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.COMPUTATION OF THE WEIGHT FUNCTION
FROM A STRESS INTENSITY FACTOR

by

H. J. Petroski and J. D. Achenbach

ABSTRACT

A simple representation for the crack-face displace-
ment is used to compute a weight function solely from stress
intensity factors for a reference loading configuration. Crack-
face displacements given by the representation are shown to
be in good agreement with analytical results for cracked tensile
strips, and stress intensity factors computed from the weight
function agree well with those for edge cracks in half-planes,
radial cracks from circular holes, and radially cracked rings.
The technique involves only simple quadrature, and its effi-
cacy is demonstrated by the example computations.

The weight function for a corner crack in an LMFBR hex-
agonal subassembly duct is constructed from stress-intensity-
factor results for the uniformly overpressurized case, and it
is shown how this may be used to determine the stress inten-
sity factors for other loading cases.

I. INTRODUCTION

Standard solutions are not available for problems involving the stress
analysis of cracks in the unique geometry of the hexagonal ducts of LMFBR de-
signs. Yet the highly stressed corners of these hexcans, where cracks may be
present, are areas of special interest for fracture-mechanics studies for fast-
reactor analysis and safety.

After prolonged exposure to the fast-neutron environment in a reactor
core, there is a loss of ductility of the stainless steel of which the hexcans are
made, and there is an increased possibility that any cracks or flaws that might
exist in the hexcan wall cc'ild become unstable and cause the duct to fracture
under accident loading. Toward end of life, linear elastic fracture mechanics
is expected to apply to cracks in hexcans, and in this theory the severity of a
crack is measured by its stress intensity factor. When this factor reaches a
critical value, known as the fracture toughness of the material, a crack can
propagate in a brittle manner.
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For cracks in the midflat region of a hexcan wall, handbook calibrations
of stress intensity factors for cracks in beams subject to tension and bending
are applicable. In the sharp corner region of the hexcan, however, there is
no such easy means of determining stress intensity factors.

Finite-element techniques are available, but these become costly and
time-consuming when one wishes to conduct parametric studies in fracture
mechanics. Therefore, alternative techniques have been explored, and a
weight-function technique has been found to be especially simple and accurate.
This technique has the added attraction that, in principle, a similar technique
may be extended to dynamic, plastic, and three-dimensional problems.

II. ANALYTICAL INTRODUCTION

For two-dimensional problems it has been shown"2 that if the crack-
face displacement u(a, x) and the Mode-I stress intensity factor K are known
for a symmetrical load system on a linearly elastic body containing a crack
of length a, then the stress intensity factor K(2 for any other symmetrical
load system on that same body may be obtained from

= f a(x)h(a, x)dx, (1)
0

where h(a, x) is a weight function, defined as

h(a, x) = H-/K. (2)
ba

In Eq. 1, the integration is carried out over the length a of th.e crack, H is a
material constant, and a(x) is the stress distribution across the plane of the
crack in the unflawed body loaded by the force system with which K( 2 is asso-
ciated. The principle of superposition of linear elasticity implies that, for
purposes of calculating stress intensity factors, loading the crack faces with
cr(x) is equivalent to loading the cracked body with loads that give rise to o(x)
in the absence of a crack.

Equation 1 has been used successfully to calculate stress intensity fac-
tors for a number of practical applications. Grandt3 has used Eq. 1 to calcu-
late plane-strain stress intensity factors for a variety of problems involving
cracked rings and cracked fastener holes. The advantage of Eq. 1 is that, once
the stress intensity factor and crack-face displacement are established for a
reference problem, the stress intensity factor for any other symmetric loading
of that body follows by a simple quadrature. Essentially, the reference problem
provides enough information to enable one to calculate the weight function for
the body.
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Although the evaluation of the integral in Eq. 1 is straightforward, even

when a numerical quadrature is required, applications of this formula fre-
quently require preliminary work to establish the appropriate values of the
derivative bu/ba that appears in the weight function. This has been found nec-
essary because the analytical solutions for K that are available for use as the
data for the reference weight function in Eq. 1 are often unaccompanied by
displacement data from which to construct the complete weight function. Thus,
in Grandt's analysis 3 of through-cracked fastener holes, he found it necessary
to supplement Bowie's results5 for a radially cracked hole with a finite-
element analysis in order to establish the corresponding crack-mouth opening
displacement.

