IMPLEMENTATION GUIDE FOR MINPACK-1

by

Burton S. Garbow, Kenneth E. Hillstrom, and Jorge J. More'

ARGONNE NATIONAL LABORATORY

ARGONNE NATIONAL LABORATORY, ARGONNE, ILLINOIS

IMPLEMENTATION GUIDE FOR MINPACK-1

by

Burton S. Garbow, Kenneth E. Hillstrom, Jorge J. More'

Applied Mathematics Division

July 1980
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abstract</td>
<td>5</td>
</tr>
<tr>
<td>1. Introduction</td>
<td>5</td>
</tr>
<tr>
<td>2. The Tape Organization</td>
<td>6</td>
</tr>
<tr>
<td>3. Overview of Tape Contents</td>
<td>6</td>
</tr>
<tr>
<td>4. Machine-Dependent Constants</td>
<td>7</td>
</tr>
<tr>
<td>5. Files 1-6: The MINPACK-1 Package and its Documentation</td>
<td>7</td>
</tr>
<tr>
<td>6. Files 7-23: The Testing Aids</td>
<td>8</td>
</tr>
<tr>
<td>7. Evaluation of the Test Results</td>
<td>10</td>
</tr>
<tr>
<td>8. Referral for Questions and Comments</td>
<td>11</td>
</tr>
<tr>
<td>Appendix A - SPMPAR and DPMP&R Listings</td>
<td>13</td>
</tr>
<tr>
<td>Appendix B - Test Driver Listings</td>
<td>23</td>
</tr>
<tr>
<td>Appendix C - Test Output Summaries</td>
<td>41</td>
</tr>
</tbody>
</table>
IMPLEMENTATION GUIDE FOR MINPACK-1

by

Burton S. Garbow, Kenneth E. Hillstrom, Jorge J. More'

ABSTRACT

MINPACK-1 is a package of Fortran subprograms for the numerical solution of systems of nonlinear equations and nonlinear least squares problems. This report describes how to implement the package from the tape on which it is transmitted.

1. Introduction

This report describes the tape containing MINPACK-1, a package of Fortran subprograms for the numerical solution of systems of nonlinear equations and nonlinear least squares problems. Future editions of the MINPACK package will address unconstrained minimization and constrained optimization problems. For each problem area MINPACK-1 contains algorithms that proceed either from an analytic specification of the Jacobian matrix of the problem functions or directly from the problem functions themselves. Since the specification of the Jacobian matrix can be an error-prone task, MINPACK-1 also contains an algorithm to check that the Jacobian matrix is consistent with the functions. Also included on the tape are machine-readable documentation and a complete set of testing aids.

MINPACK-1 may be obtained from either:

National Energy Software Center
Argonne National Laboratory
9700 S. Cass Ave.
Argonne, IL 60439
Phone: (312) 972-7250

or

IMSL
Sixth Floor-NBC Building
7500 Bellaire Blvd.
Houston, TX 77036
Phone: (713) 772-1927
2. The Tape Organization

The tape contains 23 files. The card counts for the respective files are given in Table 1.

<table>
<thead>
<tr>
<th>File</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>139</td>
</tr>
<tr>
<td>2</td>
<td>4,771</td>
</tr>
<tr>
<td>3</td>
<td>3,526</td>
</tr>
<tr>
<td>4</td>
<td>186</td>
</tr>
<tr>
<td>5</td>
<td>4,778</td>
</tr>
<tr>
<td>6</td>
<td>3,528</td>
</tr>
<tr>
<td>7</td>
<td>283</td>
</tr>
<tr>
<td>8</td>
<td>551</td>
</tr>
<tr>
<td>9</td>
<td>879</td>
</tr>
<tr>
<td>10</td>
<td>1,022</td>
</tr>
<tr>
<td>11</td>
<td>1,033</td>
</tr>
<tr>
<td>12</td>
<td>673</td>
</tr>
<tr>
<td>13</td>
<td>858</td>
</tr>
<tr>
<td>14</td>
<td>284</td>
</tr>
<tr>
<td>15</td>
<td>552</td>
</tr>
<tr>
<td>16</td>
<td>881</td>
</tr>
<tr>
<td>17</td>
<td>1,025</td>
</tr>
<tr>
<td>18</td>
<td>1,036</td>
</tr>
<tr>
<td>19</td>
<td>675</td>
</tr>
<tr>
<td>20</td>
<td>860</td>
</tr>
<tr>
<td>21</td>
<td>23</td>
</tr>
<tr>
<td>22</td>
<td>29</td>
</tr>
<tr>
<td>23</td>
<td>15</td>
</tr>
</tbody>
</table>

3. Overview of Tape Contents

The tape contains both single and double precision versions of the routines in MINPACK-1. For each precision there is a function that provides machine-dependent constants (when an appropriate set of DATA statements is activated); all other MINPACK-1 subprograms are written in a portable subset of ANSI standard Fortran. For those subprograms normally called by the user, machine-readable documentation is provided for both the single and the double precision forms.

The first six files on the tape are:

1. Function SPMPAR, single precision machine-dependent constants.
2. MINPACK-1, single precision, 22 subprograms.
3. MINPACK-1 documentation, single precision, 11 documents.
5. MINPACK-1, double precision, 22 subprograms.
6. MINPACK-1 documentation, double precision, 11 documents.
The remaining 17 files contain test material; their contents are described in Section 6.

4. Machine-Dependent Constants

There are three machine-dependent constants that have to be set before the single or double precision version of MINPACK-1 can be used; for most machines the correct values of these constants are encoded into DATA statements in functions SPMPAR (single precision) and DPMPAR (double precision). As transmitted on the tape, the constants for the IBM 360,370 series are "activated"; that is, the DATA statements encoding all other constants are rendered comments by the presence of 'C' in column 1. If the activated constants are appropriate for the target machine (various non-IBM machines share these constants), then no changes are required to SPMPAR or DPMPAR. Otherwise, a different set of constants will have to be "activated" and the IBM constants "deactivated". The listings of SPMPAR and DPMPAR are included as Appendix A of this report.

We are also including (files 7 and 14) single and double precision versions (named SMCHAR and DMCHAR, respectively) of the environmental inquiry program of W. J. Cody, with which we confirmed many of the constants in SPMPAR and DPMPAR (most of which were obtained from the corresponding Bell Laboratories PORT Library function). These programs should be useful in determining the appropriate constants for machines not already covered in SPMPAR and DPMPAR.

5. Files 1-6: The MINPACK-1 Package and Its Documentation

As described in Section 3, files 1-3 of the tape contain the single precision version of MINPACK-1 and its associated documentation and files 4-6 contain the double precision equivalents. File 2 contains 22 Fortran subprograms: CHKDER, DOGLEG, ENORM, FDJAC1, FDJAC2, HYBRD, HYBRD1, HYBRJ, HYBRJ1, LMDER, LMDER1, LMDIF, LMDIF1, LMPAR, LMSTR, LMSTR1, QFORM, QRFAC, QRSOLV, RWUPDT, RIMPYQ, and R1UPDT. ENORM is of FUNCTION type; the others are all SUBROUTINE's. File 5 contains 22 subprograms with the same names and in the
same order. There are no separator cards between members, but the last card of each subprogram has 'END' in columns 7-9.

File 1 contains SPMPAR and file 4 contains DPMPAR. As described in Section 4, these programs may have to be changed, after which the programs in files 1 and 2, or 4 and 5, can be compiled into a library. We might suggest that you choose the precision that corresponds to your normal operating environment.

Machine-readable documentation is provided in files 3 and 6 for the 11 MINPACK-1 members normally called by the user: HYBRD1, HYBRD, HYBRJ1, HYBRJ, LMDER1, LMDER, LMSTR1, LMSTR, LMDIF1, LMDIF, and CHKDER. HYBRD, HYBRJ, LMDER, LMSTR, and LMDIF are the core subroutines in the five general algorithmic paths in MINPACK-1. HYBRD1, HYBRJ1, LMDER1, LMSTR1, and LMDIF1 are "easy-to-use" drivers with simplified calling sequences made possible by assuming default settings for certain parameters and by returning a limited amount of information; many applications do not require full flexibility and in these cases "easy-to-use" drivers can be invoked. Finally, CHKDER should be helpful to users who wish to check the coding of their Jacobian evaluation subroutine.

The documents are recorded with both upper and lower case characters (realizable if the TN print chain is available). They include carriage control characters '1', 'O', and ' ' that enable their printing in paged format under program control; one blank page is inserted between successive documents. The printed material can be trimmed to fit onto 8 1/2 x 11 sheets of paper.

6. Files 7-23: The Testing Aids

Files 7-23 on the tape contain testing aids for running the environmental inquiry program (see Section 4 above), the five available algorithmic paths (HYBRD, HYBRJ, LMDER, LMSTR, and LMDIF), and CHKDER, respectively, in single precision. Files 14-20 contain testing aids for the corresponding double precision versions. The testing aids include drivers, initial point specifying subroutines, and subroutines (named FCN) that evaluate the functions and Jacobians. Files 21-23 comprise the input data -- file 21 is used by HYBRD and HYBRJ, file 22 by LMDER, LMSTR, and LMDIF, and file 23 by CHKDER.

In summary, the contents of files 7-23 are as follows:

7. SMCHAR test
8. HYBRD test (single precision)
9. HYBRJ test (single precision)
Small changes may be required to the drivers, for example to renumber the logical input and output units (from 5 and 6) or to include a program card. To facilitate these changes we have placed the drivers at the beginning of the respective test files and, in addition, are including listings of the drivers (double precision versions) as Appendix B of this report.

For each test run, pair one of the program files with the corresponding data file, and make available the library where the MINPACK-1 package has been stored. For example, to run the double precision LMDER test you would point to files 17 and 22.

A special note applies to the drivers for LMSTR in files 11 and 18. Instead of calculating one row of the Jacobian per call, the test FCN subroutine calculates the entire Jacobian at the first call and moves one row at each subsequent call. This strategy depends, therefore, on retention by the system of quantities stored at an earlier call of FCN toward accessing at later calls. Although this feature is nonstandard, we hope that your system enables it.

The test runs for HYBRD, HYBRJ, LMDER, LMSTR, and LMDIF each produce about 1200 lines of output. The test run for CHKDER produces about 300 lines of output, and the SMCHAR (or DMCHAR) test produces only a single page after possibly triggering several underflow messages. The last page of the output for each run contains a summary of the results. We are including listings of the summaries that we produced from our double precision IBM runs (IBM 3033, Fortran H Extended) as Appendix C of this report. Section 7 contains further details toward the evaluation of the test results.

Towards estimating timing, we offer the following two tables: Table 2 records the CPU time in seconds on Argonne's IBM 3033 (including compilation)
and Table 3 gives the approximate ratio of the speed of the 3033 to various other machines.

<table>
<thead>
<tr>
<th>TABLE 2</th>
<th>TABLE 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>HYBRD 17</td>
<td>CDC 7600</td>
</tr>
<tr>
<td>HYBRJ 17</td>
<td>CDC 6600</td>
</tr>
<tr>
<td>LMDER 21</td>
<td>Univac 1110</td>
</tr>
<tr>
<td>LMSTR 26</td>
<td>Amdahl 470V/6</td>
</tr>
<tr>
<td>LMDIF 21</td>
<td>IBM 370/168</td>
</tr>
<tr>
<td>CHKDER 4</td>
<td>IBM 360/75</td>
</tr>
<tr>
<td>Honeywell 6070</td>
<td></td>
</tr>
<tr>
<td>DEC PDP-10</td>
<td></td>
</tr>
<tr>
<td>Burroughs 6700</td>
<td></td>
</tr>
</tbody>
</table>

7. Evaluation of the Test Results

The test runs for the machine constants (files 7 and 14) compare the results obtained by the environmental inquiry programs SMCHAR and DMCHAR with the constants specified in SPMPAR and DPMPAR, respectively. The test programs print

\[
\begin{align*}
\text{RERR}(1) &= (\text{EPSMCH} - \text{EPS}) / \text{EPSMCH} \\
\text{RERR}(2) &= (\text{DWARF} - \text{XMIN}) / \text{DWARF} \\
\text{RERR}(3) &= (\text{XMAX} - \text{GIANT}) / \text{GIANT}
\end{align*}
\]

where EPSMCH, DWARF, and GIANT are the constants specified in the MINPACK-1 functions, and EPS, XMIN, and XMAX are the values returned from the environmental inquiry programs.

