
Distribution Category:
Mathematics and Computer

Science (UC-405)

ANL--91/34
ANL-91/34

.___DE92 006819

ARGONNE NATIONAL LABORATORY
9700 South Cass Avenue
Argonne, IL 60439-4801

PROCEEDINGS OF THE WORKSHOP ON

COMPILATION OF (SYMBOLIC) LANGUAGES FOR PARALLEL COMPUTERS

held October 31 - November 1, 1991
San Diego, CA

compiled by

Ian Foster and Evan Tick*

Mathematics and Computer Science Division

November 1991

*Current address: University of Oregon, Eugene, Oregon

This work was supported by the Applied Mathematical Sciences subprogram of the Office of Energy Research, U.S.
Department of Energy, under Contract W-31-109-Eng-38.

"{ '

.

r 7

,.

'r

kit.

Agenda

THURSDAY, OCTOBER 31

1:20 Welcome and Introductions

1:30 Interfacing Performance Measurement Capabilities into a
Parallel Language Compiler

Carl Kesselman

2:00 Message-oriented Parallel Implementation of Flat GHC
Kazunori Ueda

2:30 An Overview of the Fortran D Programming System
Charles Koelbel

3:00 Break

3:30 OSCAR Fortran Compiler
Hironori Kasahara

4:00 Coordination Language Design and Implementation Issues
Steve Lucco

4:30 Break

5:00 Designing Imperative Programming Languages for Analyzability:
Parallelism and Pointer Structures

Laurie Hendren

5:30 Compile-Time Parallelization of Prolog
Hakan Millroth

6:00 Compiling Crystal for Massively Parallel Machines
Young-il Chou

iii

FRIDAY, NOVEMBER 1

8:30 A New Method for Compile-Time Granularity Analysis
Evan Tick

9:00 GST: Grain-Size Transformations for Efficient Execution of Symbolic Programs
Andrew Chien

9:30 Break

10:00 Using Domain-Specific, Abstract Parallelism
Ira Baxter

10:30 Applying Abstract Interpretation to Identify Numerical Code in Logic Programs
Arvind Bansal

11:00 Break

11:30 Data Locality
Monica Lam

12:00 Compiling FP for Data-Parallel Systems
Clifford Walinsky

12:30 Lunch

1:30 Improving Compilation of Implicit Parallel Programs by Using Runtime Information
John Sargeant

2:00 Generalized Iteration Space and the Parallelization of Symbolic Programs
Luddy Harrison

2:30 Break

3:00 Dataflow Analysis of Concurrent Logic Languages
Will Winsborough

3:30 Compiler Support for the Refinement and Composition of Process Structures
Ian Foster

4:00 General Discussion and Conclusion

iv

Contents

Abstract...vi

Interfacing Performance Measurement Capabilities into a Parallel Language Compiler............................I
Carl Kesselman

Message-oriented Parallel Implementation of Flat GHC ... 2
Kazunori Ueda and Masao Morita

An Overview of the Fortran D Programming System .. 18
Seema Hiranandani, Ken Kennedy, Charles Koelbel, Ulrich Kremer, and Chau-Wen Tseng

OSCAR Fortran Compiler..30
H1. Kasahara, H. Honda, K. Aida, M. Okamoto, and S. Narita

Coordination Language Design and Implementation Issues .. 38
Steve Lucco and Oliver Sharp

Designing Imperative Programming Languages for Analyzability:
Parallelism and Pointer Structures..40

Laurie J. Hendren and Guang R. Gao

Compile-Time Parallelization of Prolog...58
Hakan Millroth

Compiling Crystal for Massively Parallel Machines..60
Marina Chen and Young-il Choo

A New Method for Compile-Time Granularity Analysis...73
X. Zhong, E. Tick, S. Duvvuru, L. Hansen, A. V. S. Sastry, and R. Sundararajan

GST: Grain-Size Transformations for Efficient Execution of Symbolic Programs..86
Andrew A. Chien and Wuchun Feng

Using Domain-Specific, Abstract Parallelism .. 93
Ira Baxter and Elaine Kant

Applying Abstract Interpretation to Identify Numerical Code in Logic Programs 108
Arvind K. Bansal and Dilip S. Poduval

Data Locality .. 111
Monica S. Lam

Compiling FP for Data-Parallel Systems..114
Clifford Walinsky and Deb Banerjee

Improving Compilation of Implicit Parallel Programs by Using Runtime Information 129
John Sargeant

Generalized Iteration Space and the Parallelization of Symbolic Programs .. 149
Luddy Harrison

Dataflow Analysis of Concurrent Logic Languages...161
Ian Foster and Will Winsborough

Compiler Support for the Refinement and Composition of Process Structures...........................162
Ian Foster

L ist of C ontributors..173

V

Proceedings of the Workshop on
Compilation of (Symbolic) Languages for Parallel Computers

held October 31 - November 1, 1991
San Diego, CA

compiled by

Ian Foster and Evan Tick

Abstract

This report comprises the abstracts and papers for the talks presented at the Work-
shop on Compilation of (Symbolic) Languages for Parallel Computers, held October 31-

November 1, 1991, in San Diego. These unrefereed contributions were provided by the

participants for the purpose of this workshop; many of them will be published elsewhere in

peer-reviewed conferences and publications.

Our goal in planning this workshop was to bring together researchers from different
disciplines with common problems in compilation. In particular, we wished to encourage

interaction between researchers working in compilation of symbolic languages (especially

logic and functional programming) and those working on compilation of conventional, im-

perative languages.
The fundamental problems facing researchers interested in compilation of logic, func-

tional, and procedural programming languages for parallel computers are essentially the

same. However, differences in the basic programming paradigms have led to different com-

munities emphasizing different aspects of the parallel compilation problem. For example,

parallel logic and functional languages provide dataflow-like formalisms in which control de-

pendencies are unimportant. Hence, a major focus of research in compilation has been on
techniques that try to infer when sequential control flow can safely be imposed. Granularity
analysis for scheduling is a related problem. The single-assignment property (central to the

dataflow model) leads to a need for analysis of memory use in order to detect opportunities

for reuse. Much of the work in each of these areas relies on the use of abstract interpretation
techniques.

In contrast, research in procedural languages has emphasized the problem of inferring

data dependencies in order to determine when sequential control flow can safely be relaxed.

A related area of research is the automatic partitioning and distributing of data structures.

This topic has not been addressed in the logic and functional programming communities

but is important on large-scale parallel computers.
There is clearly both a commonality of interests between researchers in these different

fields and large differences in emphasis and techniques. This workshop was a first step at

opening up discussions between the researchers and contributing to the solution of problems

in language compilation for parallel computers.

vi

Interfacing Performance Measurement Capabilities

into a Parallel Language Compiler

Carl Kesselman, Caltech

When developing a parallel program, one is ultimately interested in how effectively that
program uses the parallel computer on which it runs. In this sense, identifying and elim-
inating performance bottlenecks is central to parallel computing. The number of times a
procedure executes on a processor, or how much time is spent waiting for interprocessor
communication are typical of the types of information needed to identify and eliminate
performance bottlenecks. A means for measuring quantities such as these is essential to
any practical parallel programming system. Recognizing this, facilities for performance
measurement have been integrated into the programming environment for Program Com-
position Notation (PCN), a parallel programming language based on program composition,
single assignment variables, and recursively defined data structures.

Facilities for performance measurement were designed into the PCN implementation
from the beginning. The approach we have taken combines novel measurement techniques
with statistical performance models to provide performance measurements with extremely
low overhead. In this talk, we will discuss issues in the design of performance measurement
systems for parallel programs and we will show how these issues have been addressed in
PCN. An overview of the implementation of performance measurement in PCN will be
given, paying particular attention to the influence measurement had on the design of the
PCN implementation and the PCN compiler.

Message-Oriented Parallel Implementation of Moded Flat GHC

(Extended Abstract)

Kazunori Ueda

Institute for New Generation Computer Technology

4-28, Mita 1-chome, Minato-ku, Tokyo 108, Japan

Masao Morita

Mitsubishi Research Institute

3-6, Otemachi 2-chome, Chiyoda-ku, Tokyo 100, Japan

Abstract. We proposed in [UM90] a new, message-oriented implementation technique for

Moded Flat GHC that compiles unification for data transfer into message passing. The

technique was based on constraint-based program analysis that was amenable to separate

compilation, and significantly improved the performance of programs that used goals and

streams to implement reconfigurable data structures. In this paper we discuss how the tech-

nique can be parallelized. We focus on the shared-goal method for shared-memory multipro-

cessors, though a different scheme could be used for distributed-memory multiprocessors.

Unlike other parallel implementations of concurrent logic languages which we call process-

oriented, the unit of parallel execution is not an individual goal but a chain of message

sends caused successively by an initial message send. Parallelism comes from the existence

of different chains of message sends that can be executed independently or in a pipelined

manner. Mutual exclusion based on busy waiting and on message buffering controls access

to individual, shared goals. Typical goals allow last-send optimization, the message-oriented

counterpart of last-call optimization. We are building an experimental implementation on

Sequent Symmetry. In spite of the simple scheduling currently adopted, preliminary evalua-

tion shows good parallel speedup and good absolute performance for concurrent operations

on binary process trees.

1. Introduction

Concurrent processes can be used both for programming computation and for pro-

gramming storage. The latter aspect can be exploited in concurrent logic programming to

program reconfigurable data structures using the following analogy:

records +-+ (body) goals

pointers 4-+ streams (implemented by lists),

where a process is said to be implemented by a multiset of goals.

An advantage of using processes for this purpose is that it allows implementations to

exploit parallelism between operations on the storage. For instance, a search operation on

2

nt([], , -, L,R) :-true I L=[], R=[].
nt([search(K,V)fCs],K, V1,L,R) :-true I V=V1, nt(Cs,K,V1,L,R).

nt([search(K,V) ICs] ,K1,V1,L,R) :- K<K1 I L=[search(K,V) IL],nt(Cs,K1,V1,L1,R).

nt([search(K,V) ICs],K1,V1,L,R) :- K>K1 I R=[search (K,V)IR1], nt(Cs,K1,V1,L,R1) .

nt([update(K,V)ICs],K, -, L,R) :-true I nt(Cs,K,V,L,R).

nt([update(K,V) ICs],K1,V1,L,R) :- K<K1 I L=[update (K, V)IL1] , nt(CsK1,V1,L1,R) .

nt([update(K,V) ICs] ,K1,V1,L,R) :- K>K1. R=[update(K,V)IR1] , nt(Cs,K1,V1,L,R1) .

t([]) :-true I true.

t([search(_,V)ICs]) :- true 1=undefined, t(Cs).

t([update(K,V)ICs]) :- true I nt(Cs,K,V,L,R), t(L), t(R).

Program 1. A GHC program defining binary trees as processes

a binary search tree (Program 1), given as a message in the interface stream, can enter the

tree soon after the previous operation has passed the root of the tree. Programmers do

not have to worry about mutual exclusion, which is taken care of by the implementation.

This suggests that the programming of reconfigurable data structures can be an important

application of concurrent logic languages. (The verbosity of Program 1 is a separate issue

which is out of the scope of this paper.)

Processes as storage are almost always suspending, but should respond quickly when

messages are sent. However, most implementations of concurrent logic languages have not

been tuned for processes with this characteristic. In our earlier paper [UM90], we proposed

a message-oriented scheduling of goals for sequential implementation, which optimizes goals

that suspend and resume frequently. Although our primary goal was to optimize storage-

intensive (or more generally, demand-driven) programs, the proposed technique worked quite

well also for computation-intensive programs that did not use one-to-many communication.

However, how to utilize the technique in parallel implementation was yet to be studied.

Parallelization of message-oriented scheduling can be quite different from parallelization

of ordinary, process-oriented scheduling. An obvious way of parallelizing process-oriented

scheduling is to execute different goals on different processors. In message-oriented schedul-

ing, the basic idea should be to execute different message sends on different processors, but

many problems must be solved as to the mapping of computation to processors, mutual

exclusion, and so on. This paper reports the initial study on the subject.

The rest of the paper is organized as follows: Section 2 reviews Moded Flat GHC, the

subset of GHC we are going to implement. Section 3 reviews message-oriented schedul-

ing for sequential implementation. Section 4 discusses how to parallelize message-oriented

scheduling. Of the two possible methods suggested, Section 5 focuses on the shared-goal

method suitable for shared-memory multiprocessors and discusses design issues in more de-

tail. Section 6 shows the result of the preliminary performance evaluation. The readers are

3

assumed to be familiar with concurrent logic languages [S89].

2. Moded Flat GHC and Constraint-Based Program Analysis

Moded Flat GHC [UM90] is a subset of GHC that introduces a mode system for the

compile-time analysis of dataflow caused by unification. Unification can cause bidirectional

dataflow in general. Without static analysis, the bidirectionality requires more runtime

checks in compiled code and can cause the failure of unification.

However, our experience witT. GHC and KL1 (Flat GHC augmented with constructs for

controlling parallel execution [UC90]) has shown that the full functionality of bidirectional

unification is seldom used and that programs using it can be rewritten rather easily (if not

automatically) to programs using unification as assignment. Actually, GHC is being used

as a general-purpose concurrent language, which means that the efficiency of commonplace

operations is more important than the efficiency of specific complex operations. Its imple-

mentations should not be too inefficient compared with those of imperative languages. Local

and global compile-time analysis is thus very important to reduce the number of runtime

checks and obtain machine codes close to those obtained from imperative programs.

For global compile-time analysis to be practical, it is highly desirable that the analysis

can be made separately for individual program modules in such a way that the results can

be merged later. The mode system of Moded Flat GHC is thus constraint-based; that is,

the mode of a whole program can be determined by accumulating the mode constraints

obtained separately from each program clause. The mode constraints for each clause are

given by a set of syntactic rules (described in [UM90]) each applicable to a variable or an

occurrence of function symbols in the clause. Another advantage of the constraint-based

system is that it allows programmers to declare some of the mode constraints, in which case

the analysis works as mode checking as well as mode inference.

The modularity of the analysis was brought by the rather strong assumption of the mode

system: whether the function symbol at some position (possibly deep in the structure) of

a goal g is determined by g or by other goals running concurrently is determined solely by

that position specified by a path, which is defined as follows: Let Pred be the set of predicate

symbols and Fun the set of function symbols (we do not distinguish between constants and

function symbols). For each p E Pred with the arity n,, let N, be the set {1,2,...,np}.

Nf is defined similarly for each f E Fun. Now the sets of paths Pt (for terms) and P (for

atoms) are defined using disjoint union as:

P = ((N5)*, P.a= ((N,)x P.

f EFun pEPrd

An element of P. can be written as a string (p,i)(fi,j1) ... (f,,,j~), that is, it records the

predicate and the function symbols on the way as well as the argument positions selected.

4

A mode is a function from P. to the set {in, out}, which means that it assigns either of in

or out to every possible position of every possible instance of every possible goal. Because

a path records the predicate and the function symbols on it, whether some position is in or

out can depend on the predicate and function symbols on the path down to that position.

Mode analysis tries to guarantee that unification in clause body is used as assignment.

For that purpose, it checks if every variable generated in the course of execution has exactly

one out occurrence (occurrence at an out position) that can determine its top-level value, by

accumulating constraints between the modes of different paths. The purpose of the analysis

is to obtain partial information on the mode sufficient for compilation; it does not aim to

compute a single mode, because the mode of many uninteresting positions that will not

come to exist will be unconstrained and can be left undefined. The mode information can

be used for compiling unification as assignment further into message passing.

Constraint-based analysis can be applied to analyze other properties of programs as

well. For instance, if we can assume that streams and non-stream data structures do not

occur at the same position of different goals, we can try to classify all the positions into

(1) those whose top-level values are limited to the list constructors (cons and nil) and

(2) those whose top-level values are limited to symbols other than the list constructors,

which is the simplest kind of type inference. Other applications include the static identifica-

tion of 'single-reference' positions, namely positions whose values are not read by more than

one goal and hence can be discarded cr destructively updated after use. This could replace

the MRB (multiple-reference bit) scheme [CK87J, a runtime scheme adopted in current KL1

implementations for the same purpose.

3. Message-Oriented (Sequential) Implementation

Message-oriented implementation compiles the generation of stream elements into pro-

cedure calls to the consumer of the stream. A stream is an unbounded buffer of messages

in principle, but message-oriented implementation tries to reduce the overhead of buffering

and unbuffering by transferring control and messages simultaneously to the receiver when-

ever possible. To this end, it tries to schedule goals so that whenever the producer of a

stream sends a message, the consumer is suspending on the stream and is ready to handle

the message. Of course, this is not always possible because we can write a program in which

a stream must act as a buffer; messages are buffered in that event.

Process-oriented implementation tries to achieve good performance by reducing the

frequency of goal switching and taking advantage of last-call optimization. Message-oriented

implementation tries to reduce the cost of each goal switching operation and the cost of data

transmission between goals.

5

code for buffering

sender's comnm.ceI receiver's sender's comm. cel receiver's

coe. code code code

sender's receiver's sender's receiver's

goal goal goag~~~* '-eoal

record put get record record [z]-mec.
comm.reg. comm.reg. r------------

(hardware) buffer queue of
descriptor 'bufferedelements

Fig. 1 Immediate message send Fig. 2 Buffered message send

Suppose two goals, p and q, are connected by a stream s and p is going to send a

message to q. Message-oriented implementation represents s as a two-field communication

cell that points to (1) the instruction in q's code from which the processing of q is to be

resumed and (2) q's goal record containing its arguments (Fig. 1). To send a message m, p

first loads m on a hardware register called the communication register, change the current

goal to the one pointed to by the communication cell of s, and call the code pointed to by

the communication cell of s. The goal q gets m from the communication register and may

send other messages in its turn. Control returns to p when all the message sends caused

directly or indirectly by m have been processed. However, if m is the last message which

p can send out immediately (i.e., without waiting for further incoming messages), control

need not return to p but can go directly to the goal that has outstanding message sends.

This is called last-send optimization.

We have observed in GHC/KL1 programming that the dominant form of interprocess

communication is one-to-one stream communication. It therefore deserves special treatment,

even though other forms of communication such as broadcasting and multicasting become a

little more expensive. One-to-many communication is done either by the repeated sending

of messages or by using non-stream data structures.

Techniques mentioned in Section 2 are used to analyze which positions of a predicate

and which variables in a program are used for streams and to distinguish between the sender

and the receiver(s) of messages.

When a stream must buffer messages, the communication cell representing the stream

points to the code for buffering and the descriptor of a buffer. The old entries of the

communication cell are saved in the descriptor (Fig. 2). In general, a stream must buffer

incoming messages when the receiver goal is not ready to handle them. The following are

the possible reasons [UM90]:

6

update and search
commands from the driver

Fig. 3 Binary search tree as a process

(1) (selective message receiving) The receiver is waiting for a message from other input

streams.

(2) The receiver is suspending on non-stream data (possibly the content of a message).

(3) The sender of a message may run ahead of the receiver.

(4) When the receiver r belongs to a circular process structure, a message m sent by r may

possibly arrive at r itself or may cause another message to be sent back to r. However,

unless m has been send by last-send optimization, r is not ready to receive it.

The receiver examines the buffer when the reason for the buffering disappears, and

handles messages (if any) in it.

4. Parallelization

How can we exploit parallelism from message-oriented implementation? Two quite

different methods can be considered:

Distributed-goal method. Different processors take charge of different goals, and each pro-

cessor handles messages sent to the goals it is taking charge of. Consider a binary search

tree represented using goals and streams (Fig. 3) and suppose three processors take charge

of the three different portions of the tree. Each processor performs message-oriented pro-

cessing within its own portion, while message transfer between portions is compiled into

inter-processor communication with buffering.

Shared-goal method. All processors share all the goals. There is a global, output-restricted

deque [K73] of outstanding work, from which an idle processor gets a new job. The job

is usually to resume the execution of the body goals of a clause. If it is a message send

followed by the rest of the work for the clause, the processor performs the message send

and subsequent message sends it causes, putting the rest of the work back to the top of the

deque. This allows different chains of message sends to be performed in parallel. In the

binary tree example, different processors will take care of different operations sent to the

7

root. A tree operation may cause subsequent message sends inside the tree, but they should

be performed by the same processor because there is no parallelism within each operation.

Unlike the shared-goal method, the distributed-goal method can be applied to distributed-

memory multiprocessors as well as shared-memory ones to improve the throughput of mes-

sage handling. On shared-memory multiprocessors, however, the shared-goal method is

more advantageous in terms of latency (i.e., responses to messages), because (1) it performs

no inter-processor communication within a chain of message sends and (2) good load bal-

ancing can be attained easily. The shared-goal method requires a locking protocol for goals

as will be discussed in Section 5.1, but enables more tightly-coupled parallel processing that

covers a wider range of applications. Because of its greater technical interest, the rest of

the paper is focused on the shared-goal method.

5. Shared-Goal Implementation

In this section, we discuss new technicalities in implementing the shared-goal method.

Space limitations do not allow the full description of the implementation, so we choose to

use examples to explain our intermediate code.

5.1 Locking of Goals

Consider a goal p (Xs , Ys) defined by the single clause:

p([AIXs1],Ys) :- true I Ys=[AIYs1], p(Xs1,Ys1).

In the shared-goal method, different messages in the input stream Xs may be handled

by different processors that share the goal p (Xs, Ys). Any processor sending a message must

therefore try to lock the goal record (placed in the shared memory) of the receiver first and

obtain grant for the exclusive access to it. The receiver must remain locked until it sends a

message through Ys and restores the dormant state.

The locking operation is important in the following respect as well: In message-oriented

implementation, the order of the elements in a stream is not represented spatially as a

list structure but as the chronological order of message sends. The locking protocol must

therefore make sure that when two messages, a and /, are sent in this order to p(Xs,Ys),

they are sent to the receiver of Ys in the same order. This is guaranteed by locking the

receiver of Ys before p (Xs , Ys) is unlocked.

5.2 Busy Wait vs. Suspension

How should a processor trying to send a message wait until the receiver goal is unlocked?

The two extreme possibilities are (1) to spin (busy wait) until unlocked and (2) to give up

8

(suspend) the sending immediately and do some other work, leaving the notice to the receiver

that it has a message to receive. We must take the following observations into account:

(a) The time each reduction takes, namely the time required for a resumed goal to restore

the dormant state, is usually short (several tens of CISC instructions, say), though it

can be considerably long sometimes.