The entire crack-face displacement need not be known if one assumes,
as Grandt3 did, a one-parameter form for the crack shape. In Grandt's analy-
sis of cracked rings, 4 his reference solution was provided by Jones' results6

for cylindrical fracture toughness specimens, which included both crack-mouth
opening displacements and stress intensity factors as functions of crack length.

Here we show how calibrations of the stress intensity factor for a ref-
erence problem provide enough information by themselves to calculate approxi-
mate stress intensity factors associated with all other symmetric loading
conditions of the same body. This simplification follows from the observation
that an integral identity results if one uses Eq. 1 to calculate the stress inten-
sity factor associated with the reference problem itself. Then, if a reasonable
one-parameter form for the crack displacement is assumed, the parameter
may be determined from the integral identity. This information can subse-
quently be used to derive the weight function for the body. Stress intensity
factors for other than the reference loading then follow as before from Eq. 1.
Results obtained with the aid of the simple representation for the crack-opening
shape agree well with existing results for stress intensity factors, though some
caution should be exercised for extremely deep cracks.

The expression Grandt3 ,''uses for the crack opening is a conic-section
representation due to Orange.7 Although our approach may be used to compute
the conic-section coefficient, the complicated way in which this coefficient
appears in Orange's representation makes it desirable to derive an alternative
representation as shown in this report.

In the next section, we consider a representation for the crack-face
displacement in terms of one unknown function of the crack length a, and we
derive a simple expression for this function. To illustrate the results, we con-
sider the edge crack in a half-plane with concentrated loads on the crack faces.
Next we consider the strip with one or two edge cracks, and we compare the
crack-face displacements computed by Keer and Freedman8 with displacements
obtained in this report. Finally, we demonstrate the ability of our displacement
representation to determine stress intensity factors for a variety of loadings
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once a reference K has been used to fix the form of u(a, x). As an example,
we compute stress intensity factors for a radial crack at the circumference
of a circular hole in a body under biaxial loading. The results agree well with
those obtained by Grandt.3 Stress intensity factors are also computed for a
cracked ring under a variety of loading conditions. The results are in excel-
lent agreement with those obtained in Ref. 4.

With the above verification of the weight-function technique, we are able
to apply it confidently to problems for which calibrations for stress intensity
factors do not exist. The problem of a hexcan with a corner crack is one such
problem. By employing a calibration for the stress intensity factor for cracked
hexcans subject to uniform overpressure, the weight function for a corner-
cracked hexcan is derived and applied to the problem of determining the cali-
bration of the stress intensity factor for a hexcan loaded nonuniformly by
concentrated loads at two opposite midflats.

III. MODE-I CRACK-FACE DISPLACEMENTS

One obstacle to the direct use of Eq. 1 is that the solutions for the
stress intensity factor that are available in the literature to serve as reference
data are often not accompanied by data for crack-face displacements. To
overcome this obstacle, a simple method has been developed in this report
to approximate u(a, x) solely on the basis of knowledge of the associated stress
intensity factor. The method is based on the observation that Eq. 1 must re-
duce to an identity if the stress distribution o(x) is taken to be exactly that of
the reference problem for which K is known. Then K(2 = K, and Eq. 1 becomes

KZ = Hr a(x) dx. (3)

When K, H, nd a(x) are known, Eq. 3 provides information about u(a, x) inde-
pendently of further analysis of the reference problem.

