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ON CARRIER FACILITATED TRANSPORT
THROUGH MEMBRANES

by

Hans G. Kaper, Gary K. Leaf, Bernard J. Matkowsky

ébstract

Facilitated transport is a proces' whereby the diffusion of a
solute across a membrane is chemically enhanced. 1In this report an
analysis is given of a facilitated transport system involving a
volatile species A which reacts with a nonvolatile carrier species B
to form the nonvolatile product AB. The species A is transported
across the membrane by ordinary diffusion, as well as by the diffu-
sion of the product AB. It is assumed that the reaction rates are
large, so the reactions are confined mostly to thin boundary layers
near the surfaces of the membrane. The method of matched asymptotic
expansions is used to derive the asymptotic solution of the non-
linear boundary value problem governing equilibrium. The effect of
various parameters on the facilitation factor is analyzed in detail.

1. Introduction

Facilitated transport is a process whereby the diffusion of a solute
across a membrane is chemically enhanced. The phenomenon of facilitated
transport is observed, for example, when a volatile species A diffuses across
a membrane and the membrane contains a nonvolatile carrier species B which
reacts reversibly with A to form the nonvolatile complex AB. In addition to
the ordinary diffusion of A, we have the diffusion of the complex AB across
the membrane. The carrier B cannot leak out of the membrane, so the total
amount of B is conserved and, to balance the diffusion of AB, the carrier B
diffuses in a direction opposite to that of A and AB. This circulation of B
enhances the transport of A across the membrane. Near the surface of higher
concentration of A the reaction of A and B is such that the complex AB is
formed, while near the opposite surface the complex AB dissociates into its
components A and B. After the dissociation, A leaves the membrane and B
diffuses back through the membrane to form additional products AB. The flux
of A is thus facilitated by the presence of the carrier species B. This
mechanism of facilitated transport is, in fact, used in separation and purifi=

cation processes =- for example, to separate hexene from heptane (cf.



Matulevicius and Li [1]). It is also assumed to play an important role in

transport phenomena in biological membranes, cf. Murray [2].

The phenomenon of facilitated transport was first observed in 1959 by
Scholander [3] and Wittenberg [4]. It was studied by Ward [5] who formulated
a mathematical model and compared the results of numerical calculations with
experimental data for the facilitated transport of nitric oxide in a ferrous
chloride solution. Ward also gave an expression for the facilitation factor
in the case of equal diffusion coefficients and infinite reaction rates. The
expression was derived by selectively applying boundary conditions to the
resulting algebraic equations, in an ad hoc manner. Smith, Meldon and Colton
[6] considered the same mathematical model and found asymptotic solutions
corresponding to membranes that are either very thin or wvery thick. They
recognized that the latter case leads to a singularly perturbed boundary value
problem. Assuming equal diffusion coefficients for the nonvolatile species
they used the method of matched asymptotic expansions to construct an approxi-
mate solution valid for large membrane thicknesses and carrier-dominatcd dif-
fusion. Goddard, Schultz and Bassett [7] also employed the method of matched
asymptotic expansions to consider the facilitated transport problem with large
reaction rates and equal diffusion coefficients. This work is reviewed in the
article by Goddard, Schultz and Suchdeo [8], and in the monograph by Aris [9],

where an excellent description of facilitated transport can be found.

In this report we discuss the carrier facilitated transport problem
described earlier. As in [6]-[9], we assume a fast reaction mechanism, so the
reactions are confined mostly to thin boundary layers near the surfaces of the
membrane and chemical equilibrium pertains throughout most of the interior of
the membrane. We make no assumptions about the diffusivities or any of the
other parameters that enter the model, except that they are constant =-- but
not necessarily equal == throughout the membrane. Our resulis are asymptoti-
cally complete to lowest order for large reaction rates. In the case of equal
diffusion coefficients for the nonvolatile species our solution reduces to the
solution found by Goddard, Schultz and Bassett [7] which was also given by
Ward [5]. In the final section we give a general appraisal of the effect of

the various parameters of the problem upon the facilitation factor.