(b) As explained in Section 5.1, a processor may lock more than one goal temporarily upon

reduction. This means that busy wait may cause deadlock when goals and streams

form a circular structure.

Because busy wait incurs much smaller overhead than suspension, Observation (a)

suggests that the processor should spin for a period of time within which most goals can

perform one reduction. However, it should suspend finally because of (b).

Upon suspension, a buffer is prepared as in Fig. 2, and the unsent message is put in it.

Subsequent messages go to the buffer until the receiver has processed all the messages in

the buffer and has removed the buffer. As is evident from Fig. 2, no overhead is incurred to

check if the message is going to the buffer or to the receiver. The receiver could notice the

existence of the outstanding messages by checking its input streams upon each reduction,

but it incurs overhead to (normal) programs which don't require buffering. So we have

chosen to let the sender schedule the retransmitter of the messages when it creates a buffer.

The retransmitter occasionally tests if the receiver has been unlocked, in which case it sends

the first message in the buffer and re-schedules itself.

For the shared resources other than goals (such as logic variables and the global deque),

mutual exclusion should be attained by busy wait, because access to them takes a short

period of time. On the other hand, synchronization on the values of non-stream variables

(due to the semantics of GHC) should be implemented using suspension as usual.

5.3 Scheduling

Shared-goal implementation exploits parallelism between different chains of message

sends that do not interfere with each other. For instance, the binary search tree in Fig. 3

can process different operations on it in a pipelined manner, as long as there is no dependency

between the operations (e.g., the key of a search operation depending on the result of the

previous search operation). When there i dependency, however, parallel execution can even

lower the performance because of synchronization overhe 4 d.

Another example for which parallelism does not help is a demand-driven generator of

prime numbers which is made up of cascaded goals for filtering out the multiples of prime

numbers. The topmost goal receiving a new demand from outside filters out the multiples

of the prime computed in response to the last demand. However, it doesn't know what

9

prime's multiples should be filtered out, and hence will be blocked, until the last demand

has almost been processed.

These considerations suggest that in order to avoid ineffective parallelism, it is most

realistic to let programmers specify which chains of message sends should be done in parallel

with others and which should not. The simple method we are using currently.is to have (1)

a global deque for the work to be executed in parallel by idle processors and (2) one local

stack for each processor for the work to be executed sequentially by the current processor.

Each processor obtains a job from the global deque when its local stack is empty. We use

a global deque rather than a global stack because, if the retransmitter of a buffer fails to

send a message, it must go to the tail of the deque so it may not be :etried soon.

Each job in a stack/deque is uniformly represented as a pair (code, env), where code

is the job's entry/resumption point and env is its environment. The job is usually to start

the execution of a goal or to resume the reduction of a goal, in which case env points to the

goal record on which code should work. When the job is to retransmit buffered messages,

env points to the communication cell pointing to the buffer.

5.4 Reduction

This section outlines what a typical goal should do during one reduction, where by

'typical' we mean goals that can be reduced by receiving one incoming message. As an

example, consider the distributor of messages defined as follows,

p([AIXs],Ys,Zs) :- true I Ys=[AIYs1], Zs=[AIZs1], p(Xs,Ysl,Zsl).

where A is assumed not to be a stream. The unoptimized intermediate code for above

program is:

entry(p/ 3)
rcvvalue(Al)

get..cr (A4)

send_-call (A2)
put _cr (A4)

send-call(A3)

execute.

The Ai's are the arguments of a goal and temporary variables to be recorded in the goal

record. Other programs may use Xi's, which are (possibly virtual) general registers local to

each processor. The label entry(p/3) indicates the initial entry point of the predicate.

The instruction rcv.value(A1) waits for a message from the input stream at the first

argument. If messages should be already buffered, it takes the first one and put it on the

communication register. A retransmitter of the buffer is put on the deque if more messages

exist; otherwise the buffer is made to disappear (Section 5.7). If no messages are buffered,

10

which is expected to be most probable, rcv..value records the address of the next instruction

in the communication cell, unlocks the goal record, and suspends until a message arrives.

The goal is usually suspending at this instruction.

The instruction get.cr(A4) saves into the goal record the message in the communica-

tion register, which the previous rcv..value has received. Then send..call(A2) sends the

message through the second stream. Control is transferred to the receiver of the stream

unless the stream is being buffered. When control eventually returns, put..cr(A4) restores

the communication register and send..call(A3) sends the next message.

When control returns again, execute performs the recursive call by going back to the

entry point of the predicate p. Then the rcv.value(A1) instruction either finds buffered

messages or finds nothing. In the former case, a retransmitter of the buffer must have been

scheduled. So rcv.value(A1) can suspend until the retransmitter sends a message. In the

latter case, the recursive call is suspended at the same instruction as the last time. Thus

in either case, execute effectively does nothing but unlocking the current goal. This is

why last-send optimization can replace the last two instructions into a single instruction,

send..jmp (A3). The instruction send.jmp(A3) locks the receiver of the third stream, un-

locks the current goal, and transfers control to the receiver without stacking the return

address. Last-send optimization enables the current goal to receive the next message earlier

and allows the pipelined processing of message sends.

The above instruction sequence performs the two message sends sequentially. However,

a variant of send.call called send..gcall stacks the return address on the global deque

instead of the local stack, allowing the continuation to be processed in parallel.

We have established a code generation scheme for general cases including the spawning

and the termination of goals (Section 5.5), explicit control of message buffering (Section

5.6), and suspension on non-stream variables. Several optimization techniques have been

developed for goals with a single input stream and for goals whose input streams are known

to carry messages of limited forms (e.g., non-root nodes of a binary search tree (Fig. 3)).

Finally, we note that although process-oriented scheduling and message-oriented scheduling

differ in the flow of control, they are quite compatible in the sense that an implementation

can use both in running a single program. Our experimental implementation has actually

been made by modifying the process-oriented implementation.

5.5 Examples

Here we give the intermediate code of the naive reverse program (Fig. 4). In order for

the code to be almost self-explanatory, some comments are appropriate here.

Suppose the messages m 1, ... , m are sent to the goal nreverse(In,Out) through

In, followed by the eos (end-of-stream) message indicating that the stream is closed. The

11

nreverse([HIT],0) :true I append(01,[H],0), nreverse(T,01).
nreverse([], 0) :- true 1 0=[].
append([IIJ],K,L) :- true I L=[IIM], append(J,K,M).

append([], K,L) :- true I K=L.

entry(nreverse/2)

rcv.value(A1)

check...not._eos(101)

getcr(X3)

commit

put.cc(X4)'
pus;hvalue(X3,X4)
pusheos(X4)
gr.setup(append/3,3)

put .comvariable(X3,sarg(1))

put -value (X4, sarg (2))
put-value (A2,sarg(3))
call-proc
put .value (X3, A2)
return

label(101)
commit
send.call(A2)
proceed

entry(append/3)
deref (A3)
rcv.buffer(A2)
rcv..alue(A1)
checknoteos(102)

commit
sendnjmp(A3)

label (102)
commit
sendunifyjmp(A2,A3)

receive a message from the 1st arg (the program is
usually waiting for incoming messages here)
if the message is eos then collect the current
comm. cell and goto 101

save the message H in the comm. reg. to the
register of the current PE
Clause 1 is selected (no operation)
create a comm. cell with a buffer
put the message H into the buffer
put eos into the buffer
create a goal record for 3 args and record the name
create a locked variable 01 and set it to
X3 and the 1st arg of append/3
set [H]
set 0
execute append/3 until it suspends
set 01
unlock the current-goal and do the job on the
local stack top

Clause 2 is selected (no operation)
send eos in the comm. reg. to the receiver of 0

deallocate the goal record and return

dereference the 3rd arg L
make sure that the 2nd arg K buffers messages
receive a message from the 1st arg.
if the message is eos then collect the current
comm. cell and goto 102.
Clause S is selected (no operation)
send the received message to the receiver of L,
assuming that L has been dereferenced

Clause 4 is selected (no operation)
make sure that messages sent through A2 are
forwarded to the receiver of A3, and return

Fig. 4 Intermediate code for naive reverse

12

(1)

(2)
(3)

(4)

number B coming through the second stream. Suppose B(> A) arrives and the first clause

commits. Then the second stream should become a buffer and B will be put back. The

first stream, now being a buffer, is checked and a retransmitter is stacked if it contains an

element; otherwise the buffer is made to disappear. Finally A is sent to the receiver of the

third stream. The above procedure may look complex, but this program is indeed one of

the hardest ones to execute in a message-oriented manner. A simpler example of selective

message receiving appears in the concatenation of two streams, as described in Section 5.5.

Suspension on non-stream data. The most plausible case is the suspension on the content

of a message (e.g., the first argument of a update command to the binary search tree).

When a goal receives from a stream s a message that is not sufficiently instantiated for

commitment, it changes s to a buffer and put the message back to it. The retransmitter is

hooked on the uninstantiated variable(s) that caused suspension, and is invoked when any

of them are instantiated.

The sender of a stream running ahead of the receiver. It is not always possible to guarantee

that the sender of a stream does not send a message before the receiver commences execution,

particularly when they run in parallel. A stream is initialized to a buffer in that event.

Circular process structure. When the receiver sends more than one message in response

to an incoming message, the sequential implementation must buffer subsequent incoming

messages until the last message is sent out. In parallel implementation, the same effect

is automatically achieved by the lock on the goal record and hence the explicit control of

buffering is not necessary.

The retransmission of a buffer created by the receiver of a stream is explicitly con-

trolled by the receiver, while the retransmitter of a buffer created by the sender is scheduled

asynchronously with the receiver.

5.7 Mutual Exclusion of Communication Cells

Because the communication cell for a stream may be updated both by the sender and

the receiver of the stream, some method of mutual exclusion is called for. The simplest

solution would be to lock a communication cell whenever accessing it, but locking both a

goal record and a communication cell for each message sending would be too costly.

The solution we adopted does not incur any overhead in ordinary message sends: While

the receiver is updating the communication cell, its first field temporarily points to a code

that makes the sender to retry the message send. This is not yet sufficient because there is

a slight possibility that

(1) the sender follows the pointer in the second field of the communication cell, and then

13

eost m
-- -reos eoS mes

mkll mk k-1 m

Out
nraverse append append - - - append

Fig. 5 Process structure being created by nreverse([mi,... ,mn,],Out)

nreverse goal generates one suspended append goal for each mi, creating the structure in

Fig. 5. The ith append has as the second argument a buffer with two messages, m; and eos.

The final eos message to nreverse causes the second clause to forward the eos to the most

recent append goal holding m. The append goal, in response, lets different (if available)

processors send the two buffered messages m, and eos to the append holding m,,- The

message ma is transferred all the way to the append holding m1 and appears in out. The

following cos causes the next append goal to send ma-1 and another eos.

The performance hinges on how fast an append goal can transfer messages. For each

incoming message, it checks if the message is not eos and then transfers the message and

control to the receiver of the output stream. The message remains on the communication

register and need not be loaded or stored.

The send.unify..jmp(rj ,r2) instruction is for the unification of two streams. If the

stream r1 has a buffer (which is the case in nreverse), its contents are first sent to the

receiver of r2 . Then an arrangement is made for r 1 so that next time a message is sent

through r, the sender is made to point directly to the communication cell of r2 .

5.6 Buffering

As discussed in Section 5.2, the producer of a stream s creates a buffer when the receiver

is locked for a long time. However, this is a rather unusual situation; a buffer is usually

created by s's receiver when it remains unready to handle incoming messages after it has

unlocked itself. Here we re-examine the four reasons of buffering in Section 3:

Selective message receiving. This happens, for instance, in a program for merging two

(ordered) streams of integers:

omerge([AIX1], [BIY1],Z) :- A< B I Z=[AIZ1], omerge(X1,[BIY1],Z1) .
omerge([AiX1],[BIY1],Z) :- A>=B I Z=[BIZ1], omerge([AIX1],Y1,Zi).

Two numbers, one from each input stream, are necessary for the reduction. Suppose the

first number A arrives through the first stream. Then the goal omerge checks if the second

stream has a buffered value. Since it doesn't, the goal cannot be reduced. So it records A in

the goal record and change the first stream to a buffer, because it has to wait for another

14

(2) the receiver starts and completes the updating of the communication cell, and then

(3) the sender locks the (wrong) record obtained in Step (1) and calls the code pointed to

by the first field of the updated communication cell,

which happens in the following cases:

(a) the receiver creates a buffer for the cell,

(b) the receiver removes a buffer for the cell,

(c) the goal record of the receiver is moved due to reduction, and

(d) the receiver unifies the stream which the cell represents with another stream by

send..unifyjmp.

Case (a) is handled by the code for buffering. The other cases are handled by not letting

the receiver update the communication cell but letting the mislocked buffer have a recovery

pointer to the right goal record. The communication cell is updated by the sender when it

follows the recovery pointer.

6. An Experimental System and Its Performance

We have almost finished the design of an initial version of the abstract machine in-

struction set for the shared-goal method. An experimental runtime system for performance

evaluation has been developed on Sequent Symmetry, a shared-memory parallel computer

with 20MHz 80386's The system is written an assembly language and C, and the abstract

machine instructions are expanded into native codes automatically by the loader. A com-

piler from Moded Flat GHC to the intermediate code is yet to be developed.

The current system employs a simple scheme of parallel execution as described in

Section 5.3. When the system runs with more than one processor, one of them acts as a

master processor and the others as slaves. They act in the same manner while the global

deque is non-empty. When the master fails to obtain a new job from the deque, it tries

to detect termination and exceptions such as stack overflow. The current system does not

care about perpetually suspended goals; they are treated just like garbage cells in Lisp. A

slight overhead of counting the number of goals in the system would be necessary to detect

perpetually suspended goal [1090] and/or to feature the shoen construct of KL1 [UC90],

but it would scarcely affect the result of performance evaluation described below.

Locking of shared resources, namely logic variables, goal records, communication cells,

the global deque, etc., is done using the xchg (exchange) instruction as usual.

Using Program 1, we measured the processing time of 5000 update commands with

random keys given to an empty binary tree and the processing time of 5000 search com-

mands (with the same sequence of keys) to the resulting tree with 4777 nodes. The number

15

Table 1. Performance Evaluation (in seconds)

Language Processing

GHC 1 PE (no locking)
1 PE
2 PEs
3 PEs
4 PEs
5 PEs
6 PEs
7 PEs
8 PEs

C (recursion) cc -O

C (iteration) cc -O

(* kilo Reductions Per Second)

binary process tree
. (5000 operations)
(search) (update)

1.25 1.83
1.38 2.10
0.78 1.15
0.55 0.81
0.44 0.63
0.36 0.53
0.33 0.46
0.33 0.39
0.33 0.36

0.71 0.72
0.32 0.35

naive reverse
(1000 elements)

2.23 (225 kRPS)*
3.27 (154 kRPS)
2.43 (207 kR.PS)
1.71 (294 kRPS)
1.33 (377 kRPS)
1.10 (456 kRPS)
0.96 (523 kRPS)
0.85 (591 kRPS)
0.77 (652 kRPS)

of processors was changed from 1 to 8. For the one-processor case, a version without lock-

ing/unlocking operations was tested as well. The numbers include the execution time of

the driver that sends messages to the tree. The result was compared with two versions

of (sequential) C programs using records and pointers, one using recursion and one using

iteration. The performance of nreverse (Fig. 4) was measured as well. The results are

shown in Table 1.

The results show good (if not ideal) parallel speedup, though for search operations on

a binary tree, the performance is finally bounded by the sequential nature of the driver and

the root node. Access contention on the global deque can be another cause of overhead.

Note, however, that the two examples are indeed harder to execute in parallel than running

independent processes in parallel, because different chains of message sends can pass the

same goal. Note also that the binary tree with 4777 nodes is not very deep.

The binary tree program run with 4 processors outperformed the optimized recursive C

program. The iterative C program was more than twice as fast as the recursive one and was

comparable to the GHC program run with 8 processors. The comparison, however, would

have been more preferable to parallel GHC.if a larger tree had been used.

The overhead of locking/unlocking is about 30% in nreverse and about 10% in the

binary tree program. Since nreverse is one of the fastest programs in terms of the kRPS

value, we can conclude that the overhead of locking/unlocking is reasonably small on average

even if we lock such small entities as individual goals.

As for space efficiency, the essential difference between our implementation and C im-

plementations is that GHC goal records have pointers to input streams while C records

do not consume memory by being pointed to. The difference comes from the expressive

16

power of streams; unlike pointers, streams can be unified together and can buffer messages

implicitly.

7. Conclusions and Future Works

The main contribution of this paper is that message-oriented implementation of Moded

Flat GHC was shown to benefit from smallgrain, tightly-coupled parallelism on shared-

memory multiprocessors. Furthermore, the result of preliminary evaluation shows that the

absolute performance is good enough to be compared with C programs.

These results suggest that the programming of reconfigurable storage structures that

allow concurrent access can be a realistic application of Moded Flat GHC. Programmers

need not worry about mutual exclusion necessitated by parallelization, because it is achieved

automatically at the implementation level. In procedural languages, parallelization may well

require major rewriting of programs. To our knowledge, how to deal with reconfigurable

storage structures efficiently in non-procedural languages without side effects has not been

studied in depth.

We have not yet fully studied the language constructs and its implementation for more

minute control over parallel execution. The current scheme is a simple extension to the se-

quential system and is rather tentative; it worked well for the benchmark programs used, but

will not be powerful enough to be able to tune the performance of large programs. We need

a notion of priority that should be somewhat different from the priority construct in KL1

designed for process-oriented parallel execution. KL1 provides the shoen (manor) construct

[UC90] as well, which is the unit of execution control, exception handling and resource con-

sumption control. How to adapt the shoen construct to message-oriented implementation

is another research topic.

References

[CK87] T. Chikayama and Y. Kimura, Multiple Reference Management in Flat GHC. In
Proc. 4th Int. Conf. on Logic Programming, MIT Press, 1987, pp. 276-293.

[I090] Y. Inamura and S. Onishi, A Detection Algorithm of Perpetual Suspension in KL1.
In Proc. Seventh Int. Conf. on Logic Programming, MIT Press, 1990, pp. 18-30.

[K73] D. E. Knuth, The Art of Computer Programming, Vol. 1 (2nd ed.). Addison-Wesley,
Reading, MA, 1973.

[589] Shapiro, E., The Family of Concurrent Logic Programming Languages. Computing

Surveys, Vol. 21, No. 3 (1989), pp. 413-510.
[UM90] K. Ueda and M. Morita, A New Implementation Technique for Flat GHC. In Proc.

Seventh Int. Conf. on Logic Programming, MIT Press, 1990, pp. 3-17. A revised,

extended version to appear in New Generation Computing.

[UC90] K. Ueda and T. Chikayama, Design of the Kernel Language for the Parallel Inference

Machine. The Computer Journal, Vol. 33, No. 6 (Dec., -1990), pp. 494-500.

17

An Overview of the Fortran D Programming System*

Seema Hiranandani
Ken Kennedy

Charles Koelbel
Ulrich Kremer

Chau-Wen Tseng

Department of Computer Science
Rice University

Houston, TX 77251-1892

Abstract

The success of large-scale parallel architectures is
limited by the difficulty of developing machine-
independent parallel programs. We have devel-
oped Fortran D, a version of Fortran extended

with data decomposition specifications, to provide
a portable data-parallel programming model. This
paper presents the design of two key components
of the Fortran D programming system: a proto-
type compiler and an environment to assist auto-
matic data decomposition. The Fortran D com-
piler: addresses program partitioning, communica-
tion generation and optimization, data decompo-
sition analysis, run-time support for unstructured
computations, and storage management. The For-
tran D programming environment provides a static

performance estimator and an automatic data par-
titioner. We believe that the Fortran D program-
ming system will significantly ease the task of writ-
ing machine-independent data-parallel programs.

1 Introduction

It is widely recognized that parallel computing rep-
resents the only plausible way to continue to in-
crease the computational power available to com-
putational scientists and engineers. However, it
is not likely to be widely successful until parallel

computers are as easy to use as today's vector su-
percomputers. A major component of the success

This research was supported by the Center for Research
on Parallel Computation, a National Science Foundation
Science and Technology Center.

of vector supercomputers is the ability to write
machine-independent vectorizable programs. Au-
tomatic vectorization and other compiler technolo-
gies have made it possible for the scientist to struc-
ture Fortran loops according the well-understood
rules of "vectorizable style" and expect the result-
ing program to be compiled to efficient code on any
vector machine [6, 32].

Compare this with the current situation for par-
allel machines. Scientists wishing to use such a
machine must rewrite their programs in an exten-
sion of Fortran that explicitly reflects the architec-
ture of the underlying machine, such as a message-
passing dialect for MIMD distributed-memory ma-
chines, vector syntax for SIMD machines, or an
explicitly parallel dialect with synchronization for
MLD shared-memory machines. This conversion
is difficult, and the resulting parallel programs are
machine-specific. Scientists are thus discouraged
from porting programs to parallel machines be-
cause they risk losing their investment whenever
the program changes or a new architecture arrives.

One way to overcome this problem would be
to identify a "data-parallel programming style"
that allows the efficient compilation of Fortran
programs on a variety of parallel machines. Re-
searchers working in the area, including ourselves,
have concluded that such a programming style is
useful but not sufficient in general. The reason for
this is that not enough information can be included
in the program text for the compiler to accurately
evaluate alternative translations. Similar reason-
ing argues against cross-compilations between the

18

current parallel extensions of Fortran.
For these reasons, we have chosen a different ap-

proach. We believe that selecting a data decompo-
sition is one of the most important intellectual step

in developing data-parallel scientific codes. How-
ever, current parallel programming languages pro-
vide little support for data decomposition [26]. We
have therefore developed an enhanced version of
Fortran that introduces data decomposition spec-

ifications. We call the extended language For-
tran D, where "D" suggests data, decomposition,

or distribution. When reasonable data decomposi-
tions are provided for a Fortran D program written

in a data-parallel programming style, we believe
that advanced compiler technology can implement
it efficiently on a variety of parallel architectures.

