(99)
DOUBLE PRECISION ENORM,DPMPAR
EXTERNAL FCN

C
C LOGICAL OUTPUT UNIT IS ASSUMED TO BE NUMBER 6.
C

DATA NWRITE /6/
C

N = 9
C
C THE FOLLOWING STARTING VALUES PROVIDE A ROUGH SOLUTION.
C

DO 10 J = 1, 9
X(J) = -1.DO

10 CONTINUE
C

LDFJAC = 9
LWA = 99

C
C SET TOL TO THE SQUARE ROOT OF THE MACHINE PRECISION.
C UNLESS HIGH PRECISION SOLUTIONS ARE REQUIRED,
C THIS IS THE RECOMMENDED SETTING.
C

TOL = DSQRT(DPMPAR(1))
C

CALL HYBRJ1(FCN,N,X,FVEC,FJAC,LDFJAC,TOL,INFO,WA,LWA)
FNORM = ENORM(N,FVEC)
WRITE (NWRITE,1000) FNORM,INFO,(X(J),J=1,N)
STOP

1000 FORMAT (5X,31H FINAL L2 NORM OF THE RESIDUALSD15.7 //
*

*
5X,15H EXIT PARAMETER,16X,I10 //
5X,27H FINAL APPROXIMATE SOLUTION // (5X,3D15.7))



70

Page 6

C
C LAST CARD OF DRIVER FOR HYBRJ1 EXAMPLE.
C

END
SUBROUTINE FCN(N,X,FVEC,FJAC,LDFJAC,IFLAG)
INTEGER N,LDFJAC,IFLAG
DOUBLE PRECISION X(N),FVEC(N),FJAC(LDFJAC,N)

C
C SUBROUTINE FCN FOR HYBRJ1 EXAMPLE.
C

INTEGER J,K
DOUBLE PRECISION ONE, TEMP, TEMPI, TEMP2,THREE,TWO,ZERO
DATA ZERO,ONE,TWO,THREE,FOUR /0.DO,1.DO,2.DO,3.DO,4.DO/

C
IF (IFLAG .E. 2) GO TO 20
DO 10 K = 1, N

TEMP = (THREE - TWO*X(K))*X(K)
TEMP1 = ZERO
IF (K .NE. 1) TEMP1 = X(K-1)
TEMP2 = ZERO
IF (K .NE. N) TEMP2 = X(K+1)
FVEC(K) = TEMP - TEMPI - TWO*TEMP2 + ONE

10 CONTINUE
GO TO 50

20 CONTINUE
DO 40 K = 1, N

DO 30 J = 1, N
FJAC(K,J) = ZERO

30 CONTINUE
FJAC(K,K) = THREE - FOUR*X(K)
IF (K .NE. 1) FJAC(K,K-1) = -ONE
IF (K .NE. N) FJAC(K,K+1) = -TWO

40 CONTINUE
50 CONTINUE

RETURN
C
C LAST CARD OF SUBROUTINE FCN.
C

END

Results obtained with different compilers or machines
may be slightly different.

FINAL L2 NORM OF THE RESIDUALS 0.1192636D-07

EXIT PARAMETER

FINAL APPROXIMATE SOLUTION

-0.5706545D+00 -0.6816283D+00 -0.7017325D+00
-0.7042129D+00 -0.7013690D+00 -0.6918656D+00
-0.6657920D+00 -0.5960342D+00 -0.4164121D+00



71

Page 1

Documentation for MINPACK subroutine HYBRJ

Double precision version

Argonne National Laboratory

Burton S. Garbow, Kenneth E. Hillstrom, Jorge J. More

March 1980

1. Purpose.

The purpose of HYBRJ is to find a zero of a system of N non-
linear functions in N variables by a modification of the Powell
hybrid method. The user must provide a subroutine which calcu-
lates the functions and the Jacobian.

2. Subroutine and type statements.

SUBROUTINE HYBRJ(FCN,N,X,FVEC,FJAC,LDFJAC,XTOL,MAXFEV,DIAG,
* MODE,FACTOR,NPRINT,INFO,NFEV,NJEV,R,LR,QTF,
* WA1,WA2,WA3,WA4)
INTEGER N,LDFJAC,MAXFEV,MODE,NPRINT,INFO,NFEV,NJEV,LR
DOUBLE PRECISION XTOL,FACTOR
DOUBLE PRECISION X(N),FVEC(N),FJAC(LDFJAC,N),DIAG(N),R(LR),QTF(N),

* WA1(N),WA2(N),WA3(N),WA4(N)

3. Parameters.

Parameters designated as input parameters must be specified on
entry to HYBRJ and are not changed on exit, while parameters
designated as output parameters need not be specified on entry
and are set to appropriate values on exit from HYBRJ.

FCN is the name of the user-supplied subroutine which calculates
the functions and the Jacobian. FCN must be declared in an
EXTERNAL statement in the user calling program, and should be
written as follows.

SUBROUTINE FCN(N,X,FVEC,FJAC,LDFJAC,IFLAG)
INTEGER N,LDFJAC,IFLAG
DOUBLE PRECISION X(N),FVEC(N),FJAC(LDFJAC,N)

IF IFLAG = 1 CALCULATE THE FUNCTIONS AT X AND
RETURN THIS VECTOR IN FVEC. DO NOT ALTER FJAC.
IF IFLAG = 2 CALCULATE THE JACOBIAN AT X AND
RETURN THIS MATRIX IN FJAC. DO NOT ALTER FVEC.

RETURN
END



72

Page 2

The value of IFLAG should not be changed by FCN unless the
user wants to terminate execution of HYBRJ. In this case set
IFLAG to a negative integer.

N is a positive integer input variable set to the number of
functions and variables.

X is an array of length N. On input X must contain an initial
estimate of the solution vector. On output X contains the
final estimate of the solution vector.

FVEC is an output array of length N which contains the functions
evaluated at the output X.

FJAC is an output N by N array which contains the orthogonal
matrix Q produced by the QR factorization of the final approx-
imate Jacobian. Section 6 contains more details about the
approximation to the Jacobian.

LDFJAC is a positive integer input variable not less than N
which specifies the leading dimension of the array FJAC.

XTOL is a nonnegative input variable. Termination occurs when
the relative error between two consecutive iterates is at most
XTOL. Therefore, XTOL measures the relative error desired in
the approximate solution. Section 4 contains more details
about XTOL.

MAXFEV is a positive integer input variable. Termination occurs
when the number of calls to FCN with IFLAG = 1 has reached
MAXFEV.

DIAG is an array of length N. If MODE = 1 (see below), DIAG is
internally set. If MODE = 2, DIAG must contain positive
entries that serve as multiplicative scale factors for the
variables.

MODE is an integer input variable. If MODE = 1, the variables
will be scaled internally. If MODE = 2, the scaling is speci-
fied by the input DIAG. Other values of MODE are equivalent
to MODE = 1.

FACTOR is a positive input variable used in determining the ini-
tial step bound. This bound is set to the product of FACTOR
and the Euclidean norm of DIAG*X if nonzero, or else to FACTOR
itself. In most cases FACTOR should lie in the interval
(.1,100.). 100. is a generally recommended value.

NPRINT is an integer input variable that enables controlled
printing of iterates if it is positive. In this case, FCN is
called with IFLAG = 0 at the beginning of the first iteration
and every NPRINT iterations thereafter and immediately prior
to return, with X and FVEC available for printing. FVEC and
FJAC should not be altered. If NPRINT is not positive, no



73

Page 3

special calls of FCN with IFLAG = 0 are made.

INFO is an integer output variable. If the user has terminated
execution, INFO is set to the (negative) value of IFLAG. See

description of FCN. Otherwise, INFO is set as follows.

INFO = 0 Improper input parameters.

INFO = 1

INFO = 2

INFO = 3

INFO = 4

INFO = 5

Relative error between two consecutive iterates is
at most XTOL.

Number of calls to FCN with IFLAG = 1 has reached
MAXFEV.

XTOL is too small. No further improvement in the
approximate solution X is possible.

Iteration is not making good progress, as measured
by the improvement from the last five Jacobian eval-
uations.

Iteration is not making good progress, as measured
by the improvement from the last ten iterations.

Sections 4 and 5 contain more details about INFO.

NFEV is an integer output variable set to the number of calls to
FCN with IFLAG = 1.

NJEV is an integer output variable set to the number of calls to
FCN with IFLAG = 2.

R is an output array of length LR which contains the upper
triangular matrix produced by the QR factorization of the
final approximate Jacobian, stored rowwise.

LR is a positive integer input variable not less than
(N*(N+1))/2.

QTF is an output array of length N which contains the vector
(Q transpose)*FVEC.

WAl, WA2, WA3, and WA4 are work arrays of length N.

4. Successful completion.

The accuracy of HYBRJ is controlled by the convergence parameter
XTOL. This parameter is used in a test which makes a comparison
between the approximation X and a solution XSOL. HYBRJ termi-
nates when the test is satisfied. If the convergence parameter
is less than the machine precision (as defined by the MINPACK
function DPMPAR(1)), then HYBRJ only attempts to satisfy the
test defined by the machine precision. Further progress is not



74

Page 4

usually possible.

The test assumes that the functions and the Jacobian are coded
consistently, and that the functions are reasonably well
behaved. If these conditions are not satisfied, then HYBRJ may
incorrectly indicate convergence. The coding of the Jacobian
can be checked by the MINPACK subroutine CHKDER. If the Jaco-
bian is coded correctly, then the validity of the answer can be
checked, for example, by rerunning HYBRJ with a tighter toler-
ance.

Convergence test. If ENORM(Z) denotes the Euclidean norm of a
vector Z and D is the diagonal matrix whose entries are
defined by the array DIAG, then this test attempts to guaran-
tee that

ENORM(D*(X-XSOL)) .LE. XTOL*ENORM(D*XSOL).

If this condition is satisfied with XTOL = 10**(-K), then the
larger components of D*X have K significant decimal digits and
INFO is set to 1. There is a danger that the smaller compo-
nents of D*X may have large relative errors, but the fast rate
of convergence of HYBRJ usually avoids this possibility.
Unless high precision solutions are required, the recommended
value for XTOL is the square root of the machine precision.

5. Unsuccessful completion.

Unsuccessful termination of HYBRJ can be due to improper input
parameters, arithmetic interrupts, an excessive number of func-
tion evaluations, or lack of good progress.

Improper input parameters. INFO is set to 0 if N .LE. 0, or
LDFJAC .LT. N, or XTOL .LT. O.DO, or MAXFEV .LE. 0, or
FACTOR .LE. O.DO, or LR .LT. (N*(N+1))/2.

Arithmetic interrupts. If these interrupts occur in the FCN
subroutine during an early stage of the computation, they may
be caused by an unacceptable choice of X by HYBRJ. In this
case, it may be possible to remedy the situation by rerunning
HYBRJ with a smaller value of FACTOR.

Excessive number of function evaluations. A reasonable value
for MAXFEV is 100*(N+1). If the number of calls to FCN with
IFLAG = 1 reaches MAXFEV, then this indicates that the routine
is converging very slowly as measured by the progress of FVEC,

and INFO is set to 2. This situation should be unusual
because, as indicated below, lack of good progress is usually
diagnosed earlier by HYBRJ, causing termination with INFO = 4
or INFO = 5.

Lack of good progress. HYBRJ searches for a zero of the system
by minimizing the sum of the squares of the functions. In so



75

Page 5

doing, it can become trapped in a region where the minimum
does not correspond to a zero of the system and, in this situ-
ation, the iteration eventually fails to make good progress.
In particular, this will happen if the system does not have a
zero. If the system has a zero, rerunning HYBRJ from a dif-
ferent starting point may be helpful.

6. Characteristics of the algorithm.

HYBRJ is a modification of the Powell hybrid method. Two of its
main characteristics involve the choice of the correction as a
convex combination of the Newton and scaled gradient directions,
and the updating of the Jacobian by the rank-1 method of Broy-
den. The choice of the correction guarantees (under reasonable
conditions) global convergence for starting points far from the
solution and a fast rate of convergence. The Jacobian is calcu-
lated at the starting point, but it is not recalculated until
the rank-1 method fails to produce satisfactory progress.

Timing. The time required by HYBRJ to solve a given problem
depends on N, the behavior of the functions, the accuracy
requested, and the starting point. The number of arithmetic
operations needed by HYBRJ is about ii.5*(N**2) to process
each evaluation of the functions (call to FCN with IFLAG = 1)
and 1.3*(N**3) to process each evaluation of the Jacobian
(call to FCN with IFLAG = 2). Unless FCN can be evaluated
quickly, the timing of HYBRJ will be strongly influenced by
the time spent in FCN.

Storage. HYBRJ requires (3*N**2 + 17*N)/2 double precision
storage locations, in addition to the storage required by the
program. There are no internally declared storage arrays.

7. Subprograms required.

USER-supplied........FCN

MINPACK-supplied ... DOGLEG,DPMPAR,ENORM,
QFORM,QRFAC,R1MPYQ,RiUPDT

FORTRAN-supplied ... DABS,DMAX1,DMIN1,DSQRT,MINO,MOD

8. References.

M. J. D. Powell, A Hybrid Method for Nonlinear Equations.
Numerical Methods for Nonlinear Algebraic Equations,
P. Rabinowitz, editor. Gordon and Breach, 1970.

9. Example.



76

Page 6

The problem is to determine the values of x(1), x(2), ... , x(9),

which solve the system of tridiagonal equations

(3-2*x(1))*x(1) -2*x(2) = -1
-x(i-1) + (3-2*x(i))*x(i) -2*x(i+1) = -1, i=2-8

-x(8) + (3-2*x(9))*x(9) = -1

C **********
C
C DRIVER FOR HYBRJ EXAMPLE.
C DOUBLE PRECISION VERSION
C
C **********

INTEGER J,N,LDFJAC,MAXFEV,MODE,NPRINT,INFO,NFEV,NJEV,LR,NWRITE
DOUBLE PRECISION XTOL,FACTOR,FNORM
DOUBLE PRECISION X(9),FVEC(9),FJAC(9,9),DIAG(9),R(45),QTF(9),

* WA1(9),WA2(9),WA3(9),WA4(9)
DOUBLE PRECISION ENORM,DPMPAR
EXTERNAL FCN

C
C LOGICAL OUTPUT UNIT IS ASSUMED TO BE NUMBER 6.
C

DATA NWRITE /6/
C

N = 9
C
C THE FOLLOWING STARTING VALUES PROVIDE A ROUGH SOLUTION.
C

DO 10 J = 1, 9
X(J) = -1.DO

10 CONTINUE
C

LDFJAC = 9
LR = 45

C
C SET XTOL TO THE SQUARE ROOT OF THE MACHINE PRECISION.
C UNLESS HIGH PRECISION SOLUTIONS ARE REQUIRED,
C THIS IS THE RECOMMENDED SETTING.
C

XTOL = DSQRT(DPMPAR(1))
C

MAXFEV = 1000
MODE = 2
DO 20 J = 1, 9

DIAG(J) = 1.DO
20 CONTINUE

FACTOR = 1.D2
NPRINT = 0

C
CALL HYBRJ(FCN,N,X,FVEC,FJAC,LDFJAC,XTOL,MAXFEV,DIAG,

* MODE,FACTOR,NPRINT,INFO,NFEV,NJEV,R,LR,QTF,

* WA1,WA2,WA3,WA4)
FNORM = ENORM(N,FVEC)
WRITE (NWRITE,1000) FNORM,NFEV,NJEV,INFO,(X(J),J=1,N)



77

Page 7

STOP
1000 FORMAT (5X,31H FINAL L2 NORM OF THE RESIDUALS,D15.7 //

* 5X,31H NUMBER OF FUNCTION EVALUATIONS,I10 //
* 5X,31H NUMBER OF JACOBIAN EVALUATIONS,I10 //
* 5X,15H EXIT PARAMETER,16X,I10 //
* 5X,27H FINAL APPROXIMATE SOLUTION // (5X,3D15.7))

C
C LAST CARD OF DRIVER FOR HYBRJ EXAMPLE.
C

END
SUBROUTINE FCN(N,X,FVEC,FJAC,LDFJAC,IFLAG)
INTEGER N,LDFJAC,IFLAG
DOUBLE PRECISION X(N),FVEC(N),FJAC(LDFJAC,N)

C
C SUBROUTINE FCN FOR HYBRJ EXAMPLE.
C

INTEGER J,K
DOUBLE PRECISION ONE, TEMPTEMP1,TEMP2,THREE,TWO,ZERO
DATA ZERO,ONE,TWO,THREE,FOUR /0.DO,1.DO,2.DO,3.DO,4.DO/

C
IF (IFLAG .NE. 0) GO TO 5

C
C INSERT PRINT STATEMENTS HERE WHEN NPRINT IS POSITIVE.
C

RETURN
5 CONTINUE

IF (IFLAG .EQ. 2) GO TO 20
DO 10 K = 1, N

TEMP = (THREE - TWO*X(K))*X(K)
TEMP1 = ZERO
IF (K .NE. 1) TEMP. = X(K-1)
TEMP2 = ZERO
IF (K .NE. N) TEMP2 = X(K+1)
FVEC(K) = TEMP - TEMP1 - TWO*TEMP2 + ONE

10 CONTINUE
GO TO 50

20 CONTINUE
DO 40 K = 1, N

DO 30 J = 1, N
FJAC(K,J) = ZERO

30 CONTINUE
FJAC(K,K) = THREE - FOUR*X(K)
IF (K .NE. 1) FJAC(K,K-1) = -ONE
IF (K .NE. N) FJAC(K,K+1) = -TWO

40 CONTINUE
50 CONTINUE

RETURN
C
C LAST CARD OF SUBROUTINE FCN.
C

END

Results obtained with different compilers or machines
may be slightly different.



78

Page 8

FINAL L2 NORM OF THE RESIDUALS 0.1192636D-07

NUMBER OF FUNCTION EVALUATIONS 11

NUMBER OF JACOBIAN EVALUATIONS 1

EXIT PARAMETER 1

FINAL APPROXIMATE SOLUTION

-0.5706545D+00 -0.6816283D+00 -0.7017325D+00
-0.7042129D+00 -0.7013690D+00 -0.6918656D+00
-0.6657920D+00 -0.5960342D+00 -0.4164121D+00



79

Page 1

Documentation for MINPACK subroutine LMDER1

Double precision version

Argonne National Laboratory

Burton S. Garbow, Kenneth E. Hillstrom, Jorge J. More

March 1980

1. Purpose.

The purpose of LMDER1 is to minimize the sum of the squares of M
nonlinear functions in N variables by a modification of the
Levenberg-Marquardt algorithm. This is done by using the more
general least-squares solver LMDER. The user must provide a
subroutine which calculates the functions and the Jacobian.

2. Subroutine and type statements.

SUBROUTINE LMDER1(FCN,M,N,X,FVEC,FJAC,LDFJAC,TOL,
* INFO,IPVT,WA,LWA)
INTEGER M,N,LDFJAC,INFO,LWA
INTEGER IPVT(N)
DOUBLE PRECISION TOL
DOUBLE PRECISION X(N),FVEC(M),FJAC(LDFJAC,N),WA(LWA)
EXTERNAL FCN

3. Parameters.

Parameters designated as input parameters must be specified on
entry to LMDER1 and are not changed on exit, while parameters
designated as output parameters need not be specified on entry
and are set to appropriate values on exit from LMDER1.

FCN is the name of the user-supplied subroutine which calculates
the functions and the Jacobian. FCN must be declared in an
EXTERNAL statement in the user calling program, and should be
written as follows.

SUBROUTINE FCN(M,N,X,FVEC,FJAC,LDFJAC,IFLAG)
INTEGER M,N,LDFJAC,IFLAG
DOUBLE PRECISION X(N),FVEC(M),FJAC(LDFJAC,N)

IF IFLAG = 1 CALCULATE THE FUNCTIONS AT X AND
RETURN THIS VECTOR IN FVEC. DO NOT ALTER FJAC.
IF IFLAG = 2 CALCULATE THE JACOBIAN AT X AND
RETURN THIS MATRIX IN FJAC. DO NOT ALTER FVEC.

RETURN
END



80

Page 2

The value of IFLAG should not be changed by FCN unless the
user wants to terminate execution of LMDER1. In this case set
IFLAG to a negative integer.

M is a positive integer input variable set to the number of
functions.

N is a positive integer input variable set to the number of
variables. N must not exceed M.

X is an array of length N. On input X must contain an initial
estimate of the solution vector. On output X contains the
final estimate of the solution vector.

FVEC is an output array of length M which contains the functions
evaluated at the output X.

FJAC is an output M by N array. The upper N by N submatrix of
FJAC contains an upper triangular matrix R with diagonal ele-
ments of nonincreasing magnitude such that

T T T
P *(JAC *JAC)*P = R *R,

where P is a permutation matrix and JAC is the final calcu-
lated Jacobian. Column j of P is column IPVT(j) (see below)
of the identity matrix. The lower trapezoidal part of FJAC
contains information generated during the computation of R.

LDFJAC is a positive integer input variable not less than M
which specifies the leading dimension of the array FJAC.

TOL is a nonnegative input variable. Termination occurs when
the algorithm estimates either that the relative error in the
sum of squares is at most TOL or that the relative error
between X and the solution is at most TOL. Section 4 contains
more details about TOL.

INFO is an integer output variable. If the user has terminated
execution, INFO is set to the (negative) value of IFLAG. See
description of FCN. Otherwise, INFO is set as follows.

INFO = 0 Improper input parameters.

INFO = 1 Algorithm estimates that the relative error in the
sum of squares is at most TOL.

INFO = 2 Algorithm estimates that the relative error between
X and the solution is at most TOL.

INFO = 3 Conditions for INFO = 1 and INFO = 2 both hold.

INFO = 4 FVEC is orthogonal to the columns of the Jacobian to
machine precision.



81
Page 3

INFO = 5 Number of calls to FCN with IFLAG = 1 has reached
100*(N+l).

INFO = 6 TOL is too small. No further reduction in the sum
of squares is possible.

INFO = 7 TOL is too small. No further improvement in the
approximate solution X is possible.

Sections 4 and 5 contain more details about INFO.

IPVT is an integer output array of length N. IPVT defines a
permutation matrix P such that JAC*P = Q*R, where JAC is the
final calculated Jacobian, Q is orthogonal (not stored), and R
is upper triangular with diagonal elements of nonincreasing
magnitude. Column j of P is column IPVT(j) of the identity
matrix.

WA is a work array of length LWA.

LWA is a positive integer input variable not less than 5*N+M.

4. Successful completion.

The accuracy of LMDER1 is controlled by the convergence parame-
ter TOL. This parameter is used in tests which make three types
of comparisons between the approximation X and a solution XSOL.
LMDER1 terminates when any of the tests is satisfied. If TOL is
less than the machine precision (as defined by the MINPACK func-
tion DPMPAR(1)), then LMDER1 only attempts to satisfy the test
defined by the machine precision. Further progress is not usu-
ally possible. Unless high precision solutions are required,
the recommended value for TOL is the square root of the machine
precision.

The tests assume that the functions and the Jacobian are coded
consistently, and that the functions are reasonably well
behaved. If these conditions are not satisfied, then LMDER1 may
incorrectly indicate convergence. The coding of the Jacobian
can be checked by the MINPACK subroutine CHKDER. If the Jaco-
bian is coded correctly, then the validity of the answer can be
checked, for example, by rerunning LMDER1 with a tighter toler-
ance.

First convergence test. If ENORM(Z) denotes the Euclidean norm
of a vector Z, then this test attempts to guarantee that

ENORM(FVEC) .LE. (1+TOL)*ENORM(FVECS),

where FVECS denotes the functions evaluated at XSOL. If this
condition is satisfied with TOL = 10**(-K), then the final
residual norm ENORM(FVEC) has K significant decimal digits and
INFO is set to 1 (or to 3 if the second test is also



82

Page 4

satisfied).

Second convergence test. If D is a diagonal matrix (implicitly
generated by LMDER1) whose entries contain scale factors for
the variables, then this test attempts to guarantee that

ENORM(D*(X-XSOL)) .LE. TOL*ENORM(D*XSOL).

If this condition is satisfied with TOL = 10**(-K), then the
larger components of D*X have K significant decimal digits and
INFO is set to 2 (or to 3 if the first test is also satis-
fied). There is a danger that the smaller components of D*X
may have large relative errors, but the choice of D is such
that the accuracy of the components of X is usually related to
their sensitivity.

Third convergence test. This test is satisfied when FVEC is
orthogonal to the columns of the Jacobian to machine preci-
sion. There is no clear relationship between this test and
the accuracy of LMDER1, and furthermore, the test is equally
well satisfied at other critical points, namely maximizers and
saddle points. Therefore, termination caused by this test
(INFO = 4) should be examined carefully.

5. Unsuccessful completion.

Unsuccessful termination of LMDER1 can be due to improper input
parameters, arithmetic interrupts, or an excessive number of
function evaluations.

Improper input parameters. INFO is set to 0 if N .LE. 0, or
M .LT. N, or LDFJAC .LT. M, or TOL .LT. O.DO, or
LWA .LT. 5*N+M.

Arithmetic interrupts. If these interrupts occur in the FCN
subroutine during an early stage of the computation, they may
be caused by an unacceptable choice of X by LMDER1. In this
case, it may be possible to remedy the situation by not evalu-
ating the functions here, but instead setting the components
of FVEC to numbers that exceed those in the initial FVEC,
thereby indirectly reducing the step length. The step length
can be more directly controlled by using instead LMDER, which
includes in its calling sequence the step-length- governing
parameter FACTOR.

Excessive number of function evaluations. If the number of
calls to FCN with IFLAG = 1 reaches 100*(N+1), then this indi-
cates that the routine is converging very slowly as measured
by the progress of FVEC, and INFO is set to 5. In this case,
it may be helpful to restart LMDER1, thereby forcing it to
disregard old (and possibly harmful) information.



83

Page 5

6. Characteristics of the algorithm.

LMDER1 is a modification of the Levenberg-Marquardt algorithm.
Two of its main characteristics involve the proper use of
implicitly scaled variables and an optimal choice for the cor-
rection. The use of implicitly scaled variables achieves scale
invariance of LMDER1 and limits the size of the correction in
any direction where the functions are changing rapidly. The
optimal choice of the correction guarantees (under reasonable
conditions) global convergence from starting points far from the
solution and a fast rate of convergence for problems with small
residuals.

Timing. The time required by LMDER1 to solve a given problem
depends on M and N, the behavior of the functions, the accu-
racy requested, and the starting point. The number of arith-
metic operations needed by LMDER1 is about N**3 to process
each evaluation of the functions (call to FCN with IFLAG = 1)
and M*(N**2) to process each evaluation of the Jacobian (call
to FCN with IFLAG = 2). Unless FCN can be evaluated quickly,
the timing of LMDER1 will be strongly influenced by the time
spent in FCN.

Storage. LMDER1 requires M*N + 2*M + 6*N double precision sto-
rage locations and N integer storage locations, in addition to
the storage required by the program. There are no internally
declared storage arrays.

7. Subprograms required.

USER-supplied........FCN

MINPACK-supplied ... DPMPAR,ENORM,LMDER,LMPAR,QRFAC,QRSOLV

FORTRAN-supplied ... DABS,DMAX1,DMIN1,DSQRT,MOD

8. References.

Jorge J. More, The Levenberg-Marquardt Algorithm, Implementation
and Theory. Numerical Analysis, G. A. Watson, editor.
Lecture Notes in Mathematics 630, Springer-Verlag, 1977.

9. Example.

The problem is to determine the values of x(1), x(2), and x(3)
which provide the best fit (in the least squares sense) of

x(1) + u(i)/(v(i)*x(2) + w(i)*x(3)), i = 1, 15

to the data



84
Page 6

y = (0.14,0.18,0.22,0.25,0.29,0.32,0.35,0.39,
0.37,0.58,0.73,0.96,].34,2.10,4.39),

where u(i) = i, v(i) = 16 - i, and w(i) = min(u(i),v(i)). The
i-th component of FVEC is thus defined by

y(i) - (x(1) + u(i)/(v(i)*x(2) + w(i)*x(3))).

C **********
C
C DRIVER FOR LMDER1 EXAMPLE.
C DOUBLE PRECISION VERSION
C
C **********

INTEGER J,M,N,LDFJAC,INFO,LWA,NWRITE
INTEGER IPVT(3)
DOUBLE PRECISION TOL,ENORM
DOUBLE PRECISION X(3),FVEC(15),FJAC(15,3),WA(30)
DOUBLE PRECISION ENORM,DPMPAR
EXTERNAL FCN

C
C LOGICAL OUTPUT UNIT IS ASSUMED TO BE NUMBER 6.
C

DATA NWRITE /6/
C

M = 15
N = 3

C
C THE FOLLOWING STARTING VALUES PROVIDE A ROUGH FIT.
C

X(1) = 1.DO
X(2) = 1.DO
X(3) = 1.DO

C
LDFJAC = 15
LWA = 30

C
C SET TOL TO THE SQUARE ROOT OF THE MACHINE PRECISION.
C UNLESS HIGH PRECISION SOLUTIONS ARE REQUIRED,
C THIS IS THE RECOMMENDED SETTING.
C

TOL = DSQRT(DPMPAR(1))
C

CALL LMDER1(FCN,M,N,X,FVEC,FJAC,LDFJAC,TOL,
* INFO,IPVT,WA,LWA)
FNORM = ENORM(M,FVEC)
WRITE (NWRITE,1000) FNORM,INFO,(X(J),J=1,N)
STOP

1000 FORMAT (5X,31H FINAL L2 NORM OF THE RESIDUALS,D15.7 //
* 5X,15H EXIT PARAMETER,16X,I1O //
* 5X,27H FINAL APPROXIMATE SOLUTION // 5X,3D15.7)

C
C LAST CARD OF DRIVER FOR LMDER1 EXAMPLE.
C



85
Page 7

END
SUBROUTINE FCN(M,N,X,FVEC,FJAC,LDFJAC,IFLAG)
INTEGER M,N,LDFJAC,IFLAG
DOUBLE PRECISION X(N),FVEC(M),FJAC(LDFJACN)

C
C SUBROUTINE FCN FOR LMDER1 EXAMPLE.
C

INTEGER I
DOUBLE PRECISION TMP1,TMP2,TMP3,TMP4
DOUBLE PRECISION Y(15)
DATA Y(1),Y(2),Y(3),Y(4),Y(5),Y(6),Y(7),Y(8),

* Y(9),Y(10),Y(11),Y(12),Y(13),Y(14),Y(15)
* /1.4D-1,1.8D-1,2.2D-1,2.5D-1,2.9D-1,3.2D-1,3.5D-1,3.9D-1,
* 3.7D-1,5.8D-1,7.3D-1,9.6D-1,1.34D0,2.1DO,4.39D0/

C
IF (IFLAG .EQ. 2) GO TO 20
DO 10 I = 1, 15

TMP1 = I
TMP2 = 16 - I

TMP3 = TMP1
IF (I .GT. 8) TMP3 = TMP2
FVEC(I) = Y(I) - (X(1) + TMP1/(X(2)*TMP2 + X(3)*TMP3))

10 CONTINUE
GO TO 40

20 CONTINUE
DO 30 I = 1, 15

TMP1 = I
TMP2 = 16 - I

TMP3 = TMP1
IF (I .GT. 8) TMP3 = TMP2
TMP4 = (X(2)*TMP2 + X(3)*TMP3)**2
FJAC(I,1) = -1.DO
FJAC(I,2) = TMP1*TMP2/TMP4
FJAC(I,3) = TMP1*TMP3/TMP4

30 CONTINUE
40 CONTINUE

RETURN
C
C LAST CARD OF SUBROUTINE FCN.
C

END

Results obtained with different compilers or machines
may be slightly different.

FINAL L2 NORM OF THE RESIDUALS 0.9063596D-01

EXIT PARAMETER

FINAL APPROXIMATE SOLUTION

0.8241058D-01 0.1133037D+01 0.2343695D+01



86



87

Page 1

Documentation for MINPACK subroutine LMDER

Double precision version

Argonne National Laboratory

Burton S. Garbow, Kenneth E. Hillstrom, Jorge J. More

March 1980

1. Purpose.

The purpose of LMDER is to minimize the sum of the squares of M
nonlinear functions in N variables by a modification of the
Levenberg-Marquardt algorithm. The user must provide a subrou-
tine which calculates the functions and the Jacobian.

2. Subroutine and type statements.

SUBROUTINE LMDER(FCN,M,N,X,FVEC,FJAC,LDFJAC,FTOL,XTOL,GTOL,
* MAXFEV,DIAG,MODE,FACTOR,NPRINT,INFO,NFEV,NJEV,
* IPVT,QTF,WA1,WA2,WA3,WA4)
INTEGER M,N,LDFJAC,MAXFEV,MODE,NPRINT,INFO,NFEV,NJEV
INTEGER IPVT(N)
DOUBLE PRECISION FTOL,XTOL,GTOL,FACTOR
DOUBLE PRECISION X(N),FVEC(M),FJAC(LDFJAC,N),DIAG(N),QTF(N),

* WA1(N),WA2(N),WA3(N),WA4(M)

3. Parameters.

Parameters designated as input parameters must be specified on
entry to LMDER and are not changed on exit, while parameters
designated as output parameters need not be specified on entry
and are set to appropriate values on exit from LMDER.

FCN is the name of the user-supplied subroutine which calculates
the functions and the Jacobian. FCN must be declared in an
EXTERNAL statement in the user calling program, and should be
written as follows.

SUBROUTINE FCN(M,N,X,FVEC,FJAC,LDFJAC,IFLAG)
INTEGER M,N,LDFJAC,IFLAG
DOUBLE PRECISION X(N),FVEC(M),FJAC(LDFJAC,N)

IF IFLAG = 1 CALCULATE THE FUNCTIONS AT X AND
RETURN THIS VECTOR IN FVEC. DO NOT ALTER FJAC.
IF IFLAG = 2 CALCULATE THE JACOBIAN AT X AND
RETURN THIS MATRIX IN FJAC. DO NOT ALTEP FVEC.

RETURN
END



88

Page 2

The value of IFLAG should not be changed by FCN unless the
user wants to terminate execution of LMDER. In this case set
IFLAG to a negative integer.

M is a positive integer input variable set to the number of
functions.

N is a positive integer input variable set to the number of
variables. N must not exceed M.

X is an array of length N. On input X must contain an initial
estimate of the solution vector. On output X contains the
final estimate of the solution vector.

FVEC is an output array of length M which contains the functions
evaluated at the output X.

FJAC is an output M by N array. The upper N by N submatrix of
FJAC contains an upper triangular matrix R with diagonal ele-
ments of nonincreasing magnitude such that

T T T
P *(JAC *JAC)*P = R *R,

where P is a permutation matrix and JAC is the final calcu-
lated Jacobian. Column j of P is column IPVT(j) (see below)
of the identity matrix. The lower trapezoidal part of FJAC
contains information generated during the computation of R.

LDFJAC is a positive integer input variable not less than M
which specifies the leading dimension of the array FJAC.

FTOL is a nonnegative input variable. Termination occurs when
both the actual and predicted relative reductions in the sum
of squares are at most FTOL. Therefore, FTOL measures the
relative error desired in the sum of squares. Section 4 con-
tains more details about FTOL.

XTOL is a nonnegative input variable. Termination occurs when
the relative error between two consecutive iterates is at most
XTOL. Therefore, XTOL measures the relative error desired in
the approximate solution. Section 4 contains more details
about XTOL.

GTOL is a nonnegative input variable. Termination occurs when
the cosine of the angle between FVEC and any column of the
Jacobian is at most GTOL in absolute value. Therefore, GTOL
measures the orthogonality desired between the function vector
and the columns of the Jacobian. Section 4 contains more
details about GTOL.

MAXFEV is a positive integer input variable. Termination occurs
when the number of calls to FCN with IFLAG = 1 has reached
MAXFEV.



89

Page 3

DIAG is an array of length N. If MODE = 1 (see below), DIAG is
internally set. If MODE = 2, DIAG must contain positive
entries that serve as multiplicative scale factors for the
variables.

MODE is an integer input variable. If MODE = 1, the variables
will be scaled internally. If MODE = 2, the scaling is speci-
fied by the input DIAG. Other values of MODE are equivalent
to MODE = 1.

FACTOR is a positive input variable used in determining the ini-
tial step bound. This bound is set to the product of FACTOR
and the Euclidean norm of DIAG*X if nonzero, or else to FACTOR
itself. In most cases FACTOR should lie in the interval
(.1,100.). 100. is a generally recommended value.

NPRINT is an integer input variable that enables controlled
printing of iterates if it is positive. In this case, FCN is
called with IFLAG = 0 at the beginning of the first iteration
and every NPRINT iterations thereafter and immediately prior
to return, with X, FVEC, and FJAC available for printing.
FVEC and FJAC should not be altered. If NPRINT is not posi-
tive, no special calls of FCN with IFLAG = 0 are made.

INFO is an integer output variable. If the user has terminated
execution, INFO is set to the (negative) value of IFLAG. See
description of FCN. Otherwise, INFO is set as follows.

INFO = 0

INFO = 1

INFO = 2

INFO = 3

INFO = 4

INFO = 5

INFO = 6

INFO = 7

INFO = 8

Improper input parameters.

Both actual and predicted relative reductions in the
sum of squares are at most FTOL.

Relative error between two consecutive iterates is
at most XTOL.

Conditions for INFO = 1 and INFO = 2 both hold.

The cosine of the angle between FVEC and any column
of the Jacobian is at most GTOL in absolute value.

Number of calls to FCN with IFLAG = 1 has reached
MAXFEV.

FTOL is too small. No further reduction in the sum
of squares is possible.

XTOL is too small. No further improvement in the
approximate solution X is possible.

GTOL is too small. FVEC is orthogonal to the
columns of the Jacobian to machine precision.

Sections 4 and 5 contain more details about INFO.



90

Page 4

NFEV is an integer output variable set to the number of calls to
FCN with IFLAG = 1.

NJEV is an integer output variable set to the number of calls to
FCN with IFLAG = 2.

IPVT is an integer output array of length N. IPVT defines a
permutation matrix P such that JAC*P = Q*R, where JAC is the
final calculated Jacobian, Q is orthogonal (not stored), and R
is upper triangular with diagonal elements of nonincreasing
magnitude. Column j of P is column IPVT(j) of the identity
matrix.

QTF is an output array of length N which contains the first N
elements of the vector (Q transpose)*FVEC.

WAl, WA2, and WA3 are work arrays of length N.

WA4 is a work array of length M.

4. Successful completion.

The accuracy of LMDER is controlled by the convergence parame-
ters FTOL, XTOL, and GTOL. These parameters are used in tests
which make three types of comparisons between the approximation
X and a solution XSOL. LMDER terminates when any of the tests
is satisfied. If any of the convergence parameters is less than
the machine precision (as defined by the MINPACK function
DPMPAR(1)), then LMDER only attempts to satisfy the test defined
by the machine precision. Further progress is not usually pos-
sible.

The tests assume that the functions and the Jacobian are coded
consistently, and that the functions are reasonably well
behaved. If these conditions are not satisfied, then LMDER may
incorrectly indicate convergence. The coding of the Jacobian
can be checked by the MINPACK subroutine CHKDER. If the Jaco-
bian is coded correctly, then the validity of the answer can be
checked, for example, by rerunning LMDER with tighter toler-
ances.

First convergence test. If ENORM(Z) denotes the Euclidean norm
of a vector Z, then this test attempts to guarantee that

ENORM(FVEC) .LE. (1+FTOL)*ENORM(FVECS),

where FVECS denotes the functions evaluated at XSOL. If this
condition is satisfied with FTOL = 10**(-K), then the final
residual norm ENORM(FVEC) has K significant decimal digits and
INFO is set to 1 (or to 3 if the second test is also satis-
fied). Unless high precision solutions are required, the
recommended value for FTOL is the square root of the machine
precision.



91

Page 5

Second convergence test. If D is the diagonal matrix whose
entries are defined by the array DIAG, then this test attempts
to guarantee that

ENORM(D*(X-XSOL)) .LE. XTOL*ENORM(D*XSOL).

If this condition is satisfied with XTOL = 10**(-K), then the
larger components of D*X have K significant decimal digits and
INFO is set to 2 (or to 3 if the first test is also satis-
fied). There is a danger that the smaller components of D*X
may have large relative errors, but if MODE = 1, then the
accuracy of the components of X is usually related to their
sensitivity. Unless high precision solutions are required,
the recommended value for XTOL is the square root of the
machine precision.

Third convergence test. This test is satisfied when the cosine
of the angle between FVEC and any column of the Jacobian at X
is at most GTOL in absolute value. There is no clear rela-
tionship between this test and the accuracy of LMDER, and
furthermore, the test is equally well satisfied at other crit-
ical points, namely maximizers and saddle points. Therefore,
termination caused by this test (INFO = 4) should be examined
carefully. The recommended value for GTOL is zero.

5. Unsuccessful completion.

Unsuccessful termination of LMDER can be due to improper input
parameters, arithmetic interrupts, or an excessive number of
function evaluations.

Improper input parameters. INFO is set to 0 if N .LE. 0, or
M .LT. N, or LDFJAC .LT. M, or FTOL .LT. O.DO, or
XTOL .LT. O.DO, or GTOL .LT. O.DO, or MAXFEV .LE. 0, or
FACTOR .LE. O.DO.

Arithmetic interrupts. If these interrupts occur in the FCN
subroutine during an early stage of the computation, they may
be caused by an unacceptable choice of X by LMDER. In this
case, it may be possible to remedy the situation by rerunning
LMDER with a smaller value of FACTOR.

Excessive number of function evaluations. A reasonable value
for MAXFEV is 100*(N+1). If the number of calls to FCN with
IFLAG = 1 reaches MAXFEV, then this indicates that the routine
is converging very slowly as measured by the progress of FVEC,
and INFO is set to 5. In this case, it may be helpful to
restart LMDER with MODE set to 1.

6. Characteristics of the algorithm.

LMDER is a modification of the Levenberg-Marquardt algorithm.



92

Page 6

Two of its main characteristics involve the proper use of
implicitly scaled variables (if MODE = 1) and an optimal choice
for the correction. The use of implicitly scaled variables
achieves scale invariance of LMDER and limits the size of the
correction in any direction where the functions are changing
rapidly. The optimal choice of the correction guarantees (under
reasonable conditions) global convergence from starting points
far from the solution and a fast rate of convergence for prob-
lems with small residuals.

Timing. The time required by LMDER to solve a given problem
depends on M and N, the behavior of the functions, the accu-
racy requested, and the starting point. The number of arith-
metic operations needed by LMDER is about N**3 to process each
evaluation of the functions (call to FCN with IFLAG = 1) and
M*(N**2) to process each evaluation of the Jacobian (call to
FCN with IFLAG = 2). Unless FCN can be evaluated quickly, the
timing of LMDER will be strongly influenced by the time spent
in FCN.

Storage. LMDER requires M*N + 2*M + 6*N double precision sto-
rage locations and N integer storage locations, in addition to
the storage required by the program. There are no internally
declared storage arrays.

7. Subprograms required.

USER-supplied........FCN

MINPACK-supplied ... DPMPAR,ENORM,LMPAR,QRFAC,QRSOLV

FORTRAN-supplied ... DABS,DMAX1,DMIN1,DSQRT,MOD

8. References.

Jorge J. More, The Levenberg-Marquardt Algorithm, Implementation
and Theory. Numerical Analysis, G. A. Watson, editor.
Lecture Notes in Mathematics 630, Springer-Verlag, 1977.

9. Example.

The problem is to determine the values of x(1), x(2), and x(3)

which provide the best fit (in the least squares sense) of

x(1) + u(i)/(v(i)*x(2) + w(i)*x(3)), i = 1, 15

to the data

y = (0.14,0.18,0.22,0.25,0.29,0.32,0.35,0.39,
0.37,0.58,0.73,0.96,1.34,2.10,4.39),



93

Page 7

where u(i) = i, v(i) = 16 - i, and w(i) = min(u(i),v(i)). The

i-th component of FVEC is thus defined by

y(i) - (x(1) + u(i)/(v(i)*x(2) + w(i)*x(3))).

C **********
C
C DRIVER FOR LMDER EXAMPLE.
C DOUBLE PRECISION VERSION
C
C **********

INTEGER J,M,N,LDFJAC,MAXFEV,MODE,NPRINT,INFO,NFEV,NJEV,NWRITE
INTEGER IPVT(3)
DOUBLE PRECISION FTOL,XTOL,GTOL,FACTOR,FNORM
DOUBLE PRECISION X(3),FVEC(15),FJAC(15,3),DIAG(3),QTF(3),

* WA1(3),WA2(3),WA3(3),WA4(15)
DOUBLE PRECISION ENORM,DPMPAR
EXTERNAL FCN

C
C LOGICAL OUTPUT UNIT IS ASSUMED TO BE NUMBER 6.
C

DATA NWRITE /6/
C

M = 15
N = 3

C
C THE FOLLOWING STARTING VALUES PROVIDE A ROUGH FIT.
C

X(1) = 1.DO
X(2) = 1.D0
X(3) = 1.DO

C
LDFJAC = 15

C
C SET FTOL AND XTOL TO THE SQUARE ROOT OF THE MACHINE PRECISION
C AND GTOL TO ZERO. UNLESS HIGH PRECISION SOLUTIONS ARE
C REQUIRED, THESE ARE THE RECOMMENDED SETTINGS.
C

FTOL = DSQRT(DPMPAR(1))
XTOL = DSQRT(DPMPAR(1))
GTOL = 0.DO

C
MAXFEV = 400
MODE = 1
FACTOR = 1.D2
NPRINT = 0

C
CALL LMDER(FCN,M,N,X,FVEC,FJAC,LDFJAC,FTOL,XTOL,GTOL,

* MAXFEV,DIAG,MODE,FACTOR,NPRINT,INFO,NFEV,NJEV,
* IPVT,QTFWA1,WA2,WA3,WA4)
FNORM = ENORM(M,FVEC)
WRITE (NWRITE, 1000) FNORM,NFEV,NJEV,INFO,(X(J),J=1,N)
STOP

1000 FORMAT (5X,31H FINAL L2 NORM OF THE RESIDUALS,D15.7 //



94
Page 8

* 5X,31H NUMBER OF FUNCTION EVALUATIONS,I10 //
* 5X,31H NUMBER OF JACOBIAN EVALUATIONS,I10 //
* 5X,15H EXIT PARAMETER,16X,I10 //
* 5X,27H FINAL APPROXIMATE SOLUTION // 5X,3D15.7)

C
C LAST CARD OF DRIVER FOR LMDER EXAMPLE.
C

END
SUBROUTINE FCN(M,N,X,FVECFJAC,LDFJAC,IFLAG)
INTEGER M,N,LDFJAC,IFLAG
DOUBLE PRECISION X(N),FVEC(M),FJAC(LDFJAC,N)

C
C SUBROUTINE FCN FOR LMDER EXAMPLE.
C

INTEGER I
DOUBLE PRECISION TMP1,TMP2,TMP3,TMP4
DOUBLE PRECISION Y(15)
DATA Y(1),Y(2),Y(3),Y(4),Y(5),Y(6),Y(7),Y(8),

* Y(9),Y(10),Y(11),Y(12),Y(13),Y(14),Y(15)
* /1.4D-1,1.3D-1,2.2D-1,2.5D-1,2.9D-1,3.2D-1,3.5D-J,3.9D-1,
* 3.7D-1,5.8D-1,7.3D-1,9.6D-1,1.34D0,2.iDO,4.39D0,/

C
IF (IFLAG .NE. 0) GO TO 5

C
C INSERT PRINT STATEMENTS HERE WHEN NPRINT IS POSITIVE.
C

RETURN
5 CONTINUE

IF (IFLAG .EQ. 2) GO TO 20
DO 10 I = 1, 15

TMP1 = I
TMP2 = 16 - I

TMP3 = TMP1
IF (I .GT. 8) TMP3 = TMP2
FVEC(I) = Y(I) - (X(1) + TMP1/(X(2)*TMP2 + X(3)*TMP3))

10 CONTINUE
GO TO 40

20 CONTINUE
DO 30 I = 1, 15

TMP1 = I
TMP2 = 16 - I

TMP3 = TMP1
IF (I .GT. 8) TMP3 = TMP2
TMP4 = (X(2)*TMP2 + X(3)*TMP3)**2
FJAC(I,1) = -1.DO
FJAC(I,2) = TMP1*TMP2/TMP4
FJAC(I,3) = TMP1*TMP3/TMP4

30 CONTINUE
40 CONTINUE

RETURN
C
C LAST CARD OF SUBROUTINE FCN.
C

END



95

Page 9

Results obtained with different compilers or machines
may be slightly different.

FINAL L2 NORM OF THE RESIDUALS 0.9063596D-O1

NUMBER OF FUNCTION EVALUATIONS 6

NUMBER OF JACOBIAN EVALUATIONS 5

EXIT PARAMETER 1

FINAL APPROXIMATE SOLUTION

0.8241058D-01 0.1133037D+01 0.2343695D+01



96



97

Page 1

Documentation for MINPACK subroutine LMSTR1

Double precision version

Argonne National Laboratory

Burton S. Garbow, Kenneth E. Hillstrom, Jorge J. More

March 1980

1. Purpose.

The purpose of LMSTR1 is to minimize the sum of the squares of M
nonlinear functions in N variables by a modification of the
Levenberg-Marquardt algorithm which uses minimal storage. This
is done by using the more general least-squares solver LMSTR.
The user must provide a subroutine which calculates the func-
tions and the rows of the Jacobian.

2. Subroutine and type statements.

SUBROUTINE LMSTR1(FCN,M,N,X,FVEC,FJAC,LDFJAC,TOL,
* INFO,IPVT,WA,LWA)
INTEGER MN,LDFJAC,INFO,LWA
INTEGER IPVT(N)
DOUBLE PRECISION TOL
DOUBLE PRECISION X(N),FVEC(M),FJAC(LDFJAC,N),WA(LWA)
EXTERNAL FCN

3. Parameters.

Parameters designated as input parameters must be specified on
entry to LMSTR1 and are not changed on exit, while parameters
designated as output parameters need not be specified on entry
and are set to appropriate values on exit from LMSTR1.

FCN is the name of the user-supplied subroutine which calculates
the functions and the rows of the Jacobian. FCN must be
declared in an EXTERNAL statement in the user calling program,
and should be written as follows.

SUBROUTINE FCN(M,N,X,FVEC,FJROW,IFLAG)
INTEGER M,N,IFLAG
DOUBLE PRECISION X(N),FVEC(M),FJROW(N)

IF IFLAG = 1 CALCULATE THE FUNCTIONS AT X AND
RETURN THIS VECTOR IN FVEC.
IF IFLAG = I CALCULATE THE (I-1)-ST ROW OF THE
JACOBIAN AT X AND RETURN THIS VECTOR IN FJROW.

RETURN



98

Page 2

END

The value of IFLAG should not be changed by FCN unless the
user wants to terminate execution of LMSTR1. In this case set
IFLAG to a negative integer.

M is a positive integer input variable set to the number of
functions.

N is a positive integer input variable set to the number of
variables. N must not exceed M.

X is an array of length N. On input X must contain an initial
estimate of the solution vector. On output X contains the
final estimate of the solution vector.

FVEC is an output array of length M which contains the functions
evaluated at the output X.

FJAC is an output N by N array. The upper triangle of FJAC con-
tains an upper triangular matrix R such that

T T T
P *(JAC *JAC)*P = R *R,

where P is a permutation matrix and JAC is the final calcu-
lated Jacobian. Column j of P is column IPVT(j) (see below)
of the identity matrix. The lower triangular part of FJAC
contains information generated during the computation of R.

LDFJAC is a positive integer input variable not less than N
which specifies the leading dimension of the array FJAC.

TOL is a nonnegative input variable. Termination occurs when
the algorithm estimates either that the relative error in the
sum of squares is at most TOL or that the relative error
between X and the solution is at most TOL. Section 4 contains
more details about TOL.

INFO is an integer output variable. If the user has terminated
execution, INFO is set to the (negative) value of IFLAG. See
description of FCN. Otherwise, INFO is set as follows.

INFO = 0 Improper input parameters.

INFO = 1 Algorithm estimates that the relative error in the
sum of squares is at most TOL.

INFO = 2 Algorithm estimates that the relative error between
X and the solution is at most TOL.

INFO = 3 Conditions for INFO = 1 and INFO = 2 both hold.

INFO = 4 FVEC is orthogonal to the columns of the Jacobian to



99

Page 3

machine precision.

INFO = 5 Number of calls to FCN with IFLAG = 1 has reached
100*(N+1).

INFO = 6 TOL is too small. No further reduction in the sum
of squares is possible.

INFO = 7 TOL is too small. No further improvement in the
approximate solution X is possible.

Sections 4 and 5 contain more details about INFO.

IPVT is an integer output array of length N. IPVT defines a
permutation matrix P such that JAC*P = Q*R, where JAC is the
final calculated Jacobian, Q is orthogonal (not stored), and R
is upper triangular. Column j of P is column IPVT(j) of the
identity matrix.

WA is a work array of length LWA.

LWA is a positive integer input variable not less than 5*N+M.

4. Successful completion.

The accuracy of LMSTR1 is controlled by the convergence parame-
ter TOL. This parameter is used in tests which make three types
of comparisons between the approximation X and a solution XSOL.
LMSTR1 terminates when any of the tests is satisfied. If TOL is
less than the machine precision (as defined by the MINPACK func-
tion DPMPAR(1)), then LMSTR1 only attempts to satisfy the test
defined by the machine precision. Further progress is not usu-
ally possible. Unless high precision solutions are required,
the recommended value for TOL is the square root of the machine
precision.

The tests assume that the functions and the Jacobian are coded
consistently, and that the functions are reasonably well
behaved. If these conditions are not satisfied, then LMSTR1 may
incorrectly indicate convergence. The coding of the Jacobian
can be checked by the MINPACK subroutine CHKDER. If the Jaco-
bian is coded correctly, then the validity of the answer can be
checked, for example, by rerunning LMSTR1 with a tighter toler-
ance.

First convergence test. If ENORM(Z) denotes the Euclidean norm
of a vector Z, then this test attempts to guarantee that

ENORM(FVEC) .LE. (1+TOL)*ENORM(FVECS),

where FVECS denotes the functions evaluated at XSOL. If this
condition is satisfied with TOL = 10**(-K), then the final
residual norm ENORM(FVEC) has K significant decimal digits and



100
Page 4

INFO is set to 1 (or to 3 if the second test is also satis-
fied).

Second convergence test. If D is a diagonal matrix (implicitly
generated by LMSTR1) whose entries contain scale factors for
the variables, then this test attempts to guarantee that

ENORM(D*(X-XSOL)) .LE. TOL*ENORM(D*XSOL).