The constants specified in the MINPACK-1 functions are conservative and do not take into account special features of the system. Therefore, components of RERR are not necessarily zero. For example, rounded arithmetic is reflected by EPS being half as large as EPSMCH, thereby producing a value of 0.5 in RERR(1). Values with magnitude as large as unity should usually be considered suspicious, but we have encountered the following exceptions:

a) In CDC systems, the treatment of small double precision numbers requires a value of DWARF that is large relative to XMIN, and so the value of RERR(2) is close to unity.

b) In Honeywell and Prime systems, the use of extra length registers results in an overly small value of EPS, and so the value of RERR(1) is close to unity; this only occurs in single precision on the Prime but in both precisions on the Honeywell. In addition, these systems do not allow a proper determination of XMAX in double precision and produce a value of RERR(3) close to minus unity.
The interpretation of the test results for the other MINPACK-1 programs depends on the machine precision and on the sensitivity of the problems to the precision of the computations. For those problems sensitive to the precision of the computations we have underlined the (IBM) results in Appendix C. The performances of the MINPACK-1 programs on these problems vary from machine to machine, but in general we expect about the same number of successes and failures as in the IBM runs if the working precision provides at least 10 decimal digits. If this is not the case, there is a deterioration in performance commensurate to the lack of digits. For problems not sensitive to the precision of the computations we expect about the same number of successes and failures as in the IBM runs regardless of the machine precision.

The criteria for the designation "successful" that we have adopted are as follows. For the nonlinear equation solvers success is obtained if the final L2-norm is less than the square root of the machine precision. For the IBM double precision runs (machine precision approximately 10**(−16)) there are 51 successes and four failures. For the nonlinear least squares solvers success is obtained if either the absolute or the relative error in the final L2-norm of the residuals is less than the square root of the machine precision. For the IBM double precision runs there are 53 successes and one failure.

8. Referral for Questions and Comments

We hope that no difficulty will be encountered in installing MINPACK-1, but if a problem occurs we will try to help. We are especially interested in comments about the performance of the codes. Questions and comments may be directed to:

Burton S. Garbow
Applied Mathematics Division
Argonne National Laboratory
9700 S. Cass Ave.
Argonne, IL 60439
Phone: (312) 972-7184
APPENDIX A

SPMPAR and DPMPAR Listings
REAL FUNCTION SPMPAR(I)

INTEGER I

FUNCTION SPMPAR

THIS FUNCTION PROVIDES SINGLE PRECISION MACHINE PARAMETERS WHEN THE APPROPRIATE SET OF DATA STATEMENTS IS ACTIVATED (BY REMOVING THE C FROM COLUMN 1) AND ALL OTHER DATA STATEMENTS ARE RENDERED INACTIVE. MOST OF THE PARAMETER VALUES WERE OBTAINED FROM THE CORRESPONDING BELL LABORATORIES PORT LIBRARY FUNCTION.

THE FUNCTION STATEMENT IS

REAL FUNCTION SPMPAR(I)

WHERE I IS AN INTEGER INPUT VARIABLE SET TO 1, 2, OR 3 WHICH SELECTS THE DESIRED MACHINE PARAMETER. IF THE MACHINE HAS T BASE B DIGITS AND ITS SMALLEST AND LARGEST EXponents ARE EMIN AND EMAX, RESPECTIVELY, THEN THESE PARAMETERS ARE

SPMPAR(1) = B**((1 - T), THE MACHINE PRECISION,
SPMPAR(2) = B**((EMIN - 1), THE SMALLEST MAGNITUDE,
SPMPAR(3) = B**((EMAX - B**(-T)), THE LARGEST MAGNITUDE.

ARGONNE NATIONAL LABORATORY. MINPACK PROJECT. MARCH 1980.
BURLTON S. GARBOW, KENNETH E. HILLSTROM, JORGE J. MORE

INTEGER MCHEPS(2)
INTEGER MINMAG(2)
INTEGER MAXMAG(2)
REAL RMACH(3)
EQUIVALENCE (RMACH(1),MCHEPS(1))
EQUIVALENCE (RMACH(2),MINMAG(1))
EQUIVALENCE (RMACH(3),MAXMAG(1))

MACHINE CONSTANTS FOR THE IBM 360/370 SERIES,
THE AMDAHL 470/V6, THE ICL 2900, THE ITEL AS/6,
THE XEROX SIGMA 5/7/9 AND THE SEL SYSTEMS 85/86.

DATA RMACH(1) / Z3C100000 /
DATA RMACH(2) / Z00100000 /
DATA RMACH(3) / Z7FFFFFFF /

MACHINE CONSTANTS FOR THE HONEYWELL 600/6000 SERIES.

DATA RMACH(1) / 07164000000000000000B /
DATA RMACH(2) / 04024000000000000000B /
DATA RMACH(3) / 37767777777777777777B /

MACHINE CONSTANTS FOR THE CDC 6000/7000 SERIES.

DATA RMACH(1) / 16414000000000000000000B /
DATA RMACH(2) / 00014000000000000000000B /
DATA RMACH(3) / 37767777777777777777B /
MACHINE CONSTANTS FOR THE PDP-10 (KA OR KI PROCESSOR).

DATA RMACH(1) / "147400000000 /
DATA RMACH(2) / "000400000000 /
DATA RMACH(3) / "377777777777 /

MACHINE CONSTANTS FOR THE PDP-11 FORTRAN SUPPORTING 32-BIT INTEGERS (EXPRESSED IN INTEGER AND OCTAL).

DATA MCHEPS(1),MCHEPS(2) / 889192448, 0 /
DATA MINMAG(1),MINMAG(2) / 8388608, 0 /
DATA MAXMAG(1),MAXMAG(2) / 2147483647, -1 /

MACHINE CONSTANTS FOR THE BURROUGHS 5700/6700/7700 SYSTEMS.

DATA RMACH(1) / 0130100000000000 /
DATA RMACH(2) / 0177100000000000 /
DATA RMACH(3) / 0077777777777777 /

MACHINE CONSTANTS FOR THE UNIVAC 1100 SERIES.

DATA RMACH(1) / 0147400000000 /
DATA RMACH(2) / 000400000000 /
DATA RMACH(3) / 037777777777 /

MACHINE CONSTANTS FOR THE DATA GENERAL ECLIPSE S/200.

NOTE - IT MAY BE APPROPRIATE TO INCLUDE THE FOLLOWING CARD -
STATIC RMACH(3)

DATA MINMAG/20K,0/,MAXMAG/77777K,177777K/
DATA MCHEPS/36020K,0/

MACHINE CONSTANTS FOR THE HARRIS 220.

DATA MCHEPS(1) / '20000000, '0000353 /
DATA MINMAG(1) / '20000000, '0000201 /
DATA MAXMAG(1) / '37777777, '0000177 /
MACHINE CONSTANTS FOR THE CRAY-1.

DATA RMACH(1) / 037722400000000000000000B /
DATA RMACH(2) / 020003400000000000000000B /
DATA RMACH(3) / 057777777777777777777777B /

C

MACHINE CONSTANTS FOR THE PRIME 400.

DATA MCHEPS(1) / :10000000153 /
DATA MINMAG(1) / :10000000000 /
DATA MAXMAG(1) / :17777777777 /

SPMPAR = RMACH(1)
RETURN

C

LAST CARD OF FUNCTION SPMPAR.

END
DOUBLE PRECISION FUNCTION DPMPAR(I)
INTEGER I

FUNCTION DPMPAR
THIS FUNCTION PROVIDES DOUBLE PRECISION MACHINE PARAMETERS
WHEN THE APPROPRIATE SET OF DATA STATEMENTS IS ACTIVATED (BY
REMOVING THE C FROM COLUMN 1) AND ALL OTHER DATA STATEMENTS ARE
RENDERED INACTIVE. MOST OF THE PARAMETER VALUES WERE OBTAINED
FROM THE CORRESPONDING BELL LABORATORIES PORT LIBRARY FUNCTION.
THE FUNCTION STATEMENT IS
WHERE
I IS AN INTEGER INPUT VARIABLE SET TO 1, 2, OR 3 WHICH
SELECTS THE DESIRED MACHINE PARAMETER. IF THE MACHINE HAS
T BASE B DIGITS AND ITS SMALLEST AND LARGEST EXPONENTS ARE
EMIN AND EMAX, RESPECTIVELY, THEN THESE PARAMETERS ARE
DPMPAR(1) = B**(1 - T), THE MACHINE PRECISION,
DPMPAR(2) = 1***(EMIN - 1), THE SMALLEST MAGNITUDE,
DPMPAR(3) = B**EMAX***(1 - B**(T-1)), THE LARGEST MAGNITUDE.
ARGONNE NATIONAL LABORATORY. MINPACK PROJECT. MARCH 1980.
BURTON S. GARBOW, KENNETH E. HILLSTROM, JORGE J. MORE

INTEGER MCHEPS(4)
INTEGER MINMAG(4)
INTEGER MAXMAG(4)
DOUBLE PRECISION DMACH(3)
EQUIVALENCE (DMACH(1),MCHEPS(1))
EQUIVALENCE (DMACH(2),MINMAG(1))
EQUIVALENCE (DMACH(3),MAXMAG(1))
MACHINE CONSTANTS FOR THE IBM 360/370 SERIES,
THE AMDAHL 470/V6, THE ICL 2900, THE ITEL AS/6,
THE XEROX SIGMA 5/7/9 AND THE SEL SYSTEMS 85/86.
DATA MCHEPS(1),MCHEPS(2) / Z34100000, 000000000
DATA MINMAG(1),MINMAG(2) / 000000000, 000000000
DATA MAXMAG(1),MAXMAG(2) / 7FFFFFFF, 0FFFFFFF
MACHINE CONSTANTS FOR THE HONEYWELL 600/6000 SERIES.
DATA MCHEPS(1),MCHEPS(2) / 06064000000000, 000000000
DATA MINMAG(1),MINMAG(2) / 04024000000000, 000000000
DATA MAXMAG(1),MAXMAG(2) / 0777777777, 0777777777
MACHINE CONSTANTS FOR THE CDC 6000/7000 SERIES.
DATA MCHEPS(1) / 15614000000000000000B
DATA MCHEPS(2) / 15010000000000000000B
MACHINE CONSTANTS FOR THE PDP-10 (KA PROCESSOR).

```
DATA MINMAG(1) / 00604000000000000000B /
DATA MINMAG(2) / 00000000000000000000B /
DATA MAXMAG(1) / 37767777777777777777B /
DATA MAXMAG(2) / 37767777777777777777B /
```

MACHINE CONSTANTS FOR THE PDP-10 (KI PROCESSOR).

```
DATA MCHEPS(1),MCHEPS(2) / "114400000000, 000000000000 /
DATA MCHEPS(1),MCHEPS(2) / "033400000000, 000000000000 /
DATA MCHEPS(1),MCHEPS(2) / "377777777777, 000000000000 /
```

MACHINE CONSTANTS FOR THE PDP-11 FORTRAN SUPPORTING 32-BIT INTEGERS (EXPRESSED IN INTEGER AND OCTAL).

```
DATA MCHEPS(1),MCHEPS(2) / 620756992, 0 /
DATA MCHEPS(3),MCHEPS(4) / 8388608, 0 /
DATA MAXMAG(1),MAXMAG(2) / 2147483647, -1 /
```

MACHINE CONSTANTS FOR THE PDP-11 FORTRAN SUPPORTING 16-BIT INTEGERS (EXPRESSED IN INTEGER AND OCTAL).

```
DATA MCHEPS(1),MCHEPS(2) / 9472, 0 /
DATA MCHEPS(3),MCHEPS(4) / 0, 0 /
```

MACHINE CONSTANTS FOR THE BURROUGHS 6700/7700 SYSTEMS.

```
DATA MCHEPS(1) / 01451000000000000000 /
DATA MCHEPS(2) / 00000000000000000000 /
DATA MINMAG(1) / 01771000000000000 /
DATA MINMAG(2) / 0000200, 0000000 /
DATA MAXMAG(1),MAXMAG(2) / 017777777777, 017777777777 /
DATA MAXMAG(3),MAXMAG(4) / 017777777777, 017777777777 /
```

MACHINE CONSTANTS FOR THE BURROUGHS 6700/7700 SYSTEMS.
MACHINE CONSTANTS FOR THE BURROUGHS 5700 SYSTEM.