Since u(a, x) 0 at x = a, the derivative with respect to a may be
brought outside of the integral. Subsequent integration with respect to a yields

a a

f[K(a)]da = H a(x)u(a, x)dx. (4)
00

It is of interest to check Eq. 3 for a crack of length a in an infinite body
subjected to a remote uniform tensile stress a0. If the origin of the xy coordi-
nate system is at one tip of the crack, we have

u(a, x) =, Zox"t(a - x)'/ /H; K = ao(na/2)/. (b(5a,b)
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Here u(a, x) is the displacement along the upper surface of the crack, and

H = E/(1 - v2 ) (6)

for plane strain. Substitution of Eqs. 5a,b in Eq. 4 verifies the identity.

Although Eq. 4 is an integral equation, it cannot be solved rigorously
for u(a, x), since the functional dependence of u on both a and x is unknown.
Thus, Eq. 4 must be supplemented by a judiciously selected representation for
u(a, x), in which the functional dependence of u(a, x) on one of the variables,
say x, is assumed a priori. Our choice of a representation for u is directed
by three criteria: (1) The representation must possess the proper limiting
behavior near the crack tIp, (2) it must demonstrate consistent behavior for
small cracks, and (3) it rist L simple enough so that unknown parameters
can be easily determined from a knowledge of K and a alone. The representa-
tions we consider in this rep rz are particularly suited for edge cracks.

It is well known 9 that, in the vicinity of any crack tip,

u(a,x) = 4Kax) (7)
H 2n '

where x is measured from the crack mouth and x = a is the crack tip. The
constant H is defined by Eq. 6 for plane-strain conditions. For edge cracks,
K generally can be conveniently expressed in the form

K = aoF(a/L)(na)'1 2, (8)

where ao and L are characteristic stress and length parameters. In our rep-
resentation, we take Eq. 7 as the first term, while subsequent terms are of
higher order in (a - x), so that criterion (1) is satisfied. The choice of sub-
sequent terms is largely a matter of judgement, the limitation being that only
one unknown function can be determined from Eq. 4. Here we elect to take the
second term in an expansion around the crack tip, i.e., a term of the general
form f(a)(a - x) 312 .

To satisfy Eq. 4 in the limit a -+ 0 and thus to satisfy criterion (2), we
must have f(a) = 0(1/aI/2) as a -f 0. On the basis of these considerations, we
assume the following displacement representation:

u(a, x)H [4F()a/"(a - x)"2 + G(ta(a - x) . (9)

Here F(a/L) is known, while G(a/L) is to be determined from Eq. 4. We note
that the second term in Eq. 9 is not merely the second term in a Williams-type
expansion,' 6 but rather is a representation for all higher-order terms. Although
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other representations could be equally suitable, Eq. 9 has the advantage that it
may be completely specified by simple and explicit quadratures, thus satisfying
criterion (3). It presents a distinct calculational advantage over representa-
tions such as Orange's conic section, 7 whose specification through the identity
given by Eq. 4 would involve the solution of an integral equation. Moreover,
Eq. 9 gives good results, as will be shown in examples in subsequent sections.

After substitution of Eq. 9 in Eq. 4, we can solve for G(a/L) as

G(a/L) = [I1(a) - 4F(a/L)a'/zIZ(a)]al/2/I 3 (a), (10)

where

I1(a) = rroi f [F(a/L)] 2a da, (11)

I2(a) f= a o(x)(a - x)'/ 2 dx, (12)

and

13(a) = fo(x)(a - x)3/1 dx. (13)

Equations 12 and 13 are, of course, particularly simple if the stress distribu-
tion for the reference problem is uniform, i.e., o(x) = ao. Once G(a/L) has
been determined, bu/ba and h(a, x) can be determined from Eqs. 9 and 2, re-
spectively, and stress intensity factors for other loading conditions can subse-
quently be computed from Eq. 1.

For small cracks (a -- 0), the integrals in Eqs. 11-13 may be evaluated
in closed form after applying the mean value theorem. Then the limiting value
of G may be determined as

[() 5lT aoF(0) _20

G(0) =,(0 - (0) (1Oa)

When the characteristic stress ao is taken to be the crack-mouth pressure
loading a(0), F(0) = 1.1215 and G(0) = -0.4916.