We are developing a prototype Fortran D com-
piler to generate node programs for the iPSC/860,
a MIMD distributed-memory machine. If suc-
cessful, the result of this project will go far
towards establishing the feasibility of machine-
independent parallel programming, since a MIMD
shared-memory compiler could be based directly on
the MIMD distributed-memory implementation.
The only additional step would be the construc-
tion of an effective Fortran D compiler for SIMD
distributed-memory machines. We have initiated
at Rice a project to build such a compiler based on
existing vectorization technology.

The Fortran D compiler automates the time con-
suming task of deriving node programs based on
the data decomposition. The remaining compo-
nents of the Fortran D programming system, the
static performance estimator and automatic data
partitioner, support another important step in de-
veloping a data-parallel program-selecting a data
decomposition. The rest of this paper presents the
data decomposition specifications in Fortran D, the
structure of a prototype Fortran D compiler, and
the design of the Fortran D programming environ-
ment. We conclude with a discussion of our vali-
dation strategy.

2 Fortran D

The data decomposition problem can be ap-
proached by considering the two levels of paral-
lelism in data-parallel applications. First, there is
the question of how arrays should be aligned with
respect to one another, both within and across ar-

ray dimensions. We call this the problem mapping
induced by the structure of the underlying com-
putation. It represents the minimal requirements
for reducing data movement for the program, and
is largely independent of any machine considera-
tions. The alignment of arrays in the program de-
pends on the natural fine-grain parallelism defined
by individual members of data arrays.

Second, there is the question of how arrays
should be distributed onto the actual parallel ma-
chine. We call this the machine mapping caused by
translating the problem onto the finite resources of
the machine. It is affected by the topology, com-
munication mechanisms, size of local memory, and
number of processors in the underlying machine.
The distribution of arrays in the program depends
on the coarse-grain parallelism defined by the phys-
ical parallel machine.

Fortran D is a version of Fortran that provides
data decomposition specifications for these two lev-
els of parallelism using DECOMPOSITION, ALIGN, and
DISTRIBUTE statements. A decomposition is an ab-
stract problem or index domain; it does not require
any storage. Each element of a decomposition rep-
resents a unit of computation. The DECOMPOSITION
statement declares the name, dimensionality, and
size of a decomposition for later use.

The ALIGN statement is used to map arrays onto
decompositions. Arrays mapped to the same de-
composition are automatically aligned with each
other. Alignment can take place either within or
across dimensions. The alignment of arrays to
decompositions is specified by placeholders in the
subscript expressions of both the array and decom-
position. In the example below,

REAL X(N,N)
DECOMPOSITION A(N,N)

ALIGN X(I,J) with A(J-2,I+3)

A is declared to be a two dimensional decomposi-
tion of size N x N. Array X is then aligned with
respect to A with the dimensions permuted and
offsets within each dimension.

After arrays have been aligned with a decom-
position, the DISTRIBUTE statement maps the de-
composition to the finite resources of the physical
machine. Distributions are specified by assigning
an independent attribute to each dimension of a
decomposition. Predefined attributes are BLOCK,

19

DECOMPOSITION
A(N,N)

REAL X(N,N)

ALIGN X(I,J)
with A(J-2,I+3)

hP2 P3

DISTRIBUTE

A(: ,BLOCK)

Pi
P2

P2

DISTRIBUTE

A(CYCLIC, :)

Figure 1: Fortran D Data Decomposition Specifications

CYCLIC, and BLOCK..CYCLIC. The symbol ":" marks
dimensions that are not distributed. Choosing the
distribution for a decomposition maps all arrays
aligned with the decomposition to the machine. In
the following example,

DECOMPOSITION A(N,N)

DISTRIBUTE A(:, BLOCK)

DISTRIBUTE A(CYCLIC,:)

distributing decomposition A by (:,BLOCK) results

in a column partition of arrays aligned with A.

Distributing A by (CYCLIC,:) partitions the rows
of A in a round-robin fashion among processors.

These sample data alignment and distributions are

shown in Figure 1.
Predefined regular data distributions can effec-

tively exploit regular data-parallelism. However,

irregular distributions and run-time processing is
required to manage the irregular data parallelism

found in many unstructured computations. In For-

tran D, irregular distributions may be specified
through an explicit user-defined function or data

array. In the example below,

INTEGER MAP(N)
DECOMPOSITION IRREG(N)
DISTRIBUTE IRREG (MAP)

elements of the decomposition IRREG(i) will be
mapped to the processor indicated by the array
MAP(i). Fortran D also supports dynamic data
decomposition; i.e., changing the alignment or dis-

tribution of a decomposition at any point in the
program.

We should note that our goal in designing For-
tran "D is not to support the most general data de-
compositions possible. Instead, our intent is to pro-
vide decompositions that are both powerful enough
to express data parallelism in scientific programs,
and simple enough to permit the compiler to pro-
duce efficient programs. Fortran D is a language
with semantics very similar to sequential Fortran.
As a result, it should be quite usable by computa-
tional scientists. In addition, we believe that our
two-phase strategy for specifying data decomposi-
tion is natural and conducive to writing modular
and portable code. Fortran D bears similarities to
both CM Fortran [31] and KALI [22]. The complete
language is described in detail elsewhere [8].

3 Fortran D Compiler

As we have stated previously, two major steps in
writing a data-parallel program are selecting a data
decomposition, and then using it to derive node
programs with explicit communications to access
nonlocal data. Manually inserting communications
is unquestionably the most time-consuming, te-
dious, non-portable, and error-prone step in par-
allel programming. Significant increases in source
code size are not only common but expected. A
major advantage of programming in Fortran D will
be the ability to utilize advanced compiler tech-
niques to automatically generate node programs
with explicit communication, based on the data de-
compositions specified in the program. The proto-
type compiler is being developed in the context of
the ParaScope parallel programming environment
[4], and will take advantage of the analysis and

20

C1h oo ond fk tr odifidsothty veyprcesomol

search analyze variables transform parallel estimate compile
C **mmication nal**s* s revels* all** ar***r*s** are**t : to ***the A
C *** KERNEL 1 HYDRO FRAGMENT

C **** **al segment ******fy.Accessesto ***t*e**z*ar*aym *b*e ***lol***r
C

C The loop bounds of k are modified so that every processor only
C assigns to Its local segment of array x. Since only processors
C 1 to 9 assign values to x, the translator generates the appropriate
C mask to ref lbct this.';

C Communication analysis reveals all y array reads are to the :

C local segment of y. Accesses to the z array may be local or

C non local. The compiler computes that processors 2 to 10 need

C to send 11 elements of the z array to the processor on their left.

C These- elements are placed 1 n a buffer and the csend call Is generated.H
C The compiler computes that processors i to 9 need to rer.ive 11
C elements of the z array from the processor to their right.
C The receive call is generated and the non local data is removed
C from the buffer and copied into the overlap area of the z array.

rin$proc = 1
max$proc = 9
if (mySclz .le. max$proc + 1 .and.. mySclz .ge. minSproc + 1) then

call bufferdata(z, 1, 1, 1i, r$buffer)
call csend(111, r$buffer, 11 * r$size, my$proc - 1, ypid())

endif
if (myScix * 188 .le. 980 .and. my$cix * 168 .ge. 1) then

call crecv(111, r$buffer, 11 * r$size)
call copy..data(z, 1, 181, 111, rSbuffer)
do 1 = 1, 1888

do k = 1, 188
x(k) = q + y(k) * (r * z(k + 18) + t * z(k + 1i))

endoo
enddo

endif

prey loop next loop prey dep next dep filter type delete

type src(_..) sink(bold) vector level block

Figure 2: Fortran D Compiler Output

transformation capabilities of the ParaScope Edi-
tor [19, 20].

The main goal of the Fortran D compiler is to

derive from the data decomposition a parallel node
program that minimizes load imbalance and com-
munication costs. Our approach is to convert For-

tran D programs into single-program, multiple-data

(SPMD) form with explicit message-passing that
executes directly on the nodes of the distributed-

memory machine. Our basic strategy is to parti-
tion the program using the owner computes rule,

where every processor only performs computation

on data it owns [5, 29, 34]. However, we will relax

the rule where it prevents the compiler from achiev-

ing good load balance or reducing communication

costs.
The Fortran D compiler bears similarities to

ARF [33], ASPAR [18], ID NOUVEAU [29], KALI
[22], MIMDIZER [13], and SUPERB [34]. The cur-
rent prototype generates code for a subset of the
decompositions allowed in Fortran D, namely those
with BLOCK distributions. Figure 2 depicts the out-
put of a Livermore loop kernel generated by the
Fortran D compiler.

3.1 Program Partitioning

The first phase of the compiler partitions the pro-
gram onto processors based on the data decompo-
sition. We define the iteration set of a reference R
on the local processor t, to be the set of loop itera-

tions that cause R to access data owned by t,. The

21

iteration set is calculated based on the alignment
and distribution specified in the Fortran D pro-
gram. According to the owner computes rule, the
set of loop iterations that t, must execute is the
union of the iteration sets for the left-hand sides
(ihs) of all the individual assignment statements
within the loop.

To partition the computation among processors,
we first reduce the loop bounds so that each pro-
cessor only executes iterations in its own set. With
multiple statements in the loop, the iteration set of
an individual statement may be a subset of the it-
eration set for that loop. For these statements we
also add guards based on membership tests for the
iteration set of the lhs to ensure that all assign-
ments are to local array elements.

3.2 Communication Introduction

Once the computation has been partitioned, the
Fortran D compiler must introduce communica-
tions for nonlocal data accesses to preserve the se-
mantics of the original program. This requires cal-
culating the data that must be sent or received by
each processor. We can calculate the send itera-
tion set for each right-hand side (rhs) reference as
its iteration set minus the iteration set of its lhs.
Similarly, the receive iteration set for each rhs is
the iteration set of its lhs minus its own iteration
set. These sets represent the iterations for which
data must be sent or received by t,. The Fortran D
compiler summarizes the array locations accessed
on the send or receive iterations using rectangular
or triangular regions known as regular sections [12];
they are used to generate calls to communication
primitives.

3.3 Communication Optimization

A naive approach for introducing communication
is to insert send and receive operations directly
preceding each reference causing a nonlocal data
access. This generates many small messages that
may prove inefficient due to communication over-
head. The Fortran D compiler will use data depen-
dence information to determine whether commu-
nication may be inserted at some outer loop, vec-
torizing messages by combining many small mes-
sages. The algorithm to calculate the appropriate
loop level for each message is described by Bala-
sundaram et al. and Gerndt [2, 10].

A major goal of the Fortran D compiler is to

aggressively optimize communications. We intend
to apply techniques proposed by Li and Chen to
recognize regular computation patterns that can

utilize collective communications primitives [24]. It
will be especially important to recognize reduction
operations. For regular communication patterns,
we plan to employ the collective communications
routines found in EXPRESS [27]. For unstructured
computations with irregular communications. we
will incorporate the PARTI primitives of Saltz et al.
[33].

The Fortran D compiler may utilize data decom-
position and dependence information to guide pro-
gram transformations that improve communication
patterns. We are considering the usefulness of sev-
eral transformations, particularly loop interchang-
ing, strip mining, loop distribution, and loop align-
ment. Replicating computations and processor-
specific dead code elimination will also be applied
to eliminate communication.

Communications may be further optimized by
considering interactions between all the loop nests
in the program. Intra- and interprocedural
dataflow analysis of array sections can show that
an assignment to a variable is live at a point in the
program if there are no intervening assignments to
that variable. This information may be used to
eliminate redundant messages. For instance, as-
sume that messages in previous loop nests have
already retrieved nonlocal elements for a given ar-
ray. If those values are live, messages to fetch those
values in succeeding loop nests may be eliminated.
Data from different arrays being sent to the same
processor may also be buffered together in one mes-
sage to reduce communication overhead.

The owner computes rule provides the basic
strategy of the Fortran D compiler. We may also
relax this rule, allowing processors to compute val-
ues for data they do not own. For instance, suppose
that multiple rhs of an assignment statement are
owned by a processor that is not the owner of the
lhs. Computing the result on the processor owning
the rhs and then sending the result to the owner of
the lhs could reduce the amount of data commu-
nicated. This optimization is a simple case of the
owner stores rule proposed by Balasundaram [1].

In particular, it may be desirable for the For-
tran D compiler to partition loops amongst pro-
cessors so that each loop iteration is executed on

22

a single processor, such as in KALI [22] and PARTI
[33]. This technique may improve communication
and provide greater control over load balance, es-
pecially for irregular computations. It also elimi-
nates the need for individual statement guards and
simplifies handling of control flow within the loop
body.

3.4 Data Decomposition Analysis

Fortran D provides dynamic data decomposition
by permitting ALIGN and DISTRIBUTE statements
to be inserted at any point in a program. This com-
plicates the job of the Fortran D compiler, since it
must know the decomposition of each array in or-
der to generate the proper guards and communica-
tion. We define reaching decompositions to be the
set of decomposition specifications that may reach
an array reference aligned with the decomposition;
it may be calculated in a manner similar to reach-
ing definitions. The Fortran D compiler will apply
both intra- and interprocedural analysis to calcu-
late reaching decompositions for each reference to a
distributed array. If multiple decompositions reach
a procedure, node splitting or run-time techniques
may be required to generate the proper code for
the program.

To permit a modular programming style, the ef-
fects of data decomposition specifications are lim-
ited to the scope of the enclosing procedure. How-
ever, procedures do inherit the decompositions of
their callers. These semantics require the com-
piler to insert calls to run-time data decomposition
routines to restore the original data decomposition
upon every procedure return. Since changing the
data decomposition may be. expensive, these calls
should be eliminated where possible.

We define live decompositions to be the set of
decomposition specifications that may reach some
array reference aligned with the decomposition; it
may be calculated in a manner similar to live vari-
ables. As with reaching decompositions, the For-
tran D compiler needs both intra- and interpro-
cedural analysis to calculate live decompositions
for each decomposition specification. Any data
decompositions determined not to be live may be
safely eliminated. Similar analysis may also hoist
dynamic data decompositions out of loops.

3.5 Run-time Support for Irregular
Computations

Many advanced algorithms for scientific applica-
tions are not amenable to the techniques described
in the previous section. Adaptive meshes, for ex-
ample, often have poor load balance or high com-
munication cost if static regular data distributions
are used. These algorithms require dynamic irreg-
ular data distributions. Other algorithms, such as
fast multipole algorithms, make heavy use of in-
dex arrays that the compiler cannot analyze. In
these cases, the communications analysis must be
performed at run-time.

The Fortran D project supports dynamic irreg-
ular distributions. The inspector/executor strat-
egy to generate efficient communications has been
adapted from KALI [22] and PARTi [25]. The in-
spector is a transformation of the original For-
tran D loop that builds a list of nonlocal elements,
known as the IN set, that will be received during
the execution of the loop. A global transpose oper-
ation is performed using collective communications
to calculate the set of data elements that must be
sent by a processor, known as the OUT set. The
executor uses the computed sets to control the ac-
tual communication. Performance results using the
PARTI primitives indicate that the inspector can
be implemented with acceptable overhead, partic-
ularly if the results are saved for future executions
of the original loop [33].

3.6 Storage Management

Once guards and communication have been cal-
culated, the Fortran D compiler must select and
manage storage for all nonlocal array references
received from other processors. There are several
different storage schemes, described below:

" Overlaps, developed by Gerndt, are expan-
sions of local array sections to accommodate
neighboring nonlocal elements [10]. They are
useful for programs with high locality of ref-
erence, but may waste storage when nonlocal
accesses are distant.

" Buffers are designed to overcome the contigu-
ous nature of overlaps. They are useful when
the nonlocal area is bounded in size, but not
near the local array section.

23

User Fortran Environment Fortran D Fortran D Iessage

Automatic Static

Data <-Performance

Partitioner Estimator

Training
Sets

Figure 3: Fortran D Parallel Programming System

" Hash tables are used when the set of accessed
nonlocal elements is sparse. This is the case
in many irregular computations. Hash tables
provide a quick lookup mechanism for arbi-
trary sets of nonlocal values [16].

Once the storage type for all nonlocal data is de-
termined, the compiler needs to analyze the space
required by the various storage structures and gen-
erate code so that nonlocal data is accessed from its
correct location. Storage management and other
parts of the Fortran D compiler are described in
more detail elsewhere [14, 15].

4 Fortran D Programming
Environment

Choosing a decomposition for the fundamental
data structures used in the program is a pivotal
step in developing data-parallel applications. Once
selected, the data decomposition usually com-
pletely determines the parallelism and data move-
ment in the resulting program. Unfortunately,
there are no existing tools to advise the program-
mer in making this important decision. To evaluate
a decomposition, the programmer must first insert
the decomposition in the program text, then com-
pile and run the resulting program to determine its
effectiveness. Comparing two data decompositions
thus requires implementing and running both ver-
sions of the program, a tedious task at best. The

process is prohibitively difficult without the assis-
tance of a compiler to automatically generate node
programs based on the data decomposition.

Several researchers have proposed techniques to
automatically derive data decompositions based on
simple machine models [17, 28, 30]. However, these
techniques are insufficient because the efficiency of
a given data decomposition is highly dependent on
both the actual node program generated by the
compiler and its performance on the parallel ma-
chine. "Optimal" data decompositions may prove
inferior because the compiler generates node pro-
grams with suboptimal communications or poor
load balance. Similarly, marginal data decompo-
sitions may perform well because the compiler is
able to utilize collective communication primitives
to exploit special hardware on the parallel machine.

What we need is a programming environment
that help,- the user to understand the effect of a
given data decomposition and program structure
on the efficiency of the compiler-generated code
running on a given target machine. The Fortran D
programming system, shown in Figure 3, provides
such an environment. The main components of
the environment are a static performance estima-
tor and an automatic data partitioner [2, 3].

Since the Fortran D programming system is built
on top of ParaScope, it also provides program anal-
ysis, transformation, and editing capabilities that

24

allow users to restructure their programs accord-
ing to a data-parallel programming style. Zima
and others at Vienna are working on a similar
tool to support data decomposition decisions us-
ing automatic techniques [7]. Gupta and Banerjee
propose automatic data decomposition techniques
based on assumptions about a proposed Parafrase-
2 distributed-memory compiler [11].

4.1 Static Performance Estimator

It is clearly impractical to use dynamic perfor-
mance information to choose between data decom-
positions in our programming environment. In-
stead, a static performance estimator is needed
that can accurately predict the performance of a
Fortran D program on the target machine. Also
required is a scheme that allows the compiler to as-
sess the costs of communication routines and com-
putations. The static performance estimator in
the Fortran D programming system caters to both
needs.

The performance estimator is not based on a
general theoretical model of distributed-memory
computers. Instead, it employs the notion of a
training set of kernel routines that measures the
cost of various computation and communication
patterns on the target machine. The results of
executing the training set on a parallel machine
are summarized and used to train the performance
estimator for that machine. By utilizing training
sets. the performance estimator achieves both ac-
curacy and portability across different machine ar-
chitectures. The resulting information may also be
used by the Fortran D compiler to guide commu-
nication optimizations.

The static performance estimator is divided into
two parts, a machine module and a compiler mod-
ule. The machine module predicts the performance
of a node program containing explicit communica-
tions. It uses a machine-level training set written
in message-passing Fortran. The training set con-
tains individual computation and communication
patterns that are timed on the target machine for
different numbers of processors and data sizes. To
estimate the performance of a node program, the

machine module can simply look up results for each
computation and communication pattern encoun-
tered.

The compiler module forms the second part of

the static performance estimator. It assists the
user in selecting data decompositions by statically
predicting the performance of a program for a
set of data decompositions. The compiler mod-
ule employs a compiler-level training set written in
Fortran D that consists of program kernels such
as stencil computations and matrix multiplication.
The training set is converted into message-passing
Fortran using the Fortran D compiler and executed
on the target machine for different data decompo-
sitions, numbers of processors, and array sizes. Es-
timating the performance of a Fortran D program
then requires matching computations in the pro-
gram with kernels from the training set.

The compier-level training set also provides a
natural way to respond to changes in the Fortran D
compiler as well as the machine. We simply recom-
pile the training set with the new compiler and
execute the resulting programs to reinitialize the
compiler module for the performance estimator.

Since it is not possible to incorporate all possible
computation patterns in the compiler-level train-
ing set, the performance estimator will encounter
code fragments that cannot be matched with ex-
isting kernels. To estimate the performance of
these codes, the compiler module must rely on the
machine-level training set. We plan to incorporate
elements of the Fortran D compiler in the perfor-
mance estimator so that it can mimic the com-
pilation process. The compiler module can thus
convert any unrecognized Fortran D program frag-
ment into an equivalent node program, and invoke
the machine module to estimate its performance.

Note that even though it is desirable, to assist
automatic data decomposition the static perfor-
mance estimator does not need to predict the ab-
solute performance of a given data decomposition.
Instead, the it only needs to accurately predict
the performance relative to other data decompo-
sitions. A prototype of the machine module has

been implemented for a common class of loosely
synchronous scientific problems[9]. It predicts the
performance of a node program using EXPRESS
communication routines for different numbers of
processors and data sizes [27]. The prototype per-
formance estimator has proved quite precise, es-
pecially in predicting the relative performances of
different data decompositions [3].

A screen snapshot during a typical performance

25

bParaScope Editor perfideeo/gtests/rb.coh.e64.e

search analyze variables transform parallel estimate compile --
C

(do 5 k : d1cyclesocyc
C Compute values of RED points
C Select program segment to be analyzed by clicking

do 21 1 1, aysize, 2 on the boundary stets defining the segment
do 48 J 2, uo, 2

val(1): a ' (val(1, 3 - 1) " va
28 continue IFirst stet -> [1168] do 5 k 1, cycles"
21 continue

do 31 1 2, aysize, 2 dLast strt -c
do 38 j 2, uo, 2

val(1, j) a '(val(i, - 1) vav
38ucontinueou Estimate Performance Clear Selections
31 continue
C Execution time estimate of segment: 8.88e-82 secs
C Communicate with neighbors % of time spent in Counication 76.62 %
C

call cos(val, se, left, right)
C

Compute values of LACK points

do 41 1 r 1, bysime, 2
do 48r(= 2, us, 2

val(1, j) : a ' (val(1, r - 1) + val(i -1, j) "vval(,) , 1) 4val(m1, rj))i
48 continue

4 ot51 (1in va2, iysi)e, r2 v Editing perfdeo/tests/rb.col.64.16.f

dovtpt v () va2(val(1, j - 1 save edit view* * search file

8 coru4 subroutine cos(val, se, left, right)
C1 cniu integer me, left, right!