2. Mathematical Model

We consider the steady molecular diffusion of a chemical species A
through a membrane. The membrane has the form of a plane slab of finite
thickness L. Inside the membrane the species A undergoes a reversible

chemical reaction with a second species B to form a complex species AB, say,
A+B § AB . (1)

The carrier B and the complex AB diffuse freely inside the membrane, but
cannot leak out of it. Thus, only the species A is transferred through the

membrane, either by ordinary diffusion or by carrier-mediated transport.

We assume that the temperature is uniform throughout the me: brane, and
that the diffusion processes are governed by Fick's law with constant (but not
necessarily equal) diffusion coefficients. If we choose the x*-axis perpen-
dicular to the membrane, with the membrane surfaces at x*¥ = 0 and x* = L, then
the molar concentrations C satisfy the differential equations

2

d“c,
D, 7 = kGG = Ky Cup s (2a)
dx*
dch
Dy 7 ® K CC = k,C\p s (2b)
dx*
dzCAB
Dun 5~ = kG, Cp + k,C\p s (2¢)
dx*

for 0 < x* { L, and the boundary conditions

0
(0 =¢ , ¢ =c, (3a)
dC dC
B B
B igEin e, -
dc dc
AB AB
e (0) = Tk (L) =0, (3¢c)

Here, the D's denote the diffusion coefficients of the various species; k; and
k, are the reaction rates associated with the forward (*) and backward (+)
reaction (1), respectively; Cg and Ck are the specified molar concentrations

of species A at the faces x*¥ = 0 and x* = L of the membrane. The boundary



value problem (2),(3) is to be solved subject to the stoichiometric constraint

L
L] (eg#c, Jaxx = ¢, %)
0

where C is a specified molar concentration. This constraint fixes the total

amount of the nontransferable species B and AB present in the membrane.

The quantity of interest is the net molar flux of species A across the

membrane, which is given by

dC d

C
A AB
%) = = i s *
NA(x ) (éA 1 A DAB dx*) s D<#v £ L .

It follows from (2a) and (2c¢c) that the quantity DyCp+DppCap varies linearly
across the membrane. Hence, Ny is constant; its value can be expressed in
terms of the concentration differences of the species A and AB at the surfaces

of the membrane,

D

L AB

N, = A

A
A L

0
Cc,-C
(cy
The first term in this expression represents the contribution due to ordinary
diffusion of the species A, whereas the second term represents the contribu-

tion due to carrier-mediated transport of A in the form of the complex AB., It

follows from (5) that we are interested in finding the quantity CAB(O)-CAB(L).

We introduce dimensionless variables,

x = x*/L ,
ulx) = CA(x*)/C :
vix) = CAB(x*)/C ;
wix) = CB(x*)/C '
a 0 SR |-
YO-CA/C » Yl -CA/CQ
2 2
K = KOO/, , K, = kLD,
§ =D,./D, , d=D_/D .

Then we have the following boundary value problem for the functions u, v, and

W



u'' = K uweK,v o, (6a)

Sy" = “K UWHKLY (6b)

(6/d)vw" = K W=k (6c)

for 0 < x < 1, and

u(0) = Yo s u(l) = U (7a)
v'(0) = v'(1) =0 , (7b)
w'(0) = w'(1) =0 , (7¢)
subject te the constraint
1
[ (v4w)dx =1 . (8)
0
In terms of the dimensionless variables the quantity of interest, Ny is given by
DAC
N, = == {¥5 = vy + $lv(0)-w(1)]} . (9)

We recall that u, v, and w, representing dimensionless concentrations, are

nonnegative functions on their entire domain of definition, 0 < x < 1.

