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ERGODIC THEOREMS FOR

NONLINEAR CONTRACTION SEMIGROUPS

IN A HILBERT SPACE

by

Hans G. Kaper and Gary K. Leaf

ABSTRACT

Two ergodic theorems are presented for means of nonlinear

contraction semigroups in a Hilbert space. These means are

generated by a class of averaging kernels which includes the

usual Abel and Ceshro-(C,a) kernels.

INTRODUCTION

In their note [3], Brezis and Browder proved an ergodic theorem for

a general averaging process for nonlinear contraction mappings in a Hilbert

space. We present similar results here for nonlinear contraction semi-

groups in a Hilbert space. These results include as special cases the

theorems of Baillon [1] and of Baillon and Brzis [2] for Cesro means and

of the authors [6] for Abel means of nonlinear contraction semigroups.

Throughout this report, H denotes a real Hilbert space with inner

product (-,") and norm |-I; C is a closed bounded convex subset of H. The

notations -+ and - refer to convergence in the norm topology and weak

topology in H, respectively.
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1. The Averaging Process

For each A > 0, let k(A,') be a real-valued nonnegative integrable

function on [Q,o) with f k(A,t)dt = 1, such that ftk(A,T)dT - 0 as A + 0
0 0

for every finite t. Such k can be used to define an averaging process on

L'C([ 0,);H)in the following way. For any given x f: L,([0,);H), let

(1) y(A) f:= k(At)x(t)dt A > 0

0

The integral is well-defined as the strong limit of Riemann sums and defines

an element of H for each A > 0. By analogy with Hardy, [5], Section 3.2,

we say that the averaging process (1) is strongly (weakly) regular if

y(A) +, x (y(A) x) as A l 0, whenever x(t) -> x(x(t) -- x) as t -o.

Obviously, strong regularity implies weak regularity.

Lemma 0. The averaging process (1) is strongly regular.

Proof. Suppose x(t) - x as t + o. Then, given any e > 0, there exists a

-1
t(c) such that Ix(t) - xl <12Fc for all t > t(c). Let M = sup{Ix(t)-x|:

t [0,-)}. Without loss of generality we may assume M < o. With t(c)
t(c) ].-l

fixed, we subsequently choose A(c) such that f k(A,t)dt < M c for all
0

A < A(c). Thus,

Iy(A)-xI = k(At)(x(t)-x)dt

0

t (c) C
< f k(At)jx(t)-xdt + k(A,t)Ix(t)-xldt < c

0 t(c)

for all A < A (E) , which proves the leuna. 1
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Let {S(t,-): t > G} be a continuous semigroup of nonlinear contraction

mappings of C into itself. Consider the real interval [0,R] for any R > 0.

For x E C, let aR(\,x) be defined by the integral

R
aR(A,x) :=fkR(At)S(t,x)dt , A > 0

0

,R

where kR(A, t) = k(A,t)/j k(A,t)dt. Since C is convex, aR(A ,x) F C for
0

every R > 0. The sequence {aR (A,x): n=0,1,.... is Cauchy in the norm

n
topology of H for any increasing sequence {Rn: n=0,1,...}. Let a(A,x)

denote its limit. As C is closed, o (Ax) ( C; a(A,x) has the following

representation,

a(A,x) = k(At)S(t,x)dt

0

Tihe object of this note is to study the convergence of a(A,x) as A s 0.

2. Weak Convergence

Let F denote the set of fixed points of the semigroup S in H, which

is closed, convex, and nonempty, cf. [4], Remark 2.5. We denote by ProjF

the projection of H on F. In this section we prove the following theorem

on the weak convergence of a(A,x).

Theorem 1. Suppose k(A,-) is of bounded variation on [0,m) for each A > 0.

Let v (X,t) be the positive variation of k(A,*) on [0,t], and let the func-

tion k+(A,-) be defined by k+ (A,t) = k(A,0+) + v+(A,t) for all t [0,co).

If lim f dtk+(A,t) = 0, then o(A,x) converges weakly as , + 0 to a fixed
A+0 0

point of S. This fixed point is also the strong limit of

{ProjFS(t,x): t > 01 as t + c.
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Before considering the proof of this theorem we note that, by [4],

remark 3.4 and Theorem A2, there exists a unique maximal dissipative set

A c HxH such that its minimal section AO is the generator of S on the domain

D(A) of A, where D(A) is dense in C. The proof of Theorem 1 depends upon

the following lemma.

