What’s in a name?

Metadata Encoding and Transmission Standard
Initiative of the DLF

Library of Congress is Maintenance Agency
(http://www.loc.gov/standards/mets/)

The METS Editorial Board is responsible for schema content
Overview

Provides a standard vocabulary and set of data structures for encoding hierarchical digital object content and metadata.

Allows for a wide range of uses including:
- OAIS container
- Unit of storage
- Transmission format
- Application source document
Characteristics of METS

METS is:

- an open standard
- non-proprietary
- developed by the library community
- (relatively) simple
- extensible
- modular
METS problem space

Encoding of digital objects while maintain hierarchical structure.

Storing associated metadata at various levels of granularity.
METS – Main Parts

metsHdr = METS header
mdSec = descriptive metadata section
amdSec = administrative metadata section
fileSec = file section
structMap = structural map
METS - metsHdr

Used to encode information about the METS record itself.

agent = The agent element allows for various parties and their roles with respect to the METS document to be recorded

altRecordID = Alternative Record ID.
Descriptive Metadata Section

Used to encode any descriptive metadata of the object.

Can hold metadata internally or reference metadata in another location.

Can be referenced from any level of METS record, which allows for multiple levels of metadata granularity.
Administrative Metadata Section

- techMD = technical metadata
- rightsMD = rights metadata
- sourceMD = source metadata
- digiprovMD = digital provenance metadata
METS - fileSec

Used to encode files “bit-streams” of a digital object.

Encodes information about the files:

- ID = Internal METS Identifier
- MIME TYPE = file mime-type (image/jpeg)
- SEQ = file sequence
- SIZE = file size in bytes
- CREATED = date file was created
- CHECKSUM = file checksum or fixety value
- CHECKSUMTYPE = type of checksum or fixety algorithm used
- OWNERID = owner id
- ADMID = ID in the amdSec containing metadata for this file
- DMDID = ID in the dmdSec containing metadata for this file
- GROUPID = group id
- USE = file usage
METS – fileSec Example

```xml
<fileSec>
  @ID={File Section ID}

<fileGrp>
  @USE="Archive Master"

<file>
  @ID={FILE_{UUID}}
  @MIMETYPE={MIMETYPE}
  @SIZE={filesize in bytes}
  @CREATED={timestamp from when file was created}
  @CHECKSUM={MD5 value of file content}
  @CHECKSUMTYPE=MD5
  @OWNERID=?
  @ADMID={amdSec ID}

<Flcat>
  @LOCTYPE=URL
  @xlink:type="simple"
  @xlink:href="http://example.com/00001.tif"
```
METS - structMap

 Structural Map

 Only “required” field in METS

 Encodes the hierarchy of the digital object.

 Encodes at any defined level

 Logical

 Physical
How is it applicable to UNT?

We currently use an XML record to represent a digital object.

We currently have no way of encoding “hierarchy” into our digital objects
 representations or manifestations
 Example: Texas Register

Using standards is always good when it comes to grants.