
ompf ut,

Mathematics and Computer
Science Division

Mathematics and Computer
Science Division

Mathematics and Computer
Science Division

ANL-93/28

0)

Fortran M
Language Definition

by I. T. Foster and K. M. Chandy

Argonne National Laboratory, Argonne, Illinois 60439
operated by The University of Chicago
for the United States Department of Energy tinder Contract W-31-1 09-Eng-38

Mathmatis an -Vcmpu3e
Science Division

Mathematilcs d C omp uter

Mathemca

Argonne National Laboratory, with facilities in the states of Illinois and Idaho, is
owned by the United States governments, and operated by The IU niversity of Chicago
under the provisions of a contract with the Department of lnergy.

D1S(I AIMED R
This report was prellared as an Ilct ICOIIni of work sponsored by an agency of
the Uni ted States Government. Neither tihe I united States Government nor
any agency therco, lor any of their employees. makes any warranty, e press
or implied, or assnmcs any leCal liability\ or responsibility tor the accnra,.
completeness, or U seutlI ness Of any inomat it tn. apparatuII s period InCt. 0r pro-
cess disclosed, or represents that its nse wonld not intring e privately M\ ned
rights. Reference here in to any specific commercial product, process, or
service by trade name, trademark. iiMianufi tactunrcr, or ot her\ i se, does not

nccessari Iy consiitlite or imiiipIN its endorsement, recoin ic idation, or
favori ne by the i ted States Go\ erm iient or anm agency thereof. The vi ews
aid opii anth 1(rs 0' x pressed here iII dO 1nit iiecessari1y state or re lect
those of tie United States Government or any aency threOf .

Reproduced irom the best .\ able colp.

\\ailallc to I): and (W)l contractors troim the
)ITice of Scientific mid Tchiical Inforimatiii

P.(). Bo\ 62
)ak R idge. TN 3783 1

Prices a\ ailable from (615) 5768401

Available to the pulic from tie

Natinai technical lilnorimation Scr\ ice
II.S. ID)Cpartmeint of ('iierc

5285 Port Ro\al Road

Spring field. V\A 22161

Distribution Category:
Mathematics and

Computer Science (UC-405)

ARGONNE NATIONAL LABORATORY
9700 South Cass Avenue

Argonne, IL 60439

ANL-93/28

Fortran M Language Definition

by

Ian T. Foster and K. Mani Chandy*

Mathematics and Computer Science Division

August 1993

This research was supported in part by the Office of Scientific Computing, U.S. Department of Energy,
under Contract W-31-109-Eng-38, and by the National Science Foundation's Center for Research in

Parallel Computation, under Contract CCR-8809615.

*Address: Department of Computer Science, California Institute of Technology, Pasadena, CA 91125

Contents

Abstract 1

1 Introduction 1

2 Syntax 1
2.1 Process, Process Block, Process Do-loop 1
2.2 New Declarations..............e.s...................... 2
2.3 New Executable Statements . 2
2.4 M apping . 4
2.5 Restrictions . 4

3 Concurrency 4

4 Channels 4

5 Nondeterminism 5

6 Mapping 6

References 6

111

Fortran M Language Definition

Ian T. Foster K. Mani Chandy

Abstract

This document defines the Fortran M extensions to Fortran 77. It updates an
earlier definition, dated June 1992, in several minor respects.

1 Introduction

The reader is referred to other reports for additional information on the Fortran M lan-

guage [2], its theoretical foundations [1], and a Fortran M compiler developed at Argonne

National Laboratory [3].

2 Syntax

Backus-Naur form (BNF) is used to present new syntax, with nonterminal symbols in

slanted font, terminal symbols in TYPEWRITER font, and symbols defined in Appendix F
of the Fortran 77 standard [4] underlined. The syntax [symbol] is used to represent

zero or more comma-separated occurrences of symbol; [symbol)]() represents one or more

occurrences.

2.1 Process, Process Block, Process Do-loop

A process has the same syntax as a subroutine, except that the keyword PROCESS is

substituted for SUBROUTINE, INTENT declarations can be provided for dummy arguments,
and a process cannot take an assumed size array as a dummy argument.