Lemma 2. Let {An: n=0,1,.. .} be a sequence of positive real numbers tend-

ing to zero. If x . D(A) and a(An,x) -- a, then 2 c F.

Proof. Take any [v,w] , A, then

(w,a(X,x)-v) = k(A,t)(wS(tx)-v)dt

0

Now, observe that (w,S(t,x)-v) = (A S(t,x),S(t,x)-v) + (w-A S(t,x),S(t,x)-v),

where the last inner product is positive because of the dissipativity of A,

cf. [4], Definition 2.1. Thus,

00

(w,ciQ\,x)-v) > J kQ\,t)(A S(t,x),S(t,x)-v)dt

By [4], Corollary 3.1, A S(t,x) = (d/dt)+S(t,x) for t > 0, where (d/dt)+

denotes the right derivativ ', so

(w,o (A ,x)-v) >2 k( , t)'(d /d t)+S(t,x)-vl dt

= - k(A,0+)Ix-vl 2 - JIS(t,x)-v|2dtk(a,t)

0

Since k(A,-) is of bounded variation on [0,o), it is the difference

k (X,-)-k~(a,-) of two nondecreasing functions -- viz., k+(X,t) = k(x,0+) +

v+(A,t) and k (X,t) = -v((A,t), where v+(A,t) and v~(A,t) are the positive

and negative variations, respectively, of k(A,-) on [O,t], cf. [7], Section



9

42. Thus,

(w~o(A~x)-v) > - - k(A,0+)|x-v|2 - - |S(t,x)-v| d k (A~t).- 2 2  jt

0

Now, let {an: n=0,1,.. .} be a sequence of positive real numbers tending to

zero. C is bounded; hence, Ik(A,0+)IIx-v 2 < Ik(A,0+)I(diam C)2 + 0 and

S(t,x)-v I d k+(at) < d k(at)(diam C)2 + 0 as A + 0, so if a(Xx) -
0 I 0
as A+0, the, (w,e -v) > 0 for all [v,w]) A. Since A is maximal dissipative,

A = {[0,) ] HxH: (y-4,x-) < 0 for all [x,y] A}, cf. [4], Lemma 2.2. It

follows that 0 - At and, hence, Z t F. I

Proof of Theorem 1. Suppose x-- D(A). The set {o (A,x): A > 0} is se-

quentially weakly compact. Hence, there exists at least one weakly conver-

gent subsequence of {o(a ,x): n=0,L,...}; we assume that this subsequence

coincides with the sequence itself. Let e denote its weak limit. Then by

Lemma 2, t F. We show next that E is the strong limit of ProjF S(t,x) as

t + C. Define y(t) := ProjF S(t,x) for t > 0. Then y(t) converges in norm

as t + to an element y E F, cf. [2], Lemma 3. Consequently, jk(A,t)y(t)dt
0

converges in norm as A + 0 to y, as the averaging process defined by k is

strongly regular. In order to prove that f = y it suffices to show that

(f-y,k-y) < 0 for all f, F. The latter inequality holds true if

(*) lim J k(At)(f-y,S(tx)-y(t))dt K 0

0

for all f . F.

By virtue of the definition of y(t) we have the inequality (f-y(t),

S(t,x)-y(t)) < 0 for any f(. F, so

(f-y,S(t,x)-y(t)) K (y(t)-y,S(t,x)-y(t))

< I y(t)-yI I S(t,x)-y(t)I
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1 -l
Given any c > 0, there exists a t(E) such that jy(t)-yj < -(diam C) E for all

ft(E) 4
da

t >_ t(e), and a x(e) such that k(,t)dt < ( C)E for all x1<-x(2).

Thl en

fk(x,t)(f-y,S(t,x)-y(t))dt K <
0

for all a< K x(E), which proves (*).

Since any subsequence of {a(an,x): n=0,1,...} which is weakly conver-

gent, converres to the same limit, it follows that the sequence itself is

w-akly convergent . Ti'is proves the theorem for x _ D(A).

Now, suppose x' C. Since (A) is dense in C, there exists a sequence

(x.: i=,2, ... } with x. l(A), such that x. + x. Then we know that a(A,x.)

i s weak ly convergent as A () to 4 . , say, and '.: F. For any w fII with

Iwj = 1 we have

I((x,x)-o(p,x),w)I Io(A,x)-o(x,xi)I + |(o(ax )-o(p,x.),w)|

+ 1a(p,x)-o(p,x.)| .