IV. EDGE CRACK IN A HALF-PLANE

As a simple illustration, we consider an edge crack in a half-plane,
whose faces are subjected to various pressure distributions. For the reference
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problem, we take the case of uniform remote tension of magnitude ao, which
for K calculations is equivalent to uniform crack-face pressure (see Fig. La).
For that case,

K = 1.1215ao(1Ta)/Z, i.e., F(a/L) = 1.1215. (14)

Substituting in Eq. 10, we obtain

G(a/L) = -0.4916.

V-O

(c)

*b1

-- I

Fig. 1

Edge Crack in a Half-space

(b)

Let us now use this result to compute the stress intensity factor for
concentrated normal loads applied at the crack faces as shown in Fig. lb. For
that case,

a(x) = P8(x - b). (16)

Equation 1 then yields

where

For b

(t) 2P H(b/a)
K - y a [I - (b/a)" 1/a,

= [0.7071(2 - - - 0.0775C1 - 2 + - 1 +

= 0,

K= = 1.2592 2p

(17)

(18)

(19)

In Ref. 10 (p. 8.2), the stress intensity factor for this problem is given
with a numerical factor of 1.3 rather than 1.2592, which would imply an error
of about 3%. Figure 2 compares H(b/a) with the result of Ref. 10 (p. 8.3).

(15)

". "

.0
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The solution to the concentrated-load problem can be used as a Green's
function to compute the stress intensity factor for an arbitrary distribution of
crack-face pressures. Since the largest error, which is at b = 0, is only about
3%, a distributed pressure would give a still srr.iller error.

V. TENSILE STRIP WITH EDGE CRACK(S)

Keer and Freedmans have used a combined series and integral-transform
technique to obtain both stress intensity factors and crack-face displacements
for a cracked tensile strip. The geometries they have considered are shown
in Fig. 3. Their crack-face displacements can be used for comparison with
the displacements computed by the method of this report.

The dimensionless stress intensity
factors reported in Ref. 8 were fitted with
a fifth-degree polynomial, and the crack-
face displacements u(a, x) were determined
from Eq. 9, where G(a/n) was computed
from Eq. 10. Here it should be noted that
a n length unit was the characteristic width
parameter in Ref. 8. The computations are
simple. The crack-face displacements at
the mouth of the crack, which follow from
Eq. 9 for x = 0, are tabulated in Table I, lb)
where we have also listed the correspond- Fig. 3. Tensle Strips with Edge Cracks:
ing results from Table 1 of Ref. 8. We note (a) Symmetric Case; (b) Asym-
that the agreement is satisfactory, except metric Case
for the symmetric problem when values of
a/n are close to unity, i.e., when the two edge cracks run almost through the
entire width of the strip. A maximum difference of 5% is maintained for cracks
up to 70% of the strip width in the symmetric case, and up to 80% in the asym-
metric case. In general, Eq. 9 gives smaller crack-face displacements than
the results of Ref. 8.

For a number of specific a/n values we have listed crack face displacements
for various values of x/a in Table II. In this Table we have also listed results which
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were obtained from Figs. 3 and 4 of Ref. 8. Again the agreement is very satisfac-
tory, as illustrated graphically.in our Figs. 4 and 5. We note that it is not the
absolute value of the crack-face displacement that is used in the weight-function
technique, but the derivative bu/ba, so that calculations of the stress intensity
factor may be expected to be in even better agreement with analytical results.