A process call can occur anywhere that a subroutine call can occur. It has the same

syntax as a subroutine call, except that the keyword PROCESSCALL is substituted for

CALL. In addition, process calls can occur in process blocks and process do-loops, and

recursive process calls are permitted. A process block is a set of statements preceded by a

PROCESSES statement and followed by a ENDPROCESSES statement. A block includes zero
or one subroutine calls, zero or more process calls, and zero or more process do-loops. A

process do-loop has the same syntax as a do-loop, except that the PROCESSDO keyword is

used in place of DO, and the body of the do-loop can contain only a process do-loop or a
process call.

A port variable or port array element can be passed as an argument to only a single
process in a process block or process do-loop, and then cannot be accessed in a subroutine

called in that block.

2.2 New Declarations

Five new declaration statements are defined: INPORT, OUTPORT, INTENT, PROCESSORS, and
PROCESS COMMON.

inport..declaration
outport.declaration
intent-declaration

machine..declaration
name
data-type

INPORT (Edata.type]) [name](')
OUTPORT (data.type]) [name] ('
INTENT(IN) Ename] 1)
INTENT(OUT) [name](' I
INTENT(INOUT) [name](1)
PROCESSORS(bounds)
variable-name I array.name I arraydeclarator

fortran-datatype I
fortrandata.type name

INPORT ([datatype]) I
OUTPORT ([datatype])

In the PROCESSORS statement, bounds has the same syntax as the arguments to an
array.declarator. The product of the dimensions must be nonzero. Any program,
process, subroutine, or function including a LOCATION or SUBMACHINE annotation must
include a PROCESSORS declaration.

The symbol fortran.data-type denotes the six standard Fortran data types. The di-
mensions in an array-declarator in a port declaration can include variable declared in
the port declaration, parameters, and arguments to the process or subroutine in which the
declaration occurs. The symbol "*" cannot be used to specify an assumed size. Variables
declared within a port declaration have scope local to that declaration.

A PROCESS COMMON statement has the same syntax as a COMMON statement.

2.3 New Executable Statements

There are seven new executable statements: CHANNEL, MERGER, MOVEPORT, SEND, RECEIVE,
ENDCHANNEL, and PROBE. Each of these takes as arguments a list of control specifiers,
termed a control information list. The SEND and RECEIVE statements also take other
arguments. A control information list can include at most one of each specifier, except
those that name ports. The number of allowable port specifiers varies from one statement
to another. The first three of these statements are as follows.

channeLstatement
merge-statement
moveport.statement

channeL control

merge-control

CHANNEL(EchanneLcontrol](1))
MERGER([merge-control] (1))

MOVEPORT (E[moveport.control] (1))

outport.name I OUT=outport-name I
inport.name | IN=inport-name I
IOSTAT=storageilocation |IERR=label
outport-specifier I OUT=outport..specifier |

inport-name I IN=inport-name I

2

moveportcontrol

IOSTAT=storage-location |IERR=label
port-name | FROM=port-name |
port-name TO=port-name I
IOSTAT=storage-location | ERR=label

outportspecifier

outportname

inportname

port-name

outportname |
port name

port name

variablemame

data.implied-do.list

| array-element..name

A CHANNEL statement must include two port specifiers, and these must name an out-
port and an in-port of the same type. If the strings OUT= and IN= are omitted, these
specifiers must occur as the first and second arguments, respectively.

A MERGER statement must include at least two port specifiers, and these must name
an in-port and one or more unique out-ports, all of the same type. If the strings OUT= and
IN= are omitted, the out-port specifiers must precede the in-port specifier, which must
precede any other specifiers,

In a MOVEPORT statement, the port specifiers must name two in-ports or two out-ports,
both of the same type. If the strings FRO'4= and TO= are omitted, these specifiers must
occur as the first and second arguments, respectively. The first then specifies the "from"
port and the second the "to" port.