Since a is a contraction, the first and last term of the right member can

each be estimated by Ix-x.I, so

(o(A,x)-o(p,x),w)|< 21x-x.j + I(o(x,x.)-o(p,x.),w)j

and, hence,

lim sup|(o(,x)-o(p,x),w) < 2jx-x. .
X,i + 0

This implies that {a(X,x): A > 0} is weakly Cauchy and, hence, weakly con-

vergent as A + 0 to e , say. We now show that t c F. We have the inequality

(aO(A,x)-e,w)| < 2 |x-x.I + I(aO(A,x.),-C.,w)I|,
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whence

I( .-',w) I < 21(L'.-o(A,x. ),w) I + I|(o(A,x. )-o(A,x),w)I + 2 1 x-x. I

21(f.-o(A,x.),w)I + 3 1 x-x.

Given any E F 0, there exists a i(E) such that Ix-x.( KE/6 for all j > >i(C)

With i thus fixed, we can choose a A(E,i) such that I( .-O(A,x.),w)I < E/4
S1.

for all A ( A(t,i). It follows that lim(C.-L,w) = 0 for all w 11, so C. C
+ 1 1

and, since F is cIosed, , F

It remains to be shown that f is the strong limit of Proj1 , S(t,x) as

t . 'he proof is identical to the corresponding proof for x D(A) given

above and wil11, therefore, be omitted.

Let o(0,x) denote the weak limit of o(A,x) as A + 0. We have the

following corollary of Theorem 1.

Corollary 3. The operator a(0,') is a contractive mapping of C into F,

which satisfies S(t,a(0,x)) = a(0,x) for all x C, t > 0. If k satisfies

the additional condition lim If k(A,t+T)-k(A,t)Idt = 0 for each T > 0, then
A+0 0

also o(0,S(t,x)) = o(0,x) for all x,_ C, t > 0.

Proof. The first part of the corollary is an immediate consequence of

Theorem 1. The second part follows from the identity

It
a(AS(t,x)) = o(Ax) - f k(A, )S(T,x)di

0

- j (k(a,T+t)-k(X,T))S(T+t,x)dT,

0

where a(A,x) converges weakly to a(0,x) and the remaining terms in the right

member converge (strongly) to 0 as A + 0. Q
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3. Strong Convergence

We assume that the kernel k has the following additional property: for

any bounded function q on l0,m), the convergence of J k(x,t)q(t)dt to a

limit 6 as A + 0 implies the convergence of j k(a,t)k(a,s)q(jt-sj)dsdt to

0 0
the same limit 6 as A + 0. We refer to this property as Property (A) of the

kernel k.

In this section we prove the following theorem on the strong conver-

gence of o().

Theorem 4. Suppose 0( C, S(t,0) = 0, and that, for some c > 0, S satisfies

the inequality

2 2 2 2 2 2
jS(t,u)+S(t,v)l ju+vl + c{ul - IS(t,u)j + .lv - S(t,v)l2}

for all u ,v ,C. If 1im k(, t ) k(A,)jdt = U tor each T > 0, then o(X,x)

converges strongly as A + 0.

The suppositions of the theorem hold true in particular if C = -C and

S(t ,-x) = -S(t,x) for all x C.

The proof of this theorem depends upon the following lemma.

Lemma 5. Suppose (S(t,X),S(t+T,X)) + (1(T) as t + , uniformly for T [0,o).

If lim { k(X,t+T)-k(x,t)jdt = 0 for each T > 0, then o(X,x) converges
x+0 0

strongly as A + 0.

Proof. Let C denote the weak limit of a(a,x) as X + 0. We first show that

lim k(x,t)q(t)dt = j1j2.
a+0 0

Consider the difference (S(t,x),e.) - J k(a, )q( )d , the first term of

2s
which converges to IC I, as we will show presently. We have the identity
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(S(t,x), ) - ; k(A,')q()dT
0

= (S(t,x),i-v(A,x)) + j k(A,T)S(t,x),S(T,x))dT
0

-j k(A,T)(S(t,x),S(t+T,x)di
()