TABLE I. Dimensionless Displacement pu(a, 0)/[ao(1 - v)] at
Crack Mouth for Strip with Edge Crack(s); p = Shear Modulus

Symmetric Problem Asymmetric Problem

a/n Eq. 9 Ref. 8 Eq. 9 Ref. 8

0.05 0.222 0.229 0.226 0.233
0.10 0.441 0.456 0.473 0.488
0.15 0.659 0.681 0.763 0.786
0.20 0.875 0.904 1.119 1.152
0.30 1.305 1.349 2.171 2.218
0.40 1.740 1.802 4.064 4.115
0.50 2.201 2.282 7.805 7.795
0.60 2.708 2.818 15.947 15.717
0.65 - - 23.78 23.209
0.70 3.311 3.450 - -
0.80 4.057 4.318 103.233 102.11
0.85 - - 246.44 225.54
0.90 5.133 5.734 - -
0.95 5.588 7.129 - -
0.975 5.274 8.519 - -

TABLE II. Dimensionless Displacement pu(a, x)/[o(1 - v)]
for Various Values of x/a and a/n for a Strip with Edge

Crack(s); s = Shear Modulus

Symmetric Problem Asymmetric Problem

x/a a/n 0.1 0.5 -0.8 0.1 0.5 0.85

0.8 Eq. 9 0.217 1.126 2.364 0.231 2.944 54.8
Ref. 8 0.210 1.103 2.313 0.222 2.865 54.8

0.6 Eq. 9 0.300 1.542 3.149 0.320 4.357 97.1
Ref. 8 0.295 1.516 3.088 0.317 4.385 98.5

0.4 Eq. 9 0.359 1.827 3.619 0.383 5.573 142.9
Ref. 8 0.357 1.819 3.601 0.380 5.608 140.6

0.2 Eq. 9 0.405 2.039 3.904 0.432 6.708 192.7
Ref. 8 0.409 2.064 3.986 0.437 6.721 183.6

0.0 Eq. 9 0.441 2.200 4.057 0.473 7.805 246.4
Ref. 8 0.456 2.282 4.318 0.488 7.795 225.5
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Fig. 4. Crack-opening Displacements Computed from Fig. 5. Crack-opening Displacements Computed from
Two-term Representation Compared with Re- Two-term Representation Compared with Re-
sults of Keer and Freedman's Analysis for the suits of Keer and Freedman's Analysis for the
Symmetric Case Asymmetric Case

VI. RADIAL CRACK FROM A CIRCULAR HOLE

Bowies has analyzed radial cracks at the circumference of a circular
hole in an infinite plate loaded at infinity, and Grandt3 has used the weight-
function formula given by Eq. 1 with Bowie's solution as the reference, supple-
mented by finite-element computations, to determine calibrations of the stress
intensity factor for a variety of practical cracked fastener-hole loadings.

The geometry is shown in Fig. 6. Grandt3 has determined a least-
squares approximation to the stress intensity factor of Ref. 5 in the form

FF=F 1  + F3, (20)
F + (a/r) -

where, for the single-crack problem shown in Fig. 6, the constants are

Fl = 0.8733; F2 = 0.3245; F3 = 0.6762. (21)

The radius of the hole, r, i3 used to provide dimensionless length variables.

For a circular hole in an unbounded solid, with uniform tension of mag-
nitude ao at infinity, the distribution of hoop stresses along a radial line making
an angle 0 with the loading axis is

0(x) = { + ( [l+ 3& cos 20}, (22)
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where C = x/r, with x measured from the circumference of the hole. The

stress a(x), which is the stress on the crack faces in the equivalent problem,
follows immediately from Eq. 22.

4

3

(d~

a

21

o'

SO
air

2

Fig. 6

Stress-intensity-factor Calibrations for a Radial
Crack Emanating from a Circular Hole

3

Equations 20 and 22 may be used to compute the corresponding crack-
face displacements according to Eqs. 9 and 10. The results can subsequently
be used to construct the weight function and to compute stress intensity factors
for other loading conditions. Of interest is the case illustrated in Fig. 6, where
the remote stress field is biaxial. For this case, a(x) follows from Eq. 22 by
adding the results computed for ao, at 0 = n/2, and ca0 , at 0 = 0. For c = 0,
c = -1, and c = +1, the results are plotted in Fig. 6. On the scale of the figure,
results obtained by Grandt3 would be close to those shown here.