C Communicate with neighbors ntegrl, ub, c'.aplb, olapub, cysize, sysize4

Calcs~a s etrgt parameter (lb : 1, ub : 4, olaplb : 9, olapub : 5)
call omm~al, e, let, rght)parameter (sysi~a : 64, sysize4 = 4) i

5 continue reale4 val(1:aysize, olaplb:olapub)
-1.4-- . common /xpress/ nocare, norder, nonoee, host, i a nod, a lprc

C
C Exchange boundary columns with left and right neighbors

prey loop next loop prey dep next de C0 rc = kxvwr1(val(lb, lb), 4, 4, cysize, lef t, 1)
type src(..__) sink(bold) v rc : kxvrea(val(lb, olapub), 4, 4, sysi2e, right, 1)

rc = kxvr(val(lb, ub), 4, 4, .ysize, right, 2)

Output v l1.) val1. 1) rc = kxvrea(val(lb, olaplb), 4, 4, mys12e, left, 2)

Anti val(1, 3) val(1,)) (return

true val(1, J) val(1, 3) (end
Output val(i, J) val(1, J)1444, .: -

Figure 4: Static Performance Estimator

estimation session is shown in Figure 4. The user
can select a program segment such as a do loop
and invoke the performance estimator by clicking

on the [Estimate Performance button. The pro-
totype responds with an execution time estimate of
the selected segment on the target machine, as well

as an estimate of the communication time repre-

sented as a percentage of the total execution time.

This allows the effectiveness of a data partitioning
strategy to be evaluated on any part of the node

program.

4.2 Automatic Data Partitioner

The goal of the automatic data partitioner is to
assist the user in choosing a. good data decompo-
sition. It utilizes training sets and the static per-

formance estimator to select data partitions that
are efficient for both the compiler and parallel ma-
chine.

The automatic data partitioner may be applied
to an entire program or on specific program frag-
ments. When invoked on an entire program, it
automatically selects data decompositions without
further user interaction. We believe that for regu-
lar loosely synchronous problems written in a data-
parallel programming style, the automatic data
partitioner can determine an efficient partitioning
scheme without user interaction.

Alternatively, the automatic data partitioner
may be used as a starting point for choosing a
good data decomposition. When invoked interac-

26

tively for specific program segments, it responds
with a list of the best decomposition schemes, to-
gether with their static performance estimates. If
the user is not satisfied with the predicted overall

performance, he or she can use the performance es-
timator to locate communication and computation
intensive program segments. The Fortran D envi-
ronment can then advise the user about the effects
of program changes on the choice of a good data

decomposition.
The analysis performed by the automatic data

partitioner divides the program into separate com-
putation phases. The intra-phase decomposition

problem consists of determining a set of good data

decompositions and their performance for each in-
dividual phase. The data partitioner first tries to

match the phase or parts of the phase with com-
putation patterns in the compiler training set. If a
match is found, it returns the set of decompositions
with the best measured performance as recorded in
the compiler training set. If no match is found, the
data partitioner must perform alignment and dis-

tribution analysis on the phase. The resulting so-
lution may be less accurate since the effects of the
Fortran D compiler and target machine can only
be estimated.

Alignment analysis is used to prune the search
space of possible arrays alignments by selecting

only those alignments that minimize data move-
ment. Alignment analysis is largely machine-
independent; it is performed by analyzing the array
access patterns of computations in the phase. We

intend to build on the inter-dimensional and intra-

dimensional alignment techniques of Li and Chen
[23] and Knobe et al. [21].

Distribution analysis follows alignment analysis.
It applies heuristics to prune unprofitable choices

in the search space of possible distributions. The
efficiency of a data distribution is determined by
machine-dependent aspects such as topology, num-
ber of processors, and communication costs. The
automatic data partitioner uses the final set of
alignments and distributions to generate a set of
reasonable data decomposition schemes. In the
worst case, the set of decompositions is the cross

product of the alignment and distribution sets. Fi-
nally, the static performance estimator is invoked
to select the set of data decompositions with the
best predicted performance.

After computing data decompositions for each
phase, the automatic data partitioner must solve
the inter-phase decomposition problem of merging
individual data decompositions. It also determines
the profitability of realigning or redistributing ar-
rays between computational phases. Interprocedu-
ral analysis will be used to merge the decomposi-
tion schemes of computation phases across proce-
dure boundaries. The resulting decompositions for
the entire program and their performance are then
presented to the user.

5 Validation Strategy

We plan to establish whether our compilation and
automatic data partitioning schemes for Fortran D

can achieve acceptable performance on a variety of
parallel architectures. We will use a benchmark
suite being developed by Geoffrey Fox at Syracuse
that consists of a collection of Fortran programs.
Each program in the suite will have five versions:

(vi) the original Fortran 77 program,

(v2) the best hand-coded message-passing version
of the Fortran program,

("3) a "nearby" Fortran 77 program,

(v4) a Fortran D version of the nearby program,
and

(v5) a Fortran 90 version of the program.

The "nearby" version of the program will utilize
the same basic algorithm as the message-passing

program, except that all explicit message-passing
and blocking of loops in the program are removed.

The Fortrani D version of the program consists of
the nearby version plus appropriate data decom-
position specifications.

To validate the Fortran D compiler, we will
compare the running time of the best hand-coded
message-passing version cf the program (v2) with
the output of the Fortran D compiler for the For-
tran D version of the nearby program (v4). To val-
idate the automatic data partitioner, we will use it
to generate a Fortran D program from the nearby
Fortran program (v3). The result will be compiled
by the Fortran D compiler and its running time
compared with that of the compiled version of the
hand-generated Fortran D program (v4).

The purpose of the validation program suite is
to provide a fair test of the prototype compiler and

27

data partitioner. We do not expect these tools to
perform high-level algorithm changes. However, we
will test their ability to analyze and optimize whole
programs based on both machine-independent is-
sues such as the structure of the computation, as
well as machine-dependent issues such as the num-
ber and interconnection of processors in the paral-
lel machine. Our validation strategy will test three
key parts of the Fortran D programming system:
the limits of our machine-independent Fortran D
programming model, the efficiency and ability of
our compiler technology, and the effectiveness of
our automatic data partitioning and performance
estimation techniques.

6 Conclusions

Scientific programmers need a simple, machine-
independent programming model that can be ef-
ficiently mapped to large-scale parallel machines.
We believe that Fortran D, a version of Fortran
enhanced with data decompositions, provides such
a portable data-parallel programming model. Its
success will depend on the compiler and environ-
ment support provided by the Fortran D program-
ming system.

The Fortran D compiler includes sophisticated
intraprocedural and interprocedural analyses, dy-
namic data decomposition, program transforma-
tion. communication optimization, and support for
both regular and irregular problems. Though sig-
nificant work remains to implement the optimiza-
tions presented in this paper, based on preliminary
experiments we expect the Fortran D compiler to
generate efficient code for a large class of -data-
parallel programs with only minimal user effort.

The Fortran D environment is distinguished by
its ability to accurately estimate the performance
of programs using collective communication on real
parallel machines, as well automatically choose
data partitions that account for the characteristics
of both the compiler-generated code and underly-
ing machine. It will assist the user in developing
efficient Fortran D programs. Overall, we believe
that the Fortran D programming system is a pow-
erful and useful tool that will significantly ease the
task of writing portable data-parallel programs.

7 Acknowledgements

The authors wish to thank Vasanth Bala,
Geoffrey Fox, and Marina Kalem for inspiring
many of the ideas in this work. We are also grate-
ful to the ParaScope research group for providing
the underlying software infrastructure for the For-
tran D programming system.

References

[1] V. Balasundaram. Translating control parallelism
to data parallelism. In Proceedings of the Fifth
SIAM Conference on Parallel Processing for Sci-
entific Compv'.:g, Houston, TX, March 1991.

[2] V. Balasundaram, G. Fox, K. Kennedy, and
U. Kremer. An interactive environment for data
partitioning and distribution. In Proceedings of
the 5th Distributed Memory Computing Confer-
ence, Charleston. SC, April 1990.

[3] V. Balasundaram, G. Fox, K. Kennedy, and
U. Kremer. A static performance estimator to
guide data partitioning decisions. In Proceed-
ings of the Third ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming,
Williamsburg, VA, April 1991.

[4] D. Callahan, K. Cooper, R. Hood, K. Kennedy,
and L. Torczon. ParaScope: A parallel program-
ming environment. The International Journal of
Supercomputer Applications, 2(4):84-99, Winter
1988.

[5] D. Callahan and K. Kennedy. Compiling programs
for distributed-memory multiprocessors. Journal
of Supercomputing, 2:151-169, October 1988.

[6] D. Callahan, K. Kennedy, and U. Kremer. A dy-
namic study of vectorization in PFC. Technical
Report TR89-97, Dept. of Computer Science, Rice
University, July 1989.

[7] B. Chapman, H. Herbeck, and H. Zima. Auto-
matic support for data distribution. In Proceedings
of the 6th Distributed Memory Computing Confer-
ence, Portland, OR, April 1991.

[8] G. Fox, S. Hiranandani, K. Kennedy, C. Koelbel,
U. Kremer, C. Tseng, and M. Wu. Fortran D lan-
guage specification. Technical Report TR90-141,
Dept. of Computer Science, Rice University, De-
cember 1990.

[9] G. Fox, M. Johnson, G. Lyzenga, S. Otto,
J. Salmon, and D. Walker. Solving Problems on
Concurrent Processors, volume 1. Prentice-Hall,
Englewood Cliffs, NJ, 1988.

[10] M. Gerndt. Updating distributed variables in local
computations. Concurrency-Practice & Erperi-

28

ence, 2(3):171-193, September 1990.

[11] M. Gupta and P. Banerjee. Automatic data parti-
tioning on distributed memory multiprocessors. In
Proceedings of the 6th Distributed Memory Com-
puting Conference, Portland, OR, April 1991.

[12] P. Havlak and K. Kennedy. An implementation
of interprocedural bounded regular section analy-
sis. IEEE Transactions on Parallel and Distributed
Systems, 2(3):350-360, July 1991.

[13] R. Hill. MIMDizer: A new tool for parallelization.
Supercomputing Review, 3(4):26-28, April 1990.

[14] S. Hiranandani, K. Kennedy, and C. Tseng.
Compiler optimizations for Fortran D on MIMD
distributed-memory machines. In Proceedings of
Supercomputing '91, Albuquerque, NM, November
1991.

[15] S. Hiranandani, K. Kennedy, and C. Tseng. Com-
piler support for machine-independent parallel pro-
gramming in Fortran D. Technical Report TR90-
149, Dept. of Computer Science, Rice University,
January 1991. To appear in J. Saltz and P. Mehro-
tra, editors, Compilers and Runtime Software for
Scalable Multiprocessors, Elsevier, 1991.

[16] S. Hiranandani, J. Saltz, P. Mehrotra, and
H. Berryman. Performance of hashed cache data
migration schemes on multicomputers. Journal of
Parallel and Distributed Computing, 12(4), August
1991.

[17] D. Budak and S. Abraham. Compiler techniques
for data partitioning of sequentially iterated paral-
lel loops. In Proceedings of the 1990 ACM Interna-
tional Conference on Supercomputing, Amsterdam,
The Netherlands, June 1990.

[18] K. Ikudome, G. Fox, A. Kolawa, and J. Flower.
An automatic and symbolic parallelization system
for distributed memory parallel compute s. In Pro-
ceedings of the 5th Distributed Memory Computing
Conference, Charleston, SC, April 1990.

[19] K. Kennedy, K. S. McKinley, and C. Tseng. Analy-
sis and transformation in the ParaScope Editor. In
Proceedings of the 1991 ACM International Con-
ference on Supercomputing, Cologne, Germany,
June 1991.

[20] K. Kennedy, K. S. McKinley, and C. Tseng. Inter-
active parallel programming using the ParaScope
Editor. IEEE Transactions on Parallel and Dis-
tributed Systems, 2(3):329-341, July 1991.

[21] K. Knobe, J. Lukas, and G. Steele, Jr. Data op-
timization: Allocation of arrays to reduce commu-
nication on SI MD machines. Journal of Parallel
and Distributed Computing, 8(2):102-118, Febru-
ary 1990.

[22] C. Koelbel and P. Mehrotra. Compiling global
name-space parallel loops for distributed execu-
tion. IEEE Transactions on Parallel and Dis-
tributed Systems, 2(4), October 1991.

[23] J. Li and M. Chen. Index domain alignment:
Minimizing cost of cross-referencing between dis-
tributed arrays. In Frontiers90: The 3rd Sympo-
sium on the Frontiers of Massively Parallel Com-
putation, College Park, MD, October 1990.

[24] J. Li and M. Chen. Compiling communication-
efficient programs for massively parallel machines.
IEEE Transactions on Parallel and Distributed
Systems, 2(3):361-376, July 1991.

[25] R. Mirchandaney, J. Saltz, R. Smith, D. Nicol, and
K. Crowley. Principles of runtime support for par-
allel processors. In Proceedings of the Second Inter-
national Conference on Supercomputing, St. Malo,
France, July 1988.

[26] C. Pancake and D. Bergmark. Do parallel lan-
guages respond to the needs of scientific program-
mers? IEEE Computer, 23(12):13-23, December
1990.

[27] Parasoft Corporation. Express User's Manual,
1989.

[28] J. Ramanujam and P. Sadayappan. A methodology
for parallelizing programs for multicomputers and
complex memory multiprocessors. In Proceedings
of Supercomputing '89, Reno, NV, November 1989.

[29] A. Rogers and K. Pingali. Process decomposition
through locality of reference. In Proceedings of the
SIGPLAN '89 Conference on Program Language
Design and Implementation, Portland, OR, June
1989.

[30] L. Snyder and D. Socha. An algorithm produc-
ing balanced partitionings of data arrays. In Pro-
ceedings of the 5'h Distributed Memory Computing
Conference, Charleston, SC, April 1990.

[31] Thinking Machines Corporation, Cambridge, MA.
CM Fortran Reference Manual, version 5.2-0.6 edi-
tion, September 1989.

[32] M. J. Wolfe. Semi-automatic domain decomposi-
tion. In Proceedings of the 4th Conference on Hy-
percube Concurrent Computers and Applications,
Monterey, CA, March 1989.

[33] J. Wu, J. Saltz, S. Hiranandani, and H. Berryman.
Runtime compilation methods for multicomputers.
In Proceedings of the 1991 International Confer-
ence on Parallel Processing, St. Charles, IL, Au-
gust 1991.

[34] H. Zima, H.-J. Bast, and M. Gerndt. SUPERB: A
tool for semi-automatic MIMD/SIMD paralleliza-
tion. Parallel Computing, 6:1-18, 1988.

29

OSCAR FORTRAN COMPILER

H. Kasahara, H. Honda, K. Aida, M. Okamoto and S. Narita
Dept. of Information and Computer Sciences, Waseda University

3-4-1 Ohkubo Shinjuku-ku, Tokyo, 169, Japan. Tel. 03-3209-6323, Fax. 03-3232-3594
E-mail: kasahara@cfi.waseda.ac.jp

Abstract OSCAR FORTRAN compiler has been developed for a shared memory multiprocessor system named
OSCAR (Qptimally.g.Sheduled Advanced Multiprocessor.). The compiler hierarchically exploits coarse grain paral-
lelism among loops, subroutines and basic blocks, medium grain parallelism among loop-iterations and near fine grain
parallelism among statements. The coarse grain parallelism is automatically detected in the form ofearliest executable
conditions of the coarse grain tasks, or the macro-tasks. The earliest executable conditions are obtained by a unified
control dependence and data dependence analysis. The macrotasks are dynamically assigned to processor clusters by
a scheduling routine generated by the compiler. A macrotask composed of a Do-all or Do-across loop, which is
assigned onto a processor cluster, is hierarchically processed in parallel in the medium grain by processors inside the
processor cluster. A macrotask composed of a sequential loop or a basic block on a processor cluster is also processed
in parallel in the near line grain by using static scheduling. A prototype compiler has been implemented on OSCAR
having sixteen RISC processors and its usefulness has been confirmed on the system.

Key Words: Macro-dataflow, Dynamic scheduling supported by compiler, Earliest executable conditions, Near fine
grain parallel processing, Static scheduling, Multi-grain parallel processing

1. INTRODUCTION

In parallel processing of FORTRAN programs on
shared memory multiprocessor systems, the Do-all and
the Do-across [4][8][10] has widely been used. Thanks to
strong data dependency analysis [213]14] and program
restructuring techniques [41191, many types of Do-loops
can be concurrentized.

There still exist, however, sequential loops that can not
be concurrentized efficiently because of loop carrying
dependencies and conditional branches. Also, fine grain
parallelism inside a basic block or coarse grain parallel-
ism among loops, subroutines and basic blocks has not
effectively been exploited on multiprocessor systems.

Therefore, to improve the effective performance of
multiprocesse: systems further, it is important to exploit
the coarse grain parallelism am~d the fine grain parallelism
as well as the medium grain parallelism among iterations.
The coarse grain parallel processing on a hierarchical
multiprocessor system is also called the macro-dataflow
computation [5J-[7] that has not been realized yet on an
actual multiprocessor system.

In the fine grain parallel processing on multiprocessor
systems [30][33], an instruction level grain, which has been
used by VLIW processors [12]-[15] and superscalar pro-

cessors [17], seems too fine compared with the data trans-
fer overhead among processors. Therefore, the near fine
grain parallelism among statements has been exploited
with the use of a static scheduling algorithm considering
data transfer overhead [30]. Also, it needs architectural
supports for efficient synchronization [29] and data trans-
fer [30]. However, the parallel processing using the static
scheduling [12]-[14] generally has a problem to cope with
run-time uncertainties.

Considering the above facts, OSCAR compiler has
adopted a multi-grain parallel processing scheme [16]
that effectively combines the macro-dataflow computa-
tion, the loop concurrentization and the near fine grain
processing. In the scheme, macrotasks are dynamically
scheduled onto processor clusters to cope with the run-
time uncertainties caused by conditional branches. A
macrotask assigned to a processor cluster is hierarchi-
cally processed by using the loop concurrentization, the
near fine grain parallel processing, or the macro-datatlow
computation.

2. MULTI-GRAIN
COMPILATION SCHEME

OSCAR compiler adopts the multi-grain compilation
scheme. This section briefly describes compilation

30

RB1

BB2

A. B.

RB3 RB4

(a)An example of a basic block

RB1 B%2B

BB2A RB3 RB4

(b)Possible parallelism obtained from
basic-block-decomposition

having disjoint task graphs
Fig.1 BPAs generated by basic block decomposition.

schemes for the macro-dataflow and the near fine grain
parallel processing because the well-known compilation
schemes [4][8]-[10][20][34] can be used for the loop con-
currentization.

2.1 Compilation Scheme for Macro-dataflow [33]
The macro-dataflow compilation scheme mainly con-

sists of the four steps, namely, generation of macrotasks,
analysis of control-flow and data-dependence among the
macrotasks, extraction of parallelism among macrotasks,
and generation of dynamic scheduling routine.
2.1.1 Generation of macrotasks

A FORTRAN program is decomposed into
macrotasks that are assigned to processor cluster at run-
time. Then, macrotasks should have relatively large pro-
cessing time compared with dynamic scheduling
overhead and data transfer overhead among macrotasks.
The compiler generates three types of macrotasks,
namely, a Block of Pseudo Assignment statements
(BPA), a Repetition Block (R B) and a Subroutine Block
(SB).

A BPA is usually defined as a basic clock (BB) [1].
However, it is sometimes defined as a part of a basic block
or a block composed of multiple basic blocks.

Decomposition of a basic block into independent
blocks, or BPAs, applied to extract more parallelism
among macrotasks. For example, in Fig. 1(a), BR2 in-
cludes two disjoint parts, such as, a post-processing part
for a preceding Do-loop, or RB1, and a pre-processing
part for succeeding Do-loops, namely R B3 and R B4.
Since the two parts are disjoint, BB2 can be decomposed
into BB2A and BB2B as shown in Fig.1(b). By this de-
composition, a group composed of RBI and BB2A and
another group composed of BB2B, RB3 and RB4 can be
processed in parallel.

B BI -Data dependence edge
--- Control flow edge

13132 BB 3

BB4 BB5 BB6 BB7

558 RB9 RB1 31311 12

(a) A flow graph with several small basic blocks (BBs)

BPA BPA
BB2 BB3

.......--- .----- ---- .------ ..
............... A pseudo
A pseudo statement
4tatementB6 766 567

BB 4 BB 5

B8 \BB11 BB12

RAB9 [RB10J

(b) BPAs generated by fusing small BBs
Fig.2 BPAs generated by basic block fusion.

31

BB1t

Fusion of small basic blocks into a BPA is used to
reduce dynamic scheduling overhead. For example, if
BB4 and BB5 in a flow graph of Fig. 2(a) are small basic
blocks having few statements, BB4 and BB5 are fused into
a conditional banch statement shown as a small circle
inside BB2. The conditional statement containing state-
ment inside BB4 and BB5 is treated as a pseudo statement
as shown in Fig.2(b). Furthermore, BB8 is fused into the
block containing BB2, BB4 and BB5 if BB8 is data depen-
dent on BB4 and BB5 as Fig. 2(a). The block generated
by the basic block fusion is called BPA.

A RB is a Do loop or a loop generated by a backward
branch, namely, an outermost natural loop [1]. RB can
be easily defined in reducible flow graphs [6] and in
irreducible flow graphs by copying code [6].

The RB can be hierarchically decomposed into sub-
macrotasks when the loop concurrentization and the near
fine grain parallel processing can not be applied effi-
ciently to the RB. The sub-macrotasks are dynamically
scheduled onto processors inside a processor cluster at
run-time. In the decomposition of RB into sub-
macrotasks, it is useful for exploiting more parallelism
to structure overlapped loops by copying code [27].

As to subroutines, the in-line expansion is applied as
much as possible taking code length into account. Sub-
routines for which the in-line expansion technique can
not efficiently be applied are defined as SBs. To fully
exploit parallelism among SBs and the other macrotasks
in a flow graph, strong inter-procedural analysis tech-
niques are required [28] though the inter-procedural
analysis itself is beyond the scope of this paper. SBscan
also be hierarchically decomposed into sub-macrotasks
as well as RBs.
2.1.2 Representation of control-flow and data depen-
dence among macrotasks by macroflow graph
(MFG)

A macroflow graph explicitly represents both control
flow and data dependencies among macrotasks. Fig. 3
shows an example of a macroflow graph.