+ k(A,r){(S(t,x),S(t+T,x))-q( )}d.
O

r t r
Splitt ing the integral in t second term of the right member, = j + J ,

0 0 t
and introducing a new variable of integration (T' = r-t) in the latter inte-

graI, we find the (identity

rID
(S(t ,x),4) - k(A,T)q(r)dt

St

(S(t,x),'-a(A,x)) + k(aT)(S(t,x),S(r,x))dt
0

fID

+ (k(A,T+t)-k(A,t))(S(t,x),S(t+i,x))dt

+ k(A,T){(S(t,x),S(t+T,x))-q(T))}dT

Given any / 0, there exists a t(c) such that I(S(t,x),S(t+T,x))-q(T)| < c/4

for all t > t(), uniformly for . [0,m). Hence, the fourth term in the

right member of the above identity is less than E/4 in absolute value if

t > t(E). Now, for a fixed t > t(E), we can choose A(c,t) such that each of

the remaining terms in the right member is less than c/ 4 in absolute value

for all A < A(c,t): the first term by virtue of the weak convergence
It

o(X,x) * , the second by virtue of the condition lim j k(A,r)dT = 0 for
A+0 0

each t > 0, and the third by virtue of the condition on k stated in the

lemma. It follows that

(*) j(S(t,x),C) - fk(A,T)q(T)dtI K c
0



for t > t(E) and A(et). Thus, (S(t,x),e) is Cauchy and, therefore, has

a limit p, say, as t + .. As the averaging process defined by k is weakly

2
regular, it follows that (o(A,x),C) + p as A + 0. But lim(o(A,x),t) = IZI ,

so with the inequality (*) it follows that

2

lim k(A,T)q(T)dT = | 2|
A+O o

By virtue of Property (A) we then have also

IN J{k(x,t)k(x,s)q(It-s|)dsdt = It|2

0 0

S(s,x))rlsdt. By supposition, there exists a bounded measurable function p

defined on [0,m), such that n(Q~) + 0 as w + - and I(S(t,x),S(sx))-q(t-sl)l

' r(min(t,; )). Then,

Io(A,x)| 12 1. k(x,t)k(x,s)q(t-si )dlsdt
0 (

+4J J k(A,t)k(A,s)r(min(t,s))dsdt
0 (

The first term in the right member tends to |Cl a. A + 0; the second can be

estimated by 2 J k(A,t)n(t)dt, which tends to zero as A + 0. Hence,
0

liA suiplo(,x)|2 < |e|2. Since |o(A,x)-I2 = |o(A,x)I2 - 2(o(A,x),Z) + IEI
X+0

and a(A,x) , it follows that lim supla(A,x)-I 2 < lim supla(A,x)I2_ 2
+0 LA0

< 0, so 1 |lo(A,x)-f| 2 exists and is equal to zero. I]

Proof of Theorem 4. It suffices to prove that the inequality given in the

statement of the theorem implies the uniform convergence of (S(t,x),

S(t+T,x)) as t + " . We start from the identity
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(S(t+o,x),S(t+(J+T,x)) - (S(t,x),S(t+T,x))

= (S(t+a,x),S(t+o+T,x) + S(t+c,x)) - Is(t+o,x)1 2

2
- (S(t,x),S(t+T,x) + S(t,x)) + IS(t,x)|

Using the VIw of cosines, 2(a-b,a-c) = |a-bI2 + la-c 2 - lb-cl2 for any

three vectors a,b,c -H, we find

:'(s(t+a,x),S(t+a+T,x)) - (S(t,x),S(t+T,x))1

{=S(t,x)I 2 - IS(t+a,x) 2} + {lS(t+tx) 2 l-S(t+T+ax)l 2

+ {IS(t+T+a,x) + S(t+a,x) 2 -ls(t+T,x) + S(t,x)l 2

which can he est imated by virtue of the inequality given in the statement of

the theorem by the quant i ty

(1+c)I{IS(t,x) 2 - IS(t+0,x) 2} + {IS(t+T,x)| - IS(t+T+a,x)}2 1 .

Since S :s c (ontractive semigroup, IS(tx) 2is nonincreasing with limit

q(0), say. Hence, for any given c > 0, we can find t(c) such that the

expressions in braces above are less than c in absolute value for all

t / t(E). '

/4. Examples

In this section we show that the results of the preceding sections are

applicable to the usual Abel and Cesdro averaging procedures. The kernel

for Abel averaging is given by

k (At) := Aet , t > 0
A'

and the kernel for Cesro averaging of order a (a > 0) is given by

aA(1-At)1 for 0 < t < 1/a
kC, (a,t) :>

C~a for t > 1/a



It is trivially verified that these kernels are real-valued and nonnegative

for x > 0, that they satisfy the normalization condition J1 k(X,t)dt = 1, and

It 0
that they are such that lim j k(X,T)dT = 0 for all finite t. The functions

x+0 0
k (x,') and kC a(x,-) are of bounded variation on [0,m), with kA(A,t) = x,

k (xt) = k (x,t) for 0 < a < 1, and k (x,t) = ax for a > 1. Hence,
C, C, C, a

d k (x,t) = 0 for x > 0 in all cases, except for the (C,a)-kernel with

0 K + (" +
0 , a < 1, in which case Jdtk (x,t) = -ax. Hence, lim j d k (x,t)dt = 0

0 t Ca x+0 0 t
in all cases. Thus, the conditions of Theorem 1 are satisfied for the Abel

and Cesairo-(C,a) averaging procedures and we conclude that the Abel and

Cesa5rO-(C,a) means converge weakly to a fixed point of the semigroup.