By eliminating the variable w we reformulate the problem (6),(7),(8) as a
constrained boundary value problem for the functions u and v. From (6b) and
(6¢c) it follows that w+dv is a linear function of x. According to (7b), the
derivative of this function vanishes at the endpoints. Hence, w+dv is a

constant, « say, so
w(x) = a=dv(x) , PEscl. (10)

Substituting this expression in (8) we see that the constant « can be
expressed in terms of v,

a=1+ (d=1)v , (11a)

where

1
veE[ vixéx . (11b)
0
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As w(x)+dv(x) > 0, it follows from (10) that the constant o is nonnegative.
From (11) it follows that a > 1 whenever d > 1. 0f course, v depends
implicitly on the parameter @, so eq. (lla) represents a (nonlinear) con-

straint which determines a.
Using (10) to eliminate w, we obtain a boundary value problem for the

pair of functions (u,v),

ull

n

K u =K,y =K duv , (12a)

K ou + Ky o+ Klduv : (12b)

6\'"

for 0 < x < 1, subject again to the boundary conditions (7a) and (7b), and the
constraint (11). We will solve this problem assuming that the dimensionless
reaction rates < and K, are both large and of the same order of magnitude.

That is, we assume that there exists a small positive parameter €, 0 < € << 1,

such that

3

K =i!. K =2
]
1 82 2 g2

where the ratio
0 = 02101
is a 0(1)-quantity compared to €. Thus, we consider the equations

ezu" = Olﬂu i Olduv ' (13a)
2

e“6y" = =0,0u + 0,v + 0 duv . (13b)
Because the small parameter (52) multiplies the derivatives u" and v", we are
dealing with a singular perturbation problem. We will employ the method of
matched asymptotic expansions to solve the equations (13) subject to the

boundary conditions (7) and the constraint (11).
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3. Solution of the Problem

3a, Interior Solution

To find the solution of eq. (13) for small € we expand u and v,

u= g €2ul & v (14a)

v =y, + B0 & s (14b)
Then, to lowest order in €,

oiau0 - 02v0 - olduov0 =200

Thus, any nontrivial solution of the form (14) is such that

ovo(x)

uo(x)=m07-x—5, i< <5 (15)

For the higher-order coefficients we obtain & set of linear algebraic

equations
i=1
- - - " \*
ol(u dVO)ui (02+01du0)vi u_, +0,d jﬁl u vl_j ’
i-1
- - \ - n - i
cl(u de'ui + (02+01du0)vi Gvi-l o,d j£1 UV,
R ISl &y s This set is solvable for (u;,v;) if the lower-order

coefficients (ug,vg),...,(u;-1,v;-1) satisfy the solvability condition

" " =
Wl * MG Y

In particular, for i=l,

" " o=
Uy + 6v0 0% (16)

From (15) we deduce an expression for uH in terms of vy and its derivatives

vo and va. When we use this expression, the solvability condition (16) be-

comes a second order nonlinear differential equation for vy In fact, the
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equation is more succinctly formulated in terms of the function wp = a-dvg.

Namely,

-(c2+w§)w0w5 + 2c2(w6)2 =0, (17)

where we have introduced the abbreviation

c2 = qo/d .

The equation (17) can be integrated exactly. Its general solution is

wo(x) = ax + b # ¥(ax+b)2+c? , 0<x<1

where a and b are arbitrary constants of integration. However, the lower sign
must be rejected if wy is to be positive. Thus we find that, to lowest order

in €, the solution of (13) in the interior of the domain is given by

§
uo(x) ok |V (ax+b)2+c? - (ax+b)]| - E-, (18a)
vo(x) =-§ - %-[ax+b+/(ax+b)z+c2] ‘ (18b)

We observe that, in general, the functions up and Vg cannot be expected to
satisfy the given boundary data (7a),(7b) for u and v. Therefore, the
expansion (14) represents an asymptotic approximation to the solution in the
interior of the domain. Near each of the boundaries it is necessary to
construct boundary layer expansions that must be matched with the interior

solution (18). For future reference we note from (18) that

8
u (0 * 4 (0) =< [VDZ+cZ - b -% , (19a)
vo(x) * vo(O) = %-- %-lb + /b2+czl ; (19b)

as x * 0, and



§ :
— [V(ab)Z4c2 = (a+b)] -% , (20a)

uo(x) > uo(l) p

il
I
i

[a+b + ¥ (a+b)Z+c?] (20b)

o=

5>
vo(x) vo(l)
as x + 1.