DATA MCHEPS(1) / 01451000000000000 /
DATA MCHEPS(2) / 00000000000000000 /
DATA MINMAG(1) / 01771000000000000 /
DATA MINMAG(2) / 00000000000000000 /
DATA MAXMAG(1) / 00777777777777777 /
DATA MAXMAG(2) / 00307777777777777 /

MACHINE CONSTANTS FOR THE BURROUGHS 1700 SYSTEM.

DATA MCHEPS(1) / ZCC6800000 /
DATA MCHEPS(2) / Z000000000 /
DATA MINMAG(1) / ZC00800000 /
DATA MINMAG(2) / Z000000000 /
DATA MAXMAG(1) / ZDFFFFFFFF /
DATA MAXMAG(2) / ZFFFFFFFFF /

MACHINE CONSTANTS FOR THE UNIVAC 1100 SERIES.

DATA MCHEPS(1),MCHEPS(2) / 0176640000000, 0000000000000 /
DATA MINMAG(1),MINMAG(2) / 0000040000000, 0000000000000 /
DATA MAXMAG(1),MAXMAG(2) / 0377777777777, 0777777777777 /

MACHINE CONSTANTS FOR THE DATA GENERAL ECLIPSE S/200.

NOTE - IT MAY BE APPROPRIATE TO INCLUDE THE FOLLOWING CARD - STATIC DMACH(3)

DATA MINMAG/20K,3^0/,MAXMAG/777777K,3^01777777K/
DATA MCHEPS/32020K,3^0/

MACHINE CONSTANTS FOR THE HARRIS 220.

DATA MCHEPS(1),MCHEPS(2) / '20000000, '00000334 /
DATA MINMAG(1),MINMAG(2) / '20000000, '00000201 /
DATA MAXMAG(1),MAXMAG(2) / '37777777, '37777577 /

MACHINE CONSTANTS FOR THE CRAY-1.

DATA MCHEPS(1) / 037642400000000000000000DB /
DATA MCHEPS(2) / 000000000000000000000000DB /
DATA MINMAG(1) / 020003400000000000000000DB /
DATA MINMAG(2) / 000000000000000000000000DB /
DATA MAXMAG(1) / 0577777777777777777777777B /
DATA MAXMAG(2) / 00000077777777777777777B /

MACHINE CONSTANTS FOR THE PRIME 400.

DATA MCHEPS(1),MCHEPS(2) / :10000000000, :0000000173 /
DATA MINMAG(1),MINMAG(2) / :10000000000, :0000010000 /
DATA MAXMAG(1),MAXMAG(2) / :7777777777, :7777677776 /

DPMPAR = DMACH(I)
RETURN
C
C LAST CARD OF FUNCTION DPMPAR.
C
END
APPENDIX B

Test Driver Listings

This program checks the constants of machine precision and the smallest and largest machine representable numbers specified in function DPMPAR, against the corresponding hardware-determined machine constants obtained by DMCHAR, a subroutine due to W. J. Cody.

Data statements in DPMPAR corresponding to the machine used must be activated by removing C in column 1.

The printed output consists of the machine constants obtained by DMCHAR and comparisons of the DPMPAR constants with their DMCHAR counterparts. Descriptions of the machine constants are given in the prologue comments of DMCHAR.

Subprograms called

Minpack-supplied ... DMCHAR, DPMPAR

Burton S. Garbow, Kenneth E. Hillstrom, Jorge J. More

Integer IBETA, IEXP, IRND, IT, MACHEP, MAXEXP, MINEXP, NEGEP, NGRD,

* WRITE

Double precision DWARF, EPS, EPSMCH, EPSNEG, GIANT, XMAX, XMIN

Double precision RERR(3)

Double precision DPMPAR

Logical output unit is assumed to be number 6.

Data NWRITE /6/

Determine the machine constants dynamically from DMCHAR.

Call DMCHAR(IBETA, IT, IRND, NGRD, MACHEP, NEGEP, IEXP, MINEXP, MAXEXP,

* EPS, EPSNEG, XMIN, XMAX)

Compare the DPMPAR constants with their DMCHAR counterparts and store the relative differences in RERR.

EPSMCH = DPMPAR(1)

DWARF = DPMPAR(2)

GIANT = DPMPAR(3)

RERR(1) = (EPSMCH - EPS)/EPSMCH

RERR(2) = (DWARF - XMIN)/DWARF

RERR(3) = (XMAX - GIANT)/GIANT

Write the DMCHAR constants.

Write (NWRITE, 10)

* IBETA, IT, IRND, NGRD, MACHEP, NEGEP, IEXP, MINEXP, MAXEXP, EPS,

* EPSNEG, XMIN, XMAX

Write the DPMPAR constants and the relative differences.

Write (NWRITE, 20) EPSMCH, RERR(1), DWARF, RERR(2), GIANT, RERR(3)

Stop

10 FORMAT (17H1 DMCHAR CONSTANTS // 8H IBETA =, 16 // 8H IT =,

* 16 // 8H IRND =, 16 // 8H NGRD =, 16 // 9H MACHEP =,
26

* I6 // 8H NEGEP =, I6 // 7H IEXP =, I6 // 9H 'INEXP =, DPPD0620
* I6 // 9H MAXEXP =, I6 // 6H EPS =, D15.7 // 9H EPSNEG =, DPPD0630
* D15.7 // 7H XMIN =, D15.7 // 7H XMAX =, D15.7) DPPD0640

20 FORMAT (/// 42H DPMPAR CONSTANTS AND RELATIVE DIFFERENCES /// DPPD0650
* 9H EPSMCH =, D15.7 / 10H RERR(1) =, D15.7 // DPPD0660
* 8H DWARF =, D15.7 / 10H RERR(2) =, D15.7 // 8H GIANT =, DPPD0670
* D15.7 / 10H RERR(3) =, D15.7) DPPD0680

C
C LAST CARD OF DRIVER.
C
END
DPPD0720
THIS PROGRAM TESTS CODES FOR THE SOLUTION OF N NONLINEAR
EQUATIONS IN N VARIABLES. IT CONSISTS OF A DRIVER AND AN
INTERFACE SUBROUTINE FCN. THE DRIVER READS IN DATA, CALLS THE
NONLINEAR EQUATION SOLVER, AND FINALLY PRINTS OUT INFORMATION
ON THE PERFORMANCE OF THE SOLVER. THIS IS ONLY A SAMPLE DRIVER,
MANY OTHER DRIVERS ARE POSSIBLE. THE INTERFACE SUBROUTINE FCN
IS NECESSARY TO TAKE INTO ACCOUNT THE FORMS OF CALLING
SEQUENCES USED BY THE FUNCTION SUBROUTINES IN THE VARIOUS
NONLINEAR EQUATION SOLVERS.

SUBPROGRAMS CALLED

USER-SUPPLIED FCN
MINPACK-SUPPLIED DMPAR,ENORM,HYBRD1,INITPT,VECFCN
FORTRAN-SUPPLIED DSQRT

ARGONNE NATIONAL LABORATORY. MINPACK PROJECT. MARCH 1980.
BURTON S. GARROW, KENNETH E. HILLSTROM, JORGE J. MORE

INTEGER I,IC,INFO,K,LWA,N,NFEV,NPROB,NREAD,NTRIES,NWRITE
INTEGER NA(60),NF(60),NP(60),NX(60)
DOUBLE PRECISION FACTOR,FNORM1,FNORM2,ONE,TEN,TOL
DOUBLE PRECISION FNM(60),FVEC(40),WA(2660),X(40)
EXTERNAL FCN
COMMON /REFNUM/

LOGICAL INPUT UNIT IS ASSUMED TO BE NUMBER 5.
LOGICAL OUTPUT UNIT IS ASSUMED TO BE NUMBER 6.

DATA NREAD,NWRITE /5,6/
DATA ONE,TEN /1.0D0,1.0D1/
TOL = DSQRT(DMPAR(1))
LWA = 2660
IC = 0
10 CONTINUE
READ (NREAD,50) NPROB,N,NTRIES
IF (NPROB .LE. 0) GO TO 30
FACTOR = ONE
DO 20 K = 1, NTRIES
 IC = IC + 1
 CALL INITPT(N,X,NPROB,FACTOR)
 CALL VECFCN(N,X,FVEC,NPROB)
 FNORM1 = ENORM(N,FVEC)
 WRITE (NWRITE,60) NPROB,N
 NFEV = 0
 CALL HYBRD1(FCN,N,X,FVEC,TOL,INFO,WA,LWA)
 FNORM2 = ENORM(N,FVEC)
 NP(IC) = NPROB
 NA(IC) = N
 NF(IC) = NFEV
 NX(IC) = INFO
 FNM(IC) = FNORM2
 WRITE (NWRITE,70) FNORM1,FNORM2,NFEV,INFO,(X(I), I = 1, N)
 FACTOR = TEN*FACTOR
20 CONTINUE
20 CONTINUE
 GO TO 10
30 CONTINUE
 WRITE (NWRITE,80) IC
 WRITE (NWRITE,90)
 DO 40 I = 1, IC
 WRITE (NWRITE,100) NP(I),NA(I),NF(I),NX(I),FNM(I)
 40 CONTINUE
STOP
50 FORMAT (3I5)
60 FORMAT (// / 5X, 8H PROBLEM, I5, 5X, 10H DIMENSION, I5, 5X //)
70 FORMAT (5X, 33H INITIAL L2 NORM OF THE RESIDUALS, D15.7 // 5X,)
 * 33H FINAL L2 NORM OF THE RESIDUALS , D15.7 // 5X,)
 * 33H NUMBER OF FUNCTION EVALUATIONS , I10 // 5X,)
 * 15H EXIT PARAMETER, 18X, I10 // 5X,)
 * 27H FINAL APPROXIMATE SOLUTION // (5X, 5D15.7);)
80 FORMAT (12H SUMMARY OF , I3, 16H CALLS TO HYBRD1 //)
90 FORMAT (39H NPROB N NFEV INFO FINAL L2 NORM //)
100 FORMAT (14, 16, 17, 16, 1X, D15.7)
C C LAST CARD OF DRIVER.
C END
SUBROUTINE FCN(N,X,FVEC,IFLAG)
INTEGER N,IFLAG
DOUBLE PRECISION X(N),FVEC(N)
C C THE CALLING SEQUENCE OF FCN SHOULD BE IDENTICAL TO THE
C CALLING SEQUENCE OF THE FUNCTION SUBROUTINE IN THE NONLINEAR
C EQUATION SOLVER. FCN SHOULD ONLY CALL THE TESTING FUNCTION
C SUBROUTINE VECFCN WITH THE APPROPRIATE VALUE OF PROBLEM
C NUMBER (NPROB).
C SUBPROGRAMS CALLED
C MINPACK-SUPPLIED ... VECFCN
C ARGONNE NATIONAL LABORATORY. MINPACK PROJECT. MARCH 1980.
C BURTON S. GAREW, KENNETH E. HILLSTROM, JORGE J. MORE
C C ****************
C INTEGER NPROB,NFEV
COMMON /REFNUM/ NPROB,NFEV
CALL VECFCN(N,X,FVEC,NPROB)
NFEV = NFEV + 1
RETURN
C C LAST CARD OF INTERFACE SUBROUTINE FCN.
C END

THESE PROGRAM TESTS CODES FOR THE SOLUTION OF N NONLINEAR EQUATIONS IN N VARIABLES. IT CONSISTS OF A DRIVER AND AN INTERFACE SUBROUTINE FCN. THE DRIVER READS IN DATA, CALLS THE NONLINEAR EQUATION SOLVER, AND FINALLY PRINTS OUT INFORMATION ON THE PERFORMANCE OF THE SOLVER. THIS IS ONLY A SAMPLE DRIVER, MANY OTHER DRIVERS ARE POSSIBLE. THE INTERFACE SUBROUTINE FCN IS NECESSARY TO TAKE INTO ACCOUNT THE FORMS OF CALLING SEQUENCES USED BY THE FUNCTION AND JACOBIAN SUBROUTINES IN THE VARIOUS NONLINEAR EQUATION SOLVERS.