In this macroflow graph, nodes represent
macrotasks, such as BPAs, RBs and SBs. Dotted edges
represent control flow. Solid edges represent data de-
pendencies among macrotasks. Small circles inside
nodes represent conditional branch statements inside
macrotasks. In this graph, directions of the edges are
assumed to be downward though arrows are omitted.
MFG is a directed acyclic graph because all hack-edges
are contained in RBs.
2.1.3 Extraction of parallelism among macrotasks

The MFG explicitly represents the control flow and
data dependencies among macrotasks though it does
not show any parallelism among macrotasks. Gener-
ally, the control dependence graph, or the program
dependence graph [26], represents maximum parallel-
ism if there are not data dependencies among
macrotasks [25]. In practice, there exist, however, data
dependencies among macrotasks. Therefore, to extract
parallelism among macrotasks from a macroflow graph,

the control dependencies and the data dependencies
should be analyzed in a unified manner.

In this paper, an earliest executable condition of each
macrotask [31][36] is used to show the maximum parallel-
ism among macrotasks considering control dependencies
and data dependencies. The earliest executable condi-
tion of a macrotask i, MTi, is a condition on which MTi
may begin its execution earliest.

For example, an earliest executable condition of MT6,
which is control-dependent on MTi and on MT2 and is
data-dependent on MT3, is:
MT3 completes execution OR MT2 branches to MT4.

Here, "MT3 completes execution" means to satisfy the
data dependence of MT6 on MT3 because the following
conditions for macro-dataflow execution are assumed in
this paper

Daa Dependency
......Control flow

I SPA0 Coditional branch

SPA

2 SPA 3 A RS

4 SPA

%

S B MS+" / /

IS SP'A 7 RD

5 SPA K.

ti~ 9 SPA h0R

11 SPA

12 SPA
t3 K

14 -

\ND

Lock of Psuedo
Awlgnmenl Slalements

Repetition Slock

l ~b~l ~-

Fig.3 A macro-flow graph.

TABLE I Ealiest Executable Conditions of Macrotasks

3.(

59 (4AI 4 OR (1) 36 30 (n2)4

91 (H)

12 111 ANI { 9 O0 (8))13 11 OR 11

32

1) If macrotask i (MLT) is data-dependent on
macrotask j (MTj), MTi can not begin execution before
MTj finishes execution.

2) A conditional branch statement inside a macrotask
may be executed as soon as data dependencies of the
branch statement are satisfied. That is because state-
ments inside a macrotask are processed in parallel by
processors inside a processor cluster. In other words,
MTi, which is control-dependent on MTj, can begin exe-
cution as soon as the branch direction is determined even
if MTj has not completed execution.

The above earliest executable condition of MT6 rep-
resents the simplest form of the condition [31][33]. An
original form of the condition of MTi [31][33] can be
represented in the following;
(MTj, on which MTi is control dependent, branches to
MTi)
AND

(Every macrotask on which MTi is data dependent, MTk:
0 k< INI, completes execution OR it is determined that
MTk is not be executed).

For example, the original form of the earliest execut-
able condition of MT6 is:
(MT i branches to MT3 OR MT2 branches to MT4)
AND
(MT3 completes execution OR MTi, on which MT3 is
control-dependent, branches to MT2).

The first partial condition before AND represents an
earliest executable condition determined by the control
dependencies. The second partial condition after AND
represents an earliest exetutable condition to satisfy the
data dependence. The second partial condition means
that MT6 may begin execution after MT3 completes exe-
cution or after it is determined that MT3 is not executed.
In the condition, the execution of MT3 means that MTi
has branched to MT3 and the execution of MT2 means

----...........

..

]

12
Data dependency
Extended control dependency

O Conditional branch 13
OR

- AND 14
> Original control fow

Fig.4 A macrotask graph.

that MTi has branched to MT2. Therefore, this condition
is redundant and its simplest form is:
MT3 completes execution OR MT2 branches to MT4.

The simple earliest executable conditions of
macrotasks on Fig.3, which are given by OSCAR com-
piler automatically [31], are shown in Table 1. In the
table, the earliest executable condition of MTI2 repre-
sented by

1112AND{ 9OR (8)1o)
means that the condition is:
MTii branches to MT12 and completes execution
AND
(MT9 completes execution OR MTs branches to MTio.)

The simplest condition is important to reduce dy-
namic scheduling overhead.

Girkar and Polychronopoulos [35] proposed another
algorithm to obtain the earliest executable conditions
based on the original research [31]. They solved a simpli-
fied problem to obtain the earliest executable conditions
by assuming a conditional branch inside a macrotask is
executed in the end of the macrotask.

The earliest executable conditions of MTs are repre-
sented by a directed acyclic graph named a marc'ask
graph [31][33][36], or MTG, as shown in Fig. 4. In MTG,
nodes represent macrotasks. Dotted edges represent ex-
tended control-dependencies. Solid edges represent
data-dependencies.

The extended control dependence edges are classified
into two types of edges, namely ordinary control depen-
dence edges and co-control dependence edges. The co-
control dependence edges represent conditions on which
data dependence predecessor of MT, namely MTk men-
tioned before on which MT is data dependent, is not be
executed 1311.

Also, a data dependence edge, or a solid edge, origi-
nating from a small circle has two meanings, namely, an
extended control dependence edge and a data depen-
dence edge. Arcs connecting edges at their tails or heads
have two different meanings. A solid arc represents that
edges connected by the arc are in AND relationship. A
dotted arc represents that edges connected by the arc are
in OR relationship. Small circles inside nodes represent
conditional branch statements.

In the MTG, the directions of the edges are also
assumed to be downward though most arrows are omit-
ted. Edges with arrows show that the edges are the orig-
inal conditional flow edges that originate from the small
circles in the MFG.
2.1.4 Generation of dynamic scheduling routine

In the macro-dataflow computation, the macrotasks
are dynamically scheduled to processor clusters (PCs) at
run-time to cope with runtime uncertainties, such as,
conditional branches among macrotasks and a variation
of macrotask execution time. The use of dynamic sched-
uling [20][22] for coarse grain tasks keeps the relative
scheduling overhead small. Furthermore, the dynamic
scheduling in this scheme is performed not by OS calls
like in popular multiprocessor systems but by a special
scheduling routine generated by the compiler.

33

In other words, the compiler generates an efficient
dynamic scheduling code exclusively for each FOR-
TRAN program based on the earliest executable condi-
tions, or the macrotask graph. The scheduling routine is
executed by a processor clement.

Dynamic-CP algorithm, which is a dynamic scheduling
algorithm using critical path length [18], is employed
taking into consideration the scheduling overhead and
quality of the generated schedule.

2.2 Medium Grain Parallel Processing
Macrotasks are assigned to processor clusters (PCs)

dynamically as mentioned in the previous section. If a
macrotask assigned to a PC is a Do-all loop, the
macrotask is processed in the medium grain, or iteration
level grain, by processors inside the PC. For the Do-all,
several dynamic scheduling schemes, such as the self
scheduling, the chunk scheduling and the guided self
scheduling, have been proposed [10][20]. On OSCAR,
however, a simple static scheduling scheme is used be-
cause OSCAR does not have a hardware support for the
dynamic iteration scheduling.

If a macrotask assigned to a PC is a loop having data
dependencies among iterations, the compiler first tries to
apply the Do-across with restructuring to minimize the
synchronization overhead [81191. Next, the compiler com-
pares an estimated processing time by the Do-across and
by the near fine grain parallel processing of the loop body
mentioned in section 2.3. If the processing time by the
Do-across is shorter than the one by the near fine grain
processing, the compiler generates a machine code for
the Do-across.

2.3 Near Fine Grain Parallel Processing [31][33]
A BPA is decomposed into the near fine grain tasks

1311, each of which consists of a statement, and processed
in parallel by processors inside a PC.
2.3.1 Generation of tasks and task graph

To efficiently process a BPA in parallel, computation
in the BPA must be decomposed into tasks in such a way

<< LU Decomposition >>
l) u = a12 /111
2) u2 = "s/22
3) u = 34/133
4)1 4 =52 U24
5) u5 =a45 /1444
6)I55 = a55-154 «U4 5

<< Forward Substitution >>
7) ,
8

) y2

9) b510) 3
11) y4
12) b 513) y 5

b)
b2
b)5
b3
n4

1b5

/ 122
- 152 #32

133
/ 144
- 154 *y.4
/ 155

<<Backward Substitution >>
14)x 4 = y4 - U 45 * 35
15)x 3 = y3 - U 34 * x4
16)x 2 = y2 - U24 4
17)x =y - u 1 2 *x2

Fig.5 An example of near fine grain tasks.

that parallelism is fully exploited and overhead related
with data transfer and synchronization is kept small.

In the proposed scheme, the statement level granular-
ity is chosen as the finest granularity for OSCAR taking
into account OSCAR's processing capability and data
transfer capability.

Fig. 5 shows an example of statement level tasks, or
near fine grain tasks, generated for a basic block that
solves a sparse matrix [37]. A large basic block having
computational pattern like Fig.5 is generated by the sym-
bolic generation technique [32] that has been used in the
electronic circuit simulator like SPICE.

Among the generated tasks, there are data dependen-
cies [2]-[4]. The data dependencies, or precedence con-
straints, can be represented by arcs in a task graph
[18][23] as shown in Fig.6, in which each task corresponds
to a node. In Fig. 6, figures inside a node circle represent
task number, i, and those beside it for a task processing
time on a PE, ti. An edge directed from node N toward
Nj represents partially ordered constraint that task T
precedes task Tj. When we also consider a data transfer
time between tasks, each edge generally has a variable
weight. Its weight, tij, will be a data transfer time between
task Ti and Tj if Ti and Tj are assigned to different PEs.
It will be zero or a time to access registers or local data
memories if the tasks are assigned to the same PE.
2.3.2 Static multiprocessor scheduling algorithm

To process a set of tasks on a multiprocessor system
efficiently, an assignment of tasks onto PEs and an exe-
cution order among the tasks assigned to the same PE
must be determined optimally. The problem that deter-
mines the optimal assignment and the optimal execution
order can be treated as a traditional minimum execution
time multiprocessor scheduling problem [18][23]. To
state formally, the scheduling problem is to determine
such a nonpreemptive schedule in which execution time
or schedule length be minimum, given a set of 11 compu-
tational tasks, precedence relations among them, and m
processors with the same processing capability. This

u

Task No.

10 3 2 5 11 8 1 7
19 19 19 19 19 19 19 19

4 9 Task
8 10 processing

6n12 time
10 10 1

Data
19 transfer

time t i

0 14 t .- 0

if T and T. are

16I J

115 10 1 on the same PE:

17

10 t o =9

if T. and T are

18on different PEs

Fig.6 A task graph for near fine grain tasks.

34

scheduling problem, however, has been known as a
"strong" NP-hard problem [19].

Considering this fact, a variety of heuristic algorithms
and a practical optimization algorithm have been pro-
posed [18][20][23]. In OSCAR compiler, a heuristic
scheduling algorithm CP/DT/MISF (Critical Path/ Data
Transfer/ Most Immediate Successors First) considering
data transfer (30] has been adopted taking into account a
compilation time and quality of generated schedules.
2.3.3. Machine code generation

For efficient execution on an actual multiprocessor
system, the optimal machine codes must be generated by
using the scheduled results. A scheduled result gives us
the following information:
1) which tasks are executed on each PE,
2) in which order the tasks assigned to the same PE are
executed,
3) when and where data transfers and synchronization
among PEs are required,
and so on. Therefore, we can generate the machine codes
for each PE by putting together instructions for tasks
assigned to the PE and inserting instructions for data
transfer and synchronization into the required places.
The "version number" method 1301 is used for synchroni-
zation among tasks.

At the end of a BPA, instructions for the barrier
synchronization, which is supported by OSCAR's hard-
ware, are inserted into a program code on each PE.

The compiler can also optimize the codes by making
full use of all information obtained from the static sched-
uling. For example, when a task should pass shared data
to other tasks assigned to the same PE, the data can be

HOST COMPUTER

CONTROL & LO PROCESSOR

RISC Processor i/O Processor

Data Prog. Distributed
Memory Memory Shared

Memory

Bus Interlace

COMMON MEMORY 1
(Simulta teous Readable)

Bank Bank2 Bank3

Addr.n Addr.n Addr.n CM2 CM3

Read & Write Requests
Arbitrator

li .~ i iI~I I.. i 111 II

Distributed
Shared Memory

Dual Port
(CP)

-SMFLOPS32bit RISC
Processor
(64 Registers)

-2 Banks of Program
Memory
Data Memory
-Stack Memory

'DMA Controller
PEl PE5

(CP)

PE6

JU2 LIL JJI~fTT-L

PE8

(CP)

PE9 PE1C

(CP)

PE11 PE15

(CP)

PE16

- PE CLUSTER (SPC1) SPC2 - i-- SPC3 -
- 8PE PROCESSOR CLUSTER (LPC1) - LPC2

Fig.7 OSCAR's architecture.

passed through registers on the PE. The optimal use of
registers reduces the processing time markedly. In addi-
tion, the compiler can minimize the synchronization over-
head by carefully considering the information about the
tasks to be synchronized, the task assignment and the
execution order [31].

3. OSCAR'S ARCHITECTURE
This section describes the architecture of OSCAR

(Qptimally Qheduled Advanced Multiprocessor). Fig.7
shows the architecture of OSCAR. As shown in Fig.7,
OSCAR is a shared memory multiprocessor system in
which up to sixteen processor elements (PEs) are uni-
formly connected to three centralized common memories
(CMs) and to distributed shared memories on the PEs
through three buses.

Each PE is a custom-made RISC processor with
throughput of 5 MFLOPS. It consists of a main processing
unit with sixty-four registers, an integer processing unit
and a floating point processing unit, a data memory, two
Lanks of program memories, a distributed shared mem-
ory, a stack memory (SM) and a DMA controller. The
PE executes every instruction including a floating point
addition and a multiplication in one clock. The distrib-
uted shared memory on each PE can be accessed simul-
taneously by the PE itself and another PE.

Also, OSCAR provides the following three types of
data transfer modes by using the DPMs and the CMs:
l) One PE to one PE direct data transfers using DPMs,
2) One PE to all PEs data broadcasting using the DPM,
3) One PE to several PEs indirect data transfers through
CMs.

Each CM is a simultaneously readable memory on
which the same address or different addresses can be
read by three PEs in the same clock.

3.1 Architectural Supports for the Macro-dataflow
OSCAR can simulate a multiple-PC system having two

or three PCs by assigning one bus to each PC. A number
of PCs and a number of PEs inside PC can be changed
even at run-time according to parallelism of the target
program, or the macrotask graph because partitioning of
PEs into PCs is made by software. Furthermore, each bus
has a control line for the barrier synchronization. There-
fore, each PC can take barrier synchronization in a few
clocks.

3.2 Architectural Supports for the Fine Grain Parallel
Processing
For the near fine grain parallel processing on OSCAR,

the one PE to one PE direct data transfer and the data
broadcasting using the DPM are used for minimizing
data transfer overhead. The direct data transfer using the
DPM needs only one "data-write" onto a DPM for pass-
ing one data from one PE to another PE. On the other
hand, the conventional indirect data transfer using a CM
requires one "data-write" to a CM and one "data-read"

35

i

I

from the CM. Also, the data broadcasting reduces the
data transfer time remarkably compared with the indi-
rect data transfer through CM. Therefore, the optimal
use of the three data transfer modes using static schedul-
ing allows us to reduce data transfer overhead. Also,
synchronization using DPMs reduces synchronization
overhead because assigning synchronization-flags onto
the DPMs prevents degradation of bus band width that is
caused by the busy wait to check synchronization-flags
on CMs.

4. AN EXECUTION EXAMPLE OF
OSCAR COMPILER

C PROGRAM SAMPLE FOR OSCAR
REAL A(300,300),B(300,300),C(300,300)
REAL X(300,300),Y(300,300),Z(300,300)
R EAL V1(300),V2(300).V3(300),V4(300)
REAL DI
COMMON /COM1/V1

C --------------------- MT 1
DI= 0.0
V1(1)= 1.0

C -------............... MT 2
DO 11011= 1,30
DO 100J1= 1,300
A(I1J1)=11+J1-300

100 CONTL\UEI
110 CONTNINlI

C ------................ MT 3

DO 13012= 1,300
DO 120 J2= 1,300

B12,2)= 12-J2+ 1
120 CONTL'UE130 CONT LlI

C -------............... MT 4
CAI.L MTGEN(C)

C -------............... MT S
CA LL MKVEC(A.BC)

C -------............... MT 6
CAll. MTVEC(AV2)

C MT 7
CA ll. MITV EC(B.V3)

C MT 8
CAI.L MTVEC(C.V4)

C MT 9
CAI.L VECSUIJ(V2.V3,DI)

C ------.............------ MTO
U (D. ;T.o.o) TI IiN

C MI I
CALL MAIAi AD A.BX)

C MT12
CAI.l. MATSUII(11.C,Y)

C -------...............- MT13
DO 17013= 1,300
DO 160J3= 1.300
/.(13J3)= C(13.3)/DI

160 CONINUE
170 CONTINUiE

C -------............... MT14
El.sl

C MTIS
CAl.L MA TSUli(B,A,Y)

C ---------------------- \1T16
CA1.l. MATADD(C.,1.X)

c ..-.... --------.-- T- 17
D) 19014= 1,300

DO 1&)J4= 1.300
/(14J4)= C(14J4)-D1*V4(14)

180 CONTINUE
190 CON iNUE

C
END II

C
END

C
SLAIROUTIN.i MTGEN(X)
RI AL. X(300.300)

DO 110 1= 1,300
DO 100J= 1,300
Xt IJ)=00

100 CONTINUE
X(1,)= 1.0

110 CONTINUE
RETURN
END

C
SUBROUTINE MATADD(X,Y,Z)
REAL X(300.300),Y(300,300),Z(300,300)
DO 120 I= 1,300
DO 1IOJ= 1,300
Z(IJ)= X(IJ)+ Y(I))

110 CONTLU1:
12)CONTINL I:

RETURN
END

C
SUBROUTINE MATSUB(XYZ)
REAL X(300,300),Y(300,300),Z(300,300)
DO 1201= 1,300
DO 110J= 1,300
Z(I))= X(I))-Y(LJ)

110 CONTINUE
120 CONTINUE

RETURN
END

C
SUBROUTINE MKVEC(AB.C)
REAl. A(300,300),I(300,300),C(300,300)REAL. DVR I ,TA ,THTCSA ,SBSC.I) 1.D2,D3
COMMON /COMI1/V1(300)
DO 1001= 2,300

DV= V1(l-1)
R1= 0.314"1)V
IA= A(II)*DV
T1 = Ij)I.1)) V
TC= C(II)DV
SA= IAIA
S11= T'T'h

SC= TC*TC
D1= TA-TH
D2=TII-.C
D3= TC-TA
V 1(I)= (SA+ SB+S C)-RI= (D1'D2*D3)

100 CONTINUE
RETURN
END

C
SU BROUTINE MTV EC(A.V)
R EAL A(300,300),V(300)
COMMON /COM 1/V 1(300)
DO 1101= 1,300
V(I)= 0.0
DO 100J= 1,300

V(I)= V(I)+ A(IJ))V 1(J)
100 CONTINUE
110 CONTINI:Ii

RhTURN
IND

C
SULIROUINLE VIECSUI(S.VR)
REAL S(300),V(300),R
DO 1001= 1,300

R= R. S(I)-V(I)
100 CONILN C

RI.TUR N
END

Fig.H A sample program with 17 macrotasks.

This section briefly introduces performance of
OSCAR compiler. Fig.8 is a sample FORTRAN program
with 17 macrotasks including RBs, SBs and BPAs.
Fig.9(a) is a macroflow graph of the program. Fig.9(b)
represents a macrotask graph for the macroflow graph.
This macrotask graph shows the parallelism extracted
from Fig. 9(a).

The execution time of the program on OSCAR was as
follows. When the program was sequentially executed by
l PE, the processing time was 9.63s. The execution time
for the macro-dataflow computation using 3 PEs was
3.32s. The processing time for the multi-grain computa-

'SPA 2 A SPA 5 5

2 RB

4 so

$ se

" s

7 SB

" se

" se

11 se 1S s

12 so 1"sos

14 BPA

ENCMT

(a) A macrolow graph.

SM PA2 a aras gas

Ssos

f/ 's 7 s s

10 SPA

12 SB " S

13 RB ,7 s

ENMT

(b) A macrotask graph.

Fig. 9 Macroflow and macrotask graphs for Fig. 8.

36

Lion using 3 PCs, each of which has 2 PEs., namely, 6 PEs,
was 1.83s. It was also observed from execution traces that
the dynamic scheduling overhead was negligibly small.

5. CONCLUSIONS
This paper has described OSCAR FORTRAN

parallelizing compiler very briefly. The compiler realizes
multi-grain parallel processing, which combines the
macro-dataflow computation, the loop concurrentization
and the near fine grain parallel processing. The proto-
type compiler with some restrictions has been working on
OSCAR. Currently, the authors are enhancing the pro-
totype version to a practical version, which allows us to
realize the combination of the macro-dataflow and the
loop concurrentization on a multiprocessor supercompu-
ter.

REFERENCES
[l] A.V.Aho, R.Sethi and J.D.Ullman, Compilers: Principles, Tech-

niques, and Tools, Addison Wesley, 1988.
121 U.Ranerjec, Dependence Analysis for Supercomputing, Kluwer

Pub., 1988
131 D.A.Padua, D.J.Kuck and D.ll.Lawrie, "igh-speed multiproces-

sor and compilation techniques," IEEE Trans. Comput., Vol. C-29,
No.9,pp.763 -776, Sep. 1980.

[41 D.A.Padua, and M.J.Wolfe,"Advanced Compiler Optimizations for
Supercomputers," C.ACM, Vol.29, No.12, pp.1184-1201,Dec.1986.

51 D.Gajski, D.Kuck, D.Lawrie and A.Sameh, "CEDAR," Report
UIUCDCS-R-83- 1123, Dept. of Computer Sci., Univ. Illinois at
Urbana-Champaign, Feb. 1983.

