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ON CARRIER FACILITATED TRANSPORT
THROUGH MEMBRANES

by

Hans G. Kaper, Gary K. Leaf, Bernard J. Matkowsky

Abstract

Facilitated transport is a proces-, whereby the diffusion of a

solute across a membrane is chemically enhanced. In this report an

analysis is given of a facilitated transport system involving a

volatile species A which reacts with a nonvolatile carrier species B

to form the nonvolatile product AB. The species A is transported

across the membrane by ordinary diffusion-, as well as by the diffu-

sion of the product AB. It is assumed that the reaction rates are

large, so the reactions are confined mostly to thin boundary layers

near the surfaces of the membrane. The method of matched asymptotic

expansions is used to derive the asymptotic solution of the non-

linear boundary value problem governing equilibrium. The effect of

various parameters on the facilitation factor is analyzed in detail.

1. Introduction

Facilitated transport is a process whereby the diffusion of a solute

across a membrane is chemically enhanced. The phenomenon of facilitated

transport is observed, for example, when a volatile species A diffuses across

a membrane and the membrane contains a nonvolatile carrier species B which

reacts reversibly with A to form the nonvolatile complex Ab. In addition to

the ordinary diffusion of A, we have the diffusion of the complex AB across

the membrane. The carrier B cannot leak out of the membrane, so the total

amount of B is conserved and, to balance the diffusion of AB, the carrier B

diffuses in a direction opposite to that of A andi AB. This circulation of B

enhances the transport of A across the membrane. Near the surface of higher

concentration of A the reaction of A and B is such that the complex AB is

formed, while near the opposite surface the complex AB dissociates into its

components A and B. After the dissociation, A leaves the membrane and B

diffuses back through the membrane to form additional products Al. The flux

of A is thus facilitated by the presence of the carrier species B. This

mechanism of facilitated transport is, in fact, used in separation and purifi-

cation processes -- for example, to separate hex .'e from heptane (cf.
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Matulevicius and Li [1]). It is also assumed to play an important role in

transport phenomena in biological membranes, cf. Murray [2].

The phenomenon of facilitated transport was first observed in 1959 by

Scholander [3] and Wittenberg [,+]. It was studied by Ward [5] who formulated

a mathematical model and compared the results of numerical calculations with

experimental data for the facilitated transport of nitric oxide in a ferrous

chloride solution. Ward also gave an expression for the facilitation factor

in the case )f equal diffusion coefficients and infinite reaction rates. The

expression was derived by selectively applying boundary conditions to the

resulting algebraic equations, in an ad hoc manner. Smith, Meldon and Colton

[6] considered the same mathematical model and found asymptotic solutions

corresponding to membranes that are either very thin or very thick. They

recognized that the latter case leads to a singularly perturbed boundary value

problem. Assuming equal diffusion coefficients for the nonvolatile species

they used the method of matched asymptotic expansions to construct an approxi-

mate solution valid for large membrane thicknesses and carrier-dominatcd dif-

fusion. Goddard, Schultz and Bassett [7] also employed the method of matched

asymptotic expansions to consider the facilitated transport problem with large

reaction rates and equal diffusion coefficients. This work is reviewed in the

article by Goddard, Schultz and Suchdeo [81, and in the monograph by Aris 191,
where an excellent description of facilitated transport can be found.

In this report we discuss the carrier facilitated transport problem

described earlier. As in 16]-[91, we assume a fast reaction mechanism, so the

reactions are confined mostly to thin boundary layers near the surfaces of the

membrane and chemical equilibrium pertains throughout most of the interior of

the membrane. We make no assumptions about the diffusivitier or any of the

other parameters that enter the model, except that they are constant -- but

not necessarily equal -- throughout the memhran-. Our results are asymptoti-

cally complete to lowest order for large reaction rites. In the case of equal

diffusion coefficients for the nonvolatile species our solution reduces to the

solution found by Goddard, Schultz and Bassett 171 which was also given by

Ward 151. In the final section we give a general appraisal of the effect of

the various parameters of the problem upon the facilitation factor.
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2. Mathematical Model

We consider the steady molecular diffusion of a chemical species A

through a membrane. The membrane has the form of a plane slab or finite

thickness L. Inside the membrane the species A undergoes a reversible

chemical reaction with a second species B to form a complex species AB, say,

A+B V AB . (1)

The carrier B and the complex AB diffuse freely inside the membrane, but

cannot leak out of it. Thus, only the species A is transferred through the

membrane, either by ordinary diffusion or by carrier-mediated transport.