SUBPROGRAMS CALLED

USER-SUPPLIED FCN
MINPACK-SUPPLIED ... DPMPAR,ENORM,HYBRJ1,INITPT,VECFCN
FORTRAN-SUPPLIED ... DSQRT

ARGONNE NATIONAL LABORATORY. MINPACK PROJECT. MARCH 1980.
BURTON S. GARBOW, KENNETH E. HILLSTROM, JORGE J. MORE

INTEGER I,IC,INFO,K,LDFJAC,LWA,N,NFEV,NJEV,NPROB,NREAD,NTRIES, NWRITE
INTEGER NA(60),NF(60),NJ(60),NP(60),NX(60)
DOUBLE PRECISION FACTOR,FNORM1,FNORM2,ONE,TOL
DOUBLE PRECISION FNM(60),FJAC(40,40),FVEC(40),WA(1060),X(40)
DOUBLE PRECISION DPMPAR,ENORM
EXTERNAL FCN
COMMON /REFNUM/ NPROB,NFEV,NJEV

LOGICAL INPUT UNIT IS ASSUMED TO BE NUMBER 5.
LOGICAL OUTPUT UNIT IS ASSUMED TO BE NUMBER 6.

DATA NREAD,NWRITE /5,6/
DATA ONE,TEN /1.0D0,1.0D1/
TOL = DSQRT(DPMPAR(1))
LDFJAC = 40
LWA = 1060
IC = 0
10 CONTINUE
READ (NREAD,50) NPROB,N,NTRIES
IF (NPROB .LE. 0) GO TO 30
FACTOR = ONE
DO 20 K = 1, NTRIES
 IC = IC + 1
 CALL INITPT(N,X,NPROB,FACTOR)
 CALL VECFCN(N,X,FVEC,NPROB)
 FNORM1 = ENORM(N,FVEC)
 WRITE (NWRITE,60) NPROB,N
 NFEV = 0
 NJEV = 0
 CALL HYBRJ1(FCN,N,X,FVEC,FJAC,LDFJAC,TOL,INFO,W,A,LWA)
 FNORM2 = ENORM(N,FVEC)
 NP(IC) = NPROB
 NA(IC) = N
 NF(IC) = NFEV
 NJ(IC) = NJEV
 20 CONTINUE
NX(IC) = INFO
FN(M(IC)) = FNORM2
WRITE (NWRITE,70)
1
FNORM1,FNORM2,NFEV,NJEV,INFO,(X(I), I = 1, N)
FACTOR = TEN*FACTOR
WRITE (NWRITE,80) IC
WRITE (NWRITE,90)
DO 40 I = 1, IC
WRITE (NWRITE,100) NP(I),NA(I),NF(I),NJ(I),NX(I),FNM(I)
40 CONTINUE
STOP
50 FORMAT (315)
60 FORMAT (//, 5X, 8H PROBLEM, I5, 5X, 10H DIMENSION, I5, 5X //)
70 FORMAT (5X, 3311, 5X, 10H DIMENSION, I5, 5X //)
1 33H FINAL L2 NORM OF THE RESIDUALS, D15.7 // 5X,
2 33H NUMBER OF FUNCTION EVALUATIONS, I10 // 5X,
3 33H NUMBER OF JACOBIAN EVALUATIONS, I10 // 5X,
4 15H EXIT PARAMETER, 18X, 110 // 5X,
5 27H FINAL APPROXIMATE SOLUTION // (5X, 5D15.7))
80 FCN (12H SUMMARY OF, I3, 16H CALLS TO HYBRJ1 //)
90 FORMAT (4611 NPROB N NFEV NJEV INFO FINAL L2 NORM //)
100 FORMAT (14, 16, 217, 16, 1X, D15.7)
C
END
SUBROUTINE FCN(N,X,FVEC,FJAC,LDFJAC,IFLAG)
INTEGER N,LDFJAC,IFLAG
DOUBLE PRECISION X(N),FVEC(N),FJAC(LDFJAC,N)
C THE CALLING SEQUENCE OF FCN SHOULD BE IDENTICAL TO THE
C CALLING SEQUENCE OF THE FUNCTION SUBROUTINE IN THE NONLINEAR
C EQUATION SOLVER. FCN SHOULD ONLY CALL THE TESTING FUNCTION
C AND JACOBIAN SUBROUTINES VECFCN AND VECJAC WITH THE
C APPROPRIATE VALUE OF PROBLEM NUMBER (NPROB).
SUBPROGRAMS CALLED
MINPACK-SUPPLIED ... VECFCN,VECJAC
ARIGONE NATIONAL LABORATORY. MINPACK PROJECT. MARCH 1980.
BURTON S. GARROW, KENNETH E. HILLSTROM, JORGE J. MORE

END

This program tests codes for the least-squares solution of \(m \) nonlinear equations in \(n \) variables. It consists of a driver and an interface subroutine FCN. The driver reads in data, calls the nonlinear least-squares solver, and finally prints out information on the performance of the solver. This is only a sample driver, many other drivers are possible. The interface subroutine FCN is necessary to take into account the forms of calling sequences used by the function and Jacobian subroutines in the various nonlinear least-squares solvers.

Subprograms called

User-supplied: FCN

Minpack-supplied: DPMPAR, ENORM, INITPT, LMDER1, SSQFCN

Fortran-supplied: DSQRT

Argonne National Laboratory. MINPACK project. March 1980.

Burton S. Garbow, Kenneth E. Hillstrom, Jorge J. More

integer I, IC, INFO, K, LDFJAC, LWA, M, N, NFEV, NJEV, NPROB, NREAD, NTRIES, NWRITE

integer IWA(40), MA(60), NA(60), NF(60), NJ(60), NP(60), N(60)

double precision FACTOR, FNORM1, FNORM2, ONE, TEN, TOL

double precision FJAC(65, 40), FNM(60), FVEC(65), WA(265), X(60)

double precision DPMPAR, ENORM

external FCN

common /REFNUM/ NPROB, NFEV, NJEV

c

logical input unit is assumed to be number 5.

c

logical output unit is assumed to be number 6.

c

data NREAD, NWRITE /5, 6/

c

data ONE, TEN /1.0D0, 1.0D1/

tol = DSQRT(DPMPAR(1))

LDFJAC = 65

LWA = 265

IC = 0

10 continue

read (NREAD, 50) NPROB, N, M, NTRIES

if (NPROB .LE. 0) go to 30

factor = ONE

do 20 K = 1, NTRIES

IC = IC + 1

Call INITPT(N, X, NPROB, FACTOR)

Call SSQFCN(M, N, X, FVEC, NPROB)

FNM1 = ENORM(M, FVEC)

write (NWRITE, 60) NPROB, N, M

NFEV = 0

NJEV = 0

Call LMDER1(FCN, M, N, X, FVEC, FJAC, LDFJAC, TOL, INFO, IWA, WA, IC)

Call SSQFCN(M, N, X, FVEC, NPROB)

FNORM2 = ENORM(M, FVEC)

NP, IC = NPROB

NA (IC) = N

LMD0010

LMD0020

LMD0030

LMD0040

LMD0050

LMD0060

LMD0070

LMD0080

LMD0090

LMD0100

LMD0110

LMD0120

LMD0130

LMD0140

LMD0150

LMD0160

LMD0170

LMD0180

LMD0190

LMD0200

LMD0210

LMD0220

LMD0230

LMD0240

LMD0250

LMD0260

LMD0270

LMD0280

LMD0290

LMD0300

LMD0310

LMD0320

LMD0330

LMD0340

LMD0350

LMD0360

LMD0370

LMD0380

LMD0390

LMD0400

LMD0410

LMD0420

LMD0430

LMD0440

LMD0450

LMD0460

LMD0470

LMD0480

LMD0490

LMD0500

LMD0510

LMD0520

LMD0530

LMD0540

LMD0550

LMD0560

LMD0570

LMD0580

LMD0590

LMD0600

LMD0610
MA(IC) = M
NF(IC) = NFEV
NJ(IC) = NJEV
NX(IC) = INFO
FNH(IC) = FNORM2
WRITE (NWRITE,70)
* FNORM1,FNORM2,NFEV,NJEV,INFO,(X(I), I = 1, N)
FACTOR = TEN*FACTOR
WRITE (NWRITE,70) IC
WRITE (NWRITE,80) IC
WRITE (NWRITE,90) IC
DO 40 I = 1, IC
WRITE (NWRITE,100) IC
40 CONTINUE
STOP
C LAST CARD OF DRIVER.
END
SUBROUTINE FCN(M,N,X,FVEC,FJAC,LDFJAC,IFLAG)
INTEGER M,N,LDFJAC, IFLAG
DOUBLE PRECISION X(N),FVEC(M),FJAC(LDFJAC,N)

THE CALLING SEQUENCE OF FCN SHOULD BE IDENTICAL TO THE
CALLING SEQUENCE OF THE FUNCTION SUBROUTINE IN THE NONLINEAR
LEAST-SQUARES SOLVER. FCN SHOULD ONLY CALL THE TESTING
FUNCTION AND JACOBIAN SUBROUTINES SSQFCN AND SSQJAC WITH
THE APPROPRIATE VALUE OF PROBLEM NUMBER (NPROB).
SUBPROGRAMS CALLED
MINPACK-SUPPLIED ... SSQFCN,SSQJAC
ARGONNE NATIONAL LABORATORY. MINPACK PROJECT. MARCH 1980.
BURTON S. GARbow, KENNETH E. HILLSTROM, JORGE J. MORE

INTEGER NPROB,NFEV,NJEV
COMMON /REFNUM/ NPROB,NFEV,NJEV
IF (IFLAG .EQ. 1) CALL SSQFCN(M,N,X,FVEC,NPROB)
IF (IFLAG .EQ. 2) CALL SSQJAC(M,N,X,FJAC,LDFJAC,NPROB)
IF (IFLAG .EQ. 1) NFEV = NFEV + 1
IF (IFLAG .EQ. 2) NJEV = NJEV + 1
RETURN
C LAST CARD OF INTERFACE SUBROUTINE FCN.
**/*