The other four statements are as follows.

send-statement
receive-statement
close-statement
probe-statement

send-control

recv-control

probe.control

storage..location

argument

variable

SEND([send-control] (1)) [argument]

RECEIVE([recv.control] (1)) [variable]

ENDCHANNEL([send-control1(0))
PROBE([probe-control] (1))

outporitname I PORT=outport.name I
IOSTAT=storage-location I ERR=label
inport-name I PORT=inport..name I
IOSTAT=storage.location I ERR=label I
inport.name | FORT=inport..name I
ERR=label I IOSTAT=storage-location I
variable..name I array-element -name

expression I
variable..name I array.element.-name

END=label

EMPTY=storage local ion

I array..name

If a port specifier does not include the optional characters PORT=, it must be the first
item in the control information list. A storage-location specified in an IOSTAT= or EMPTY=
specifier must have integer and logical type, respectively.

3

2.4 Mapping

The mapping annotations LOCATION and SUBMACHINE are appended to process calls:

process-call LOCATION (indices)
process.call SUBMACHINE (indices)

where indices has the same syntax as the arguments to an array-element -name.

2.5 Restrictions

Port variables cannot be named in EQUIVALENCE statements. Programs cannot include

COMMON data; PROCESS COMMON must be used instead.

3 Concurrency

With two exceptions, a process executes sequentially, in the same manner as a Fortran
program. That is, each statement terminates execution before the next is executed. The
two exceptions are the process block and the process do-loop, in which statements execute

concurrently. That is, the processes created to execute these statements may execute in

any order or in parallel, subject to the constraint that any process that is not blocked
(because of a RECEIVE applied to an empty channel) must eventually execute. A process

block or process do-loop terminates, allowing execution to proceed to the next statement,
when all its process and subroutine calls terminate.

A process can access its own process common data but not that of other processes. By
default, process arguments are passed by value and copied back to the parent process, in
textual and do-loop iteration order, upon termination of the process block or process do-

loop in which the process is called, or upon termination of the process, if the process does
not occur in a process block or do-loop. A dummy argument declared INTENT(INOUT)
is treated in the same way. If a dummy argument is declared INTENT(IN), then the

corresponding parent argument is not updated upon termination. If a dummy argument
is declared INTENT(OUT), the value of the variable is defined to a default value upon entry

to the process.

4 Channels

Processes communicate and synchronize by sending and receiving values on typed com-
munication streams called channels. A channel is created by a CHANNEL statement, which

also defines the supplied in-port and out-port to be references to the new channel. A
channel is a first-in/first-out message queue. An element is appended to this queue by

applying the SEND statement to the out-port that references the channel. This statement
is asynchronous: it returns immediately. An element is removed from the queue by apply-
ing the RECEIVE statement to the in-port that references the channel. This statement is

synchronous: it blocks until a value is available. The ENDCHANNEL statement appends an

4

end-of-channel (EOC) message to the queue. The MOVEPORT statement copies a channel
reference from one port variable to another.

These statements all take as arguments a control information list (cilist). The optional

IOSTAT=, END=, and ERR= specifiers have the same meaning as the equivalent Fortran I/O

specifiers, with end-of-channel treated as end-of-file, and an operation on an undefined

port treated as erroneous. An implementation should also provide, as a debugging aid,

the option of signaling an error if a SEND, ENDCHANNEL, or RECEIVE statement is applied
to a port that is the only reference to a channel.

SEND(cilist) E 1, . . . , En Add the values E 1, ... , En (the sources) to the channel referenced
by the out-port named in cilist (the target). The source values must match the data

types specified in the port declaration, in number and type.

RECEIVE(cilist) V 1, . . . ,V, Block until the channel referenced by the in-port named in

cilist (the target) is nonempty. If the next value in the channel is not EOC, move
values from the channel into the variables V1 , ... , V (the destinations). The des-

tination variables must match the data types specified in the port declaration, in

number and type.

ENDCHANNEL(cilist) Append an EOC message to the channel referenced by the out-port

named in cilist.

MOVEPORT(cilist) Copy the value of the port specified "from" in cilist (the source) to the

port specified "to" (the target), and set the source port to undefined.

A port is initially undefined. An undefined port becomes defined if it is included in a

CHANNEL (or MERGER: see below) statement, if it occurs as a destination in a RECEIVE, or

if it is named as the target of a MOVEPORT statement whose source is a defined port. Any

other statement involving an undefined port is erroneous.