We assume that the temperature is uniform throughout the me brane, and

that the diffusion processes are governed by Fick's law with constant (but not

necessarily equal) diffusion coefficients. If we choose the x*-axis perpen-

dicular to the membrane, with the membrane surfaces at x* = 0 and x* = L, then

the molar concentrations C satisfy the differential equations

d2C

DA 2 kl CA CB k2CAB (2a)
dx*

2
d B

D = k CC - k C (2b)
B 2 1 A B 2 Ab'

dx*

d2C
d AB

DAB 2 = lkACB +2CAB',(c
dx*O

for 0 < x* < L, and the bound-Ary conditions

cA(0) = CA, CA(L) = C(3a)
A 

3a

dC dC
B B

dx* (0) = d (L) =0, (3b)

dC dC
AB (0) = AB (L) = 0 . (3c)

dx* dx*

Here, the D's denote the diffusion coefficients of the various species; k1 and

k2 are the reaction rates associated with the forward (i) and backward (+)
0 L

reaction (1), respectively; CA and CA are the specified molar concentrations

of species A at the faces x* = 0 and x* = L of the membrane. The boundary
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value problem (2),(3) is to be solved subject to the stoichiometric constraint

L

L (CB+CAB)dx* = C , (4)
0

where C is a specified molar concentration. This constraint fixes the total

amount of the nontransferable species B and AB present in the membrane.

The quantity of interest is the net molar flux of species A across the

membrane, which is given by

dCA CAB
N (x*) =-D --- + D 0 < x* < L .
A A dx* + AB dx*) O**

It follows from (2a) and (2c) that the quantity DACA+DABCAB varies linearly

across the membrane. Hence, NA is constant; its value can be expressed in

terms of the concentration differences of the species A and AB at the surfaces

of the membrane,

A~ 0 L AB
NA = L- (CA-CA + - (C (0)-CAB (L)) . (5)

The first term in this expression represents the contribution due to ordinary

diffusion of the species A, whereas the second term represents the contribu-

tion due to carrier-mediated transport of A in the form of the complex AB. It

follows from (5) that we are interested in finding the quantity CAB(0)-CAB(L).

We introduce dimensionless variables,

x = x*/L ,

OWx) = CA(x*)/C ,

v(x) = CAB(x*)/C ,

w(x) =C (x*)/C

YO C/C = C /C ,

K = k CL2 /DA K 2 = k 2 L 2 /A

6= D /DA , d =D /D .

Then we have the following boundary value problem for the functions u, v, and

w,



u" = KCuw-K2V ,

6v" = -KI UW+K2V ,

(6/d)w" = K 1uW-K2V ,V

for 0 < x < 1, and

u(0) - YO , u(1) = Y

v'(0) = v'(1) = 0 ,

w'(0) = w'(1) = 0 ,

subject to the constraint

1
f (v+w)dx = 1 .
0

In terms of the dimensionless variables the quantity of interest, NA, is given by

DAC

NA L O - Yl + 6[v(0)-v(lj .

We recall that u, v, and w, representing dimensionless concentrations, are

nonnegative functions on their entire domain of definition, 0 < x < 1.

By eliminating the variable w we reformulate the problem (6),(/),(8) as a

constrained boundary value problem for the functions u and v. From (6b) and

(6c) it follows that w+dv is a linear function of x. According to (7b), the

derivative of this function vanishes at the endpoints. Hence, w+dv is a

constant, a say, so

w(x) s a-dv(x) ,

Substituting this expression in

expressed in terms of v,

O < x < 1 . (10)

(8) we see that the constant a can be

a . 1 + (d-1)v ,

V s f v(x)dx
0

(lla)

(1 b)

9

(6a)

(6b)

(6c)

(7a)

(7b)

(7c)

(8)

(9)

where



As w(x)+dv(x)

From (11) it

implicitly on

straint which

> 0, it follows from (10) that

follows that a > 1 whenever d

the parameter a, so eq. (lla)

determines a.

Using (10) to eliminate w, we obtain a

pair of functions (u,v),

u" = K 1aU -K2 lduv ,

6 V" = -K au + K2 V + K duv ,

the constant a is nonnegative.