C

C THIS PROGRAM TESTS CODES FOR THE LEAST-SQUARES SOLUTION OF
C M NONLINEAR EQUATIONS IN N VARIABLES. IT CONSISTS OF A DRIVER
C AND AN INTERFACE SUBROUTINE FCN. THE DRIVER READS IN DATA,
C CALLS THE NONLINEAR LEAST-SQUARES SOLVER, AND FINALLY PRINTS
C OUT INFORMATION ON THE PERFORMANCE OF THE SOLVER. THIS IS
C ONLY A SAMPLE DRIVER, MANY OTHER DRIVERS ARE POSSIBLE. THE
C INTERFACE SUBROUTINE FCN IS NECESSARY TO TAKE INTO ACCOUNT THE
C FORMS OF CALLING SEQUENCES USED BY THE FUNCTION AND JACOBIAN
C SUBROUTINES IN THE VARIOUS NONLINEAR LEAST-SQUARES SOLVERS.
C
C SUBPROGRAMS CALLED
C
C USER-SUPPLIED FCN
C MINPACK-SUPPLIED ... DPMPAR,ENORM,INITPT,LMSTR1,SSQFCN
C FORTRAN-SUPPLIED ... DSQRT
C
C ARGONNE NATIONAL LABORATORY. MINPACK PROJECT. MARCH 1980.
C BURTON S. GARBOW, KENNETH E. HILLSTROM, JORGE J. MORE
C
**/*

C INTEGER I, IC, INFO, K, LDFJAC, LWA, M, N, FEV, NJEV, NPROB, NREAD, NTRIES,
C * NWRITE
C INTEGER IWA(40), NA(60), NA(60), NF(60), NJ(60), NP(60), NX(60)
C DOUBLE PRECISION FACTOR, FNORM1, FNORM2, ONE, TEN, TOL
C DOUBLE PRECISION FJAC(40,40), FNM(60), FVEC(65), WA(265), X(40)
C DOUBLE PRECISION DPMPAR, ENORM
C EXTERNAL FCN
C COMMON /REFNUM/ NPROB, NFEV, NJEV
C
C LOGICAL INPUT UNIT IS ASSUMED TO BE NUMBER 5.
C LOGICAL OUTPUT UNIT IS ASSUMED TO BE NUMBER 6.
C
C DATA NREAD, NWRITE /5, 6/
C
C DATA ONE, TEN /1.0D0, 1.0D1/
C TOL = DSQRT(DPMPAR(1))
C LDFJAC = 40
C LWA = 265
C IC = 0
C
C 10 CONTINUE
C
C READ (NREAD, 50) NPROB, N, M, NTRIES
C IF (NPROB .LE. 0) GO TO 30
C FACTOR = ONE
C DO 20 K = 1, NTRIES
C IC = IC + 1
C CALL INITPT(N, X, NPROB, FACTOR)
C CALL SSQFCN(M, N, X, FVEC, NPROB)
C FNORM1 = ENORM(M, FVEC)
C WRITE (NWRITE, 60) NPROB, N, M
C NFEV = 0
C NJEV = 0
C CALL LMSTR1(FCN, M, N, X, FVEC, FJAC, LDFJAC, TOL, INFO, IWA, LWA)
C CALL SSQFCN(M, N, X, FVEC, NPROB)
C FNORM2 = ENORM(M, FVEC)
C NP(IC) = NPROB
C NA(IC) = N
C
C LMSD0910
C LAST CARD OF DRIVER.
C LMSD0920
END
C LMSD0930
SUBROUTINE FCN(M,N,X,FVEC,FJROW,IFLAG)
C LMSD0940
INTEGER M,N,IFLAG
C LMSD0950
DOUBLE PRECISION X(N),FVEC(M),FJROW(N)
C LMSD0960
C **********
C LMSD0970
C THE CALLING SEQUENCE OF FCN SHOULD BE IDENTICAL TO THE
C CALLING SEQUENCE OF THE FUNCTION SUBROUTINE IN THE NONLINEAR
C LEAST SQUARES SOLVER. IF IFLAG = 1, FCN SHOULD ONLY CALL THE
C TESTING FUNCTION SUBROUTINE SSQFCN. IF IFLAG = 1, I .GE. 2,
C FCN SHOULD ONLY CALL SUBROUTINE SSQJAC TO CALCULATE THE
C (I-1)-ST ROW OF THE JACOBIAN. (THE SSQJAC SUBROUTINE PROVIDED
C HERE FOR TESTING PURPOSES CALCULATES THE ENTIRE JACOBIAN
C MATRIX AND IS THEREFORE CALLED ONLY WHEN IFLAG = 2.) EACH
C CALL TO SSQFCN OR SSQJAC SHOULD SPECIFY THE APPROPRIATE
C VALUE OF PROBLEM NUMBER (NPROB).
C LMSD109C
C LMSD1100
C SUBPROGRAMS CALLED
C LMSD1110
MINPACK-SUPPLIED ... SSQFCN,SSQJAC
C LMSD1120
C ARGONNE NATIONAL LABORATORY. MINPACK PROJECT. MARCH 1980.
C LMSD1130
BURTON S. GARBOW, KENNETH E. HILLSTROM, JORGE J. MORE
C LMSD1140
C **********
C LMSD1150
INTEGER NPROB,NFEV,NJEV,J
C LMSD1160
DOUBLE PRECISION TEMP(65,40)
C LMSD1170
COMMON /REFNUM/ NPROB,NFEV,NJEV
C LMSD1180
IF (IFLAG .EQ. 1) CALL SSQFCN(M,N,X,FVEC,NPROB)
IF (IFLAG .EQ. 2) CALL SSQJAC(M,N,X,TEMP,65,NPROB)
IF (IFLAG .EQ. 1) NFEV = NFEV + 1
IF (IFLAG .EQ. 2) NJEV = NJEV + 1
IF (IFLAG .EQ. 1) GO TO 120
DO 110 J = 1, N
 FJROW(J) = TEMP(IFLAG-1,J)
110 CONTINUE
120 CONTINUE
RETURN
C
C LAST CARD OF INTERFACE SUBROUTINE FCN.
C
END
THIS PROGRAM TESTS CODES FOR THE LEAST-SQUARES SOLUTION OF M NONLINEAR EQUATIONS IN N VARIABLES. IT CONSISTS OF A DRIVER AND AN INTERFACE SUBROUTINE FCN. THE DRIVER READS IN DATA, CALLS THE NONLINEAR LEAST-SQUARES SOLVER, AND FINALLY PRINTS OUT INFORMATION ON THE PERFORMANCE OF THE SOLVER. THIS IS ONLY A SAMPLE DRIVER, MANY OTHER DRIVERS ARE POSSIBLE. THE INTERFACE SUBROUTINE FCN IS NECESSARY TO TAKE INTO ACCOUNT THE FORMS OF CALLING SEQUENCES USED BY THE FUNCTION AND JACOBIAN SUBROUTINES IN THE VARIOUS NONLINEAR LEAST-SQUARES SOLVERS.

SUBPROGRAMS CALLED

USER-SUPPLIED FCN
MINPACK-SUPPLIED ... DPMPAR,ENORM,INITPT,LMDIF1,SSQFCN
FORTRAN-SUPPLIED ... DSQRT

ARGONNE NATIONAL LABORATORY. MINPACK PROJECT. MARCH 1980.
BURTON S. GARBOW, KENNETH E. HILLSTROM, JORGE J. MORE

INTEGER I,IC,INFO,K,LWA,M,N,NFEV,NPROB,NREAD,NTRIES,NWRITE
INTEGER IWA(40),MA(60),NA(60),NF(60),NJ(60),NP(60),NX(60)
DOUBLE PRECISION FACTOR,FNORM1,FNORM2,ONE,TEN,TOL
DOUBLE PRECISION FNM(60),FVEC(65),WA(2865),X(40)
EXTERNAL FCN
COMMON /REFNUM/ NPROB,NFEV,NJEV

LOGICAL INPUT UNIT IS ASSUMED TO BE NUMBER 5.
LOGICAL OUTPUT UNIT IS ASSUMED TO BE NUMBER 6.

DATA NREAD,NWRITE /5,6/
DATA ONE,TEN /1.0D0,1.0D1/
TOL = DSQRT(DPMPAR(1))
IWA = 2865
IC = 0
10 CONTINUE
READ (NREAD,50) NPROB,N,M,NTRIES
IF (NPROB .LE. 0) GO TO 30
FACTOR = ONE
DO 20 K = 1, NTRIES
 IC = IC + 1
 CALL INITPT(N,X,NPROB,FACTOR)
 CALL SSQFCN(M,N,X,FVEC,NPROB)
 FNORM1 = ENORM(M,FVEC)
 WRITE (NWRITE,60) NPROB,N,M
 NFEV = 0
 NJEV = 0
 CALL LMDIF1(FCN,M,N,X,FVEC,TOL,INFO,IWA,WA,LWA)
 CALL SSQFCN(M,N,X,FVEC,NPROB)
 FNORM2 = ENORM(M,FVEC)
 NP(IC) = NPROB
 NA(IC) = N
 MA(IC) = M
 NF(IC) = NFEV
 NJEV = NJEV/N
NJ(IC) = NJEV
NX(IC) = INFO
FNM(IC) = FNORM2
WRITE (NWRITE,70)
 * FNORM1,FNORM2,NFEV,NJEV,INFO,(X(I), I = 1, N)
FACTOR = TEN*FACTOR
20 CONTINUE
GO TO 10
30 CONTINUE
WRITE (NWRITE,80) IC
WRITE (NWRITE,9G)
DO 40 I = 1, IC
 WRITE (NWRITE,100) NP(I),NA(I),MA(I),NF(I),NJ(I),NX(I),FNM(I)
40 CONTINUE
STOP
50 FORMAT (415)
60 FORMAT (// // 5X, 33H PROBLEM, I5, 5X, 11H DIMENSIONS, 215, 5X //
* 33H INITIAL L2 NORM OF THE RESIDUALS, D15.7 // 5X,
* 33H FINAL L2 NORM OF THE RESIDUALS , D15.7 // 5X,
* 33H NUMBER OF FUNCTION EVALUATIONS , I10 // 5X,
* 33H NUMBER OF JACOBIAN EVALUATIONS , I10 // 5X,
* 15H EXIT PARAMETER, 18X, I10 // 5X,
* 27H FINAL APPROXIMATE SOLUTION // (5X, 5D15.7)
80 FORMAT (12H SUMMARY OF , I3, 16H CALLS TO LMDIF1 //)
90 FORMAT (49H NPROB N M NFEV NJEV INFO FINAL L2 NORM //)
100 FORMAT (315, 316, 1X, D15.7)
C
C LAST CARD OF DRIVER.
C
END
SUBROUTINE FCN(M,N,X,FVEC, IFLAG)
INTEGER M,N,IFLAG
DOUBLE PRECISION X(N),FVEC(M)
C ************
C THE CALLING SEQUENCE OF FCN SHOULD BE IDENTICAL TO THE
C CALLING SEQUENCE OF THE FUNCTION SUBROUTINE IN THE NONLINEAR
C LEAST-SQUARES SOLVER. FCN SHOULD ONLY CALL THE TESTING
C FUNCTION SUBROUTINE SSQFCN WITH THE APPROPRIATE VALUE OF
C PROBLEM NUMBER (NPROB).
C
SUBPROGRAMS CALLED
MINPACK-SUPPLIED ... SSQFCN
C
ARGONNE NATIONAL LABORATORY. MINPACK PROJECT. MARCH 1980.
BURTON S. GARROW, KENNETH E. HILLSTROM, JORGE J. MORE
C
C ************
INTEGER NPROB,NFEV,NJEV
COMMON /REFNUM/ NPROB,NFEV,NJEV
CALL SSQFCN(M,N,X,' ».C,NPROB)
IF (IFLAG .EQ. 1) NFEV
 a NFEV
 + 1
IF (IFLAG .EQ. 2) NJEV
 s NJEV
 + 1
RETURN
C
C LAST CARD OF INTERFACE SUBROUTINE FCN.
C
END
THIS PROGRAM TESTS THE ABILITY OF CHKDER TO DETECT INCONSISTENCIES BETWEEN FUNCTIONS AND THEIR FIRST DERIVATIVES. FOURTEEN TEST FUNCTION VECTORS AND JACOBIANS ARE USED. ELEVEN OF THE TESTS ARE FALSE (F), I.E. THERE ARE INCONSISTENCIES BETWEEN THE FUNCTION VECTORS AND THE CORRESPONDING JACOBIANS. THREE OF THE TESTS ARE TRUE (T), I.E. THERE ARE NO INCONSISTENCIES. THE DRIVER READS DATA, CALLS CHKDER AND PRINTS OUT INFORMATION REQUIRED BY AND RECEIVED FROM CHKDER.