If this condition is satisfied with TOL = 10**(-K), then the
larger components of D*X have K significant decimal digits and
INFO is set to 2 (or to 3 if the first test is also satis-
fied). There is a danger that the smaller components of D*X
may have large relative errors, but the choice of D is such
that the accuracy of the components of X is usually related to
their sensitivity.

Third convergence test. This test is satisfied when FVEC is
orthogonal to the columns of the Jacobian to machine preci-
sion. There is no clear relationship between this test and
the accuracy of LMSTR1, and furthermore, the test is equally
well satisfied at other critical points, namely maximizers and
saddle points. Therefore, termination caused by this test
(INFO = 4) should be examined carefully.

5. Unsuccessful completion.

Unsuccessful termination of LMSTR1 can be due to improper input
parameters, arithmetic interrupts, or an excessive number of
function evaluations.

Improper input parameters. INFO is set to 0 if N .LE. 0, or
M .LT. N, or LDFJAC .LT. N, or TOL .LT. O.DO, or
LWA .LT. 5*N+M.

Arithmetic interrupts. If these interrupts occur in the FCN
subroutine during an early stage of the computation, they may
be caused by an unacceptable choice of X by LMSTR1. In this
case, it may be possible to remedy the situation by not evalu-
ating the functions here, but instead setting the components
of FVEC to numbers that exceed those in the initial FVEC,
thereby indirectly reducing the step length. The step length
can be more directly controlled by using instead LMSTR, which
includes in its calling sequence the step-length- governing
parameter FACTOR.

Exc.essive number of function evaluations. If the number of
calls to FCN with IFLAG = 1 reaches 100*(N+1), then this indi-
cates that the routine is converging very slowly as measured
by the progress of FVEC, and INFO is set to 5 In this case,
it may be helpful to restart LMSTR1, thereby forcing it to
disregard old (and possibly harmful) information.



101
Page 5

6. Characteristics of the algorithm.

LMSTR1 is a modification of the Levenberg-Marquardt algorithm.
Two of its main characteristics involve the proper use of
implicitly scaled variables and an optimal choice for the cor-
rection. The use of implicitly scaled variables achieves scale
invariance of LMSTR1 and limits the size of the correction in
any direction where the functions are changing rapidly. The
optimal choice of the correction guarantees (under reasonable
conditions) global convergence from starting points far from the
solution and a fast rate of convergence for problems with small
residuals.

Timing. The time required by LMSTR1 to solve a given problem
depends on M and N, the behavior of the functions, the accu-
racy requested, and the starting point. The number of arith-
metic operations needed by LMSTR1 is about N**3 to process
each evaluation of the functions (call to FCN with IFLAG = 1)
and 1.5*(N**2) to process each row of the Jacobian (call to
FCN with IFLAG .GE. 2). Unless FCN can be evaluated quickly,
the timing of LMSTR1 will be strongly influenced by the time
spent in FCN.

Storage. LMSTR1 requires N**2 + 2*M + 6*N double precision sto-
rage locations and N integer storage locations, in addition to
the storage required by the program. There are no internally
declared storage arrays.

7. Subprograms required.

USER-supplied........FCN

MINPACK-supplied ... DPMPAR, ENORM, LMSTR, LMPAR, QRFAC, QRSOrLV,
RWUPDT

FORTRAN-supplied ... DABS,DMAX1,DMIN1,DSQRT,MOD

8. References.

Jorge J. More, The Levenberg-Marquardt Algorithm, Implementation
and Theory. Numerical Analysis, G. A. Watson, editor.
Lecture Notes in Mathematics 630, Springer-Verlag, 1977.

9. Example.

The problem is to determine the values of x(1), x(2), and x(3)
which provide the best fit (in the least squares sense) of

x(1) + u(i)/(v(i)*x(2) + w(i)*x(3)), i = 1, 15



102

Page 6

to the data

y = (0.14,0.18,0.22,0.25,0.29,0.32,0.35,0.39,
0.37,0.58,0.73,0.96,1.34,2.10,4.39),

where u(i) = i, v(i) = 16 - i, and w(i) = min(u(i),v(i)). The
i-th component of FVEC is thus defined by

y(i) - (x(1) + u(i)/(v(i)*x(2) + w(i)*x(3))).

C **********
C
C DRIVER FOR LMSTR1 EXAMPLE.
C DOUBLE PRECISION VERSION
C
C **********

INTEGER J,M,N,LDFJAC,INFO,LWA,NWRITE
INTEGER IPVT(3)
DOUBLE PRECISION TOL,FNORM
DOUBLE PRECISION X(3),FVEC(15),FJAC(3,3),WA(30)
DOUBLE PRECISION ENORM,DPMPAR
EXTERNAL FCN

C
C LOGICAL OUTPUT UNIT IS ASSUMED TO BE NUMBER 6.
C

DATA NWRITE /6/
C

M = 15
N = 3

C
C THE FOLLOWING STARTING VALUES PROVIDE A ROUGH FIT.
C

X(1) = 1.DO
X(2) = 1.DO
X(3) = 1.DO

C
LDFJAC = 3
LWA = 30

C
C SET TOL TO THE SQUARE ROOT OF THE MACHINE PRECISION.
C UNLESS HIGH PRECISION SOLUTIONS ARE REQUIRED,
C THIS IS THE RECOMMENDED SETTING.
C

TOL = DSQRT(DPMPAR'1))
C

CALL LMSTR1(FCN,M,N,X,FVEC,FJAC,LDFJAC,TOL,
* INFO,IPVT,WA,LWA)
FNORM = ENORM(M,FVEC)
WRITE (NWRITE,1000) FNORM,INFO,(X(J),J=1,N)
STOP

1000 FORMAT (5X,31H FINAL L2 NORM OF THE RESIDUALS,D15.7 //
* 5X,15H EXIT PARAMETER,16X,I10 //
* 5X,27H FINAL APPROXIMATE SOLUTION // 5X,3D15.7)

C



103
Page 7

C LAST CARD OF DRIVER FOR LMSTR1 EXAMPLE.
C

END
SUBROUTINE FCN(M,N,X,FVEC,FJROWIFLAG)
INTEGER M,N,IFLAG
DOUBLE PRECISION X(N),FVEC(M),FJROW(N)

C
C SUBROUTINE FCN FOR LMSTR1 EXAMPLE.
C

INTEGER I
DOUBLE PRECISION TMP1,TMP2,TMP3,TMP4
DOUBLE PRECISION Y(15)
DATA Y(1),Y(2),Y(3),Y(4),Y(5),Y(6),Y(7),Y(8),

* Y(9),Y(10),Y(11),Y(12),Y(13),Y(14),Y(15)
* /1.4D-1,1.8D-1,2.2D-1,2.5D-1,2.9D-1,3.2D-1,3.5D-1,3.9D-1,
* 3.7D-1,5.8D-1,7.3D-1,9.6D-1,1.34D0,2.1DO,4.39D0/

C
IF (IFLAG .GE. 2) GO TO 20
DO 10 I = 1, 15

TMP1 = I
TMP2 = 16 - I
TMP3 = TMP1
IF (I .GT. 8) TMP3 = TMP2
FVEC(I) = Y(I) - (X(1) + TMP1/(X(2)*TMP2 + X(3)*TMP3))

10 CONTINUE
GO TO 40

20 CONTINUE
I = IFLAG - 1

TMP1 = I
TMP2 = 16 - I
TMP3 = TMP1
IF (I .GT. 8) TMP3 = TMP2
TMP4 = (X(2)*T':P2 + X(3)*TMP3)**2
FJROW(1) = -1.DO
FJROW(2) = TMP1*TMP2/TMP4
FJROW(3) = TMP1*TMP3/TMP4

30 CONTINUE
40 CONTINUE

RETURN
C
C LAST CARD OF SUBROUTINE FCN.
C

END

Results obtained with different compilers or machines
may be slightly different.

FINAL L2 NORM OF THE RESIDUALS 0.9063596D-01

EXIT PARAMETER

FINAL APPROXIMATE SOLUTION

0.8241058D-01 0.1133037D+01 0.2343695D+01



104



105

Page 1

Documentation for MINPACK subroutine LMSTR

Double precision version

Argonne National Laboratory

Burton S. Garbow, Kenneth E. Hillstrom, Jorge J. More

March 1980

1. Purpose.

The purpose of LMSTR is to minimize the sum of the squares of M
nonlinear functions in N variables by a modification of the
Levenberg-Marquardt algorithm which uses minimal storage. The
user must provide a subroutine which calculates the functions
and the rows of the Jacobian.

2. Subroutine and type statements.

SUBROUTINE LMSTR(FCN,M,N,X,FVEC,FJAC,LDFJAC,FTOL,XTOL,GTOL,
* MAXFEV,DIAG,MODE,FACTOR,NPRINT,INFO,NFEV,NJEV,
* IPVT,QTF,WA1,WA2,WA3,WA4)
INTEGER M,N,LDFJAC,MAXFEV,MODE,NPRINT,INFO,NFEV,NJEV
INTEGER IPVT(N)
DOUBLE PRECISION FTOL,XTOL,GTOL,FACTOR
DOUBLE PRECISION X(N),FVEC(M),FJAC(LDFJAC,N),DIAG(N),QTF(N),

* WA1(N),WA2(N),WA3(N),WA4(M)

3. Parameters.

Parameters designated as input parameters must be specified on
entry to LMSTR and are not changed on exit, while parameters
designated as output parameters need not be specified on entry
and are set to appropriate values on exit from LMSTR.

FCN is the name of the user-supplied subroutine which calculates
the functions and the rows of the Jacobian. FCN must be
declared in an EXTERNAL statement in the user calling program,
and should be written as follows.

SUBROUTINE FCN(M,N,X,FVEC,FJROW,IFLAG)
INTEGER M,N,IFLAG
DOUBLE PRECISION X(N),FVEC(M),FJROW(N)

IF IFLAG = 1 CALCULATE THE FUNCTIONS AT X AND
RETURN THIS VECTOR IN FVEC.
IF IFLAG = I CALCULATE THE (I-1)-ST ROW OF THE
JACOBIAN AT X AND RETURN THIS VECTOR IN FJROW.

RETURN



106

Page 2

END

The value of IFLAG should not be changed by FCN unless the
user wants to terminate execution of LMSTR. In this case set
IFLAG to a negative integer.

M is a positive integer input variable set to the number of
functions.

N is a positive integer input variable set to the number of
variables. N must not exceed M.

X is an array of length N. On input X must contain an initial
estimate of the solution vector. On output X contains the
final estimate of the solution vector.

FVEC is an output array of length M which contains the functions
evaluated at the output X.

FJAC is an output N by N array. The upper triangle of FJAC con-
tains an upper triangular matrix R such that

T T T
P *(JAC *JAC)*P = R *R,

where P is a permutation matrix and JAC is the final calcu-
lated Jacobian. Column j of P is column IPVT(j) (see below)
of the identity matrix. The lower triangular part of FJAC
contains information generated during the computation of R.

LDFJAC is a positive integer input variable not less than N
which specifies the leading dimension of the array FJAC.

FTOL is a nonnegative input variable. Termination occurs when
both the actual and predicted relative reductions in the sum
of squares are at most FTOL. Therefore, FTOL measures the
relative error desired in the sum of squares. Section 4 con-
tains more details about FTOL.

XTOL is a nonnegative input variable. Termination occurs when
the relative error between two consecutive iterates is at most
XTOL. Therefore, XTOL measures the relative error desired in
the approximate solution. Section 4 contains more details
about XTOL.

GTOL is a nonnegative input variable. Termination occurs when
the cosine of the angle between FVEC and any column of the
Jacobian is at most GTOL in absolute value. Therefore, GTOL
measures the orthogonality desired between the function vector
and the columns of the Jacobian. Section 4 contains more
details about GTOL.

MAXFEV is a positive integer input variable. Termination occurs
when the number of calls to FCN with IFLAG = 1 has reached



107

?age 3

MAXFEV.

DIAG is an array of length N. If MODE = 1 (see below), DIAG is
internally set. If MODE = 2, DIAG must contain positive
entries that serve as multiplicative scale factors for the
variables.

MODE is an integer input variable. If MODE = 1, the variables
will be scaled internally. If MODE = 2, the scaling is speci-
fied by the input DIAG. Other values of MODE are equivalent
to MODE = 1.

FACTOR is a positive input variable used in determining the ini-
tial step bound. This bound is set to the product of FACTOR
and the Euclidean norm of DIAG*X if nonzero, or else to FACTOR
itself. In most cases FACTOR should lie in the interval
(.1,100.). 100. is a generally recommended value.

NPRINT is an integer input variable that enables controlled
printing of iterates if it is positive. In this case, FCN is
called with IFLAG = 0 at the beginning of the first iteration
and every NPRINT iterations thereafter and immediately prior
to return, with X and FVEC available for printing. If NPRINT
is not positive, no special calls of FCN with IFLAG = 0 are
made.

INFO is an integer output variable. If the user has terminated
execution, INFO is set to the (negative) value of IFLAG. See
description of FCN. Otherwise, INFO is set as follows.

INFO = 0

INFO = 1

INFO = 2

INFO = 3

INFO = 4

INFO = 5

INFO = 6

INFO = 7

INFO = 8

Improper input parameters.

Both actual and predicted relative reductions in the
sum of squares are at most FTOL.

Relative error between two consecutive iterates is
at most XTOL.

Conditions for INFO = 1 and INFO = 2 both hold.

The cosine of the angle between FVEC and any column
of the Jacobian is at most GTOL in absolute value.

Number of calls to FCN with IFLAG = 1 has reached
MAXFEV.

FTOL is too small. No further reduction in the sum
of squares is possible.

XTOL is too small. No further improvement in the
approximate solution X is possible.

GTOL is too small. FVEC is orthogonal to the
columns of the Jacobian to machine precision.



108

Page 4

Sections 4 and 5 contain more details about INFO.

NFEV is an integer output variable set to the number of calls to
FCN with IFLAG = 1.

NJEV is an integer output variable set to the number of calls to
FCN with IFLAG = 2.

IPVT is an integer output array of length N. IPVT defines a
permutation matrix P such that JAC*P = Q*R, where JAC is the
final calculated Jacobian, Q is orthogonal (not stored), and R
is upper triangular. Column j of P is column IPVT(j) of the
identity matrix.

QTF is an output array of length N which contains the first N
elements of the vector (Q transpose)*FVEC.

WAl, WA2, and WA3 are work arrays of length N.

WA4 is a work array of length M.

4. Successful completion.

The accuracy of LMSTR is controlled by the convergence parame-
ters FTOL, XTOL, and GTOL. These parameters are used in tests
which make three types of comparisons between the approximation
X and a solution XSOL. LMSTR terminates when any of the tests
is satisfied. If any of the convergence parameters is less than
the machine precision (as defined by the MINPACK function
DPMPAR(1)), then LMSTR only attempts to satisfy the test defined
by the machine precision. Further progress is not usually pos-
sible.

The tests assume that the functions and the Jacobian are coded
consistently, and that the functions are reasonably well
behaved. If these conditions are not satisfied, then LMSTR may
incorrectly indicate convergence. The coding of the Jacobian
can be checked by the MINPACK subroutine CHKDER. If the Jaco-
bian is coded correctly, then the validity of the answer can be
checked, for example, by rerunning LMSTR with tighter toler-
ances.

First convergence test. If ENORM(Z) denotes the Euclidean norm
of a vector Z, then this test attempts to guarantee that

ENORM(FVEC) .LE. (1+FTOL)*ENORM(FVECS),

where FVECS denotes the functions evaluated at XSOL. If this
condition is satisfied with FTOL = 10**(-K), then the final
residual norm ENORM(FVEC) has K significant decimal digits and
INFO is set to 1 (or to 3 if the second test is also satis-
fied). Unless high precision solutions are required, the
recommended value for FTOL is the square root of the machine



109
Page 5

precision.

Second convergence test. If D is the diagonal matrix whose
entries are defined by the array DIAG, then this test attempts
to guarantee that

ENORM(D*(X-XSOL)) .LE. XTOL*ENORM(D*XSOL).

If this condition is satisfied with XTOL = 10**(-K), then the
larger components of D*X have K significant decimal digits and
INFO is set to 2 (or to 3 if the first test is also satis-
fied). There is a danger that the smaller components of D*X
may have large relative errors, but if MODE = 1, then the
accuracy of the components of X is usually related to their
sensitivity. Unless high precision solutions are required,
the recommended value for XTOL is the square root of the
machine precision.

Third convergence test. This test is satisfied when the cosine
of the angle between FVEC and any column of the Jacobian at X
is at most GTOL in absolute value. There is no clear rela-
tionship between this test and the accuracy of LMSTR, and
furthermore, the test is equally well satisfied at other crit-
ical points, namely maximizers and saddle points. Therefore,
termination caused by this test (INFO = 4) should be examined
carefully. The recommended value for GTOL is zero.

5. Unsuccessful completion.

Unsuccessful termination of LMSTR can be due to improper input
parameters, arithmetic interrupts, or an excessive number of
function evaluations.

Improper input parameters. INFO is set to 0 if N .LE. 0, or
M .LT. N, or LDFJAC .LT. N, or FTOL .LT. 0.DO, or
XTOL .LT. O.DO, or GTOL .LT. O.DO, or MAXFEV .LE. 0, or
FACTOR .LE. O.DO.

Arithmetic interrupts. If these interrupts occur in the FCN
subroutine during an early stage of the computation, they may
be caused by an unacceptable choice of X by LMSTR. In this
case, it may be possible to remedy the situation by rerunning
LMSTR with a smaller value of FACTOR.

Excessive number of function evaluations. A reasonable value
for MAXFEV is 100*(N+1). If the number of calls to FCN with
IFLAG = 1 reaches MAXFEV, then this indicates that the routine
is converging very slowly as measured by the progress of FVEC,
and INFO is set to 5. In this case, it may be helpful to
restart LMSTR with MODE set to 1.

6. Characteristics of the algorithm.



110

Page 6

LMSTR is a modification of the Levenberg-Marquardt algorithm.
Two of its main characteristics involve the proper use of
implicitly scaled variables (if MODE = 1) and an optimal choice
for the correction. The use of implicitly scaled variables
achieves scale invariance of LMSTR and limits the size of the
correction in any direction where the functions are changing
rapidly. The optimal choice of the correction guarantees (under
reasonable conditions) global convergence from starting points
far from the solution and a fast rate of convergence for prob-
lems with small residuals.

Timing. The time required by LMSTR to solve a given problem
depends on M and N, the behavior of the functions, the accu-
racy requested, and the starting point. The number of arith-
metic operations needed by LMSTR is about N**3 to process each
evaluation of the functions (call to FCN with IFLAG = 1) and
1.5*(N**2) to process each row of the Jacobian (call to FCN
with IFLAG .GE. 2). Unless FCN can be evaluated quickly, the
timing of LMSTR will be strongly influenced by the time spent
in FCN.

Storage. LMSTR requires N**2 + 2*M + 6*N double precision sto-
rage locations and N integer storage locations, in addition to
the storage required by the program. There are no internally
declared storage arrays.

7. Subprograms required.

USER-supplied........FCN

MINPACK-supplied ... DPMPAR,ENORM,LMPAR,QRFAC,QRSOLV,RWUPDT

FORTRAN-supplied ... DABS,DMAX1,DMIN1,DSQRT,MOD

8. References.

Jorge J. More, The Levenberg-Marquardt Algorithm, Implementation
and Theory. Numerical Analysis, G. A. Watson, editor.
Lecture Notes in Mathematics 630, Springer-Verlag, 1977.

9. Example.

The problem is to determine the values of x(1), x(2), and x(3)
which provide the best fit (in the least squares sense) of

x(1) + u(i)/(v(i)*x(2) + w(i)*x(3)), i = 1, 15

to the data

y = (0.14,0.18,0.22,0.25,0.29,0.32,0.35,0.39,
0.37,0.58,0.73,0.96,1.34,2. 10,4.39),



111

Page 7

where u(i) = i, v(i) = 16 - i, and w(i) = min(u(i),v(i)). The

i-th component of FVEC is thus defined by

y(i) - (x(1) + u(i)/(v(i)*x(2) + w '. '3))).

C **********
C
C DRIVER FOR LMSTR EXAMPLE.
C DOUBLE PRECISION VERSION
C
C **********

INTEGER J,M,N,LDFJAC,MAXFEV,MODE,NPRINT,INFO,NFEV,NJEV,NWRITE
INTEGER IPVT(3)
DOUBLE PRECISION FTOL,XTOL,GTOL,FACTOR,FNORM
DOUBLE PRECISION X(3),FVEC(15),FJAC(3,3),DIAG(3),QTF(3),

* WA1(3),WA2(3),WA3(3),WA4(15)
DOUBLE PRECISION ENORM,DPMPAR
EXTERNAL FCN

C
C LOGICAL OUTPUT UNIT IS ASSUMED TO BE NUMBER 6.
C

DATA NWRITE /6/
C

M = 15
N = 3

C
C THE FOLLOWING STARTING VALUES PROVIDE A ROUGH FIT.
C

X(1) = 1.DO
X(2) = 1.DO
X(3) = 1.DO

C
LDFJAC = 3

C
C SET FTOL AND XTOL TO THE SQUARE ROOT OF THE MACHINE PRECISION
C AND GTOL TO ZERO. UNLESS HIGH PRECISION SOLUTIONS ARE
C REQUIRED, THESE ARE THE RECOMMENDED SETTINGS.
C

FTOL = DSQRT(DPMPAR(1))
XTOL = DSQRT(DPMPAR(1))
GTOL = O.DO

C
MAXFEV = 400
MODE = 1
FACTOR = 1.D2
NPRINT = 0

C
CALL LMSTR(FCN,M,N,X,FVEC,FJAC,LDFJAC,FTOL,XTOL,GTOL,

* MAXFEV,DIAG,MODE,FACTOR,NPRINT,INFONFEV,NJEV,
* IPVT,QTF,WA1,WA2,WA3,WA4)
FNORM = ENORM(M,FVEC)
WRITE (NWRITE,1000) FNORM,NFEV,NJEV,INFO,(X(J),J=1,N)
STOP

1000 FORMAT (5X,31H FINAL L2 NORM OF THE RESIDUALS,D15.7 //



112

Page 8

* 5X,31H NUMBER OF FUNCTION EVALUATIONS,I10 /
* 5X,31H NUMBER OF JACOBIAN EVALUATIONS,I10 //
* 5X,15H EXIT PARAMETER,16X,I10 //
* 5X,27H FINAL APPROXIMATE SOLUTION // 5X,3D15.7)

C
C LAST CARD OF DRIVER FOR LMSTR EXAMPLE.
C

END
SUBROUTINE FCN(M,N,X,FVEC,FJROW,IFLAG)
INTEGER M,N,IFLAG
DOUBLE PRECISION X(N),FVEC(M),FJROW(N)

C
C SUBROUTINE FCN FOR LMSTR EXAMPLE.
C

INTEGER I
DOUBLE PRECISION TMP1,TMP2,TMP3,TMP4
DOUBLE PRECISION Y(15)
DATA Y(1),Y(2),Y(3),Y(4),Y(5),Y(6),Y(7),Y(8),

* Y(9),Y(10),Y(11),Y(12),Y(13),Y(14),Y(15)
* /1.4D-1,1.8D-1,2.2D-1,2.5D-1,2.9D-1,3.2D-1,3.5D-1,3.9D-1,
* 3.7D-1,5.8D-1,7.3D-1,9.6D-1,1.34D0,2.1DO,4.39D0/

C
IF (IFLAG .NE. 0) GO TO 5

C
C INSERT PRINT STATEMENTS HERE WHEN NPRINT IS POSITIVE.
C

RETURN
5 CONTINUE

IF (IFLAG .GE. 2) GO TO 20
DO 10 I = 1, 15

TMP1 = I
TMP2 = 16 - I

TMP3 = TMP1
IF (I .GT. 8) TMP3 = TMP2
FVEC(I) = Y(I) - (X(1) + TMP1/(X(2)*TMP2 + X(3)*TMP3))

10 CONTINUE
GO TO 40

20 CONTINUE
I = IFLAG - 1

TMP1 = I
TMP2 = 16 - I

TMP3 = TMP1
IF (I .GT. 8) TMP3 = TMP2
TMP4 = (X(2)*TMP2 + X(3)*TMP3)**2
FJROW(1) = -1.DO
FJROW(2) = TMP1*TMP2/TMP4
FJROW(3) = TMP1*TMP3/TMP4

30 CONTINUE
40 CONTINUE

RETURN
C
C LAST CARD OF SUBROUTINE FCN.
C

END



113

Page 9

Results obtained with different compilers or machines
may be slightly different.

FINAL L2 NORM OF THE RESIDUALS 0.9063596D-01

NUMBER OF FUNCTION EVALUATIONS 6

NUMBER OF JACOBIAN EVALUATIONS 5

EXIT PARAMETER 1

FINAL APPROXIMATE SOLUTION

0.8241058D-01 0.1133037D+01 0.2343695D+01



114



115

Page 1

Documentation for MINPACK subroutine LMDIFI

Double precision version

Argonne National Laboratory

Burton S. Garbow, Kenneth E. Hillstrom, Jorge J. More

March 1980

1. Purpose.

The purpose of LMDIF1 is to minimize the sum of the squares of M
nonlinear functions in N variables by a modification of the
Levenberg-Marquardt algorithm. This is done by using the more
general least-squares solver LMDIF. The user must provide a
subroutine which calculates the functions. The Jacobian is then
calculated by a forward-difference approximation.

2. Subroutine and type statements.

SUBROUTINE LMDIF1(FCNM,N,X,FVECTOL,INFO,IWA,WA,LWA)
INTEGER M,N,INFO,LWA
INTEGER IWA(N)
DOUBLE PRECISION TOL
DOUBLE PRECISION X(N),FVEC(M),WA(LWA)
EXTERNAL FCN

3. Parameters.

Parameters designated as input parameters must be specified on
entry to LMDIFI and are not changed on exit, while parameters
designated as output parameters need not be specified on entry
and are set to appropriate values on exit from LMDIF1.

FCN is the name of the user-supplied subroutine which calculates
the functions. FCN must be declared in an EXTERNAL statement
in the user calling program, and should be written as follows.

SUBROUTINE FCN(M,N,X,FVEC,IFLAG)
INTEGER M,N,IFLAG
DOUBLE PRECISION X(N),FVEC(M)

CALCULATE THE FUNCTIONS AT X AND
RETURN THIS VECTOR IN FVEC.

RETURN
END

The value of IFLAG should not be changed by FCN unless the
user wants to terminate execution of LMDIF1. In this case set



116

Page 2

IFLAG to a negative integer.

M is a positive integer input variable set to the number of
functions.

N is a p^ 4mtive integer input variable set to the number of
variab. s. N must not exceed M.

X is an array of length N. On input X must contain an initial
estimate of the solution vector. On output X contains the
final estimate of the solution vector.

FVEC is an output array of length M which contains the functions
evaluated at the output X.

TOL is a nonnegative input variable. Termination occurs when
the algorithm estimates either that the relative error in the
sum of squares is at most TOL or that the relative error
between X and the solution is at most TOL. Section 4 contains
more details about TOL.

INFO is an integer output variable. If the user has terminated
execution, INFO is set to the (negative) value of IFLAG. See
description of FCN. Otherwise, INFO is set as follows.

INFO = 0

INFO = 1

INFO = 2

INFO

INFO

=3

=4

INFO = 5

INFO = 6

INFO = 7

Improper input parameters.

Algorithm estimates that the relative error in the
sum of squares is at most TOL.

Algorithm estimates that the relative error between
X and the solution is at most TOE.

Conditions for INFO = 1 and INFO = 2 both hold.

FVEC is orthogonal to the columns of the Jacobian to
machine precision.

Number of calls to FCN has reached or exceeded
200*(N+1).

TOL is too small. No further reduction in the sum
of squares is possible.

TOL is too small. No further improvement in the
approximate solution X is possible.

Sections 4 and 5 contain more details about INFO.

IWA is an integer work array of length N.

WA is a work array of length LWA.

LWA is a positive integer input variable not less than



117

Page 3

M*N+5*N+M.

4. Successful completion.

The accuracy of LMDIFI is controlled by the convergence parame-
ter TOL. This parameter is used in tests which make three types
of comparisons between the approximation X and a solution XSOL.
LMDIFI terminates when any of the tests is satisfied. If TOL is
less than the machine precision (as defined by the MINPACK func-
tion DPMPAR(1)), then LMDIF1 only attempts to satisfy the test
defined by the machine precision. Further progress is not usu-
ally possible. Unless high precision solutions are required,
the recommended value for TOL is the square root of the machine
precision.

The tests assume that the functions are reasonably well behaved.
If this condition is not satisfied, then LMDIFI may incorrectly
indicate convergence. The validity of the answer can be
checked, for example, by rerunning LMDIF1 with a tighter toler-
ance.

First convergence test. If ENORM(Z) denotes the Euclidean norm
of a vector Z, then this test attempts to guarantee that

ENORM(FVEC) .LE. (1+TOL)*ENORM(FVECS),

where FVECS denotes the functions evaluated at XSOL. If this
condition is satisfied with TOL = 10**(-K), then the final
residual norm ENORM(FVEC) has K significant decimal digits and
INFO is set to 1 (or to 3 if the second test is also satis-
fied).

Second convergence test. If D is a diagonal matrix (implicitly
generated by LMDIF1) whose entries contain scale factors for
the variables, then this test attempts to guarantee that

ENORM(D*(X-XSOL)) .LE. TOL-ENORM(D*XSOL).

If this condition is satisfied with TOL = 10**(-K), then the
larger components of D*X have K significant decimal digits and
INFO is set to 2 (or to 3 if the first test is also satis-
fied). There is a danger that the smaller components of D*X
may have large relative errors, but the choice of D is such
that the accuracy of the components of X is usually related to
their sensitivity.

Third convergence test. This test is satisfied when FVEC is
orthogonal to the columns of the Jacobian to machine preci-
sion. There is no clear relationship between this test and
the accuracy of LMDIF1, and furthermore, the test is equally
well satisfied at other critical points, namely maximizers and
saddle points. Also, errors in the functions (see below) may
result in the test being satisfied at a point not close to the



118

Page 4

minimum. Therefore, termination caused by this test
(INFO = 4) should be examined carefully.

5. Unsuccessful completion.

Unsuccessful termination of LMDIFI can be due to improper input
parameters, arithmetic interrupts, an excessive number of func-
tion evaluations, or errors in the functions.

Improper input parameters. INFO is set to 0 if N .LE. 0, or
M .LT. N, or TOL .LT. O.DO, or LWA .LT. M*N+5*N+M.

Arithmetic interrupts. If these interrupts occur in the FCN
subroutine during an early stage of the computation, they may
be caused by an unacceptable choice of X by LMDIFl. In this
case, it may be possible to remedy the situation by not evalu-
ating the functions here, but instead setting the components
of FVEC to numbers that exceed those in the initial FVEC,
thereby indirectly reducing the step length. The step length
can be more directly controlled by using instead LMDIF, which
includes in its calling sequence the step-length-governing
parameter FACTOR.

Excessive number of function evaluations. If the number of
calls to FCN reaches 200*(N+1), then this indicates that the
routine is converging very slowly as measured by the progress
of FVEC, and INFO is set to 5. In this case, it may be help-
ful to restart LMDIF1, the: by forcing it to disregard old
(and possibly harmful) information.

Errors in the functions. The choice of step length in the for-
ward-difference approximation to the Jacobian assumes that the
relative errors in the functions are of the order of the
machine precision. If this is not the case, LMDIF may fail
(usually with INFO = 4). The user should then use LMDIF
instead, or one of the programs which require the analytic
Jacobian (LMDER1 and LMDER).

6. Characteristics of the algorithm.

LMDIFl is a modification of the Levenberg-Marquardt algorithm.
Two of its main characteristics involve the proper use of
implicitly scaled variables and an optimal choice for the cor-
rection. The use of implicitly scaled variables achieves scale
invariance of LMDIFl and limits the size of the correction in
any direction where the functions are changing rapidly. The
optimal choice of the correction guarantees (under reasonable
conditions) global convergence from starting points far from the
solution and a fast rate of convergence for problems with small
residuals.

Timing. The time required by LMDIFl to solve a given problem



119

Page 5

depends on M and N, the behavior of the functions, the accu-
racy requested, and the starting point. The number of arith-
metic operations needed by LMDIF1 is about N**3 to process
each evaluation of the functions (one call to FCN) and
M*(N**2) to process each approximation to the Jacobian (N
calls to FCN). Unless FCN can be evaluated quickly, the tim-
ing of LMDIE1 will be strongly influenced by the time spent in
FCN.

Stor le. LMDIF1 requires M*N + 2*M + 6*N double precision sto-
r : locations and N integer storage locations, in addition to
the storage required by the program. There are no internally
declared storage arrays.

7. Subprograms required.

USER-supplied ....... FCN

MINPACK-supplied ... DPMPAR,ENORM,FDJAC2,LMDIF,LMPAR,
QRFAC,QRSOLV

FORTRAN-supplied ... DABS,DMAX1,DMIN1,DSQRT,MOD

8. References.

Jorge J. More, The Levenberg-Marquardt Algorithm, Implementation
and Theory. Numerical Analysis, G. A. Watson, editor.
Lecture Notes in Mathematics 630, Springer-Verlag, 1977.

9. Example.

The problem is to determine the values of x(1), x(2), and x(3)
which provide the best fit (in the least squares sense) of

x(1) + u(i)/(v(i)*x(2) + w(i)*x(3),, i = 1, 15

to the data

y = (0.14,0.18,0.22,0.25,0.29,0.32,0.35,0.39,
0.37,0.58,0.73,0.96,1.34,2.10,4.39),

where u(i) = i, v(i) = 16 - i, and w(i) = min(u(i),v(i)). The
i-th component of FVEC is thus defined by

y(i) - (x(1) + u(i)/(v(i)*x(2) + w(i)*x(3))).

C *********
C
C DRIVER FOR LMDIF1 EXAMPLE.
C DOUBLE PRECISION VERSION
C



120

Page 6

C *******
INTEGER J,M,N,INFO,LWA,NWRITE
INTEGER IWA(3)
DOUBLE PRECISION TOL,FNORM
DOUBLE PRECISION X(3),FVEC('.5),WA(75)
DOUBLE PRECISION ENORM,DPMPAR
EXTERNAL FCN

C
C LOGICAL OUTPUT UNIT IS ASSUMED TO BE NUMBER 6.
C

DATA NWRITE /6/
C

M = 15
N = 3

C
C THE FOLLOWING STARTING VALUES PROVIDE A ROUGH FIT.
C

X(1) = 1.DO
X(2) = 1.D0
X(3) = 1.DO

C
LWA = 75

C
C SET TOL TO THE SQUARE ROOT OF THE MACHINE PRECISION.
C UNLESS HIGH PRECISION SOLUTIONS ARE REQUIRED,
C THIS IS THE RECOMMENDED SETTING.
C

TOL = DSQRT(DPMPAR(1))
C

CALL LMTIF1(FCN,M,N,X,FVEC,TO.,INFO,IWA,WA,LWA)
FNORM = ENORM(M,FVEC)
WRITE (NWRITE,1000) FNORMINFO,(X(J),J=1,N)
STOP

1000 FORMAT (5X,31H FINAL L2 NORM OF THE RESIDUALS,D15.7 /
* 5X,15H EXIT PARAMETER,16X,I10 //
* 5X,27H FINAL APPROXIMATE SOLUTION / 5X,3D15.7)

C
C LAST CARD OF DRIVER FOR LMDIF1 EXAMPLE.
C

END
SUBROUTINE FCN(M,N,X,FVEC,IFLAG)
INTEGER M,N,IFLAG
DOUBLE PRECISION X(N),FVEC(M)

C
C SUBROUTINE FCN FOR LMDIF1 EXAMPLE.
C

INTEGER I
DOUBLE PRECISION TMP1,TMP2,TMP3
DOUBLE PRECISION Y(15)
DATA Y(1),Y(2),Y(3),Y(4),Y(5),Y(6),Y(7),Y(8),

* Y(9),Y(10),Y(11),Y(12),Y(13),Y(14),Y(15)

* /1.4D-1,1.8D-1,2.2D-1,2.5D-1,2.9D-1,3.2D-1,3.5D-1,3.9D-1,
* 3.7D-1,5.8D-1,7.3D-1,9.6D-1,1.34D0,2.1DO,4.39D0/

C



121

Page 7

DO 10 I = 1, 15
TMP1 = I
TMP2 = 16 - I
TMP3 = TMP1
IF (I .GT. 8) TMP3 = TMP2
FVEC(I) = Y(I) - (X(1) + TMP1/(X(2)*TMP2 + X(3)*TMP3))

10 CONTINUE
RETURN

C
C LAST CARD OF SUBROUTINE FCN.
C

END

Results obtained with different compilers or machines
may be slightly different.

FINAL L2 NORM OF THE RESIDUALS 0.9063596D-01

EXIT PARAMETER 1

FINAL APPROXIMATE SOLUTION

0.8241057D-01 0.1133037D+01 0.2343695D+01



122



123

Page 1

Documentation for MINPACK subroutine LMDIF

Double precision version

Argonne National Laboratory

Burton S. Garbow, Kenneth E. Hillstrom, Jorge J. More

March 1980

1. Purpose.

The purpose of LMDIF is to minimize the sum of the squares of M
nonlinear functions in N variables by a modification of the
Levenberg-Marquardt algorithm. The user must provide a subrou-
tine which calculates the functions. The Jacobian is then cal-
culated by a forward-difference approximation.

2. Subroutine and type statements.

SUBROUTINE LMDIF(FCN,M,N,X,FVEC,FTOL,XTOL,GTOL,MAXFEV,EPSFCN,
* DIAG,MODE,FACTOR,NPRINT,INFO,NFEV,FJAC,LDFJAC,
* IPVT,QTF,WA1,WA2,WA3,WA4)
INTEGER M,N,MAXFEV,MODE,NPRINT,INFO,NFEV,LDFJAC
INTEGER IPVT(N)
DOUBLE PRECISION FTOL,XTOL,GTOL,EPSFCN,FACTOR
DOUBLE PRECISION X(N),FVEC(M),DIAG(N),FJAC(LDFJAC,N),QTF(N),

* WA1(N),WA2(N),WA3(N),WA4(M)
EXTERNAL FCN

3. Parameters.

Parameters designated as input parameters must be specified on
entry to LMDIF and are not changed on exit, while parameters
designated as output parameters need not be specified on entry
and are set to appropriate values on exit from LMDIF.

FCN is the name of the user-supplied subroutine which calculates
the functions. FCN must be declared in an EXTERNAL statement
in the user calling program, and should be written as follows.

SUBROUTINE FCN(M,N,X,FVEC,IFLAG)
INTEGER M,N,IFLAG
DOUBLE PRECISION X(N),FVEC(M)

CALCULATE THE FUNCTIONS AT X AND
RETURN THIS VECTOR IN FVEC.

RETURN
END



124

Page 2

The value of IFLAG should not be changed by FCN unless the
user wants to terminate execution of LMDIF. In this case set
IFLAG to a negative integer.

M is a positive integer input variable set to the number of
functions.

N is a positive integer input variable set to the number of
variables. N must not exceed M.

X is an array of length N. On input X must contain an initial
estimate of the solution vector. On output X contains the
final estimate of the solution vector.

FVEC is an output array of length M which contains the functions
evaluated at the output X.

FTOL is a nonnegative input variable. Termination occurs when
both the actual and predicted relative reductions in the sum
of squares are at most FTOL. Therefore, FTOL measures the
relative error desired in the sum of squares. Section 4 con-
tains more details about FTOL.

XTOL is a nonnegative input variable. Termination occurs when
the relative error between two consecutive iterates is at most
XTOL. Therefore, XTOL measures the relative error desired in
the approximate solution. Section 4 contains more details
about XTOL.

GTOL is a nonnegative input variable. Termination occurs when
the cosine of the angle between FVEC and any column of the
Jacobian is at most GTOL in absolute value. Therefore, GTOL
measures the orthogonality desired between the function vector
and the columns of the Jacobian. Section 4 contains more
details about GTOL.

MAXFEV is a positive integer input variable. Termination occurs
when the number of calls to FCN is at least MAXFEV by the end
of an iteration.

EPSFCN is an input variable used in determining a suitable step
for the forward-difference approximation. This approximation
assumes that the relative errors in the functions are of the
order of EPSFCN. If EPSFCN is less than the machine preci-
sion, it is assumed that the relative errors in the functions
are of the order of the machine precision.

DIAG is an array of length N. If MODE = 1 (see below), DIAG is
internally set. If MODE = 2, DIAG must contain positive
entries that serve as multiplicative scale factors for the
variables.

MODE is an integer input variable. If MODE = 1, the variables
will be scaled internally. If MODE = 2, the scaling is



125

Page 3

specified by the input DIAG. Other values of MODE are equiva-
lent to MODE = 1.

FACTOR is a positive input variable used in determining the ini-
tial step bound. This bound iz set to the product of FACTOR
and the Euclidean norm of DIAG*X if nonzero, or else to FACTOR
itself. In most cases FACTOR should lie in the interval
(.1,100.). 100. is a generally recommended value.

NPRINT is an integer input variable that enables controlled
printing of iterates if it is positive. In this case, FCN is
called with IFLAG = 0 at the beginning of the first iteration
and every NPRINT iterations thereafter and immediately prior
to return, with X and FVEC available for printing. If NPRINT
is not positive, no special calls of FCN with IFLAG = 0 are
made.

INFO is an integer output variable. If the user has terminated
execution, INFO is set to the (negative) value of IFLAG. See
description of FCN. Otherwise, INFO is set as follows.

INFO = 0

INFO = 1

INFO = 2

INFO

INFO

=3

= 4

INFO = 5

INFO = 6

INFO = 7

INFO = 8

Sections

NFEV is an
FCN.

Improper input parameters.

Both actual and predicted relative reductions in the
sum of squares are at most FTOL.

Relative error between two consecutive iterates is
at most XTOL.

Conditions for INFO = 1 and INFO = 2 both hold.

The cosine of the angle between FVEC and any column
of the Jacobian is at most GTOL in absolute value.

Number of calls to FCN has reached or exceeded
MAXFEV.

FTOL is too small. No further reduction in the sum
of squares is possible.

XTOL is too small. No further improvement in the
approximate solution X is possible.

GTOL is too small. FVEC is orthogonal to the
columns of the Jacobian to machine precision.

4 and 5 contain more details about INFO.

integer output variable set to the number of calls to

FJAC is an output M by N array. The upper N by N submatrix of
FJAC contains an upper triangular matrix R with diagonal ele-
ments of nonincreasing magnitude such that



126

Page 4

T T T
P *(JAC *JAC)*P = R *R,

where P is a permutation matrix and JAC is the final calcu-
lated Jacobian. Column j of P is column IPVT(j) (see below)
of the identity matrix. The lower trapezoidal part of FJAC
contains information generated during the computation of R.

LDFJAC is a positive integer input variable not less than M
which specifies the leading dimension of the array FJAC.

IPVT is an integer output array of length N. IPVT defines a
permutation matrix P such that JAC*P = Q*R, where JAC is the
final calculated Jacobian, Q is orthogonal (not stored), and R
is upper triangular with diagonal elements of nonincreasing
magnitude. Column j of P is column IPVT(j) of the identity
matrix.

QTF is an output array of length N which contains the first N
elements of the vector (Q transpose)*FVEC.

WAl, WA2, and WA3 are work arrays of length N.

WA4 is a work array of length M.

4. Successful completion.

The accuracy of LMDIF is controlled by the convergence parame-
ters FTOL, XTOL, and GTOL. These parameters are used in tests
which make three types of comparisons between the approximation
X and a solution XSOL. LMDIF terminates when any of the tests
is satisfied. If any of the convergence parameters is less than
the machine precision (as defined by the MINPACK function
DPMPAR(1)), then LMDIF only attempts to satisfy the test defined
by the machine precision. Further progress is not usually pos-
sible.

The tests assume that the functions are reasonably well behaved.
If this condition is not satisfied, then LMDIF may incorrectly
indicate convergence. The validity of the answer can be
checked, for example, by rerunning LMDIF with tighter toler-
ances.

First convergence test. If ENORM(Z) denotes the Euclidean norm
of a vector Z, then this test attempts to guarantee that

ENORM(FVEC) .LE. (1+FTOL)*ENORM(FVECS),

where FVECS denotes the functions evaluated at XSOL. If this
condition is satisfied with FTOL = 10**(-K), then the final
residual norm ENORM(FVEC) has K significant decimal digits and
INFO is set to 1 (or to 3 if the second test is also satis-
fied). Unless high precision solutions are required, the



127

Page 5

recommended value for FTOL is the square root of the machine
precision.

Second convergence test. If D is the diagonal matrix whose
entries are defined by the array DIAG, then this test attempts
to guarantee that

ENORM(D*(X-XSOL)) .LE. XTOL*ENORM(D*XSOL).

If this condition is satisfied with XTOL = 10**(-K), then the
larger components of D*X have K significant decimal digits and
INFO is set to 2 (or to 3 if the first test is also satis-
fied). There is a danger that the smaller components of D*X
may have large relative errors, but if MODE = 1, then the
accuracy of the components of X is usually related to their
sensitivity. Unless high precision solutions are required,
the recommended value for XTOL is the square root of the
machine precision.

Third convergence test. This test is satisfied when the cosine
of the angle between FVEC and any column of the Jacobian at X
is at most GTOL in absolute value. There is no clear rela-
tionship between this test and the accuracy of LMDIF, and
furthermore, the test is equally well satisfied at other crit-
ical points, namely maximizers and saddle points. Therefore,
termination caused by this test (INFO = 4) should be examined
carefully. The recommended value for GTOL is zero.

5. Unsuccessful completion.

Unsuccessful termination of LMDIF can be due to improper input
parameters, arithmetic interrupts, or an excessive number of
function evaluations.

Improper input parameters. INFO is set to 0 if N .LE. 0, or
M .LT. N, or LDFJAC .LT. M, or FTOL .LT. O.DO, or
XTOL .LT. O.DO, or GTOL .LT. O.DO, or MAXFEV .LE. 0, or
FACTOR .LE. O.DO.

Arithmetic interrupts. If these interrupts occur in the FCN
subroutine during an early stage of the computation, they may
be caused by an unacceptable choice of X by LMDIF. In this
case, it may be possible to remedy the situation by rerunning
LMDIF with a smaller value of FACTOR.

Excessive number of function evaluations. A reasonable value
for MAXFEV is 200*(N+1). If the number of calls to FCN
reaches MAXFEV, then this indicates that the routine is con-
verging very slowly as measured by the progress of FVEC, and
INFO is set to 5. In this case, it may be helpful to restart
LMDIF with MODE set to 1.



128

Page 6

6. Characteristics of the algorithm.

LMDIF is a modification of the Levenberg-Marquardt algorithm.
Two of its main characteristics involve the proper use of
implicitly scaled variables (if MODE = 1) and an optimal choice
for the correction. The use of implicitly scaled variables
achieves scale invariance of LMDIF and limits the size of the
correction in any direction where the functions are changing
rapidly. The optimal choic' of the correction guarantees (under
reasonable conditions) global convergence from starting points
far from the solution and a fast rate of convergence for prob-
lems with small residuals.

Timing. The time required by LMDIF to solve a given problem
depends on M and N, the behavior of the functions, the accu-
racy requested, and the starting point. The number of arith-
metic operations needed by LMDIF is about N**3 to process each
evaluation of the functions (one call to FCN) and M*(N**2) to
process each approximation to the Jacobian (N calls to FCN).
Unless FCN can be evaluated quickly, the timing of LMDIF will
be strongly influenced by the time spent in FCN.

Storage. LMDIF requires M*N + 2*M + 6*N double precision sto-
rage locations and N integer storage locations, in addition to
the storage required by the program. There are no internally
declared storage arrays.

7. Subprograms required.

USER-supplied ....... FCN

MINPACK-supplied ... DPMPAR,ENORM,FDJAC2,LMPAR,QRFAC,QRSOLV

FORTRAN-supplied ... DABS,DMAX1,DMIN1,DSQRT,MOD

8. References.

Jorge J. More, The Levenberg-Marquardt Algorithm, Implementation
and Theory. Numerical Analysis, G. A. Watson, editor.
Lecture Notes in Mathematics 630, Springer-Verlag, 1977.

9. Example.

The problem is to determine the values of x(1), x(2), and x(3)
which provide the best fit (in the least squares sense) of

x(1) + u(i)/(v(i)*x(2) + w(i)*x(3)), i = 1, 15

to the data



129

Page 7

y = (0.14,0.18,0.22,0.25,0.29,0.32,0.35,0.39,
0.37,0.58,0.73,0.96,1.34,2.10,4.39),

where u(i) = i, v(i) = 16 - i, and w(i) = min(u(i),v(i)). The
i-th component of FVEC is thus defined by

y(i) - (x(1) + u(i)/(v(i)*x(2) + w(i)*x(3))).

C **********
C
C DRIVER FOR LMDIF EXAMPLE.
C DOUBLE PRECISION VERSION
C
C **********

INTEGER J,M,N,MAXFEV,MODE,NPRINT,INFO,NFEV,LDFJAC,NWRITE
INTEGER IPVT(3)
DOUBLE PRECISION FTOL,XTOL,GTOL,EPSFCN,FACTOR,FNORM
DOUBLE PRECISION X(3),FVEC(15),DIAG(3),FJAC(15,3),QTF(3),

* WA1(3),WA2(3),WA3(3),WA4(15)
DOUBLE PRECISION ENORM,DPMPAR
EXTERNAL FCN

C
C LOGICAL OUTPUT UNIT IS ASSUMED TO BE NUMBER 6.
C

DATA NWRITE /6/
C

M = 15
N = 3

C
C THE FOLLOWING STARTING VALUES PROVIDE A ROUGH FIT.
C

X(1) = 1.DO
X(2) = 1.DO
X(3) = 1.D0

C
LDFJAC = 15

C
C SET FTOL AND XTOL TO THE SQUARE ROOT OF THE MACHINE PRECISION
C AND GTOL TO ZERO. UNLESS HIGH PRECISION SOLUTIONS ARE
C REQUIRED, THESE ARE THE RECOMMENDED SETTINGS.
C

FTOL = DSQRT(DPMPAR(1))
XTOL = DSQRT(DPMPAR(1))
GTOL = 0.DO

C
MAXFEV = 800
EPSFCN, = 0. DO
MODE = 1
FACTOR = 1.D2
NPRINT = 0

C
CALL LMDIF(FCN,M,N,X,FVEC,FTOL,XTOL,GTOL,MAXFEV,EPSFCN,

* DIAG,MODE,FACTOR,NPRINT, INFO,NFEV,FJAC,LDFJAC,
* IPVTQTF,WA1,WA2,WA3,WA4)



130

Fage 8

FNORM = ENORM(M,FVEC)
WRITE (NWRITE,1000) FNORM,NFEV,INFO,(X(J),J=1,N)
STOP

1000 FORMAT (5X,31H FINAL L2 NORM OF THE RESIDUALS,D15.7 //
* 5X,31H NUMBER OF FUNCTION EVALUATIONS,I10 //
* 5X,15H EXIT PARAMETER,16X,I1O //
* 5X,27H FINAL APPROXIMATE SOLUTION // 5X,3D15.7)

C
C LAST CARD OF DRIVER FOR LMDIF EXAMPLE.
C

END
SUBROUTINE FCN(MN,X,FVEC,IFLAG)
INTEGER M,N,IFLAG
DOUBLE PRECISION X(N),FVEC(M)

C
C SUBROUTINE FCN FOR LMDIF EXAMPLE.
C

INTEGER I
DOUBLE PRECISION TMP1,TMP2,TMP3
DOUBLE PRECISION Y(15)
DATA Y(1),Y(2),Y(3),Y(4),Y(5),Y(6),Y(7),Y(8),

* Y(9),Y(10),Y(11),Y(12),Y(13),Y(14),Y(15)
* /1.4D-1,1.8D-1,2.2D-1,2.5D-1,2.9D-1,3.2D-1,3.5D-1,3.9D-1,
* 3.7D-1,5.8D-1,7.3D-1,9.6D-1,1.34D0,2.1D0,4.39D0/

C
IF (IFLAG .NE. 0) GO TO 5

C
C INSERT PRINT STATEMENTS HERE WHEN NPRINT IS POSITIVE.
C

RETURN
5 CONTINUE

DO 10 I = 1, 15
TMP1 = I
TMP2 = 16 - I
TMP3 = TMP1
IF (I .GT. 8) TMP3 = TMP2
FVEC(I) = Y(I) - (X(1) + TMP1/(X(2)*TMP2 + X(3)*TMP3))

10 CONTINUE
RETURN

C
C LAST CARD OF SUBROUTINE FCN.
C

END

Results obtained with different compilers or machines
may be slightly different.

FINAL L2 NORM OF THE RESIDUALS 0.9063596D-O1

NUMBER OF FUNCTION EVALUATIONS 21

EXIT PARAMETER

FINAL APPROXIMATE SOLUTION



131

Page 9

0.8241057D-O1 0.1133037D+01 0.2343695D+01



132



133
Page 1

Documentation for MINPACK subroutine CHKDER

Double precision version

Argonne National Laboratory

Burton S. Garbow, Kenneth E. Hillstrom, Jorge J. More

March 1980

1. Purpose.

The purpose of CHKDER is to check the gradients of M nonlinear
functions in N variables, evaluated at a point X, for consis-
tency with the functions themselves. The user must call CHKDER
twice, first with MODE = 1 and then with MODE = 2.

2. Subroutine and type statements.

SUBROUTINE CHKDER(M,N,X,FVEC,FJAC,LDFJAC,XP,FVECP,MODE,ERR)
INTEGER M,N,LDFJAC,MODE
DOUBLE PRECISION X(N),FVEC(M),FJAC(LDFJAC,N),XP(N),FVECP(M),
* ERR(M)

3. Parameters.

Parameters designated as input parameters must be specified on
entry to CHKDER and are not changed on exit, while parameters
designated as output parameters need not be specified on entry
and are set to appropriate values on exit from CHKDER.

M is a positive integer input variable set to the number of
functions.

N is a positive integer input variable set to the number of
variables.

X is an input array of length N.

FVEC is an array of length M. On input when MODE = 2, FVEC must
contain the functions evaluated at X.

FJAC is an M by N array. On input when MODE = 2, the rows of
FJAC must contain the gradients of the respective functions
evaluated at X.

LDFJAC is a positive integer input variable not less than M
which specifies the leading dimension of the array FJAC.

XP is an array of length N. On output when MODE = 1, XP is set
to a neighboring point of X.



134

Page 2

FVECP is an array of length M. On input when MODE = 2, FVECP
must contain the functions evaluated at XP.

MODE is an integer input variable set to 1 on the first call and
2 on the second. Other values of MODE are equivalent to
MODE = 1.