Grandt found it necessary to supplement Bowie' s results5 with a finite-
element analysis to obtain crack-mouth openings, which were then used to con-
struct crack-face displacements using the conical representation of Orange.7

The weight function then was constructed, and K was computed according to
Eq. 1. Clearly the scheme used here, which is based on the integral identity
of Eq. 4 and the approximate representation of Eq. 9, is much simpler.

VII. RADIALLY CRACKED RINGS

An interesting geometry for the application of the technique of this re-
port is the radially cracked ring. The simplest reference problem is the one

I tt tt ittt It
C=O

C=I

-,

I I

I1



18

in which the faces of the crack(s) are subjected to uniform pressure ao. The
geometry is shown in Fig. 7. Curves for the stress intensity factors, given in
Ref. 4, are reproduced in Fig. 7. This information is sufficient for the con-
struction of the weight function based on the approximate displacement repre-
sentation of Eq. 9.

4.0
R.

P P R 0

o I 0:0.8

3.0 /

Q: R./R /

/-

0 R2.0/R / Fig. ?
/ 0:0.5 Stress-intensity-factor Calibrations for Radially

x .
~~~~~~~~Cracked Rings Subject to Uniform Crack-face 1.0Prsue(frGant

1.0 --

-

--- I CRACK- 2 CRACKS

I I I I I
0 0.2 0.4 0.6 0.8 1.0

a/(R0-R.)

First we consider the cracked ring subjected to external tension ao.
The geometry is shown in the insert in Fig. 8. The hoop stress in the uncracked
ring is

a(x) = ao1 + q + (1 q) , (23)

where q = Ri/Ro and C = x/(Ro - Ri), with x measured from the mouth. Sub-
stituting a(x) and the weight function into Eq. 1 leads to the results plotted in
Fig. 8. These results compare well with those of Grandt4 and those of Bowie
and Freese"2 obtained by a modified mapping-collocation technique.

Finally we consider a ring loaded by concentrated forces of P force
units per unit thickness. The geometry is shown in Fig. 9. For Ri/Ro = 0.5,
numerical information on the hoop stress in an uncracked ring is given in
Ref. 11, and these data were fitted by a polynomial, which was used with the
weight function in Eq. 1. The resulting stress intensity factors are shown in
Fig. 9, together with analytical and experimental results reported in Ref. 6 and
results obtained in Ref. 4 by the weight-function method.
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VIII. CORNER-CRACKED HEXCAN

The hexagonal subassembly ducts found in the cores of advancednuclear-
reactor designs are expected to become severely embrittled toward the ends of
their lives in the fast-neutron environment. Should scratches, nicks, or other

flaws be present in these ducts, also known as hexcans, brittle fracture could
result under abnormal loading conditions. A conservative model for such flaws
is a long sharp crack, located in an area of stress or strain concentration. Two
such cracks are illustrated in Fig. 10 in a hexcan section of axial length B.
Midflat cracks may be analyzed as cracks in straight beams, for which solu-
tions exist in handbooks. However, the unique geometry of the hexcan corner
presents a new problem. Since the corner is such a critical location from a
fracture point of view, the determination of a weight function for cracks in
that location will provide a powerful tool to perform safety analyses of cracked
hexagonal ducts under various loading conditions.

Petroski and Achenbach" k established bounds on the plane-strain stress

intensity factor associated with a corner crack in a uniformly pressurized hex-

can of the dimensions shown in Fig. 11, and a subsequent finite-element analysis
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by Glazik (reported in Ref. 14) provided a K calibration that fell between these
bounds, as shown in Fig. 12. This latter analysis also suggested that a simple
model for the cracked hexcan corner is provided by loading a cracked infinite