> 1. Of course, v depends

represents a (nonlinear) con-

boundary value problem for the

(12a)

(12b)

for 0 < x < 1, subject again to the boundary conditions (7a) and (7b), and the

constraint (11). We w-ll solve this problem assuming that the dimensionless

reaction rates K and K2 are both large and of the same order of magnitude.

That is, we assume that there exists a small positive parameter e, 0 < e << 1,

such that

01
e

02
=

where the ratio

o = 02/1

is a 0(1)-quantity compared to E. Thus, we consider the equations

E2u" = 1 au - o 2 v - o duv ,

C2 Sv" = - 1 au + 02 v + u 1 duv

(13a)

(13b)

the small parameter (c2 ) multiplies the derivatives u" and v", we

with a singular perturbation problem. We will employ the method

asymptotic expansions to solve the equations (13) subject to

conditions (7) and the constraint (11).

are

of

the

10

Because

dealing

matched

boundary
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3. Solution of the Problem

3a. Interior Solution

To find the solution of eq. (13) for small E we expand u and v,

u = u 0 + E2 u + ... ,

v = v0 + e2vl + ...

(14a)

(14b)

Then, to lowest order in E,

0a u 0 - 0 2 v 0 - du0v0 = 0 .

Thus, any nontrivial solution of the form (14) is such that

0v 0 (x)

u0 (x) = a-dv0 (x) 0 < x < 1 . (15)

For the higher-order coefficients we obtain a set of linear algebraic

equations

i-1
1 (a-dv )u. - (a +O du )v. = u'.' + o d L u.v. ,1 0 2 1 0 i 1-1 1 .l J 1-j

i-1
-o (c-dv )u. + (a +0 du0 )v. = 6v'.'

21 0 i -I
- a d u.v. ,

1 j=1 j

for i=1,2,... . This set is solvable for (ui,vi) if the lower-order

coefficients (u0 ,v0 ),... ,(uii,vi-i) satisfy the solvability condition

u'.' + 6v'.' = 0 .

In particular, for i=1,

u' + 6 v'l = 0 (16)

From (15) we deduce an expression for u" in terms of v0  and its derivatives

v' and v". When we use this expression, the solvability condition (16) be-

comes a second order nonlinear differential equation for v0 . In fact, the
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equation is more succinctly formulated in terms of the function w0 = a-dv0.

Namely,

2 2 2 2
-(c +w0 )w0w + 2c (w') = 0 , (17)

where we have introduced the abbreviation

c2 = au/6 .

The equation (17) can be integrated exactly. Its general solution is

w0(x) = ax + b /(ax+b) 2 +c 2 , < x < 1 ,

where a and b are arbitrary constants of integration. However, the lower sign

must be rejected if w 0 is to be positive. Thus we find that, to lowest order

in E, the solution of (13) in the interior of the domain is given by

u (x) = - l/(ax+b)2 +c2 - (ax+b)] - a , (18a)
0 d d

a 1
v0(x) =- d d ax+b+V(ax+b)2 +c2 J . (18b)

cid d

We observe that, in general, the functions u0 and v0 cannot be expected to

satisfy the given boundary data (7a),(7b) for u and v. Therefore, the

expansion (14) represents an asymptotic approximation to the solution in the

interior of the domain. Near each of the boundaries it is necessary to

construct boundary layer expansions that must be matched with the interior

solution (18). For future reference we note from (18) that

u (x) + u (0) = [b2+c2 - bJ - , (19a)
0 0 d d

v0 (x) + v0 (0) = a - [b + /b2+cj , (19b)
0 0d d

as x + 0, and



u (x) + u (1) =
0 0

v (x) + v0 (1) -=

d

d
[/(a+b)2+c - (a+b)] - Q

d

a 1
- a+b

d d
+ ~(a+b)2+c

3b. Boundary .

We introduce

ver solution near x=0

t tched variable z = x/E and define the ftinct iOns

aad VL by means of th .. ,t ions

VL(z) = v(Ez)

If u and v satisfy the equations (13),

U" = Qa U - a V

then UL and VL satisfy the equations

- a dUV , (21a)

(21b)5V" = -o aU + a2V + aIdUV ,

for z > 0. We will determine

conditions

a solution (ULVL) subject to the initial

U(0) = YO ,
V'(0) = 0,

cf. (7a)(7b), and the matching conditions

U(z) = u0(0) lim V(z) = v0 (0)
z+W

cf. (19a),(19b).

subsection.)