ERR is an array of length M. On output when MODE = 2, ERR con-
tains measures of correctness of the respective gradients. If
there is no severe loss of significance, then if ERR(I) is 1.0
the I-th gradient is correct, while if ERR(I) is 0.0 the I-th
gradient is incorrect. For values of ERR between 0.0 and 1.0,
the categorization is less certain. In general, a value of
ERR(I) greater than 0.5 indicates that the I-th gradient is
probably correct, while a value of ERR(I) less than 0.5 indi-
cates that the I-th gradient is probably incorrect.

4. Successful completion.

CHKDER usually guarantees that if ERR(I) is 1.0, then the I-th
gradient at X is consistent with the I-th function. This sug-
gests that the input X be such that consistency of the gradient
at X implies consistency of the gradient at all points of inter-
est. If all the components of X are distinct and the fractional
part of each one has two nonzero digits, then X is likely to be
a satisfactory choice.

If ERR(I) is not 1.0 but is greater than 0.5, then the I-th gra-
dient is probably consistent with the I-th function (the more so
the larger ERR(I) is), but the conditions for ERR(I) to be 1.0
have not been completely satisfied. In this case, it is recom-
mended that CHKDER be rerun with other input values of X. If
ERR(I) is always greater than 0.5, then the I-th gradient is
consistent with the I-th function.

5. Unsuccessful completion.

CHKDER does not perform reliably if cancellation or rounding
errors cause a severe loss of significance in the evaluation of
a function. Therefore, none of the components of X should be
unusually small (in particular, zero) or any other value which
may cause loss of significance. The relative differences
between corresponding elements of FVECP and FVEC should be at
least two orders of magnitude greater than the machine precision
(as defined by the MINPACK function DPMPAR(1)). If there is a
severe loss of significance in the evaluation of the I-th func-
tion, then ERR(I) may be 0.0 and yet the I-th gradient could be
correct.

If ERR(I) is not 0.0 but is less than 0.5, then the I-th gra-
dient is probably not consistent with the I-th function (the
more so the smaller ERR(I) is), but the conditions for ERR(I) to



135

Page 3

be 0.0 have not been completely satisfied. In this case, it is
recommended that CHKDER be rerun with other input values of X.
If ERR(I) is always less than 0.5 and if there is no severe loss
of significance, then the I-th gradient is not consistent with
the I-th function.

6. Characteristics of the algorithm.

CHKDER checks the I-th gradient for consistency with the I-th
function by computing a forward-difference approximation along a
suitably chosen direction and comparing this approximation with
the user-supplied gradient along the same direction. The prin-
cipal characteristic of CHKDER is its invariance to changes in
scale of the variables or functions.

Timing. The time required by CHKDER depends only on M and N.
The number of arithmetic operations needed by CHKDER is about
N when MODE = 1 and M*N when MODE = 2.

Storage. CHKDER requires M*N + 3*M + 2*N double precision stor-
age locations, in addition to the storage required by the pro-
gram. There are no internally declared storage arrays.

7. Subprograms required.

MINPACK-supplied ... DPMPAR

FORTRAN-supplied ... DABSDLOG10,DSQRT

8. References.

None.

9. Example.

This example checks the Jacobian matrix for the problem that
determines the values of x(1), x(2), and x(3) which provide the
best fit (in the least squares sense) of

x(1) + u(i)/(v(i)*x(2) + w(i)*x(3)), i = 1, 15

to the data

y * (0.14,0.18,0.22,0.25,0.29,0.32,0.35,0.39,
0.37,0.58,0.73,0.96,1.34,2.10,4.39),

where u(i) s i, v(i) s 16 - i, and w(i) = min(u(i),v(i)). The
i-th component of FVEC is thus defined by

y(i) - (x(1) + u(i)/(v(i)*x(2) + w(i)*x(3))).



136

Page 4

C **********
C
C DRIVER FOR CHKDER EXAMPLE.
C DOUBLE PRECISION VERSION
C
C **********

INTEGER I,M,N,LDFJAC,MODENWRITE
DOUBLE PRECISION X(3),FVEC(15),FJAC(15,3),XP(3),FVECP(15),

* ERR(15)
C
C LOGICAL OUTPUT UNIT IS ASSUMED TO BE NUMBER 6.
C

DATA NWRITE /6/
C

M = 15
N = 3

C
C THE FOLLOWING VALUES SHOULD BE SUITABLE FOR
C CHECKING THE JACOBIAN MATRIX.
C

X(1) = 9.2D-1
X(2) = 1.3D-1
X(3) = 5.4D-1

C
LDFJAC = 15

C
MODE = 1
CALL CHKDER(M,N,X,FVEC,FJAC,LDFJAC,XP,FVECP,MODE,ERR)
MODE = 2
CALL FCN(M,N,X,FVEC,FJAC,LDFJAC,1)
CALL FCN(M,NX,FVECFJACLDFJAC,2)
CALL FCN(M,NXPFVECPFJACLDFJAC,1)
CALL CHKDER(M,N,X,FVECFJACLDFJACXP,FVECPMODEERR)

C
DO 10 I = 1, M

FVECP(I) = FVECP(I) - FVEC(I)
10 CONTINUE

WRITE (NWRITE,1 000) (FVEC(I),I=1,M)
WRITE (NWRITE,2000) (FVECP(I),I=1,M)
WRITE (NWRITE,3000) (ERR(I),I=1,M)
STOP

1000 FORMAT (/5X,5H FVEC // (5X,3D15.7))
2000 FORMAT (/5X,13H FVECP - FVEC // (5X,3D15.7))
3000 FORMAT (/5X,4H ERR // (5X,3D15.7))

C
C LAST CARD OF DRIVER FOR CHKDER EXAMPLE.
C

END
SUBROUTINE FCN(M,N,X,FVECFJACLDFJACIFLAG)
INTEGER M,N,LDFJAC, IFLAG
DOUBLE PRECISION X(N),FVEC(M),FJAC(LDFJAC,N)

C
C SUBROUTINE FCN FOR CHKDER EXAMPLE.
C



137

Page 5

INTEGER I
DOUBLE PRECISION TMP1,TMP2,TMP3,TMP4
DOUBLE PRECISION Y(15)
DATA Y(1),Y(2),Y(3),Y(4),Y(5),Y(6),Y(7),Y(8),

* Y(9),Y(10),Y(11),Y(12),Y(13),Y(14),Y(15)
* /1.4D-1,1.8D-1,2.2D-1,2.5D-1,2.9D-1,3.2D-1,3.5D-1,3.9D-1,
* 3.7D-1,5.8D-1,7.3D-1,9.6D-1,1.34D0,2.1DO,4.39D0/

C
IF (IFLAG .EQ. 2) GO TO 20
DO 10 I = 1, 15

TMP1 = I
TMP2 = 16 - I
TMP3 = TMP1
IF (I .GT. 8) TMP3 = TMP2
FVEC(I) = Y(I) - (X(1) + TMP1/(X(2)*TMP2 + X(3)*TMP3))

10 CONTINUE
GO TO 40

20 CONTINUE
DO 30 I = 1, 15

TMP1 = I
TMP2 = 16 - I

C
C ERROR INTRODUCED INTO NEXT STATEMENT FOR ILLUSTRATION.
C CORRECTED STATEMENT SHOULD READ TMP3 = TMP1
C

TMP3 = TMP2
IF (I .GT. 8) TMP3 = TMP2
TMP4 = (X(2)*TMP2 + X(3)*TMP3)**2
FJAC(I,1) = -1.DO
FJAC(I,2) = TMP1*TMP2/TMP4
FJAC(I,3) = TMP1*TMP3/TMP4

30 CONTINUE
40 CONTINUE

RETURN
C
C LAST CARD OF SUBROUTINE FCN.
C

END

Results obtained with different compilers or machines
may be different. In particular, the differences
FVECP - FVEC are machine dependent.

FVEC

-0.1181606D+01 -0.1429655D+01 -0.1606344D+01
-0.1745269D+01 -0.1840654D+01 -0.1921586D+01
-0.1984141D+01 -0.2022537D+01 -0.2468977D+01
-0.2827562D+01 -0.3473582D+01 -0.4437612D+01
-0.6047662D+01 -0.9267761D+01 -0.1891806D+02

FVECP - FVEC

-0.7724666D-08 -0.3432 405D-08 -0.2034843D-09



138

Page 6

0. 2313685D-08
0. 7363281D-08
0.2335850D-07
0.8266660D-07

ERR

0.1141397D+00
0.9980447D-01
0.1526814D+00
0.1000000D+01
0.1000000D+01

0. 4331078D-08
0.8531470D-08
0.3522012D-07
0. 1419747D-06

0.9943516D-01
0.1073116D+00
0.1000000D+01
0. 1000000D+01
0.1000000D+01

0.5984096D-08
0.1488591D-07
0.530L255D-07
0.3198990D-06

0.9674474D-01
0. 1220445D+00
0.1000000D+01
0.1000000D+01
0.1000000D+01



139

CHAPTER 5

Program Listings

This chapter contains the double precision version of the MINPACK-1

program listings; both single and double precision versions of the subprograms

are available with the MINPACK-1 package. The listings appear in the

following (alphanumeric) order:

CHKDER, DOGLEG, ENORM, FDJAC1, FDJAC2, HYBRD, HYBRD1,

HYBRJ, HYBRJ1, LMDER, LMDER1, LMDIF, LMDIF1, LMPAR, LMSTR,

LMSTR1, QFORM, QRFAC, QRSOLV, RWUPDT, R1MPYQ, R1UPDT.

Functions SPMPAR (single precision) and DPMPAR (double precision), which

provide the machine-dependent constants, appear at the end.



140



141

SUBROUTINE CHKDER(M,N,X,FVEC,FJAC,LDFJAC,XP,FVECP,MODE,ERR)
INTEGER M, N,LDFJAC,MODE
DOUBLE PRECISION X(N),FVEC(M),FJAC(LDFJAC,N),XP(N),FVECP(M),

* ERR(M)
C
C
C SUBROUTINE CHKDER
C
C THIS SUBROUTINE CHECKS THE GRADIENTS OF M NONLINEAR FUNCTIONS
C IN N VARIABLES, EVALUATED AT A POINT X, FOR CONSISTENCY WITH
C THE FUNCTIONS THEMSELVES. THE USER MUST CALL CHKDER TWICE,
C FIRST WITH MODE = 1 AND THEN WITH MODE = 2.
C
C MODE = 1. ON INPUT, X MUST CONTAIN THE POINT OF EVALUATION.
C ON OUTPUT, XP IS SET TO A NEIGHBORING POINT.
C
C MODE = 2. ON INPUT, FVEC MUST CONTAIN THE FUNCTIONS AND THE
C ROWS OF FJAC MUST CONTAIN THE GRADIENTS
C OF THE RESPECTIVE FUNCTIONS EACH EVALUATED
C AT X, AND FVECP MUST CONTAIN THE FUNCTIONS
C. EVALUATED AT XP.
C ON OUTPUT, ERR CONTAINS MEASURES OF CORRECTNESS OF
C THE RESPECTIVE GRADIENTS.
C
C THE SUBROUTINE DOES NOT PERFORM RELIABLY IF CANCELLATION OR
C ROUNDING ERRORS CAUSE A SEVERE LOSS OF SIGNIFICANCE IN THE
C EVALUATION OF A FUNCTION. THEREFORE, NONE OF THE COMPONENTS
C OF X SHOULD BE UNUSUALLY SMALL (IN PARTICULAR, ZERO) OR ANY
C OTHER VALUE WHICH MAY CAUSE LOSS OF SIGNIFICANCE.
C
C THE SUBROUTINE STATEMENT IS
C
C SUBROUTINE CHKDER(M,N,X,FVEC,FJAC,LDFJAC,XP,FVECP,MODE,ERR)
C
C WHERE
C
C M IS A POSITIVE INTEGER INPUT VARIABLE SET TO THE NUMBER
C OF FUNCTIONS.
C
C N IS A POSITIVE INTEGER INPUT VARIABLE SET TO THE NUMBER
C OF VARIABLES.
C
C X IS AN INPUT ARRAY OF LENGTH N.
C
C FVEC IS AN ARRAY OF LENGTH M. ON INPUT WHEN MODE = 2,
C FVEC MUST CONTAIN THE FUNCTIONS EVALUATED AT X.
C
C FJAC IS AN M BY N ARRAY. ON INPUT WHEN MODE = 2,
C THE ROWS OF FJAC MUST CONTAIN THE GRADIENTS OF
C THE RESPECTIVE FUNCTIONS EVALUATED AT X.
C
C LDFJAC IS A POSITIVE INTEGER INPUT PARAMETER NOT LESS THAN M
C WHICH SPECIFIES THE LEADING DIMENSION OF THE ARRAY FJAC.
C

CHDR0010
CHDR0020
CHDR0030
CHDR0040
CHDR0050
CHDR0060
CHDR0070
CHDR0080
CHDR0090
CHDR0100
CHDR0110
CHDR0120
CHDR0130
CHDR0140
CHDR0150
CHDR0160
CHDR0170
CHDR0180
CHDR0190
CHDR0200
CHDR0210
CHDR0220
CHDRO230
CHDR0240
CHDR0250
CHDR0260
CHDR0270
CHDR0280
CHDR0290
CHDRO300
CHDR0310
CHDR0320
CHDR0330
CHDR0340
CHDR0350
CHDR0360
CHDR0370
CHDR0380
CHDR0390
CHDRO400
CHDR0410
CHDRO420
CHDR0430
CHDRO440
CHDR0450
CHDR0460
CHDRO470
CHDRO480
CHDR0490
CHDR0500
CHDR0510
CHDR0520
CHDR0530
CHDR0540



142

C XP IS AN ARRAY OF LENGTH N. ON OUTPUT WHEN MODE = 1, CHDR0550
C XP IS SET TO A NEIGHBORING POINT OF X. CHDR0560
C CHDR0570
C FVECP IS AN ARRAY OF LENGTH M. ON INPUT WHEN MODE = 2, CHDR0580
C FVECP MUST CONTAIN THE FUNCTIONS EVALUATED AT XP. CHDR0590
C CHDR0600
C MODE IS AN INTEGER INPUT VARIABLE SET TO 1 ON THE FIRST CALL CHDR0610
C AND 2 ON THE SECOND. OTHER VALUES OF MODE ARE EQUIVALENT CHDR0620
C TO MODE = 1. CHDR0630
C CHDR0640
C ERR IS AN ARRAY OF LENGTH M. ON OUTPUT WHEN MODE = 2, CHDR0650
C ERR CONTAINS MEASURES OF CORRECTNESS OF THE RESPECTIVE CHDR0660
C GRADIENTS. IF THERE IS NO SEVERE LOSS OF SIGNIFICANCE, CHDR0670
C THEN IF ERR(I) IS 1.0 THE I-TH GRADIENT IS CORRECT, CHDR0680
C WHILE IF ERR(I) IS 0.0 THE I-TH GRADIENT IS INCORRECT. CHDR0690
C FOR VALUES OF ERR BETWEEN 0.0 AND 1.0, THE CATEGORIZATION CHDR0700
C IS LESS CERTAIN. IN GENERAL, A VALUE OF ERR(I) GREATER CHDR0710
C THAN 0.5 INDICATES THAT THE I-TH GRADIENT IS PROBABLY CHDR0720
C CORRECT, WHILE A VALUE OF ERR(I) LESS THAN 0.5 INDICATES CHDR0730
C THAT THE I-TH GRADIENT IS PROBABLY INCORRECT. CHDR0740
C CHDR0750
C SUBPROGRAMS CALLED CHDR0760
C CHDR0770
C MINPACK SUPPLIED ... DPMPAR CHDR0780
C CHDR0790
C FORTRAN SUPPLIED ... DABS,DLOG10,DSQRT CHDR0800
C CHDR0810
C ARGONNE-NATIONAL LABORATORY. MINPACK PROJECT. MARCH 1980. CHDR0820
C BURTON S. GARBOW, KENNETH E. HILLSTROM, JORGE J. MORE CHDR0830
C CHDR0840
C ******CHDR0850

INTEGER I,J CHDR0860
DOUBLE PRECISION EPS,EPSF,EPSLOG,EPSMCH,FACTOR,ONE,TEMP,ZERO CHDR0870
DOUBLE PRECISION DPMPAR CHDR0880
DATA FACTOR,ONE,ZERO /1.0D2,1.0DO,0.OD0/ CHDR0890

C CHDRO900
C EPSMCH IS THE MACHINE PRECISION. CHDR0910
C CHDR0920

EPSMCH = DPMPAR(1) CHDR0930
C CHDRO940

EPS = DSQRT(EPSMCH) CHDRO950
C CHDRO960

IF (MODE .EQ. 2) GO TO 20 CHDRO970
C CHDR0980
C MODE = 1. CHDRO990
C CHDR1000

DO 10 J = 1, N CHDR1010
TEMP = EPS*DABS(X(J)) CHDR1020
IF (TEMP .EQ. ZERO) TEMP = EPS CHDR1030
XP(J) = X(J) + TEMP CHDR1040

10 CONTINUE CHDR1050
GO TO 70 CHDR1060

20 CONTINUE CHDR1070
C CHDR1080



143

C MODE = 2. CHDR1090
C CHDR1100

EPSF = FACTOR*EPSMCH CHDR1110
EPSLOG = DLOG10(EPS) CHDR1120
DO 30 I = 1, M CHDR1130

ERR(I) = ZERO CHDR1140
30 CONTINUE CHDR1150

DO 50 J = 1, N CHDR1160
TEMP = DABS(X(J)) CHDR1170
IF (TEMP .EQ. ZERO) TEMP = ONE CHDR1180
DO 40 I = 1, M CHDR1190

ERR(I) = ERR(I) + TEMP*FJAC(I,J) CHDR1200
40 CONTINUE CHDR1210
50 CONTINUE CHDR1220

DO 60 I = 1, M CHDR1230
TEMP = ONE CHDR1240
IF (FVEC(I) .NE. ZERO .AND. FVECP(I) .NE. ZERO CHDR1250

.AND. DABS(FVECP(I)-FVEC(I)) .GE. EPSF*DABS(FVEC(I))) CHDR1260
TEMP = EPS*DABS((FVECP(I)-FVEC(I))/EPS-ERR(I)) CHDR1270

* /(DABS(FVEC(I)) + DABS(FVECP(I))) CHDR1280
ERR(I) = ONE CHDR1290
IF (TEMP .GT. EPSMCH .AND. TEMP .LT. EPS) CHDR1300

* ERR(I) = (DLOG10(TEMP) - EPSLOG)/EPSLOG CHDR1310
IF (TEMP .GE. EPS) ERR(I) = ZERO CHDR1320

60 CONTINUE CHDR1330
70 CONTINUE CHDR1340

C CHDR1350
RETURN CHDR1360

C CHDR1370
C LAST CARD OF SUBROUTINE CHKDER. CHDR1380
C CHDR1390

END CHDR1400



144



145

SUBROUTINE DOGLEG(N,R,LR,DIAG,QTB,DELTA,X,WA1,WA2) DOGLOO10
INTEGER N,LR DOGLOO20
DOUBLE PRECISION DELTA DOGLOO30
DOUBLE PRECISION R(LR),DIAG(N),QTB(N),X(N),WA1(N),WA2(N) DOGLOO40

C DOGLOO50
C DOGLOO60
C SUBROUTINE DOGLEG DOGLOO70
C DOGLOO80
C GIVEN AN M BY N MATRIX A, AN N BY N NONSINGULAR DIAGONAL DOGLOO90
C MATRIX D, AN M-VECTOR B, AND A POSITIVE NUMBER DELTA, THE DOGLO100
C PROBLEM IS TO DETERMINE THE CONVEX COMBINATION X OF THE DOGLO110
C GAUSS-NEWTON AND SCALED GRADIENT DIRECTIONS THAT MINIMIZES DOGLO120
C (A*X - B) IN THE LEAST SQUARES SENSE, SUBJECT TO THE DOGLO130
C RESTRICTION THAT THE EUCLIDEAN NORM OF D*X BE AT MOST DELTA. DOGLO140
C DOGLO150
C THIS SUBROUTINE COMPLETES THE SOLUTION OF THE PROBLEM DOGLO160
C IF IT IS PROVIDED WITH THE NECESSARY INFORMATION FROM THE DOGLO170
C QR FACTORIZATION OF A. THAT IS, IF A = Q*R, WHERE Q HAS DOGLO180
C ORTHOGONAL COLUMNS AND R IS AN UPPER TRIANGULAR MATRIX, DOGLO190
C THEN DOGLEG EXPECTS THE FULL UPPER TRIANGLE OF R AND DOGLO200
C THE FIRST N COMPONENTS OF (Q TRANSPOSE)*B. DOGLO210
C DOGLO220
C THE SUBROUTINE STATEMENT IS DOGLO230
C DOGLO240
C SUBROUTINE DOGLEG(N,R,LR,DIAG,QTB,DELTA,X,WA1,WA2) DOGLO250
C DOGLO260
C WHERE DOGLO270
C DOGLO280
C N IS A POSITIVE INTEGER INPUT VARIABLE SET TO THE ORDER OF R. DOGLO290
C DOGLO300
C R IS AN INPUT ARRAY OF LENGTH LR WHICH MUST CONTAIN THE UPPER DOGLO310
C TRIANGULAR MATRIX R STORED BY ROWS. DOGLO320
C DOGLO330
C LR IS A POSITIVE INTEGER INPUT VARIABLE NOT LESS THAN DOGLO340
C (N*(N+1))/2. DOGLO350
C DOGLO360
C DIAG IS AN INPUT ARRAY OF LENGTH N WHICH MUST CONTAIN THE DOGLO370
C DIAGONAL ELEMENTS OF THE MATRIX D. DOGLO380
C DOGLO390
C QTB IS AN INPUT ARRAY OF LENGTH N WHICH MUST CONTAIN THE FIRST DOGLO400
C N ELEMENTS OF THE VECTOR (Q TRANSPOSE)*B. DOGLO410
C DOGLO420
C DELTA IS A POSITIVE INPUT VARIABLE WHICH SPECIFIES AN UPPER DOGLO430
C BOUND ON THE EUCLIDEAN NORM OF D*X. DOGLO440
C DOGLO450
C X IS AN OUTPUT ARRAY OF LENGTH N WHICH CONTAINS THE DESIRED DOGLO460
C CONVEX COMBINATION OF THE GAUSS-NEWTON DIRECTION AND THE DOGLO470
C SCALED GRADIENT DIRECTION. DOGLO480
C DOGLO490
C WA1 AND WA2 ARE WORK ARRAYS OF LENGTH N. DOGLO500
C DOGLO510
C SUBPROGRAMS CALLED DOGLO520
C DOGLO530
C MINPACK-SUPPLIED ... DPMPAR,ENORM DOGLO540



146

C
C FORTRAN-SUPPLIED ... DABS,DMAX1,DMIN1,DSQRT
C
C ARGONNE NATIONAL LABORATORY. MINPACK PROJECT. MARCH 1980.
C BURTON S. GARBOW, KENNETH E. HILLSTROM, JORGE J. MORE
C
C ***:******.

INTEGER I,J,JJ,JP1,K,L
DOUBLE PRECISION ALPHA,BNORM,EPSMCH,GNORM,ONE,QNORM,SGNORM,SUM,

* TEMP,ZERO
DOUBLE PRECISION DPMPAR,ENORM
DATA ONE,ZERO /1.ODO,O.ODO/

C
C EPSMCH IS THE MACHINE PRECISION.
C

EPSMCH = DPMPAR(1)
C
C FIRST, CALCULATE THE GAUSS-NEWTON DIRECTION.
C

JJ = (N*(N + 1))/2 + 1
DO 50 K = 1, N

J = N - K + 1
JP1 = J + 1
JJ = JJ - K
L = JJ + 1
SUM = ZERO
IF (N .LT. JP1) GO TO 20
DO 10 I = JP1, N

SUM = SUM + R(L)*X(I)
L = L + 1

10 CONTINUE
20 CONTINUE

TEMP = R(JJ)
IF (TEMP .NE. ZERO) GO TO 40
L = J
DO 30 I = 1, J

TEMP = DMAX1(TEMP,DABS(R(L)))
L = L + N - I

30 CONTINUE
TEMP = EPSMCH*TEMP
IF (TEMP .EQ. ZERO) TEMP = EPSMCH

40 CONTINUE
X(J) = (QTB(J) - SUM)/TEMP

50 CONTINUE
C
C TEST WHETHER THE GAUSS-NEWTON DIRECTION IS ACCEPTABLE.
C

DO 60 J = 1, N
WA1(J) = ZERO
WA2(J) = DIAG(J)*X(J)

60 CONTINUE
QNORM = ENORM(N,WA2)
IF (QNORM .LE. DELTA) GO TO 140

C

DOGLO550
DOGLO560
DOGLO570
DOGLO580
DOGLO590
DOGLO600
DOGLO610
DOGLO620
DOGLO630
DOGLO640
DOGLO650
DOGL0660
DOGLO670
DOGLO680
DOGLO690
DOGLO700
DOGLO710
DOGL0720
DOGLO730
DOGLO740
DOGLO750
DOGLO760
DOGL0770
DOGLO780
DOGLO790
DOGLO800
DOGLO810
DOGLO820
DOGLO830
DOGLO840
DOGLO850
DOGLO860
DOGLO870
DOGLO880
DOGLO890
DOGLO900
DOGLO910
DOGLO920
DOGLO930
DOGLO940
DOGLO950
DOGLO960
DOGLO970
DOGLO980
DOGLO990
DOGL1000
DOGL1010
DOGL1020
DOGL1030
DOGL1040
DOGL1050
DOGL1060
DOGL1070
DOGL1080



147

C
C
C

THE GAUSS-NEWTON DIRECTION IS NOT ACCEPTABLE.
NEXT, CALCULATE THE SCALED GRADIENT DIRECTION.

L = 1
DO 80 J = 1, N

TEMP = QTB(J)
DO 70 I = J, N

WA1(I) = WA1(I) + R(L)*TEMP
L = L + 1

70 CONTINUE
WA1(J) = WA1(J)/DIAG(J)

80 CONTINUE

CALCULATE THE NORM OF THE SCALED GRADIENT AND TEST FOR
THE SPECIAL CASE IN WHICH THE SCALED GRADIENT IS ZERO.

GNORM = ENORM(N,WA1)
SGNORM = ZERO
ALPHA = DELTA/QNORM
IF (GNORM .EQ. ZERO) GO TO 120

CALCULATE THE POINT ALONG THE SCALED GRADIENT
AT WHICH THE QUADRATIC IS MINIMIZED.

DO 90 J = 1, N
WA1(J) = (WA1(J)/GNORM)/DIAG(J)

90 CONTINUE
L = 1
DO 110 J = 1, N

SUM = ZERO
DO 100 I = J, N

SUM = SUM + R(L)*WA1(I)
L=L+ 1

100 CONTINUE
WA2(J) = SUM

110 CONTINUE
TEMP = ENORM(N,WA2)
SGNORM = (GNORM/TEMP)/TEMP

TEST WHETHER THE SCALED GRADIENT DIRECTION IS ACCEPTABLE.

ALPHA = ZERO
IF (SGNORM .GE. DELTA) GO TO 120

THE SCALED GRADIENT DIRECTION IS NOT ACCEPTABLE.
FINALLY, CALCULATE THE POINT ALONG THE DOGLEG
AT WHICH THE QUADRATIC IS MINIMIZED.

BNORM = ENORM(N,QTB)
TEMP = (BNORM/GNORM)*(BNORM/QNORM)*(SGNORM/DELTA)
TEMP = TEMP - (DELTA/QNORM)*(SGNORM/DELTA)**2

* + DSQRT((TEMP-(DELTA/QNORM))**2
* +(ONE-(DELTA/QNORM)**2)*(ONE-(SGNORM/DELTA)**2))
ALPHA ((DELTA/QNORM)*(ONE - (SGNORM/DELTA)**2))/TEMP

C
C
C
C

C
C
C
C

C
C
C

C
C
C
C
C

DOGL1090
DOGL1100
DOGL1110
DOGL1120
DOGL1130
DOGL1140
DOGL1150
DOGL1160
DOGL1170
DOGL1180
DOGL1190
DOGL1200
DOGL1210
DOGL1220
DOGL1230
DOGL1240
DOGL1250
DOGL1260
DOGL1270
DOGL1280
DOGL1290
DOGL1300
DOGL1310
DOGL1320
DOGL1330
DOGL1340
DOGL1350
DOGL1360
DOGL1370
DOGL1380
DOGL1390
DOGL1400
DOGL1410
DOGL1420
DOGL1430
DOGL1440
DOGL1450
DOGL1460
DOGL1470
DOGL1480
DOGL1490
DOGL1500
DOGL1510
DOGL1520
DOGL1530
DOGL1540
DOGL1550
DOGL1560
DOGL1570
DOGL1580
DOGL1590
DOGL1600
DOGL1610
DOGL1620



148

120 CONTINUE DOGL1630
C DOGL1640
C FORM APPROPRIATE CONVEX COMBINATION OF THE GAUSS-NEWTON DOGL1650
C DIRECTION AND THE SCALED GRADIENT DIRECTION. DOGL1660
C DOGL1670

TEMP = (ONE - ALPHA)*DMIN1(SGNORM,DELTA) DOGL1680
DO 130 J = 1, N DOGL1690

X(J) = TEMP*WA1(J) + ALPHA*X(J) DOGL1700
130 CONTINUE DOGL1710
140 CONTINUE DOGL1720

RETURN DOGL1730
C DOGL1740
C LAST CARD OF SUBROUTINE DOGLEG. DOGL1750
C DOGL1760

END DOGL1770



149

DOUBLE PRECISION FUNCTION ENORM(N,X)
INTEGER N
DOUBLE PRECISION X(N)

C ****
C
C FUNCTION ENORM
C
C GIVEN AN N-VECTOR X, THIS FUNCTION CALCULATES THE
C EUCLIDEAN NORM OF X.
C
C THE EUCLIDEAN NORM IS COMPUTED BY ACCUMULATING THE SUM OF
C SQUARES IN THREE DIFFERENT SUMS. THE SUMS OF SQUARES FOR THE
C SMALL AND LARGE COMPONENTS ARE SCALED SO THAT NO OVERFLOWS
C OCCUR. NON-DESTRUCTIVE UNDERFLOWS ARE PERMITTED. UNDERFLOWS
C AND OVERFLOWS DO NOT OCCUR IN THE COMPUTATION OF THE UNSCALED
C SUM OF SQUARES FOR THE INTERMEDIATE COMPONENTS.
C THE DEFINITIONS OF SMALL, INTERMEDIATE AND LARGE COMPONENTS
C DEPEND ON TWO CONSTANTS, RDWARF AND RGIANT. THE MAIN
C RESTRICTIONS ON THESE CONSTANTS ARE THAT RDWARF**2 NOT
C UNDERFLOW AND RGIANT**2 NOT OVERFLOW. THE CONSTANTS
C GIVEN HERE ARE SUITABLE FOR EVERY KNOWN COMPUTER.
C
C THE FUNCTION STATEMENT IS
C
C DOUBLE PRECISION FUNCTION ENORM(N,X)
C
C WHERE
C
C N IS A POSITIVE INTEGER INPUT VARIABLE.
C
C X IS AN INPUT ARRAY OF LENGTH N.
C
C SUBPROGRAMS CALLED
C
C FORTRAN-SUPPLIED ... DABS,DSQRT

ARGONNE NATIONAL LABORATORY. MINPACK PROJECT.
BURTON S. GARBOW, KENNETH E. HILLSTROM, JORGE

MARCH 1980.
J. MORE

INTEGER I
DOUBLE PRECISION AGIANT,FLOATN,ONE,RDWARF,RGIANT,S1,S2,S3,XABS

X1MAX,X3MAX,ZERO
DATA ONE,ZERO,RDWARF,RGIANT /1.ODO,0.ODO,3.834D-20,1.304D19/
S1 = ZERO
S2 = ZERO
S3 = ZERO
X1MAX - ZERO
X3MAX = ZERO
FLOATN = N
AGIANT - RGIANT/FLOATN
DO 90 I = 1, N

XABS * DABS(X(I))
IF (XABS .GT. RDWARF .AND. XABS .LT. AGIANT) GO TO 70

ENRM0010
ENRM0020
ENRM0030
ENRM0040
ENRM0050
ENRM0060
ENRM0070
ENRM0080
ENRM0090
ENRM0100
ENRM0110
ENRM0120
ENRM0130
ENRM0140
ENRM0150
ENRM0160
ENRM0170
ENRM0180
ENRM0190
ENRM0200
ENRM0210
ENRM0220
ENRM0230
ENRM0240
ENRM0250
ENRM0260
ENRM0270
ENRM0280
ENRM0290
ENRM0300
ENRM0310
ENRM0320
ENRM0330
ENRM0340
ENRM0350
ENRM0360
ENRM0370
ENRM0380
ENRM0390
ENRM0400
ENRM0410
ENRM0420
ENRM0430
ENRM0440
ENRM0450
ENRM0460
ENRM0470
ENRM0480
ENRM0490
ENRMO500
ENRM0510
ENRM0520
ENRM0530
ENRM0540

C
C
C
C
C

I



150

IF (XABS .LE. RDWARF) GO TO 30

SUM FOR LALGE COMPONENTS.

IF (XABS .LE. X1MAX) GO TO 10
Si = ONE + S1*(X1MAX/XABS)**2
X1MAX = XABS
GO TO 20

CONTINUE
Si = Si + (XABS/X1MAX)**2

CONTINUE
GO TO 60

CONTINUE

SUM FOR SMALL COMPONENTS.

IF (XABS .LE. X3MAX) GO TO 40
S3 = ONE + S3*(X3MAX/XABS)**2
X3MAX = XABS
GO TO 50

40 CONTINUE
IF (XABS .NE. ZERO) S3 = S3 + (XABS/X3MAX)**2

50 CONTINUE
60 CONTINUE

GO TO 80
70 CONTINUE

SUM FOR INTERMEDIATE COMPONENTS.

S2 = S2 + XABS**2
CONTINUE
CONTINUE

CALCULATION OF NORM.

IF (Si .EQ. ZERO) GO TO 100
ENORM = X1MAX*DSQRT(S1+(S2/X1MAX)/X1MAX)
GO TO 130

100 CONTINUE
IF (S2 .EQ. ZERO) GO TO 110

IF (S2 .GE. X3MAX)
* ENORM = DSQRT(S2*(ONE+(X3MAX/S2)*(X3MAX*S3)))

IF (S2 .LT. X3MAX)
* ENORM = DSQRT(X3MAX*((S2/X3MAX)+(X3MAX*S3)))

GO TO 120
110 CONTINUE

ENORM = X3MAX*DSQRT(S3)
120 CONTINUE
130 CONTINUE

RETURN

LAST CARD OF FUNCTION ENORM.

END

C
C
C

10

20

30
C
C
C

C
C
C

80
90

ENRM0550
ENRM0560
ENRM0570
ENRM0580
ENRM0590
ENRM0600
ENRM0610
ENRM0620
ENRM0630
ENRM0640
ENRM0650
ENRM0660
ENRM0670
ENRM0680
ENRM0690
ENRM0700
ENRM0710
ENRM0720
ENRM0730
ENRM0740
ENRM0750
ENRM0760
ENRM0770
ENRM0780
ENRM0790
ENRM0800
ENRM0810
ENRM0820
ENRM0830
ENRM0840
ENRM0850
ENRM0860
ENRM0870
ENRM0880
ENRM0890
ENRM0900
ENRM0910
ENRM0920
ENRM0930
ENRM0940
ENRM0950
ENRM0960
ENRM0970
ENRM0980
ENRM0990
ENRM1000
ENRM1010
ENRM1020
ENRM1030
ENRM1040
ENRM1050
ENRM1060
ENRM1070
ENRM1080

C
C
C

C
C
C



151

SUBROUTINE FDJAC1(FCN,N,X,FVEC,FJAC,LDFJAC,IFLAG,ML,MU,EPSFCN,
* WA1,WA2)
INTEGER N,LDFJAC,IFLAG,ML,MU
DOUBLE PRECISION EPSFCN
DOUBLE PRECISION X(N),FVEC(N),FJAC(LDFJAC,N),WA1(N),WA2(N)

C **********
C
C SUBROUTINE FDJAC1
C
C THIS SUBROUTINE COMPUTES A FORWARD-DIFFERENCE APPROXIMATION
C TO THE N BY N JACOBIAN MATRIX ASSOCIATED WITH A SPECIFIED
C PROBLEM OF N FUNCTIONS IN N VARIABLES. IF THE JACOBIAN HAS
C A BANDED FORM, THEN FUNCTION EVALUATIONS ARE SAVED BY ONLi
C APPROXIMATING THE NONZERO TERMS.
C
C THE SUBROUTINE STATEMENT IS
C
C SUBROUTINE FDJAC1(FCN,N,X,FVEC,FJAC,LDFJAC,IFLAG,ML,MU,EPSFCN,
C WA1,WA2)
C
C WHERE
C
C FCN IS THE NAME OF THE USER-SUPPLIED SUBROUTINE WHICH
C CALCULATES THE FUNCTIONS. FCN MUST BE DECLARED
C IN AN EXTERNAL STATEMENT IN THE USER CALLING
C PROGRAM, AND SHOULD BE WRITTEN AS FOLLOWS.
C
C SUBROUTINE FCN(N,X,FVEC,IFLAG)
C INTEGER N,IFLAG
C DOUBLE PRECISION X(N),FVEC(N)
C ----------
C CALCULATE THE FUNCTIONS AT X AND
C RETURN THIS VECTOR IN FVEC.
C ---------
C RETURN
C END
C
C THE VALUE OF IFLAG SHOULD NOT BE CHANGED BY FCN UNLESS
C THE USER WANTS TO TERMINATE EXECUTION OF FDJAC1.
C IN THIS CASE SET IFLAG TO A NEGATIVE INTEGER.
C
C N IS A POSITIVE INTEGER INPUT VARIABLE SET TO THE NUMBER
C OF FUNCTIONS AND VARIABLES.
C
C X IS AN INPUT ARRAY OF LENGTH N.
C
C FVEC IS AN INPUT ARRAY OF LENGTH N WHICH MUST CONTAIN THE
C FUNCTIONS EVALUATED AT X.
C
C FJAC IS AN OUTPUT N BY N ARRAY WHICH CONTAINS THE
C APPROXIMATION TO THE JACOBIAN MATRIX EVALUATED AT X.
C
C LDFJAC IS A POSITIVE INTEGER INPUT VARIABLE NOT LESS THAN N
C WHICH SPECIFIES THE LEADING DIMENSION OF THE ARRAY FJAC.

FDJ10010
FDJ10020
FDJ10030
FDJ10040
FDJ10050
FDJ10060
FDJ10070
FDJ10080
FDJ10090
FDJ10100
FDJ10110
FDJ10120
FDJ10130
FDJ10140
FDJ10150
FDJ10160
FDJ10170
FDJ 10 180
FDJ10190
FDJ10200
FDJ10210
FDJ10220
FDJ10230
FDJ10240
FDJ10250
FDJ10260
FDJ10270
FDJ10280
FDJ10290
FDJ10300
FDJ10310
FDJ10320
FDJ10330
FDJ10340
FDJ10350
FDJ10360
FDJ10370
FDJ10380
FDJ10390
FDJ10400
FDJ10410
FDJ10420
FDJ10430
FDJ10440
FDJ10450
FDJ10460
FDJ10470
FDJ10480
FDJ10490
FDJ10500
FDJ10510
FDJ10520
FDJ10530
FDJ10540



152

C FDJ10550
C IFLAG IS AN INTEGER VARIABLE WHICH CAN BE USED TO TERMINATE FDJ10560
C THE EXECUTION OF FDJAC1. SEE DESCRIPTION OF FCN. FDJ10570
C FDJ10580
C ML IS A NONNEGATIVE INTEGER INPUT VARIABLE WHICH SPECIFIES FDJ10590
C THE NUMBER OF SUBDIAGONALS WITHIN THE BAND OF THE FDJ10600
C JACOBIAN MATRIX. IF THE JACOBIAN IS NOT BANDED, SET FDJ10610
C ML TO AT LEAST N - 1. FDJ10620
C FDJ10630
C EPSFCN IS AN INPUT VARIABLE USED IN DETERMINING A SUITABLE FDJ10640
C STEP LENGTH FOR THE FORWARD-DIFFERENCE APPROXIMATION. THIS FDJ10650
C APPROXIMATION ASSUMES THAT THE RELATIVE ERRORS IN THE FDJ10660
C FUNCTIONS ARE OF THE ORDER OF EPSFCN. IF EPSFCN IS LESS FDJ10670
C THAN THE MACHINE PRECISION, IT IS ASSUMED THAT THE RELATIVE FDJ10680
C ERRORS IN THE FUNCTIONS ARE OF THE ORDER OF THE MACHINE FDJ10690
C PRECISION. FDJ10700
C FDJ1O/10
C MU IS A NONNEGATIVE INTEGER INPUT VARIABLE WHICH SPECIFIES FDJ10720
C THE NUMBER OF SUPERDIAGONALS WITHIN THE BAND OF THE FDJ10730
C JACOBIAN MATRIX. IF THE JACOBIAN IS NOT BANDED, SET FDJ10740
C MU TO AT LEAST N - 1. FDJ10750
C FDJ10760
C WA1 AND WA2 ARE WORK ARRAYS OF LENGTH N. IF ML + MU + 1 IS AT FDJ10770
C LEAST N, THEN THE JACOBIAN IS CONSIDERED DENSE, AND WA2 IS FDJ10780
C NOT REFERENCED. FDJ10790
C FDJ10800
C SUBPROGRAMS CALLED FDJ10810
C FDJ10820
C MINPACK-SUPPLIED ... DPMPAR FDJ10830
C FDJ10840
C FORTRAN-SUPPLIED ... DABS,DMAX1,DSQRT FDJ10850
C FDJ10860
C ARGONNE NATIONAL LABORATORY. MINPACK PROJECT. MARCH 1980. FDJ10870
C BURTON S. GARBOW, KENNETH E. HILLSTROM, JORGE J. MORE FDJ10880
C FDJ10890
C ******** FDJ 10900

INTEGER I,J,K,MSUM FDJ10910
DOUBLE PRECISION EPS,EPSMCH,H,TEMP,ZERO FDJ10920
DOUBLE PRECISION DPMPAR FDJ10930
DATA ZERO /O.ODO/ FDJ10940

C FDJ10950
C EPSMCH IS THE MACHINE PRECISION. FDJ10960
C FDJ10970

EPSMCH = DPMPAR(1) FDJ10980
C FDJ10990

EPS = DSQRT(DMAX1(EPSFCN,EPSMCH)) FDJ11000
MSUM = ML + MU + I FDJ11010
IF (MSUM .LT. N) GO TO 40 FDJ11020

C FDJ11030
C COMPUTATION OF DENSE APPROXIMATE JACOBIAN. FDJ11040
C FDJ11050

DO 20 J = 1, N FDJ11060
TEMP = X(J) FDJ11070
H = EPS*DABS(TEMP) FDJ11080



153

IF (H .EQ. ZERO) H = EPS FDJ11090
X(J) = TEMP + H FDJ11100
CALL FCN(N,X,WA1,IFLAG) FDJ11110
IF (IFLAG .LT. 0) GO TO 30 FDJ11120
X(J) = TEMP FDJ11130
DO 10 I = 1, N FDJ11140

FJAC(I,J) = (WA1(I) - FVEC(I))/H FDJ11150
10 CONTINUE FDJ11160
20 CONTINUE FDJ11170
30 CONTINUE FDJ11180

GO TO 110 FDJ11190
40 CONTINUE FDJ11200

C FDJ11210
C COMPUTATION OF BANDED APPROXIMATE JACOBIAN. FDJ11220
C FDJ11230

DO 90 K = 1, MSUM FDJ11240
DO 60 J = K, N, MSUM FDJ11250

WA2(J) = X(J) FDJ11260
H = EPS*DABS(WA2(J)) FDJ11270
IF (H .EQ. ZERO) H = EPS FDJ11280
X(J) = WA2(J) + H FDJ11290

60 CONTINUE FDJ11300
CALL FCN(N,X,WA1,IFLAG) FDJ11310
IF (IFLAG .LT. 0) GO TO 100 FDJ11320
DO 80 J = K, N, MSUM FDJ11330

X(J) = WA2(J) FDJ11340
H = EPS*DABS(WA2(J)) FDJ11350
IF (H .EQ. ZERO) H = EPS FDJ11360
DO 70 I = 1, N FDJ11370

FJAC(I,J) = ZERO FDJ11380
IF (I .GE. J - MU .AND. I .LE. J + ML) FDJ11390

* FJAC(I,J) = (WA1(I) - FVEC(I))/H FDJ11400
70 CONTINUE FDJ11410
80 CONTINUE FDJ11420
90 CONTINUE FDJ11430

100 CONTINUE FDJ11440
110 CONTINUE FDJ11450

RETURN FDJ11460
C FDJ11470
C LAST CARD OF SUBROUTINE FDJAC1. FDJ11480
C FDJ11490

END FDJ11500



154



155

SUBROUTINE FDJAC2(FCN,M,N,X,FVEC,FJAC,LDFJAC,IFLAG,EPSFCN,WA)
INTEGER M,N,LDFJAC, IFLAG
DOUBLE PRECISION EPSFCN
DOUBLE PRECISION X(N),FVEC(M) ,FJAC(LDFJAC,N) ,WA(M)

C
C
C SUBROUTINE FDJAC2
C
C THIS SUBROUTINE COMPUTES A FORWARD-DIFFERENCE APPROXIMATION
C TO THE M BY N JACOBIAN MATRIX ASSOCIATED WITH A SPECIFIED
C PROBLEM OF M FUNCTIONS IN N VARIABLES.
C
C THE SUBROUTINE STATEMENT IS
C
C SUBROUTINE FDJAC2(FCN,M,N,X,FVEC,FJAC,LDFJAC,IFLAG,EPSFCN,WA)
C
C WHERE
C

FCN IS THE NAME OF THE USER-SUPPLIED SUBROUTINE WHICH
CALCULATES THE FUNCTIONS. FCN MUST BE DECLARED
IN AN EXTERNAL STATEMENT IN THE USER CALLING
PROGRAM, AND SHOULD BE WRITTEN AS FOLLOWS.

SUBROUTINE FCN(M,N,X,FVEC,IFLAG)
INTEGER M,N,IFLAG
DOUBLE PRECISION X(N),FVEC(M)
----------

CALCULATE THE FUNCTIONS AT X AND
RETURN THIS VECTOR IN FVEC.
----------

RETURN
END

THE VALUE OF IFLAG SHOULD NOT BE CHANGED BY FCN UNLESS
THE USER WANTS TO TERMINATE EXECUTION OF FDJAC2.
IN THIS CASE SET IFLAG TO A NEGATIVE INTEGER.

M IS A POSITIVE INTEGER INPUT VARIABLE SET TO THE NUMBER
OF FUNCTIONS.

N IS A POSITIVE INTEGER INPUT VARIABLE SET TO THE NUMBER
OF VARIABLES. N MUST NOT EXCEED M.

X IS AN INPUT ARRAY OF LENGTH N.

FVEC IS AN INPUT ARRAY OF LENGTH M WHICH MUST CONTAIN THE
FUNCTIONS EVALUATED AT X.

FJAC IS AN OUTPUT M BY N ARRAY WHICH CONTAINS THE
APPROXIMATION TO THE JACOBIAN MATRIX EVALUATED AT X.

LDFJAC IS A POSITIVE INTEGER INPUT VARIABLE NOT LESS THAN M
WHICH SPECIFIES THE LEADING DIMENSION OF THE ARRAY FJAC.

FDJ20010
FDJ20020
FDJ20030
FDJ20040
FDJ20050
FDJ20060
FDJ20070
FDJ20080
FDJ20090
FDJ20100
FDJ20110
FDJ20120
FDJ20130
FDJ20140
FDJ20150
FDJ20160
FDJ20170
FDJ20180
FDJ20190
FDJ20200
FDJ20210
FDJ20220
FDJ20230
FDJ20240
FDJ20250
FDJ20260
FDJ20270
FDJ20280
FDJ20290
FDJ20300
FDJ20310
FDJ20320
FDJ20330
FDJ20340
FDJ20350
FDJ20360
FDJ20370
FDJ20380
FDJ20390
FDJ20400
FDJ20410
FDJ20420
FDJ20430
FDJ20440
FDJ20450
FDJ20460
FDJ20470
FDJ20480
FDJ20490
FDJ20500
FDJ20510
FDJ20520
FDJ20530
FDJ20540

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C



156

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C *****

INTEGER I,J
DOUBLE PRECISION
DOUBLE PRECISION
DATA ZERO /O.ODO/

EPS,EPSMCH,H,TEMP,ZERO
DPMPAR

EPSMCH IS THE MACHINE PRECISION.

EPSMCH = DPMPAR(1)

EPS = DSQRT(DMAX1(EPSFCN,EPSMCH))
DO 20 J = 1, N

TEMP = X(J)
H = EPS'DABS(TEMP)
IF (H .EQ. ZERO) H = EPS
X(J) = TEMP + H
CALL FCN(M,N,X,WA,IFLAG)
IF (IFLAG .LT. 0) GO TO 30
X(J) = TEMP
DO 10 I = 1, M

FJAC(I,J) = (WA(I) - FVEC(I))/H
CONTINUE

CONTINUE
CONTINUE
RETURN

C
C LAST CARD OF SUBROUTINE FDJAC2.
C

END

IFLAG IS AN INTEGER VARIABLE WHICH CAN BE USED TO TERMINATE
THE EXECUTION OF FDJAC2. SEE DESCRIPTION OF FCN.

EPSFCN IS AN INPUT VARIABLE USED IN DETERMINING A SUITABLE
STEP LENGTH FOR THE FORWARD-DIFFERENCE APPROXIMATION. THIS
APPROXIMATION ASSUMES THAT THE RELATIVE ERRORS IN THE
FUNCTIONS ARE OF THE ORDER OF EPSFCN. IF EPSFCN IS LESS
THAN THE MACHINE PRECISION, IT IS ASSUMED THAT THE RELATIVE
ERRORS IN THE FUNCTIONS ARE OF THE ORDER OF THE MACHINE
PRECISION.

WA IS A WORK ARRAY OF LENGTH M.