[61 D.D.Gajski, D.J.Kuck, D.A.Padua, "Dependence Driven Compu-
tation," Proc. of COMPCON 81 Spring Computer Conf., pp.168-
172, Feb. 1981.

[71 lI.E.llusmann, D.J.Kuck and D.A.Padua,"Automatic Compound
Function Definition for Multiprocessors," Proc. 1988 Intl. Conf. on
Parallel ProcessingAug.1988.

[81 M.Wolfe, "Multiprocessor synchronization for concurrent loops,"
IEEE software, Vol. pp. 34-42, Jan. 1988.

191 M.Wolfe,Optimizing Supercompilers for Suprcomputers,MIT'
Press, 1989.

1101 C.D.Polychronopoulos and D.J.Kuck, "Guided self-scheduling : A
practical scheduling scheme for parallel supercompuers," lEli
Trans. Comput., Vol.c-36,12, pp.1425-1 439,Dec. 1987.

[111 D.J.Kuck, E.S.Davidson, D..I.Lawrie and A.ll.Sameh, "Parallel
Supercomputing Today and Cedar Approach," Science, Vol.231,
pp.967- 974, Feb. 1986.

1121 J.A.Fisher, "'Ihe VLIW Machine: A Multiprocessor for Compiling
Scientific Code," IEEE Computer, Vol. 17,No.7, pp.45-53, Jul.1984.

1131 R.P.Colwell, et.al.,"A VLIW Architecture for a Trace Scheduling
Compiler," IEEE Trans. Comp., Vol.C-37, No.8, pp.967-979,
Aug.1989.

1141 J.R.Ellis, "Bulldog: A Compiler for VLW Architectures," MTI'T
Press,1985.

1151 A.Nicolau and J.A.isher, "Measuring the Parallelism Available
for Very Long Instruction Word Architectures," IEEE Trans. on
Computers, Vol. C-33, No. 11, pp.968-976, Nov.1984.

[16] II.Kasahara et.al. "A Multi-grain Parallelizing Compilation
Scheme on OSCAR," Proc. 4th Workshop on Languages and Com-
pilers for Parallel Computing, Aug. 1991.

[171 N.P.Jouppi, "The Nonunifonn Distribution of Instruction-Level
and Machine Parallelism and Its Effect on Performance," IEEE
Trans. on Comput., vol. C-38, No.12, pp.1645- 1657, Dec.1989.

1181 E.G.Coffman Jr.(ed.), Computer and Job-shop Scheduling The-
ory. New York : Wiley, 1976.

1191 M.R.Garey and D.S.Johnson, Computers and Intractability : A
Guide to the Theory of NP-Completeness. San Francisco : Free-
man, 1979.

1201 C.D.Polychronopoulos, Parallel Programming and Compilers,
Kluwer Academic Pub., 1988.

(211 V.Sarkar, "Determining Average Program Execution 'limes and
Their Variance"', Proc. Sigplan'89, June 1989.

1221 V.Sarkar, Partitioning and Scheduling Parallel Programs for Mul-
tiprocessors, MIl Press,1989.

[231 lI.Kasahara and S.Narita, "Practical Multiprocessor Scheduling
Algorithms for Efficient Parallel Proessing," IEEE Trans. Com-
put., Vol.c-33, No.11,pp. 1023-1029,Nov.1984.

[24] H.Kasahara and S.Narita, "An approach to supercomputing using
multiprocessor scheduling algorithms, " in Proc. IEEE 1st Int'l
Conf. on Supercomputing, pp.139-148,Dec. 1985.

[251 F.Allen, M.BurkeR.Cytron,J.Ferrante,W.Ilsich and V.Sarkar, "A
Framework for Determining Useful Parallelism," Proc. 2nd ACM
Int'l. Conf. on Supercomputing, 1988.

1261 J.FerranteK.J.Ottenstein,J.D.Warren,"The Program Depen-
dence Graph and Its Use in Optimization," ACM Trans. on Prog.
Lang. and Syst, Vol.9,No,3.pp.319-349, July 1987.

1271 B.S.Baker,"An Algorithm for Structuring Flowgraphs," J. ACM,
Vol.24, No.1, pp.98-120, Jan. 1977.

1281 M.Burke and R.Cytron, "Interprocedural Dependence Analysis
and Parallelizatiuon," Proc. ACM SIGPLAN'86 Symposium on
Compiler Construction, 1986.

1291 M.O'Keefe and H. Dietz, "Hardware Barrier Synchronization:
Static Barrier MLMD," Proc. 1990 Int'l Conf. on Parallel Processing,
pp. 135-42, Aug. 1990.

1301 II.Kasahara, l.Honda, S.Narita, "Parallel Processing of Near Fine
Grain Tasks Using Static Scheduling on OSCAR," in Proc. IEEE
ACM Supercomputing'90, Nov. 1990.

1311 l.llonda, M.Iwata, ll.Kasahara, "Coarse Grain Parallelism Detec-
tion Scheme of Fortran programs," Trans. IEICE, Vol.J73-D-1,
No,12, Dec.1990 (in Japanese).

1321 F.G.Gustavson, W.Liniger and R.A.Willoughby, "Symbolic Gen-
eration of an Optimal Crout Algorithm for Sparse Systems of
Linear Equations," J.ACM, vol.17, pp.87-109, Jan. 1970.

1331 I.Kasahara, Parallel Processing Technology, Corona Publishing,
'Tokyo, (in Japanese), Jun. 1991.

1341 S.S.Munshi and B.Simons, "Scheduling Sequential Loops on Par-
allel Processors," SlAM J. Comput., Vol. 19, No.4, pp.728-741, Aug.,
1990.

1351 M.Girkar and C.D.Polychronopoulos, "Optimization of Data/Con-
trol Conditions in 'ask Graphs," Proc. 4th Workshop on Languages
and Compilers for Parallel Computing, Aug. 1991.

[361 H.Kasahara, H.londa, M.Iwata and M.Hirota, "A Macro-dataflow
Compilation Scheme for Hierarchical Multiprocessor Systems,"
Proc. Int'l. Conf. on Parallel Processing, Aug. 1990.

[371 H.Kasahara, W.Premchaiswadi, M. Tamura, Y.Maekawa and
S.Narita, "Parallel Processing of Sparse Matrix Solution Using Fine
Grain Tasks on OSCAR," Proc. Int'l. Conf. on Parallel Processing,
Aug. 1991.

37

Coordination Language Design and Implementation Issues

Steve Lucco and Oliver Sharp, UC Berkeley

One can think of a parallel program as a group of sequential sub-computations
which cooperate to solve a problem. To exploit existing code and optimization tools,
programmers usually choose to write these sub-computations in traditional impera-

tive languages such as C, Fortran, or Lisp. A coordination language expresses data
exchange and synchronization among such sub-computations. We are investigating

the effectiveness of coordination languages as tools for concise expression and efficient
implementation of parallel programs. In our presentation, we will outline some design
and implementation issues critical to the expressiveness and performance of coordina-

tion languages. Using these criteria, we will compare existing coordination languages
including Strand, PCN, Linda, Jade, Delirium, and extended Fortran dialects.

Most existing coordination languages, including Linda and the extended Fortran
dialects, are embedded; they consist of a set of non-deterministic coordination primi-
tives which are added to a host language program. We are investigating a new type of

coordination language, which we call an embedding language. Our language, Delir-
ium, is one example; Strand and PCN have also been used as embedding coordination
languages.

An embedding language program is a separate text that specifies a framework
for accomplishing a task in parallel; sequential sub-computations called operators are

embedded within that framework. This organizing principle makes parallelization

easier. Instead of scattering coordination throughout a program, creating a set of

ill-defined sub-computations, a coordination language programmer precisely defines

operators and embeds these operators within a parallelization framework. One can

completely discover the topology of the program's parallel execution simply by reading
its coordination code.

This type of coordination language has four advantages over embedded languages.

First, because they are separate program texts, embedding language programs can
express synchronization using a unified notation such as a functional or logic lan-

guage. In contrast, extended Fortran dialects and languages like Linda consist of a
collection of discrete synchronization primitives. Second, embedding notations sup-

port hierarchical abstraction of coordination. One can create and re-use complex
patterns, such as binary reduction, through functional abstraction. Embedded lan-

guages can't support abstraction because individual embedded primitives appear as

separate statements within a host language program, and they can only indirectly
control the execution order of other statements in the program. Third, embedding

notations have a coordination semantics that is distinct from the semantics of the

language in which computation is expressed. Finally, sub-computations are encapsu-
lated. That is, they have unique, well-defined entry and exit points. Debugging is

38

easier because individual sub-computations can be tested in isolation, on the target
parallel machine or a more familiar sequential one.

On the other hand, embedding coordination languages are more difficult to im-
plement than embedded languages. The primitives of embedded languages generally
have a direct translation to operations on an abstract machine or the underlying
multiprocessor, whereas existing embedding languages are declarative; they specify a
dataflow and require the coordination compiler to map that dataflow onto the under-

lying machine.
Further, because they exist as a separate text, embedding language programs d'

not have direct access to the data dependence semantics of the sequential language.

On distributed memory architectures, it becomes difficult for the coordination com-
piler to balance computational load or even enforce correct behavior without this

information. Some preprocessing of the sequential language program is necessary to

provide this information to the coordination compiler. This information can be pre-
sented and processed in the form of annotations such as those defined in Jade and in

Fortran D.
We believe that any attempt to use a coordination language as a tool for specifying

parallel program behavior will evolve into a coordination system with the following

components:

* A coordination language and coordination compiler which includes explicit sup-
port for data parallelism.

" A sequential language (Fortran, C, C++) preprocessor that gathers information

and transforms sequential programs into sets of operators.

" An annotation language for transmitting and presenting information gleaned
by the preprocessor to the coordination compiler (and the user). Ours is called
Dossier and is intended to be readable by humans as well as by programs.

" A runtime scheduling system that can exploit opportunities for fine-tuning that
are discovered by the coordination compiler. There are a variety of optimiza-
tions that a run time system can perform, including the adjustment of grain
size based on execution behavior and the pipelining of adjacent loop nests.

We have successfully implemented several large, irregular parallel programs on
both shared and distributed memory multiprocessors using this organization. Dur-
ing the talk, we will present a case study that shows how each piece of the system

contributes towards the final goal of achieving efficient execution on a variety of ar-
chitectures.

39

Designing Imperative Programming Languages for Analyzability:

Parallelism and Pointer Data Structures

Laurie J. Hendren*

Guang R. Gao

School of Computer Science

McGill University

Abstract

The rapid advance of computer architectures has provided important new challenges for programming lan-

guage designers and compiler writers alike. One of these challenges is to provide programming languages that
are analyzable so that compilers can effectively exploit the level of parallelism that is necessary for effective
use of such architectures. Historically, the analysis of scientific programs using arrays has made crucial use of

information such as array dimension and size, the mathematical structure of arrays, and the regularity of the
looping constructs used for programming with arrays. In this paper we argue that, just as arrays are important

in scientific programs, pointer data structures often play a central role in non-scientific and symbolic programs,
and therefore the analyzability of pointer data structures is critical.

To illustrate both the importance of analyzability for programs with pointer data structures and the solu-

tion methodology proposed in this paper, we propose a programming language mechanism which significantly
enhances the analyzability of pointer-based data structures frequently used in non-scientific programs. Our

approach is based on exploiting two important properties of pointer data structures: structural inductivity

and speculative traversability. Structural inductivity facilitates the application of a static interference analysis

method for such pointer data structures based on path matrices, and speculative traversability is used to exploit
parallelism by allowing aggressive traversals of linked pointer data structures.

In this paper we give an overview of our approach to designing analyzable imperative languages. We give a

concrete example of applying the techniques t exploit fine-grain parallelism in while loops that traverse linked

list structures. The effectiveness of our approach is demonstrated by applying it to a collection of loops found in
typical non-scientific C programs. In addition, we outline how our approach can be used to exploit coarse-grain

parallelism, and we give some challenges open in this area.

1 Introduction

In the past decade, the dramatic improvement of VLSI technology has led to modern high-performance micro-
processors that support some level of fine-grain parallelism. Even with today's RISC processors, some degree of
instruction-level parallelism is required to fully utilize the architecture. This increase in fine-grain parallelism,
and the development of parallel architectures supporting more coarse-grain parallelism has has provided important
challenges for programming language designers and compiler writers alike. It is becoming increasingly important
to provide programming languages and associated compiler support such that user programs can be effectively an-
alyzed in order to effectively utilize the underlying architectures. In particular, it is critical to provide compile-time
analysis that results in accurate alias analysis and data-dependency information for complex data structures. This

paper argues that such analyzability is an important principle of program language design and implementation, and
that it is particularly critical for the efficient mapping of non-scientific programs to architectures supporting some
level of parallelism.

The work supported in part by FCAR, NSERC, and the McGill Faculty of Graduate Studies and Research.

40

The importance of the analyzability has been demonstrated by the considerable success of automatic paral-
lelization and optimization of large-scale scientific numerical programs. In such scientific programs, arrays are the
most important data structures, and the programs using these array structures can often be analyzed effectively.
The keys to such analysis are:

" Arrays are frequently defined on rectangular index regions with dimensions, shapes, and bounds known to
the compiler.

" Array operations are often encapsulated in "well structured" loops (for loops without gotos) with the iteration
space of the loop matching the index regions of the arrays.

" In such loops, the arrays are frequently accessed ("traversed") in a regular fashion. For example, the index
expression is often an affine function of the loop indices.

The mathematical structure of the arrays and the regularity of their accesses in embedded loops has lead to
the development of a variety of dependence analysis, loop transformation, and parallelization techniques [Ban76,
Ban88, ABC86, ACK87, KKP+80, PW86, Wol89]. Although many of these techniques were pioneered in the
areas of vectorizing and parallelizing compilers, these techniques are also being applied to architectures supporting
instruction-level parallelism. There has also been work in programming language design to enhance the analyzability
of arrays [X3J90, IIWe90, GYDM90, ANP89].

Unfortunately, the analysis and optimization of non-scientific programs has not been so successful. In this paper
we are interested in the analyzability issues for real life non-scientific programs. There is little dispute that many
such programs are currently written in imperative languages like C, and there is no sign that this trend will slow
down soon. In such programs, dynamically-allocated pointer data structures play a central role. To fully exploit
parallelism in such programs on we need to provide mechanisms for specifying properties of such data structures
that can be used to improve the compiler analysis.

To illustrate both the importance of analyzability for programs with pointer data structures and the solution
methodology proposed in this paper, we propose a programming language mechanism which significantly enhances
the analyzability of pointer-based data structures frequently used in non-scientific programs. Our approach is based
on two important properties : structural inductivity and speculative traversability. Structural inductivity facilitates
the application of a static interference analysis method for such pointer data structures based on path matrices,
and speculative traversability is utilized by a novel loop unrolling technique for while loops that exploits fine-grain
parallelism by aggressively traversing such data structures. The effectiveness of this approach is demonstrated
by applying it to a collection of loops found in typical non-scientific C programs. For high-performance RISC
architectures, our approach resulted in a speedup of 1.17 and 1.43 over the optimized code produced by the native
C compilers on SUN SPARC-based machine, and a DEC MIPS-based machine respectively. We also illustrate how
our approach can also be used to expose more instruction-level parallelism for architectures supporting multiple
instruction issuing/processing such as superscalar/superpipelined or VLIW machines.

The paper is organized as follows. In section 2 we present' a more detailed outline of the challenges of compiling
imperative programs with pointer data structures for machines with instruction-level parallelism. In section 3,
we introduce programming language constructs which enhance the analyzability of programs by providing the
programmer with a means of specifying two important properties of pointer data structures frequently found
in non-scientific programs: speculative traversability and structural inductivity. In section 4 we give a concrete
case study to show how such mechanisms can be effectively applied to unroll while loops that traverse such data
structures. Also in section 4 we present the results of applying the method to optimize a collection of loops for

RISC machines, and we show the applicability of the techniques for exposing instruction-level and coarse-grain
parallelism. Lastly, we provide our conclusions in section 5.

2 Parallelism in the Presence of Pointers

In this section we outline the challenges of compiling for parallelism in the presence of pointer data structures. In the
first subsection we review the techniques currently used for instruction scheduling for instruction-level parallelism

41

and we show how inaccurate alias analysis for pointer structures can greatly reduce the effectiveness of these

techniques. In the second subsection we discuss a high-level loop transformation that is used to increase instruction-
level parallelism for programs with arrays, and we discuss the difficulties of applying similar transformations to

pointer data structures.

2.1 Instruction Scheduling

In compiling for architectures with instruction-level parallelism, instruction scheduling is a crucial component.
That is, in order to effectively utilize the architecture, the compiler must take a sequential list of instructions, and
rearrange the instructions in such a way as to increase parallelism (reduce execution time) while preserving the
original meaning of the program.

Instruction scheduling is commonly performed for RISC architectures [Kri90]. In pipelined RISC architectures,
it is desirable to arrange the code such that successive instructions can be issued to the instruction pipeline one
per cycle Some operations, like a read from memory or a floating-point arithmetic operation, require more than
one machine cycle to complete. However, one does not necessarily have to wait for an instruction i to complete
before scheduling the next instruction j. Due to the pipelined design of the architecture, it is possible to schedule
instruction j one cycle after another instruction i if j does not depend on i. Overlapping the execution of instructions
in this way decreases the total execution time by introducing one form of instruction-level parallelism. Another
type of instruction-level parallelism is present in architectures such as VLIW or superscalar machines which allow
more than one operation to be scheduled at the same time. In such architectures the compiler must analyze the
program in order to determine which operations may safely be issued in parallel.

a a + b;

c = c + d;

(a) C Program

(1)
(2)

(3)

(4)
(5)
(6)

(7)

(8)

7)

(8)

(1)
(5)
(2)
(6)
(3)

(7)
(4)

(8)

(d) Dependencies between instructions

ri <-- a

r2 <-- b

r2 <-- rl + r2
a <-- r2

r3 <-- c

r4 <-- d

r4 <-- r3 + r4
c <-- r4

(b) Instructions

ri <-- a

r3 <-- c
r2 <-- b

r4 <-- d

r2 <-- rl + r2

r4 <-- r3 + r4

a <-- r2
c <-- r4

(e) A good RISC schedule

(1) ri <-- a

(2) r2 <-- b
nop

(3) r2 <-- rl + r2
nop

(4) a <-- r2
(5) r3<-- c
(6) r4 <-- d

nop
(7) r4 <-- r3 + r4

nop
(8) c <-- r4

(c) Naive RISC schedule

cycle

cycle

cycle

1:
2:
3:

(1) (2) (5) (6)
(3) (7)
(4) (8)

(f) A parallel schedule

Figure 1: Scheduling example 1: a and c are scalar variables

We illustrate instruction scheduling with the small example program given in figure 1(a). Translating this
program into machine instructions yields the sequential list of 8 machine-level instructions as given in figure 1(b)1.
Now consider the problem of mapping these 8 instructions to a RISC architecture that requires two cycles for a

1 Note that we use the notation a <-- ri to indicate storing ri into the memory location for variable a, and ri <-- a to indicate
loading ri from the memory location for variable a. The actual memory location for a could be given by an offset to the stack pointer
or frame pointer, or an address of a global.

42

(4)

load from memory and two cycles for an addition. If we take the naive approach of scheduling the instructions
in the same order as we generated them in figure 1(b), then the best that we can do for our RISC architecture
is the schedule given in 1(c). Note that due to the 2 cycle latency of loads and additions, we had to insert 4 nop
instructions. For example, we had to insert a nop between instructions (2) and (3) because we needed an extra
cycle to wait for the load to r2 to complete before we could compute ri + r2. We can improve upon the schedule
of figure 1(c) by noting that the 8 instructions do not necessarily need to be executed in the order that they vere
generated. For example, if a and b are different variables, then the load of a does not depend on (does not need
to proceed) the load of b. Thus, if we have a compile-time analysis that can determine that a, b, c, and d are all
distinct variables (they all refer to different memory locations), then we can represent the partial order with the
dependency diagram given in figure 1(d). Starting from this partial order we can produce a much better schedule
(8 cycles instead of 12 cycles) as shown in 1(e). This improved schedule requires no extra nop instructions since
all load and add instructions are scheduled at least two cycles before their results are needed. We can also use the
partial order to produce a parallel schedule suitable for an architecture that can issue more than one instruction at
the same time. Figure 1(f) gives a parallel schedule that can issue 2-4 operations simultaneously at each cycle. 2

a->val = a->val + b;
c->val = c->val + d;

(1)
(2)

(3)
(4)
(5)
(6)
(7)

(8)

(a) C Program

(3)

t
4)

(5) (6)

(7)

(8)

(d) Dependencies between instructions

ri <-- 0[a]
r2 <-- b
r2 <-- rl + r2

0[a] <-- r2

r3 <-- 0[c]
r4 <-- d

r4 <-- r3 + r4
0[c] <-- r4

(b) Instructions

(1) ri <-- 0[a]
(2) r2 <-- b
(6) r4 <-- d
(3) r2 <-- rl + r2

nop
(4) 0[a] <-- r2
(5) r3 <-- 0[c]

nop
(7) r4 <-- r3 + r4

nop
(8) 0[c] <-- r4

(e) A "good" RISC schedule

(1) ri <-- 0[a]
(2) r2 <-- b

nop
(3) r2 <-- rl + r2

nop
(4) 0[a] <-- r2

(5) r3 <-- 0[c]
(6) r4 <-- d

nop
(7) r4 <-- r3 + r4

nop
(8) 0[c] <-- r4
(c) Naive RISC schedule

cycle
cycle

cycle
cycle
cycle
cycle

1:
2:
3:
4:
5:
6:

(1) (2) (6)
(3)

(4)
(5)
(7)

(8)

(f) A parallel schedule

Figure 2: Scheduling example 2: a and c are pointer variables

This small example illustrates that the compiler can exploit instruction-level parallelism if it can transform a

sequential list of instructions to a partial ordering of instructions and then apply a scheduling algorithm on this

partial order. However, as illustrated in the example given in figure 2, the success of this approach relies heavily
on accurate compile-time alias analysis. In our first program, each of the variables were scalars, and therefore

well-established compile-time techniques can be used to determine that a and c refer to different memory locations

(that is, a and c are not aliased) 3 . However, in the program given in figure 2(a), a and c refer to dynamically-

allocated pointer data structures. As indicated in the instructions given in figure 2(b), the memory reference to

2 This is the schedule if we assume operation latencies of 1. If we assume the same latencies as in the RISC case, then there

will be empty slots between the cycles. The compiler may move more independent operations to these slots, thus exploring more

instruction-level parallelism.
3 1n fact, often times this analysis can be as simple as determining that a and c refer to different, offsets on the stack.