strip with the stress distribution that exists in an uncracked hexcan corner.
Since this stress distribution is readily determined from beam theory,' 5 the
stress intensity factors for corner cracks in hexcans loaded in a variety of
ways may be estimated with a minimum of computation from the K calibrations
for infinite strips that are provided in handbooks such as Ref. 10. However,
the weight function based on one K calibration for a corner crack in a uniformly
pressurized hexcan is expected to give more accurate results over a wider
range of crack sizes for other hexcan loadings.

MIDFLAT
CRACK

CORNER

CR ACK

h

Fig. 10. Cracks in a Hexcan Section
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Table III gives the dimensionless stress intensity factor for cracks of
various depths in a corner of a uniformly pressurized hexcan. The finite-
element results (from Ref. 14) were fit with a fourth-order polynomial, and the
stress distribution through the hexcan corner wall was taken as15

a = 373.06 - 730.379 (24)
p 1.46+9

where = x/h. This information suffices to determine the function G from
Eqs. 10-12, and the calculated values of it are also given in Table III. To con-
struct the weight function, polynomials of the form

m

P = p m(h)(25)
m=0

were fit in a least-squares sense to the data in Table III. These polynomials
were differentiated term by terrA to give the derived polynomial expressions

dPm= 1 m(26)

M= i

for the functions dF/da and dG/da needed to compute the weight function in
Eq. 2 from the representation of Eq. 9.

TABLE III. Values of the Functions F and G for the
Corner-cracked Hexcan Subject to Uniform Pressure

F G
a/h from Ref. 14 from Eqs. 10-12

0 287a -126.5
0.1 248 -27.9
0.2 245 45.2
0.3 254.3 156.8
0.4 276.6 339.8
0.5 314.7 623.3
0.6 373.8 1122.6
0.7 460.4 1976.9

aLimiting value for an edge crack in a half-space,
known independent of finite-element analysis.

For a crack of depth c = a/h in a hexcan corner, the explicit formula
for calculating the stress intensity factor K(Z) = K(Z)(c) associated with stress
distribution am = o(Z)(C) = ,(Z(x/h) through the hexcan wall is



KN) = -- [4cFI 4(c) + (8cF' + 4F + 3G)Is(c) + (2cG' - G)c-lIb(c)],
2cFv'r

where

I4 (c) =

I5(c) = Jc
0

and

c

I6(C) = f". a ()()(C

and where F' = dF/dc = h dF/da and G'
and the coefficients in Table IV.

= h dG/da are gotten from Eq. 26

TABLE IV. .Polynomial Coefficients for Representations
of the Functions F and G

Function Po Pi Pi P3 P4 Ps

F 286.4 -557.7~ 2247.6 -3204.2 2342.8 0

G -126.6 1516.2 -7974.7 31677 -48304 33807

The inset to Fig. 13 shows a hexcan loaded by concentrated forces at
two opposite midflats. Such a loading mode may be taken as a first approxi-
mation to that on a hexcan subject to a jet of fission gas released from a fuel
pin that might fail next to an irradiation-embrittled duct. Although the flat
opposite the failed pin would be loaded in a more complex way because of the
subassembly internals, the single equivalent reaction force is a reasonable
and conservative assumption to represent conditions. In a manner similar to
that given in Ref. 15, the stress distribution due to the load P acting on an
axial length B of duct may be found to be

QhB = 46.33 - 99.355
P 1.46 + ' (29)

where again C = x/h.

This stress distribution and the weight function based on the functions F
and G were inserted in Eqs. 28 and 27 to give the K calibration for the point-
loaded hexcan. These results, shown in Fig. 13, compare very well with

(27)

(28)

a (9)(c - )-itZdg

- o)3/zdg ,
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finite-element results.'4 Although the infinite- strip model again provides a
good estimate, it is not necessaril, .. onservative for moderate cracks and gives
excessively large values for deeper cracks.