SUBPROGRAMS CALLED

USER-SUPPLIED ....... FCN

MINPACK-SUPPLIED ... DPMPAR

FORTRAN-SUPPLIED ... DABS,DMAX1,DSQRT

ARGONNE NATIONAL LABORATORY. MINPACK PROJECT. MARCH 1980.
BURTON S. GARBOW, KENNETH E. HILLSTROM, JORGE J. MORE

C
C
C

C

FDJ20550
FDJ20560
FDJ20570
FDJ20580
FDJ20590
FDJ20600
FDJ20610
FDJ20620
FDJ20630
FDJ20640
FDJ20650
FDJ20660
FDJ20670
FDJ20680
FDJ20690
FDJ20700
FDJ20710
FDJ20720
FDJ20730
FDJ20740
FDJ20750
FDJ20760
FDJ20770
FDJ20780
FDJ20790
FDJ20800
FDJ20810
FDJ20820
FDJ20830
FDJ20840
FDJ20850
FDJ20860
FDJ20870
FDJ20880
FDJ20890
FDJ20900
FDJ20910
FDJ20920
FDJ20930
FDJ20940
FDJ20950
FDJ20960
FDJ20970
FDJ20980
FDJ20990
FDJ21000
FDJ21010
FDJ21020
FDJ21030
FDJ21040
FDJ21050
FDJ21060
FDJ21070

10
20
30



157

SUBROUTINE HYBRD(FCN,N,X,FVEC,XTOL,MAXFEV,ML,MU,EPSFCN,DIAG, HYBDO010
* MODE,FACTOR,NPRINT,INFO,NFEV,FJAC,LDFJAC,R,LR, HYBDO020
* QTF,WA1,WA2,WA3,WA4) HYBDO030
INTEGER N,MAXFEV,MLMU,MODE,NPRINT,INFO,NFEV,LDFJAC,LR HYBDO040
DOUBLE PRECISION XTOL,EPSFCN,FACTOR HYBDO050
DOUBLE PRECISION X(N),FVEC(N),DIAG(N),FJAC(LDFJAC,N),R(LR), HYBDO060

* QTF(N),WA1(N),WA2(N),WA3(N),WA4(N) HYBDO070
EXTERNAL FCN HYBDO080

C ********** HYBDO090
C HYBDO100
C SUBROUTINE HYBRD HYBDO110
C HYBDO120
C THE PURPOSE OF HYBRD IS TO FIND A ZERO OF A SYSTEM OF HYBDO130
C N NONLINEAR FUNCTIONS IN N VARIABLES BY A MODIFICATION HYBDO140
C OF THE POWELL HYBRID METHOD. THE USER MUST PROVIDE A HYBDO150
C SUBROUTINE WHICH CALCULATES THE FUNCTIONS. THE JACOBIAN IS HYBDO160
C THEN CALCULATED BY A FORWARD-DIFFERENCE APPROXIMATION. HYBDO170
C HYBDO180

THE SUBROUTINE STATEMENT IS HYBDO190
C HYBD0200
C SUBROUTINE HYBRD(FCN,N,X,FVEC,XTOL,MAXFEV,ML,MU,EPSFCN, HYBD0210
C DIAG,MODE,FACTOR,NPRINT,INFO,NFEV,FJAC, HYBD0220
C LDFJAC,R,LR,QTF,WA1,WA2,WA3,WA4) HYBD0230
C HYBD0240
C WHERE HYBD0250
C HYBD0260
C FCN IS THE NAME OF THE USER-SUPPLIED SUBROUTINE WHICH HYBD0270
C CALCULATES THE FUNCTIONS. FCN MUST BE DECLARED HYBD0280
C IN AN E-XTERNAL STATEMENT IN THE USER CALLING HYBD0290
C PROGRAM, AND SHOULD BE WRITTEN AS FOLLOWS. HYBD0300
C HYBD0310
C SUBROUTINE FCN(N,X,FVEC,IFLAG) HYBDO320
C INTEGER N,IFLAG HYBD0330
C DOUBLE PRECISION X(N),FVEC(N) HYBD0340
C ---------- HYBD0350
C CALCULATE THE FUNCTIONS AT X AND HYBD0360
C RETURN THIS VECTOR IN FVEC. HYBD0370
C --------- HYBD0380
C RETURN HYBD0390
C END HYBD0400
C HYBDO410
C THE VALUE OF IFLAG SHOULD NOT BE CHANGED BY FCN UNLESS HYBDO420
C THE USER WANTS TO TERMINATE EXECUTION OF HYBRD. HYBD0430
C IN THIS CASE SET IFLAG TO A NEGATIVE INTEGER. HYBD0440
C HYBD0450
C N IS A POSITIVE INTEGER INPUT VARIABLE SET TO THE NUMBER HYBD0460
C OF FUNCTIONS AND VARIABLES. HYBD0470
C HYBD0480
C X IS AN ARRAY OF LENGTH N. ON INPUT X MUST CONTAIN HYBD0490
C AN INITIAL ESTIMATE, OF THE SOLUTION VECTOR. ON OUTPUT X HYBD0500
C CONTAINS THE FINAL ESTIMATE OF THE SOLUTION VECTOR. HYBD0510
C HYBD0520
C FVEC IS AN OUTPUT ARRAY OF LENGTH N WHICH CONTAINS HYBD0530
C THE FUNCTIONS EVALUATED AT THE OUTPUT X. HYBD0540



158

C HYBD0550
C XTOL IS A NONNEGATIVE INPUT VARIABLE. TERMINATION HYBD0560
C OCCURS WHEN THE RELATIVE ERROR BETWEEN TWO CONSECUTIVE HYBD0570
C ITERATES IS AT MOST XTOL. HYBD0580
C HYBD0590
C MAXFEV IS A POSITIVE INTEGER INPUT VARIABLE. TERMINATION HYBD0600
C OCCURS WHEN THE NUMBER OF CALLS TO FCN IS AT LEAST MAXFEV HYBD0610
C BY THE END OF AN ITERATION. HYBD0620
C HYBD0630
C ML IS A NONNEGATIVE INTEGER INPUT VARIABLE WHICH SPECIFIES HYBD0640
C THE NUMBER OF SUBDIAGONALS WITHIN THE BAND OF THE HYBD0650
C JACOBIAN MATRIX. IF THE JACOBIAN IS NOT BANDED, SET HYBD0660
C ML TO AT LEAST N - 1. HYBD0670
C HYBD0680
C MU IS A NONNEGATIVE INTEGER INPUT VARIABLE WHICH SPECIFIES HYBD0690
C THE NUMBER OF SUPERDIAGONALS WITHIN THE BAND OF THE HYBD0700
C JACOBIAN MATRIX. IF THE JACOBIAN IS NOT BANDED, SET HYBD0710
C MU TO AT LEAST N - 1. HYBD0720
C HYBD0730
C EPSFCN IS AN INPUT VARIABLE USED IN DETERMINING A SUITABLE HYBD0740
C STEP LENGTH FOR THE FORWARD-DIFFERENCE APPROXIMATION. THIS HYBD0750
C APPROXIMATION ASSUMES THAT THE RELATIVE ERRORS IN THE HYBD0760
C FUNCTIONS ARE OF THE ORDER OF EPSFCN. IF EPSFCN IS LESS HYBD0770
C THAN THE MACHINE PRECISION, IT IS ASSUMED THAT THE RELATIVE HYBD0780
C ERRORS IN THE FUNCTIONS ARE OF THE ORDER OF THE MACHINE HYBD0790
C PRECISION. HYBD0800
C HYBD0810
C DIAG IS AN ARRAY OF LENGTH N. IF MODE = 1 (SEE HYBD0820
C BELOW), DIAG IS INTERNALLY SET. IF MODE = 2, DIAG HYBD0830
C MUST CONTAIN POSITIVE ENTRIES THAT SERVE AS HYBD0840
C MULTIPLICATIVE SCALE FACTORS FOR THE VARIABLES. HYBD0850
C HYBD0860
C MODE IS AN INTEGER INPUT VARIABLE. IF MODE = 1, THE HYBD0870
C VARIABLES WILL BE SCALED INTERNALLY. IF MODE = 2, HYBD0880
C THE SCALING IS SPECIFIED BY THE INPUT DIAG. OTHER HYBD0890
C VALUES OF MODE ARE EQUIVALENT TO MODE = 1. HYBDO900
C HYBDO910
C FACTOR IS A POSITIVE INPUT VARIABLE USED IN DETERMINING THE HYBD0920
C INITIAL STEP BOUND. THIS BOUND IS SET TO THE PRODUCT OF HYBD0930
C FACTOR AND THE EUCLIDEAN NORM OF DIAG*X IF NONZERO, OR ELSE HYBD0940
C TO FACTOR ITSELF. IN MOST CASES FACTOR SHOULD LIE IN THE HYBD0950
C INTERVAL (.1,100.). 100. IS A GENERALLY RECOMMENDED VALUE. HYBD0960
C HYBD0970
C NPRINT IS AN INTEGER INPUT VARIABLE THAT ENABLES CONTROLLED HYBD0980
C PRINTING OF ITERATES IF IT IS POSITIVE. IN THIS CASE, HYBDO990
C FCN IS CALLED WITH IFLAG = 0 AT THE BEGINNING OF THE FIRST HYBD1000
C ITERATION AND EVERY NPRINT ITERATIONS THEREAFTER AND HYBD1010
C IMMEDIATELY PRIOR TO RETURN, WITH X AND FVEC AVAILABLE HYBD1020
C FOR PRINTING. IF NPRINT IS NOT POSITIVE, NO SPECIAL CALLS HYBD1030
C OF FCN WITH IFLAG = 0 ARE MADE. HYBD u40
C HYBD1050
C INFO IS AN INTEGER OUTPUT VARIABLE. IF THE USER HAS HYBD1060
C TERMINATED EXECUTION, INFO IS SET TO THE (NEGATIVE) HYBD1070
C VALUE OF IFLAG. SEE DESCRIPTION OF FCN. OTHERWISE, HYBD1080



159

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C

INFO IS SET AS FOLLOWS.

INFO = 0 IMPROPER INPUT PARAMETERS.

INFO = 1 RELATIVE ERROR BETWEEN TWO CONSECUTIVE ITERATES
IS AT MOST XTOL.

INFO = 2 NUMBER OF CALLS TO FCN HAS REACHED OR EXCEEDED
MAXFEV.

INFO = 3 XTOL IS TOO SMALL. NO FURTHER IMPROVEMENT IN
THE APPROXIMATE SOLUTION X IS POSSIBLE.

INFO = 4 ITERATION IS NOT MAKING GOOD PROGRESS, AS
MEASURED BY THE IMPROVEMENT FROM THE LAST
FIVE JACOBIAN EVALUATIONS.

INFO = 5 ITERATION IS NOT MAKING GOOD PROGRESS, AS
MEASURED BY THE IMPROVEMENT FROM THE LAST
TEN ITERATIONS.

NFEV IS AN INTEGER OUTPUT VARIABLE SET TO THE NUMBER OF
CALLS TO FCN.

FJAC IS AN OUTPUT N BY N ARRAY WHICH CONTAINS THE
ORTHOGONAL MATRIX Q PRODUCED BY THE QR FACTORIZATION
OF THE FINAL APPROXIMATE JACOBIAN.

LDFJAC IS A POSITIVE INTEGER INPUT VARIABLE NOT LESS THAN N
WHICH SPECIFIES THE LEADING DIMENSION OF THE ARRAY FJAC.

R IS AN OUTPUT ARRAY OF LENGTH LR WHICH CONTAINS THE
UPPER TRIANGULAR MATRIX PRODUCED BY THE QR FACTORIZATION
OF THE FINAL APPROXIMATE JACOBIAN, STORED ROWWISE.

LR IS A POSITIVE INTEGER INPUT VARIABLE NOT LESS THAN
(N*(N+1))/2.

QTF IS AN OUTPUT ARRAY OF LENGTH N WHICH CONTAINS
THE VECTOR (Q TRANSPOSE)*FVEC.

WA1, WA2, WA3, AND WA4 ARE WORK ARRAYS OF LENGTH N.

SUBPROGRAMS CALLED

USER-SUPPLIED .......FCN

MINPACK-SUPPLIED ... DOGLEG ,DPMPAR,ENORM,FDJAC1,
QFORM,QRFAC,R1MPYQ,R1UPDT

FORTRAN-SUPPLIED ... DABS,DMAX1,DMIN1,MINO,MOD

ARGONNE NATIONAL LABORATORY. MINPACK PROJECT. MARCH 1980.
BURTON S. GARBOW, KENNETH E. HILLSTROM, JORGE J. MORE

HYBD1090
HYBD1100
HYBD1110
HYBD1120
HYBD1130
HYBD1140
HYBD1150
HYBD1160
HYBD1170
HYBD1180
HYBD1190
HYBD1200
HYBD1210
HYBD1220
HYBD1230
HYBD1240
HYBD1250
HYBD1260
HYBD1270
HYBD1280
HYBD1290
HYBD1300
HYBD1310
HYBD1320
HYBD13'n
HYBD1340
HYBD1350
HYBD1360
HYBD1370
HYBD1380
HYBD1390
HYBD1400
HYBD1410
HYBD1420
HYBD1430
HYBD1440
HYBD1450
HYBD1460
HYBD1470
HYBD1480
HYBD1490
HYBD1500
HYBD1510
HYBD1520
HYBD1530
HYBD1540
HYBD1550
HYBD1560
HYBD1570
HYBD1580
HYBD1590
HYBD1600
HYBD1610
HYBD1620



160

C
C

INTEGER I,IFLAG,ITER,J,JM1,L,MSUM,NCFAIL,NCSUC,NSLOW1,NSLOW2
INTEGER IWA(1)
LOGICAL JEVAL,SING
DOUBLE PRECISION ACTRED,DELTA,EPSMCH,FNORM,FNORM1,ONE,PNORM,

* PRERED,P1,P5,P001,P0001,RATIO,SUM,TEMP,XNORM,
* ZERO
DOUBLE PRECISION DPMPAR,ENORM
DATA ONE,P1,P5,PO01,P0001,ZERO

* /1.ODO,1.OD-1,5.OD-1,1.OD-3,1.OD-4,O.ODO/
C
C EPSMCH IS THE MACHINE PRECISION.
C

EPSMCH = DPMPAR(1)
C

INFO = 0
IFLAG = 0
NFEV = 0

C
C CHECK THE INPUT PARAMETERS FOR ERRORS.
C

*

10
20

IF (N .LE. 0 .OR. XTOL .LT. ZERO .OR. MAXFEV .LE. 0
.OR. ML .LT. 0 .OR. MU .LT. 0 .OR. FACTOR .LE.
.OR. LDFJAC .LT. N .OR. LR .LT. (N*(N + 1))/2)C

IF (MODE .NE. 2) GO TO 20
DO 10 J = 1, N

IF (DIAG(J) .LE. ZERO) GO TO 300
CONTINUE

CONTINUE

EVALUATE THE FUNCTION AT THE STARTING POINT
AND CALCULATE ITS NORM.

IFLAG = 1
CALL FCN(N,X,FVEC,IFLAG)
NFEV = 1
IF (IFLAG .LT. 0) GO TO 300
FNORM = ENORM(N,FVEC)

ZERO
GO TO 300

C
C DETERMINE THE NUMBER OF CALLS TO FCN NEEDED TO COMPUTE
C THE JACOBIAN MATRIX.
C

MSUM = MINO(ML+MU+1,N)
C
C INITIALIZE ITERATION COUNTER AND MONITORS.
C

ITER = 1
NCSUC = 0
NCFAIL = 0
NSLOW1 = 0
NSLOW2 = 0

C
C BEGINNING OF THE OUTER LOOP.

C
C
C
C

HYBD1630
HYBD1640
HYBD1650
HYBD1660
HYBD1670
HYBD1680
HYBD1690
HYBD1700
HYBD1710
HYBD1720
HYBD1730
HYBD1740
HYBD1750
HYBD1760
HYBD1770
HYBD1780
HYBD1790
HYBD1800
HYBD1810
HYBD1820
HYBD1b30
HYBD1840
HYBD1850
HYBD1860
HYBD1870
HYBD1880
HYBD1890
HYBD1900
HYBD1910
HYBD1920
HYBD1930
HYBD1940
HYBD1950
HYBD1960
HYBD1970
HYBD1980
HYBD1990
HYBD2000
HYBD2010
HYBD2020
HYBD2030
HYBD2040
HYBD2050
HYBD2060
HYBD2070
HYBD2080
HYBD2090
HYBD2100
HYBD2110
HYBD2120
HYBD2130
HYBD2140
HYBD2150
HYBD2160



161

C HYBD2170
30 CONTINUE HYBD2180

JEVAL = .TRUE. HYBD2190
C HYBD2200
C CALCULATE THE JACOBIAN MATRIX. HYBD2210
C HYBD2220

IFLAG = 2 HYBD2230
CALL FDJAC1(FCN,N,X,FVEC,FJAC,LDFJAC,IFLAG,ML,MU,EPSFCN,WA1, HYBD2240

* WA2) HYBD2250

NFEV = NFEV + MSUM HYBD2260
IF (IFLAG .LT. 0) GO TO 300 HYBD2270

C HYBD2280
C COMPUTE THE QR FACTORIZATION OF THE JACOBIAN. HYBD2290
C HYBD2300

CALL QRFAC(N,N,FJAC,LDFJAC,.FALSE.,IWA,1,WA1,WA2,WA3) HYBD2310
C HYBD2320
C ON THE FIRST ITERATION AND IF MODE IS 1, SCALE ACCORDING HYBD2330
C TO THE NORMS OF THE COLUMNS OF THE INITIAL JACOBIAN. HYBD2340
C HYBD2350

IF (ITER .NE. 1) GO TO 70 HYBD2360
IF (MODE .EQ. 2) GO TO 50 HYBD2370
DO 40 J = 1, N HYBD2380

DIAG(J) = WA2(J) HYBD2390
IF (WA2(J) .EQ. ZERO) DIAG(J) = ONE HYBD2400

40 CONTINUE HYBD2410
50 CONTINUE HYBD2420

C HYBD2430
C ON THE FIRST ITERATION, CALCULATE THE NORM OF THE SCALED X HYBD2440
C AND INITIALIZE THE STEP BOUND DELTA. HYBD2450
C HYBD2460

DO 60 J = 1, N HYBD2470
WA3(J) = DIAG(J)*X(J) HYBD2480

60 CONTINUE HYBD2490
XNORM = ENORM(N,WA3) HYBD2500
DELTA = FACTOR*XNORM HYBD2510
IF (DELTA .EQ. ZERO) DELTA = FACTOR HYBD2520

70 CONTINUE HYBD2530
C HYBD2540
C FORM (Q TRANSPOSE)*FVEC AND STORE IN QTF. HYBD2550
C HYBD2560

DO 80 I = 1, N HYBD2570
QTF(I) = FVEC(I) HYBD2580

80 CONTINUE HYBD2590
DO 120 J = 1, N HYBD2600

IF (FJAC(J,J) .EQ. ZERO) GO TO 110 HYBD2610
SUM = ZERO HYBD2620
DO 90 I = J, N HYBD2630

SUM = SUM + FJAC(I,J)*QTF(I) HYBD2640
90 CONTINUE HYBD2650

TEMP = -SUM/FJAC(J,J) HYBD2660
DO 100 I = J, N HYBD2670

QTF(I) = QTF(I) + FJAC(I,J)*TEMP HYBD2680
100 CONTINUE HYBD2690
110 CONTINUE HYBD2700



162

120 CONTINUE HYBD2710
C HYBD2720
C COPY THE TRIANGULAR FACTOR OF THE QR FACTORIZATION INTO R. HYBD2730
C HYBD2740

SING = .FALSE. HYBD2750
DO 150 J = 1, N HYBD2760

L = J HYBD2770
JM1 = J - 1 HYBD2780
IF (JM1 .LT. 1) GO TO 140 HYBD2790
DO 130 I = 1, JM1 HYBD2800

R(L) = FJAC(I,J) HYBD2810
L = L + N - I HYBD2820

130 CONTINUE HYBD2830
140 CONTINUE HYBD2840

R(L) = WA1(J) HYBD2850
IF (WA1(J) .EQ. ZERO) SING = .TRUE. HYBD2860

150 CONTINUE HYBD2870
C HYBD2880
C ACCUMULATE THE ORTHOGONAL FACTOR IN FJAC. HYBD2890
C HYBD2900

CALL QFORM (N, N, FJAC , LDFJAC ,WA1) HYBD2910
C HYBD2920
C RESCALE IF NECESSARY. HYBD2930
C HYBD2940

IF (MODE .EQ. 2) GO TO 170 HYBD2950
DO 160 J = 1, N HYBD2960

DIAG(J) = DMAX1(DIAG(J),WA2(J)) HYBD2970
160 CONTINUE HYBD2980
170 CONTINUE HYBD2990

C HYBD3000
C BEGINNING OF THE INNER LOOP. HYBD3010
C HYBD3020

180 CONTINUE HYBD3030
C HYBD3040
C IF REQUESTED, CALL FCN TO ENABLE PRINTING OF ITERATES. HYBD3050
C HYBD3060

IF (NPRINT .LE. 0) GO TO 190 HYBD3070
IFLAG = 0 HYBD3080
IF (MOD(ITER-1,NPRINT) .EQ. 0) CALL FCN(N,X,FVEC,IFLAG) HYBD3090
IF (IFLAG .LT. 0) GO TO 300 HYBD3100

190 CONTINUE HYBD3110
C HYBD3120
C DETERMINE THE DIRECTION P. HYBD3130
C HYBD3140

CALL DOGLEG(N,R,LR,DIAG,QTF,DELTA,WA1,WA2,WA3) HYBD3150
C HYBD3160
C STORE THE DIRECTION P AND X + P. CALCULATE THE NORM OF P. HYBD3170
C HYBD3180

DO 200 J = 1, N HYBD3190
WA1(J) = -WA1(J) HYBD3200
WA2(J) = X(J) + WA1(J) HYBD3210
WA3(J) = DIAG(J)*WA1(J) HYBD3220

200 CONTINUE HYBD3230
PNORM = ENORM(N,WA3) HYBD3240



163

C
C
C

C
C
C

L = 1
DO 220 I = 1, N

SUM = ZERO
DO 210 J = I, N

SUM = SUM + R(L)*WA1(J)
L = L + 1
CONTINUE

WA3(I) = QTF(I) + SUM
CONTINUE

TEMP = ENORM(N,WA3)
PRERED = ZERO
IF (TEMP .LT. FNORM) PRE}RED = ONE - (TEMP/FNORM)**2

COMPUTE THE RATIO OF THE ACTUAL TO THE PREDICTED
REDUCTION.

RATIO = ZERO
IF (PRERED .GT. ZERO) RATIO = ACTRED/PRERED

UPDATE THE STEP BOUND.

IF (RATIO .GE. P1) GO TO 230
NCSUC = 0
NCFAIL = NCFAIL + 1
DELTA = P5*DELTA
GO TO 240

CONTINUE
NCFAIL = 0
NCSUC = NCSUC + 1
IF (RATIO .GE. PS .OR. NCSUC .GT. 1)

DELTA = DMAX1(DELTA,PNORM/P5)
IF (DABS(RATIO-ONE) .LE. P1) DELTA = PNORM/P5

CONTINUE

ON THE FIRST ITERATION, ADJUST THE INITIAL STEP BOUND.

IF (ITER .EQ. 1) DELTA = DMIN1(DELTA,PNORM)

EVALUATE THE FUNCTION AT X + P AND CALCULATE ITS NORM.

IFLAG = 1
CALL FCN(N,WA2,WA4,IFLAG)
NFEV = NFEV + 1
IF (IFLAG .LT. 0) GO TO 300
FNORM1 = ENORM(N,WA4)

COMPUTE THE SCALED ACTUAL REDUCTION.

ACTRED = -ONE
IF (FNORM1 .LT. FNORM) ACTRED = ONE - (FNORM1/FNORM)**2

COMPUTE THE SCALED PREDICTED REDUCTION.

C
C
C

C
C
C

210

220

HYBD3250
HYBD3260
HYBD3270
HYBD3280
HYBD3290
HYBD3300
HYBD3310
HYBD3320
HYBD3330
HYBD3340
HYBD3350
HYBD3360
HYBD3370
HYBD3380
HYBD3390
HYBD3400
HYBD3410
HYBD3420
HYBD3430
HYBD3440
HYBD3450
HYBD3460
HYBD3470
HYBD3480
HYBD3490
HYBD3500
HYBD3510
HYBD3520
HYBD3530
HYBD3540
HYBD3550
HYBD3560
HYBD3570
HYBD3580
HYBD3590
HYBD3600
HYBD3610
HYBD3620
HYBD3630
HYBD3640
HYBD3650
HYBD3660
HYBD3670
HYBD3680
HYBD3690
HYBD3700
HYBD3710
HYBD3720
HYBD3730
HYBD3740
HYBD3750
HYBD3760
HYBD3770
HYBD3780

C
C
C
C

C
C
C

230

*

240
C



164

C TEST FOR SUCCESSFUL ITERATION. HYBD3790
C HYBD3800

IF (RATIO .LT. P0001) GO TO 260 HYBD3810
C HYBD3820
C SUCCESSFUL ITERATION. UPDATE X, FVEC, AND THEIR NORMS. HYBD3830
C HYBD3840

DO 250 J = 1, N HYBD3850
X(J) = WA2(J) HYBD3860
WA2(J) = DIAG(J)*X(J) HYBD3870
FVEC(J) = WA4(J) HYBD3880

250 CONTINUE HYBD3890
XNORM = ENORM(N,WA2) HYBD3900
FNORM = FNORM1 HYBD3910
ITER = ITER + 1 HYBD3920

260 CONTINUE HYBD3930
C HYBD3940
C DETERMINE THE PROGRESS OF THE ITERATION. HYBD3950
C HYBD3960

NSLOW1 = NSLOW1 + 1 HYBD3970
IF (ACTRED .GE. P001) NSLOW1 = 0 HYBD3980
IF (JEVAL) NSLOW2 = NSLOW2 + 1 HYBD3990
IF (ACTRED .GE. P1) NSLOW2 = 0 HYBD4000

C HYBD4010
C TEST FOR CONVERGENCE. HYBD4020
C HYBD4030

IF (DELTA .LE. XTOL*XNORM .OR. FNORM .EQ. ZERO) INFO = 1 HYBD4040
IF (INFO .NE. 0) GO TO 300 HYBD4050

C HYBD4060
C TESTS FOR TERMINATION AND STRINGENT TOLERANCES. HYBD4070
C HYBD4080

IF (NFEV .GE. MAXFEV) INFO = 2 HYBD4090
IF (P1*DMAX1(P1*DELTA,PNORM) .LE. EPSMCH*XNORM) INFO = 3 HYBD4100
IF (NSLOW2 .EQ. 5) INFO = 4 HYBD4110
IF (NSLOW1 .EQ. 10) INFO = 5 HYBD4120
IF (INFO .NE. 0) GO TO 300 HYBD4130

C HYBD4140
C CRITERION FOR RECALCULATING JACOBIAN APPROXIMATION HYBD4150
C BY FORWARD DIFFERENCES. HYBD4160
C HYBD4170

IF (NCFAIL .EQ. 2) GO TO 290 HYBD4180
C HYBD4190
C CALCULATE THE RANK ONE MODIFICATION TO THE JACOBIAN HYBD4200
C AND UPDATE QTF IF NECESSARY. HYBD4210
C HYBD4220

DO 280 J = 1, N HYBD4230
SUM = ZERO HYBD4240
DO 270 I = 1, N HYBD4250

SUM = SUM + FJAC(I,J)*WA4(I) HYBD4260
270 CONTINUE HYBD4270

WA2(J) = (SUM - WA3(J))/PNORM HYBD4280
WA1(J) = DIAG(J)*((DIAG(J)*WA1(J))/PNORM) HYBD4290
IF (RATIO .GE. P0001) QTF(J) = SUM HYBD4300

280 CONTINUE HYBD4310
C HYBD4320



165

C COMPUTE THE QR FACTORIZATION OF THE UPDATED JACOBIAN. HYBD4330
C HYBD4340

CALL R1UPDT(N,N,R,LR,WA1,WA2,WA3,SING) HYBD4350
CALL R1MPYQ(N,N,FJAC,LDFJAC,WA2,WA3) HYBD4360
CALL R1MPYQ(1,N,QTF,1,WA2,WA3) HYBD4370

C HYBD4380
C END OF THE INNER LOOP. HYBD4390
C HYBD4400

JEVAL = .FALSE. HYBD4410
GO TO 180 HYBD4420

290 CONTINUE HYBD4430
C HYBD4440
C END OF THE OUTER LOOP. HYBD4450
C HYBD4460

GO TO 30 HYBD4470
300 CONTINUE HYBD4480

C HYBD4490
C TERMINATION, EITHER NORMAL OR USER IMPOSED. HYBD4500
C HYBD4510

IF (IFLAG .LT. 0) INFO = IFLAG HYBD4520
IFLAG = 0 HYBD4530
IF (NPRINT .GT. 0) CALL FCN(N,X,FVEC,IFLAG) HYBD4540
RETURN HYBD4550

C HYBD4560
C LAST CARD OF SUBROUTINE HYBRD. HYBD4570
C HYBD45 80

END HYBD4590



166



167

SUBROUTINE HYBRD1(FCN,N,X,FVEC,TOL,INFO,WA,LWA)
INTEGER N,INFO,LWA
DOUBLE PRECISION TOL
DOUBLE PRECISION X(N),FVEC(N),WA(LWA)
EXTERNAL FCN

C
C
C SUBROUTINE HYBRD1
C
C THE PURPOSE OF HYBRD1 IS TO FIND A ZERO OF A SYSTEM OF
C N NONLINEAR FUNCTIONS IN N VARIABLES BY A MODIFICATION
C OF THE POWELL HYBRID METHOD. THIS IS DONE BY USING THE
C MORE GENERAL NONLINEAR EQUATION SOLVER HYBRD. THE USER
C MUST PROVIDE A SUBROUTINE WHICH CALCULATES THE FUNCTIONS.
C THE JACOBIAN IS THEN CALCULATED BY A FORWARD-DIFFERENCE
C APPROXIMATION.
C
C THE SUBROUTINE STATEMENT IS
C
C SUBROUTINE HYBRD1(FCN,N,X,FVEC,TOL,INFO,WA,LWA)
C
C WHERE
C
C FCN IS THE NAME OF THE USER-SUPPLIED SUBROUTINE WHICH
C CALCULATES THE FUNCTIONS. FCN MUST BE DECLARED
C IN AN EXTERNAL STATEMENT IN THE USER CALLING
C PROGRAM, AND SHOULD BE WRITTEN AS FOLLOWS.
C
C SUBROUTINE FCN(N,X,FVEC,IFLAG)
C INTEGER N,IFLAG
C DOUBLE PRECISION X(N),FVEC(N)
C ----------
C CALCULATE THE FUNCTIONS AT X AND
C RETURN THIS VECTOR IN FVEC.
C ---------
C RETURN
C END
C
C THE VALUE OF IFLAG SHOULD NOT BE CHANGED BY FCN UNLESS
C THE USER WANTS TO TERMINATE EXECUTION OF HYBRD1.
C IN THIS CASE SET IFLAG TO A NEGATIVE INTEGER.
C
C N IS A POSITIVE INTEGER INPUT VARIABLE SET TO THE NUMBER
C OF FUNCTIONS AND VARIABLES.
C
C X IS AN ARRAY OF LENGTH N. ON INPUT X MUST CONTAIN
C AN INITIAL ESTIMATE OF THE SOLUTION VECTOR. ON OUTPUT X
C CONTAINS THE FINAL ESTIMATE OF THE SOLUTION VECTOR.
C
C FVEC IS AN OUTPUT ARRAY OF LENGTH N WHICH CONTAINS
C THE FUNCTIONS EVALUATED AT THE OUTPUT X.
C
C TOL IS A NONNEGATIVE INPUT VARIABLE. TERMINATION OCCURS
C WHEN THE ALGORITHM ESTIMATES THAT THE RELATIVE ERROR

HYD10010
HYD10020
HYD10030
HYD10040
HYD10050
HYD10060
HYD10070
HYD10080
HYD10090
HYD10100
HYD10110
HYD10120
HYD10130
HYD10140
HYD10150
HYD10160
HYD10170
HYD10180
HYD10190
HYD10200
HYD10210
HYD10220
HYD10230
HYD10240
HYD10250
HYD10260
HYD10270
HYD10280
HYD10290
HYD10300
HYD10310
HYD10320
ILYD10330
HYD10340
HYD10350
HYD10360
HYD10370
HYD10380
HYD10390
HYD 10400
HYD10410
HYD10420
HYD10430
HYD10440
HYD10450
HYD10460
HYD10470
HYD10480
HYD10490
HYD10500
HYD10510
HYD10520
HYD10530
HYD10540



168

C BETWEEN X AND THE SOLUTION IS AT MOST TOL.
C
C INFO IS AN INTEGER OUTPUT VARIABLE. IF THE USER HAS
C TERMINATED EXECUTION, INFO IS SET TO THE (NEGATIVE)
C VALUE OF IFLAG. SEE DESCRIPTION OF FCN. OTHERWISE,
C INFO IS SET AS FOLLOWS.
C
C INFO = 0 IMPROPER INPUT PARAMETERS.
C
C INFO = 1 ALGORITHM ESTIMATES THAT THE RELATIVE ERROR
C BETWEEN X AND THE SOLUTION IS AT MOST TOL.
C
C INFO = 2 NUMBER OF CALLS TO FCN HAS REACHED OR EXCEEDED
C 200*(N+1)
C
C INFO = 3 TOL IS TOO SMALL. NO FURTHER IMPROVEMENT IN
C THE APPROXIMATE SOLUTION X IS POSSIBLE.
C
C INFO = 4 ITERATION IS NOT MAKING GOOD PROGRESS.
C
C WA IS A WORK ARRAY OF LENGTH LWA.
C
C LWA IS A POSITIVE INTEGER INPUT VARIABLE NOT LESS THAN
C (N*(3*N+13))/2.
C
C SUBPROGRAMS CALLED
C
C USER-SUPPLIED....... FCN
C
C MINPACK-SUPPLIED ... HYBRD
C
C ARGONNE NATIONAL LABORATORY. MINPACK PROJECT. MARCH 1980.
C BURTON S. GARBOW, KENNETH E. HILLSTROM, JORGE J. MORE
C
C

INTEGER INDEX,J,LR,MAXFEV,ML,MODE,MU,NFEV,NPRINT
DOUBLE PRECISION EPSFCN,FACTOR,ONE,XTOL,ZERO
DATA FACTOR,ONE,ZERO /1.0D2,1.ODO,O.ODO/
INFO = 0

C
C CHECK THE INPUT PARAMETERS FOR ERRORS.
C

IF (N .LE. 0 .OR. TOL .LT. ZERO .OR. LWA .LT. (N*(3*N + 13))/2)
* GO TO20

C
C CALL HYBRD.
C

MAXFEV = 200*(N + 1)
XTOL = TOL
ML = N - 1
MU = N - 1
EPSFCN = ZERO
MODE = 2
DO 10 J = 1, N

HYD10550
HYD10560
HYD10570
HYD10580
HYD10590
HYD10600
HYD10610
HYD10620
HYD10630
HYD10640
HYD10650
HYD10660
HYD10670
HYD10680
HYD10690
HYD10700
HYD10710
HYD10720
HYD10730
HYD10740
HYD10750
HYD10760
HYD10770
HYD10780
HYD10790
HYD10800
HYD10810
HYD10820
HYD10830
HYD10840
HYD10850
HYD10860
HYD10870
HYD10880
HYD10890
HYD10900
HYD10910
HYD10920
HYD10930
HYD10940
HYD10950
HYD10960
HYD10970
HYD10980
HYD10990
HYD11000
HYD11010
HYD11020
HYD11030
HYD11040
HYD11050
HYD11060
HYD11070
HYD11080



169

WA(J) = ONE HYD11090
10 CONTINUE HYD11100

NPRINT = 0 HYD11110
LR = (N*(N + 1))/2 HYD11120
INDEX = 6*N + LR HYD 11130
CALL HYBRD(FCN,N,X,FVECXTOL,MAXFEV,ML,MU,EPSFCN,WA(1),MODE, HYD11140

* FACTOR,NPRINT,INFO,NFEV,WA(INDEX+1),N,WA(6*N+1),LR, HYD11150
* WA(N+1),WA(2*N+1),WA(3*N+1),WA(4*N+1),WA(5*N+1)) HYD11160
IF (INFO .EQ. 5) INFO = 4 HYD11170

20 CONTINUE HYD11180
RETURN HYD11190

C HYD11200
C LAST CARD OF SUBROUTINE HYBRD1. HYD11210
C HYD11220

END HYD 11 230



170



171

SUBROUTINE HYBRJ(FCN,N,X,FVEC,FJAC,LDFJAC,XTOL,MAXFEV,DIAG,MODE,
* FACTOR,NPRINT,INFO,NFEV,NJEV,R,LR,QTF,WA1,WA2,
* WA3,WA4)

INTEGER N,LDFJAC,MAXFEV,MODE,NPRINT,INFO,NFEV,NJEV,LR
DOUBLE PRECISION XTOL,FACTOR
DOUBLE PRECISION X(N),FVEC(N),FJAC(LDFJAC,N),DIAG(N),R(LR),

QTF(N),WA1(N),WA2(N),WA3(N),WA4(N)
C
C
C SUBROUTINE HYBRJ
C
C THE PURPOSE OF HYBRJ IS TO FIND A ZERO OF A SYSTEM OF
C N NONLINEAR FUNCTIONS IN N VARIABLES BY A MODIFICATION
C OF THE POWELL HYBRID METHOD. THE USER MUST PROVIDE A
C SUBROUTINE WHICH CALCULATES THE FUNCTIONS AND THE JACOBIAN.
C
C THE SUBROUTINE STATEMENT IS
C
C SUBROUTINE HYBRJ(FCN,N,X,FVEC,FJAC,LDFJAC,XTOL,MAXFEV,DIAG,
C MODE,FACTOR,NPRINT,INFO,NFEV,NJEV,R,LR,QTF,
C WA1,WA2,WA3,WA4)
C
C WHERE
C
C FCN IS THE NAME OF THE USER-SUPPLIED -SUBROUTINE WHICH
C CALCULATES THE FUNCTIONS AND THE JACOBIAN. FCN MUST
C BE DECLARED IN AN EXTERNAL STATEMENT IN THE USER
C CALLING PROGRAM, AND SHOULD BE WRITTEN AS FOLLOWS.
C
C SUBROUTINE FCN(N,X,FVEC,FJAC,LDFJAC,IFLAG)
C INTEGER N,LDFJAC,IFLAG
C DOUBLE PRECISION X(N),FVEC(N),FJAC(LDFJAC,N)
C ----------
C IF IFLAG = 1 CALCULATE THE FUNCTIONS AT X AND
C RETURN THIS VECTOR IN FVEC. DO NOT ALTER FJAC.
C IF IFLAG = 2 CALCULATE THE JACOBIAN AT X AND
C RETURN THIS MATRIX IN FJAC. DO NOT ALTER FVEC.
C ---------
C RETURN
C END
C
C THE VALUE OF IFLAG SHOULD NOT BE CHANGED BY FCN UNLESS
C THE USER WANTS TO TERMINATE EXECUTION OF HYBRJ.
C IN THIS CASE SET IFLAG TO A NEGATIVE INTEGER.
C
C N IS A POSITIVE INTEGER INPUT VARIABLE SET TO THE NUMBER
C OF FUNCTIONS AND VARIABLES.
C
C X IS AN ARRAY OF LENGTH N. ON INPUT X MUST CONTAIN
C AN INITIAL ESTIMATE OF THE SOLUTION VECTOR. ON OUTPUT X
C CONTAINS THE FINAL ESTIMATE OF THE SOLUTION VECTOR.
C
C FVEC IS AN OUTPUT ARRAY OF LENGTH N WHICH CONTAINS
C THE FUNCTIONS EVALUATED AT THE OUTPUT X.

HYBJ0010
HYBJ0020
HYBJ0030
HYBJ0040
HYBJ0050
HYBJ0060
HYBJ0070
HYBJ0080
HYBJ0090
HYBJ0100
HYBJ0110
HYBJ0120
HYBJ0130
HYBJ0140
HYBJ0150
HYBJ0160
HYBJ0170
HYBJ0180
HYBJ0190
HYBJ0200
HYBJ0210
HYBJ0220
HYBJ0230
HYBJO240
HYBJ0250
HYBJO260
HYBJ0270
HYBJ0280
HYBJ0290
HYBJO300
HYBJO310
HYBJO320
HYBJO330
HYBJ0340
HYBJO350
HYBJ0360
HYBJO370
HYBJO380
HYBJO390
HYBJO400
HYBJO410
HYBJO420
HYBJO430
HYBJ0440
HYBJO450
HYBJO460
HYBJO470
HYBJO480
HYBJO490
HYBJ0500
HYBJ0510
HYBJ0520
HYBJ0530
HYBJ0540



172

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C

FJAC IS AN OUTPUT N BY N ARRAY WHICH CONTAINS THE
ORTHOGONAL MATRIX Q PRODUCED BY THE QR FACTORIZATION
OF THE FINAL APPROXIMATE JACOBIAN.

LDFJAC IS A POSITIVE INTEGER INPUT VARIABLE NOT LESS THAN N
WHICH SPECIFIES THE LEADING DIMENSION OF THE ARRAY FJAC.

XTOL IS A NONNEGATIVE INPUT VARIABLE. TERMINATION
OCCURS WHEN THE RELATIVE ERROR BETWEEN TWO CONSECUTIVE
ITERATES IS AT MOST XTOL.

MAXFEV IS A POSITIVE INTEGER INPUT VARIABLE. TERMINATION
OCCURS WHEN THE NUMBER OF CALLS TO FCN WITH IFLAG = 1
HAS REACHED MAXFEV.

DIAG IS AN ARRAY OF LENGTH N. IF MODE = 1 (SEE
BELOW), DIAG IS INTERNALLY SET. IF MODE = 2, DIAG
MUST CONTAIN POSITIVE ENTRIES THAT SERVE AS
MULTIPLICATIVE SCALE FACTORS FOR THE VARIABLES.

MODE IS AN INTEGER INPUT VARIABLE. IF MODE = 1, THE
VARIABLES WILL BE SCALED INTERNALLY. IF MODE = 2,
THE SCALING IS SPECIFIED BY THE INPUT DIAG. OTHER
VALUES OF MODE ARE EQUIVALENT TO MODE = 1.

FACTOR IS A POSITIVE INPUT VARIABLE USED IN DETERMINING THE
INITIAL STEP BOUND. THIS BOUND IS SET TO THE PRODUCT OF
FACTOR AND THE EUCLIDEAN NORM OF DIAG*X IF NONZERO, OR ELSE
TO FACTOR ITSELF. IN MOST CASES FACTOR SHOULD LIE IN THE
INTERVAL (.1,100.). 100. IS A GENERALLY RECOMMENDED VALUE.

NPRINT IS AN INTEGER INPUT VARIABLE THAT ENABLES CONTROLLED
PRINTING OF ITERATES IF IT IS POSITIVE. IN THIS CASE,
FCN IS CALLED WITH IFLAG = 0 AT THE BEGINNING OF THE FIRST
ITERATION AND EVERY NPRINT ITERATIONS THEREAFTER AND
IMMEDIATELY PRIOR TO RETURN, WITH X AND FVEC AVAILABLE
FOR PRINTING. FVEC AND FJAC SHOULD NOT BE ALTERED.
IF NPRINT IS NOT POSITIVE, NO SPECIAL CALLS OF FCN
WITH IFLAG = 0 ARE MADE.

INFO IS AN INTEGER OUTPUT VARIABLE. IF THE USER HAS
TERMINATED EXECUTION, INFO IS SET TO THE (NEGATIVE)
VALUE OF IFLAG. SEE DESCRIPTION OF FCN. OTHERWISE,
INFO IS SET AS FOLLOWS.

INFO = 0 IMPROPER INPUT PARAMETERS.

INFO = 1 RELATIVE ERROR BETWEEN TWO CONSECUTIVE ITERATES
IS AT MOST XTOL.

INFO = 2 NUMBER OF CALLS TO FCN WITH IFLAG = 1 HAS
REACHED MAXFEV.

HYBJ0550
HYBJ0560
HYBJ0570
HYBJ0580
HYBJ0590
HYBJ0600
HYBJ0610
HYBJ0620
HYBJ0630
HYBJ0640
HYBJ0650
HYBJ0660
HYBJ0670
HYBJ0680
HYBJ0690
HYBJ0700
HYBJ0710
HYBJ0720
HYBJ0730
HYBJ0740
HYBJ0750
HYBJ0760
HYBJ0770
HYBJ0780
HYBJ0790
HYBJ0800
HYBJ0810
HYBJ0820
HYBJ0830
HYBJ0840
HYBJ0850
HYBJ0860
HYBJ0870
HYBJ0880
HYBJ0890
HYBJO900
HYBJ0910
HYBJO920
HYBJO930
HYBJO940
HYBJO950
HYBJ0960
HYBJ0970
HYBJO980
HYBJ0990
HYBJ1000
HYBJ1010
HYBJ1020
HYBJ1030
HYBJ1040
HYBJ1050
HYBJ1060
HYBJ1070
HYBJ1080



173

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C

INFO = 3 XTOL IS TOO SMALL. NO FURTHER IMPROVEMENT IN
THE APPROXIMATE SOLUTION X IS POSSIBLE.

INFO = 4 ITERATION IS NOT MAKING GOOD PROGRESS, AS
MEASURED BY THE IMPROVEMENT FROM THE LAST
FIVE JACOBIAN EVALUATIONS.

INFO = 5 ITERATION IS NOT MAKING GOOD PROGRESS, AS
MEASURED BY THE IMPROVEMENT FROM THE LAST
TEN ITERATIONS.

NFEV IS AN INTEGER OUTPUT VARIABLE SET TO THE NUMBER OF
CALLS TO FCN WITH IFLAG = 1.

NJEV IS AN INTEGER OUTPUT VARIABLE SET TO THE NUMBER OF
CALLS TO FCN WITH IFLAG = 2.

R IS AN OUTPUT ARRAY OF LENGTH LR WHICH CONTAINS THE
UPPER TRIANGULAR MATRIX PRODUCED BY THE QR FACTORIZATION
OF THE FINAL APPROXIMATE JACOBIAN, STORED ROWWISE.

LR IS A POSITIVE INTEGER INPUT VARIABLE NOT LESS THAN
(N*(N+1))/2.

QTF IS AN OUTPUT ARRAY OF LENGTH N WHICH CONTAINS
THE VECTOR (Q TRANSPOSE)*FVEC.

WA1, WA2, WA3, AND WA4 ARE WORK ARRAYS OF LENGTH N.

SUBPROGRAMS CALLED

USER-SUPPLIED .......FCN

MINPACK-SUPPLIED ... DOGLEG,DPMPAR,ENORM,

QFORM,QRFAC,R1MPYQ,R1UPDT

FORTRAN-SUPPLIED ... DABS,DMAX1,DMIN1,MOD

ARGONNE NATIONAL LABORATORY. MINPACK PROJECT. MARCH 1980.
BURTON S. GARBOW, KENNETH E. HILLSTROM, JORGE J. MORE

** ****** *

INTEGER I,IFLAG,ITER,J,JM1,L,NCFAIL,NCSUC,NSLOW1,NSLOW2
INTEGER IWA(1)
LOGICAL JEVAL,SING
DOUBLE PRECISION ACTRED,DELTA,EPSMCH,FNORM,FNORM1,ONE,PNORM,

* PRERED,P1,P5,P001,P0001,RATIO,SUM,TEMP,XNORM,
* ZERO
DOUBLE PRECISION DPMPAR,ENORM
DATA ONE,P1,P5,PO01,P0001,ZERO

* /1.ODO,1.OD-1,5.OD-1,1.OD-3,1.OD-4,0.ODO/

EPSMCH IS THE MACHINE PRECISION.

HYBJ1090
HYBJ1100
HYBJ1110
HYBJ1120
HYBJ1130
HYBJ 1140
HYBJ1150
HYBJ1160
HYBJ1170
HYBJ1180
HYBJ1190
HYBJ1200
HYBJ1210
HYBJ1220
HYBJ1230
HYBJ1240
HYBJ1250
HYBJ1260
HYBJ1270
HYBJ1280
HYBJ1290
HYBJ1300
HYBJ1310
HYBJ1320
HYBJ1330
HYBJ1340
HYBJ1350
HYBJ1360
HYBJ1370
HYBJ1380
HYBJ1390
HYBJ1400
HYBJ1410
HYBJ1420
HYBJ1430
HYBJ1440
HYBJ1450
HYBJ1460
HYBJ1470
HYBJ1480
HYBJ1490
HYBJ1500
HYBJ1510
HYBJ1520
HYBJ1530
HYBJ1540
HYBJ1550
HYBJ1560
HYBJ1570
HYBJ1580
HYBJ1590
HYBJ1600
HYBJ1610
HYBJ1620

C
C
C



174

C

C
C
C

EVALUATE THE FUNCTION AT THE STARTING POINT
AND CALCULATE ITS NORM.

IFLAG = 1
CALL FCN(N,X,FVECFJACLDFJACIFLAG)
NFEV = 1
IF (IFLAG .LT. 0) GO TO 300
FNORM = ENORM(N,FVEC)

INITIALIZE ITERATION COUNTER AND MONITORS.

ITER = 1
NCSUC = 0
NCFAIL = 0
NSLOW1 = 0
NSLOW2 = 0

BEGINNING OF THE OUTER LOOP.

30 CONTINUE
JEVAL = .TRUE.

CALCULATE THE JACOBIAN MATRIX.

IFLAG = 2
CALL FCN(N,X,FVEC,FJACLDFJACIFLAG)
NJEV = NJEV + 1
IF (IFLAG .LT. 0) GO TO 300

COMPUTE THE QR FACTORIZATION OF THE JACOBIAN.

CALL QRFAC(N,N,FJACLDFJAC, .FALSE .IWA,1,WA1,WA2,WA3)

ON THE FIRST ITERATION AND IF MODE IS 1TO THE NORMS OF THE COLUMNS OF THE INITIAL JACOBIAN.

EPSMCH = DPMPAR(1)

INFO = 0
IFLAG = 0
NFEV = 0
NJEV = 0

CHECK THE INPUT PARAMETERS FOR ERRORS.

IF (N .LE. 0 .OR. LDFJAC .LT. N .OR. XTOL .LT. ZERO
.OR. MAXFEV .LE. 0 .OR. FACTOR .LE. ZERO
. OR. LR . LT. (N*(N + 1) )/2) GO TO 300IF (MODE .NE. 2) GO TO 20

DO 10 J = 1, N
IF (DIAG(J) .LE. ZERO) GO TO 300

10 CONTINUE
20 CONTINUE

C
C
C
C

C
C

C

C
C
C

C
C
C

C
C
C

C
C
C
C

HYBJ1630
HYBJ1640
HYBJ1650
HYBJ1660
HYBJ1670
HYBJ1680
HYBJ1690
HYBJ1700
HYBJ1710
HYBJ1720
HYBJ1730
HYBJ1740
HYBJ1750
HYBJ1760
HYBJ1770
HYBJ1780
HYBJ1790
HYBJ1800
HYBJ1810
HYBJ1820
HYBJ1830
HYBJ1840
HYBJ1850
HYBJ1860
HYBJ1870
HYBJ1880
HYBJ1890
HYBJ1900
HYBJ1910
HYBJ1920
HYBJ1930
HYBJ1940
HYBJ1950
HYBJ1960
HYBJ1970
HYBJ1980
HYBJ1990
HYBJ2000
HYBJ2010
HYBJ2020
HYBJ2030
HYBJ2040
HYBJ2050
HYBJ2060
HYBJ2070
HYBJ2080
HYBJ2090
HYBJ2100

HYBJ2 110HYBJ2 120
HYBJ2130
HYBJ2140

HYBJ2150
HYBJ2 160



175

IF (ITER .NE. 1) GO TO 70
IF (MODE .EQ. 2) GO TO 50
DO 40 J = 1, N

DIAG(J) = WA2(J)
IF (WA2(J) .EQ. ZERO) DIAG(J) = ONE
CONTINUE

CONTINUE

ON THE FIRST ITERATION, CALCULATE THE NORM OF THE SCALED X
AND INITIALIZE THE STEP BOUND DELTA.

DO 60 J = 1, N
WA3(J) = DIAG(J)*X(J)

60 CONTINUE
XNORM = ENORM(N,WA3)
DELTA = FACTOR*XNORM
IF (DELTA .EQ. ZERO) DELTA = FACTOR

70 CONTINUE

FORM (Q TRANSPOSE)*FVEC AND STORE IN QTF.

DO 80 I = 1, N
QTF(I) = FVEC(I)
CONTINUE

DO 120 J = 1, N
IF (FJAC(J,J) .EQ. ZERO) GO TO 110
SUM = ZERO
DO 90 I = J, N

SUM = SUM + FJAC(I,J)*QTF(I)
CONTINUE

TEMP = -SUM/FJAC(J,J)
DO 100 I = J, N

QTF(I) = QTF(I) + FJAC(I,J)*TEMP
CONTINUE

CONTINUE
CONTINUE

COPY THE TRIANGULAR FACTOR OF THE QR FACTORIZATION INTO R.

SING = .FALSE.
DO 150 J = 1, N

L = J
JM1 = J - 1
IF (JM1 .LT. 1) GO TO 140
DO 130 I = 1, JM1

R(L) = FJAC(I,J)
L = L + N - I
CONTINUE

CONTINUE
R(L) = WA1(J)
IF (WA1(J) .EQ. ZERO) SING = .TRUE.
CONTINUE

ACCUMULATE THE ORTHOGONAL FACTOR IN FJAC.

40
50

C
C
C
C

C
C
C

C
C
C

C
C

HYBJ2170
HYBJ2180
HYBJ2190
HYBJ2200
HYBJ2210
HYBJ2220
HYBJ2230
HYBJ2240
HYBJ2250
HYBJ2260
HYBJ2270
HYBJ2280
HYBJ2290
HYBJ2300
HYBJ2310
HYBJ2320
HYBJ2330
HYBJ2340
HYBJ2350
HYBJ2360
HYBJ2370
HYBJ2380
HYBJ2390
HYBJ2400
HYBJ2410
HYBJ2420
HYBJ2430
HYBJ2440
HYBJ2450
HYBJ2460
HYBJ2470
HYBJ2480
HYBJ2490
HYBJ2500
HYBJ2510
HYBJ2520
HYBJ2530
HYBJ2540
HYBJ2550
HYBJ2560
HYBJ2570
HYBJ2580
HYBJ2590
HYBJ2600
HYBJ2610
HYBJ2620
HYBJ2630
HYBJ2640
HYBJ2650
HYBJ2660
HYBJ2670
HYBJ2680
HYBJ2690
HYBJ2700

80

90

100
110
120

130
140

150



176

C HYBJ2710
CALL QFORM(N,N,FJAC,LDFJAC,WA1) HYBJ2720

C HYBJ2730
C RESCALE IF NECESSARY. HYBJ2740
C HYBJ2750

IF (MODE .EQ. 2) GO TO 170 HYBJ2760
DO 160 J = 1, N HYBJ2770

DIAG(J) = DMAX1(DIAG(J),WA2(J)) HYBJ2780
160 CONTINUE HYBJ2790
170 CONTINUE HYBJ2800

C HYBJ2810
C BEGINNING OF THE INNER LOOP. HYBJ2820
C HYBJ2830

180 CONTINUE HYBJ2840
C HYBJ2850
C IF REQUESTED, CALL FCN TO ENABLE PRINTING OF ITERATES. HYBJ2860
C HYBJ2870

IF (NPRINT .LE. 0) GO TO 190 HYBJ2880
IFLAG = 0 HYBJ2890
IF (MOD(ITER-1,NPRINT) .EQ. 0) HYBJ2900

* CALL FCN(N,X,FVEC,FJAC,LDFJAC,IFLAG) HYBJ2910

IF (IFLAG .LT. 0) GO TO 300 HYBJ2920
190 CONTINUE HYBJ2930

C HYBJ2940
C DETERMINE THE DIRECTION P. HYBJ2950
C HYBJ2960

CALL DOGLEG(N,R,LR,DIAG,QTF,DELTA,WA1,WA2,WA3) HYBJ2970
C HYBJ2980
C STORE THE DIRECTION P AND X + P. CALCULATE THE NORM OF P. HYBJ2990
C HYBJ3000

DO 200 J = 1, N HYBJ3010
WA1(J) = -WA1(J) HYBJ3020
WA2(J) = X(J) + WA1(J) HYBJ3030
WA3(J) = DIAG(J)*WA1(J) HYBJ3040

200 CONTINUE HYBJ3050
PNORM = ENORM(N,WA3) HYBJ3060

C HYBJ3070
C ON THE FIRST ITERATION, ADJUST THE INITIAL STEP BOUND. HYBJ3080
C HYBJ3090

IF (ITER .EQ. 1) DELTA = DMIN1(DELTA,PNORM) HYBJ3100
C HYBJ3110
C EVALUATE THE FUNCTION AT X + P AND CALCULATE ITS NORM. HYBJ3120
C HYBJ3130

IFLAG = 1 HYBJ3140
CALL FCN(N,WA2,WA4,FJAC,LDFJAC,IFLAG) HYBJ3150
NFEV = NFEV + 1 HYBJ3160
IF (IFLAG .LT. 0) GO TO 300 HYBJ3170
FNORM1 = ENORM(N,WA4) HYBJ3180

C HYBJ3190
C COMPUTE THE SCALED ACTUAL REDUCTION. HYBJ3200
C HYBJ3210

ACTRED = -ONE HYBJ3220
IF (FNORM1 .LT. FNORM) ACTRED = ONE - (FNORM1/FNORM)**2 HYBJ3230

C HYBJ3240



177

C
C

210

220

COMPUTE THE SCALED PREDICTED REDUCTION.

L = 1
DO 220 I = 1, N

SUM = ZERO
DO 210 J = I, N

SUM = SUM + R(L)*WA1(J)
L = L + 1
CONTINUE

WA3(I) = QTF(I) + SUM
CONTINUE

TEMP = ENORM(N,WA3)
PRERED = ZERO
IF (TEMP .LT. FNORM) PRERED = ONE - (TEMP/FNORM)**2

COMPUTE THE RATIO OF THE ACTUAL TO THE PREDICTED
REDUCTION.

RATIO = ZERO
IF (PRERED .GT. ZERO) RATIO = ACTRED/PRERED

UPDATE THE STEP BOUND.

IF (RATIO .GE. P1) GO TO 230
NCSUC = 0
NCFAIL = NCFAIL + 1
DELTA = P5*DELTA
GO TO 240

CONTINUE
NCFAIL = 0
NCSUC = NCSUC + 1
IF (RATIO .GE. P5 .OR. NCSUC .GT. 1)

DELTA = DMAX1(DELTA,PNORM/P5)
IF (DABS(RATIO-ONE) .LE. P1) DELTA = PNORM/P5

CONTINUE

TEST FOR SUCCESSFUL ITERATION.

IF (RATIO .LT. P0001) GO TO 260

SUCCESSFUL ITERATION. UPDATE X, FVEC, AND THEIR NORMS.

DO 250 J = 1, N
X(J) = WA2(J)
WA2(J) = DIAG(J)*X(J)
FVEC(J) = WA4(J)
CONTINUE

XNORM = ENORM(N,WA2)
FNORM = FNORM1
ITER = ITER + 1
CONTINUE

DETERMINE THE PROGRESS OF THE ITERATION.