MINPACK SUPPLIED... CHKDER, ERRJAC, INITPT, VECFCN

ARGONNE NATIONAL LABORATORY. MINPACK PROJECT. MARCH 1980.

BURTON S. GARROW, KENNETH E. HILLSTROM, JORGE J. MORE

INTEGER I, LDFJAC, LNP, MODE, N, NPROB, NREAD, NWRITE
INTEGER NA(14), NP(14)
LOGICAL A(14)
DOUBLE PRECISION CP, ONE
DOUBLE PRECISION DIFF(10), ERR(10), ERRMAX(14), ERRMIN(14),
* FJAC(10,10), FVEC1(10), FVEC2(10), X1(10), X2(10)

LOGICAL INPUT UNIT IS ASSUMED TO BE NUMBER 5.
LOGICAL OUTPUT UNIT IS ASSUMED TO BE NUMBER 6.

DATA NREAD, NWRITE / 5, 6 /

DATA A(1), A(2), A(3), A(4), A(5), A(6), A(7), A(8), A(9), A(10), A(11),
* A(12), A(13), A(14)
* / .FALSE., .FALSE., .FALSE., .TRUE., .FALSE., .FALSE.,
* .TRUE., .FALSE., .FALSE., .FALSE., .FALSE., .FALSE.,
* .TRUE., .FALSE.,
DATA CP, ONE / 1.23D-1, 1.0D0 /
LDFJAC = 10

CONTINUE
READ (NREAD, 60) NPROB, N
IF (NPROB .LE. 0) GO TO 40
CALL INITPT(N, X1, NPROB, ONE)
DO 20 I = 1, N
X1(I) = X1(I) + CP
CP = -CP
20 CONTINUE
WRITE (NWRITE, 70) NPROB, N, A(NPROB)
MODE = 1
CALL CHKDER(N, N, X1, FVEC1, FJAC, LDFJAC, X2, FVEC2, MODE, ERR)
MODE = 2
CALL VECFCN(N, X1, FVEC1, NPROB)
CALL ERRJAC(N, X1, FJAC, LDFJAC, NPROB)
CALL VECFCN(N, X2, FVEC2, NPROB)
CALL CHKDER(N, N, X1, FVEC1, FJAC, LDFJAC, X2, FVEC2, MODE, ERR)
ERRMIN(NPROB) = ERR(1)
ERRMAX(NPROB) = ERR(1)
DO 30 I = 1, N
DIFF(I) = FVEC2(I) - FVEC1(I)
IF (ERRMIN(NPROB) .GT. ERR(I)) ERRMIN(NPROB) = ERR(I)
IF (ERRMAX(NPROB) .LT. ERR(I)) ERRMAX(NPROB) = ERR(I)
30 CONTINUE
NP(NPROB) = NPROB
LNP = NPROB
NA(NPROB) = N
WRITE (NWRITE,80) (FVEC1(I), I = 1, N)
WRITE (NWRITE,90) (DIFF(I), I = 1, N)
WRITE (NWRITE,100) (ERR(I), I = 1, N)
GO TO 10
40 CONTINUE
WRITE (NWRITE,110) LNP
WRITE (NWRITE,120)
DO 50 I = 1, LNP
WRITE (NWRITE,130) NP(I),NA(I),A(I),ERRMIN(I),ERRMAX(I)
50 CONTINUE
STOP
60 FORMAT (2I5)
70 FORMAT (// 5X, 8H PROBLEM, 15, 5X, 15H WITH DIMENSION, I5, 2X, CHKD0760
* 5H 1S , L1) CHKD0770
80 FORMAT (// 5X, 25H FIRST FUNCTION VECTOR // (5X, 5D15.7)) CHKD0780
90 FORMAT (// 5X, 27H FUNCTION DIFFERENCE VECTOR // (5X, 5D15.7)) CHKD0790
100 FORMAT (// 5X, 13H ERROR VECTOR // (5X, 5D15.7)) CHKD0800
110 FORMAT (12H SUMMARY OF , I3, 16H TESTS OF "HKDER" /) CHKD0811
120 FORMAT (46H NPROB N STATUS ERRMIN ERRMAX /) CHKD0820
130 FORMAT (14, 16, 6X, L1, 3X, 2D15.7) CHKD0830
C CHKD0840
C LAST CARD OF DERIVATIVE CHECK TEST DRIVER.
C CHKD0850
C END
CHKD0860
CHKD0870
APPENDIX C

Test Output Summaries
DMCHAR CONSTANTS

IBETA = 16
IT = 14
IRND = 0
NCRD = 1
MACHEP = -13
NEGEP = -14
IEXP = 7
MINEXP = -65
MAXEXP = 63
EFS = 0.22204460d-15
EPSNEG = 0.13877790d-16
XMIN = 0.53976050d-78
XMAX = 0.72370060d+76

OPHPAR CONSTANTS AND RELATIVE DIFFERENCES

E1SNCH = 0.22204460d-15
RERR(1) = 0.0
XHARF = 0.53976050d-78
RERR(2) = 0.0
GIANT = 0.72370060d+76
RERR(3) = 0.0
<table>
<thead>
<tr>
<th>NPROB</th>
<th>N</th>
<th>NF EV</th>
<th>INFO</th>
<th>FINAL</th>
<th>L2 NORM</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>24</td>
<td>1</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>107</td>
<td>4</td>
<td>0.168060000-32</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>114</td>
<td>4</td>
<td>0.26024970-33</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>125</td>
<td>4</td>
<td>0.11037890-32</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>181</td>
<td>1</td>
<td>0.17129330-03</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>11</td>
<td>1</td>
<td>0.37440350-07</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>94</td>
<td>1</td>
<td>0.39939060-10</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>233</td>
<td>1</td>
<td>0.33471760-08</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>505</td>
<td>1</td>
<td>0.13315330-09</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>27</td>
<td>1</td>
<td>0.27268550-12</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>32</td>
<td>1</td>
<td>0.22568750-09</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>40</td>
<td>1</td>
<td>0.16234310-12</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>96</td>
<td>1</td>
<td>0.33167300-12</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>171</td>
<td>1</td>
<td>0.16151900-11</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>9</td>
<td>124</td>
<td>1</td>
<td>0.15889590-12</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>9</td>
<td>47</td>
<td>4</td>
<td>0.38293460-01</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>17</td>
<td>1</td>
<td>0.32556530-11</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>5</td>
<td>233</td>
<td>1</td>
<td>0.19332030-09</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>5</td>
<td>482</td>
<td>1</td>
<td>0.49363520-10</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>6</td>
<td>25</td>
<td>1</td>
<td>0.37570520-09</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>6</td>
<td>172</td>
<td>1</td>
<td>0.10294020-09</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>6</td>
<td>223</td>
<td>1</td>
<td>0.18246900-11</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>20</td>
<td>1</td>
<td>0.27425370-08</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>616</td>
<td>1</td>
<td>0.13954710-09</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>139</td>
<td>4</td>
<td>0.18063600-14</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>8</td>
<td>120</td>
<td>4</td>
<td>0.64445080-01</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>9</td>
<td>41</td>
<td>1</td>
<td>0.18819550-08</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>10</td>
<td>31</td>
<td>1</td>
<td>0.61956100-14</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>10</td>
<td>31</td>
<td>1</td>
<td>0.29566330-14</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>10</td>
<td>31</td>
<td>1</td>
<td>0.33163700-13</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>10</td>
<td>232</td>
<td>1</td>
<td>0.20241370-14</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>10</td>
<td>22</td>
<td>1</td>
<td>0.49365510-14</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>10</td>
<td>16</td>
<td>1</td>
<td>0.25159100-14</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>10</td>
<td>19</td>
<td>1</td>
<td>0.17299570-12</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>10</td>
<td>52</td>
<td>1</td>
<td>0.41734140-09</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>7</td>
<td>1</td>
<td>0.27755580-16</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>9</td>
<td>1</td>
<td>0.55111150-16</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>16</td>
<td>1</td>
<td>0.02015360-14</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>16</td>
<td>1</td>
<td>0.50131040-14</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td>19</td>
<td>1</td>
<td>0.21385100-12</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td>39</td>
<td>1</td>
<td>0.30497010-14</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>10</td>
<td>130</td>
<td>4</td>
<td>0.52963550-02</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>10</td>
<td>84</td>
<td>1</td>
<td>0.59150500-10</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>10</td>
<td>83</td>
<td>1</td>
<td>0.34279160-08</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>10</td>
<td>60</td>
<td>1</td>
<td>0.00758360-13</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>10</td>
<td>46</td>
<td>1</td>
<td>0.37575260-10</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>10</td>
<td>61</td>
<td>1</td>
<td>0.49363520-10</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>10</td>
<td>21</td>
<td>1</td>
<td>0.14932700-09</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>10</td>
<td>59</td>
<td>1</td>
<td>0.51042110-08</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>10</td>
<td>42</td>
<td>1</td>
<td>0.98725540-10</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>10</td>
<td>30</td>
<td>1</td>
<td>0.20576750-08</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>10</td>
<td>45</td>
<td>1</td>
<td>0.79536120-08</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>10</td>
<td>58</td>
<td>1</td>
<td>0.45264280-09</td>
<td></td>
</tr>
</tbody>
</table>
SUMMARY OF 55 CALLS TO HYBRJ1