3b. Boundary . yer folution near x=0

We introduce tle «! vtched variable z = x/€ and define the functions uk

and VE by means of the ru:ations
vh(z) = u(ez) , VE(2) = v(ez)

If u and v satisfy the equations (13), then U and VM satisfy the equations

" = o,oU - o,V - oldUV i (21a)

V"' = -0,00 + 0,V + 0,dUV , (21b)
for 2 > 0 We will determine a solution (UL,VL) subject to the initial
conditions

Ay oy & W) s0; (22)

cf. (7a)(7b), and the matching conditions

lim U(z) = u,(0) , liﬂ V(z) = vy(0) , (23)
z

g

cf. (19a),(19b). (We drop the superscript L in the remainder of this

subsection.)

First, we observe that U+8V is a linear function of z. Since U and V

both tend to finite limits as z*®, we must have
U(z) + 6v(z) =B , g 20, (24)

for some constant B. This relation allows us to eliminate U from (21) and

13
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(22). The result is a nonlinear differential equation for V,

SV + cl[dévz - (ab+0+dB)V + aB] = 0 , (25)
which must be solved subject to the iritial conditions

V(0) = (B~ )/8 ;, V'(0) =0, (26)

The equation (25) admits two eolutions that do not depend on z, viz. V(z)
= v* and V(z) = V7, where
& 1

= 77 [a6 + 0+ dB £ /(ad+o+dB)¢ - 4apdd] .

Now, the initial conditions (26) imply that there is no real value of B such
that v' = (ﬁ-YO)IG, and that there is precisely one real value of B such that
Vv = (B-To)ld, namely

0670
B = Yo * gay. * (27)
0
In that case,
v“(z) = U = (28a)
Z 0 TO N a
272 ah,
Vi(z VO ordy. (28b)

0
Both matching conditions (23) are satisfied if we take

1 c262
b = 33-[-(0+dY0) 4 E:ETE] : (29)
The equation (25) admits other solutions besides the ones that are
independent of 2z that we found above. Although they cannot be obrained
explicitly, we can gain sufficient information about them to evaluate their
relevance in the present context, If we multiply eq. (25) by V' and
integrate, using the initial conditions (26), we obtain the following

expression for V' in terms of V,



v =2 dol(V(O)-V)q(V)]l/Z, (30)

where q is a quadratic function of V,

q(v) = v2 4 qQV +q;
with
1
G * T Nr (2d10+30+3a6+d8) :

|
q, = - —— [dB
4 .

2
+ (dy,+30-3ad)8 - Y0(2dY0+30+3a6)] ;

The existence of non-constant solutions V of the differential equation (30) is
most easily studied in the phase plane (V,V'). Because of (26), we restrict
our attention to trajectories that originate at (V(0),0). We observe that any
trajectory emanating from the point (V(0),0) leaves the V-axis under a
vertical tangent, cf. (30). Finally, we require that lim V'(z) = 0, so any
trajectory of interest must end at some point of the V-ax?ZT Now, if q(V) > 0
for all V, we must have V < V(0) for V' to be real, so V is a decreasing
function of z near z = 0. This rules out the upper (+) sign in (30). But
then it is obvious that any trajectory, once it has left the V-axis at
(v(0),0), stayé in the lower half-plane to the left of the vertical line V =
V(0) for all z > 0 and will never return to the V-axis. Therefore, no
trajectory originating at (V(0),0) meets the requirement that it end at some
point of the V-axis. We conclude that (30) does not have a non-constant

solution that meets all requirements. A similar conclusion holds if q(V) < 0
for all V.