C
C
C
C

C
C
C

HYBJ3250
HYBJ3260
HYBJ3270
HYBJ3280
HYBJ3290
HYBJ3300
HYBJ3310
HYBJ3320
HYBJ3330
HYBJ3340
HYBJ3350
HYBJ3360
HYBJ3370
HYBJ3380
HYBJ3390
HYBJ3400
HYBJ3410
HYBJ3420
HYBJ3430
HYBJ3440
HYBJ3450
HYBJ3460
HYBJ3470
HYBJ3480
HYBJ3490
HYBJ3500
HYBJ3510
HYBJ3520
HYBJ3530
HYBJ3540
HYBJ3550
HYBJ3560
HYBJ3570
HYBJ3580
HYBJ3590
HYBJ3600
HYBJ3610
HYBJ3620
HYBJ3630
HYBJ3640
HYBJ3650
HYBJ3660
HYBJ3670
HYBJ3680
HYBJ3690
HYBJ3700
HYBJ3710
HYBJ3720
HYBJ3730
HYBJ3740
HYBJ3750
HYBJ3760
HYBJ3770
HYBJ3780

230

*

240

250

260

C
C
C

C
C
C

C
C
C



178

NSLOW1 = NSLOW1 + 1 HYBJ3790
IF (ACTRED .GE. P001) NSLOW1 = 0 HYBJ3800
IF (JEVAL) NSLOW2 = NSLOW2 + 1 HYBJ3810
IF (ACTRED .GE. P1) NSLOW2 = 0 HYBJ3820

C HYBJ3830
C TEST FOR CONVERGENCE. HYBJ3840
C HYBJ3850

IF (DELTA .LE. XTOL*XNORM .OR. FNORM .EQ. ZERO) INFO = 1 HYBJ3860
IF (INFO .NE. 0) GO TO 300 HYBJ3870

C HYBJ3880
C TESTS FOR TERMINATION AND STRINGENT TOLERANCES. HYBJ3890
C HYBJ3900

IF (NFEV .GE. MAXFEV) INFO = 2 HYBJ3910
IF (P1*DMAX1(P1*DELTA,PNORM) .LE. EPSMCH*XNORM) INFO = 3 HYBJ3920
IF (NSLOW2 .EQ. 5) INFO = 4 HYBJ3930
IF (NSLOW1 .EQ. 10) INFO = 5 HYBJ3940
IF (INFO .NE. 0) GO TO 300 HYBJ3950

C HYBJ3960
C CRITERION FOR RECALCULATING JACOBIAN. HYBJ3970
C HYBJ3980

IF (NCFAIL .EQ. 2) GO TO 290 HYBJ3990
C HYBJ4000
C CALCULATE THE RANK ONE MODIFICATION TO THE JACOBIAN HYBJ4010
C AND UPDATE QTF IF NECESSARY. HYBJ4020
C HYBJ4030

DO 280 J = 1, N HYBJ4040
SUM = ZERO HYBJ4050
DO 270 I = 1, N HYBJ4060

SUM = SUM + FJAC(I,J)*WA4(I) HYBJ4070
270 CONTINUE HYBJ4080

WA2(J) = (SUM - WA3(J))/PNORM HYBJ4090
WA1(J) = DIAG(J)*((DIAG(J)*WA1(J))/PNORM) HYBJ4100
IF (RATIO .GE. P0001) QTF(J) = SUM HYBJ4110

280 CONTINUE HYBJ4120
C HYBJ4130
C COMPUTE THE QR FACTORIZATION OF THE UPDATED JACOBIAN. HYBJ4140
C HYBJ4150

CALL R1UPDT(N,N,R,LR,WA1,WA2,WA3,SING) HYBJ4160
CALL R1MPYQ(N,N,FJAC,LDFJAC,WA2,WA3) HYBJ4170
CALL R1MPYQ(1,N,QTF,1,WA2,WA3) HYBJ4180

C HYBJ4190
C END OF THE INNER LOOP. HYBJ4200
C HYBJ4210

JEVAL = .FALSE. HYBJ4220
GO TO 180 HYBJ4230

290 CONTINUE HYBJ4240
C HYBJ4250
C END OF THE OUTER LOOP. HYBJ4260
C HYBJ4270

GO TO 30 HYBJ4280
300 CONTINUE HYBJ4290

C HYBJ4300
C TERMINATION, EITHER NORMAL OR USER IMPOSED. HYBJ4310
C HYBJ4320



179

IF (IFLAG .LT. 0) INFO = IFLAG HYBJ4330
IFLAG = 0 HYBJ4340
IF (NPRINT .GT. 0) CALL FCN(N,X,FVEC,FJAC,LDFJAC,IFLAG) HYBJ4350
RETURN HYBJ4360

C HYBJ4370
C LAST CARD OF SUBROUTINE HYBRJ. HYBJ4380
C HYBJ4390

END HYBJ4400



180



181

SUBROUTINE HYBRJ1(FCN,N,X,FVEC,FJAC,LDFJAC,TOL,INFO,WA,LWA)
INTEGER N,LDFJAC,INFO,LWA
DOUBLE PRECISION TOL
DOUBLE PRECISION X(N),FVEC(N),FJAC(LDFJAC,N),WA(LWA)
EXTERNAL FCN

C
C
C SUBROUTINE HYBRJ1
C
C THE PURPOSE OF HYBRJ1 IS TO FIND A ZERO OF A SYSTEM OF
C N NONLINEAR FUNCTIONS IN N VARIABLES BY A MODIFICATION
C OF THE POWELL HYBRID METHOD. THIS IS DONE BY USING THE
C MORE GENERAL NONLINEAR EQUATION SOLVER HYBRJ. THE USER
C MUST PROVIDE A SUBROUTINE WHICH CALCULATES THE FUNCTIONS
C AND THE JACOBIAN.
C
C THE SUBROUTINE STATEMENT IS
C
C SUBROUTINE HYBRJ1(FCN,N,X,FVECFJAC,LDFJAC,TOL,INFO,WA,LWA)
C
C WHERE
C
C FCN IS THE NAME OF THE USER-SUPPLIED SUBROUTINE WHICH
C CALCULATES THE FUNCTIONS AND THE JACOBIAN. FCN MUST
C BE DECLARED TN AN EXTERNAL STATEMENT IN THE USER
C CALLING PROGRAM, AND SHOULD BE WRITTEN AS FOLLOWS.
C
C SUBROUTINE FCN(N,X,FVEC,FJAC,LDFJAC,IFLAG)
C INTEGER N,LDFJAC,IFLAG
C DOUBLE PRECISION X(N),FVEC(N),FJAC(LDFJAC,N)
C ----------
C IF IFLAG = 1 CALCULATE THE FUNCTIONS AT X AND
C RETURN THIS VECTOR IN FVEC. DO NOT ALTER FJAC.
C IF IFLAG = 2 CALCULATE THE JACOBIAN AT X AND
C RETURN THIS MATRIX IN FJAC. DO NOT ALTER FVEC.
C ---------
C RETURN
C END
C
C THE VALUE OF IFLAG SHOULD NOT BE CHANGED BY FCN UNLESS
C THE USER WANTS TO TERMINATE EXECUTION OF HYBRJ1.
C IN THIS CASE SET IFLAG TO A NEGATIVE INTEGER.
C
C N IS A POSITIVE INTEGER INPUT VARIABLE SET TO THE NUMBER
C OF FUNCTIONS AND VARIABLES.
C
C X IS AN ARRAY OF LENGTH N. ON INPUT X MUST CONTAIN
C AN INITIAL ESTIMATE OF THE SOLUTION VECTOR. ON OUTPUT X
C CONTAINS THE FINAL ESTIMATE OF THE SOLUTION VECTOR.
C
C FVEC IS AN OUTPUT ARRAY OF LENGTH N WHICH CONTAINS
C THE FUNCTIONS EVALUATED AT THE OUTPUT X.
C

FJAC IS AN OUTPUT N BY N ARRAY WHICH CONTAINS THE

HYJ10010
HYJ10020
HYJ10030
HYJ10040
HYJ10050
HYJ10060
HYJ10070
HYJ10080
HYJ10090
HYJ10100
HYJ10110
HYJ 10 120
HYJ10130
HYJ10140
HYJ10150
HYJ10160
HYJ10170
HYJ10180
HYJ10190
HYJ10200
HYJ10210
HYJ10220
HYJ10230
HYJ10240
HYJ10250
HYJ10260
HYJ10270
HYJ10280
HYJ10290
HYJ10300
HYJ10310
HYJ10320
HYJ10330
HYJ10340
HYJ10350
HYJ10360
HYJ10370
HYJ10380
HYJ10390
HYJ10400
HYJ10410
HYJ10420
HYJ10430
HYJ10440
HYJ10450
HYJ10460
HYJ10470
HYJ10480
HYJ10490
HYJ10500
HYJ10510
HYJ10520
HYJ10530
HYJ10540C



182

C ORTHOGONAL MATRIX Q PRODUCED BY THE QR FACTORIZATION HYJ10550
C OF THE FINAL APPROXIMATE JACOBIAN. HYJ10560
C HYJ10570
C LDFJAC IS A POSITIVE INTEGER INPUT VARIABLE NOT LESS THAN N HYJ10580
C WHICH SPECIFIES THE LEADING DIMENSION OF THE ARRAY FJAC. HYJ10590
C HYJ10600
C TOL IS A NONNEGATIVE INPUT VARIABLE. TERMINATION OCCURS HYJ10610
C WHEN THE ALGORITHM ESTIMATES THAT THE RELATIVE ERROR HYJ10620
C BETWEEN X AND THE SOLUTION IS AT MOST TOL. HYJ10630
C HYJ10640
C INFO IS AN INTEGER OUTPUT VARIABLE. IF THE USER HAS HYJ10650
C TERMINATED EXECUTION, INFO IS SET TO THE (NEGATIVE) HYJ10660
C VALUE OF IFLAG. SEE DESCRIPTION OF FCN. OTHERWISE, HYJ10670
C INFO IS SET AS FOLLOWS. HYJ10680
C HYJ10690
C INFO = 0 IMPROPER INPUT PARAMETERS. HYJ10700
C HYJ10710
C INFO = 1 ALGORITHM ESTIMATES THAT THE RELATIVE ERROR HYJ10720
C BETWEEN X AND THE SOLUTION IS AT MOST TOL. HYJ10730
C HYJ10740
C INFO = 2 NUMBER OF CALLS TO FCN WITH IFLAG = 1 HAS HYJ10750
C REACHED 100*(N+1). HYJ10760
C HYJ10770
C INFO = 3 TOL IS TOO SMALL. NO FURTHER IMPROVEMENT IN HYJ10780
C THE APPROXIMATE SOLUTION X IS POSSIBLE. HYJ10790
C HYJ10800
C INFO = 4 ITERATION IS NOT MAKING GOOD PROGRESS. HYJ10810
C HYJ10820
C WA IS A WORK ARRAY OF LENGTH LWA. HYJ10830
C HYJ10840
C LWA IS A POSITIVE INTEGER INPUT VARIABLE NOT LESS THAN HYJ10850
C (N*(N+13))/2. HYJ10860
C HYJ10870
C SUBPROGRAMS CALLED HYJ10880
C HYJ10890
C USER-SUPPLIED....... FCN HYJ10900
C HYJ 10910
C MINPACK-SUPPLIED ... HYBRJ HYJ10920
C HYJ10930
C ARGONNE NATIONAL LABORATORY. MINPACK PROJECT. MARCH 1980. HYJ10940
C BURTON S. GARBOW, KENNETH E. HILLSTROM, JORGE J. MORE HYJ10950
C HYJ10960
C HYJ10970

INTEGER J, LR ,MAXFEV,MODE ,NFEV ,NJEV,NPRINT HYJ10980
DOUBLE PRECISION FACTOR,ONE,XTOL,ZERO HYJ10990
DATA FACTOR,ONE,ZERO /1.0D2,1.0DO,O.ODO/ HYJ11000
INFO = 0 HYJ11010

C HYJ11020
C CHECK THE INPUT PARAMETERS FOR ERRORS. HYJ11030
C HYJ11040

IF (N .LE. 0 .OR. LDFJAC .LT. N .OR. TOL .LT. ZERO HYJ11050
* .OR. LWA .LT. (N*(N + 13))/2) GO TO 20 HYJ11060

C HYJ11070
C CALL HYBRJ. HYJ11080



183

C HYJ11090
MAXFEV = 100*(N + 1) HYJ11100
XTOL = TOL HYJ11110
MODE = 2 HYJ11120
DO 10 J = 1, N HYJ11130

WA(J) = ONE HYJ11140
10 CONTINUE HYJ11150

NPRINT = 0 HYJ11160
LR = (N*(N + 1))/2 HYJ11170
CALL HYBRJ(FCN,N,X,FVEC,FJAC,LDFJAC,XTOL,MAXFEV,WA(1),MODE, HYJ11180

FACTOR,NPRINT,INFO,NFEV,NJEV,WA(6*N+1),LR,WA(N+1), HYJ11190
* WA(2*N+1),WA(3*N+1),WA(4*N+1),WA(5*N+1)) HYJ11200
IF (INFO .EQ. 5) INFO = 4 HYJ11210

20 CONTINUE HYJ11220
RETURN HYJ11230

C HYJ11240
C LAST CARD OF SUBROUTINE HYBRJ1. HYJ11250
C HYJ11260

END HYJ11270



184



185

SUBROUTINE LMDER(FCN,M,N,X,FVEC,FJAC,LDFJAC,FTOL,XTOL,GTOL,
* MAXFEV,DIAG,MODE ,FACTOR,NPRINT, INFO,NFEV,NJEV,

IPVT,QTF,WA1,WA2,WA3,WA4)
INTEGER M,N,LDFJAC,MAXFEV,MODE ,NPRINT, INFO,NFEV,NJEV
INTEGER IPVT(N)
DOUBLE PRECISION FTOL,XTOL,GTOL,FACTOR
DOUBLE PRECISION X(N),FVEC(M),FJAC(LDFJACN),DIAG(N),QTF(N),

* WA1(N),WA2(N),WA3(N),WA4(M)
C **
C
C SUBROUTINE LMDER
C
C THE PURPOSE OF LMDER IS TO MINIMIZE THE SUM OF THE SQUARES OF
C M NONLINEAR FUNCTIONS IN N VARIABLES BY A MODIFICATION OF
C THE LEVENBERG-MARQUARDT ALGORITHM. THE USER MUST PROVIDE A
C SUBROUTINE WHICH CALCULATES THE FUNCTIONS AND THE JACOBIAN.
C
C THE SUBROUTINE STATEMENT IS
C
C SUBROUTINE LMDER(FCN,M,N,X,FVEC,FJAC,LDFJAC,FTOL,XTOL,GTOL,
C MAXFEV, DIAG,MODE ,FACTOR,NPRINT,INFO, NFEV,
C NJEV,IPVT,QTF,WA1,WA2,WA3,WA4)
C
C WHERE
C
C FCN IS THE NAME OF THE USER-SUPPLIED SUBROUTINE WHICH
C CALCULATES THE FUNCTIONS AND THE JACOBIAN. FCN MUST
C BE DECLARED IN AN EXTERNAL STATEMENT IN THE USER
C CALLING PROGRAM, AND SHOULD BE WRITTEN AS FOLLOWS.
C
C SUBROUTINE FCN(M,N,X,FVEC,FJAC,LDFJAC,IFLAG)
C INTEGER M,N,LDFJAC,IFLAG
C DOUBLE PRECISION X(N),FVEC(M),FJAC(LDFJAC,N)
C ----------
C IF IFLAG = 1 CALCULATE THE FUNCTIONS AT X AND
C RETURN THIS VECTOR IN FVEC. DO NOT ALTER FJAC.
C IF IFLAG = 2 CALCULATE THE JACOBIAN AT X AND
C RETURN THIS MATRIX IN FJAC. DO NOT ALTER FVEC.
C ----------
C RETURN
C END
C
C THE VALUE OF IFLAG SHOULD NOT BE CHANGED BY FCN UNLESS
C THE USER WANTS TO TERMINATE EXECUTION OF LMDER.
C IN THIS CASE SET IFLAG TO A NEGATIVE INTEGER.
C
C M IS A POSITIVE INTEGER INPUT VARIABLE SET TO THE NUMBER
C OF FUNCTIONS.
C
C N IS A POSITIVE INTEGER INPUT VARIABLE SET TO THE NUMBER
C OF VARIABLES. N MUST NOT EXCEED M.
C
C X IS AN ARRAY OF LENGTH N. ON INPUT X MUST CONTAIN
C AN INITIAL ESTIMATE OF THE SOLUTION VECTOR. ON OUTPUT X

LMDR0010
LMDR0020
LMDR0030
LMDR0040
LMDR0050
LMDR0060
LMDR0070
LMDR0080
LMDR0090
LMDR0100
LMDR0110
LMDRO120
LMDRO 130
LMDRO 140
LMDR0150
LMDR0160
LMDR0170
LMDR0180
LMDRO190
LMDR0200
LMDRO210
LMDR0220
LMDR0230
LMDRO240
LMDR0250
LMDR0260
LMDRO270
LMDR0280
LMDR0290
LMDRO300
LMDRO310
LMDRO320
LMDRO330
LMDRO340
LMDRO350
LMDRO360
LMDRO370
LMDRO380
LMDRO390
LMDRO400
LMDRO410
LMDRO420
LMDRO430
LMDR0440
LMDRO450
LMDRO460
LMDRO470
LMDRO480
LMDRO490
LMDR0500
LMDR0510
LMDR0520
LMDR0530
LMDR0540



186

C CONTAINS THE FINAL ESTIMATE OF THE SOLUTION VECTOR. LMDR0550
C LMDR0560
C FVEC IS AN OUTPUT ARRAY OF LENGTH M WHICH CONTAINS LMDR0570
C THE FUNCTIONS EVALUATED AT THE OUTPUT X. LMDR0580
C LMDR0590
C FJAC IS AN OUTPUT M BY N ARRAY. THE UPPER N BY N SUBMATRIX LMDR0600
C OF FJAC CONTAINS AN UPPER TRIANGULAR MATRIX R WITH LMDR0610
C DIAGONAL ELEMENTS OF NONINCREASING MAGNITUDE SUCH THAT LMDR0620
C LMDR0630
C T T T LMDR0640
C P *(JAC *JAC)*P = R *R, LMDRO650
C LMDR0660
C WHERE P IS A PERMUTATION MATRIX AND JAC IS THE FINAL LMDR0670
C CALCULATED JACOBIAN. COLUMN J OF P IS COLUMN IPVT(J) LMDR0680
C (SEE BELOW) OF THE IDENTITY MATRIX. THE LOWER TRAPEZOIDAL LMDR0690
C PART OF FJAC CONTAINS INFORMATION GENERATED DURING LMDR0700
C THE COMPUTATION OF R. LMDR0710
C LMDR0720
C LDFJAC IS A POSITIVE INTEGER INPUT VARIABLE NOT LESS THAN M LMDR0730
C WHICH SPECIFIES THE LEADING DIMENSION OF THE ARRAY FJAC. LMDR0740
C LMDR0750
C FTOL IS A NONNEGATIVE INPUT VARIABLE. TERMINATION LMDR0760
C OCCURS WHEN BOTH THE ACTUAL AND PREDICTED RELATIVE LMDR0770
C REDUCTIONS IN THE SUM OF SQUARES ARE AT MOST FTOL. LMDR0780
C THEREFORE, FTOL MEASURES THE RELATIVE ERROR DESIRED LMDR0790
C IN THE SUM OF SQUARES. LMDR0800
C LMDR0810
C XTOL IS A NONNEGATIVE INPUT VARIABLE. TERMINATION LMDR0820
C OCCURS WHEN THE RELATIVE ERROR BETWEEN TWO CONSECUTIVE LMDR0830
C ITERATES IS AT MOST XTOL. THEREFORE, XTOL MEASURES THE LMDR0840
C RELATIVE ERROR DESIRED IN THE APPROXIMATE SOLUTION. LMDR0850
C LMDR0860
C GTOL IS A NONNEGATIVE INPUT VARIABLE. TERMINATION LMDR0870
C OCCURS WHEN THE COSINE OF THE ANGLE BETWEEN FVEC AND LMDR0880
C ANY COLUMN OF THE JACOBIAN IS AT MOST GTOL IN ABSOLUTE LMDR0890
C VALUE. THEREFORE, GTOL MEASURES THE ORTHOGONALITY LMDRO900
C DESIRED BETWEEN THE FUNCTION VECTOR AND THE COLUMNS LMDRO910
C OF THE JACOBIAN. LMDRO920
C LMDRO930
C MAXFEV IS A POSITIVE INTEGER INPUT VARIABLE. TERMINATION LMDRO940
C OCCURS WHEN THE NUMBER OF CALLS TO FCN WITH IFLAG = 1 LMDRO950
C HAS REACHED MAXFEV. LMDRO960
C LMDRO970
C DIAG IS AN ARRAY OF LENGTH N. IF MODE = 1 (SEE LMDRO980
C BELOW), DIAG IS INTERNALLY SET. IF MODE = 2, DIAG LMDRO990
C MUST CONTAIN POSITIVE ENTRIES THAT SERVE AS LMDR1000
C MULTIPLICATIVE SCALE FACTORS FOR THE VARIABLES. LMDR1010
C LMDR1020
C MODE IS AN INTEGER INPUT VARIABLE. IF MODE = 1, THE LMDR1030
C VARIABLES WILL BE SCALED INTERNALLY. IF MODE = 2, LMDR1040
C THE SCALING IS SPECIFIED BY THE INPUT DIAG. OTHER LMDR1050
C VALUES OF MODE ARE EQUIVALENT TO MODE = 1. LMDR1060
C LMDR1070

C FACTOR IS A POSITIVE INPUT VARIABLE USED IN DETERMINING THE LMDR1080



187

C INITIAL STEP BOUND. THIS BOUND IS SET TO THE PRODUCT OF LMDR1090
C FACTOR AND THE EUCLIDEAN NORM OF DIAG*X IF NONZERO, OR ELSE LMDR1100
C TO FACTOR ITSELF. IN MOST CASES FACTOR SHOULD LIE IN THE LMDR1110
C INTERVAL (.1,100.).100. IS A GENERALLY RECOMMENDED VALUE. LMDR1120
C LMDR1130
C NPRINT IS AN INTEGER INPUT VARIABLE THAT ENABLES CONTROLLED LMDR1140
C PRINTING OF ITERATES IF IT IS POSITIVE. IN THIS CASE, LMDR1150
C FCN IS CALLED WITH IFLAG = 0 AT THE BEGINNING OF THE FIRST LMDR1160
C ITERATION AND EVERY NPRINT ITERATIONS THEREAFTER AND LMDR1170
C IMMEDIATELY PRIOR TO RETURN, WITH X, FVEC, AND FJAC LMDR1180
C AVAILABLE FOR PRINTING. FVEC AND FJAC SHOULD NOT BE LMDR1190
C ALTERED. IF NPRINT IS NOT POSITIVE, NO SPECIAL CALLS LMDR1200
C OF FCN WITH IFLAG = 0 ARE MADE. LMDR1210
C LMDR1220
C INFO IS AN INTEGER OUTPUT VARIABLE. IF THE USER HAS LMDR1230
C TERMINATED EXECUTION, INFO IS SET TO THE (NEGATIVE) LMDR1240
C VALUE OF IFLAG. SEE DESCRIPTION OF FCN. OTHERWISE, LMDR1250
C INFO IS SET AS FOLLOWS. LMDR1260
C LMDR1270
C INFO = 0 IMPROPER INPUT PARAMETERS. LMDR1280
C LMDR1290
C INFO = 1 BOTH ACTUAL AND PREDICTED RELATIVE REDUCTIONS LMDR1300
C IN THE SUM OF SQUARES ARE AT MOST FTOL. LMDR1310
C LMDR1320
C INFO = 2 RELATIVE ERROR BETWEEN TWO CONSECUTIVE ITERATES LMDR1330
C IS AT MOST XTOL. LMDR1340
C LMDR1350
C INFO = 3 CONDITIONS FOR INFO = 1 AND INFO = 2 BOTH HOLD. LMDR1360
C LMDR1370
C INFO = 4 THE COSINE OF THE ANGLE BETWEEN FVEC AND ANY LMDR1380
C COLUMN OF THE JACOBIAN IS AT MOST GTOL IN LMDR1390
C ABSOLUTE VALUE. LMDR1400
C LMDR1410
C INFO = 5 NUMBER OF CALLS TO FCN WITH IFLAG = 1 HAS LMDR1420
C REACHED MAXFEV. LMDR1430
C LMDR1440
C INFO = 6 FTOL IS TOO SMALL. NO FURTHER REDUCTION IN LMDR1450
C THE SUM OF SQUARES IS POSSIBLE. LMDR1460
C LMDR1470
C INFO = 7 XTOL IS TOO SMALL. NO FURTHER IMPROVEMENT IN LMDR1480
C THE APPROXIMATE SOLUTION X IS POSSIBLE. LMDR1490
C LMDR1500
C INFO = 8 GTOL IS TOO SMALL. FVEC IS ORTHOGONAL TO THE LMDR1510
C COLUMNS OF THE JACOBIAN TO MACHINE PRECISION. LMDR1520
C LMDR1530
C NFEV IS AN INTEGER OUTPUT VARIABLE SET TO THE NUMBER OF LMDR1540
C CALLS TO FCN WITH IFLAG = 1. LMDR1550
C LMDR1560
C NJEV IS AN INTEGER OUTPUT VARIABLE SET TO THE NUMBER OF LMDR1570
C CALLS TO FCN WITH IFLAG = 2. LMDR1580
C LMDR1590
C IPVT IS AN INTEGER OUTPUT ARRAY OF LENGTH N. IPVT LMDR1600
C DEFINES A PERMUTATION MATRIX P SUCH THAT JAC*P = Q*R, LMDR1610
C WHERE JAC IS THE FINAL CALCULATED JACOBIAN, Q IS LMDR1620



188

C ORTHOGONAL (NOT STORED), AND R IS UPPER TRIANGULAR LMDR1630
C WITH DIAGONAL ELEMENTS OF NONINCREASING MAGNITUDE. LMDR1640
C COLUMN J OF P IS COLUMN IPVT(J) OF THE IDENTITY MATRIX. LMDR1650
C LMDR1660
C QTF IS AN OUTPUT ARRAY OF LENGTH N WHICH CONTAINS LMDR1670
C THE FIRST N ELEMENTS OF THE VECTOR (Q TRANSPOSE)*FVEC. LMDR1680
C LMDR1690
C WA1, WA2, AND WA3 ARE WORK ARRAYS OF LENGTH N. LMDR1700
C LMDR1710
C WA4 IS A WORK ARRAY OF LENGTH M. LMDR1720
C LMDR1730
C SUBPROGRAMS CALLED LMDR1740
C LMDR1750
C USER-SUPPLIED....... FCN LMDR1760
C LMDR1770
C MINPACK-SUPPLIED ... DPMPAR,ENORM,LMPAR,QRFAC LMDR1780
C LMDR1790
C FORTRAN-SUPPLIED ... DABS,DMAX1,DMIN1,DSQRT,MOD LMDR1800
C LMDR1810
C ARGONNE NATIONAL LABORATORY. MINPACK PROJECT. MARCH 1980. LMDR1820
C BURTON S. GARBOW, KENNETH E. HILLSTROM, JORGE J. MORE LMDR1830
C LMDR1840
C LMDR1850

INTEGER I,IFLAG,ITER,J,L LMDR1860
DOUBLE PRECISION ACTRED,DELTA,DIRDER,EPSMCH,FNORM,FNORM1,GNORM, LMDR1870

ONE,PAR,PNORM,PRERED,P1,P5,P25,P75,P0001,RATIO, LMDR1880
SUM,TEMP,TEMP1,TEMP2,XNORM,ZERO LMDR1890

DOUBLE PRECISION DPMPAR,ENORM LMDR1900
DATA ONE,P1,P5,P25,P75,P0001,ZERO LMDR1910

/1.ODO,1.0D-1,5.OD-1,2.5D-1,7.5D-1,1.OD-4,0.ODO/ LMDR1920
C LMDR1930
C EPSMCH IS THE MACHINE PRECISION. LMDR1940
C LMDR1950

EPSMCH = DPMPAR(1) LMDR1960
C LMDR1970

INFO = 0 LMDR1980
IFLAG = 0 LMDR1990
NFEV = 0 LMDR2000
NJEV = 0 LMDR2010

C LMDR2020
C CHECK THE INPUT PARAMETERS FOR ERRORS. LMDR2030
C LMDR2040

IF (N .LE. 0 .OR. M .LT. N .OR. LDFJAC .LT. M LMDR2050
* .OR. FTOL .LT. ZERO .OR. XTOL .LT. ZERO .OR. GTOL .LT. ZERO LMDR2060
* .OR. MAXFEV .LE. 0 .OR. FACTOR .LE. ZERO) GO TO 300 LMDR2070

IF (MODE .NE. 2) GO TO 20 LMDR2080
DO 10 J = 1, N LMDR2090

IF (DIAG(J) .LE. ZERO) GO TO 300 LMDR2100
10 CONTINUE LMDR2110
20 CONTINUE LMDR2120

C LMDR2130
C EVALUATE THE FUNCTION AT THE STARTING POINT LMDR2140
C AND CALCULATE ITS NORM. LMDR2150
C LMDR2160



189

IFLAG = 1 LMDR2170
CALL FCN(M,N,X,FVEC,FJAC,LDFJAC,IFLAG) LMDR2180

NFEV = 1 LMDR2190
IF (IFLAG .LT. 0) GO TO 300 LMDR2200
FNORM = ENORM(M,FVEC) LMDR2210

C LMDR2220
C INITIALIZE LEVENBERG-MARQUARDT PARAMETER AND ITERATION COUNTER. LMDR2230
C LMDR2240

PAR = ZERO LMDR2250
ITER = 1 LMDR2260

C LMDR2270
C BEGINNING OF THE OUTER LOOP. LMDR2280
C LMDR2290

30 CONTINUE LMDR2300
C LMDR2310
C CALCULATE THE JACOBIAN MATRIX. LMDR2320
C LMDR2330

IFLAG = 2 LMDR2340
CALL FCN(M,N,X,FVEC,FJAC,LDFJAC,IFLAG) LMDR2350
NJEV = NJEV + 1 LMDR2360
IF (IFLAG .LT. 0) GO TO 300 LMDR2370

C LMDR2380
C IF REQUESTED, CALL FCN TO ENABLE PRINTING OF ITERATES. LMDR2390
C LMDR2400

IF (NPRINT .LE. 0) GO TO 40 LMDR2410
IFLAG = 0 LMDR2420
IF (MOD(ITER-1,NPRINT) .EQ. 0) LMDR2430

* CALL FCN(M,N,X,FVEC,FJAC,LDFJAC,IFLAG) LMDR2440

IF (IFLAG .LT. 0) GO TO 300 LMDR2450
40 CONTINUE LMDR2460

C LMDR2470
C COMPUTE THE QR FACTORIZATION OF THE JACOBIAN. LMDR2480
C LMDR2490

CALL QRFAC(M,N,FJAC,LDFJAC,.TRUE.,IPVT,N,WA1,WA2,WA3) LMDR2500
C LMDR2510
C ON THE FIRST ITERATION AND IF MODE IS 1, SCALE ACCORDING LMDR2520
C TO THE NORMS OF THE COLUMNS OF THE INITIAL JACOBIAN. LMDR2530
C LMDR2540

IF (ITER .NE. 1) GO TO 80 LMDR2550
IF (MODE .EQ. 2) GO TO 60 LMDR2560
DO 50 J = 1, N LMDR2570

DIAG(J) = WA2(J) LMDR2580
IF (WA2(J) .EQ. ZERO) DIAG(J) = ONE LMDR2590

50 CONTINUE LMDR2600
60 CONTINUE LMDR2610

C LMDR2620
C ON THE FIRST ITERATION, CALCULATE THE NORM OF THE SCALED X LMDR2630
C AND INITIALIZE THE STEP BOUND DELTA. LMDR2640
C LMDR2650

DO 70 J = 1, N LMDR2660
WA3(J) = DIAG(J)*X(J) LMDR2670

70 CONTINUE LMDR2680
XNORM = ENORM(N,WA3) LMDR2690
DELTA = FACTOR*XNORM LMDR2700



190

IF (DELTA .EQ. ZERO) DELTA = FACTOR LMDR2710
80 CONTINUE LMDR2720

C LMDR2730
C FORM (Q TRANSPOSE)*FVEC AND STORE THE FIRST N COMPONENTS IN LMDR2740
C QTF. LMDR2750
C LMDR2760

DO 90 I = 1, M LMDR2770
WA4(I) = FVEC(I) LMDR2780

90 CONTINUE LMDR2790
DO 130 J = 1, N LMDR2800

IF (FJAC(J,J) .EQ. ZERO) GO TO 120 LMDR2810
SUM = ZERO LMDR2820
DO 100 I = J, M LMDR2830

SUI = SUM + FJAC(I,J)*WA4(I) LMDR2840
100 CONTINUE LMDR2850

TEMP = -SUM/FJAC(J,J) LMDR2860
DO 110 I = J, M LMDR2870

WA4(I) = WA4(I) + FJAC(I,J)*TEMP LMDR2880
110 CONTINUE LMDR2890
120 CONTINUE LMDR2900

FJAC(J,J) = WA1(J) LMDR2910
QTF(J) = WA4(J) LMDR2920

130 CONTINUE LMDR2930
C LMDR2940
C COMPUTE THE NORM OF THE SCALED GRADIENT. LMDR2950
C LMDR2960

GNORM = ZERO LMDR2970
IF (FNORM EQ. ZERO) GO TO 170 LMDR2980
DO 160 J = 1, N LMDR2990

L = IPVT(J) LMDR3000
IF (WA2(L) .EQ. ZERO) GO TO 150 LMDR3010
SUM = ZERO LMDR3020
DO 140 I = 1, J LMDR3030

SUM = SUM + FJAC(I,J)*(QTF(I)/FNORM) LMDR3040
140 CONTINUE LMDR3050

GNORM = DMAX1(GNORM,DABS(SUM/WA2(L))) LMDR3060
150 CONTINUE LMDR3070
160 CONTINUE LMDR3080
170 CONTINUE LMDR3090

C LMDR3100
C TEST FOR CONVERGENCE OF THE GRADIENT NORM. LMDR3110
C LMDR3120

IF (GNORM .LE. GTOL) INFO = 4 LMDR3130
IF (INFO .NE. 0) GO TO 300 LMDR3140

C LMDR3150
C RESCALE IF NECESSARY. LMDR3160
C LMDR3170

IF (MODE .EQ. 2) GO TO 190 LMDR3180
DO 180 J = 1, N LMDR3190

DIAG(J) = DMAX1(DIAG(J),WA2(J)) LMDR3200
180 CONTINUE LMDR3210
190 CONTINUE LMDR3220

C LMDR3230
C BEGINNING OF THE INNER LOOP. LMDR3240



191

C LMDR3250
200 CONTINUE LMDR3260

C LMDR3270
C DETERMINE THE LEVENBERG-MARQUARDT PARAMETER. LMDR3280
C LMDR3290

CALL LMPAR(N,FJAC,LDFJAC,IPVT,DIAG,QTF,DELTA,PAR,WA1,WA2, LMDR3300
* WA3,WA4) LMDR3310

C LMDR3320
C STORE THE DIRECTION P AND X + P. CALCULATE THE NORM OF P. LMDR3330
C LMDR3340

DO 210 J = 1, N LMDR3350
WA1(J) = -WA1(J) LMDR3360
WA2(J) = X(J) + WA1(J) LMDR3370
WA3(J) = DIAG(J)*WA1(J) LMDR3380

210 CONTINUE LMDR3390
PNORM = ENORM(N,WA3) LMDR3400

C LMDR3410
C ON THE FIRST ITERATION, ADJUST THE INITIAL STEP BOUND. LMDR3420
C LMDR3430

IF (ITER .EQ. 1) DELTA = DMIN1(DELTA,PNORM) LMDR3440
C LMDR3450
C EVALUATE THE FUNCTION AT X + P AND CALCULATE ITS NORM. LMDR3460
C LMDR3470

IFLAG = 1 LMDR3480
CALL FCN(M,N,WA2,WA4,FJAC,LDFJAC,IFLAG) LMDR3490
NFEV = NFEV + 1 LMDR3500
IF (IFLAG .LT. 0) GO TO 300 LMDR3510
FNORM1 = ENORM(M,WA4) LMDR3520

C LMDR3530
C COMPUTE THE SCALED ACTUAL REDUCTION. LMDR3540
C LMDR3550

ACTRED = -ONE LMDR3560
IF (P1*FNORM1 .LT. FNORM) ACTRED = ONE - (FNORM1/FNORM)**2 LMDR3570

C LMDR3580
C COMPUTE THE SCALED PREDICTED REDUCTION AND LMDR3590
C THE SCALED DIRECTIONAL DERIVATIVE. LMDR3600
C LMDR3610

DO 230 J = 1, N LMDR3620
WA3(J) = ZERO LMDR3630
L = IPVT(J) LMDR3640
TEMP = WA1(L) LMDR3650
DO 220 I' = 1, J LMDR3660

WA3(I) = WA3(I) + FJAC(I,J)*TEMP LMDR3670
220 CONTINUE LMDR3680
230 CONTINUE LMDR3690

TEMP1 = ENORM(N,WA3)/FNORM LMDR3700
TEMP2 = (DSQRT(PAR)*PNORM)/FNORM LMDR3710
PRERED = TEMP1**2 + TEMP2**2/P5 LMDR3720
DIRDER = -(TEMP1**2 + TEMP2**2) LMDR3730

C LMDR3740
C COMPUTE THE RATIO OF THE ACTUAL TO THE PREDICTED LMDR3750
C REDUCTION. LMDR3760
C LMDR3770

RATIO = ZERO LMDR3780



192

IF (PRERED .NE. ZERO) RATIO = ACTRED/PRERED LMDR3790
C LMDR3800
C UPDATE THE STEP BOUND. LNDR3810
C LMDR3820

IF (RATIO .GT. P25) GO TO 240 LMDR3830
IF (ACTRED .GE. ZERO) TEMP = P5 LMDR3840
IF (ACTRED .LT. ZERO) LMDR3850

TEMP = P5*DIRDER/(DIRDER + P5*ACTRED) LMDR3860
IF (P1*FNORM1 .GE. FNORM .OR. TEMP .LT. P1) TEMP = P1 LMDR3870
DELTA = TEMP*DMIN1(DELTA,PNORM/P1) LMDR3880
PAR = PAR/TEMP LMDR3890
GO TO 260 LMDR3900

240 CONTINUE LMDR3910
IF (PAR .NE. ZERO .AND. RATIO .LT. P75) GO TO 250 LMDR3920
DELTA = PNORM/P5 LMDR3930
?AR = P5*PAR LMDR3940

250 CONTINUE LMDR3950
260 CONTINUE LMDR3960

C LMDR3970
C TEST FOR SUCCESSFUL ITERATION. LMDR3980
C LMDR3990

IF (RATIO .LT. P0001) GO TO 290 LMDR4000
C LMDR4010
C SUCCESSFUL ITERATION. UPDATE X, FVEC, AND THEIR NORMS. LMDR4020
C LMDR4030

DO 270 J = 1, N LMDR4040
X(J) = WA2(J) LMDR4050
WA2(J) = DIAG(J)*X(J) LMDR4060

270 CONTINUE LMDR4070
DO 280 I = 1, M LMDR4080

FVEC(I) = WA4(I) LMDR4090
280 CONTINUE LMDR4100

XNORM = ENORM(N,WA2) LMDR4110
FNORM = FNORM1 LMDR4120
ITER = ITER + 1 LMDR4130

290 CONTINUE LMDR4140
C LMDR4150
C TESTS FOR CONVERGENCE. LMDR4160
C LMDR4170

IF (DABS(ACTRED) .LE. FTOL .AND. PRERED .LE. FTOL LMDR4180
* .AND. P5*RATIO .LE. ONE) INFO = 1 LMDR4190

IF (DELTA .LE. XTOL*XNORM) INFO = 2 LMDR4200
IF (DABS(ACTRED) .LE. FTOL .AND. PRERED .LE. FTOL LMDR4210

* .AND. P5*RATIO .LE. ONE .AND. INFO .EQ. 2) INFO = 3 LMDR4220
IF (INFO .NE. 0) GO TO 300 LMDR4230

C LMDR4240
C TESTS FOR TERMINATION AND STRINGENT TOLERANCES. LMDR4250
C LMDR4260

IF (NFEV .GE. MAXFEV) INFO = 5 LMDR4270
IF (DABS(ACTRED) .LE. EPSMCH .AND. PRERED .LE. EPSMCH LMDR4280

* .AND. P5*RATIO .LE. ONE) INFO = 6 LMDR4290
IF (DELTA .LE. EPSMCH*XNORM) INFO = 7 LMDR4300
IF (GNORM .LE. EPSMCH) INFO = 8 LMDR4310
IF (INFO .NE. 0) GO TO 300 LMDR4320



193

C LMDR4330

C END OF THE INNER LOOP. REPEAT IF ITERAT:)N UNSUCCESSFUL. LMDR4340

C LMDR4350
IF (RATIO .LT. P0001) GO TO 200 LMDR4360

C LMDR4370
C END OF THE OUTER LOOP. LMDR4380
C LMDR4390

GO TO 30 LMDR4400
300 CONTINUE LMDR4410

C LMDR4420
C TERMINATION, EITHER NORMAL OR USER IMPOSED. LMDR4430
C LMDR4440

IF (IFLAG .LT. 0) INFO = IFLAG LMDR4450
IFLAG = 0 LMDR4460
IF (NPRINT .GT. 0) CALL FCN(M,N,X,FVEC,FJAC,LDFJAC,IFLAG) LMDR4470
RETURN LMDR4480

C LMDR4490
C LAST CARD OF SUBROUTINE LMDER. LMDR4500
C LMDR4510

END LMDR4520



194



195

SUBROUTINE LMDER1(FCN,M,N,X,FVEC,FJAC,LDFJAC,TOL,INFO,IPVT,WA, LMR10010
* LWA) LMR10020

INTEGER M,N, LDFJAC,INFO, LWA LMR10030
INTEGER IPVT(N) LMR10040
DOUBLE PRECISION TOL LMR10050
DOUBLE PRECISION X(N),FVEC(M),FJAC(LDFJAC,N),WA(LWA) LMR10060
EXTERNAL FCN LMR10070

C LMR 10080
C LMR10090
C SUBROUTINE LMDER1 LMR10100
C LMR10110
C THE PURPOSE OF LMDER1 IS TO MINIMIZE THE SUM OF THE SQUARES OF LMR10120
C M NONLINEAR FUNCTIONS IN N VARIABLES BY A MODIFICATION OF THE LMR10130
C LEVENBERG-MARQUARDT ALGORITHM. THIS IS DONE BY USING THE MORE LMR10140
C GENERAL LEAST-SQUARES SOLVER LMDER. THE USER MUST PROVIDE A LNR10150
C SUBROUTINE WHICH CALCULATES THE FUNCTIONS AND THE JACOBIAN. LMR10160
C LMR10170
C THE SUBROUTINE STATEMENT IS LMR10180
C LMR10190
C SUBROUTINE LMDER1(FCN,M,N,X,FVEC,FJAC,LDFJAC,TOL,INFO, LMR10200
C IPVT,WA, LWA) LMR10210
C LMR10220
C WHERE LMR10230
C LMR10240
C FCN IS THE NAME OF THE USER-SUPPLIED SUBROUTINE WHICH LMR10250
C CALCULATES THE FUNCTIONS AND THE JACOBIAN. FCN MUST LMR10260
C BE DECLARED IN AN EXTERNAL STATEMENT IN THE USER LMR10270
C CALLING PROGRAM, AND SHOULD BE WRITTEN AS FOLLOWS. LMR10280
C LMR10290
C SUBROUTINE FCN(M,N,X,FVEC,FJAC,LDFJAC,IFLAG) LMR10300
C INTEGER M,N,LDFJAC,IFLAG LMR10310
C DOUBLE PRECISION X(N),FVEC(M),FJAC(LDFJAC,N) LMR10320
C ---------- LMR10330
C IF IFLAG = 1 CALCULATE THE FUNCTIONS AT X AND LMR10340
C RETURN THIS VECTOR IN FVEC. DO NOT ALTER FJAC. LMR10350
C IF IFLAG = 2 CALCULATE THE JACOBIAN AT X AND LMR10360
C RETURN THIS MATRIX IN FJAC. DO NOT ALTER FVEC. LMR10370
C ---------- LMR10380
C RETURN LMR10390
C END LMR10400
C LMR10410
C THE VALUE OF IFLAG SHOULD NOT BE CHANGED BY FCN UNLESS LMR10420
C THE USER WANTS TO TERMINATE EXECUTION OF LMDER1. LMR10430
C IN THIS CASE SET IFLAG TO A NEGATIVE INTEGER. LMR10440
C LMR10450
C M IS A POSITIVE INTEGER INPUT VARIABLE SET TO THE NUMBER LMR10460
C OF FUNCTIONS. LMR10470
C LMR10480
C N IS A POSITIVE INTEGER INPUT VARIABLE SET TO THE NUMBER LMR10490
C OF VARIABLES. N MUST NOT EXCEED M. LMR10500
C LMR10510
C X IS AN ARRAY OF LENGTH N. ON INPUT X MUST CONTAIN LMR10520
C AN INITIAL ESTIMATE OF THE SOLUTION VECTOR. ON OUTPUT X LMR10530
C CONTAINS THE FINAL ESTIMATE OF THE SOLUTION VECTOR. LMR10540



196

C LMR10550
C FVEC IS AN OUTPUT ARRAY OF LENGTH M WHICH CONTAINS LMR10560
C THE FUNCTIONS EVALUATED AT THE OUTPUT X. LMR10570
C LMR10580
C FJAC IS AN OUTPUT M BY N ARRAY. THE UPPER N BY N SUBMATRIX LMR10590
C OF FJAC CONTAINS AN UPPER TRIANGULAR MATRIX R WITH LMR10600
C DIAGONAL ELEMENTS OF NONINCREASING MAGNITUDE SUCH THAT LMR10610

LMR10620
C T T T LMR10630
C P *(JAC *JAC)*P = R *R, LMR10640
C LMR10650
C WHERE P IS A PERMUTATION MATRIX AND JAC IS THE FINAL LMR10660
C CALCULATED JACOBIAN. COLUMN J 3F P IS COLUMN IPVT(J) LMR10670
C (SEE BELOW) OF ThE IDENTITY MATRIX. THE LOWER TRAPEZOIDAL LMR10680
U PART OF FJAC CONTAINS INFORMATION GENERATED DURING LMR10690
C THE COMPUTATION OF R. LMR10700
C LMR10710
C LDFJAC IS A POSITIVE INTEGER INPUT VARIABLE NOT LESS THAN M LMR10720
C WHICH SPECIFIES THE LEADING DIMENSION OF THE ARRAY FJAC. LMR10730
C LMR10740
C TOL IS A NONNEGATIVE INPUT VARIABLE. TERMINATION OCCURS LMR10750
C WHEN THE ALGORITHM ESTIMATES EITHER THAT THE RELATIVE LMR10760
C ERROR IN THE SUM OF SQUARES IS AT MOST TOL OR THAT LMR10770
C THE RELATIVE ERROR BETWEEN X AND THE SOLUTION IS AT LMR10780
C MOST TOL. LMR10790
C LMR10800
C INFO IS AN INTEGER OUTPUT VARIABLE. IF THE USER HAS LMR10810
C TERMINATED EXECUTION, INFO IS SET TO THE (NEGATIVE) LMR10820
C VALUE OF IFLAG. SEE DESCRIPTION OF FCN. OTHERWISE, LMR10830
C INFO IS SET AS FOLLOWS. LMR10840
C LMR10850
C INFO = 0 IMPROPER INPUT PARAMETERS. LMR10860
C LMR10870
C INFO = 1 ALGORITHM ESTIMATES THAT THE RELATIVE ERROR LMR10880
C IN THE SUM OF SQUARES IS AT MOST TOL. LMR10890
C LMR10900
C INFO = 2 ALGORITHM ESTIMATES THAT THE RELATIVE ERROR LMR10910
C BETWEEN X AND THE SOLUTION IS AT MOST TOL. LMR10920
C LMR10930
C INFO = 3 CONDITIONS FOR INFO = 1 AND INFO = 2 BOTH HOLD. LMR10940
C LMR10950
C INFO = 4 FVEC IS ORTHOGONAL TO THE COLUMNS OF THE LMR10960
C JACOBIAN TO MACHINE PRECISION. LMR10970
C LMR10980
C INFO = 5 NUMBER OF CALLS TO FCN WITH IFLAG = 1 HAS LMR10990
C REACHED 100*(N+1). LMR11000
C LMR11010
C INFO = 6 TOL IS TOO SMALL. NO FURTHER REDUCTION IN LMR11020
C THE SUM OF SQUARES IS POSSIBLE. LMR11030
C LMR11040
C INFO = 7 TOL IS TOO SMALL. NO FURTHER IMPROVEMENT IN LMR11050
C THE APPROXIMATE SOLUTION X IS POSSIBLE. LMR11060
C LMR11070
C IPVT IS AN INTEGER OUTPUT ARRAY OF LENGTH N. IPVT LMR11080



197

C DEFINES A PERMUTATION MATRIX P SUCH THAT JAC*P = Q*R, LMR11090
C WHERE JAC IS THE FINAL CALCULATED JACOBIAN, Q IS LMR11100
C ORTHOGONAL (NOT STORED), AND R IS UPPER TRIANGULAR LMR11110
C WITH DIAGONAL ELEMENTS OF NONINCREASING MAGNITUDE. LMR11120
C COLUMN J OF P IS COLUMN IPVT(J) OF THE IDENTITY MATRIX. LMR11130
C LMR11140
C WA IS A WORK ARRAY OF LENGTH LWA. LMR11150
C LMR11160
C LWA IS A POSITIVE INTEGER INPUT VARIABLE NOT LESS THAN 5*N+M. LMR11170
C LMR11180
C SUBPROGRAMS CALLED LMR11190
C LMR11200
C USER-SUPPLIED....... FCN LMR11210
C LMR11220
C MINPACK-SUPPLIED ... LMDER LMR11230
C LMR11240
C ARGONNE NATIONAL LABORATORY. MINPACK PROJECT. MARCH 1980. LMR11250
C BURTON S. GARBOW, KENNETH E. HILLSTROM, JORGE J. MORE LMR11260
C LMR11270
C LMR11280

INTEGER MAXFEV,MODE,NFEV,NJEV,NPRINT LMR11290
DOUBLE PRECISION FACTOR,FTOL,GTOL,XTOL,ZERO LMR11300
DATA FACTOR,ZERO /1.0D2,0.ODO/ LMR11310
INFO = 0 LMR11320

C LMR11330
C CHECK THE INPUT PARAMETERS FOR ERRORS. LMR11340
C LMR11350

IF (N .LE. 0 .OR. M .LT. N .OR. LDFJAC .LT. M .OR. TOL .LT. ZERO LMR11360
* .OR. LWA .LT. 5*N + M) GO TO 10 LMR11370

C LMR11380
C CALL LMDER. LMR11390
C LMR11400

MAXFEV = 100*(N + 1) LMR11410
FTOL = TOL LMR11420
XTOL = TOL LMR11430
GTOL = ZERO LMR11440
MODE = 1 L.MR11450
NPRINT = 0 LMR11460
CALL LMDER(FCN,M,N,X,FVEC,FJAC,LDFJAC,FTOL,XTOL,GTOL,MAXFEV, LMR11470

* WA(1),MODE,FACTOR,NPRINT,INFO,NFEV,NJEV,IPVT,WA(N+1), LMR11480
* WA(2*N+1),WA(3*N+1),WA(4*N+1),WA(5*N+1)) LMR11490
IF (INFO .EQ. 8) INFO = 4 LMR11500

10 CONTINUE LMR11510
RETURN LMR11520

C LMR11530
C LAST CARD OF SUBROUTINE LMDER1. LMR11540
C LMR11550

END LMR11560



198



199

SUBROUTINE LMDIF(FCN,M,N,X,FVEC,FTOL,XTOL,GTOL,MAXFEV,EPSFCN, LMDF0010
* DIAG,MODE,FACTOR,NPRINT,INFO,NFEV,FJAC,LDFJAC, LMDF0020
* IPVT,QTF,WA1,WA2,WA3,WA4) LMDF0030
INTEGER M,N,MAXFEV,MODE ,NPRINT, INFO,NFEV, LDFJAC LMDF0040
INTEGER IPVT(N) LMDF0050
DOUBLE PRECISION FTOL,XTOL,GTOL,EPSFCN,FACTOR LMDF0060
DOUBLE PRECISION X(N),FVEC(M),DIAG(N),FJAC(LDFJAC,N),QTF(N), LMDF0070

* WA1(N),WA2(N),WA3(N),WA4(M) LMDF0080

EXTERNAL FCN LMDF0090
C *******.'** LMDFO100
C LMDFO110
C SUBROUTINE LMDIF LMDF0120
C LMDF0130
C THE PURPOSE OF LMDIF IS TO MINIMIZE THE SUM OF THE SQUARES OF LMDF0140
C M NONLINEAR FUNCTIONS IN N VARIABLES BY A MODIFICATION OF LMDFO150
C THE LEVENBERG-MARQUARDT ALGORITHM. THE USER MUST PROVIDE A LMDF0160
C SUBROUTINE WHICH CALCULATES THE FUNCTIONS. THE JACOBIAN IS LMDF0170
C THEN CALCULATED BY A FORWARD-DIFFERENCE APPROXIMATION. LMDF0180
C LMDF0190
C THE SUBROUTINE STATEMENT IS LMDF0200
C LMDF0210
C SUBROUTINE LMDIF(FCN,M,N,X,FVEC,FTOL,XTOL,GTOL,MAXFEV,EPSFCN, LMDF0220
C DIAG,MODE,FACTOR,NPRINT,INFO,NFEV,FJAC, LMDF0230
C LDFJAC,IPVT,QTF,WA1,WA2,WA3,WA4) LMDF0240
C LMDF0250
C WHERE LMDF0260
C LMDF0270
C FCN IS THE NAME OF THE USER-SUPPLIED SUBROUTINE WHICH LMDF0280
C CALCULATES THE FUNCTIONS. FCN MUST BE DECLARED LMDF0290
C IN AN EXTERNAL STATEMENT IN THE USER CALLING LMDF0300
C PROGRAM, AND SHOULD BE WRITTEN AS FOLLOWS. LMDF0310
C LMDF0320
C SUBROUTINE FCN(M,N,X,FVEC,IFLAG) LMDF0330
C INTEGER M,N,IFLAG LMDF0340
C DOUBLE PRECISION X(N),FVEC(M) LMDF0350
C ---------- LMDF0360
C CALCULATE THE FUNCTIONS AT X AND LMDF0370
C RETURN THIS VECTOR IN FVEC. LMDF0380
C ---------- LMDF0390
C RETURN LMDF0400
C END LMDF0410
C LMDF0420
C THE VALUE OF IFLAG SHOULD NOT BE CHANGED BY FCN UNLESS LMDF0430
C THE USER WANTS TO TERMINATE EXECUTION OF LMDIF. LMDF0440
C IN THIS CASE SET IFLAG TO A NEGATIVE INTEGER. LMDF0450
C LMDF0460
C M IS A POSITIVE INTEGER INPUT VARIABLE SET TO THE NUMBER LMDF0470
C OF FUNCTIONS. LMDF0480
C LMDF0490
C N IS A POSITIVE INTEGER INPUT VARIABLE SET TO THE NUMBER LMDFO500
C OF VARIABLES. N MUST NOT EXCEED M. LMDFO510
C LMDF0520
C X IS AN ARRAY OF LENGTH N. ON INPUT X MUST CONTAIN LMDF0530
C AN INITIAL ESTIMATE OF THE SOLUTION VECTOR. ON OUTPUT X LMDF0540



200

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C

CONTAINS THE FINAL ESTIMATE OF THE SOLUTION VECTOR.