0.0

Fig. 13

Comparison of Stress-intensity-factor Calibrations
for a Corner-cracked Hexcan Loaded at Opposite
Midflats

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
a/h

The weight function constructed here may be used to determine the
stress intensity factor K associated with any other symmetric loading of the
corner-cracked hexcan of the dimensions of Fig 11.

IX. CONCLUSIONS

The very satisfactory results for the stress intensity factors show the
efficacy of the proposed technique to compute the weight function solely on the
basis of information about the stress intensity factor for a single reference
problem. The principal caveat in applying the technique is that one must de-
termine its limitations for extremely deep cracks in a particular application.

The weight function for the corner-cracked hexcan enables one to de-
termine KI calibrations for that geometry. Since the use of the weight function
involves at most numerical quadrature, it requires only nominal computation
time, and many cases may be treated quickly and economically for parametric
studies.

70

60-

50-

40-

20-

10-

.a

GAZA

LEGEND
0 = finite element
A = infinite strip

= weight function

0



24

ACKNOWLEDGMENTS

This work was performed in conjunction with the Argonne National
Laboratory Engineering Mechanics Program managed by Dr. S. H. Fistedis.
The finite-element results for the hexcan and some preliminary computations
for the weight function technique were obtained by Dr. J. L. Glazik.



25

REFERENCES

1. H. F. Bueckner, A Novel Principle for the Computation of Stress Intensity
Factors, Z. Angew. Math. Mech. 50, 529 (1970).

2. J. R. Rice, Some Remarks on Elastic Crack-Tip Stress Fields, Int. J.
Solids Struct. 8, 751 (1972).

3. A. F. Grandt, Jr., Stress Intensity Factors for Some Through-cracked
Fastener Holes, Int. J. Fract. 11, 238 (1975).

4. A. F. Grandt, Jr., Two-dimensional Stress Intensity Factor Solutions for
Radially Cracked Rings, AFML-TR-75-121, Air Force Materials Laboratory
(1975).

5. 0. L. Bowie, Analysis of an Infinite Plate Containing Radial Cracks Origi-
nating at the Boundary of an Internal Circular Hole, J. Math. Phys. 35,

** 0 (1956).

6. A. T. Jones, A Radially Cracked, Cylindrical Fracture Toughness Specimen,
Eng. Fract. Mech. 6, 435 (1974).

7. T. W. Orange, "Crack Shapes and Stress Intensity Factors for Edge-cracked
Specimens," Stress Analysis and Growth of Cracks, ASTM STP 513, 71,
American Society for Testing and Materials, Philadelphia (1972).

8. L. M. Keer and J. M. Freedman, Tensile Strip with Edge Cracks, Int. J.
Eng. Sci. 11, 1265 (1973).

9. P. C. Paris and G. C. Sih, "Stress Analysis of Cracks," Fracture Toughness
Testing and its Applications, ASTM STP 381, 32, American Society for
Testing and Materials, Philadelphia (1965).

10. H. Tada, P. C. Paris, and G. R. Irwin, The Stress Analysis of Cracks
Handbook, Del Research Corp., Hellertown, Pa. (1973).

11. S. Timoshenko and J. N. Goodier, Theory of Elasticity, McGraw-Hill Book
Co. Inc., New York (1951).

12. 0. L. Bowie and C. E. Freese, Elastic Analysis for a Radial Crack in a
Circular Ring, Eng. Fract. Mech. 4, 315 (1972).

13. H. J. Petroski and J. D. Achenbach, "Stress Intensity Factors for Corner-
cracked Subassembly Ducts," Proc. Int. Meet. Fast Reactor Safety and
RelT'ed Physics, Chicago (Oct 5-8, 1976).

14. H. J. Petroski, J. L. Glazik, and J. D. Achenbach, "Stress Intensity
Factors for Irradiation-embrittled Hexagonal Subassembly Ducts," Trans.
Fourth Int. Conf. Structural Mechanics in Reactor Technology, San Francisco
(Aug 15-19, 1977).

15. H. J. Petroski, Elastic-Plastic Analysis of Pressurized Ducts with Rounded
Corners, Nucl. Tech. 36, 671 (1977).

16. H. L. Williams, On the Stress Distribution at the Base of a Stationary
c[raok, J. Apple. Mech. 24, 109 (1957).