(We drop the superscript L in the remainder

First, we observe that U+6V is

both tend to finite

a linear function of z. Since U and V

limits as z+c, we must have

U(z) + 6V(z) = a , z > 0 , (24)

This relation allows us to eliminate

as x + 1.

13

(20a)

(20b)

UL(z) = u(Ez)

lim
z +

(22)

(23)

of this

for some constant . U from (21) and
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(22). The result is a nonlinear differential equation for V,

6V" + o1 [d6V 2 - (a6+o+ds)V + atj = 0 , (25)

which must be solved subject to the initial conditions

V(0) = (-Y 0 )/$ , V'(O) = 0 . (26)

The equation (25) admits two Fclutions that do not depend on z, viz. V(z)

V+ and V(z) = V~, where

V -- 1-2d [a6 + o + dd t /(a6+o+dO) 2 - 4016d]

Now, the initial conditions (26) imply that there is no real value of 0 such

that V+ (0-Y )/6, and that there is precisely one real value of 6 such that

V~ = (6-Y0)/o, namely

a Y 0
+ = __+ (27)

In that case,

1'( ) = =y , (28a)

V"(z) = V0 - (28b)
a+dy0

Both matching conditions (23) are satisfied if we take

262
b - -(o+dy ) +C o . (29)

26 0 o+dy
0

Ti equation (25) admits other solutions besides the ones that are

independent of z that w' found above. Although they cannot be obi ained

explicitly, we can gain sufficient information about them to evaluate their

relevance in the present context. If we multiply eq. (25) by V' and

integrate, using the initial conditions (26), we obtain the following

expression for V' in terms of V,



V' = *[ do (V(0)-V)q(V) 2 ,

where q is a quadratic function of V,

q(V) = V 2 + q1V + q 2 '

with

q = - (2dY 0+3o+3a6+dO)

q2 = - [d + (dy0 +3o-

26 d

3a6) - y (2dy0 +3o+3a6)1

The existence of non-constant solutions V of the differential equation

most easily studied in the phase plane (V,V'). Because

our attention to trajectories that originate at (V(0),0).

trajectory emanating from the point (V(0),0) leaves

vertical tangent, cf, ('0). Finally, we require that

trajectory of interest must end at some point of the V-a

for all V, we must have V K V(0) for V' to be real,

function of z near z = 0. This rules out the upper (+

then it is obvious that any trajectory, once it has

(V(0),0), stays in the lower half-plrne to the left of

V(0) for all z > 0 and will never return to the V-

trajectory originating at (V(0),0) meets the requiremen

point of the V-axis. We conclude that (30) does not

solution that meets all

of (26), we restrict

We observe that any

the V-axis under a

lim V'(z) = 0, so any
z+o

xis. Now, if q(V) > 0

so V is a decreasing

+) sign in (30). But

left the V-axis it

the vertical line V =

axis. Therefore, no

that

have

it end at some

a non-constant

requirements. A similar conclusion holds if q(V) < 0

for all V.

Now, assume that q has two real zeros, V+ and V_ say,

V= 41 (2dy0+3o+3a6+d) t 3 /p() ,4d6 046

where

= 2 2p(t3) = d (2dy +5o-3x6)3

+ (2dy0+3a+3a6)(-2dy0+o+a6)
3d

15

(30)

(30) is

t
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Then

V' = t2 do (V(0)-V)(V-V_)(V-V)1/2. (31)
3 1+

We investigate whether it is possible that a trajec-o y which originates at

(V(0),0), terminates at either of the points (V_,0) or 'V+,O).

First, we consider the case V(0) < V_ < V+. Then, for V' to be real we

must have V < V(O) for z near 0, so V decreases, the upper (+) sign for V' is

ruled out, and any trajectory leaving (v(0),0) stays in the lower half-plane

to the left of the vertical line V = V(0). No trajectory can reach either of

the points (V_,0), (V+,0) and, again, we conclude that there is no non-

constant solution of (30) that meets all requirements.