Now, assume that q has two real zeros, V, and V_ say,
V, = i (2dY_+30+306+dB) & > Vp(B)
+ 4as 0 &8 VT
where
(B) = 82 = (2dy  +50-3ad)B
P 3d 0

+ _lf (2dY0+3a+306)(~2dYn+o+a6) ;
3d '

15



16

Then
V' = t[% do, (v(o)-v)(v-v_)(v—v“)]l/2 . (31)

We investigate whether it is possible that a trajectory which originates at
(v(0),0), terminates at either of the points (V_,0) or (V_,,0).

First, we consider the case V(0) < V_ < V_. Then, for V' to be real we
must have V < V(0) for z near 0, so V decreases, the upper (+) sign for V' is
ruled out, and any trajectory leaving (V(0),0) stays in the lower half-plane
to the left of the vertical line V = V(0). No trajectory can reach either of
the points (V_,0), (V,,0) and, again, we conclude that there is no non-

constant solution of (30) that meets all requirements.

Next, we consider the case V_ < V(0) < V.. Then the condition that V' be
real leads to V > V(0) for z near 0, so V increases and the lower (=) sign is
ruled out. This time, it is indeed possible that there exists a trajectory
that originates at (V(0),0) and ends at (V,,0), and that lies entirely in the
upper half-plane between the vertical lines V = V(0) and V = V_, Such a

trajectory is traversed in the direction of increasing V.

Similarly, if V_ < Vv, < V(0) we find that there may exist a trajectory
that originates at (V(0),0) and ends at (V_,0), and that lies entirely in the
lower half-plane between the vertical lines V = V, and V = V(0). Such a

trajectory is traversed in the direction of decreasing V.

Hence, we can restrict ourselves to the investigation of solutions V of
(25) which are given implicitly by the formula (31), which satisfy the initial
conditions (26), and which have the property that

lim V(z) = V, . (32)

F Aaad

The corresponding functions U are found from (24). Of course, the parameter B

is still to be determined at this point.

Next, we turn to the matching conditions (23). They become



8 o 0
- [ - - —
-ty -2 [VbZsc? - b) 2 5
v =2l [V o b,
+ d d

cf. (19). Multiplying the last equation by 6 and adding the two equations we
see that

1 ¢
sedia-§-§0.

Then the second matching condition can be rewritten in the form
VbZ4cZ =a - b - v,

1 /5 .

sl

d, ;
i3

&) —-

1 d l o
s-glocgitbn)l gy

However, because W(0) = a=dV(0) = u-d(B-Yo)/6 > 0, the expression in the right
member is certainly negative, while the expression in the left member is posi-
tive. Hence, the matching conditions cannot possibly be satisfied for any
choice of @ and B. We conclude therefore, that a solution of the differential
equation (25) of the form (31) cannot be made to match the interior solution
(18) and must be ruled out. Hence, the only solution in the boundary layer
near x = 0 that satisfies the initial conditions (26) and that can be matched
with the interior solution (18) is the constant solution (28), with B given by
(27).

3c. Boundary Layer Solution near x = 1

A similar analysis can be given for the boundary layer solution near
x = 1. We introduce the stretched variable z = (l-x)/¢ and define the func~-
tions UR and VR by the relations

o®(s) » ull-es) , V*(s) * vll=cs) .

Then UR and VR satisfy the equations (21) for z > 0. Instead of (22) we have
the initial conditions

u(o) = T v'(o) =0 , (33)

17
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and the matching conditions
“'m U(z) = uy(l) ,  lim V(2) = vo(1) . (34)

As in the previous subsection we find that the only solucion (uR, yR) is, in

fact, independent of z and given by

@) =u, =y, , (35a)
1 1
ay
R 1
vi(z) v1 = °"‘”1 . (35b)

The matching conditions (34) are satisfied if we take
c252

0+leJ . (36)

a+b =-%§ [-(0+le) .