FVEC IS AN OUTPUT ARRAY OF LENGTH M WHICH CONTAINS
THE FUNCTIONS EVALUATED AT THE OUTPUT X.

FTOL IS A NONNEGATIVE INPUT VARIABLE. TERMINATION
OCCURS WHEN BOTH THE ACTUAL AND PREDICTED RELATIVE
REDUCTIONS IN THE SUM OF SQUARES ARE AT MOST FTOL.
THEREFORE, FTOL MEASURES THE RELATIVE ERROR DESIRED
IN THE SUM OF SQUARES.

XTOL IS A NONNEGATIVE INPUT VARIABLE. TERMINATION
OCCURS WHEN THE RELATIVE ERROR BETWEEN TWO CONSECUTIVE
ITERATES IS AT MOST XTOL. THEREFORE, XTOL MEASURES THE
RELATIVE ERROR DESIRED IN THE APPROXIMATE SOLUTION.

GTOL IS A NONNEGATIVE INPUT VARIABLE. TERMINATION
OCCJRS WHEN THE COSINE OF THE ANGLE BETWEEN FVEC AND
ANY COLUMN OF THE JACOBIAN IS AT MOST GTOL IN ABSOLUTE
VALUE. THEREFORE, GTOL MEASURES THE ORTHOGONALITY
DESIRED BETWEEN THE FUNCTION VECTOR AND THE COLUMNS
OF THE JACOBIAN.

MAXFEV IS A POSITIVE INTEGER INPUT VARIABLE. TERMINATION
OCCURS WHEN THE NUMBER OF CALLS TO FCN IS AT LEAST
MAXFEV BY THE END OF AN ITERATION.

EPSFCN IS AN INPUT VARIABLE USED IN DETERMINING A SUITABLE
STEP LENGTH FOR THE FORWARD-DIFFERENCE APPROXIMATION. THIS
APPROXIMATION ASSUMES THAT THE RELATIVE ERRORS IN THE
FUNCTIONS ARE OF THE ORDER OF EPSFCN. IF EPSFCN IS LESS
THAN THE MACHINE PRECISION, IT IS ASSUMED THAT THE RELATIVE
ERRORS IN THE FUNCTIONS ARE OF THE ORDER OF THE MACHINE
PRECISION.

DIAG IS AN ARRAY OF LENGTH N. IF MODE = 1 (SEE
BELOW), DIAG IS INTERNALLY SET. IF MODE = 2, DIAG
MUST CONTAIN POSITIVE ENTRIES THAT SERVE AS
MULTIPLICATIVE SCALE FACTORS FOR THE VARIABLES.

MODE IS AN INTEGER INPUT VARIABLE. IF MODE = 1, THE
VARIABLES WILL BE SCALED INTERNALLY. IF MODE = 2,
THE SCALING IS SPECIFIED BY THE INPUT DIAG. OTHER
VALUES OF MODE ARE EQUIVALENT TO MODE = 1.

FACTOR IS A POSITIVE INPUT VARIABLE USED IN DETERMINING THE
INITIAL STEP BOUND. THIS BOUND IS SET TO THE PRODUCT OF
FACTOR AND THE EUCLIDEAN NORM OF DIAG*X IF NONZERO, OR ELSE
TO FACTOR ITSELF. IN MOST CASES FACTOR SHOULD LIE IN THE
INTERVAL (.1,100.). 100. IS A GENERALLY RECOMMENDED VALUE.

NPRINT IS AN INTEGER INPUT VARIABLE THAT ENABLES CONTROLLED
PRINTING OF ITERATES IF IT IS POSITIVE. IN THIS CASE,
FCN IS CALLED WITH IFLAG = 0 AT THE BEGINNING OF THE FIRST

LMDF0550
LMDF0560
LMDF0570
LMDF0580
LMDF0590
LMDF0600
LMDF0610
LMDF0620
LMDF0630
LMDF0640
LMDF0650
LMDF0660
LMDF0670
LMDF0680
LMDF0690
LMDF0700
LMDF0710
LMDF0720
LMDF0730
LMDF0740
LMDF0750
LMDF0760
LMDF0770
LMDF0780
LMDF0790
LMDF0800
LMDF0810
LMDF0820
LMDF0830
LMDF0840
LMDF0850
LMDF0860
LMDF0870
LMDF0880
LMDF0890
LMDF0900
LMDF0910
LMDF0920
LMDF0930
LMDF0940
LMDF0950
LMDF0960
LMDF0970
LMDF0980
LMDF0990
LMDF1000
LMDF1010
LMDF1020
LMDF1030
LMDF1040
LMDF1050
LMDF1060
LMDF1070
LMDF1080



201

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C

ITERATION AND EVERY NPRINT ITERATIONS THEREAFTER AND
IMMEDIATELY PRIOR TO RETURN, WITH X AND FVEC AVAILABLE
FOR PRINTING. IF NPRINT IS NOT POSITIVE, NO SPECIAL CALLS
OF FCN WITH IFLAG = 0 ARE MADE.

INFO IS AN INTEGER OUTPUT VARIABLE. IF THE USER HAS
TERMINATED EXECUTION, INFO IS SET TO THE (NEGATIVE)
VALUE OF IFLAG. SEE DESCRIPTION OF FCN. OTHERWISE,
INFO IS SET AS FOLLOWS.

INFO = 0 IMPROPER INPUT PARAMETERS.

INFO = 1 BOTH ACTUAL AND PREDICTED RELATIVE REDUCTIONS
IN THE SUM OF SQUARES ARE AT MOST FTOL.

INFO = 2 RELATIVE ERROR BETWEEN TWO CONSECUTIVE ITERATES
IS AT MOST XTOL.

INFO = 3 CONDITIONS FOR INFO = 1 AND INFO = 2 BOTH HOLD.

INFO = 4 THE COSINE OF THE ANGLE BETWEEN FVEC AND ANY
COLUMN OF THE JACOBIAN IS AT MOST GTOL IN
ABSOLUTE VALUE.

INFO = 5 NUMBER OF CALLS TO FCN HAS REACHED OR
EXCEEDED MAXFEV.

INFO = 6 FTOL IS TOO SMALL. NO FURTHER REDUCTION IN
THE SUM OF SQUARES IS POSSIBLE.

INFO = 7 XTOL IS TOO SMALL. NO FURTHER IMPROVEMENT IN
THE APPROXIMATE SOLUTION X IS POSSIBLE.

INFO = 8 GTOL IS TOO SMALL. FVEC IS ORTHOGONAL TO THE
COLUMNS OF THE JACOBIAN TO MACHINE PRECISION.

NFEV IS AN INTEGER OUTPUT VARIABLE SET TO THE NUMBER OF
CALLS TO FCN.

FJAC IS AN OUTPUT M BY N ARRAY. THE UPPER N BY N SUBMATRIX
OF FJAC CONTAINS AN UPPER TRIANGULAR MATRIX R WITH
DIAGONAL ELEMENTS OF NONINCREASING MAGNITUDE SUCH THAT

T T T
P *(JAC *JAC)*P = R.*R,

WHERE P IS A PERMUTATION MATRIX AND JAC IS THE FINAL
CALCULATED JACOBIAN. COLUMN J OF P IS COLUMN IPVT(J)
(SEE BELOW) OF THE IDENTITY MATRIX. THE LOWER TRAPEZOIDAL
PART OF FJAC CONTAINS INFORMATION GENERATED DURING
THE COMPUTATION OF R.

LDFJAC IS A POSITIVE INTEGER INPUT VARIABLE NOT LESS THAN M
WHICH SPECIFIES THE LEADING DIMENSION OF THE ARRAY FJAC.

LMDF1090
LMDF1100
LMDF1110
LMDF1120
LMDF1130
LMDF1140
LMDF1150
LMDF1160
LMDF1170
LMDF1180
LMDF1190
LMDF1200
LMDF1210
LMDF1220
LMDF 1230
LMDF1240
LMDF1250
LMDF1260
LMDF1270
LMDF1280
LMDF1290
LMDF1300
LMDF1310
LMDF1320
LMDF1330
LMDF1340
LMDF1350
LMDF1360
LMDF1370
LMDF1380
LMDF1390
LMDF1400
LMDF1410
LMDF1420
LMDF1430
LMDF1440
LMDF1450
LMDF1460
LMDF1470
LMDF1480
LMDF1490
LMDF1500
LMDF1510
LMDF1520
LMDF1530
LMDF1540
LMDF1550
LMDF1560
LMDF1570
LMDF1580
LMDF1590
LMDF1600
LMDF1610
LMDF1620



202

C LMDF1630
C IPVT IS AN INTEGER OUTPUT ARRAY OF LENGTH N. IPVT LMDF1640
C DEFINES A PERMUTATION MATRIX P SUCH THAT JAC*P = Q*R, LMDF1650
C WHERE JAC IS THE FINAL CALCULATED JACOBIAN, Q IS LMDF1660
C ORTHOGONAL (NOT STORED), AND R IS UPPER TRIANGULAR LMDF1670
C WITH DIAGONAL ELEMENTS OF NONINCREASING MAGNITUDE. LMDF1680
C COLUMN J OF P IS COLUMN IPVT(J) OF THE IDENTITY MATRIX. LMDF1690
C LMDF 1700
C QTF IS AN OUTPUT ARRAY OF LENGTH N WHICH CONTAINS LMDF1710
C THE FIRST N ELEMENTS OF THE VECTOR (Q TRANSPOSE)*FVEC. LMDF1720
C LMDF1730
C WA1, WA2, AND WA3 ARE WORK ARRAYS OF LENGTH N. LMDF1740
C LMDF1750
C WA4 IS A WORK ARRAY OF LENGTH M. LMDF1760
C LMDF1770
C SUBPROGRAMS CALLED LMDF1780
C LMDF1790
C USER-SUPPLIED....... FCN LMDF1800
C LMDF1810
C MINPACK-SUPPLIED ... DPMPAR,ENORM,FDJAC2,LMPAR,QRFAC LMDF1820
C LMDF1830
C FORTRAN-SUPPLIED ... DABS,DMAX1,DMIN1,DSQRT,MOD LMDF1840
C LMDF1850
C ARGONNE NATIONAL LABORATORY. MINPACK PROJECT. MARCH 1980. LMDF1860
C BURTON S. GARBOW, KENNETH E. HILLSTROM, JORGE J. MORE LMDF1870
C LMDF1880
C ********* LMDF 1890

INTEGER I,IFLAG,ITER,J,L LMDF1900
DOUBLE PRECISION ACTRED,DELTA,DIRDER,EPSMCH,FNORM,FNORM1,GNORM, LMDF1910

* ONE,PAR,PNORM,PRERED,P1,P5,P25,P75,P0001,RATIO, LMDF1920
* SUM,TEMP,TEMP1,TEMP2.XNORM,ZERO LMDF1930
DOUBLE PRECISION DPMPAR,ENORM LMDF1940
DATA ONE,P1,P5,P25.275,P0001,ZERO LMDF1950

* /1.ODO,1.OD-1,5.0D-1,2.5D-1,7.51-.,1.0D-4, .ODO/ LMDF1960
C LMDF1970
C EPSMCH IS THE MACHINE PRECISION. LMDF1980
C LMDF1990

EPSMCH = DPMPAR(1) LMDF2000
C LMDF2010

INFO = 0 LMDF2020
IFLAG = 0 LMDF2030
NFEV = 0 LMDF2040

C LMDF2050
C CHECK THE INPUT PARAMETERS FOR ERRORS. LMDF2060
C LMDF2070

IF (N .LE. 0 .OR. M .LT. N .OR. LDFJAC .LT. M LMDF2080
* .OR. FTOL .LT. ZERO .OR. XTOL .LT. ZERO .OR. GTOL .LT. ZERO LMDF2090
* .OR. MAXFEV .LE. 0 .OR. FACTOR .LE. ZERO) GO TO 300 LMDF2100

IF (MODE .NE. 2) GO TO 20 LMDF2110
DO 10 J = 1, N LMDF2120

IF (DIAG(J) .LE. ZERO) GO TO 300 LMDF2130
10 CONTINUE LMDF2140
20 CONTINUE LMDF2150

C LMDF2160



203

C EVALUATE THE FUNCTION AT THE STARTING POINT
C AND CALCULATE ITS NORM.
C

IFLAG = 1
CALL FCN(M,N,X,FVEC,IFLAG)
NFEV = 1
IF (IFLAG .LT. 0) GO TO 300
FNORM = ENORM(M,FVEC)

C
C INITIALIZE LEVENBERG-MARQUARDT PARAMETER AND ITERATION COUNTER.
C

PAR = ZERO
ITER = 1

C
C BEGINNING OF THE OUTER LOOP.
C

30 CONTINUE
C
C CALCULATE THE JACOBIAN MATRIX.
C

IFLAG = 2
CALL FDJAC2(FCN,M,N,X,FVEC,FJAC,LDFJAC,IFLAG,EPSFCN,WA4)
NFEV = NFEV + N
IF (IFLAG .LT. 0) GO TO 300

C
C IF REQUESTED, CALL FCN TO ENABLE PRINTING OF ITERATES.
C

IF (NPRINT .LE. 0) GO TO 40
IFLAG = 0
IF (MOD(ITER-1,NPRINT) .EQ. 0) CALL FCN(M,N,X,FVEC,IFLAG)
IF (IFLAG .LT. 0) GO TO 300

40 CONTINUE
C
C COMPUTE THE QR FACTORIZATION OF THE JACOBIAN.
C

CALL QRFAC(M,N,FJAC,LDFJAC,.TRUE.,IPVT,N,WA1,WA2,WA3)
C
C ON THE FIRST ITERATION AND IF MODE IS 1, SCALE ACCORDING
C TO THE NORMS OF THE COLUMNS OF THE INITIAL JACOBIAN.
C

IF (ITER .NE. 1) GO TO 80
IF (MODE .EQ. 2) GO TO 60
DO 50 J = 1, N

DIAG(J) = WA2(J)
IF (WA2(J) .EQ. ZERO) DIAG(J) = ONE

50 CONTINUE
60 CONTINUE

C
C ON THE FIRST ITERATION, CALCULATE THE NORM OF THE SCALED X
C AND INITIALIZE THE STEP BOUND DELTA.
C

DO 70 J = 1, N
WA3(J) = DIAG(J)*X(J)

70 CONTINUE

LMDF2170
LMDF2180
LMDF2190
LMDF2200
LMDF2210
LMDF2220
LMDF2230
LMDF2240
LMDF2250
LMDF2260
LMDF2270
LMDF2280
LMDF2290
LMDF2300
LMDF2310
LMDF2320
LMDF2330
LMDF2340
LMDF2350
LMDF2360
LMDF2370
LMDF2380
LMDF2390
LMDF2400
LMDF2410
LMDF2420
LMDF2430
LMDF2440
LMDF2450
LMDF2460
LMDF2470
LMDF2480
LMDF2490
LMDF2500
LMDF2510
LMDF2520
LMDF2530
LMDF2540
LMDF2550
LMDF2560
LMDF2570
LMDF2580
LMDF2590
LMDF2600
LMDF2610
LMDF2620
LMDF2630
LMDF2640
LMDF2650
LMDF2660
LMDF2670
LMDF2680
LHDF2690
LMDF2700



204

XNORM = ENORM(N,WA3)
DELTA = FACTOR*XNORM
IF (DELTA .EQ. ZERO) DELTA = FACTOR

80 CONTINUE

FORM (Q TRANSPOSE)*FVEC AND STORE THE FIRST N COMPONENTS IN
QTF.

DO 90 I = 1, M
WA4(I) = FVEC(I)

90 CONTINUE
DO 130 J = 1, N

IF (FJAC(J,J) .EQ. ZERO) GO TO 120
SUM = ZERO
DO 100 I = J, M

SUM = SUM + FJAC(I,J)*WA4(I)
100 CONTINUE

TEMP = -SUM/FJAC(J,J)
DO 110 I = J, M

WA4(I) = WA4(I) + FJAC(I,J)*TEMP
110 CONTINUE
120 CONTINUE

FJAC(J,J) = WA1(J)
QTF(J) = WA4(J)

130 CONTINUE

COMPUTE THE NORM OF THE SCALED GRADIENT.

GNORM = ZERO
IF (FNORM .EQ. ZERO) GO TO 170
DO 160 J = 1, N

L = IPVT(J)
IF (WA2(L) .EQ. ZERO) GO TO 150
SUM = ZERO
DO 140 I = 1, J

SUM = SUM + FJAC(I,J)*(QTF(I)/FNORM)
CONTINUE

GNORM = DMAX1(GNORM,DABS(SUM/WA2(L)))
CONTINUE
CONTINUE

CONTINUE

TEST FOR CONVERGENCE OF THE GRADIENT NORM.

140

150
160
170

IF (GNORM .LE. GTOL) INFO = 4
IF (INFO .NE. 0) GO TO 300

RESCALE IF NECESSARY.

IF (MODE .EQ. 2) GO TO 190
DO 180 J = 1, N

DIAG(J) = DMAX1(DIAG(J),WA2(J))
180 CONTINUE
190 CONTINUE

C
C
C
C

C
C
C

LMDF2710
LMDF2720
LMDF2730
LMDF2740
LMDF2750
LMDF2760
LMDF2770
LMDF2780
LMDF2790
LMDF2800
LMDF2810
LMDF2820
LMDF2830
LMDF2840
LMDF2850
LMDF2860
LMDF2870
LMDF2880
LMDF2890
LMDF2900
LMDF2910
LMDF2920
LMDF2930
LMDF2940
LMDF2950
LMDF2960
LMDF2970
LMDF2980
LMDF2990
LMDF3000
LMDF3010
LMDF3020
LMDF3030
LMDF3040
LMDF3050
LMDF3060
LMDF3070
LMDF3080
LMDF3090
LMDF3100
LMDF3110
LMDF3120
LMDF3130
LMDF3140
LMDF3150
LMDF3160
LMDF3170
LMDF3180
LMDF3190
LMDF3200
LMDF3210
LMDF3220
LMDF3230
LMDF3240

C
C
C

C
C
C



205

C LMDF3250
C BEGINNING OF THE INNER LOOP. LMDF3260
C LMDF3270

200 CONTINUE LMDF3280
C LMDF3290
C DETERMINE THE LEVENBERG-MARQUARDT PARAMETER. LMDF3300
C LMDF3310

CALL LMPAR(N,FJAC,LDFJAC,IPVT,DIAG,QTF,DELTA,PAR,WA1,WA2, LMDF3320
* WA3,WA4) LMDF3330

C LMDF3340
C STORE THE DIRECTION P AND X + P. CALCULATE THE NORM OF P. LMDF3350
C LMDF3360

DO 210 J = 1, N LMDF3370
WA1(J) = -WA1(J) LMDF3380
WA2(J) = X(J) + WA1(J) LMDF3390
WA3(J) = DIAG(J)*WA1(J) LMDF3400

210 CONTINUE LMDF3410
PNORM = ENORM(N,WA3) LMDF3420

C LMDF3430
C ON THE FIRST ITERATION, ADJUST THE INITIAL STEP BOUND. LMDF3440
C LMDF3450

IF (ITER .EQ. 1) DELTA = DMIN1(DELTA,PNORM) LMDF3460
C LMDF3470
C EVALUATE THE FUNCTION AT X + P AND CALCULATE ITS NORM. LMDF3480
C LMDF3490

IFLAG = 1 LMDF3500
CALL FCN(M,N,WA2,WA4,IFLAG) LMDF3510
NFEV = NFEV + 1 LMDF3520
IF (IFLAG .LT. 0) GO TO 300 LMDF3530
FNORM1 = ENORM(M,WA4) LMDF3540

C LMDF3550
C COMPUTE THE SCALED ACTUAL REDUCTION. LMDF3560
C LMDF3570

ACTRED = -ONE LMDF3580
IF (P1*FNORM1 .LT. FNORM) ACTRED = ONE - (FNORM1/FNORM)**2 LMDF3590

C LMDF3600
C COMPUTE THE SCALED PREDICTED REDUCTION AND LMDF3610
C THE SCALED DIRECTIONAL DERIVATIVE. LMDF3620
C LMDF3630

DO 230 J = 1, N LMDF3640
WA3(J) = ZERO LMDF3650
L = IPVT(J) LMDF3660
TEMP = WA1(L) LMDF3670
DO 220 I = 1, J LMDF3680

WA3(I) = WA3(I) + FJAC(I,J)*TEMP LMDF3690
220 CONTINUE LMDF3700
230 CONTINUE LMDF3710

TEMP1 = ENORM(N,WA3)/FNORM LMDF3720
TEMP2 = (DSQRT(PAR)*PNORM)/FNORM LMDF3730
PRERED = TEMP1**2 + TEMP2**2/P5 LMDF3740
DIRDER = -(TEMP1**2 + TEMP2**2) LMDF3750

C LMDF3760
C COMPUTE THE RATIO OF THE ACTUAL TO THE PREDICTED LMDF3770
C REDUCTION. LMDF3780



206

C

C
C
C

RATIO = ZERO
IF (PRERED .NE. ZERO) RATIO = ACTRED/PRERED

UPDATE THE STEP BOUND.

IF (RATIO .GT. P25) GO TO 240
IF (ACTRED .GE. ZERO) TEMP = P5
IF (ACTRED .LT. ZERO)

TEMP = P5*DIRDER/(DIRDER + P5*ACTRED)
IF (P1*FNORM1 .GE. FNORM .OR. TEMP .LT.
DELTA = TEMP*DMIN1 (DELTA,PNORM/P1)
PAR = PAR/TEMP
GO TO 260

CONTINUE
IF (PAR .NE. ZERO .AND. RATIO .LT. P75)
DELTA = PNORM/P5
PAR = P5*PAR
CONTINUE

CONTINUE

GO TO 250

TEST FOR SUCCESSFUL ITERATION.

IF (RATIO .LT. P0001) GO TO 290

SUCCESSFUL ITERATION. UPDATE X, FVEC, AND THEIR NORMS.

DO 270 J = 1, N
X(J) = WA2(J)
WA2(J) = DIAG(J)*X(J)
CONTINUE

DO 280 I = 1, M
.'EC(I) = WA4(I)

CONTINUE
XNORM = ENORM(N,WA2)
FNORM = FNORM1
ITER = ITER + 1
CONTINUE

TESTS FOR CONVERGENCE.

IF (DABS(ACTRED) .LE. FTOL .AND. PRERED .LE. FTOL
.AND. P5*RATIO .LE. ONE) INFO = 1

IF (DELTA .LE. XTOL*XNORM) INFO = 2
IF (DABS(ACTRED) .LE. FTOL .AND. PRERED .LE. FTOL

.AND. P5*RATIO .LE. ONE .AND. INFO .EQ. 2) INFO = 3
IF (INFO .NE. 0) GO TO 300

TESTS FOR TERMINATION AND STRINGENT TOLERANCES.

IF (NFEV .GE. MAXFEV) INFO = 5
IF (DABS(ACTRED) .LE. EPSMCH .AND. PRERED .LE. EPSMCH

.AND. P5*RATIO .LE. ONE) INFO = 6
IF (DELTA .LE. EPSMCH*XNORM) INFO = 7

P1) TEMP = P1

240

250
260

LMDF3790
LMDF3800
LMDF3810
LMDF3820
LMDF3830
LMDF3840
LMDF3850
LMDF3860
LMDF3870
LMDF3880
LMDF3890
LMDF3900
LMDF3910
LMDF3920
LMDF3930
LMDF3940
LMDF3950
LMDF3960
LMDF3970
LMDF3980
LMDF3990
LMDF4000
LMDF4010
LMDF4020
LMDF4030
LMDF4040
LMDF4050
LMDF4060
LMDF4070
LMDF4080
LMDF4090
LMDF4100
LMDF4110
LMDF4120
LMDF4130
LMDF4140
LMDF4150
LMDF4160
LMDF4170
LMDF4180
LMDF4190
LMDF4200
LMDF4210
LMDF4220
LMDF4230
LMDF4240
LMDF4250
LMDF4260
LMDF4270
LMDF4280
LMDF4290
LMDF4300
LMDF4310
LMDF4320

C
C
C

C
C
C

270

280

290
C
C
C

*

*

C
C
C

*



207

IF (GNORM .LE. EPSMCH) INFO = 8 LMDF4330
IF (INFO .NE. 0) GO TO 300 LMDF4340

C LMDF4350
C END OF THE INNER LOOP. REPEAT IF ITERATION UNSUCCESSFUL. LMDF4360
C LMDF4370

IF (RATIO .LT. P0001) GO TO 200 LMDF4380
C LMDF4390
C END OF THE OUTER LOOP. LMDF4400
C LMDF4410

GO TO 30 LMDF4420
300 CONTINUE LMDF4430

C LMDF4440
C TERMINATION, EITHER NORMAL OR USER IMPOSED. LMDF4450
C LMDF4460

IF (I T AG .LT. 0) INFO = IFLAG LMDF4470
IFLAG LMDF4480
IF (NPI u. 'T. 0) CALL FCN(M,N,X,FVEC,IFLAG) LMDF4490
RETURN LMDF4500

C LMDF4510
C LAST CARD OF SUBROUTINE LMDIF. LMDF4520
C LMDF4530

END LMDF4540



208



209

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C

SUBROUTINE LMDIF1(FCN,M,N,X,FVEC,TOL,INFO,IWA,WA,LWA)
INTEGER M,N,INFO,LWA
INTEGER IWA(N)
DOUBLE PRECISION TOL
DOUBLE PRECISION X(N),FVEC(M),WA(LWA)
EXTERNAL FCN

SUBROUTINE LMDIF1

THE PURPOSE OF LMDIF1 IS TO MINIMIZE THE SUM OF THE SQUARES OF
M NONLINEAR FUNCTIONS IN N VARIABLES BY A MODIFICATION OF THE
LEVENBERG-MARQUARDT ALGORITHM. THIS IS DONE BY USING THE MORE
GENERAL LEAST-SQUARES SOLVER LMDIF. THE USER MUST PROVIDE A
SUBROUTINE WHICH CALCULATES THE FUNCTIONS. THE JACOBIAN IS
THEN CALCULATED BY A FORWARD-DIFFERENCE APPROXIMATION.

THE SUBROUTINE STATEMENT IS

SUBROUTINE LMDIF1(FCN,M,N,X,FVEC,TOL,INFO,IWA,WA,LWA)

WHERE

FCN IS THE NAME OF THE USER-SUPPLIED SUBROUTINE WHICH
CALCULATES THE FUNCTIONS. FCN MUST BE DECLARED
IN AN EXTERNAL STATEMENT IN THE USER CALLING
PROGRAM, AND SHOULD BE WRITTEN AS FOLLOWS.

SUBROUTINE FCN(M,N,X,FVEC,IFLAG)
INTEGER M,N,IFLAG
DOUBLE PRECISION X(N),FVEC(M)

CALCULATE THE FUNCTIONS AT X AND
RETURN THIS VECTOR IN FVEC.
----------

RETURN
END

THE VALUE OF IFLAG SHOULD NOT BE CHANGED BY FCN UNLESS
THE USER WANTS TO TERMINATE EXECUTION OF LMDIF1.
IN THIS CASE SET IFLAG TO A NEGATIVE INTEGER.

M 1 A POSITIVE INTEGER INPUT VARIABLE SET TO THE NUMBER
OF FUNCTIONS.

N IS A POSITIVE INTEGER INPUT VARIABLE SET TO THE NUMBER
OF VARIABLES. N MUST NOT EXCEED M.

X IS AN ARRAY OF LENGTH N. ON INPUT X MUST CONTAIN
AN INITIAL ESTIMATE OF THE SOLUTION VECTOR. ON OUTPUT X
CONTAINS THE FINAL ESTIMATE OF THE SOLUTION VECTOR.

FVEC IS AN OUTPUT ARRAY OF LENGTH M WHICH CONTAINS
THE FUNCTIONS EVALUATED AT THE OUTPUT X.

LMF10010
LMF10020
LMF10030
LMF10040
LMF10050
LMF10060
LMF10070
LMF10080
LMF10090
LMF10100
LMF10110
LMF10120
LMF10130
LM?10140
LMF10150
LMF10160
LMF10170
LMF10180
LMF10190
LMF10200
LMF10210
LMF10220
LMF10230
LMF10240
LMF10250
LMF10260
LMF10270
LMF10280
LMF10290
LMF10300
LMF10310
LMF10320
LMF10330
LMF10340
LMF10350
LMF10360
LMF10370
LMF10380
LMF10390
LMF10400
LMF10410
LMF10420
LMF10430
LMF10440
LMF10450
LMF10460
LMF10470
LMF10480
LMF10490
LMF10500
LMF10510
LMF10520
LMF10530
LMF10540



210

C LMF105S0
C TOL IS A NONNEGATIVE INPUT VARIABLE. TERMINATION OCCURS LMF10560
C WHEN THE ALGORITHM ESTIMATES EITHER THAT THE RELATIVE LMF10570
C ERROR IN THE SUM OF SQUARES IS AT MOST TOL OR THAT LMF10580
C THE RELATIVE ERROR BETWEEN X AND THE SOLUTION IS AT LMF10590
C MOST TOL. LMF10600
C LMF10610
C INFO IS AN INTEGER OUTPUT VARIABLE. IF THE USER HAS LMF10620
C TERMINATED EXECUTION, INFO IS SET TO THE (NEGATIVE) LMF10630
C VALUE OF IFLAG. SEE DESCRIPTION OF FCN. OTHERWISE, LMF10640
C INFO IS SET AS FOLLOWS. LMF10650
C LMF10660
C INFO = 0 IMPROPER INPUT PARAMETERS. LMF10670
C LMF10680
C INFO = 1 ALGORITHM ESTIMATES THAT THE RELATIVE ERROR LMF10690
C IN THE SUM OF SQUARES IS AT MOST TOL. LMF10700
C LMF10710
C INFO = 2 ALGORITHM ESTIMATES THAT THE RELATIVE ERROR LMF10720
C BETWEEN X AND THE SOLUTION IS AT MOST TOL. LMF10730
C LMF10740
C INFO = 3 CONDITIONS FOR INFO = 1 AND INFO = 2 BOTH HOLD. LMF10750
C LMF10760
C INFO = 4 FVEC IS ORTHOGONAL TO THE COLUMNS OF THE LMF10770
C JACOBIAN TO MACHINE PRECISION. LMF10780
C LMF10790
C INFO = 5 NUMBER OF CALLS TO FCN HAS REACHED OR LMF10800
C EXCEEDED 200*(N+1). LMF10810
C LMF10820
C INFO = 6 TOL IS TOO SMALL. NO FURTHER REDUCTION IN LMF10830
C THE SUM OF SQUARES IS POSSIBLE. LMF10840
C LMF10850
C INFO = 7 TOL IS TOO SMALL. NO FURTHER IMPROVEMENT IN LMF10860
C THE APPROXIMATE SOLUTION X IS POSSIBLE. LMF10870
C LMF10880
C IWA IS AN INTEGER WORK ARRAY OF LENGTH N. LMF10890
C LMF10900
C WA IS A WORK ARRAY OF LENGTH LWA. LMF10910
C LMF10920
C LWA IS A POSITIVE INTEGER INPUT VARIABLE NOT LESS THAN LMF10930
C M*N+5*N+M. LMF10940
C LMF10950
C SUBPROGRAMS CALLED LMF10960
C LMF10970
C USER-SUPPLIED....... FCN LMF10980
C LMF10990
C MINPACK-SUPPLIED ... LMDIF LMF11000
C LMF11010
C ARGONNE NATIONAL LABORATORY. MINPACK PROJECT. MARCH 1980. LMF11020
C BURTON S. GARBOW, KENNETH E. HILLSTROM, JORGE J. MORE LMF11030
C LMF11040
C LMF11050

INTEGER MAXFEV,MODE,MP5N,NFEV,NPRINT LMF11060
DOUBLE PRECISION EPSFCN,FACTOR,FTOL,GTOL,XTOL,ZERO LMF11070
DATA FACTOR,ZERO /1.0D2,O.ODO/ LMF11080



211

INFO = 0 LMF11090
C LMF11100
C CHECK THE INPUT PARAMETERS FOR ERRORS. LMF11110
C LMF11120

IF (N .LE. 0 .OR. M .LT. N .OR. TOL .LT. ZERO LMF11130
* .OR. LWA .LT. M*N + 5*N + M) GO TO 10 LMF11140

C LMF11150
C CALL LMDIF. LMF11160
C LMF11170

MAXFEV = 200*(N + 1) LMF11180
FTOL = TOL LMF11190
XTOL = TOL LMF11200
GTOL = ZERO LMF11210
EPSFCN = ZERO LMF11220
MODE = 1 LMF11230
NPRINT = 0 LMF11240
MP5N = M 5*N LMF11250
CALL LMDIF(FCN,M,N,X,FVEC,FTOL,XTOL,GTOL,MAXFEV,EPSFCN,WA(1), LMF11260

* MODE,FACTOR,NPRINT,INFO,NFEV,WA(MP5N+1),M,IWA, LMF11270
* WA(N+1),WA(2*N+1),WA(3*N+1),WA(4*N+1),WA(5*N+1)) LMF11280
IF (INFO .EQ. 8) INFO = 4 LMF11290

10 CONTINUE LMF11300
RETURN LMF11310

C LMF11320
C LAST CARD OF SUBROUTINE LMDIF1. LMF11330
C LMF11340

END LMF11350



212



213

SUBROUTINE LMPAR(N,R,LDR,IPVT,DIAG,QTB,DELTA,PAR,X,SDIAG,WA1, LMPROO10
* WA2) LMPR0020
INTEGER N,LDR LMPR0030
INTEGER IPVT(N) LMPR0040
DOUBLE PRECISION DELTA,PAR LMPR0050
DOUBLE PRECISION R(LDR,N),DIAG(N),QTB(N),X(N),SDIAG(N),WA1(N), LMPR0060

* WA2(N) LMPR0070
C ********** LMPR0080

C LMPR0090
C SUBROUTINE LMPAR LMPRO100
C LMPRO110
C GIVEN AN M BY N MATRIX A, AN N BY N NONSINGULAR DIAGONAL LMPRO120
C MATRIX D, AN M-VECTOR B, AND A POSITIVE NUMBER DELTA, LMPRO130
C THE PROBLEM IS TO DETERMINE A VALUE FOR THE PARAMETER LMPRO140
C PAR SUCH THAT IF X SOLVES THE SYSTEM LMPRO150
C LMPRO160
C A*X = B , SQRT(PAR)*D*X = 0 , LMPRO170
C LMPRO180
C IN THE LEAST SQUARES SENSE, AND DXNORM IS THE EUCLIDEAN LMPRO190
C NORM OF D*X, THEN EITHER PAR IS ZERO AND LMPR0200
C LMPRO210
C (DXNORM-DELTA) .LE. 0.1*DELTA , LMPR0220
C LMPR0230
C OR PAR IS POSITIVE AND LMPR0240
C LMPR0250
C ABS(DXNORM-DELTA) .LE. 0.1*DELTA . LMPR0260
C LMPR0270
C THIS SUBROUTINE COMPLETES THE SOLUTION OF THE PROBLEM LMPR0280
C IF IT IS PROVIDED WITH THE NECESSARY INFORMATION FROM THE LMPR0290
C QR FACTORIZATION, WITH COLUMN PIVOTING, OF A. THAT IS, IF LMPRO300
C A*P = Q*R, WHERE P IS A PERMUTATION MATRIX, Q HAS ORTHOGONAL LMPR0310
C COLUMNS, AND R IS AN UPPER TRIANGULAR MATRIX WITH DIAGONAL LMPR0320
C ELEMENTS OF NONINCREASING MAGNITUDE, THEN LMPAR EXPECTS LMPR0330
C THE FULL UPPER TRIANGLE OF R, THE PERMUTATION MATRIX P, LMPR0340
C AND THE FIRST N COMPONENTS OF (Q TRANSPOSE)*B. ON OUTPUT LMPR0350
C LMPAR ALSO PROVIDES AN UPPER TRIANGULAR MATRIX S SUCH THAT LMPRO360
C LMPR0370
C T T T LMPR0380
C P *(A *A + PAR*D*D)*P = S *S . LMPR0390
C LMPR0400
C S IS EMPLOYED WITHIN LMPAR AND MAY BE OF SEPARATE INTEREST. LMPRO410
C LMPRO420
C ONLY A FEW ITERATIONS ARE GENERALLY NEEDED FOR CONVERGENCE LMPR0430
C OF THE ALGORITHM. IF, HOWEVER, THE LIMIT OF 10 ITERATIONS LMPRO440
C IS REACHED, THEN THE OUTPUT PAR WILL CONTAIN THE BEST LMPR0450
C VALUE OBTAINED SO FAR. LMPRO460
C LMPR0470
C THE SUBROUTINE STATEMENT IS LMPR0480
C LMPR0490
C SUBROUTINE LMPAR(N,R,LDR,IPVT,DIAG,QTB,DELTA,PAR,X,SDIAG, LMPRO500
C WA1,WA2) LMPR0510
C LMPRO520
C WHERE LMPRO530
C LMPRO540



214

C N IS A POSITIVE INTEGER INPUT VARIABLE SET TO THE ORDER OF R.
C
C R IS AN N BY N ARRAY. ON INPUT THE FULL UPPER TRIANGLE
C MUST CONTAIN THE FULL UPPER TRIANGLE OF THE MATRIX R.
C ON OUTPUT THE FULL UPPER TRIANGLE IS UNALTERED, AND THE
C STRICT LOWER TRIANGLE CONTAINS THE STRICT UPPER TRIANGLE
C (TRANSPOSED) OF THE UPPER TRIANGULAR MATRIX S.
C
C LDR IS A POSITIVE INTEGER INPUT VARIABLE NOT LESS THAN N
C WHICH SPECIFIES THE LEADING DIMENSION OF THE ARRAY R.
C
C IPVT IS AN INTEGER INPUT ARRAY OF LENGTH N WHICH DEFINES THE
C PERMUTATION MATRIX P SUCH THAT A*P = Q*R. COLUMN J OF P
C IS COLUMN IPVT(J) OF THE IDENTITY MATRIX.
C
C DIAG IS AN INPUT ARRAY OF LENGTH N WHICH MUST CONTAIN THE
C DIAGONAL ELEMENTS OF THE MATRIX D.
C
C QTB IS AN INPUT ARRAY OF LENGTH N WHICH MUST CONTAIN THE FIRST
C N ELEMENTS OF THE VECTOR (Q TRANSPOSE)*B.
C
C DELTA IS A POSITIVE INPUT VARIABLE WHICH SPECIFIES AN UPPER
C BOUND ON THE EUCLIDEAN NORM OF D*X.
C
C PAR IS A NONNEGATIVE VARIABLE. ON INPUT PAR CONTAINS AN
C INITIAL ESTIMATE OF THE LEVENBERG-MARQUARDT PARAMETER.
C ON OUTPUT PAR CONTAINS THE FINAL ESTIMATE.
C
C X IS AN OUTPUT ARRAY OF _.ENGTH N WHICH CONTAINS THE LEAST
C SQUARES SOLUTION OF THE SYSTEM A*X = B, SQRT(PAR)*D*X = 0,
C FOR THE OUTPUT PAR.
C
C SD1AG IS AN OUTPUT ARRAY OF LENGTH N WHICH CONTAINS THE
C DIAGONAL ELEMENTS OF THE UPPER TRIANGULAR MATRIX S.
C
C WA1 AND WA2 ARE WORK ARRAYS OF LENGTH N.
C
C SUBPROGRAMS CALLED
C
C MINPACK-SUPPLIED ... DPMPAR ,ENORM,QRSOLV
C
C FORTRAN-SUPPLIED ... DABS,DMAX1,DMIN1,DSQRT
C
C ARGONNE NATIONAL LABORATORY. MINPACK PROJECT. MARCH 1980.
C BURTON S. GARBOW, KENNETH E. HILLSTROM, JORGE J. MORE
C
C **********

INTEGER I, ITER,J,JM1,JP1,K,L,NSING
DOUBLE PRECISION DXNORM,DWARF,FP,GNORM,PARC,PARL,PARU,P1,P001,

* SUM,TEMP,ZERO
DOUBLE PRECISION DPMPARENORM
DATA P1,PO01,ZERO /1.OD-1,1.0D-3,O.ODO/

DWARF IS THE SMALLEST POSITIVE MAGNITUDE.
C
C

LMPR0550
LMPRO560
LMPR0570
LMPR0580
LMPRO590
LMPR0600
LMPR0610
LMPR0620
LMPR0630
LMPR0640
LMPRO650
LMPRO660
LMPR0670
LMPRO680
LMPR0690
LMPR0700
LMPR0710
LMPR0720
LMPRO730
LMPR0740
LMPR0750
LMPR0760
LMPR0770
LMPR0780
LMPR0790
LMPR0800
LMPR0810
LMPRO820
LMPR0830
LMPRO840
LMPRO850
LMPR0860
LMPRO870
LMPRO880
LMPRO890
LMPR0900
LMPR0910
LMPR0920
LMPR0930
LMPR0940
LMPR0950
LMPR0960
LMPR0970
LMPR0980
LMPR0990
LMPR1000
LMPR1010
LMPR1020
LMPR1030
LMPR1040
LMPR1050
LMPR1060
LMPR1070
LMPR1080



215

DWARF = DPMPAR(2)

COMPUTE AND STORE IN X THE GAUSS-NEWTON DIRECTION. IF THE
JACOBIAN IS RANK-DEFICIENT, OBTAIN A LEAST SQUARES SOLUTION.

C

C
C
C
C

C
C
C
C
C

C
C
C
C
C

SING = J - 1

INITIALIZE THE ITERATION COUNTER.
EVALUATE THE FUNCTION AT THE ORIGIN, AND TEST
FOR ACCEPTANCE OF THE GAUSS-NEWTON DIRECTION.

ITER = 0
DO 70 J = 1, N

WA2(J) DIAG(J)*X(J)
70 CONTINUE

DXNORM * ENORM(N,WA2)
FP s DXNORM - DELTA
IF (FP .LE. P1*DELTA) GO TO 220

IF THE JACOBIAN IS NOT RANK DEFICIENT, THE NEWTON
STEP PROVIDES A LOWER BOUND, PARL, FOR THE ZERO OF
THE FUNCTION. OTHERWISE SET THIS BOUND "O ZERO.

PARL * ZERO
IF SINGG .LT. N) GO TO 120
DO 80 J * 1, N

L * IPVT(J)
WA1(J) * DIAG(L)*(WA2(L)/DXNORM)

80 CONTINUE
DO 110 J * 1, N

SUM * ZERO

NSING = N
DO 10 J = 1, N

WA1(J) = QTB(J)
IF (R(J,J) .EQ. ZERO .AND. NSING .EQ. N)
IF (NSING .LT. N) WA1(J) = ZERO

10 CONTINUE
IF SINGG .LT. 1) GO TO 50
DO 40 K = 1, NSING

J = SING - K + 1
WA1(J) = WA1(J)/R(J,J)
TEMP = WA1(J)
JM1 = J - 1
IF (JM1 .LT. 1) GO TO 30
DO 20 I = 1, JM1

WA1(I) = WA1(I) - R(I,J)*TEMP
20 CONTINUE
30 CONTINUE
40 CONTINUE
50 CONTINUE

DO 60 J = 1, N
L = IPVT(J)
X(L) = WA1(J)

60 CONTINUE

LMPR1090
LMPR1100
LMPR1110
LMPR1120
LMPR1130
LMPR 1140
LMPR1150
LMPR1160
LMPR1170
LMPR1180
LMPR1190
LMPR1200
LMPR1210
LMPR1220
LMPR1230
LMPR1240
LMPR1250
LMPR1260
LMPR1270
LMPR1280
LMPR1290
LMPR1300
LMPR1310
LMPR1320
LMPR1330
LMPR1340
LMPR1350
LMPR1360
LMPR137C
LMPR1380
LMPR1390
LMPR1400
LMPR1410
LMPR1420
LMPR1430
LMPR1440
LMPR1450
LMPR1460
LMPR1470
LMPR1480
LMPR1490
LMPR1500
LMPR1510
LMPR1520
LMPR1530
LMPR1540
LMPR1550
LMPR1560
LMPR1570
LMPR1580
LMPR1590
LMPR1600
LMPR1610
LMPR1620



216

JM1 = J - 1 LMPR1630
IF (JM1 .LT. 1) GO TO 100 LMPR1640
DO 90 I = 1, JM1 LMPR1650

SUM = SUM + R(I,J)*WA1(I) LMPR1660
90 CONTINUE LMPR1670
100 CONTINUE LMPR1680

WA1(J) = (4A1(J) - SUM)/R(J,J) LMPR1690
110 CONTINUE LMPR1700

TEMP = ENORM(N,WA1) LMPR1710
PARL = ((FP/DELTA)/TEMP)/TEMP LMPR1720

120 CONTINUE LMPR1730
C LMPR1740
C CALCULATE AN UPPER BOUND, PARU, FOR THE ZERO OF THE FUNCTION. LMPR1750
C LMPR1760

DO 140 J = 1, N LMPR1770
SUM = ZERO LMPR1780
DO 130 I = 1, J LMPR1790

SUM = SUM + R(I,J)*QTB(I) LMPR1800
130 CONTINUE LMPR1810

L = IPVT(J) LMPR1820
WA1(J) = SUM/DIAG(L) LMPR1830

140 CONTINUE LMPR1840
GNORM = ENORM(N,WA1) LMPR1850
PARU = GNORM/DELTA LMPR1860
IF (PARU .EQ. ZERO) PARU = DWARF/DMIN1(DELTA,P1) LMPR1870

C LMPR1880
C IF THE INPUT PAR LIES OUTSIDE OF THE INTERVAL (PARL,PARU), LMPR1890
C SET PAR TO THE CLOSER ENDPOINT. T MPR1900
C ,MPR1910

PAR = DMAX1(PAR,PARL) LMPR1920
PAR = DMIN1(PAR,PARU) LMPR1930
IF (PAR .EQ. ZERO) PAR = GNORM/DXNORM LMPR1940

C LMPR1950
C BEGINNING OF AN ITERATION. LMPR1960
C LMPR1970

150 CONTINUE LMPR1980
ITER = ITER + 1 LMPR1990

C LMPR2000
C EVALUATE THE FUNCTION AT THE CURRENT VALUE OF PAR. LMPR2010
C LMPR2020

IF (PAR .EQ. ZERO) PAR = DMAX1(DWARF,P001*PARU) LMPR2030
TEMP = DSQRT(PAR) LMPR2040
DO 160 J - 1, N LMPR2050

WA1(J) = TEMP*DIAG(J) LMPR2060
160 CONTINUE LMPR2070

CALL QRSOLV(N,R,LDR,IPVT,WA1,QTB,X,SDIAG,WA2) LMPR2080
DO 170 J = 1, N LMPR2090

WA2(J) DIAG(J)*X(J) LMPR2100
170 CONTINUE LMPR2110

DXNORM ENORM(NWA2) LMPR2120
TEMP s FP LMPR2130
FP - DXNORM - DELTA LMPR2140

C LMPR2150
C IF THE FUNCTION IS SMALL ENOUGH, ACCEPT THE CURRENT VALUE LMPR2160



217

C OF PAR. ALSO TEST FOR THE EXCEPTIONAL CASES WHERE PARL LMPR2170
C IS ZERO OR THE NUMBER OF ITERATIONS HAS REACHED 10. LMPR2180
C LMPR2190

IF (DABS(FP) .LE. P1*DELTA LMPR2200
* .OR. PARL .EQ. ZERO .AND. FP .LE. TEMP LMPR2210
* .AND. TEMP .LT. ZERO .OR. ITER .EQ. 10) GO TO 220 LMPR2220

C LMPR2230
C COMPUTE THE NEWTON CORRECTION. LMPR2240
C LMPR2250

DO 180 J = 1, N LMPR2260
L = IPVT(J) LMPR2270
WA1(J) = DIAG(L)*(WA2(L)/DXNORM) LMPR2280

180 CONTINUE LMPR2290
DO 210 J = 1, N LMPR2300

WA1(J) = WA1(J)/SDIAG(J) LMPR2310
TEMP = WA1(J) LMPR2320
JP1 = J + 1 LMPR2330
IF (N .LT. JF1) GO TO 200 LMPR2340
DO 190 I = JP1, N LMPR2350

WA1(I) = WA1(I) - R(I,J)*TEMP LMPR2360
190 CONTINUE LMPR2370
200 CONTINUE LMPR2380
210 CONTINUE LMPR2390

TEMP = ENORM(N,WA1) LMPR2400
PARC = ((FP/DELTA)/TEMP)/TEMP LMPR2410

C LMPR2420
C DEPENDING ON THE SIGN OF THE FUNCTION, UPDATE PARL OR PARU. LMPR2430
C LMPR2440

IF (FP .GT. ZERO) PARL = DMAX1(PARL,PAR) LMPR2450
IF (FP .LT. ZERO) PARU = DMIN1(PARU,PAR) LMPR2460

C LMPR2470
C COMPUTE AN IMPROVED ESTIMATE FOR PAR. LMPR2480
C LMPR2490

PAR = DMAX1(PARLPAR+PARC) LMPR2500
C LMPR2510
C END OF AN ITERATION. LMPR2520
C LMPR2530

GO TO 150 LMPR2540
220 CONTINUE LMPR2550

C LMPR2560
C TERMINATION. LMPR2370
C LMPR2580

IF (ITER .EQ. 0) PAR - ZERO LMPR2590
RETURN LMPR2600

C LMPR2610
C LAST CARD OF SUBROUTINE LMPAR. LMPR2620
C LMPR2630

END LMPR2640



218



219

SUBROUTINE LMSTR(FCN,M,N,X,FVEC,FJAC,LDFJAC,FTOL,XTOL,GTOL,
* MAXFEV,DIAG,MODE,FACTOR,NPRINT,INFO,NFEV,NJEV,
* IPVT,QTF,WA1,WA2,WA3,WA4)
INTEGER M,N,LDFJAC,MAXFEV,MODE,NPRINT,INFO,NFEV,NJEV
INTEGER IPVT(N)
LOGICAL SING
DOUBLE PRECISION FTOL,XTOL,GTOL,FACTOR
DOUBLE PRECISION X(N),FVEC(M),FJAC(LDFJAC,N),DIAG(N),QTF(N),

* WA1(N),WA2(N),WA3(N),WA4(M)
C ********
C
C SUBROUTINE LMSTR
C
C THE PURPOSE OF LMSTR IS TO MINIMIZE THE SUM OF THE SQUARES OF
C M NONLINEAR FUNCTIONS IN N VARIABLES BY A MODIFICATION OF
C THE LEVENBERG-MARQUARDT ALGORITHM WHICH USES MINIMAL STORAGE.
C THE USER MUST PROVIDE A SUBROUTINE WHICH CALCULATES THE
C FUNCTIONS AND THE ROWS OF THE JACOBIAN.
C
C THE SUBROUTINE STATEMENT IS
C
C SUBROUTINE LMSTR(FCN M,N,X,FVEC,FJAC,LDFJAC,FTOL,XTOL,GTOL,
C MAXFEV,DIAG,MODE,FACTOR,NPRINT,INFO,NFEV,
C NJEV,IPVT,QTF,WA1,WA2,WA3,WA4)
C
C WHERE
C
C FCN IS THE NAME OF THE USER-SUPPLIED SUBROUTINE WHICH
C CALCULATES THE FUNCTIONS AND THE ROWS OF THE JACOBIAN.
C FCN MUST BE DECLARED IN AN EXTERNAL STATEMENT IN THE
C USER CALLING PROGRAM, AND SHOULD BE WRITTEN AS FOLLOWS.
C
C SUBROUTINE FCN(M,N,X,FVEC,FJROW,IFLAG)
C INTEGER M,N,IFLAG
C DOUBLE PRECISION X(N),FVEC(M),FJROW(N)
C ----------
C IF IFLAG = 1 CALCULATE THE FUNCTIONS Af X AND
C RETURN THIS VECTOR IN FVEC.
C IF IFLAG = I CALCULATE THE (I-1)-ST ROW OF THE
C JACOBIAN AT X AND RETURN THIS VECTOR IN FJROW.
C ----------
C RETURN
C END
C
C THE VALUE OF IFLAG SHOULD NOT BE CHANGED BY FCN UNLESS
C THE USER WANTS TO TERMINATE EXECUTION OF LMSTR.
C IN THIS CASE SET IFLAG TO A NEGATIVE INTEGER.
C
C M IS A POSITIVE INTEGER INPUT VARIABLE SET TO THE NUMBER
C OF FUNCTIONS.
C
C N IS A POSITIVE INTEGER INPUT VARIABLE SET TO THE NUMBER
C OF VARIABLES. N MUST NOT EXCEED M.
C

LMSR0010
LMSR0020
LMSR0030
LMSR0040
LMSR0050
LMSR0060
LMSR0070
LMSR0080
LMSR0090
LMSR0100
LMSR0110
LMSR0120
LMSR0130
LMSR0140
LMSR0150
LMSR0160
LMSR0170
LMSR0180
LMSR0190
LMSR0200
LMSR0210
LMSR0220
LMSR0230
LMSR0240
LMSR0250
LMSR0260
LMSR0270
LMSR0280
LMSR0290
LMSR0300
LMSR0310
LMSR0320
LMSR0330
LMSR0340
LMSR0350
LMSR0360
LMSR0370
LMSR0380
LMSR0390
LMSR0400
LMSR0410
LMSR0420
LMSR0430
LMSR0440
LMSR0450
LMSR0460
LMSR0470
LMSR0480
LMSR0490
LMSR0500
LMSR0510
LMSR0520
LMSR0530
LMSR0540



220

X IS AN ARRAY OF LENGTH N. ON INPUT X MUST CONTAIN
AN INITIAL ESTIMATE OF THE SOLUTION VECTOR. ON OUTPUT X
CONTAINS THE FINAL ESTIMATE OF THE SOLUTION VECTOR.