Next, we consider the case V_ < V(0) < V+. Then the condition that V' be

real leads to V > V(0) for z near 0, so V increases and the lower (-) sign is

ruled out. This time, it is indeed possible that there exists a trajectory

that originates at (V(0),0) and ends at (V+,0), and that lies entirely in the

upper half-plane between the vertical lines V = V(0) and V = V+. Such a

trajectory is traversed in the direction of increasing V.

Similarly, if V_ < V+ < V(0) we find that there may exist a trajectory

that originates at (V(0),0) and ends at (V+,0), and that lies entirely in the

lower half-plane between the vertical lines V = V+ and V = V(0). Such a

trajectory is traversed in the direction of decreasing V.

Hence, we can restrict ourselves to the investigation of solutions V of

(25) which ate given implicitly by the formula (31), which satisfy the initial

conditions (26), and which have the property that

lim V(z) = V+ . (32)
z+M

The corresponding functions U are found from (24). Of course, the parameter 8

is still to be determined at this point.

Next, wv turn to the matching conditions (23). They become
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6
d-6V = - [/bz+c 2 - b] - d ,

+ d d

V - 1 [/bT+c7 + b]
+ d d

cf. (19). Multio.ying the last equation by 6 and adding the two equations we

see that

1 a c'
b= a 6

Then the second matching condition can be rewritten in the form

b2+c7 = a - b - dV

+ d1 a d 0  3 d
- ( a - b( a-Y0 ) 4 6 4

However, because W(0) a-dV(O) = a-d(0-Y0 )/6 > 0, the expression in the right

member is certainly negative, while the expression in the left member is posi-

tive. Hence, the matching conditions cannot possibly be satisfied for any

choice of a and 6. We conclude therefore, that a solution of the differential

equation (25) of the form (31) cannot be made to match the interior solution

(18) and must be ruled out. Hence, the only solution in the boundary layer

near x = 0 that satisfies thL initial conditions (26) and that can be matched

with the interior solution (16) is the constant solution (28), with 0 given by
(27).

3c. Boundary Layer Solution near x = l

A similar analysis can be given for the boundary layer solution near

x = 1. We introduce the stretched variable z = (1-x)/c and define the func-

tions UR and VR by the relations

UR (z) - u(1-ez) , VR(z) = '(1-ez) .

Then UR and VR satisfy the equations (21) for z > 0. Instead of (22) we have

the initial conditions

V'(0) - 0 ,(U(0) - Y , ' (33)



18

and the matching conditions

''m U(z) = u0(1) , urn V(z) = v0(1) . (34)
z+

As in the previous subsection we find that the only solution (URVR) is, in

fact, independent of z and given by

UR (z) = U1 = Y, (35a)

VR(z) = V = 1 (35b)
1 o+dy

The matching conditions (34) are satisfied if we take

2 2

a+b = -(+dY) + .dY (36)

3d. Uniform Solution

Now that we have the interior solution to the boundary value problem

(13), and the boundary l ayer solut ions that are valid near x = 0 and x = 1 and

that match the interior solution, we can combine the results to obtain a solu-

tion that is valid uniformly throughout the interval [0,1]. To lowerst order

in C we have

u(x) = I(ax+b) +c - (ax+b)] - - , (37a)
d( d

a 1
v(x) = - d [ax+b + /(ax+b)+c] , (37b)

d d

where a and b are given by the expressions (29) and (36). It remains to

determine a from the constraint (11).

Using (37b) we obtain the following expression for v,

V s d 2d (a+2b)

- (a+b) (a+b) +c" - b/b=+cf
2 ad

4 c2{n(a+b+/(a+b 2 2 ) - Xn(b+/b2+c2)1
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We substitute b and a+b from (29) and (36), and use the definition c2 =

a0/6. We then find

v = (po6a+n n w) j,
n 1+o

where n0 ' n1, P and w are given in terms of YO, Y1, o and d,

n0 = a + dY 0  l = o + d ,

p 1 -1

W = (fl0 l)1 (Rn n0 - Xn n )

When we use the expression of v in the constraint (11) we obtain a quadratic

equation for a,

p0a + pla + p2 = 0, (38)

where the coefficients pi are given in terms of the parameters of the problem,

02 + Y0 Y1d + 1(Y0Y)0(1+d)
PO = -oodd +~ +i= (o+y d)(o+y.d)0 i

p1 = 06d - (1+(d-1)ow)(O+Y 0d)(O+Y d)

p2 = d(o+y0d)(o+Y d) ..