<table>
<thead>
<tr>
<th>NPMB</th>
<th>N</th>
<th>NFEV</th>
<th>NJEV</th>
<th>INFO</th>
<th>FINAL L2 NORM</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>17</td>
<td>3</td>
<td>1</td>
<td>0.0</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>7</td>
<td>1</td>
<td>1</td>
<td>0.0</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>163</td>
<td>10</td>
<td>4</td>
<td>0.4634665D-33</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>122</td>
<td>8</td>
<td>4</td>
<td>0.3678167D-35</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>128</td>
<td>6</td>
<td>4</td>
<td>0.3679306D-33</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>169</td>
<td>6</td>
<td>1</td>
<td>0.1712667D-08</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>9</td>
<td>1</td>
<td>1</td>
<td>0.3740662D-07</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>86</td>
<td>2</td>
<td>1</td>
<td>0.3935580D-10</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>202</td>
<td>8</td>
<td>1</td>
<td>0.3771385D-09</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>386</td>
<td>35</td>
<td>1</td>
<td>0.3476489D-10</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>18</td>
<td>3</td>
<td>1</td>
<td>0.2756464D-12</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>20</td>
<td>4</td>
<td>1</td>
<td>0.2259996D-09</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>37</td>
<td>8</td>
<td>1</td>
<td>0.7202777D-09</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>60</td>
<td>6</td>
<td>1</td>
<td>0.3512562D-12</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>140</td>
<td>6</td>
<td>1</td>
<td>0.2663995D-13</td>
</tr>
<tr>
<td>6</td>
<td>9</td>
<td>92</td>
<td>4</td>
<td>1</td>
<td>0.5193697D-11</td>
</tr>
<tr>
<td>6</td>
<td>9</td>
<td>274</td>
<td>12</td>
<td>4</td>
<td>0.3889432D-01</td>
</tr>
<tr>
<td>7</td>
<td>5</td>
<td>10</td>
<td>1</td>
<td>1</td>
<td>0.6046339D-12</td>
</tr>
<tr>
<td>7</td>
<td>5</td>
<td>134</td>
<td>24</td>
<td>1</td>
<td>0.1936664D-09</td>
</tr>
<tr>
<td>7</td>
<td>5</td>
<td>282</td>
<td>47</td>
<td>1</td>
<td>0.1076839D-09</td>
</tr>
<tr>
<td>7</td>
<td>6</td>
<td>13</td>
<td>2</td>
<td>1</td>
<td>0.1434340D-10</td>
</tr>
<tr>
<td>7</td>
<td>6</td>
<td>91</td>
<td>13</td>
<td>1</td>
<td>0.7219636D-10</td>
</tr>
<tr>
<td>7</td>
<td>6</td>
<td>129</td>
<td>21</td>
<td>1</td>
<td>0.1500959D-10</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>11</td>
<td>1</td>
<td>1</td>
<td>0.1935816D-09</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>270</td>
<td>43</td>
<td>1</td>
<td>0.1716097D-08</td>
</tr>
<tr>
<td>7</td>
<td>8</td>
<td>64</td>
<td>11</td>
<td>4</td>
<td>0.6757899D-12</td>
</tr>
<tr>
<td>8</td>
<td>9</td>
<td>56</td>
<td>8</td>
<td>4</td>
<td>0.6490512D-01</td>
</tr>
<tr>
<td>8</td>
<td>10</td>
<td>23</td>
<td>2</td>
<td>1</td>
<td>0.4208829D-09</td>
</tr>
<tr>
<td>9</td>
<td>10</td>
<td>11</td>
<td>2</td>
<td>1</td>
<td>0.6195651D-14</td>
</tr>
<tr>
<td>9</td>
<td>10</td>
<td>11</td>
<td>2</td>
<td>1</td>
<td>0.2946630D-14</td>
</tr>
<tr>
<td>9</td>
<td>10</td>
<td>27</td>
<td>5</td>
<td>1</td>
<td>0.3262082D-13</td>
</tr>
<tr>
<td>9</td>
<td>10</td>
<td>30</td>
<td>3</td>
<td>1</td>
<td>0.5471989D-13</td>
</tr>
<tr>
<td>10</td>
<td>40</td>
<td>48</td>
<td>3</td>
<td>1</td>
<td>0.4346680D-14</td>
</tr>
<tr>
<td>10</td>
<td>9</td>
<td>6</td>
<td>1</td>
<td>1</td>
<td>0.2525058D-14</td>
</tr>
<tr>
<td>10</td>
<td>9</td>
<td>9</td>
<td>1</td>
<td>1</td>
<td>0.1725822D-12</td>
</tr>
<tr>
<td>10</td>
<td>9</td>
<td>42</td>
<td>1</td>
<td>1</td>
<td>0.4174172D-09</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td>6</td>
<td>1</td>
<td>1</td>
<td>0.2775558D-16</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0.5351115D-16</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0.1367799D-16</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td>6</td>
<td>1</td>
<td>1</td>
<td>0.5005960D-14</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td>9</td>
<td>1</td>
<td>1</td>
<td>0.2182228D-12</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td>19</td>
<td>2</td>
<td>1</td>
<td>0.3039706D-14</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td>60</td>
<td>7</td>
<td>4</td>
<td>0.5296392D-02</td>
</tr>
<tr>
<td>11</td>
<td>10</td>
<td>34</td>
<td>5</td>
<td>1</td>
<td>0.5916591D-10</td>
</tr>
<tr>
<td>11</td>
<td>10</td>
<td>44</td>
<td>6</td>
<td>1</td>
<td>0.1511697D-08</td>
</tr>
<tr>
<td>12</td>
<td>10</td>
<td>28</td>
<td>1</td>
<td>1</td>
<td>0.3331630D-11</td>
</tr>
<tr>
<td>12</td>
<td>10</td>
<td>22</td>
<td>1</td>
<td>1</td>
<td>0.1398412D-02</td>
</tr>
<tr>
<td>13</td>
<td>10</td>
<td>39</td>
<td>3</td>
<td>1</td>
<td>0.0</td>
</tr>
<tr>
<td>13</td>
<td>10</td>
<td>11</td>
<td>1</td>
<td>1</td>
<td>0.1493879D-07</td>
</tr>
<tr>
<td>13</td>
<td>10</td>
<td>49</td>
<td>1</td>
<td>1</td>
<td>0.5081991D-08</td>
</tr>
<tr>
<td>13</td>
<td>10</td>
<td>22</td>
<td>2</td>
<td>1</td>
<td>0.9388859D-10</td>
</tr>
<tr>
<td>14</td>
<td>10</td>
<td>20</td>
<td>1</td>
<td>1</td>
<td>0.2057900D-08</td>
</tr>
<tr>
<td>14</td>
<td>10</td>
<td>25</td>
<td>2</td>
<td>1</td>
<td>0.7953613D-08</td>
</tr>
<tr>
<td>14</td>
<td>10</td>
<td>38</td>
<td>2</td>
<td>1</td>
<td>0.4526430D-09</td>
</tr>
<tr>
<td>NPROB</td>
<td>N</td>
<td>M</td>
<td>NFEV</td>
<td>NJEV</td>
<td>INFO</td>
</tr>
<tr>
<td>-------</td>
<td>-----</td>
<td>-----</td>
<td>------</td>
<td>------</td>
<td>------</td>
</tr>
<tr>
<td>1</td>
<td>5</td>
<td>10</td>
<td>3</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>1</td>
<td>5</td>
<td>50</td>
<td>3</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
<td>10</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
<td>50</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>5</td>
<td>10</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>5</td>
<td>50</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>2</td>
<td>22</td>
<td>16</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>2</td>
<td>8</td>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>2</td>
<td>6</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>3</td>
<td>11</td>
<td>8</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>3</td>
<td>20</td>
<td>15</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>3</td>
<td>19</td>
<td>16</td>
<td>2</td>
</tr>
<tr>
<td>6</td>
<td>4</td>
<td>4</td>
<td>62</td>
<td>59</td>
<td>4</td>
</tr>
<tr>
<td>6</td>
<td>4</td>
<td>4</td>
<td>68</td>
<td>64</td>
<td>4</td>
</tr>
<tr>
<td>6</td>
<td>4</td>
<td>4</td>
<td>75</td>
<td>68</td>
<td>4</td>
</tr>
<tr>
<td>7</td>
<td>2</td>
<td>2</td>
<td>14</td>
<td>8</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>2</td>
<td>2</td>
<td>19</td>
<td>12</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>2</td>
<td>2</td>
<td>24</td>
<td>17</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>3</td>
<td>15</td>
<td>6</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>3</td>
<td>15</td>
<td>37</td>
<td>36</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>3</td>
<td>15</td>
<td>14</td>
<td>13</td>
<td>1</td>
</tr>
<tr>
<td>9</td>
<td>4</td>
<td>11</td>
<td>18</td>
<td>16</td>
<td>1</td>
</tr>
<tr>
<td>9</td>
<td>4</td>
<td>11</td>
<td>78</td>
<td>70</td>
<td>1</td>
</tr>
<tr>
<td>10</td>
<td>3</td>
<td>16</td>
<td>126</td>
<td>118</td>
<td>2</td>
</tr>
<tr>
<td>10</td>
<td>3</td>
<td>16</td>
<td>400</td>
<td>348</td>
<td>5</td>
</tr>
<tr>
<td>11</td>
<td>6</td>
<td>31</td>
<td>8</td>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td>11</td>
<td>6</td>
<td>31</td>
<td>14</td>
<td>13</td>
<td>1</td>
</tr>
<tr>
<td>11</td>
<td>6</td>
<td>31</td>
<td>15</td>
<td>14</td>
<td>1</td>
</tr>
<tr>
<td>11</td>
<td>9</td>
<td>31</td>
<td>8</td>
<td>7</td>
<td>2</td>
</tr>
<tr>
<td>11</td>
<td>9</td>
<td>31</td>
<td>19</td>
<td>15</td>
<td>1</td>
</tr>
<tr>
<td>11</td>
<td>9</td>
<td>31</td>
<td>18</td>
<td>15</td>
<td>1</td>
</tr>
<tr>
<td>11</td>
<td>12</td>
<td>31</td>
<td>10</td>
<td>9</td>
<td>3</td>
</tr>
<tr>
<td>11</td>
<td>12</td>
<td>31</td>
<td>34</td>
<td>26</td>
<td>3</td>
</tr>
<tr>
<td>12</td>
<td>3</td>
<td>10</td>
<td>7</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>13</td>
<td>2</td>
<td>10</td>
<td>21</td>
<td>12</td>
<td>1</td>
</tr>
<tr>
<td>14</td>
<td>4</td>
<td>20</td>
<td>255</td>
<td>237</td>
<td>1</td>
</tr>
<tr>
<td>14</td>
<td>4</td>
<td>20</td>
<td>53</td>
<td>42</td>
<td>1</td>
</tr>
<tr>
<td>14</td>
<td>4</td>
<td>20</td>
<td>237</td>
<td>221</td>
<td>1</td>
</tr>
<tr>
<td>15</td>
<td>1</td>
<td>8</td>
<td>1</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>15</td>
<td>1</td>
<td>8</td>
<td>29</td>
<td>28</td>
<td>1</td>
</tr>
<tr>
<td>15</td>
<td>1</td>
<td>8</td>
<td>47</td>
<td>46</td>
<td>1</td>
</tr>
<tr>
<td>15</td>
<td>8</td>
<td>8</td>
<td>39</td>
<td>30</td>
<td>1</td>
</tr>
<tr>
<td>15</td>
<td>9</td>
<td>9</td>
<td>12</td>
<td>9</td>
<td>2</td>
</tr>
<tr>
<td>15</td>
<td>10</td>
<td>10</td>
<td>25</td>
<td>12</td>
<td>1</td>
</tr>
<tr>
<td>15</td>
<td>10</td>
<td>10</td>
<td>14</td>
<td>12</td>
<td>2</td>
</tr>
<tr>
<td>16</td>
<td>10</td>
<td>10</td>
<td>13</td>
<td>8</td>
<td>2</td>
</tr>
<tr>
<td>16</td>
<td>10</td>
<td>10</td>
<td>44</td>
<td>42</td>
<td>2</td>
</tr>
<tr>
<td>16</td>
<td>16</td>
<td>16</td>
<td>18</td>
<td>14</td>
<td>2</td>
</tr>
<tr>
<td>17</td>
<td>5</td>
<td>33</td>
<td>18</td>
<td>15</td>
<td>1</td>
</tr>
<tr>
<td>18</td>
<td>11</td>
<td>65</td>
<td>16</td>
<td>12</td>
<td>2</td>
</tr>
<tr>
<td>NPROB</td>
<td>N</td>
<td>H</td>
<td>M</td>
<td>NJEV</td>
<td>INFO</td>
</tr>
<tr>
<td>-------</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>------</td>
<td>------</td>
</tr>
<tr>
<td>1</td>
<td>5</td>
<td>10</td>
<td>3</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
<td>50</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
<td>50</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>5</td>
<td>10</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>5</td>