FVEC IS AN OUTPUT ARRAY OF LENGTH M WHICH CONTAINS
THE FUNCTIONS EVALUATED AT THE OUTPUT X.

FJAC IS AN OUTPUT N BY N ARRAY. THE UPPER TRIANGLE OF FJAC
CONTAINS AN UPPER TRIANGULAR MATRIX R SUCH THAT

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C

T
P *(JAC *JAC)*:P = R *R,

WHERE P IS A PERMUTATION MATRIX AND JAC IS THE FINAL
CALCULATED JACOBIAN. COLUMN J OF P IS COLUMN IPVT(J)
(SEE BELOW) OF THE IDENTITY MATRIX. THE LOWER TRIANGULAR
PART OF FJAC CONTAINS INFORMATION GENERATED DURING
THE COMPUTATION OF R.

I' JAC IS A POSITIVE INTEGER INPUT VARIABLE NOT LESS THAN N
WHICH SPECIFIES THE LEADING DIMENSION OF THE ARRAY FJAC.

FTOL IS A NONNEGATIVE INPUT VARIABLE. TERMINATION
OCCURS WHEN BOTH THE ACTUAL AND PREDICTED RELATIVE
REDUCTIONS IN THE SUM OF SQUARES ARE AT MOST FTOL.
THEREFORE, FTOL MEASURES THE RELATIVE ERROR DESIRED
IN THE SUM OF SQUARES.

XTOL IS A NONNEGATIVE INPUT VARIABLE. TERMINATION
OCCURS WHEN THE RELATIVE ERROR BETWEEN TWO CONSECUTIVE
ITERATES IS AT MOST XTOL. THEREFORE, XTOL MEASURES THE
RELATIVE ERROR DESIRED IN THE APPROXIMATE SOLUTION.

GTOL IS A NONNEGATIVE INPUT VARIABLE. TERMINATION
OCCURS WHEN THE COSINE OF THE ANGLE BETWEEN FVEC AND
ANY COLUMN OF THE JACOBIAN IS AT MOST GTOL IN ABSOLUTE
VALUE. THEREFORE, GTOL MEASURES THE ORTHOGONALITY
DESIRED BETWEEN THE FUNCTION VECTOR AND THE COLUMNS
OF THE JACOBIAN.

MAXFEV IS A POSITIVE INTEGER INPUT VARIABLE. TERMINATION
OCCURS WHEN THE NUMBER OF CALLS TO FCN WITH IFLAG = 1
HAS REACHED MAXFEV.

DIAG IS AN ARRAY OF LENGTH N. IF MODE = 1 (SEE
BELOW), DIAG IS INTERNALLY SET. IF MODE = 2, DIAG
MUST CONTAIN POSITIVE ENTRIES THAT SERVE AS
MULTIPLICATIVE SCALE FACTORS FOR THE VARIABLES.

MODE IS AN INTEGER INPUT VARIABLE. IF MODE = 1, THE
VARIABLES WILL BE SCALED INTERNALLY. IF MODE = 2,
THE SCALING IS SPECIFIED BY THE INPUT DIAG. OTHER
VALUES OF MODE ARE EQUIVALENT TO MODE = 1.

T T

LMSR0550
LMSR0560
LMSR0570
LMSR0580
LMSR0590
LMSR0600
LMSR0610
LMSR0620
LMSR0630
LMSR0640
LMSR0650
LMSR0660
LMSR0670
LMSR0680
LMSR0690
LMSR0700
LMSR0710
LMSR0720
LMSR0730
LMSR0740
LMSR0750
LMSR0760
LMSR0770
LMSR0780
LMSR0790
LMSR0800
LMSR0810
LMSR0820
LMSR0830
LMSR0840
LMSR0850
LMSR0860
LMSR0870
LMSR0880
LMSR0890
LMSRO900
LMSR0910
LMSR0920
LMSR0930
LMSR0940
LMSR0950
LMSR0960
LMSR0970
LMSR0980
LMSR0990
LMSR1000
LMSR1010
LMSR1020
LMSR1030
LMSR1040
LMSR1050
LMSR1060
LMSR1070
LMSR1080



221

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C

NJEV IS AN INTEGER OUTPUT VARIABLE SET
CALLS TO FCN WITH IFLAG = 2.

TO THE NUMBER OF

IPVT IS AN INTEGER OUTPUT ARRAY OF LENGTH N. IPVT
DEFINES A PERMUTATION MATRIX P SUCH THAT JAC*P = Q*R,
WHERE JAC IS THE FINAL 'ALCULATED JACOBIAN, Q IS

FACTOR IS A POSITIVE INPUT VARIABLE USED IN DETERMINING THE
INITIAL STEP BOUND. THIS BOUND IS SET TO THE PRODUCT OF
FACTOR AND THE EUCLIDEAN NORM OF DIAG'*X IF NONZERO, OR ELSE
TO FACTOR ITSELF. IN MOST CASES FACTOR SHOULD LIE IN THE
INTERVAL (.1,100.). 100. IS A GENERALLY RECOMMENDED VALUE.

NPRINT IS AN INTEGER INPUT VARIABLE THAT ENABLES CONTROLLED
PRINTING OF ITERATES IF IT IS POSITIVE. IN THIS CASE,
FCN IS CALLED WITH IFLAG = 0 AT THE BEGINNING OF THE FIRST
ITERATION AND EVERY NPRINT ITERATIONS THEREAFTER AND
IMMEDIATELY PRIOR TO RETURN, WITH X AND FVEC AVAILABLE
FOR PRINTING. IF NPRINT IS NOT POSITIVE, NO SPECIAL CALLS
OF FCN WITH IFLAG = 0 ARE MADE.

INFO IS AN INTEGER OUTPUT VARIABLE. IF THE USER HAS
TERMINATED EXECUTION, INFO IS SET TO THE (NEGATIVE)
VALUE OF IFLAG. SEE DESCRIPTION OF FCN. OTHERWISE,
INFO IS SET AS FOLLOWS.

INFO = 0 IMPROPER INPUT PARAMETERS.

INFO = 1 BOTH ACTUAL AND PREDICTED RELATIVE REDUCTIONS
IN THE SUM OF SQUARES ARE AT MOST FTOL.

INFO = 2 RELATIVE ERROR BETWEEN TWO CONSECUTIVE ITERATES
IS AT MOST XTOL.

INFO = 3 CONDITIONS FOR INFO = 1 AND INFO = 2 BOTH HOLD.

INFO = 4 THE COSINE OF THE ANGLE BETWEEN FVEC AND ANY
COLUMN OF THE JACOBIAN IS AT MOST GTOL IN
ABSOLUTE VALUE.

INFO = 5 NUMBER OF CALLS TO FCN WITH IFLAG = 1 HAS
REACHED MAXFEV.

INFO = 6 FTOL IS TOO SMALL. NO FURTHER REDUCTION IN
THE SUM OF SQUARES IS POSSIBLE.

INFO = 7 XTOL IS TOO SMALL. NO FURTHER IMPROVEMENT IN
THE APPROXIMATE SOLUTION X IS POSSIBLE.

INFO = 8 GTOL IS TOO SMALL. FVEC IS ORTHOGONAL TO THE
COLUMNS OF THE JACOBIAN TO MACHINE PRECISION.

NFEV IS AN INTEGER OUTPUT VARIABLE SET TO THE NUMBER OF
CALLS TO FCN WITH IFLAG = 1.

LMSR1090
LMSR1100
LMSR1 110
LMSR1120
LMSR1130
LMSR1140
LMSR1 150
LMSR1160
LMSR1170
LMSR1180
LMSR1190
LMSR1200
LMSR1210
LMSR1220
LMSR1230
LMSR1240
LMSR1250
LMSR1260
LMSR1270
LMSR1280
LMSR1290
LMSR1300
LMSR1310
LMSR1320
LMSR1330
LMSR1340
LMSR1350
LMSR1360
LMSR1370
LMSR1380
LMSR1390
LMSR1400
LMSR1410
LMSR1420
LMSR1430
LMSR1440
LMSR1450
LMSR1460
LMSR1470
LMSR1480
LMSR 1490
LMSR1500
LMSR15 10
LMSR1520
LMSR1530
LMSR1540
LMSR1550
LMSR1560
LMSR1570
LMSR1580
LMSR1590
LMSR1600
LMSR1610
LMSR:t620



222

C ORTHOGONAL (NOT STORED), AND R IS UPPER TRIANGULAR. LMSR1630
C COLUMN J OF P IS COLUMN IPVT(J) OF THE IDENTITY MATRIX. LMSR1640
C LMSR1650
C QTF IS AN OUTPUT ARRAY OF LENGTH N WHICH CONTAINS LMSR1660
C THE FIRST N ELEMENTS OF THE VECTOR (Q TRANSPOSE)*FVEC. LMSR1670
C LMSR1680
C WA1, WA2, AND WA3 ARE WORK ARRAYS OF LENGTH N. LMSR1690
C LMSR1700
C WA4 IS A WORK ARRAY OF LENGTH M. LMSR1710
C LMSR1720
C SUBPROGRAMS CALLED LMSR1730
C LMSR1740
C USER-SUPPLIED....... FCN LMSR1750
C LMSR1760
C MINPACK-SUPPLIED ... DPMPAR,ENORM,LMPAR,QRFAC,RWUPDT LMSR1770
C LMSR1780
C FORTRAN-SUPPLIED ... DABS,DMAX1,DMIN1,DSQRT,MOD LMSR1790
C LMSR1800
C ARGONNE NATIONAL LABORATORY. MINPACK PROJECT. MARCH 1980. LMSR1810
C BURTON S. GARBOW, DUDLEY V. GOETSCHEL, KENN~TH E. HILLSTROM, LMSR1820
C JORGE J. MORE LMSR1830
C LMSR1840
C LMSR1850

INTEGER I,IFLAG,ITER,J,L LMSR1860
DOUBLE PRECISION ACTRED,DELTA,DIRDER,EPSMCH,FNORM,FNORM1,GNORM, LMSR1870

* ONE,PAR,PNORM,PRERED,P1,P5,P25,P75,P0001,RATIO, LMSR1880
SUM,TEMP,TEMP1,TEMP2,XNORM,ZERO LMSR1890

DOUBLE PRECISION DPMPAR,ENORM LMSR1900
DATA ONE,P1,P5,P25,P75,P0001,ZERO LMSR1910

* /1.ODO,1.OD-1,5.OD-1,2.5D-1,7.5D-1,1.OD-4,0.ODO/ LMSR1920

C LMSR1930
C EPSMCH IS THE MACHINE PRECISION. LMSR1940
C LMSR1950

EPSMCH = DPMPAR(1) LMSR1960
C LMSR1970

INFO = 0 LMSR1980
IFLAG = 0 LMSR1990
NFEV = 0 LMSR2000
NJEV = 0 LMSR2010

C LMSR2020
C CHECK THE INPUT PARAMETERS FOR ERRORS. LMSR2030
C LMSR2040

IF (N .LE. 0 .OR. M .LT. N .OR. LDFJAC .LT. N LMSR2050
* .OR. FTOL .LT. ZERO .OR. XTOL .LT. ZERO .OR. GTOL .LT. ZERO LMSR2060
* .OR. MAXFEV .LE. 0 .OR. FACTOR .LE. ZERO) GO TO 340 LMSR2070
IF (MODE .NE. 2) GO TO 20 LMSR2080
DO 10 J = 1, N LMSR2090

IF (DIAG(J) .LE. ZERO) GO TO 340 LMSR2100
10 CONTINUE LMSR2110
20 CONTINUE LMSR2120

C LMSR2130
C EVALUATE THE FUNCTION AT THE STARTING POINT LMSR2140
C AND CALCULATE ITS NORM. LMSR2150
C LMSR2160



223

C
C
C

C
C
C

C
C
C

IFLAG = 1
CALL FCN(M,N,X,FVEC,WA3,IFLAG)
NFEV = 1
IF (IFLAG .LT. 0) GO TO 340
FNORM = ENORM(M,FVEC)

INITIALIZE LEVENBERG-MARQUARDT PARAMETER AND ITERATION COUNTER.

PAR = ZERO
ITER = 1

BEGINNING OF THE OUTER LOOP.

30 CONTINUE

IF REQUESTED, CALL FCN TO ENABLE PRINTING OF ITERATES.

IF (NPRINT .LE. 0) GO TO 40
IFLAG = 0
IF (MOD(ITER-1,NPRINT) .EQ. 0) CALL FCN(M,N,X,FVEC,WA3,IFLM)
IF (IFLAG .LT. 0) GO TO 340

40 CONTINUE

COMPUTE THE QR FACTORIZATION OF THE JACOBIAN MATRIX
CALCULATED ONE ROW AT A TIME, WHILE SIMULTANEOUSLY
FORMING (Q TRANSPOSE)*FVEC AND STORING THE FIRST
N COMPONENTS IN QTF.

DO 60 J = 1, N
QTF(J) = ZERO
DO 50 I = 1, N

FJAC(I,J) = ZERO
50 CONTINUE
60 CONTINUE

IFLAG = 2
DO 70 I = 1, M

CALL FCN(M,N,X,FVEC,WA3,IFLAG)
IF (IFLAG .LT. 0) GO TO 340
TEMP = FVEC(I)
CALL RWUPDT(N,FJAC,LDFJAC,WA3,QTF,TEMP,WA1,WA2)
IFLAG = IFLAG + 1

70 CONTINUE
NJEV = NJEV + 1

IF THE JACOBIAN IS RANK DEFICIENT, CALL QRFAC TO
REORDER ITS COLUMNS AND UPDATE THE COMPONENTS OF QTF.

SING = .FALSE.
DO 80 J = 1, N

IF (FJAC(J,J) .EQ. ZERO) SING = .TRUE.
IPVT(J) = J
WA2(J) = ENORM(J,FJAC(1,J))

80 CONTINUE
IF (.NOT.SING) GO TO 130

C
C
C
C
C
C

C
C
C
C

LMSR2170
LMSR2180
LMSR2190
LMSR2200
LMSR22 10
LMSR2220
LMSR2230
LMSR2240
LMSR2250
LMSR2260
LMSR2270
LMSR2280
LMSR2290
LMSR2300
LMSR2310
LMSR2320
LMSR2330
TMSR2340

MSR2350
LMSR2360
LMSR2370
LMSR2380
LMSR2390
LMSR2400
LMSR2410
LMSR2420
LMSR2430
LMSR2440
LMSR2450
LMSR2460
LMSR2470
LMSR2480
LMSR2490
LMSR2500
LMSR2510
LMSR2520
LMSR2530
LMSR2540
LMSR2550
LMSR2560
LMSR2570
LMSR2580
LMSR2590
LMSR2600
LMSR2610
LMSR2620
LMSR2630
LMSR2640
LMSR2650
LMSR2660
LMSR2670
LMSR2680
LMSR2690
LMSR2700



224

CALL QRFAC(N,N,FJAC,LJFJAC, .TRUE. ,IPVT,N,WA1,WA2,WA3) LMSR2710
DO 120 J = 1, N LMSR2720

IF (FJAC(J,J) .EQ. ZERO) GO TO 110 LMSR2730
SUM = ZERO LMSR2740
DO 90 I = J, N LMSR2750

SUM = SUM + FJAC(I,J)*QTF(I) LMSR2760
90 CONTINUE LMSR2770

TEMP = -SUM/FJAC(J,J) LMSR2780
DO 100 I = J, N LMSR2790

QTF(I) = QTF(I) + FJAC(I,J)*TEMP LMSR2800
100 CONTINUE LMSR2810
110 CONTINUE LMSR2820

FJAC(J,J) = WA1(J) LMSR2830
120 CONTINUE LMSR2840
130 CONTINUE LMSR2850

C LMSR2860
C ON THE FIRST ITERATION AND IF MODE IS 1, SCALE ACCORDING LMSR2870
C TO THE NORMS OF THE COLUMNS OF THE INITIAL JACOBIAN. LMSR2880
C LMSR2890

IF (ITER .NE. 1) GO TO 170 LMSR2900
IF (MODE .EQ. 2) GO TO 150 LMSR2910
DO 140 J = 1, N LMSR2920

DIAG(J) = WA2(J) LMSR2930
IF (WA2(J) .EQ. ZERO) DIAG(J) = ONE LMSR2940

140 CONTINUE LMSR2950
150 CONTINUE LMSR2960

C LMSR2970
C ON THE FIRST ITERATION, CALCULATE THE NORM OF THE SCALED X LMSR2980
C AND INITIALIZE THE STEP BOUND DELTA. LMSR2990
C LMSR3000

DO 160 J = 1, N LMSR3010
WA3(J) = DIAG(J)*X(J) LMSR3020

160 CONTINUE LMSR3030
XNORM = ENORM(N,WA3) LMSR3O4O
DELTA = FACTOR*XNORM LMSR3050
IF (DELTA EQ. ZERO) DELTA = FACTOR LMSR3060

170 CONTINUE LMSR3070
C LMSR3080
C COMPUTE THE NORM OF THE SCALED GRADIENT. LMSR3090
C LMSR3100

GNORM = ZERO LMSR3110
IF (FNORM .EQ. ZERO) GO TO 210 LMSR3120
DO 200 J = 1, N LMSR3130

L = IPVT(J) LMSR3140
IF (WA2(L) .EQ. ZERO) GO TO 190 LMSR3150
SUM = ZERO LMSR3160
DO 180 I = 1, J LMSR3170

SUM = SUM + FJAC(I,J)*(QTF(I)/FNORM) LMSR3180
180 CONTINUE LMSR3190

GNORM = DMAX1(GNORM,DABS(SUM/WA2(L))) LMSR3200
190 CONTINUE LMSR3210
200 CONTINUE LMSR3220
210 CONTINUE LMSR3230

C LMSR3240



225

C
C

C
C
C

TEST FOR CONVERGENCE OF THE GRADIENT NORM.

IF (GNORM .LE. GTOL) INFO = 4
IF (INFO .NE. 0) GO TO 340

RESCALE IF NECESSARY.

IF (MODE .EQ. 2) GO TO 230
DO 220 J = 1, N

DIAG(J) = DMAX1(DIAG(J),WA2(J))
220 CONTINUE
230 CONTINUE

BEGINNING OF THE INNER LOOP.

240 CONTINUE

DETERMINE THE LEVENBERG-MARQUARDT PARAMETER.

CALL LMPAR(N,FJAC,LDFJAC,IPVT,DIAG,QTF,DELTA,PAR,WA1,WA2,
* WA3,WA4)

STORE THE DIRECTION P AND X + P. CALCULATE THE NORM OF P.

DO 250 J = 1, N
WA1(J) = -WA1(J)
WA2(J) = X(J) + WA1(J)
WA3(J) = DIAG(J)*WA1(J)

250 CONTINUE
PNORM = ENORM(N,WA3)

ON THE FIRST ITERATION, ADJUST THE INITIAL STEP BOUND.

IF (ITER .EQ. 1) DELTA = DMIN1(DELTA,PNORM)

EVALUATE THE FUNCTION AT X + P AND CALCULATE ITS NORM.

IFLAG = 1
CALL FCN(M,N,WA2,WA4,WA3,IFLAG)
NFEV = NFEV + 1
IF (IFLAG .LT. 0) GO TO 340
FNORM1 = ENORM(M,WA4)

COMPUTE THE SCALED ACTUAL REDUCTION.

ACTRED = -ONE
IF (P1*FNORM1 .LT. FNORM) ACTRED = ONE - (FNORM1/FNORM)**2

COMPUTE THE SCALED PREDICTED REDUCTION AND
THE SCALED DIRECTIONAL DERIVATIVE.

DO 270 J = 1, N
WA3(J) = ZERO
L = IPVT(J)

C
C
C

C
C
C

C
C
C

C
C
C

C
C
C

C
C
C

C
C
C
C

LMSR3250
LMSR3260
LMSR3270
LMSR3280
LMSR3290
LMSR3300
LMSR3310
LMSR3320
LMSR3330
LMSR3340
LMSR3350
LMSR3360
LMSR3370
LMSR3380
LMSR3390
LMSR3400
LMSR3410
LMSR3420
LMSR3430
LMSR3440
LMSR3450
LMSR3460
LMSR3470
LMSR3480
LMSR3490
LMSR3500
LMSR3510
LMSR3520
LMSR3530
LMSR3540
LMSR3550
LMSR3560
LMSR3570
LMSR3580
LMSR3590
LMSR3600
LMSR3610
LMSR3620
LMSR3630
LMSR3640
LMSR3650
LMSR3660
LMSR3670
LMSR3680
LMSR3690
LMSR3700
LMSR3710
LMSR3720
LMSR3730
LMSR3740
LMSR3750
LMSR3760
LMSR3770
LMSR3780



226

260
270

IF (DABS(ACTRED) .LE. FTOL .AND. PRERED .LE. FTOL

C
C
C
C

C
C
C

TEMP = WA1(L)
DO 260 I = 1, J

WA3(I) = WA3(I) + FJAC(I,J)*TEMP
CONTINUE

CONTINUE
TEMP1 = ENORM(N,WA3)/FNORM
TEMP2 = (DSQRT(PAR)*PNORM)/FNORM
PRERED = TEMP1**2 + TEMP2**2/P5
DIRDER = -(TEMP1**2 + TEMP2**2)

COMPUTE THE RATIO OF THE ACTUAL TO THE PREDICTED
REDUCTION.

RATIO = ZERO
IF (PRERED .NE. ZERO) RATIO = ACTRED/PRERED

UPDATE THE STEP BOUND.

IF (RATIO .GT. P25) GO TO 280
IF (ACTRED .GE. ZERO) TEMP = P5
IF (ACTRED .LT. ZERO)

* TEMP = P5*DIRDER/(DIRDER + P5*ACTRED)
IF (P1*FNORM1 .GE. FNORM .OR. TEMP .LT. P1) TEMP = P1
DELTA = TEMP*DMIN1(DELTA,PNORM/P1)
PAR = PAR/TEMP
GO TO 300

CONTINUE
IF (PAR .NE. ZERO .AND. RATIO .LT. P75) GO TO 290
DELTA = PNORM/P5
PAR = P5*PAR
CONTINUE

CONTINUE

TEST FOR SUCCESSFUL ITERATION.

IF (RATIO .LT. P0001) GO TO 330

SUCCESSFUL ITERATION. UPDATE X, FVEC, AND THEIR NORMS.

DO 310 J = 1, N
X(J) = WA2(J)
WA2(J) = DIAG(J)*X(J)
CONTINUE

DO 320 I = 1, M
FVEC(I) = WA4(I)
CONTINUE

XNORM = ENORM(N,WA2)
FNORM = FNORM1
ITER = ITER + 1
CONTINUE

TESTS FOR CONVERGENCE.

280

290
300

C
C
C

C
C
C

LMSR3790
LMSR3800
LMSR3810
LMSR3820
LMSR3830
LMSR3840
LMSR3850
LMSR3860
LMSR3870
LMSR3880
LMSR3890
LMSR3900
LMSR3910
LMSR3920
LMSR3930
LMSR3940
LMSR3950
LMSR3960
LMSR3970
LMSR3980
LMSR3990
LMSR4000
LMSR4010
LMSR4020
LMSR4030
LMSR4040
LMSR4050
LMSR4060
LMSR4070
LMSR4080
L 1SR4090
LMSR4100
LMSR4110
LMSR4120
LMSR4130
LMSR4140
LMSR4150
LMSR4160
LMSR4170
LMSR4180
LMSR4190
LMSR4200
LMSR4210
LMSR4220
LMSR4230
LMSR4240
LMSR4250
LMSR4260
LMSR4270
LMSR4280
LMSR4290
LMSR4300
LMSR4310
LMSR4320

310

320

330
C
C
C



227

.AND. P5*RATIO .LE. ONE) INFO = 1
IF (DELTA .LE. XTOL*XNORM) INFO = 2
IF (DABS(ACTRED) .LE. FTOL .AND. PRERED .LE. FTOL

.AND. P5*RATIO .LE. ONE .AND. INFO .EQ. 2) INFO = 3
IF (INFO .NE. 0) GO TO 340

TESTS FOR TERMINATION AND STRINGENT TOLERANCES.

IF (NFEV .GE. MAXFEV) INFO = 5
IF (DABS(ACTRED) .LE. EPSMCH .AND. PRERED .LE. EPSMCH

.AND. P5*RATIO .LE. ONE) INFO = 6
IF (DELTA . LE. EPSMCH*XNORM) INFO = 7
IF (GNORM .LE. EPSMCH) INFO = 8
IF (INFO .NE. 0) GO TO 340

END OF THE INNER LOOP. REPEAT IF ITERATION UNSUCCESSFUL.

IF (RATIO .LT. P0001) GO TO 240

END OF THE OUTER LOOP.

GO TO 30
340 CONTINUE

TERMINATION, EITHER NORMAL OR USER IMPOSED.

IF (IFLAG .LT. 0) INFO = IFLAG
IFLAG = 0
IF (NPRINT .GT. 0) CALL FCN(M,N,X,FVEC,WA3,IFLAG)
RETURN

LAST CARD OF SUBROUTINE LMSTR.

END

*s

*

C
C
C

*

C
C
C

C
C
C

C
C
C

C
C
C

LMSR4330
LMSR4340
LMSR4350
LMSR4360
LMSR43 70
LMSR4380
LMSR4390
LMSR4400
LMSR4410
LMSR4420
LMSR4430
LMSR4440
LMSR4450
LMSR4460
LMSR4470
LMSR4480
LMSR4490
LMSR4500
LMSR4510
LMSR4520
LMSR4530
LMSR4540
LMSR4550
LMSR4560
LMSR4570
LMSR4580
LMSR4590
LMSR4600
LMSR4610
LMSR4620
LMSR4630
LMSR4640
LMSR4650
LMSR4660



228



229

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C

SUBROUTINE LMSTR1(FCN,M,N,X,FVEC,FJAC,LDFJAC,TOL,INFO,IPVT,WA.
* LWA)
INTEGER M,N,LDFJAC,INFO,LWA
INTEGER IPVT(N)
DOUBLE PRECISION TOL
DOUBLE PRECISION X(N),FVEC(M),FJAC(LDFJAC,N),WA(LWA)
EXTERNAL FCN
** * **** ** *

SUBROUTINE LMSTR1

THE PURPOSE OF LMSTR1 IS TO MINIMIZE THE SUM OF THE SQUARES OF
M NONLINEAR FUNCTIONS IN N VARIABLES BY A MODIFICATION OF
THE LEVENBERG-MARQUARDT ALGORITHM WHICH USES MINIMAL STORAGE.
THIS IS DONE BY USING THE MORE GENERAL LEAST-SQUARES SOLVER
LMSTR. THE USER MUST PROVIDE A SUBROUTINE WHICH CALCULATES
THE FUNCTIONS AND THE ROWS OF THE JACOBIAN.

THE SUBROUTINE STATEMENT IS

SUBROUTINE LMSTR1(FCN,M,N,XFVEC,FJAC,LDFJAC,TOL,INFO,

IPVT,WA,LWA)

WHERE

FCN IS THE NAME OF THE USER-SUPPLIED SUBROUTINE WHICH
CALCULATES THE FUNCTIONS AND THE ROWS OF THE JACOBIAN.
FCN MUST BE DECLARED IN AN EXTERNAL STATEMENT IN THE
USER CALLING PROGRAM, AND SHOULD BE WRITTEN AS FOLLOWS.

SUBROUTINE FCN(M,N,X,FVEC,FJROW,IFLAG)
INTEGER M,N,IFLAG
DOUBLE PRECISION X(N),FVEC(M),FJROW(N)
------"----

IF IFLAG = 1 CALCULATE THE FUNCTIONS AT X AND
RETURN THIS VECTOR IN FVEC.
IF IFLAG = I CALCULATE THE (1-1)-ST ROW OF THE
JACOBIAN AT X AND RETURN THIS VECTOR IN FJROW.

RETURN
END

THE VALUE OF IFLAG SHOULD NOT BE CHANGED BY FCN UNLESS
THE USER WANTS TO TERMINATE EXECUTION OF LMSTR1.
IN THIS CASE SET IFLAG TO A NEGATIVE INTEGER.

M IS A POSITIVE INTEGER INPUT VARIABLE SET TO THE NUMBER
OF FUNCTIONS.

N IS A POSITIVE INTEGER INPUT VARIABLE SET TO THE NUMBER
OF VARIABLES. N MUST NOT EXCEED M.

X IS AN ARRAY OF LENGTH N. ON INPUT X MUST CONTAIN
AN INITIAL ESTIMATE OF THE SOLUTION VECTOR. ON OUTPUT X

LMS10010
LMS10020
LMS10030
LMS10040
LMS10050
LMS10060
LMS10070
LMS10080
LMS10090
LMS10100
LMS 10110
LMS10120
LMS10130
LMS10140
LMS10150
LMS10160
LMS 10170
LMS10180
LMS10190
LMS10200
LMS10210
LMS10220
LMS10230
LMS10240
LMS10250
LMS10260
LMS10270
LMS10280
LMS10290
LMS10300
LMS10310
LMS10320
LMS10330
LMS10340
LMS10350
LMS10360
LMS10370
LMS10380
LMS10390
LMS10400
LMS10410
LMS10420
LMS10430
LMS10440
LMS10450
LMS 10460
LMS10470
LMS10480
LMS10490
LMS10500
LMS10510
LMS10520
LMS10530
LMS10540



230

C CONTAINS THE FINAL ESTIMATE OF THE SOLUTION VECTOR. LMS10550
C LMS10560
C FVEC IS AN OUTPUT ARRAY OF LENGTH M WHICH CONTAINS LMS10570
C THE FUNCTIONS EVALUATED AT THE OUTPUT X. LMS10580
C LMS10590
C FJAC IS AN OUTPUT N BY N ARRAY. THE UPPER TRIANGLE OF FJAC LMS10600
C CONTAINS AN UPPER TRIANGULAR MATRIX R SUCH THAT LMS10610
C LMS10620
C T T T LMS10630
C P *(JAC *JAC)*P = R *R, LMS10640
C LMS10650
C WHERE P IS A PERMUTATION MATRIX AND JAC IS THE FINAL LMS10660
C CALCULATED JACOBIAN. COLUMN J OF P IS COLUMN IPVT(J) LMS10670
C (SEE BELOW) OF THE IDENTITY MATRIX. THE LOWER TRIANGULAR LMS10680
C PART OF FJAC CONTAINS INFORMATION GENERATED DURING LMS10690
C THE COMPUTATION OF R. LMS10700
C LMS10710
C LDFJAC IS A POSITIVE INTEGER INPUT VARIABLE NOT LESS THAN N LMS10720
C WHICH SPECIFIES THE LEADING DIMENSION OF THE ARRAY FJAC. LMS10730
C LMS10740
C TOL IS A NONNEGATIVE INPUT VARIABLE. TERMINATION OCCURS LMS10750
C WHEN THE ALGORITHM ESTIMATES EITHER THAT THE RELATIVE LMS10760
C ERROR IN THE SUM OF SQUARES IS AT MOST TOL OR THAT LMS10770
C THE RELATIVE ERROR BETWEEN X AND THE SOLUTION IS AT LMS10780
C MOST TOL. LMS10790
C LMS10800
C INFO IS AN INTEGER OUTPUT VARIABLE. IF THE USER HAS LMS10810
C TERMINATED EXECUTION, INFO IS SET TO THE (NEGATIVE) LMS10820
C VALUE OF IFLAG. SEE DESCRIPTION OF FCN. OTHERWISE, LMS10830
C INFO IS SET AS FOLLOWS. LMS10840
C LMS10850
C INFO = 0 IMPROPER INPUT PARAMETERS. LMS10860
C LMS10870
C INFO = 1 ALGORITHM ESTIMATES THAT THE RELATIVE ERROR LMS10880
C IN THE SUM OF SQUARES IS AT MOST TOL. LMS10890
C LMS10900
C INFO = 2 ALGORITHM ESTIMATES THAT THE RELATIVE ERROR LMS10910
C BETWEEN X AND THE SOLUTION IS AT MOST TOL. LMS10920
C LMS10930
C INFO = 3 CONDITIONS FOR INFO = 1 AND INFO - 2 BOTH HOLD. LMS10940
C LMS10950
C INFO - 4 FVEC IS ORTHOGONAL TO THE COLUMNS OF THE LMS10960
C JACOBIAN TO MACHINE PRECISION. LMS10970
C LMS10980
C INFO = 5 NUMBER OF CALLS TO FCN WITH IFLAG = 1 HAS LMS10990
C REACHED 100*(N+1). LMS11000
C LMS11010
C INFO = 6 TOL IS TOO SMALL. NO FURTHER REDUCTION IN LMS11020
C THE SUM OF SQUARES IS POSSIBLE. LMS11030
C LMS11040
C INFO s 7 TOL IS TOO SMALL. NO FURTHER IMPROVEMENT IN LMS11050
C THE APPROXIMATE SOLUTION X IS POSSIBLE. LMS11060
C LMS11070
C IPVT IS AN INTEGER OUTPUT ARRAY OF LENGTH N. IPVT LMS11080



231

C DEFINES A PERMUTATION MATRIX P SUCH THAT JAC*P = Q*R, LMS11090
C WHERE JAC IS THE FINAL CALCULATED JACOBIAN, Q IS LMS11100
C ORTHOGONAL (NOT STORED), AND R IS UPPER TRIANGULAR. LMS11110
C COLUMN J OF P IS COLUMN IPVT(J) OF THE IDENTITY MATRIX. LMS11120
C LMS11130
C WA IS A WORK ARRAY OF LENGTH LWA. LMS11140
C LMS11150
C LWA IS A POSITIVE INTEGER INPUT VARIABLE NOT LESS THAN 5*N+M. LMS11160
C LMS11170
C SUBPROGRAMS CALLED LMS11180
C LMS11190
C USER-SUPPLIED....... FCN LMS11200
C LMS11210
C MINPACK-SUPPLIED ... LMSTR LMS11220
C LMS11230
C ARGONNE NATIONAL LABORATORY. MINPACK PROJECT. MARCH 1980. LMS11240
C BURTON S. GARBOW, DUDLEY V. GOETSCHEL, KENNETH E. HILLSTROM, LMS11250
C JORGE J. MORE LMS11260
C LMS11270
C LMS11280

INTEGER MAXFEV,MODE,NFEV,NJEV,NPRINT LMS11290
DOUBLE PRECISION FACTOR,FTOL,GTOL,XTOL,ZERO LMS11300
DATA FACTOR,ZERO /1.0D2,O.ODO/ LMS11310
INFO = 0 LMS11320

C LMS11330
C CHECK THE INPUT PARAMETERS FOR ERRORS. LMS11340
C LMS11350

IF (N .LE. 0 .OR. M .LT. N .OR. LDFJAC .LT. N .OR. TOL .LT. ZERO LMS11360
* .OR. LWA .LT. 5*N + M) GO TO 10 LMS11370

C LMS11380
C CALL LMSTR. LMS11390
C LMS11400

MAXFEV s 100*(N + 1) LMS11410
FTOL s TOL LMS11420
XTOL s TOL LMS11430
GTOL s ZERO LMS11440
MODE = 1 LMS11450
NPRINT = 0 LMS11460
CALL LMSTR(FCN,M,N,X,FVEC,FJAC,LDFJAC,FTOL,XTOL,GTOL,MAXFEV, LMS11470

* WA(1),MODE,FACTOR,NPRINT,INFO,NFEV,NJEVIPVT,WA(N+1), LMS11480
* WA(2*N+1),WA(3*N+1),WA(4*N+1),WA(5*N+1)) LMS11490
IF (INFO .EQ. 8) INFO = 4 LMS11500

10 CONTINUE LMS11510
RETURN LMS11520

C LMS11530
C LAST CARD OF SUBROUTINE LMSTR1. LMS11540
C L1MS11550

END LMS11560



232



233

SUBROUTINE QFORM(M,N,Q,LDQ,WA)
INTEGER M,N,LDQ
DOUBLE PRECISION Q(LDQ,M),WA(M)

C **********
C
C SUBROUTINE QFORM
C
C THIS SUBROUTINE PROCEEDS FROM THE COMPUTED QR FACTORIZATION OF
C AN M BY N MATRIX A TO ACCUMULATE THE M BY r. ORTHOGONAL MATRIX
C Q FROM ITS FACTORED FORM.
C
C THE SUBROUTINE STATEMENT IS
C
C SUBROUTINE QFORM(M,N,Q,LDQ,WA)
C
C WHERE
C
C M IS A POSITIVE INTEGER INPUT VARIABLE SET TO THE NUMBER
C OF ROWS OF A AND THE ORDER OF Q.
C
C N IS A POSITIVE INTEGER INPUT VARIABLE SET TO THE NUMBER
C OF COLUMNS OF A.
C
C Q IS AN M BY M ARRAY. ON INPUT THE FULL LOWER TRAPEZOID IN
C THE FIRST MIN(M,N) COLUMNS OF Q CONTAINS THE FACTORED FORM.
C ON OUTPUT Q HAS BEEN ACCUMULATED INTO A SQUARE MATRIX.
C
C LDQ IS A POSITIVE INTEGER INPUT VARIABLE NOT LESS THAN M
C WHICH SPECIFIES THE LEADING DIMENSION OF THE ARRAY Q.
C
C WA IS A WORK ARRAY OF LENGTH M.
C
C SUBPROGRAMS CALLED
C
C FORTRAN-SUPPLIED ... MINO
C
C ARGONNE NATIONAL LABORATORY. MINPACK PROJECT. MARCH 1980.
C BURTON S. GARBOW, KENNETH E. HILLSTROM, JORGE J. MORE
C
C

INTEGER I,J,JM1,K,L,MINMN,NP1
DOUBLE PRECISION ONE,SUM,TEMP,ZERO
DATA ONE,ZERO /1.ODO,0.ODO/

C
C ZERO OUT UPPER TRIANGLE OF Q IN THE FIRST MIN(M,N) 'COLUMNS.
C

MINMN = MINO(M,N)
IF (MINMN .LT. 2) GO TO 30
DO 20 J = 2, MINMN

JM1 = J - 1
DO 10 I = 1, Jill

Q(I,J) ZERO
10 CONTINUE
20 CONTINUE

QFRMOO10
QFRM0020
QFRM0030
QFRM0040
QFRM0050
QFRM0060
QFRM0070
QFRM0080
QFRM0090
QFRM0100
QFRM0110
QFRM0120
QFRM0130
QFRM0140
QFRM0150
QFRM0160
QFRM0170
QFRM0180
QFRM0190
QFRM0200
QFRM0210
QFRM0220
QFRM0230
QFRM0240
QFRM0250
QFRM0260
QFRM0270
QFRM0280
QFRM0290
QFRM0300
QFRM0310
QFRM0320
QFRM0330
QFRM0340
QFRM0350
QFRM0360
QFRM0370
QFRM0380
QFRM0390
QFRM0400
QFRM0410
QFRM0420
QFRM0430
QFRM0440
QFRM0450
QFRM0460
QFRM0470
QFRM0480
QFRM0490
QFRM0500
QFRM0510
QFRM0520
QFRM0530
QFRM0540



234

C
C
C

END

30 CONTINUE

INITIALIZE REMAINING COLUMNS TO THOSE OF THE IDENTITY MATRIX.

NP1 = N + 1
IF (M .LT. NP1) GO TO 60
DO 50 J = NP1, M

DO 40 I = 1, M
Q(I,J) = ZERO

40 CONTINUE
Q(J,J) = ONE

50 CONTINUE
60 CONTINUE

ACCUMULATE Q FROM ITS FACTORED FORM.

DO 120 L = 1, MINMN
K = MINMN - L + 1
DO 70 I = K, M

WA(I) = Q(I,K)
Q(I,K) = ZERO

70 CONTINUE
Q(K,K) = ONE
IF (WA(K) .EQ. ZERO) GO TO 110
DO 100 J = K, M

SUM = ZERO
DO 80 I = K, M

SUM = SUM + Q(I,J)*WA(I)
80 CONTINUE

TEMP = SUM/WA(K)
DO 90 I = K, M

Q(I,J) = Q(I,J) - TEMP*WA(I)
90 CONTINUE
100 CONTINUE
110 CONTINUE
120 CONTINUE

RETURN

LAST CARD OF SUBROUTINE QFORM.

C
C
C

C
C
C

QFRM0550
QFRM0560
QFRM0570
QRM0580
QFRM0590
QFRM0600
QFRM0610
QFRM0620
QFRM0630
QFRM0640
QFRM0650
QFRM0660
QFRM0670
QFRM0680
QFRM0690
QFRM0700
QFRM0710
QFRM0720
QFRM0730
QFRM0740
QFRM0750
QFRM0760
QFRM0770
QFRM0780
QFRM0790
QFRM0800
QFRM0810
QFRM0820
QFRM0830
QFRM0840
QFRM0850
QFRM0860
QFRM0870
QFRM0880
QFRM0890
QFRMO900
QFRM0910
QFRM0920
QFRMO930
QFRM0940
QFRM0950



235

SUBROUTINE QRFAC(M,N,A,LDA,PIVOT,IPVT,LIPVT,RDIAG,ACNORM,WA) QRFA0010

INTEGER M,N,LDA,LIPVT QRFA0020
INTEGER IPVT(LIPVT) QRFA0030

LOGICAL PIVOT QRFA0040
DOUBLE PRECISION A(LDA,N),RDIAG(N),ACNORM(N),WA(N) QRFA0050

C QRFAO060
C QRFA0070
C SUBROUTINE QRFAC QRFA0080
C QRFA0090
C THIS SUBROUTINE USES HOUSEHOLDER TRANSFORMATIONS WITH COLUMN QRFA0100
C PIVOTING (OPTIONAL) TO COMPUTE A QR FACTORIZATION OF THE QRFA0110
C M BY N MATRIX A. THAT IS, QRFAC DETERMINES AN ORTHOGONAL QRFA0120
C MATRIX Q, A PERMUTATION MATRIX P, AND AN UPPER TRAPEZOIDAL QRFA0130
C MATRIX R WITH DIAGONAL ELEMENTS OF NONINCREASING MAGNITUDE, QRFA0140
C SUCH THAT A*P = Q*R. THE HOUSEHOLDER TRANSFORMATION FOR QRFA0150
C COLUMN K, K = 1,2,...,MIN(M,N), IS OF THE FORM QRFA0160
C QRFA0170
C T QRFA0180
C I - (1/U(K))*U*U QRFA0190
C QRFA0200
C WHERE U HAS ZEROS IN THE FIRST K-1 POSITIONS. THE FORM OF QRFA0210
C THIS TRANSFORMATION AND THE METHOD OF PIVOTING FIRST QRFA0220
C APPEARED IN THE CORRESPONDING LINPACK SUBROUTINE. QRFA0230
C QRFA0240
C THE SUBROUTINE STATEMENT IS QRFA0250
C QRFA0260
C SUBROUTINE QRFAC(M,N,A,LDA,PIVOT,IPVTLIPVT,RDIAG,ACNORM,WA) QRFA0270
C QRFA0280
C WHERE QRFA0290
C QRFA0300
C M IS A POSITIVE INTEGER INPUT VARIABLE SET TO THE NUMBER QRFA0310
C OF ROWS OF A. QRFA0320
C QRFA0330
C N IS A POSITIVE INTEGER INPUT VARIABLE SET TO THE NUMBER QRFAO340
C OF COLUMNS OF A. QRFA0350
C QRFA0360
C A IS AN M BY N ARRAY. ON INPUT A CONTAINS THE MATRIX FOR QRFA0370
C WHICH THE QR FACTORIZATION IS TO BE COMPUTED. ON OUTPUT QRFA0380
C THE STRICT UPPER TRAPEZOIDAL PART OF A CONTAINS THE STRICT QRFA0390
C UPPER TRAPEZOIDAL PART OF R, AND THE LOWER TRAPEZOIDAL QRFA0400
C PART OF A CONTAINS A FACTORED FORM OF Q (THE NON-TRIVIAL QRFA0410
C ELEMENTS OF THE U VECTORS DESCRIBED ABOVE). QRFA0420
C QRFA0430
C LDA IS L, POSITIVE INTEGER INPUT VARIABLE NOT LESS THAN M QRFA0440
C WHICH SPECIFIES THE LEADING DIMENSION OF THE ARRAY A. QRFA0450
C QRFA0460
C PIVOT IS A LOGICAL INPUT VARIABLE. IF PIVOT IS SET TRUE, QRFA0470
C THEN COLUMN PIVOTING IS ENFORCED. IF PIVOT IS SET FALSE, QRFA0480
C THEN NO COLUMN PIVOTING IS DONE. QRFA0490
C QRFA0500
C IPVT IS AN INTEGER OUTPUT ARRAY OF LENGTH LIPVT. IPVT QRFA0510
C DEFINES THE PERMUTATION MATRIX P SUCH THAT A*P = Q*R. QRFA0520
C COLUMN J OF P IS COLUMN IPVT(J) OF THE IDENTITY MATRIX. QRFA0530
C IF PIVOT IS FALSE, IPVT IS NOT REFERENCED. QRFA0540



236

C QRFA0550
C LIPVT IS A POSITIVE INTEGER INPUT VARIABLE. IF PIVOT IS FALSE, QRFA0560
C THEN LIPVT MAY BE AS SMALL AS 1. IF PIVOT IS TRUE, THEN QRFA0570
C LIPVT MUST BE AT LEAST N. QRFA0580
C QRFA0590
C RDIAG IS AN OUTPUT ARRAY OF LENGTH N WHICH CONTAINS THE QRFA0600
C DIAGONAL ELEMENTS OF R. QRFA0610
C QRFA0620
C ACNORM IS AN OUTPUT ARRAY OF LENGTH N WHICH CONTAINS THE QRFA0630
C NORMS OF THE CORRESPONDING COLUMNS OF THE INPUT MATRIX A. QRFA0640
C IF THIS INFORMATION IS NOT NEEDED, THEN ACNORM CAN COINCIDE QRFA0650
C WITH RDIAG. QRFA0660
C QRFA0670
C WA IS A WORK ARRAY OF LENGTH N. IF PIVOT IS FALSE, THEN WA QRFA0680
C CAN COINCIDE WITH RDIAG. QRFA0690
C QRFA0700
C SUBPROGRAMS CALLED QRFA0710
C QRFA0720
C MINPACK-SUPPLIED ... DPMPAR,ENORM QRFA0730
C QRFA0740
C FORTRAN-SUPPLIED ... DMAX1,DSQRT,MINO QRFA0750
C QRFA0760
C ARGONNE NATIONAL LABORATORY. MINPACK PROJECT. MARCH 1980. QRFA0770
C BURTON S. GARBOW, KENNETH E. HILLSTROM, JORGE J. MORE QRFA0780
C QRFA0790
C QRFA0800

INTEGER I,J,JP1,K,KMAX,MINMN QRFA0810
DOUBLE PRECISION AJNORM,EPSMCH,ONE,P05,SUM,TEMP,ZERO QRFA0820
DOUBLE PRECISION DPMPAR,ENORM QRFA0830
DATA ONE,P05,ZERO /1.ODO,5.OD-2,O.ODO/ QRFA0840

C QRFA0850
C EPSMCH IS THE MACHINE PRECISION. QRFA0860
C QRFA0870

EPSMCH = DPMPAR(1) QRFA0880
C QRFA0890
C COMPUTE THE INITIAL COLUMN NORMS AND INITIALIZE SEVERAL ARRAYS. QRFA0900
C QRFA0910

DO 10 J = 1, N QRFA0920
ACNORM(J) = ENORM(M,A(1,J)) QRFA0930
RDIAG(J) = ACNORM(J) QRFA0940
WA(J) = RDIAG(J) QRFA0950
IF (PIVOT) IPVT(J) = J QRFA0960

10 CONTINUE QRFA0970
C QRFA0980
C REDUCE A TO R WITH HOUSEHOLDER TRANSFORMATIONS. QRFA0990
C QRFA1000

MINMN = MINO(M,N) QRFA1010
DO 110 J = 1, MINMN QRFA1020

IF (.NOT.PIVOT) GO TO 40 QRFA1030
C QRFA1040
C BRING THE COLUMN OF LARGEST NORM INTO THE PIVOT POSITION. QRFA1050
C QRFA1060

KMAX = J QRFA1070
DO 20 K = J, N QRFA1080



237

IF (RDIAG(K) .GT. RDIAG(KMAX)) KMAX = K QRFA1090
20 CONTINUE QRFA1100

IF (KMAX .EQ. J) GO TO 40 QRFA1110
DO 30 I = 1, M QRFA1120

TEMP = A(I,J) QRFA1130
A(I,J) = A(I,KMAX) QRFA1140
A(I,KMAX) = TEMP QRFA1150

30 CONTINUE QRFA1160
RDIAG(KMAX) = RDIAG(J) QRFA1170
WA(KMAX) = WA(J) QRFA1180
K = IPVT(J) QRFA1190
IPVT(J) = IPVT(KMAX) QRFA1200
IPVT(KMAX) = K QRFA1210

40 CONTINUE QRFA1220
C QRFA1230
C COMPUTE THE HOUSEHOLDER TRANSFORMATION TO REDUCE THE QRFA1240
C J-TH COLUMN OF A TO A MULTIPLE OF THE J-TH UNIT ' CTOR. QRFA1250
C QRFA1260

AJNORM = ENORM(M-J+1,A(J,J)) QRFA1270
IF (AJNORM .EQ. ZERO) GO TO 100 QRFA1280
IF (A(J,J) .LT. ZERO) AJNORM = -AJNORM QRFA1290
DO 50 I = J, M QRFA1300

A(I,J) = A(I,J)/AJNORM QRFA1310
50 CONTINUE QRFA1320

A(J,J) = A(J,J) + ONE QRFA1330
C QRFA1340
C APPLY THE TRANSFORMATION TO THE REMAINING COLUMNS QRFA1350
C AND UPDATE THE NORMS. QRFA1360
C QRFA1370

JP1 = J + 1 QRFA1380
IF (N .LT. JP1) GO TO 100 QRFA1390
DO 90 K = JP1, N QRFA1400

SUM = ZERO QRFA1410
DO 60 I = J, M QRFA1420

SUM = SUM + A(I,J)*A(I,K) QRFA1430
60 CONTINUE QRFA1440

TEMP = SUM/A(J,J) QRFA1450
DO 70 I = J, M QRFA1460

A(I,K) = A(I,K) - TEMP*A(I,J) QRFA1470
70 CONTINUE QRFA1480

IF (.NOT.PIVOT .OR. RDIAG(K) .EQ. ZERO) GO TO 80 QRFA1490
TEMP = A(J,K)/RDIAG(K) QRFA1500
RDIAG(K) = RDIAG(K)*DSQRT(DMAX1(ZERO,ONE-TEMP**2)) QRFA1510
IF (P05*(RDIAG(K)/WA(K))**2 .GT. EPSMCH) GO TO 80 QRFA1520
RDIAG(K) = ENORM(M-J,A(JP1,K)) QRFA1530
WA(K) = RDIAG(K) QRFA1540

80 CONTINUE QRFA1550
90 CONTINUE QRFA1560
100 CONTINUE QRFA1570

RDIAG(J) = -AJNORM QRFA1580
110 CONTINUE QRFA1590

RETURN QRFA1600
C QRFA1610
C LAST CARD OF SUBROUTINE QRFAC. QRFA1620



238

QRFA 1630
QRFA1640END

C



239

SUBROUTINE QRSOLV(N,R,LDR,IPVT,DIAG,QTB,X,SDIAG,WA)
INTEGER N,LDR
INTEGER IPVT(N)
DOUBLE PRECISION R(LDR,N),DIAG(N),QTB(N),X(N),SDIAG(N),WA(N)

SUBROUTINE QRSOLV

GIVEN AN M BY N MATRIX A, AN N BY N DIAGONAL MATRIX D,
AND AN M-VECTOR B, THE PROBLEM IS TO DETERMINE AN X WHICH
SOLVES THE SYSTEM

A*X = B , D*X= 0,

C IN THE LEAST SQUARES SENSE.
C
C THIS SUBROUTINE COMPLETES THE SOLUTION OF THE PROBLEM
C IF IT IS PROVIDED WITH THE NECESSARY INFORMATION FROM THE
C QR FACTORIZATION, WITH COLUMN PIVOTING, OF A. THAT IS, IF
C A*P = Q*R, WHERE P IS A PERMUTATION MATRIX, Q HAS ORTHOGONAL
C COLUMNS, AND R IS AN UPPER TRIANGULAR MATRIX WITH DIAGONAL
C ELEMENTS OF NONINCREASING MAGNITUDE, THEN QRSOLV EXPECTS
C THE FULL UPPER TRIANGLE OF R, THE PERMUTATION MATRIX P,
C AND THE FIRST N COMPONENTS OF (Q TRANSPOSE)*B. THE SYSTEM
C A*X = B, D*X = 0, IS THEN EQUIVALENT TO
C

T
R*Z = Q *B

T
P *D*P*Z = 0

WHERE X = P*Z. IF THIS SYSTEM DOES NOT HAVE FULL RANK,
THEN A LEAST SQUARES SOLUTION IS OBTAINED. ON OUTPUT QRSOLV
ALSO PROVIDES AN UPPER TRIANGULAR MATRIX S SUCH THAT

T T T
p *(A *A + D*D)*P = S *S .

S IS COMPUTED WITHIN QRSOLV AND MAY BE OF SEPARATE INTEREST.

THE SUBROUTINE STATEMENT IS

SUBROUTINE QRSOLV(N,R,LDR,IPVT,DIAG,QTB,X,SDIAG,WA)

WHERE

N IS A POSITIVE INTEGER INPUT VARIABLE SET TO THE ORDER OF R.

R IS AN N BY N ARRAY. ON INPUT THE FULL UPPER TRIANGLE
MUST CONTAIN THE FULL UPPER TRIANGLE OF THE MATRIX R.
ON OUTPUT THE FULL UPPER TRIANGLE IS UNALTERED, AND THE
STRICT LOWER TRIANGLE CONTAINS THE STRICT UPPER TRIANGLE
(TRANSPOSED) OF THE UPPER TRIANGULAR MATRIX S.

LDR IS A POSITIVE INTEGER INPUT VARIABLE NOT LESS THAN N
WHICH SPECIFIES THE LEADING DIMENSION OF THE ARRAY R.