3d. Uniform Solution

Now that we have the interior solution to the boundary value probiem
(13), and the boundary layer solutions that are valid near x = 0 and x = 1 and
that match the interior solution, we can combine the results to obtain a solu-
tion that is valid uniformly throughout the interval [0,1]. To lowerst order

in € we have

)
u(x) = E-[/(ax+b)2+c2 - (ax*b)] - g-. (37a)
vix) = %---% |ax+b + ¥ (ax+b)2+c”] , (37b)

where a and b are given by the expressions (29) and (36). It remains to

determine a@ from the constraint (11).

Using (37b) we obtain the following expression for v,

1
24 (a+2b)

v =

aje

- E%E [{Ca+b)Y (a+h)Z4c? = b/bZ+c?)

2 fr——— ey
+ ¢ {&n(atb+/(a+b)*+c?) = n(b+/b%+c?)}| .



We substitute b and a+b from (29) and (36), and use the definition -
ac/6. We then find

ved[1- 2 obatnn )| ,

— (p
n0n1+u06 0

where "0 ; nl, p and w are given in terms of YO’ Yl, 0 and d,
Ng =0 *+dvy, n =0+dy ,
s Ba*li 21
p=glng+n ),

(no—nl)—l(in n

E
[}

o-znnl)-

When we use the expression of v in the constraint (11) we obtain a quadratic

equation for a,
p0u2 *petop, = 0, (38)

where the coefficients p; are given in terms of the parameters of the problem,
02 + Y. ¥,d + =Y. 47, )o(1+d)
0'1 0 "1

= -0dd "
(c+70d)(d+vid)

Po
p, = 98d - (l+(d-l)0m)[o+yod][o+yld) ;
Py - d(o*Yod)(0+Yld) o

It remains to investigate the roots of equation (38). Because py is always
negative and p, always positive, the root: are real and of opposite sign.
Thus, there exists exactly one positive value of a such that the constraint

(11) is satisfied, namely

1
a = = ——[p + /pf-bpp] - (39)
Po

This completes the solution of the problem.

19
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4, Facilitation Factor

We retusn to the expression (9) for the total flux of species A through
the membrane. The extent to which the transport is enhanced is measured by

the facilitation factor F,

5 v(0) - v(l) i

F =
o ™ Ny

With the solution v given by (37b), where the constants a and b are given in

(29) and (36) and the parameter a is determined according to (39), we have

aod

= b}
y (04Y,d) (o+Y,d) e
We note the following special cases:
(i) d =1 (Dyp=Dgp).
The quadratic equation (38) reduces to
(a=1)(oda + (o+yo)(0411)) =0,
whence a = 1, so
ob
F=F " wew) i
0 1
In terms of the original parameters we have
D k.k,C
2
g, - g : . (41b)

1 B 0 L
A (k2+kch)(k2+kch)

This expression agrees with the ones given by Ward [5, formula (12)), Smith,

Meldon and Colton [6, formula (54)], and Goddard, Schultz and Bassett [7,
formula (3.30)].

(ii) d ® 1 (Dpg*Dp)

A straight forward perturbation procedure yields the result



F = Fl[l—Q(d-l)+0((d-l)2)J , (42)

where F; is the value of F for d = 1, which is given by (41), and

NgM * pod o N

UWTU—s—i'n—i’-rT—-l. (43)
01 0 1

b =

Here, Nor Ny P and w are given in terms of Ty Yl and ¢,

Ng =0+ Y, n=otyY,,
1, -1 -1
P =-§(n0 +n, P
w=(n-n)-l(2nn -4&nn,) .
01 0 1

We show that ¢ is always positive.