It remains to investigate the roots of equation (38). Because p0 is always

negative and p2 always positive, the root are real and of opposite sign.

Thus, there exists exactly one positive value of a such that the constraint

(11) is satisfied, namely

a - p + Vp -4pop2] . (39)

0

This completes the solution of the problem.
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4. Facilitation Factor

We retu n to the expression (9) for the total flux of species A through

the membrane. The extent to which the transport is enhanced is measured by

the facilitRtion factor F,

F d v(O) - v(I)

YO - Yl

With the solution v given by (37b), where the constants a and b are given in

(29) and (36) and the parameter a is determined according to (39), we have

F = (ao d (40)
S(+Yo+yd)

We note the following special cases:

(i) d = 1 (DAB=DB).

The quadratic equation (38) reduces to

(.-1)(o6a + (o+i0)(o"Y1)) = 0

whence a = 1, so

o6odF = F1 = (o+Y0)(a+Y1) .(41a)

In terms of the original parameters we have

F _ -B 1 2 (4b)FI D 0 L4b
A (k2+k C )(k2+k C )

This expression agrees with the ones given by Ward [5, formula (12)], Smith,

Meldon and Colton (6, formula (54)], and Goddard, Schultz and Bassett [7,

formula (3.30)].

(ii) d 1 (DAB-DB) .

A straight forward perturbation procedure yields the result



F = F1[1-0(d-1)+0((d-1)2 ) ,

where Fl is the value of F for d = 1, which is given by (41), and

01 6 y0 _ 1

Here+ n n6 Pt

Here, %1' l p and w are given in terms of Y0' Y1 and 0,

TI0 = a+ 1 = a + ,

P = 2(n00+n )

W = (n0-) ( n n0 - n n1 ) .

We show that ( is always positive.

Suppose Y0 >Y 1 . Then 1 0 > t, so no = Ti(1+z) for some z > 0.

W = (r z) -1n(l+z) and P = n1(1 + 2)(l+z) -.

1 + 29n(l+z) < z 2 ,- 1+ z'

It follows from the inequality

z > -1

that w < p. hence,

y y
S> aw + - + -1 - 1.

Ti n
x0 i

Next, we use the inequality

kn(l+z) >
- 1+z

z > -1 ,

to show that
-1 -1

"3 > Ti (1+z)

Y Y Y
o n0 1 1

- 0 0 1

Similarly, one shows that 1 > 0 if Y( < Y1, so 0 is indeed always positive.

The coefficient m may be called the enhancement coefficient. It measures

the effect of different diffusion coefficients for the nonvolatile species B
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(42)

(43)

Thus,

-1
- Ti0 , s0
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and AB on the facilitation factor F, relative to the situation where B and AB

have equal diffusion coefficients. As can be seen from (42), the facilitation

factor F is enhanced wher. d < 1 (i.e. DB > DAB), inhibited when d > 1 (i.e.

DAB > DB).
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Notation

A, B, AB

DA' DB, DAB

CA, CB, CAB

x

L

k1 , k2

C

NA

x

u,v,w

v

YO' Y1

K ,K2
K1' K2
6, d

x, d, a, b

01) 02

c

u0 , u1 ,...

v0, v1 ,...

11L yL

UR yR

r10 ' n1
p, w

pOI PI' P2

q, q2

F

Fl

m1

molecular species

diffusion coefficients

molar concentrations

coordinate perpendicular to the membrane surfaces

thickness of the membrane

forward (+) and backward (+) reaction rates in (1)

specified molar concentrations of A at x* = 0 and x* = L

specified total molar concentration of B and AB inside the
membrane

total flux of species A

dimensionless coordinate

dimensionless molar concentrations

integral of v over [0,1]

boundary values of u

dimensionless reaction rates

ratios of diffusion coefficients

constants

small parameter, 0 < e << 1

dimensionless reaction rates; o = Ki/C 2

ratio o: reaction rates; o = 02/ = K /K

parameter; c2 = ao/6

coefficients of u in the interior solution

coefficients of v in the interior solution

boundary layer solution near x = 0

boundary layer solution near x = 1

parameters

parameters involving n0 and n

parameters

parameters

facilitation factor

value of facilitation factor when DAB = DB

enhancement (inhibition) coefficient in the facilitation
factor
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