43

a->val and c->val is through an extra level of indirection.4 Due to this indirection it is difficult to determine
whether or not a->val and c->val refer to the same memory location, and compilers are not, in general, able to
perform this analysis at compile-time. As illustrated by figure 2(d), this lack of precise alias analysis for pointer
data structures leads to the introduction of possibly spurious edges in the dependency graph. For example, if
we cannot determine whether or not a->val and c->val refer to the same location, then we must introduce a
dependency between instructions (4) and (5). The negative effect of such extra dependencies is illustrated clearly
with the RISC schedule given in figure 2(e) and the parallel schedule in figure 2(f). In both cases the schedules are
considerably worse than the equivalent schedules for the scalar case given in figures 1(e) and 1(f).

2.2 Loop Transformations to Increase Available Parallelism

There has been considerable effort spent on developing compile-time techniques that transform scientific programs
in such a way as to expose more parallelism. In order to introduce the notion and benefit of loop transformations,
let us consider loop unrolling, a transformation technique that was developed for parallelizing and optimizing
compilers for scientific programs and arrays [DH79]. As shown by the example in figure 3, loop unrolling essentially
transforms a for loop into an equivalent for loop in which there are multiple copies of the body. Loop unrolling
was initially developed as a technique for reducing loop overhead and for exposing instruction-level parallelism for
machines with multiple functional units. More recently it has also been applied in conjunction with instruction
scheduling for pipelined and RISC architectures [WS87, Sri9l, Muk9l]. By increasing the size the body of the loop,
the instruction scheduler can often produce a shorter schedule for the unrolled loop.

for (i = 1; i <- 120; i = i + 3)

for (i = 1; i <= 120 ; i++){ a[i] - a[i] * b + c;

a[i] = a[i] * b + c; a[i+1] = a[i+1] * b + c;
a[i+2] = a[i+2] * b + c;

}
Original Loop Unrolled Loop

Figure 3: Loop Unrolling for Scientific Programs

Now let us consider the problem of performing a similar transformation on while loops with pointer data
structures. In figure 4, we give three program fragments that were extracted from the source code for the GNU
C compilers. The first loop, initialize, simply traverses a list initializing each key field to y. The second loop,
last-item, traverses a list to find the last item. The third loop, reverse, destructively reverses the list.

if (lp != LIST.NULL) prey = LISTNULL;
{ nextlp - lp->next; while (lp != LIST.NULL)

while (lp != LISTNULL) while (nextlp !- LISTNULL) { nextlp = lp-> next;
{ lp->key = y; { lp - next.lp; lp->next = prey;
lp = lp->next; nextlp = nextlp->next; prey - lp;

} } lp = next.lp;

} }
last = lp; lp = prey;

Initialize each element Find last item Reverse the list

Figure 4: Three typical loops on pointer data structures

At first glance it would appear that the loops in figure 4 are not really suited to techniques like loop unrolling.
The potential problems include:

4 We use the statement r1 <--o[a] to indicate that ri should be loaded from the memory location that is at an offset of 0 from the
location stored in variable a.

'We have modified the presentation of these loops so that they all use the same form and variable names.

44

" In the case of arrays one can compute the index of array elements and reference many elements in parallel
(a~i], a[i+1], a[i+2]). However, the pointer loops appear to be inherently sequential, and the list must
processed by traversing each element in turn.

" In the array example it was straightforward to compute the loop bounds and increment for the unrolled loop.
In the case of pointer loops we have no idea of the length of the structure, and no simple way to construct a
termination condition that results in an equivalent unrolled loop.

" Even if we could access more than one item at a time, it would appear that loops like lastitem have no
computation to do on each item, and therefore may not be good candidates for loop unrolling.

" In the case of arrays the loop body will only modify the values within the structure, but not the structure
itself. That is, the shape and size of the arrays remain the same. In the case of linked structures the loop
may actually change the structure of the list itself. This is true in the case of reverse.

3 Analyzable Pointer Data Structures

As illustrated in the previous section, there are many challenges for effectively compiling programs for instruction-
level parallelism. In particular, we illustrated the negative effect of poor alias analysis for pointer data structures,
and the difficulties encountered in designing loop transformations for pointer data structures. These difficulties
arise because unlike data structures such as scalars and arrays which have a fixed shape and size, pointer data
structures have dynamically changing shapes and sizes. In addition, programmers use dynamic data structures to
implement a wide variety of structures including singly-linked lists, doubly-linked lists, circular lists, nested lists,
binary trees, threaded trees, and graphs. Even though the programmer may use pointers in a very constrained
manner (for example, the programmer may use a certain type of node to build only non-cyclical lists), the compiler
has no way of knowing what sort of structure the programmer has in mind, and therefore the compiler cannot
exploit any properties that are specific to that structure. In addition, the compiler has no knowledge of the size or
length of a dynamic data structure.

In this section we introduce two characteristics of pointer data structures that allow better compile-time analysis.
That is, we give some examples of how to make a programming language more analyzable. In the first sub-section we
introduce the class of structurally inductive data structures and we illustrate how we can use path matrix analysis to
provide accurate alias analysis for this class of data structures. In the second sub-section we introduce speculative
travcrsability, a property that allows us to perform loop transformations without knowing the length of a data
structure.

For practical reasons, including the wide-spread use of C for non-scientific programming, we have chosen to
develop our approach relative to the programming language C. In fact, our techniques require only very small
syntactic extensions to C that could be implemented with a straight-forward preprocessing step. However, one
should not assume that the notion of designing analyzable programming languages is restricted to C, and V. hope
that others will take the challenge of designing better, analyzable programming languages that are suitable for
architectures supporting instruction-level parallelism.

3.1 Structurally Inductive Pointer Data Structures and Alias Analysis

In order to provide more accurate alias analysis for pointer data structures, we would like programmers to be able
to classify their data structures as either inductive or non-inductive. An inductive linked structure is one in which
there are no cycles, and each node has at most one parent. Inductive structures include linked lists, nested lists, and
trees, while non-inductive structures include DAGs and cyclic graphs. Inductive structures have nice properties for
analysis, and techniques for alias analysis, dependence analysis, and parallelizing transformations for this class of
structures have been developed [Gua88, LH88, HN90]. The exploitable properties of inductive structures include:
(l) the component pieces of the structure (the head and tail of a list, or the left and right sub-trees of a binary
tree) never share any storage, and thus computations on the components are non-interfering, (2) breaking any link
yields two independent pieces, and (3) a traversal of any series of linked nodes never revisits the same node more

than once.

45

Our approach to exploiting the analyzability of inductive structures is to allow the programmer to indicate
which pointer data structures have this property. In order to discuss our language extension with respect to C,
we introduce a high-level recursive type statement, rectype. Each rectype statement consists a list of field names,
with each field having either a scalar type, or a recursive reference to the type being defined. As illustrated by
the example for linked lists as given in figure 5, the rectype statement can be translated by the compiler into the
traditional recursively defined pointer structures in C. Note that the compiler can generate both the appropriate
C types for nodes and pointers to the nodes, and constant representing the the empty structure (LISTJULL).

DEFINE LISTJNULL 0 / name of the empty list */
rectype LIST [inductive]
{ int key; typedef struct LIST /* node type for ordinary lists */

LIST next; { int key;

} struct LIST *next;
} LISTNODE, *LISTPTR;

(a) (b)

Figure 5: A rectype and its C implementation

As illustrated in figure 5(a), we provide the option of indicating if a particular rectype has the inductive
property. It should be noted that both inductive and non-inductive recursive structures are implemented with the
same C data types. Thus, we treat the inductive specification as a directive, rather than a type. The programming
language designer has a choice of how to use this directive. The easiest, and least safe, approach is to take this
directive as a promise from the programmer that all structures built with this type will be inductive. This is
analogous to allowing arrays without bounds checking. Another, and perhaps preferable, approach is to use the

directive to aid the compiler in choosing the correct sort of alias analysis to perform for that data type. Thus, an
analysis best suited to inductive structures can be used for each rectype which has been labeled as inductive. Just
as dependence analysis is a natural choice for analyzing array references, path matrix analysis is a natural choice

for inductive structures [HN90].

Path matrix analysis is an interprocedural analysis technique that was specifically developed for inductive data
structures. The technique exploits the special properties of inductive structures in order to provide accurate static
analyses to: (1) safely determine if pointer data structures are guaranteed to be inductive, (2) perform alias analysis
and dependency analysis for all pointer variables that point to nodes of the inductive structure, and (3) detect
non-interfering computations.

We illustrate the use of path matrix analysis for the program fragment presented in figure 6. This program first
calls a function to build a list, and then executes a while loop to reverse the list. At the beginning of the loop,
orig.lp points to the first item, while at the end of the loop, newvJp points to the first item of the reversed list,

and origlp points to the last cell of the reversed list.

origlp = buildlist(n); /* build a list with n items */
lp = origlp; /* origlp points to original head of list */
prey - LISTNULL;

while (lp !- LIST-NULL)

{ nextlp lp->next; /* get next node */
lp->next = prey; /* reverse link of lp */
prey = lp; /* get ready for next iteration */
lp = next.lp;

}
newlp - prey; /* nevlp points to new head of list, and

origlp now points to last element */

Figure 6: An example program with the reverse loop

In order to demonstrate how the analysis works, we used our path matrix analysis tool 6 to process the program

6 This is an interprocedural analysis tool that is w ten in SML [HN90, Hen90].

46

(1) origlp:=buildlist(n)

orig.p ,O
orig..p

(2) ip = origlp

orig- p(",O) lp(,O)

(3) prey = LIST-NULL

orig_ p(e,Q)]lp(.,) prevo,o

origlp $ $
lp _j _
pre v$

====== =LAST ITERATION OF WHILE LOOP FIXED-POINT CALCULATION -- ==== -- ==
(4) nextlp = lp->next

I orig_p(e,o) lp"e,Q) prey",Q) next p(0,O

orig_ p s S?
lp S N'
prey (S+N+)S
next.. p

(5) lp->next = prey

orig..p(",o) p ",) rnext.p(0,0
orig_ p

lp N+ S

next..p I

(6) prey lp

orig..p(e,o) preye, next_Lp 0,O
orig_ p

prev I N+S

next.lp 111 1
(7) lp = nextlp

orig-p 0,o lp(0,0) prev(.,.)

orig.. p

pre v N+ s

== == END WHI LE/REPEAT
(8) nevlp - prev

or:g. p ,O new..p(0,0

orig_p (S?
new_lp (S

Figure 7: Partial trace of the path matrix computations

47

given in figure 6 and we extracted pieces from the trace of the analysis as given in figure 7. For each program point
in the trace, we give the path matrix that summarizes the relationships (or paths) that exist between each pair of

pointer variables (also called handles) live at that point. Also, note that each handle is decorated with a pair that
looks something like (.,o). The first item of the pair corresponds to "nilness" of the handle itself, and the second
item corresponds to the "nilness" of the next field of the handle (means definitely not nil, o means definitely nil,
and O means that it could be either). Let us consider the following points in the path matrix analysis.

Program Point (1): The first statement in our program fragment is a call to a procedure buildlist that builds
a non-cyclical list. Although we have not shown the path matrix analysis for this call, we see that the
resulting path matrix contains only one live handle, lp, and it has the relationship S with itself. Note that the
relationship S between two handles r and y indicates that these variables point to the same node. The fact that
there is only one entry in the path matrix indicates that there are no other live pointer variables (handles) that
can be reached from the head of the list ip, and that the analysis of the procedure call successfully determined
that the structure pointed to by ip is indeed inductive. If the analysis of the call had not been successful (for
example, the programmer may have created a cyclic structure), then a less accurate alias analysis mechanism
must be used.

Program Point(2): The path matrix computed for program point 2 contains two handles, lp and origip. Note
that the entries reflect the fact that ip and origlp point to the same node.

Program Point(3): In statement 3 we see the first occurrence of the nil pointer (LIST.JNULL). You can see that
the handle prey is definitely nil, and it is not related to any other handle.

Program Points(4) to (7): We have given the path matrices computed for the last iteration of the while loop
fixed-point calculation. You can think of these path matrices as approximating the state of the data structures
for all iterations of the while loop after the first iteration. Note that at program point (4) the relationship
between lp and nextlp is always N' (exactly one next link), while the relationship between prey and origip
is (S + N+) (they point to the same node, or there is a chain of one or more nexis from prey to origilp). Also
note that there is no relationship between prey and Ip. This corresponds to the fact that the original list is
now split into two distinct pieces, the reversed part starting at prey and ending at origip, and the unreversed
part starting at ip.

Program P oint(8): Finally, at program point (8), we see the relationship of (S + N+) between the new head of
the list newlp and the original head origip. The S corresponds to the case when the original list only has
only one item, and the N+ corresponds to all cases for lists with more than one item.

This example shows that we can get very accurate alias analysis for inductive structures when we apply alias
analysis techniques that have been carefully designed to take advantage of the special properties of such structures.
Indeed, the analysis provides accurate information even though the structure is being destrinc? ely traversed. This
illustrates the point that one must be able to capture special properties of data structures at the programming
language level, so that the appropriate compiler analysis techniques can be developed and used for those structures.

3.2 Speculatively Traversable Pointer Data Structures

In addition to providing properties that lead to better alias analysis, we must also deal with the problem of not
knowing the length or size of pointer data structures. In order to fully demonstrate this problem, let us return
to the problem of unrolling while loops. Recall that for loops that operate on arrays can be easily unrolled by
simply modifying the counter and termination conditions of the loop. However, with while loops on pointers, the
situation is much more difficult. Consider for example the initialize loop given in figure 8(a).

In order to effect some sort of unrolling, we can try the brute-force approach of duplicating the body of the
loop, along with the appropriate conditionals. Figure 8(b) gives an example of this approach for unrolling the
initialize loop 3 times. Although clearly semantically equivalent to the original loop, this approach does not appear
to improve the code. The loop overhead is not improved because we need to do just as many tests, and the
instructions in the body remain sequential.

In figure 8(c) we give a good strategy for unrolling this loop. In this case two extra list pointers, lp2 and lp3
are introduced to give three independent pointers into the list. As a result, the three statements updating the fields

48

while (ip != LIST-NULL)
{ lp->key = y;

lp - lp->next;
}

(a) the original loop

while (ip != LIST.NULL)
{ lp->key = y;

lp = lp->next;
if (ip != LIST-NULL)

{ lp->key = y;
lp = lp->next;
if (lp != LISTNULL)

{ lp->key = y;
ip = lp->next;

}
}

}

(b) The brute-force approach

lp2 = lp->next;
lp3 = 1p2->next;
while (lp3 != LISTNULL)

{ lp->key = y;
1p2->key = y;
1p3->key -y;
lp = 1p3->next;
lp2 lp->next;
lp3 = 1p2->next;

}
while (p != LIST-NULL)

{ lp->key = y;
lp =lp->next;

}
(c) A good unrolling

Figure 8: Loop Unrolling for the initialize example

lp->key, 1p2->key and 1p3->key can be executed in parallel, and the number of tests is reduced to 1/3 of the
original loop. However, this unrolled loop is not necessarily semantically equivalent to the original loop. The most
blatant problem is that we don't know how many more items will be in the list, and the speculative computation
of 1p2 and 1p3 may cause run-time errors that would not occur in the original loop. This leads us to define the
property of speculative traversability. The idea of a speculatively traversable structure is that traversing the empty
structure yields the empty structure. Thus, without knowing the length of a list, we can safely traverse the next k
items without causing a run-time error. More formally, we define the following important property.

Definition 3.1 Let t be the type of a speculatively traversable pointer data structure with scalar fields s1, s2, ... ,
sm, and recursive pointer fields r1 , r2, ... , r,. If p is the pointer representing the empty structure for type t, then
for each ri the following equality holds: p->ri = p.

Note that a speculatively traversable recursive data structure is really a different type than an ordinary recursive
data type because we have changed the meaning of operations on the empty structure. Therefore, to capture this
idea we define a new type statement, specrectype as illustrated in figure 9.

specrectype LIST
{ int key;
LIST next;

}

#define LISTNULL list-nil /*
static LIST-NODE list-nil-node; /*
static LISTPTR list-nil; /*

void initLISTNULL()
{ list-nil &listnilnode;
listnil->key = 0;
listnil->next = list-nil;

}

typedef struct LIST

{ int key;
struct LIST *next;

} LISTNODE, *LISTPTR;

/*
/*
/*
/*

name of the empty list */
node for implementing empty list */
pointer to the empty list */

code to initialize the empty list ... */

set pointer to empty list node */

set each scalar type to approp. zero
set each recursive field to self */

/* node type for speculative list */

Figure 9: A speculatively traversable specrectype and its C implementation

Note that the implementation of the specrectype definition is identical to that of the rectype except for

the definition of the empty data structures. That is, we have implemented the empty structure so that we can

speculatively traverse the data structure (extra traversals on the empty structure will always result in the empty
structure).

49

4 Loop Unrolling for Analyzable Pointer Structures

As we discussed in section 2.2, loop-based transformations are important components of compiling for instruction-
level parallelism. In this section we present a new loop unrolling technique that applies to structurally inductive
and speculatively traversable pointer data structures. In the second part of this section we provide experimental
results that indicate substantial performance gain for our loop unrolling technique.

In order to demonstrate a wide variety of loops we consider the six loops presented in figure 10. The first
loops are the ones that we extracted from the source code of the GNU cc compiler, while the last three loops we
constructed to provide loops with different characteristics. The sum loop is typical of a loop that is traversing a
structure while accumulating a final value. The count loop is an example of a loop that performs some action on
a subset of the items in the list. An important characteristic of this loop is that it contains a conditional in the
body. The find loop is typical of a loop that does not traverse the entire list. The characteristic of importance in
this loop is the more complex termination condition.

if (lp != LISTINULL) prey - LIST.NULL;
{ nextlp = lp->next; while (lp !- LIST.NULL)

while (lp != LISTJNULL) while (next-lp !- LISTNULL) { nextlp - ip-> next;
{ lp->key = y; { lp - next.1p; lp->next - prey;
ip = lp->next; next.lp = nextlp->next; prey - lp;

} } lp - next.1p;
} }

last = lp; lp = prey;

Initialize each element Find last item Reverse the list

sus = 0; count0;
while (lp != ORIGINULL) while (lp != LISTINULL) while ((lp !- LIST.NULL) tU

{ sun += lp->key; { if (lp->key - y) count++; (lp->key !- y))
lp = lp->next; lp - lp->next; lp - lp->next;

} }

Sum all elements Count all elements equal to y Fd first element equal to y

Figure 10: Some different sorts of loops on pointer data structures

4.1 A New Loop Unrolling Technique

Each of the loops given in figure 10 traverses and processes a linked list one item at a time. That is, for each
iteration of the while loop, one item of the list is processed. The basic strategy of our loop unrolling is to transform
the original loop into a loop which processes more than one item on each iteration. For example, as illustrated in
figtdre 11, we could have three pointers into the list, and process three items of the list on each iteration of the while
loop. The advantages of such a transformation include: (1) loop overhead is reduced, (2) the size of the loop body
is increased, thereby providing more flexibility for traditional optimizations like dead code removal and instruction
scheduling, and (3) in many cases available parallelism is increased because the operations on different list items
may proceed independently.

We have isolated two general patterns for performing such while loop transformations. In figure 12 we give the
two patterns and the equivalent 3-unrolling (there is an obvious generalization for k-unrolling). All of our example
loops, except for reverse, fit pattern A. Pattern B is typical of loops, like reverse, that are updating the structure
of the list as it is traversed. Note that in both cases, the unrolling of the pattern consists of two adjacent while
loops. The first loop processes k items for each iteration, and the second loop as processing the remaining tail of
the list in the case that the length of the list is not a multiple of k.

The following is a concise summary of the loop unrolling method. An example of applying this method is given

in figure 13.

50

Iteration i

Iteration i

Figure 11: A loop traversal for a 3-unrolling

(a) Pattern A and Unrolling

while (cond(')p))
(newJp = traverse(Ip);

body(p);
ip = newJp;

}

Ip2 = traverse(Ip);
lp3 = traverse(p2);
while (cond(lp,1p2,)p3))

{ newJp = traverse(1p3);
body(lp);
body(1p2);
body(1p3);
Ip = newsJp;
Ip2 = traverse(Ip);
1p3 = traverse(p2);

}

while (cond(lp))
{ newJp = traverse(lp);

body(lp);
Ip = newJp;

}
(b) Pattern B and Unrolling

Figure 12: Patterns for unrolling 3 times

51

while (cond(lp))
{ body(lp);

lp = traverse(lp);
}

Ip2 = traverse(lp);
Ip3 = traverse(lp2);
while (cond(Ip,1p2,1p3))

{ body(Ip);
body(1p2);
body(1p3);
ip = traverse(lp3);
Ip2 = traverse(lp);
Ip3 = traverse(1p2);

}
while (cond(lp))

{ body(Ip);
ip = traverse(lp);

}

Detection: Each while loop is examined to see if it fits the pattern A or B. In either case, the loop must obey the
following properties:

1. The condition, cond(Ip) must be some boolean expression defined on the variable lp and this variable
must be of specrectype.

2. The body of the loop must be divisible into two non-interfering sub-pieces, body(lp) and traverse(lp).
This analysis can be done by simple symbolic inspection for some loops, or it can require path matrix
analysis for more complex loops like reverse. The traverse(lp) computation must be a traversal of a
recursive field of the specrectype.

Unrolling: The loop is unrolled by introducing new variables 1p2, 1p3, ... , lpk of the appropriate specrectype
and producing a pair of new loops as illustrated in figure 12. The kth copy of the body is created by replacing
each occurrence of ip with lpk.