C
C
C
C
C
C
C
C
C
C

QRSLOO10
QRSL0020
QRSL0030
QRSL0040
QRSL0050
QRSL0060
QRSL0070
QRSL0080
QRSL0090
QRSLO100
QRSLO110
QRSLO120
QRSLO130
QRSLO140
QRSLO150
QRSLO160
QRSLO170
QRSLO180
QRSLO190
QRSL0200
QRSL0210
QRSL0220
QRSL0230
QRSL0240
QRSL0250
QRSL0260
QRSL0270
QRSL0280
QRSL0290
QRSLO300
QRSL0310
QRSL0320
QRSL0330
QRSL0340
QRSLO350
QRSL0360
QRSLO370
QRSLO380
QRSLO390
QRSLO400
QRSL0410
QRSLO420
QRSLO430
QRSLO440
QRSL0450
QRSL0460
QRSLO470
QRSL0480
QRSL0490
QRSL0500
QRSL0510
QRSLO520
QRSLO530
QRSLO540

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C



240

C QRSL0550
C IPVT IS AN INTEGER INPUT ARRAY OF LENGTH N WHICH DEFINES THE QRSL0560
C PERMUTATION MATRIX P SUCH THAT A*P = Q*R. COLUMN J OF P QRSL0570
C IS COLUMN IPVT(J) OF THE IDENTITY MATRIX. QRSL0580
C QRSL0590
C DIAG IS AN INPUT ARRAY OF LENGTH N WHICH MUST CONTAIN THE QRSL0600
C DIAGONAL ELEMENTS OF THE MATRIX D. QRSL0610
C QRSL0620
C QTB IS AN INPUT ARRAY OF LENGTH N WHICH MUST CONTAIN THE FIRST QRSL0630
C N ELEMENTS OF THE VECTOR (Q TRANSPOSE)*B. QRSL0640
C QRSL0650
C X IS AN OUTPUT ARRAY OF LENGTH N WHICH CONTAINS THE LEAST QRSL0660
C SQUARES SOLUTION OF THE SYSTEM A*X = B, D*X = 0. QRSL0670
C QRSL0680
C SDIAG IS AN OUTPUT ARRAY OF LENGTH N WHICH CONTAINS THE QRSL0690
C DIAGONAL ELEMENTS OF THE UPPER TRIANGULAR MATRIX S. QRSL0700
C QRSL0710
C WA IS A WORK ARRAY OF LENGTH N. QRSL0720
C QRSL0730
C SUBPROGRAMS CALLED QRSL0740
C QRSL0750
C FORTRAN-SUPPLIED ... DABS,DSQRT QRSL0760
C QRSL0770
C ARGONNE NATIONAL LABORATORY. MINPACK PROJECT. MARCH 1980. QRSLO780
C BURTON S. GARBOW, KENNETH E. HILLSTROM, JORGE J. MORE QRSL0790
C QRSL0800
C ********** QRSL0810

INTEGER I,J,JP1,K,KP1,L,NSING QRSL0820
DOUBLE PRECISION COS,COTAN,P5,P25,QTBPJ,SIN,SUM,TAN,TEMP,ZERO QRSL0830
DATA P5,P25,ZERO /5.OD-1,2.5D-1,O.ODO/ QRSL0840

C QRSL0850
C COPY R AND (Q TRANSPOSE)*B TO PRESERVE INPUT AND INITIALIZE S. QRSL0860
C IN PARTICULAR, SAVE THE DIAGONAL ELEMENTS OF R IN X. QRSL0870
C QRSL0880

DO 20 J = 1, N QRSL0890
DO 10 I = J, N QRSLO900

R(I,J) = R(J,I) QRSL0910
10 CONTINUE QRSL0920

X(J) = R(J,J) QRSLO930
WA(J) = QTB(J) QRSL0940

20 CONTINUE QRSL0950
C QRSLO960
C ELIMINATE THE DIAGONAL MATRIX D USING A GIVENS ROTATION. QRSLO970
C QRSL0980

DO 100 J = 1, N QRSL0990
C QPSL1000
C PREPARE THE ROW OF D TO BE ELIMINATED, LOCATING THE QRSL1010
C DIAGONAL ELEMENT USING P FROM THE QR FACTORIZATION. QRSL1020
C QRSL1030

L = IPVT(J) QRSL1040
IF (DIAG(L) .EQ. ZERO) GO TO 90 QRSL1050
DO 30 K = J, N QRSL1060

SDIAG(K) = ZERO QRSL1070
30 CONTINUE QRSL1080



241

C
C
C
C
C

C
C
C
C

R(K,K) = COS*R(K,K) + SIN*SDIAG(K)
TEMP = COS*WA(K) + SIN*QTBPJ
QTBPJ = -SIN*WA(K) + COS*rQTBPJ
WA(K) = TEMP

ACCUMULATE THE TRANFORMATION IN THE ROW OF S.

KP1 = K + 1
IF (N .LT. KP1) GO TO iO
DO 60 I = KP1, N

TEMP = COS*R(I,K) + SIN*SDIAG(I)
SDIAG(I) = -SIN*R(I,K) + COS*SDIAG(I)
R(I,K) = TEMP

60 CONTINUE
70 CONTINUE
80 CONTINUE
90 CONTINUE

STORE THE DIAGONAL ELEMENT OF S AND RESTORE
THE CORRESPONDING DIAGONAL ELEMENT OF R.

SDIAG(J) = R(J,J)
R(J,J) = X(J)

100 CONTINUE

SOLVE THE TRIANGULAR SYSTEM FOR Z. IF THE SYSTEM IS
SINGULAR, THEN OBTAIN A LEAST SQUARES SOLUTION.

SDIAG(J) = DIAG(L)

THE TRANSFORMATIONS TO ELIMINATE THE ROW OF D
MODIFY ONLY A SINGLE ELEMENT OF (Q TRANSPOSE)*B
BEYOND THE FIRST N, WHICH IS INITIALLY ZERO.

QTBPJ = ZERO
DO 80 K = J, N

DETERMINE A GIVENS ROTATION WHICH ELIMINATES THE
APPROPRIATE ELEMENT IN THE CURRENT ROW OF D.

IF (SDIAG(K) .EQ. ZERO) GO TO 70
IF (DABS(R(K,K)) .GE. DABS(SDIAG(K))) GO TO 40

COTAN = R(K,K)/SDIAG(K)
SIN = P5/DSQRT(P25+P25*COTAN**2)
COS = SIN* COTAN
GO TO 50

CONTINUE
TAN = SDIAG(K)/R(K,K)
COS = P5/DSQRT(P25+P25*TAN**2)
SIN = COS*TAN

CONTINUE

COMPUTE THE MODIFIED DIAGONAL ELEMENT OF R AND
THE MODIFIED ELEMENT OF ((Q TRANSPOSE)*B,O).

40

50

QRSL1090
QRSL1100
QRSL1110
QRSL1120
QRSL1130
QRSL1140
QRSL1150
QRSL1160
QRSL1170
QRSL1180
QRSL1190
QRSL1200
QRSL1210
QRSL1220
QRSL1230
QRSL1240
QRSL1250
QRSL1260
QRSL1270
QRSL1280
QRSL1290
QRSL1300
QRSL1310
QRSL1320
QRSL1330
QRSL1340
QRSL1350
QRSL1360
QRSL1370
QRSL1380
QRSL1390
QRSL1400
QRSL1410
QRSL1420
QRSL1430
QRSL1440
QRSL1450
QRSL1460
QRSL1470
QRSL14PO
QRSL1490
QRSL1500
QRSL1510
RSL1520

QRSL1530
QRSL1540
QRSL1550
QRSL1560
QRSL1570
QRSL1580
QRSL1590
QRSL1600
QRSL1610
QRSL1620

C
C
C
C

C
C
C

C
C
C
C

C
C
C



242

NSING = N
DO 110 J = 1, N

IF (SDIAG(J) .EQ. ZERO .AND. NSING .EQ. N) NSING = J - 1
IF (NSING .LT. N) WA(J) = ZERO

110 CONTINUE
IF (NSING .LT. 1) GO TO 150
DO 140 K = 1, NSING

J = NSING - K + 1
SUM = ZERO
JP1 = J + 1
IF (NSING .LT. JP1) GO TO 130
DO 120 I = JP1, NSING

SUM = SUM + R(I,J)*WA(I)
120 CONTINUE
130 CONTINUE

WA(J) = (WA(J) - SUM)/SDIAG(J)
140 CONTINUE
150 CONTINUE

PERMUTE THE COMPONENTS OF Z BACK TO COMPONENTS OF X.

DO 160 J = 1, N
L = IPVT(J)
X(L) = WA(J)

160 CONTINUE
RETURN

LAST CARD OF SUBROUTINE QRSOLV.

END

C

C
C
C

C
C
C

QRSL1630
QRSL1640
QRSL1650
QRSL1660
QRSL1670
QRSL1680
QRSL1690
QRSL1700
QRSL1710
QRSL1720
QRSL1730
QRSL1740
QRSL1750
QRSL1760
QRSL1770
QRSL1780
QRSL1790
QRSL1800
QRSL1810
QRSL1820
QRSL1830
QRSL1840
QRSL1850
QRSL1860
QRSL1870
QRSL1880
QRSL1890
QRSL1900
QRSL1910
QRSL1920
QRSL1930



243

SUBROUTINE RWUPDT(N,R,LDR,W,B,ALPHA,COS,SIN)
INTEGER N,LDR
DOUBLE PRECISION ALPHA
DOUBLE PRECISION R(LDR,N),W(N),B(N),COS(N),SIN(N)

C **********
C
C SUBROUTINE RWUPDT
C
C GIVEN AN N BY N UPPER TRIANGULAR MATRIX R, THIS SUBROUTINE
C COMPUTES THE QR DECOMPOSITION OF THE MATRIX FORMED WHEN A ROW
C IS ADDED TO R. IF THE ROW IS SPECIFIED BY THE VECTOR W, THEN
C RWUPDT DETERMINES AN ORTHOGONAL MATRIX Q SUCH THAT WHEN THE
C N+1 BY N MATRIX COMPOSED OF R AUGMENTED BY W IS PREMULTIPLIED
C BY (Q TRANSPOSE), THE RESULTING MATRIX IS UPPER TRAPEZOIDAL.
C THE MATRIX (Q TRANSPOSE) IS THE PRODUCT OF N TRANSFORMATIONS
C
C G(N)*G(N-1)* ... *G(1)

C
C WHERE G(I) IS A GIVENS ROTATION IN THE (I,N+1) PLANE WHICH
C ELIMINATES ELEMENTS IN THE (N+1)-ST PLANE. RWUPDT ALSO
C COMPUTES THE PRODUCT (Q TRANSPOSE)*C WHERE C IS THE
C (N+1)-VECTOR (B,ALPHA). Q ITSELF IS NOT ACCUMULATED, RATHER
C THE INFORMATION TO RECOVER THE G ROTATIONS IS SUPPLIED.
C
C THE SUBROUTINE STATEMENT IS
C
C SUBROUTINE RWUPDT(N,R,LDR,W,B,ALPHA,COS,SIN)
C
C WHERE
C
C N IS A POSITIVE INTEGER INPUT VARIABLE SET TO THE ORDER OF R.
C
C R IS AN N BY N ARRAY. ON INPUT THE UPPER TRIANGULAR PART OF
C R MUST CONTAIN THE MATRIX TO BE UPDATED. ON OUTPUT R
C CONTAINS THE UPDATED TRIANGULAR MATRIX.
C
C LDR IS A POSITIVE INTEGER INPUT VARIABLE NOT LESS THAN N
C WHICH SPECIFIES THE LEADING DIMENSION OF THE ARRAY R.
C
C W IS AN INPUT ARRAY OF LENGTH N WHICH MUST CONTAIN THE ROW
C VECTOR TO BE ADDED TO R.
C
C B IS AN ARRAY OF LENGTH N. ON INPUT B MUST CONTAIN THE
C FIRST N ELEMENTS OF THE VECTOR C. ON OUTPUT B CONTAINS
C THE FIRST N ELEMENTS OF THE VECTOR (Q TRANSPOSE)*C.
C
C ALPHA IS A VARIABLE. ON INPUT ALPHA MUST CONTAIN THE
C (N+1)-ST ELEMENT OF THE VECTOR C. ON OUTPUT ALPHA CONTAINS
C THE (N+1)-ST ELEMENT OF THE VECTOR (Q TRANSPOS..)*C.
C
C COS IS AN OUTPUT ARRAY OF LENGTH N WHICH CONTAINS THE
C COSINES OF THE TRANSFORMING GIVENS ROTATIONS.
C
C SIN IS AN OUTPUT ARRAY OF LENGTH N WHICH CONTAINS THE

RWUP0010
RWUP0020
RWUP0030
RWUP0040
RWUP0050
RWUP0060
RWUP0070
RWUP0080
RWUP0090
RWUP0100
RWUP0110
RWUP0120
RWUP0130
RWUP0140
RWUP0150
RWUP0160
RWUP0170
RWUP0180
RWUP0190
RWUP0200
RWUP0210
RWUP0220
RWUP0230
RWUP0240
RWUP0250
RWUP0260
RWUP0270
RWUP0280
RWUP0290
RWUP0300
RWUP0310
RWUP0320
RWUP0330
RWUP0340
RWUP0350
RWUP0360
RWUP0370
RWUPO380
RWUP0390
RWUPO400
RWUPO410
RWUP0420
RWUPO430
RWUPO440
RWUPO450
RWUPO460
RWUPO470
RWUPO480
RWUPO490
RWUP0500
RWUP0510
RWUP0520
RWUP0530
RWUP0540



244

C SINES OF THE TRANSFORMING GIVENS ROTATIONS. RWUP0550
C RWUP0560
C SUBPROGRAMS CALLED RWUP0570
C RWUP0580
C FORTRAN-SUPPLIED ... DABS,DSQRT RWUP0590
C RWUP0600
C ARGONNE NATIONAL LABORATORY. MINPACK PROJECT. MARCH 1980. RWUP0610
C BURTON S. GARBOW, DUDLEY V. GOETSCHEL, KENNETH E. HILLSTROM, RWUP0620
C JORGE J. MORE RWUP0630
C RWUP0640
C *******RWUP0650

INTEGER I,J,JM1 RWUP0660
DOUBLE PRECISION COTAN,ONE,P5,P25,ROWJ,TAN,TEMP,ZERO RWUP0670
DATA ONE,P5,P25,ZERO /1.ODO,5.OD-1,2.5D-1,O.ODO/ RWUP0680

C RWUP0690
DO 60 J = 1, N RWUP0700

ROWJ = W(J) RWUP0710
JM1 = J - 1 RWUP0720

C RWUP0730
C APPLY THE PREVIOUS TRANSFORMATIONS TO RWUP0740
C R(I,J), I=1,2,...,J-1, AND TO W(J). RWUP0750
C RWUP0760

IF (JM1 .LT. 1) GO TO 20 RWUP0770
DO 10 I = 1, JM1 RWUP0780

TEMP = COS(I)*R(I,J) + SIN(I)*ROWJ RWUP0790
ROWJ = -SIN(I)*R(I,J) + COS(I)*ROWJ RWUP0800
R(I,J) = TEMP RWUP0810

10 CONTINUE RWUP0820
20 CONTINUE RWUP0830

C RWUP0840
C DETERMINE A GIVENS ROTATION WHICH ELIMINATES W(J). RWUP0850
C RWUP0860

COS(J) = ONE RWUP0870
SIN(J) = ZERO 'WUP0880
IF (ROWJ .EQ. ZERO) GO TO 50 RWUP0890
IF (DABS(R(J,J)) .GE. DABS(ROWJ)) GO TO 30 RWUP0900

COTAN = R(J,J)/ROWJ RWUP0910
SIN(J) = P5/DSQRT(P25+P25*COTAN**2) RWUP0920
COS(J) = SIN(J)*COTAN RWUP0930
GO TO 40 RWUP0940

30 CONTINUE RWUP0950
TAN = ROWJ/R(J,J) RWUP0960
COS(J) = P5/DSQRT(P25+P25*TAN**2) RWUP0970
SIN(J) = C(S(J)*TAN RWUP0980

40 CONTINUE RWUP0990
C RWUP1000
C APPLY THE CURRENT TRANSFORMATION TO R(J,J), B(J), AND ALPHA. RWUP1010
C RWUP1020

R(J,J) = COS(J)*R(J,J) + SIN(J)*ROWJ RWUP1030
TEMP = COS(J)*B(J) + SIN(J)*ALPHA RWUP1040
ALPHA = -SIN(J)*B(J) + COS(J)*ALPHA RWUP1050
B(J) = TEMP RWUP1060

50 CONTINUE RWUP1070
60 CONTINUE RWUP1080



RETURN

LAST CARD OF SUBROUTINE RWUPDT.

END

245

C
C
C

RWUP1090
RWUP1100
RWUP1110
RWUP1120
RWUP1130



246



247

SUBROUTINE R1MPYQ(M,N,A,LDA,V,W) R1MQ0010
INTEGER M,N,LDA R1MQ0020
DOUBLE PRECISION A(LDA,N),V(N),W(N) R1MQ0030

C fRl1MQ0040
C RiMQ0050
C SUBROUTINE R1MPYQ R1MQ0060
C R1MQ0070
C GIVEN AN M BY N MATRIX A, THIS SUBROUTINE COMPUTES A*Q WHERE R1MQ0080
C Q IS THE PRODUCT OF 2*(N - 1) TRANSFORMATIONS R1MQ0090
C R1MQ0100
C GV(N-1)*...'GV(1)*GW(1)*...*GW(N-1) R1MQ0110
C R1MQ0120
C AND GV(I), GW(I) ARE GIVENS ROTATIONS IN THE (I,N) PLANE WHICH R1MQ0130
C ELIMINATE ELEMENTS IN THE I-TH AND N-TH PLANES, RESPECTIVELY. R1MQ0140
C Q ITSELF IS NOT GIVEN, RATHER THE INFORMATION TO RECOVER THE R1MQ0150
C GV, GW ROTATIONS IS SUPPLIED. R1MQ0160
C R1MQ0170
C THE SUBROUTINE STATEMENT IS R1MQ0180
C R1MQ0190
C SUBROUTINE R1MPYQ(M,N,A,LDA,V,W) R1MQ0200
C R1MQ0210
C WHERE R1MQ0220
C R1MQ0230
C M IS A FOSITIVE INTEGER INPUT VARIABLE SET TO THE NUMBER R1MQ0240
C OF ROWS OF A. R1MQ0250
C R1MQ0260
C N IS A POSITIVE INTEGER INPUT VARIABLE SET TO THE NUMBER R1MQ0270
C OF COLUMNS OF A. R1MQ0280
C R1MQ0290
C A IS AN M BY N ARRAY. ON INPUT A MUST CONTAIN THE MATRIX RlMQ0300
C TO BE POSTMULTIPLIED BY THE ORTHOGONAL MATRIX Q R1MQ0310
C DESCRIBED ABOVE. ON OUTPUT A*Q HAS REPLACED A. R1MQ0320
C R1MQ0330
C LDA IS A POSITIVE INTEGER INPUT VARIABLE NOT LESS THAN M R1MQ0340
C WHICH SPECIFIES THE LEADING DIMENSION OF THE ARRAY A. R1MQ0350
C R1MQ0360
C V IS AN INPUT ARRAY OF LENGTH N. V(I) MUST CONTAIN THE R1MQ0370
C INFORMATION NECESSARY TO RECOVER THE GIVENS ROTATION GV(I) R1MQ0380
C DESCRIBED ABOVE. R1MQ0390
C R1MQ0400
C W IS AN INPUT ARRAY OF LENGTH N. W(I) MUST CONTAIN THE R1MQ0410
C INFORMATION NECESSARY TO RECOVER THE GIVENS ROTATION GW(I) R1MQ0420
C DESCRIBED ABOVE. R1MQ0430
C R1MQ0440
C SUBROUTINES CALLED R1MQ0450
C R1MQ0460
C FORTRAN-SUPPLIED ... DABS,DSQ. R1MQ0470
C R1MQ0480
C ARGONNE NATIONAL LABORATORY. MINPACK PROJECT. MARCH 1980. R1MQ0490
C BURTON S. GARBOW, KENNETH E. HILLSTROM, JORGE J. MORE R1MQ0500
C R1MQ0510
C ********** R1MQ0520

INTEGER I,J,NMJ,NM1 R1MQ0530
DOUBLE PRECISION COS,ONE,SIN,TEMP R1MQ0540



248

DATA ONE /1.ODO/

APPLY THE FIRST SET OF GIVENS ROTATIONS TO A.

NM1 = N - 1
IF (NM1 .LT. 1) GO TO 50
DO 20 NMJ = 1, NM1

J = N - NMJ
IF (DABS(V(J)) .GT. ONE) COS = ONF,'V(J)
IF (DABS(V(J)) .GT. ONE) SIN = DSQRT(ONE-COS*t2)
IF (DABS(V(J)) .LE. ONE) SIN = V(J)
IF (DABS(V(J)) .LE. ONE) COS = DSQRT(ONE-SIN**2)
DO 10 I = 1, M

TEMP = COS*A(I,J) - SIN*A(I,N)
A(I,N) = SIN"*A(I,J) + COS*cA(I,N)
A(I,J) = TEMP
CONTINUE

CONTINUE
C
C APPLY THE SECOND SET OF GIVENS ROTATIONS TO A.
C

DO 40 J = 1, NM1
IF (DABS(W(J)) .GT. ONE) COS = ONE/W(J)
IF (DABS(W(J)) .GT. ONE) SIN = DSQRT(ONE-COS**2)
IF (DABS(W(J)) .LE. ONE) SIN = W(J)
IF (DABS(W(J)) .LE. ONE) COS = DSQRT(ONE-SIN**2)
DO 30 I = 1, M

TEMP = COS*A(I,J) + SIN*A(I,N)
A(I,N) = -SIN*A(I,J) + COS*A(I,N)
A(I,J) = TEMP -
CONTINUE

CONTINUE
CONTINUE
RETURN

LAST CARD OF SUBROUTINE R1MPYQ.

END

C
C
C

10
20

R1MQ0550
R1MQ0560
R1MQ0570
R1MQ0580
R1MQ0590
R1MQ0600
R1MQ0610
R1MQ0620
R1MQ0630
R1MQ0640
R 1MQ0650
R1MQ0660
R1MQ0670
R1MQ0680
R1MQ0690
R1MQ0700
R1MQ0710
R1MQ0720
R1MQ0730
R1MQ0740
R1MQ0750
R1MQ0760
R1MQ0770
R1MQ0780
R1MQ0790
R1MQ0800
R1MQ0810
R1MQ0820
R1MQ0830
R1MQ0840
R1MQ0850
R1MQ0860
R1MQ0870
R1MQ0880
R1MQ0890
R1MQ0900
R1MQ0910
R1MQ0920

30
40
50

C
C
C



249

SUBROUTINE R1UPDT(M,N,S,LS,U,V,W,SING)
INTEGER M,N,LS
LOGICAL SING
DOUBLE PRECISION S(LS),U(M),V(N),W(M)

C **********:
C
C SUBROUTINE R1UPDT
C
C GIVEN AN M BY N LOWER TRAPEZOIDAL MATRIX S, AN M-VECTOR U,
C AND AN N-VECTOR V, THE PROBLEM IS TO DETERMINE AN
C ORTHOGONAL MATRIX Q SUCH THAT
C
C T
C (S + U*V )*Q
C
C IS AGAIN LOWER TRAPEZOIDAL.
C
C THIS SUBROUTINE DETERMINES Q AS THE PRODUCT OF 2*(N - 1)
C TRANSFORMATIONS
C
C GV(N-1)*...*GV(1)*GW(1)*...*.fGW(N-1)
C
C WHERE GV(I), GW(I) ARE GIVENS ROTATIONS IN THE (I,N) PLANE
C WHICH ELIMINATE ELEMENTS IN THE I-TH AND N-TH PLANES,
C RESPECTIVELY. Q ITSELF IS NOT ACCUMULATED, RATHER THE
C INFORMATION TO RECOVER THE GV, GW ROTATIONS IS RETURNED.
C
C THE SUBROUTINE STATEMENT IS
C
C SUBROUTINE R1UPDT(M,N,S,LS,U,V,W,SING)
C
C WHERE
C
C M IS A POSITIVE INTEGER INPUT VARIABLE SET TO THE NUMBER
C OF ROWS OF S.
C
C N IS A POSITIVE INTEGER INPUT VARIABLE SET TO THE NUMBER
C OF COLUMNS OF S. N MUST NOT EXCEED M.
C
C S IS AN ARRAY OF LENGTH LS. ON INPUT S MUST CONTAIN THE LOWER
C TRAPEZOIDAL MATRIX S STORED BY COLUMNS. ON OUTPUT S CONTAINS
C THE LOWER TRAPEZOIDAL MATRIX PRODUCED AS DESCRIBED ABOVE.
C
C LS IS A POSITIVE INTEGER INPUT VARIABLE NOT LESS THAN
C (N*(2*M-N+1))/2.
C
C U IS AN INPUT ARRAY OF LENGTH M WHICH MUST CONTAIN THE
C VECTOR U.
C
C V IS AN ARRAY OF LENGTH N. ON INPUT V MUST CONTAIN THE VECTOR
C V. ON OUTPUT V(I) CONTAINS THE INFORMATION NECESSARY TO
C RECOVER THE GIVENS ROTATION GV(I) DESCRIBED ABOVE.
C

W IS AN OUTPUT ARRAY OF LENGTH M. W(I) CONTAINS INFORMATION

R1UP0010
R1UP0020
R1UP0030
R1UP0040
R1UP0050
R1UP0060
R1UP0070
R1UP0080
R1UP0090
RiUP0100
R1UP0110
R1UP0120
RiUP0130
RiUP0140
RiUP0150
RiUP0160
RiUP0170
R1UP0180
RIUP0190
R1UPO200
R1UP0210
R1UPO220
R1UP0230
R1UP0240
R1UPO250
R1UP0260
R1UPO270
R1UP0280
R1UP0290
R1UP0300
R1UP0310
R1UP0320
R1UP0330
R1UP0340
R1UPO350
R1UP0360
R1UPO370
R1UP0380
R1UP0390
R 1UPO400
R1UPO410
R1UPO420
R1UPO430
R1UP0440
R1UPO450
R1UPO460
R1UPO470
R1UPO480
R1UPO490
R1UP0500
R1UP0510
R1UP0520
R1UP0530
R1UP0540C



250

C NECESSARY TO RECOVER THE GIVENS ROTATION GW(I) DESCRIBED R1UP0550
C ABOVE. R1UP0560
C R1UP0570
C SING IS A LOGICAL OUTPUT VARIABLE. SING IS SET TRUE IF ANY R1UP0580
C OF THE DIAGONAL ELEMENTS OF THE OUTPUT S ARE ZERO. OTHERWISE R1UP0590
C SING IS SET FALSE. R1UP0600
C R1UP0610
C SUBPROGRAMS CALLED R1UP0620
C R1UP0630
C MINPACK-SUPPLIED ... DPMPAR R1UP0640
C R1UP0650
C FORTRAN-SUPPLIED ... DABS,DSQRT R1UP0660
C R1UP0670
C ARGONNE NATIONAL LABORATORY. MINPACK PROJECT. MARCH 1980. R1UP0680
C BURTON S. GARBOW, KENNETH E. HILLSTROM, JORGE J. MORE, R1UP0690
C JOHN L. NAZARETH R1UP0700
C R1UP0710
C **********R1UP0720

INTEGER I,J,JJ,L,NMJ,NM1 R1UP0730
DOUBLE PRECISION COS,COTAN,GIANT,ONE,P5,P25,SIN,TAN,TAU,TEMP, R1UP0740

- ZERO R1UP0750
DOUBLE PRECISION DPMPAR R1UP0760
DATA ONE,P5,P25,ZERO /1.ODO,5.OD-1,2.5D-1,0.ODO/ R1UP0770

C R1UP0780
C GIANT IS THE LARGEST MAGNITUDE. R1UP0790
C R1UP0800

GlANT = DPMPAR(3) R1UP0810
C R1UP0820
C INITIALIZE THE DIAGONAL ELEMENT POINTER. R1UP0830
C R1UP0840

JJ = (N*(2*M - N + 1))/2 - (M - N) R1UP0850
C R1UP0860
C MOVE THE NONTRIVIAL PART OF THE LAST COLUMN OF S INTO W. R1UP0870
C R1UP0880

L = JJ R1UP0890
DO 10 I = N, M R1UPO900

W(I) = S(L) R1UP0910
L = L + 1 R1UP0920

10 CONTINUE R1UP0930
C R1UP0940
C ROTATE THE VECTOR V INTO A MULTIPLE OF THE N-TH UNIT VECTOR R1UP0950
C IN SUCH A WAY THAT A SPIKE IS INTRODUCED INTO W. R1UP0960
C R1UP0970

NM1 = N - 1 R1UP0980
IF (NM1 .LT. 1) GO TO 70 R1UP0990
DO 60 NMJ = 1, NM1 R1UP1000

J = N - NMJ R1UP1010
JJ = JJ - (M - J + 1) R1UP1020
W(J) = ZERO R1UP1030
IF (V(J) .EQ. ZERO) GO TO 50 R1UP1040

C R1UP1050
C DETERMINE A GIVENS ROTATION WHICH ELIMINATES THE R1UP1060
C J-TH ELEMENT OF V. R1UP1070
C R1UP1080



251

IF (DABS(V(N)) .GE. DABS(V(J))) GO TO 20 R1UP1090
COTAN = V(N)/V(J) R1UP1100
SIN = P5/DSQRT(P25+P25*COTAN**2) R1UP1110
COS = SIN*COTAN R1UP1120
TAU = ONE R1UP1130
IF (DABS(COS)*GIANT .GT. ONE) TAU = ONE/COS R1UP1140
GO TO 30 R1UP1150

20 CONTINUE R1UP1160
TAN = V(J)/V(N) R1UP1170
COS = P5/DSQRT(P25+P25 TAN**2) R1UP1180
SIN = COS*TAN R1UP1190
TAU = SIN R1UP1200

30 CONTINUE R1UP1210
C R1UP1220
C APPLY THE TRANSFORMATION TO V AND STORE THE INFORMATION R1UP1230
C NECESSARY TO RECOVER THE GIVENS ROTATION. R1UP1240
C R1UP1250

V(N) = SIN*V(J) + COS*V(N) R1UP1260
V(J) = TAU R1UP1270

C R1UP1280
C APPLY THE TRANSFORMATION TO S AND EXTEND THE SPIKE IN W. R1UP1290
C R1UP1300

L = JJ R1UP1310
DO 40 I = J, M R1UP1320

TEMP = COS*S(L) - SIN*W(I) R1UP1330
W(I) = SIN*S(L) + COS*W(I) R1UP1340
S(L) = TEMP R1UP1350
L = L + 1 R1UP1360

40 CONTINUE R1UP1370
50 CONTINUE R1UP1380
60 CONTINUE R1UP1390
70 CONTINUE R1UP1400

C R1UP1410
C ADD THE SPIKE FROM THE RANK 1 UPDATE TO W. R1UP1420
C R1UP1430

DO 80 I = 1, M R1UP1440
W(I) = W(I) + V(N)*U(I) R1UP1450

80 CONTINUE R1UP1460
C R1UP1470
C ELIMINATE THE SPIKE. R1UP1480
C R1UP1490

SING = .FALSE. R1UP1500
IF (NM1 .LT. 1) GO TO 140 R1UP1510
DO 130 J = 1, NM1 R1UP1520

IF (W(J) .EQ. ZERO) GO TO 120 R1UP1530
C R1UP1540
C DETERMINE A GIVENS ROTATION WHICH ELIMINATES THE R1UP1550
C J-TH ELEMENT OF THE SPIKE. R1UP1560
C R1UP1570

IF (DABS(S(JJ)) .GE. DABS(W(J))) GO TO 90 R1UP1580
COTAN = S(JJ)/W(J) R1UP1590
SIN = P5/DSQRT(P25+P25*COTAN**2) R1UP1600
COS = SIN*COTAN R1UP1610
TAU = ONE R1UP1620



252

IF (DABS(COS)*GIANT .GT. ONE) TAU = ONE/COS R1UP1630
GO TO 100 R1UP1640

10 CONTINUE R1UP1650
TAN = W(J)/S(JJ) R1UP1660
COS = P5/DSQRT(P25+P25*TAN*2) R1UP1670
SIN = COS*TAN l lUP1680
TAU = SIN R1UP1690

100 CONTINUE R1UP1700
C R1UP1710
C APPLY THE TRANSFORMATION TO S AND REDUCE THE SPIKE IN W. R1UP1720
C R1UP1730

L = JJ R1UP1740
DO 110 I = J, M R1UP1750

TEMP = COS*S(L) + SIN*W(I) R1UP1760
W(I) = -SIN*S(L) + COS*W(I) R1UP1770
S(L) = TEMP R1UP1780
L = L + 1 R1UP1790

110 CONTINUE R1UP1800
C R1UP1810
C STORE THE INFORMATION NECESSARY TO RECOVER THE R1UP1820
C GIVENS ROTATION. R1UP1830
C R1UP1840

W(J) = TAU R1UP1850
120 CONTINUE RlUP1860

C R1UP1870
C TEST FOR ZERO DIAGONAL ELEMENTS IN THE OUTPUT S. R1UP1880
C R1UP1890

IF (S(JJ) .EQ. ZERO) SING = .TRUE. R1UP1900
JJ = JJ + (M - J + 1) R1UP1910

130 CONTINUE RlUP1920
140 CONTINUE R1UP1930

C R1UP1940
C MOVE W BACK INTO THE LAST COLUMN OF THE OUTPUT S. R1UP1950
C R1UP1960

L = JJ RiUP1970
DO 150 I = N, M R1UPI980

S(L) = W(I) R1UP1990
L = L + 1 R1UP2000

150 CONTINUE R1UP2010
IF (S(JJ) .EQ. ZERO) SING = .TRUE. R1UP2020
RETURN R1UP2030

C R1UP2040
C LAST CARD OF SUBROUTINE R1UPDT. R1UP2050
C R1UP2060

END R1UP2070



253

REAL FUNCTION SPMPAR(I)
INTEGER IC III\ *\IIIII

C
C FUNCTION SPMPAR
C

THIS FUNCTION PROVIDES SINGLE PRECISION MACHINE PARAMETERS
WHEN THE APPROPRIATE SET OF DATA STATEMENTS IS ACTIVATED (BY
REMOVING THE C FROM COLUMN 1) AND ALL OTHER DATA STATEMENTS ARE
RENDERED INACTIVE. MOST OF THE PARAMETER VALUES WERE OBTAINED
FROM THE CORRESPONDING BELL LABORATORIES PORT LIBRARY FUNCTION.

THE FUNCTION STATEMENT IS

REAL FUNCTION SPMPAR(I)

C WHERE
C

I IS AN INTEGER INPUT VARIABLE SET TO 1, 2, OR 3 WHICH
SELECTS THE DESIRED MACHINE PARAMETER. IF THE MACHINE HAS
T BASE B DIGITS AND ITS SMALLEST AND LARGEST EXPONENTS ARE
EMIN AND EMAX, RESPECTIVELY, THEN THESE PARAMETERS ARE

SPMPAR(1) = B**(1 - T), THE MACHINE PRECISION,

SPMPAR(2) = B**(EMIN - 1), THE SMALLEST MAGNITUDE,

SPMPAR(3) = B**EMAX*(1 - B;*(-T)), THE LARGEST MAGNITUDE.

ARGONNE NATIONAL LABORATORY. MINPACK PROJECT. MARCH 1980.
BURTON S. GARBOW, KENNETH E. HILLSTROM, JORGE J. MORE

INTEGER MCHEPS(2)
INTEGER MINMAG(2)
INTEGER MAXMAG(2)
REAL RMACH(3)
EQUIVALENCE (RMACH(1),MCHEPS(1))
EQUIVALENCE (RMACH(2),MINMAG(1))
EQUIVALENCE (RMACH(3),MAXMAG(1))

C
C MACHINE CONSTANTS FOR THE IBM 360/370 SERIES,
C THE AMDAHL 470/V6, THE ICL 2900, THE ITEL AS/6,
C THE XEROX SIGMA 5/7/9 AND THE SEL SYSTEMS 85/86.
C

DATA
DATA
DATA

RMACH(1)
RMACH(2)
RMACH(3)

/
/

/

Z3C100000 /
Z00100000 /
Z7FFFFFFF /

MACHINE CONSTANTS FOR THE HONEYWELL 600/6000 SERIES.

DATA
DATA
DATA

RMACH(1) /
RMACH(2) /
RMACH(3) /

0716400000000 /
0402400000000 /
0376777777777 /

C
C
C
C
C
C
C
C
C
C

C
C
C
C
C
C
C
C
C
C
C
C
C
C

SPPROO10
SPPR0020
SPPR0030
SPPR0040
SPPR0050
SPPR0060
SPPR0070
SPPRO080
SPPR0090
SPPRO100
SPPRO110
SPPRO120
SPPRO130
SPPRO140
SPPRO150
SPPRO160
SPPRO170
SPPRO180
SPPRO190
SPPRO200
SPPRO210
SPPR0220
SPPR0230
SPPR0240
SPPR0250
SPPRO260
SPPR0270
SPPR0280
SPPRO290
SPPRO300
SPPR0310
SPPRO320
SPPRO330
SPPRO340
SPPRO350
SPPR0360
SPPRO370
SPPRO380
SPPRO390
SPPRO400
SPPR0410
SPPRO420
SPPR0430
SPPRO440
SPPRO450
SPPRO460
SPPR0470
SPPRO480
SPPRO490
SPPR0500
SPPR0510
SPPR0520
SPPR0530
SPPR0540

C
C
C
C
C
C



254

C SPPR0550
C MACHINE CONSTANTS FOR THE CDC 6000/7000 SERIES. SPPR0560
C SPPR0570
C DATA RMACH(1) / 16414000000000000000B / SPPR0580
C DATA RMACH(2) / 00014000000000000000B / SPPR0590
C DATA RMACH(3) / 37767777777777777777B / SPPR0600
C SPPR0610
C MACHINE CONSTANTS FOR THE PDP-10 (KA OR KI PROCESSOR). SPPR0620
C SPPR0630
C DATA RMACH(1) / "147400000000 / SPPRO640
C DATA RMACH(2) / "000400000000 / SPPRO650
C DATA RMACH(3) / "377777777777 / SPPR0660
C SPPR0670
C MACHINE CONSTANTS FOR THE PDP-11 FORTRAN SUPPORTING SPPRO680
C 32-BIT INTEGERS (EXPRESSED IN INTEGER AND OCTAL). SPPR0690
C SPPR0700
C DATA MCHEPS(1) / 889192448 / SPPRO710
C DATA MINMAG(1) / 8388608 / SPPR0720
C DATA MAXMAG(1) / 2147483647 / SPPRO730
C SPPR0740
C DATA RMACH(1) / 006500000000 / SPPR0750
C DATA RMACH(2) / 000040000000 / SPPRO760
C DATA RMACH(3) / 017777777777 / SPPR0770
C SPPRO780
C MACHINE CONSTANTS FOR THE PDP-11 FORTRAN SUPPORTING SPPR0790
C 16-BIT INTEGERS (EXPRESSED IN INTEGER AND OCTAL). SPPR0800
C SPPR0810
C DATA MCHEPS(1),MCHEPS(2) / 13568, 0 / SPPR0820
C DATA MINMAG(1),MINMAG(2) / 128, 0 / SPPR0830
C DATA MAXMAG(1),MAXMAG(2) / 32767, -1 / SPPR0840
C SPPR0850
C DATA MCHEPS(1),MCHEPS(2) / 0032400, 0000000 / SPPR0860
C DATA MINMAG(1),MINMAG(2) / 0000200, 0000000 / SPPR0870
C DATA MAXMAG(1),MAXMAG(2) / 0077777, 0177777 / SPPR0880
C SPPR0890
C MACHINE CONSTANTS FOR THE BURROUGHS 5700/6700/7700 SYSTEMS. SPPRO900
C SPPRO910
C DATA RMACH(1) / 01301000000000000 / SPPRO920
C DATA RMACH(2) / 01771000000000000 / SPPRO930
C DATA RMACH(3) / 00777777777777777 / SPPRO940
C SPPRO950
C MACHINE CONSTANTS FOR THE BURROUGHS 1700 SYSTEM. SPPRO960
C SPPRO970
C DATA RMACH(1) / Z4EA800000 / SPPRO980
C DATA RMACH(2) / Z400800000 / SPPRO990
C DATA RMACH(3) / Z5FFFFFFFF / SPPR1000
C SPPR1010
C MACHINE CONSTANTS FOR THE UNIVAC 1100 SERIES. SPPR1020
C SPPR1030
C DATA RMACH(1) / 0147400000000 / SPPR1040
C DATA RMACH(2) / 0000400000000 / SPPR1050
C DATA RMACH(3) / 0377777777777 / SPPR1060
C SPPR1070
C MACHINE CONSTANTS FOR THE DATA GENERAL ECLIPSE S/200. SPPR1080



255

C
C NOTE - IT MAY BE APPROPRIATE TO INCLUDE THE FOLLOWING CARD -
C STATIC RMACH(3)
C
C DATA MINMAG/20K,0/,MAXMAG/77777K,177777K/
C DATA MCHEPS/36020K,0/
C
C MACHINE CONSTANTS FOR THE HARRIS 220.

DATA
DATA
DATA

MCHEPS(1),MCHEPS(2) / '20000000, '00000353
MINMAG(1),MINMAG(2) / '20000000, '00000201
MAXMAG(1),MAXMAG(2) / '37777777, '00000177

/
/
/

C MACHINE CONSTANTS FOR THE CRAY-1.

DATA
DATA
DATA

RMACH(1) /
RMACH(2) /
RMACH(3) /

0377224000000000000000B /
0200034000000000000000B /
0577777777777777777776B /

MACHINE CONSTANTS FOR THE PRIME 400.

DATA
DATA
DATA

MCHEPS(1)
MINMAG(1)
MAXMAG(1)

/ :10000000153 /
/ :10000000000 /
/ :17777777777 /

SPMPAR = RMACH(I)
RETURN

C
C LAST CARD OF FUNCTION SPMPAR.
C

END

C
C
C
C
C

C
C
C
C
C
C
C
C
C
C
C

SPPR1090
SPPR1100
SPPR111!
SPPR1120
SPPR1130
SPPR1140
SPPR1150
SPPR1160
SPPR1170
SPPR1 180
SPPR1190
SPPR1200
SPPR1210
SPPR1220
SPPR1230
SPPR1240
SPPR1250
SPPR1260
SPPR1270
SPPR1280
SPPR1290
SPPR1300
SPPR1310
SPPR1320
SPPR1330
SPPR1340
SPPR1350
SPPR1360
SPPR1370
SPPR1380
SPPR1390



256



257

DOUBLE PRECISION FUNCTION DPMPAR(I)
INTEGER I

C
C
C FUNCTION DPMPAR
C
C THIS FUNCTION PROVIDES DOUBLE PRECISION MACHINE PARAMETERS
C WHEN THE APPROPRIATE SET OF DATA STATEMENTS IS ACTIVATED (BY
C REMOVING THE C FROM COLUMN 1) AND ALL OTHER DATA STATEMENTS ARE
C RENDERED INACTIVE. MOST OF THE PARAMETER VALUES WERE OBTAINED
C FROM THE CORRESPONDING BELL LABORATORIES PORT LIBRARY FUNCTION.
C
C THE FUNCTION STATEMENT IS
C
C DOUBLE PRECISION FUNCTION DPMPAR(I)
C
C WHERE
C
C I IS AN INTEGER INPUT VARIABLE SET TO 1, 2, OR 3 WHICH
C SELECTS THE DESIRED MACHINE PARAMETER. IF THE MACHINE HAS
C T BASE B DIGITS AND ITS SMALLEST AND LARGEST EXPONENTS ARE
C EMIN AND EMAX, RESPECTIVELY, THEN THESE PARAMETERS ARE
C
C DPMPAR(1) = B**(1 - T), THE MACHINE PRECISION,
C
C DPMPAR(2) = B**(EMIN - 1), THE SMALLEST MAGNITUDE,
C
C DPMPAR(3) = B**EMAX*(1 - B**(-T)), THE LARGEST MAGNITUDE.
C
C ARGONNE NATIONAL LABORATORY. MINPACK PROJECT. MARCH 1980.
C BURTON S. GARBOW, KENNETH E. HILLSTROM, JORGE J. MORE
C
C

INTEGER MCHEPS(4)
INTEGER MINMAG(4)
INTEGER MAXMAG(4)
DOUBLE PRECISION DMACH(3)
EQUIVALENCE (DMACH(1),MCHEPS(1))
EQUIVALENCE (DMACH(2),MINMAG(1))
EQUIVALENCE (DMACH(3),MAXMAG(1))

C
C MACHINE CONSTANTS FOR THE IBM 360/370 SERIES,
C THE AMDAHL 470/V6, THE ICL 2900, THE ITEL AS/6,
C THE XEROX SIGMA 5/7/9 AND THE SEL SYSTEMS 85/86.
C

DATA
DATA
DATA

MCHEPS(1),MCHEPS(2)
MINMAG(1),MINMAG(2)
MAXMAG(1),MAXMAG(2)

/
/
/

Z34100000,
Z00100000,
Z7FFFFFFF,

Z00000000 /
Z00000000 /
ZFFFFFFFF /

MACHINE CONSTANTS FOR THE HONEYWELL 600/6000 SERIES.

DATA
DATA
DATA

MCHEPS(1) ,MCHEPS(2)
MINMAG(1),MINMAG(2)
MAXMAG(1),MAXMAG(2)

/
/
/

0606400000000, 0000000000000
0402400000000, 0000000000000
0376777777777, 0777777777777

/
/
/

DPPROO10
DPPR0020
DPPR0030
DPPR0040
DPPR0050
DPPR0060
DPPR0070
DPPR0080
DPPR0090
DPPRO100
DPPRO110
DPPRO120
DPPRO130
DPPRO140
DPPRO150
DPPRO160
DPPRO170
DPPRO180
DPPRO190
DPPR0200
DPPR0210
DPPR0220
DPPR0230
DPPR0240
DPPR0250
DPPRO260
DPPR0270
DPPR0280
DPPRO290
DPPR0300
DPPRO310
DPPR0320
DPPRO330
DPPR0340
DPPRO350
DPPRO360
DPPR0370
DPPRO380
DPPRO390
DPPRO400
DPPRO410
DPPR0420
DPPRO430
DPPR0440
DPPRO450
DPPR0460
DPPR0470
DPPRG480
DPPRO490
DPPR0500
DPPR0510
DPPR0520
DPPR0530
DPPR0540

C
C
C
C
C
C



258

C
C MACHINE CONSTANTS FOR THE CDC 6000/7000 SERIES.
C
C DATA MCHEPS(1) / 15614000000000000000B /
C DATA MCHEPS(2) / 15010000000000000000B /
C
C DATA MINMAG(1) / 00604000000000000000B /
C DATA MINMAG(2) / 00000000000000000000B /
C
C DATA MAXMAG(1) / 37767777777777777777B /
C DATA MAXMAG(2) / 37167777777777777777B /
C
C MACHINE CONSTANTS FOR THE PDP-10 (KA PROCESSOR).

DATA MCHEPS(1),MCHEPS(2) / "114400000000,
DATA MINMAG(1),MINMAG(2) / "033400000000,
DATA MAXMAG(1),MAXMAG(2) / "37777777'777,

"000000000000 /
"000000000000 /
"344777777777 /

MACHINE CONSTANTS FOR THE PDP-10 (KI PROCESSOR).

DATA MCHEPS(1),MCHEPS(2) /
DATA MINMAG(1),MINMAG(2) /
DATA MAXMAG(1),MAXMAG(2) /

"104400000000,
"000400000000,
"377777777777,

"000000000000 /
"000000000000 /
"377777777777 /

MACHINE CONSTANTS FOR THE PDP-11 FORTRAN SUPPORTING
32-BIT INTEGERS (EXPRESSED IN INTEGER AND OCTAL).

DATA MCHEPS(1),MCHEPS(2) /
DATA MINMAG(1),MINMAG(2) /
DATA MAXMAG(1),MAXMAG(2) /

620756992,
8388608,

2147483647,

o/
o/

-1 /

C DATA MCHEPS(1),MCHEPS(2) / 004500000000, 000000000000 /
C DATA MINMAG(1),MINMAG(2) / 000040000000, 000000000000 /
C DATA MAXMAG(1),MAXMAG(2) / 017777777777, 037777777777 /
C
C MACHINE CONSTANTS FOR THE PDP-11 FORTRAN SUPPORTING
C 16-BIT INTEGERS (EXPRESSED IN INTEGER AND OCTAL).

DATA MCHEPS(1),MCHEPS(2) /
DATA MCHEPS(3),MCHEPS(4) /

DATA MINMAG(1),MINMAG(2) /
DATA MINMAG(3),MINMAG(4) /

DATA MAXMAG(1),MAXMAG(2)
DATA MAXMAG(3),MAXMAG(4)

/
/

DATA MCHEPS(1),MCHEPS(2) /
DATA MCHEPS(3),MCHEPS(4) /

9472,
0,

128,
0,

32767,
-1,

o/
o/

o/
o/

-1 /
-1 /

0022400, 0000000 /
0000000, 0000000 /

DATA MINMAG(1),MINMAG(2) / 0000200, 0000000 /
DATA MINMAG(3),MINMAG(4) / 0000000, 0000000 /

DATA MAXMAG(1),MAXMA3(2) / 0077777, 0177777 /

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C

DPPR0550
DPPR0560
DPPR0570
DPPR0580
DPPR0590
DPPR0600
DPPR0610
DPPRO620
DPPR0630
DPPR0640
DPPRO650
DPPR0660
DPPR0670
DPPR0680
DPPR0690
DPPR0700
DPPRO710
DPPRO720
DPPRO730
DPPR0740
DPPRO750
DPPR0760
DPPRO770
DPPRO780
DPPR0790
DPPR0800
DPPR0810
DPPR0820
DPPRO830
DPPR0840
DPPR0850
DPPR0860
DPPR0870
DPPR0880
DPPR0890
DPPRO900
DPPRO910
DPPR0920
DPPRO930
DPPRO940
DPPRO950
DPPR0960
DPPRO970
DPPRO980
DPPRO990
DPPR1000
DPPR1010
DPPR1020
DPPR1030
DPPR1040
DPPR1050
DPPR1060
DPPR1070
DPPR1080

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C



259

C DATA MAXMAG(3),MAXMAG(4) / 0177777, 0177777 /
C
C MACHINE CONSTANTS FOR THE BURROUGHS 6700/7700 SYSTEMS.
C
C DATA MCHEPS(1) / 01451000000000000 /
C DATA MCHEPS(2) / 00000000000000000 /
C
C DATA MINMAG(1) / 01771000000000000 /
C DATA MINMAG(2) / 07770000000000000 /
C
C DATA MAXMAG(1) / 00777777777777777 /
C DATA MAXMAG(2) / 0777777777777777; /
C
C MACHINE CONSTANTS FOR THE BURROUGHS 5700 SYSTEM.
C
C DATA MCHEPS(1) / 01451000000000000 /
C DATA MCHEPS(2) / 00000000000000000 /
C
C DATA MINMAG(1) / 01771000000000000 /
C DATA MINMAG(2) / 00000000000000000 /
C
C DATA MAXMAG(1) / 00777777777777777 /
C DATA MAXMAG(2) / 00007777777777777 /
C
C MACHINE CONSTANTS FOR THE BURROUGHS 1700 SYSTEM.
C
C DATA MCHEPS(1) / ZCC6800000 /
C DATA MCHEPS(2) / Z000000000 /
C
C DATA MINMAG(1) / ZC00800000 /
C DATA MINMAG(2) / Z000000000 /
C
C DATA MAXMAG(1) / ZDFFFFFFFF /
C DATA MAXMAG(2) / ZFFFFFFFFF /
C
C MACHINE CONSTANTS FOR THE UNIVAC 1100 SERIES.
C
C
C
C
C

DATA
DATA
DATA

MCHEPS(1),MCHEPS(2) / 0170640000000, 0000000000000
MINMAG(1),MINMAG(2) / 0000040000000, 0000000000000
MAXMAG(1),MAXMAG(2) / 0377777777777, 0777777777777

/
/
/

C MACHINE CONSTANTS FOR THE DATA GENtRAL ECLIPSE S/200.
C
C NOTE - IT MAY BE APPROPRIATE TO INCLUDE THE FOLLOWING CARD -
C STATIC DMACH(3)
C
C DATA MINMAG/20K,3*0/,MAXMAG/77777K,3*177777K/
C DATA MCHEPS/32020K,3*0/
C
C MACHINE CONSTANTS FOR THE HARRIS 220.
C
C DATA MCHEPS(1),MCHEPS(2) / '20000000, '00000334 /
C DATA MINMAG(1),MINMAG(2) / '20000000, '00000201 /
C DATA MAXMAG(1),MAXMAG(2) / '37777777, '37777577 /

DPPR1090
DPPR1100
DPPR 1110
DPPR1120
DPPR1130
DPPR1140
DPPR1150
DPPR1160
DPPR1170
DPPR1180
DPPR1190
DPPR1200
DPPR1210
DPPR1220
DPPR1230
DPPR1240
DPPR1250
DPPR1260
DPPR1270
DPPR1280
DPPR1290
DPPR1300
DPPR1310
DPPR1320
DPPR1330
DPPR1340
DPPR1350
DPPR1360
DPPR1370
DPPR1380
DPPR1390
DPPR1400
DPPR1410
DPPR1420
DPPR1430
DPPR1440
DPPR1450
DPPR1460
DPPR1470
DPPR1480
DPPR1490
DPPR1500
DPPR15 10
DPPR1520
DPPR1530
DPPR1540
DPPR1550
DPPR1560
DPPR1570
DPPR1580
DPPR1590
DPPR1600
DPPR1610
DPPR1620



260

C
C MACHINE CONSTANTS FOR THE CRAY-1.
C
C DATA MCHEPS(1) / 0376424000000000000000B /
C DATA MCHEPS(2) / OOOOOOOOOOOOOOOOOOOOOOB /
C
C DATA MINMAG(1) / 0200034000000000000000B /
C DATA MINMAG(2) / OOOOOOOOOOOOOOOOOOOOOOB /
C
C DATA MAXMAG(1) / 0577777777777777777777B /
C DATA MAXMAG(2) / 0000007777777777777776B /
C
C MACHINE CONSTANTS FOR THE PRIME 400.
C

DATA
DATA
DATA

MCHEPS(1),MCHEPS(2) / :10000000000;
MINMAG(1),MINMAG(2) / :10000000000,
MAXMAG(1),MAXMAG(2) / :17777777777,

-00000000123
:00000100000
:37777677776

DPMPAR = DMACH(I)
RETURN

LAST CARD OF FUNCTION DPMPAR.

END

C
C
C
C

C
C
C

DPPR1630
DPPR1640
DPPR1650
DPPR1660
DPPR1670
DPPR1680
DPPR1690
DPPR1700
DPPR1710
DPPR1720
DPPR1730
DPPR1740
DPPR1750
DPPR1760
DPPR1770
DPPR1780
DPPR 1790
DPPR1800
DPPR1810
DPPR1820
DPPR 1830
DPPR1840
DPPR1850
DPPR1860

/
/

/