<td>50</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>2</td>
<td>21</td>
<td>16</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>2</td>
<td>8</td>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>3</td>
<td>11</td>
<td>8</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>3</td>
<td>20</td>
<td>15</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>3</td>
<td>19</td>
<td>16</td>
<td>2</td>
</tr>
<tr>
<td>6</td>
<td>4</td>
<td>4</td>
<td>65</td>
<td>60</td>
<td>4</td>
</tr>
<tr>
<td>6</td>
<td>4</td>
<td>4</td>
<td>67</td>
<td>64</td>
<td>4</td>
</tr>
<tr>
<td>6</td>
<td>4</td>
<td>4</td>
<td>77</td>
<td>73</td>
<td>4</td>
</tr>
<tr>
<td>7</td>
<td>2</td>
<td>2</td>
<td>14</td>
<td>8</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>2</td>
<td>2</td>
<td>19</td>
<td>12</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>2</td>
<td>2</td>
<td>24</td>
<td>17</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>3</td>
<td>15</td>
<td>6</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>3</td>
<td>15</td>
<td>37</td>
<td>35</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>3</td>
<td>15</td>
<td>16</td>
<td>13</td>
<td>1</td>
</tr>
<tr>
<td>9</td>
<td>4</td>
<td>11</td>
<td>18</td>
<td>16</td>
<td>1</td>
</tr>
<tr>
<td>9</td>
<td>4</td>
<td>11</td>
<td>78</td>
<td>70</td>
<td>1</td>
</tr>
<tr>
<td>10</td>
<td>5</td>
<td>16</td>
<td>126</td>
<td>116</td>
<td>3</td>
</tr>
<tr>
<td>11</td>
<td>6</td>
<td>31</td>
<td>400</td>
<td>344</td>
<td>5</td>
</tr>
<tr>
<td>11</td>
<td>6</td>
<td>31</td>
<td>8</td>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td>11</td>
<td>6</td>
<td>31</td>
<td>14</td>
<td>13</td>
<td>1</td>
</tr>
<tr>
<td>11</td>
<td>6</td>
<td>31</td>
<td>15</td>
<td>14</td>
<td>1</td>
</tr>
<tr>
<td>11</td>
<td>9</td>
<td>31</td>
<td>8</td>
<td>7</td>
<td>2</td>
</tr>
<tr>
<td>11</td>
<td>9</td>
<td>31</td>
<td>19</td>
<td>15</td>
<td>1</td>
</tr>
<tr>
<td>11</td>
<td>9</td>
<td>31</td>
<td>19</td>
<td>16</td>
<td>2</td>
</tr>
<tr>
<td>11</td>
<td>12</td>
<td>31</td>
<td>10</td>
<td>9</td>
<td>3</td>
</tr>
<tr>
<td>11</td>
<td>12</td>
<td>31</td>
<td>13</td>
<td>12</td>
<td>2</td>
</tr>
<tr>
<td>11</td>
<td>12</td>
<td>31</td>
<td>16</td>
<td>19</td>
<td>2</td>
</tr>
<tr>
<td>12</td>
<td>2</td>
<td>10</td>
<td>7</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>13</td>
<td>2</td>
<td>10</td>
<td>21</td>
<td>12</td>
<td>1</td>
</tr>
<tr>
<td>14</td>
<td>4</td>
<td>20</td>
<td>254</td>
<td>236</td>
<td>1</td>
</tr>
<tr>
<td>14</td>
<td>4</td>
<td>20</td>
<td>53</td>
<td>42</td>
<td>1</td>
</tr>
<tr>
<td>14</td>
<td>4</td>
<td>20</td>
<td>237</td>
<td>221</td>
<td>1</td>
</tr>
<tr>
<td>15</td>
<td>1</td>
<td>8</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>15</td>
<td>1</td>
<td>8</td>
<td>29</td>
<td>28</td>
<td>1</td>
</tr>
<tr>
<td>15</td>
<td>1</td>
<td>8</td>
<td>47</td>
<td>46</td>
<td>1</td>
</tr>
<tr>
<td>15</td>
<td>8</td>
<td>8</td>
<td>39</td>
<td>20</td>
<td>1</td>
</tr>
<tr>
<td>15</td>
<td>9</td>
<td>9</td>
<td>12</td>
<td>9</td>
<td>2</td>
</tr>
<tr>
<td>15</td>
<td>10</td>
<td>10</td>
<td>25</td>
<td>12</td>
<td>1</td>
</tr>
<tr>
<td>16</td>
<td>10</td>
<td>10</td>
<td>14</td>
<td>12</td>
<td>2</td>
</tr>
<tr>
<td>16</td>
<td>10</td>
<td>10</td>
<td>13</td>
<td>8</td>
<td>2</td>
</tr>
<tr>
<td>16</td>
<td>10</td>
<td>10</td>
<td>29</td>
<td>28</td>
<td>2</td>
</tr>
<tr>
<td>16</td>
<td>30</td>
<td>30</td>
<td>19</td>
<td>14</td>
<td>2</td>
</tr>
<tr>
<td>17</td>
<td>40</td>
<td>40</td>
<td>18</td>
<td>13</td>
<td>1</td>
</tr>
<tr>
<td>18</td>
<td>11</td>
<td>65</td>
<td>16</td>
<td>12</td>
<td>1</td>
</tr>
<tr>
<td>NPROB</td>
<td>N</td>
<td>M</td>
<td>NFEV</td>
<td>NJEV</td>
<td>INFO</td>
</tr>
<tr>
<td>-------</td>
<td>----</td>
<td>----</td>
<td>------</td>
<td>------</td>
<td>------</td>
</tr>
<tr>
<td>1</td>
<td>5</td>
<td>10</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>5</td>
<td>50</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
<td>10</td>
<td>4</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
<td>50</td>
<td>4</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>5</td>
<td>10</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>5</td>
<td>50</td>
<td>4</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>2</td>
<td>22</td>
<td>16</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>2</td>
<td>8</td>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>2</td>
<td>7</td>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>3</td>
<td>12</td>
<td>9</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>3</td>
<td>20</td>
<td>15</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>3</td>
<td>19</td>
<td>16</td>
<td>2</td>
</tr>
<tr>
<td>6</td>
<td>4</td>
<td>4</td>
<td>234</td>
<td>192</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>4</td>
<td>4</td>
<td>232</td>
<td>192</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>4</td>
<td>4</td>
<td>230</td>
<td>193</td>
<td>5</td>
</tr>
<tr>
<td>7</td>
<td>2</td>
<td>2</td>
<td>14</td>
<td>8</td>
<td>2</td>
</tr>
<tr>
<td>7</td>
<td>2</td>
<td>2</td>
<td>19</td>
<td>12</td>
<td>2</td>
</tr>
<tr>
<td>7</td>
<td>2</td>
<td>2</td>
<td>24</td>
<td>17</td>
<td>2</td>
</tr>
<tr>
<td>8</td>
<td>3</td>
<td>15</td>
<td>6</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>3</td>
<td>15</td>
<td>36</td>
<td>35</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>3</td>
<td>15</td>
<td>14</td>
<td>13</td>
<td>1</td>
</tr>
<tr>
<td>9</td>
<td>4</td>
<td>11</td>
<td>18</td>
<td>16</td>
<td>1</td>
</tr>
<tr>
<td>9</td>
<td>4</td>
<td>11</td>
<td>77</td>
<td>69</td>
<td>1</td>
</tr>
<tr>
<td>9</td>
<td>4</td>
<td>11</td>
<td>232</td>
<td>193</td>
<td>3</td>
</tr>
<tr>
<td>10</td>
<td>3</td>
<td>16</td>
<td>128</td>
<td>116</td>
<td>3</td>
</tr>
<tr>
<td>10</td>
<td>3</td>
<td>16</td>
<td>4</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>11</td>
<td>6</td>
<td>31</td>
<td>9</td>
<td>8</td>
<td>1</td>
</tr>
<tr>
<td>11</td>
<td>6</td>
<td>31</td>
<td>16</td>
<td>13</td>
<td>1</td>
</tr>
<tr>
<td>11</td>
<td>6</td>
<td>31</td>
<td>15</td>
<td>14</td>
<td>1</td>
</tr>
<tr>
<td>11</td>
<td>6</td>
<td>31</td>
<td>9</td>
<td>8</td>
<td>1</td>
</tr>
<tr>
<td>11</td>
<td>9</td>
<td>31</td>
<td>31</td>
<td>16</td>
<td>2</td>
</tr>
<tr>
<td>11</td>
<td>9</td>
<td>31</td>
<td>28</td>
<td>16</td>
<td>2</td>
</tr>
<tr>
<td>11</td>
<td>12</td>
<td>31</td>
<td>23</td>
<td>15</td>
<td>2</td>
</tr>
<tr>
<td>11</td>
<td>12</td>
<td>31</td>
<td>20</td>
<td>13</td>
<td>2</td>
</tr>
<tr>
<td>11</td>
<td>12</td>
<td>31</td>
<td>23</td>
<td>12</td>
<td>2</td>
</tr>
<tr>
<td>11</td>
<td>12</td>
<td>31</td>
<td>23</td>
<td>12</td>
<td>2</td>
</tr>
<tr>
<td>12</td>
<td>3</td>
<td>10</td>
<td>7</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>12</td>
<td>3</td>
<td>10</td>
<td>7</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>13</td>
<td>2</td>
<td>10</td>
<td>21</td>
<td>12</td>
<td>1</td>
</tr>
<tr>
<td>14</td>
<td>4</td>
<td>20</td>
<td>212</td>
<td>197</td>
<td>5</td>
</tr>
<tr>
<td>14</td>
<td>4</td>
<td>20</td>
<td>55</td>
<td>43</td>
<td>1</td>
</tr>
<tr>
<td>14</td>
<td>4</td>
<td>20</td>
<td>212</td>
<td>197</td>
<td>5</td>
</tr>
<tr>
<td>15</td>
<td>1</td>
<td>8</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>15</td>
<td>1</td>
<td>8</td>
<td>29</td>
<td>28</td>
<td>1</td>
</tr>
<tr>
<td>15</td>
<td>1</td>
<td>8</td>
<td>47</td>
<td>46</td>
<td>1</td>
</tr>
<tr>
<td>15</td>
<td>8</td>
<td>8</td>
<td>39</td>
<td>20</td>
<td>1</td>
</tr>
<tr>
<td>15</td>
<td>9</td>
<td>9</td>
<td>12</td>
<td>9</td>
<td>2</td>
</tr>
<tr>
<td>15</td>
<td>10</td>
<td>10</td>
<td>25</td>
<td>12</td>
<td>1</td>
</tr>
<tr>
<td>16</td>
<td>10</td>
<td>10</td>
<td>7</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>16</td>
<td>10</td>
<td>10</td>
<td>13</td>
<td>8</td>
<td>2</td>
</tr>
<tr>
<td>16</td>
<td>10</td>
<td>10</td>
<td>28</td>
<td>26</td>
<td>3</td>
</tr>
<tr>
<td>16</td>
<td>10</td>
<td>10</td>
<td>28</td>
<td>26</td>
<td>3</td>
</tr>
<tr>
<td>16</td>
<td>30</td>
<td>30</td>
<td>9</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>16</td>
<td>40</td>
<td>40</td>
<td>11</td>
<td>10</td>
<td>2</td>
</tr>
<tr>
<td>17</td>
<td>5</td>
<td>33</td>
<td>18</td>
<td>15</td>
<td>1</td>
</tr>
<tr>
<td>18</td>
<td>11</td>
<td>65</td>
<td>16</td>
<td>12</td>
<td>1</td>
</tr>
<tr>
<td>NPROB</td>
<td>N</td>
<td>STATUS</td>
<td>ERRMIN</td>
<td>ERRMAX</td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>----</td>
<td>--------</td>
<td>---------</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>F</td>
<td>0.36441650-01</td>
<td>0.1000000D+01</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>F</td>
<td>0.56784320-01</td>
<td>0.1000000D+01</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>F</td>
<td>0.0</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>T</td>
<td>0.98185500+00</td>
<td>0.1000000D+01</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>F</td>
<td>0.0</td>
<td>0.1000000D+01</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>9</td>
<td>F</td>
<td>0.0</td>
<td>0.1062543D+00</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>F</td>
<td>0.0</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>10</td>
<td>T</td>
<td>0.1000000D+01</td>
<td>0.1000000D+01</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>10</td>
<td>F</td>
<td>0.18527370-01</td>
<td>0.1620563D+00</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td>F</td>
<td>0.0</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>10</td>
<td>F</td>
<td>0.0</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>10</td>
<td>F</td>
<td>0.2027908D-01</td>
<td>0.2027917D-01</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>10</td>
<td>T</td>
<td>0.2544429D+00</td>
<td>0.1000000D+01</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>10</td>
<td>F</td>
<td>0.0</td>
<td>0.0</td>
<td></td>
</tr>
</tbody>
</table>