Next, we turn to the ;erific-ition of the condit .ons on the kernel k

which are necessary for the application of Theorem 4. First we verify that

the Abel and Cesaro-(C,a) kernels have Property (A).

Let q be a bounded function n [0,). Suppose j kA(Xt)q(t)dt con-
0

verges to a limit 6 as x + .. Then,

J k (x,t)kA(x,s)q(jt-sl )dsdt

0 0

= x2fttts)(t-s)dsdt + Jse q(s-t)dsdt

2 e t -x(2t-s) m _x-(2t+s)
= x f e q(s)dsdt + IWFe q(s)dsdt

0 0 0 0

= 2x 2  fcof-eX(2t+s)q(s )dtds
0 0

= .fkA(x,s)q(s)ds
0

whence Property (A) follows for the Abel kernel.
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For the verification of Property (A) for the Cesaro-(C,a) kernel it

is more convenient to use the variable ( = 1/a. We put i ( ,t)
C,a

k ,(1/ct); thus, C ,( ,q) := ( ,t)q(t)dt is the Ces'aro-(C,a) mean of
0

q. Now, suppose that Ca( ;q) converges to a limit 6 as + . Then,

22a rt  I
- a2(2aJ J ( -)1-ts)~qsdd

(&=tC(-t)C (s)( t-s)dsdt
o 0

2 -2 a-i

= a+ ( -t) (t-s)) q(s)ds
00t

II 2i%-l -1

+ 2 2aJ ( jt a ( - )a y (t s -q(s )dsdt

00

r& rg-t
+ J j (&-t)a-1(&-(t+s))a-1q(s)dsdt .

0 0

Interchanging the order of the integration in both terms we obtain the

expression

I = a2 -2a f (-t)a -(f-(t-s))1q(s)dtds
0 s

+ (C-t) -( -(t+s))a-q(s)dtds .

0 0

The tw) terms inside the brackets have the same value, so

I = 2a2 -2a ff s(t-s-t) -I(t-t) -Iq(s)dtds.

0 0

Again interchanging the order of the integrations we find the expression

I " 2a2 -2a JC- ) C-t(E-s-t) -q(s)dsdt,

0 0



where the inner integral is recognized as a Cesaro-(C,a) mean of q,

I = 2a 2 -2a {(C-t)2a-1C (C-t;q)dt
0 a

= 2a2 -2a t2a-lc(t;q)dt

Sa
Thus

k (E , t)k (C , s)q(It-s| )dsdt - k (C,t)q(t)dt
C 2 Ca 2

< 2a -2a t2a-1 (t;q)-6|dt + |C ( ;q)-6 .

0a

Given c / 0, there exists a t(c) such that IC (t;q)-6| E</3 for all

-2a J 2a 1
t > t(c ) amd, consequently, 2: : t a (t;q)-6| dt < c/3. Finally,

rt(E) t(c )
-2a 2a-1 te

2a J t IC (t;q)-6!dt < c/3 for all C > (e). Hence,

lim k (E,t)k ( ,s)q(|t-s|)dsdt - k ( )t)q(t)dt = 0
-*+o 0 0 C,a C,a 0 C,a

which proves Property (A) for the Cesaro-(C,a) kernel.

The condition lim {Ik(A,t+T)-k(A,t)Idt. = 0 for each T > 0 is immediate
A+0 0%

for the Abel kernel. For the Cesaro-((,a) kernel one has

J |k (X t+T )-kC a(a ,t)|dt

0ca

(l-XT ) + 2(XT ) - 1 if 0 < a < 1

1 - (1-XT ) if a > 1

which tends to zero as X+0.

Thus, the conditions of Theorem 4 are satisfied for the Abel and Cesaro-

(C,a) averaging procedures and we conclude that, under the appropriate condi-

tions on the semigroup, the Abel and Cesaro-(C,a) means converge strongly to

a fixed point of the semigroup.
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