Application of the ENDCHANNEL statement to an out-port causes that port to become
undefined. The corresponding in-port remains defined until the EOC message is received

by a RECEIVE statement, and then becomes undefined. Both in-ports and out-ports be-

come undefined if they are named as the source of a SEND or MOVEPORT operation.

Storage allocated for a channel is reclaimed when both (a) either the out-port has been
closed, or the out-port goes out of scope or is red fined, and (b) either EOC is received

on the in-port, or the in-port goes out of scope or is redefined.

5 Nondeterminism

The MERGER and PROBE statements are used to specify nondeterministic computations.
MERGER is identical to CHANNEL, except that it can define multiple out-ports to be references

to its message queue. Messages are added to the queue as they are sent on out-ports,

with the order of messages from each out-port being preserved and all messages eventually

appearing in the queue. An EOC value is added to the queue only after it has been sent

on all out-ports.

5

The PROBE statement is used to obtain status information for a channel. It can be

applied only to an in-port. The IOSTAT= and ERR= specifiers in its control list are as in the
Fortran INQUIRE statement. A logical variable named in an EMPTY= specifier is assigned

the value true if the channel is known to be empty, and false otherwise. Knowledge

about sends is presumed to take a non-zero but finite time to become known to a process
probing an in-port. Hence, a PROBE of an in-port that references a nonempty channel may

signal true if the channel values were only recently communicated. However, if applied

repeatedly without intervening receives, PROBE will eventually signal false, and will then

continue to do so.

6 Mapping

The PROCESSORS declaration and the LOCATION and SUBMACHINE annotations have no se-
mantic content, but determine performance by specifying how processes are to be mapped
within an N-dimensional array of processors (N > 1).

The PROCESSORS declaration is analogous to a DIMENSION statement: it declares the

shape and dimensions of the processor array that is to apply in the program, process, or

subroutine in which it appears. As we descend a call tree, the shape of this array can

change, but its size can only become smaller, not larger.

A LOCATION annotation is analogous to an array reference. It specifics the virtual

processor on which the annotated process is to execute. The specified location cannot be

outside the bounds of the processor array specified by the PROCESSORS declaration.

The SUBMACHINE annotation is analogous to an array reference in a subroutine call.

It specifies that the annotated process is to execute in a virtual computer with its first

processor specified by the annotation, and with additional processors selected in array
element order. These processors cannot be outside the bounds of the processor array

specified by the PROCESSORS declaration.

References

[1] Chandy, K. M., and Foster, I., A determiniQtic notation for cooperating processes,

Preprint MCS-P346-0193, Mathematics and Computer Science Division, Argonne

National Laboratory, Argonne, Ill., 1993.

[2] Foster, I., and Chandy, 1K. M., Fortran NI: A language for modular parallel pro-

gramming, Preprint MCS-P327-0992, Mathematics and Computer Science Division,

Argonne National Laboratory, Argonne, Ill., 1992.

[3] Foster, I., Olson, R., and Tuecke, S., Programming in Fortran NI, Technical Report
ANL-93/26, Argonne National Laboratory, Argonne, Ill., 1993.

[4] Programming Language Fortran, American National Standard X3.9-1978, American

National Standards Institute, 1978.

6

Distribution for ANL-93/28

Internal:

J. M. Beumer (100)
I. T. Foster (25)
F. Y. Fradin
G. W. Pieper
R. L. Stevens
C. L. Wilkinson
TIS File

External:

DOE-OSTI, for distribution per UC-405 (54)
ANL-E Library (2)
ANL-W Library
Manager, Chicago Operations Office, DOE
Mathematics and Computer Science Division Review Committee:

W. W. Bledsoe, The University of Texas, Austin
B. L. Buzbee, National Center for Atmospheric Research
J. G. Glimm, State University of New York at Stony Brook
M. T. Heath, University of Illinois, Urbana
E. F. Infante, University of MipnAota
D. O'Leary, University of Mary.
R. E. O'Malley, Rensselaer Polytechnic Institute
M. H. Schultz, Yale University

J. Cavallini, Department of Energy - Office of Scientific Computing
K. Mani Chandy, California Institute of Technology
F. Howes, Department of Energy - Office of Scientific Computing

7