Suppose Y, Z_Yl. Then n, > n., son

0 = n](l+z) for some 2z > 0.  Thus,

1 0

w = (nlz)-lln(1+z) and p = nIl[l +~%z)(1+z)-l. It follows from the inequality
1 + 32
in(l+z) < 2z e , z > -1,
that w < p. Hence,
| Y
¢ > ow + ﬁg + ﬁl -1
0 |
Next, we use the inequality
in(l+z) _>.1_i';' ’ 82 -1,
-] -] -1
to show that w > n “(1+z) ~ = n,", so
Y Y Y
0> %4 &bl --ﬁl >0 .
0 0 1 1

Similarly, one shows that ¢ > 0 if Yo £ Y,» 80 ¢ is indeed always positive.

The coefficient ¢ may be called the enhancement coefficient. It measures

the effect of different diffusion coefficients for the nonvolatile species B

21
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and A8 on the facilitation factor F, relative to the situation where B and AB
have equal diffusion coefficients. As can be seen from (42), the facilitation

factor F is enhanced wher d < 1 (i.e. Dy > Dsp), inhibited when d > 1 (i.e.
DAB > DB).



Notation

A, B, AB

Dys Dgs Dypg

Cas Gg» Cap
*
X

L
Ky, kp
¢l Lk
c

Na

X

U,V ,W
v

Yor 1)
o
5, @

@, B, a, b

ok, oL

uR, R

Ny +M
P, W

Pp» P1» P2
91, 92

F

F

]

molecular species

diffusion coefficients

molar concentrations

coordinate perpendicular to the membrane surfaces
thickness of the membrane

forward (+) and backward (¢) reaction rates in (1)
specified molar concentrations of A at x* =0and x* =1L

specified total molar concentration of B and AB inside the
membrane

total flux of species A
dimensionless coordinate
dimensionless molar concentrations
integral of v over [0,1]

boundary values of u

dimensionless reaction rates
ratios of diffusion coefficients
constants

small parameter, 0 < € << |

: : ; 2
dimensionless reaction rates; Oi = Ki/E
ratio of reaction rates; o = 02/0l = K9/x1
parameter; c2 = ao/6

coefficients of u in the interior solution
coefficients of v in the interior solution
boundary layer solution near x = 0
boundary layer solution near x = 1
parameters

parameters involving "o and "

parameters

parameters

facilitation factor

value of facilitation factor when Dpp = DB

enhancement (inhibition) coefficient in the facilitation
factor

23



24

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

References

Matulevirius, E. S., and N, N, Li, "Facilitated Transport through Liquid
Membrances," Separation and Purification Methods, 4 (1), 73-96 (1975).

Murray, J. D., Lectures cn Nonlinear Differential Equation Models in

Biology, Oxford Univ. Press (1977).

Scholander, P. F., "Oxygen Transport through Hemoglobin Solutiomns,"
Science, 131, 585 (1960).

Wittenberg, J. B., "Oxygen Transport =-- A New Function Proposed for
Myoglobin," Abstract, Biol. Bull., 1171, 402-403 (1959).

Ward, W. J., "Analytical and Experimental Studies of Facilitated
Transport," AIChE Journal, 16, 405-410 (1970).

Smith, K. A., Meldon, J. H., and Colton, C. K., "An Analysis of Carrier-
Facilitated Transport," AIChE Journal, 19, 102-111 (1973).

Goddard, J. D., Schultz, J. S., and Bassett, R. J., "On Membrane

Diffusion with Near-Equilibrium Reaction," Chem. Engin. Science, 25,
665-683 (1970).

Goddard, J. D., Schultz, J. S5., and Suchdeo, S. R., "Facilitated
Transport via Carrier-Mediated Diffusion in Membranes, 1II." AIChE

Journal 20, 625-645 (1974).

Aris, R., The Mathematical Theory of Diffusion and Reaction in Permeable

Catalysts, Oxford Univ. Press (1975).