Conditional optimization: The naive loop unrolling creates the conditional "cond(Ip) && cond(lp2) && ... &&
cond(lpk)". This can often be greatly simplified. For example, using property of speculatively traversable
structures defined in section 3.1, we can simplify "(ip != LIST._NULL) && (Ip2 != LIST-NULL) && (lp3 !
LISTLNULL7' to "(Ip3 != LIST-_NULL)'.

Loop body optimization: We note that in the unrolled loops there are many adjacent copies of the body of the
original loop. This often provides further opportunities for traditional optimizations such as copy elimination
and dead code removal. Figure 13(c) illustrates the use of dead code removal for the loop last.

Parallelization: As a final step we determine if the different copies of the body are independent. In determining
this we can make use of the fact that a particular linked structure is inductive. For example, in the case
of inductive structures, we can guarantee that the k different variables lp, 1p2, ..., Ipk refer to independent
nodes.

nextlp - lp->next;
nextlp2 - nextlp->next;
nextlp3 - next.lp2->next; nextlp - lp->next;
while (nextlp2 - nextlp->next;

(nextlp I- LISTNULL) tt nextlp3 - nextlp2->next;
(nextlp2 != LISTNULL) st while (next_1p3 !- LISTNULL)

nextjp - lp->next; nextjp3!LISTNULL)) { lpnextlp3;
while (nextlp !- LISTNULL) - next.p2; nextlp - nextlp3->next;

{ lp - next.1p; lp = nextp3- nextlp2 - next_lp->next;
nextlp - nextlp->next; x nextlp3 - nextlp2->next;

nextlp2 = nextlp->next; while (nextlp != LIST-NULL)
nextlp3 - nextlp2->next; { lp - next.lp;

}}
while (next~lp !- LISTJIULL) next.1p - next..lp->next;

{ ip - next.lp;
nextlp - nextlp->next;

}
(a) Original Loop (b) Unrolled (c) Unrolled and optimized

Figure 13: Unrolling last

4.2 Experimental Results

In this section we present some experimental results obtained by applying our loop unrolling techniques to the six

loops presented in figure 10.

First let us consider the example of unrolling the loop last. In figure 13 we show the original loop, the unrolled

loop, and the unrolled loop after both the conditional and body have been optimized. Note that these optimizations

52

are straight-forward applications of the speculatively traversable property and dead code elimination. Due to the
resulting reduced loop overhead and the removal of unneeded computation in the unrolled version of last, we would
expect improved performance of the unrolled version over the original loop. This performance improvement is
confirmed with the experimental figures in table 1. This experiment was performed using the original loop, and
optimized unrolled loops for k equal to 2, 3, 4, 5, and 10. In each case, the transformation was performed at the C
source level, and then the resulting unrolled loop was compiled using the native cc compiler with the -0 optimizer
option. For each unrolling we give the time in microseconds required to execute the loop for lists of length 10, 100,
and 1000. In addition, the speedup is indicated in parentheses. We note excellent speedups ranging from 1.12 to
2.21 for all cases except for the 10-unrolling run on a list with 10 elements. In this case, the cost of the speculative
traversal outweighs the other benefits. Also, for both architectures, we note that a 3-unrolling results in very good
performance for all lengths of lists (speedups ranging from 1.21 to 1.88).

SPARC
7

N Original Unroll (2) Unroll(7. Unroll(4) Unroll(1O)

10 1.72 1.50(1.15) 1.42(1.21) 1.54(1.12) 2.46(0.70)
100 15.40 11.60(1.33) 10.40(1.48) 10.00(1.54) 9.60(1.60)

1000 152.00 102.00(1.49) 102.00(1.49) 104.00(1.46) 88.00(1.73)

MIPS8
N Original Unroll (2) Unroll(3) [Unroll(4) Unroll(10)

10 2.14 1.66(1.29) 1.52(1.41) 1.67(1.28) 2.95(0.73)
100 20.23 12.42(1.63) 11.17(1.81) 10.86(1.86) 10.86(1.86)

100011 202.33 121.87(1.66) 107.81(1.88) 102.34(1.98) 91.40(2.21)

Table 1: Timings for last

We have also performed a complete set of experiments on each of the six loops presented in this paper. For each
loop we experimented with the effect of the technique with a variety of C compilers, and for each C compiler the
effect when used with or without the -0 optimizing option [Hen9l]. Table 2 summarizes part of those results for
the case of 3-unrolling and using the native cc compiler with the -0 option. This resulted in impressive spec!iups
for all cases on the MIPS architecture (average speedups of 1.19 to 1.49), and good speedups on most cases for
the SPARC architecture (average speedups of 1.03 to 1.17). By studying the code produced by the various cc
compilers, we note the following reasons for this speedup: (1) reduced number of branches, (2) reduced number of
instructions, and (3) better instruction scheduling due to the increased size of the block body.

______ SPARC -1 MIPS ______

10 100 1000 10 100 1000

last 1.421.21)10.401.48 102.001.49 1.521.41 11.171.81 107.811.88

initialize 2.14(1.00) 21.00(1.00) 242.00(0.96) 1.70(1.26) 13.83(1.47) 134.37(1.51)
reverse 2.40(1.13) 22.60(1.06) 212.00(1.16) 1.77(1.26) 13.98(1.45) 136.71(1.49)
count 2.80(1.06) 23.20(1.17) 224.00(1.21) 2.95(1.14) 27.50(1.19) 274.20(1.20)
sum 2.16(0.99) 17.20(1.08) 114.00(1.03) 1.70(1.26) 13.75(1.48) 135.15(1.51)
find 1.78(0.78) 12.60(1.21) 122.00(1.15) 1.91(0.82) 14.14(1.15) 135.15(1.20)

average (1.03) (1.17) (1.17) (1.19) (1.42) (1.46)

Table 2: Speedups for six benchmarks with an unrolling of 3

4.3 Using Path Matrix Analysis to Enhance Parallelism

The observation that our loop unrolling technique lead to better instruction scheduling on RISC machines shows

that techniques like this are very important for the effective exploitation of parallelism available in today's ad-

7 SPARCstation 2, Sun release 4.1 cc compiler
8 DECSTATION 5000, MIPS cc compiler

53

vanced architectures. Furthermore, using more refined alias analysis based on path matrix method, more precise
dependence information can he produced to guide instruction scheduling. This is particularly important when one
copy of the loop body may not have enough parallelism to match what can be supported by the target architecture.
As the future generation of high-performance architectures will have substantially more parallelism at all levels,
and the benefit of the proposed method will become even more significant.

body(lp) body(1p 2) --- body(lpk)

lp = trav(lpk)

lp2 = trav(lp

lpF== ra(Pkl-)

Figure 14: Dependencies in a parallel k-unrolled loop

Consider an unrolled loop of the form given in figure 12(a). If our path matrix analysis determines that each of
the variables)p, 11, ... , lpk refer to distinct nodes, and the body of the original loop only refers to the node plus
some scalar variables, then we can build a dependency graph with the basic structure as shown in figure 14. Note
that each of the statement sequences body(Ipl), ... , body(lpk) are totally independent, and the only dependencies
are due to the traverse statements. Ample parallelism between iterations may be exposed which can be effectively
exploited by the target architectures.

4.4 Handling Coarse-Grain Parallelism

Although we have concentrated on instruction-level parallelism, our techniques are also useful for more coarse-grain
parallelism [Hen90, HN90]. For example, consider a while loop in which each iteration performs a relatively large
task. In this case, we can use our analysis to determine when it is safe to speculatively traverse the structure while
allocating each iteration, or group of iterations, to different parallel processes.

In addition, we can use the inductive property and associated alias analysis tools to determine when two or
more recursive procedure calls may execute in parallel. For example, consider a program which operates on a tree
by processing the root node, and then recursively processing the sub-trees. If our analysis can determine that the
structure is in fact inductive, that is determine that the sub-trees are non-interfering, then we can allocate each
recursive call to a parallel process.

However, even when we can detect when it is safe to execute different iterations or procedure calls in parallel,
the effective exploitation of coarse-grain parallelism is complicated by the following problems.

Locality: Many parallel architectures have a multi-level memory hierarchy in which memory accesses to local
data are considerably faster than memory accesses to non-local data. In order to exploit such architectures
it is beneficial to map the data structures in such a way as to minimize non-local references. With array
data structures this can often be achieved by mapping the arrays by rows, columns, blocks, or other regular
mappings. However, with pointer data structures, the shape of the data structure changes dynamically, and
such regular mappings are difficult to perform statically. Even if a mapping is made dynamically, small
pointer updates in the structure (for example, reversing two sub-trees) may invalidate the mapping.

Size: In order to determine the grain-size of a parallel process, it is often useful to know the size or length of the
data structures. For example, with arrays or vectors, one can often divide one process into approximately

54

equal sized sub-processes that work on equal sized pieces of the vector or array. Once again, this is difficult
to do for pointer data structures. For example, if a tree data structure is not balanced, then the size of
the sub-trees may vary considerably, and we cannot use the sub-division of the data structure to guide the
subdivision of the process into equal sized processes.

In order to make some progress on the problems due to locality and size, we plan to pursue our approach of
extending the programming language to allow the programmer to specify more properties about the data structure.
For example, the programmer may actually have some encoding in the data structure that gives the length or size
of the data structure. We would like to make this encoding explicit so that the compiler can make use of this
information.

5 Conclusions

Current and future generation of high-performance architectures support instruction-level parallelism. To produce
efficient code for such machines, a compiler must be able to analyze programs and detect opportunities for opti-
mization and parallelization. This motivates the central theme of this paper: analyzability is an important principle
for programming language design and implementation.

In this paper we focused on the analyzability issues for real-life non-scientific programs. Many such programs
are being written in imperative languages like C for many different hardware platforms, and there is no sign that
this trend will slow down soon. Therefore, we feel that one challenge for researchers in the areas of programming
language design and implementation is to work towards solutions that: (1) are easily assimilated and adapted by
the community programming in C-like languages, and (2) will lead to effective use of current and future high-
performance architectures.

We illustrated the negative effect of poor alias analysis for pointer data structures, and the difficulties encoun-
tered in designing loop transformations for them. These difficulties arise because unlike data structures such as
scalars and arrays, pointer data structures have dynamically changing shapes and sizes. In addition, programmers
use dynamic data structures to implement a wide variety of structures including singly-linked lists, doubly-linked
lists, circular lists, nested lists, binary trees, threaded trees, and graphs.

We have proposed a programming language mechanism which can be utilized to design analyable pointer data
structures with two important properties : structural inductivity and speculative traversability. We illustrate how
can use path matrix analysis to provide accurate alias analysis for structural inductive data structures. We have
also described a novel while loop transformation method to aggressively exploit fine-grain parallelism for pointer
data structures which are speculatively traversable and we have provided experimental results that show that the
transformation results in significant performance improvement. In addition, we discussed how our approach can be
used to exploit more coarse-grain parallelism, and we outlined the outstanding problems in this area.

Based on the results of the research presented in this paper, we have decided to implement our approach in
McCAT - the McGill Compiler-Architecture Testbed currently being developed by our research group at McGill
[HGMS91]. McCAT provides a unified approach to the development and performance analysis of compilation
techniques and high-performance architectural features. This will allow us to performance experiments on a wide
range of benchmark programs and architectural models and to further refine our method.

55

References

[ABC86] Todd Allen, Michael Burke, and Ron Cytron. A practical and powerful algorithm for subscript depen-
dence testing. Technical report, IBM, 1986. Internal Report.

[ACK87] Randy Allen, David Callahan, and Ken Kennedy. Automatic decomposition of scientific programs for
parallel execution. Conference Record of the Fourteenth Annual ACM Symposium on Principles of
Programming Languages, pages 63-76, January 1987.

[ANP89] Arvind, R. S. Nikhil, and K. K. Pingali. I-structures: Data structures for parallel computing. ACM
TOPLAS, 11(4):598-632, October 1989.

[Ban76] Utpal Banerjee. Data dependence in ordinary programs. Master's thesis, University of Illinois at
Urbana-Champaign, 1976.

[Ban88] U. Banerjee. Dependence Analysis for Supercomputing. Kluwer Academic Publishers, Boston, MA,
1988.

[D1179] J.J. Dongarra and A.R. Hinds. Unrolling loops in fortran. Software-Practice and Experience, 9:219-226,
1979.

[Gua88] Vincent A. Guarna Jr. A technique for analyzing pointer and structure references in parallel restructur-
ing compilers. In Proceedings of the International Conference on Parallel Processing, volume 2, pages
212-220, 1988.

[GYDM90] G. R. Gao, R. Yates, J. B. Dennis, and L. Mullin. An efficient monolithic array constructor. In
Proceedings of the 3rd Workshop on Languages and Compilers for Parallel Computing, Irvine, CA,
1990. To be published by MIT Press.

[Ilen90] Laurie J. Hendren. Parallelizing Programs with Recursive Data Structures. PhD thesis, Cornell Uni-
versity, January 1990.

[Hen9l] Laurie J. Hendren. Experiments on while loop unrolling for pointer data structures. Technical Report
ACAPS Note 29 (in preparation), McGill University, 1991.

[IIGMS91] Laurie Hendren, Guang Gao, Chandrika Mukerji, and Bhama Sridharan. Introducing McCAT - The
McGill Compiler-Architecture Testbed. Technical Report ACAPS Memo 27 (in preparation), McGill
University, 1991.

[11N90] Laurie J. Hendren and Alex Nicolau. Parallelizing programs with recursive data structures. IEEE
Transactions on Parallel and Distributed Systems, 1(1), 1990.

[1 We90] P. Hudak and P. Wadler (editors). Report on the programming language Haskell, a non-strict purely
functional language (version 1.0). Technical Report YALEU/DCS/RR777, Yale University, Department
of Computer Science, April 1990.

[KKP+80] D. J. Kuck, R. H. Kuhn, D. A. Padua, B. Pleasure, and M. Wolfe. Analysis and transformation of
programs for parallel computation. In Proceedings of the Fourth International Computer Software and
A pplication Conference, October 1980.

[Kri9O] S. M. Krishnamurthy. A brief survey of papers on scheduling for pipelined processors. SIGPLAN
Notices, 25(7):97-106, 1990.

[L1188] James R. Larus and Paul N. Hilfinger. Restructuring Lisp programs for concurrent execution. In Pro-
ceedings of the A CM/SIGPLAN PPEALS 1988 - Parallel Programming: Experience with Applications,
Languages and Systems, pages 100-110, July 1988.

[Muk9l] Chandrika Mukerji. Instruction scheduling at the RTL level. Technical Report ACAPS Note 28, McGill
University, 1991.

56

[PW86] D. A. Padua and M. J. Wolfe. Advanced compiler optimizations for supercomputers. Communications
of the ACM, 29(12):1184-1201, December 1986.

[Sri9l] Bhama Sridharan. Creation and transformations of the abstract syntax tree. Technical Report ACAPS
Note 27, McGill University, 1991.

[Wol89] Michael J. Wolfe. Optimizing Supercompilers for Supercomputers. Pitman, London and MIT Press,
Cambridge, MA, 1989. In the series, Research Monographs in Parallel and Distributed Computing.
Revised version of the author's Ph.D. dissertation, Published as Technical Report UIUCDCS-R-82-
1105, University of Illinois at Urbana-Champaign, 1982.

[WS87] Shlomo Weiss and James E. Smith. A study of scalar compilation techniques for pipelined supercomput-
ers. In Proceedings of the Second International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS II), pages 105-109, 1987.

[X3J90] The FORTRAN Technical Committee of ANSI X3J3, June 1990. FORTRAN 90, Draft of the Interna-
tional Standard.

57

Compile-Time Parallelization of Prolog

Hakan Millroth, Uppsala University

Previous attempts at developing parallel Prolog systems have focused on exploiting
AND-parallelism, or OR-parallelism, or both. In this work we parallelize Prolog by
exploiting parallelism in its fundamental control structure: recursion.

We have developed a compilation technique [2,3] in which recursion over recursive
data structures is compiled to bounded iteration (for-loops) over vectors (the vectors

are somewhat analogous to binding environments). The technique is based on an
analysis of the unification patterns of recursive programs in Reform [5] computations.
(Reform is a new inference systems for logic programming which handles recursion
differently from SLD-resolution.)

This compilation technique gives a more efficient parallelization of recursive pro-

grams than is possible with a system based on SLD-resolution. In a parallel system
based on SLD-resolution it takes 0(N) time to spawn all N recursive calls to the
program. In our model, the time complexity for getting all recursion levels into work
is bounded only by the time it takes to distribute the input data of the program. This
may take O(log N) time (on, for example, a machine with tree topology) or O(1) time
(in case the input data is already distributed).

We discuss the application of this technique to parallelization of Prolog [4,6]. The
basic idea is that parallelization takes places only across recursion levels: the recur-

sion levels of a program, including the head unifications at each level, are computed in
parallel. The sequential left-to-right depth-first backtracking scheme of Prolog is re-
tained within recursion levels. (If needed, communicating processes are implemented
by sequential co-routining using the delay primitives of Prolog.)

This approach has some appealing consequences:

1. It gives the parallel program a natural and easy-to-understand parallel reading.
The programmer can write efficient parallel programs by obeying some simple
rules of programming. The programmer is relieved, to a large extent, from
explicitly constraining unproductive concurrency.

2. It gives a natural partitioning of the computation and its data, since nondeter-
minism and producer-consumer relationships are often local to the individual

recursion levels. Since we execute the individual levels sequentially, the amount

of nondeterminism and data dependencies within recursion levels is completely
insignificant for the efficiency of parallelization.

3. There is a simple mapping of the program onto a parallel machine whose pro-

cessors are organized in a ring: adjacent recursion levels are mapped to adjacent

processors. The inter-processor communication on such a machine will mostly

58

be between neighboring processors, since it is unusual that data is passed be-
tween nonadjacent recursion levels in a logic program. We thus achieve predom-
inantly local communication, which is crucial on a distributed memory machine.

4. The workload will automatically be spread evenly among the parallel processors,
assuming that each recursion level of the program contains approximately the
same amount of work. This assumption seems reasonable for many Prolog
programs. Consequently there is not much need for dynamic load balancing.

Hence we have an efficient method for parallelization of well-structured Prolog
programs. What to do with unstructured problems? One approach is to parallelize
a well-structured metaprogram that controls the computation; cf. Foster & Taylor's

scheduler-worker method [1].

References

1. 1. Foster & S. Taylor. Strand: New Concepts in Parallel Programming, Prentice-
Hall.
2. H. Millroth. Reforming Compilation of Logic Programs, Ph.D. Thesis, Uppsala
University, 1990. (Summary to appear at Int. Logic Programming Symp., San Diego,
CA., October 1991)
3. H. Millroth. Compiling Reform, (to appear in) Massively Parallel Reasoning
Systems (eds. J. A. Robinson & E. E. Siebert), MIT Press, 1991.
4. H. Millroth. Efficient Parallelization of Prolog, (to appear in) Parallelization of
Inference Systems (eds. B. Fronhodfer & G. Wrightson), Springer-Verlag, 1991.
5. S-A Tarnlund. Reform, (to appear in) Massively Parallel Reasoning Systems (eds.

J. A. Robinson & E. E. Siebert), MIT Press, 1991.
6. S-A Tarnlund, H. Millroth, J. Bevemyr, T. Lindgren & M. Veanes. The Reform

Machine, in preparation.

59

Compiling Crystal for Massively Parallel Machines

Extended Abstract

Marina Chen Young-il Choo

Department of Computer Science

Yale University
New Haven, CT 06520

chen-marina@yale.edu choo@yale.edu

7 October 1991

1 Introduction

The Crystal project has focused on making the task of programming massively parallel machines

practical while not sacrificing the efficiency of the target code. our compilation strategy is to start
from a high-level problem specification. apply a. sequence of optimizations tuned for particular
parallel machines, and finally generate code with explicit co1 il nica tion or synidirolnization. The
collputation and data ar-(e distributed based ol0 the analysis of co1111nicatlon patterns in the

program and the cost of comunuication rimlitives of the target machine.
Taking advantage of the fact that. many algorit hiiis exhibit natural parallelisln when formulated

mathematically, our approach to parallel programming is to use a purely functional language that.
resembles mathematical notation. The language has higher-order operators and data structures.
thereby making the ext raction of parallelism far simpler and allowing us to focus on the global
comnmunication issues for massively parallel machines. The simpler semantics of the language
allows us to formulate a rigorous theory of program optimization that is indispensable both in
the automatic analysis of communication patterns and the explicit specification of 5ser-defined
mapping strategies.

1.1 The Principle Features of Crystal

in order to develop a. theory of the language that is useful in practice, the language must have
clean semantics and orderly algebraic properties. The model of communication must truly reflect.
the physical characteristics. It m st be abstract enough to be conceptualized by the programmer
and simple enough to be incorporated into a compiler.

To this end, we have defined the (Crystal functional language with special data. types that

embody locality and structural information in both the problem and the physical domains. The
novel data types are index domains, which embody the geometric shape of data structures such
as 111ItidimIensional arrays. trees. and ivperceiibes. and da(J ids. which generalize the 1101011 of
dist ributed data structures. uiflyiiig ithe coi ventional notions of arrays and fliilctions.

Since index domains embody ihe shape of a data field. the geometry of the set of indices indicates
the (listribution of the data eleillenlts. Therefore. a Iimapping lroi one i n''x domain to another,
called an index domain morphisn, can be used to represent the change of shape of the distributed
data fields. This is at the heart of the global optimization of Crystal programs. Once a. suitable
morphism has been chosen, a. systematic transformation of the program results in a new program
with improved behavior.

60

The language allows different levels of abstraction: atomic funct ions for sequential cornpu tatioji
on a single processor: data fields for data parallel computation; and higher-order functions for
combining data parallel components. 01 course. the higher-order hi fnctions can be coiisidered
atomic at the next level of the hierarchy. But such power of a bst ract ion is obtained at the expense of

target code performance-in particular, for the SIMD type of machines. Reformulating a high-order
Crystal program using data fields (first order functions defined over index domains) is analogous to
turning general recursive definitions into tail recursive ones. You gain efficiency at the expense of
abstract ion and elegance. The first order version is conceptually more complex because the parallel
structure of an algorithm must be directly exposed. (For example, a FFT network in its entirety
must be defined as an index domain.) The high-order version uses recursion to do the trick (for

example, only the basic butterfly pattern is defined, and the FFT network is generated by way of
recursion).

1.2 Programming Methodology

The process of designing parallel programs has both formal and informal aspects. The formal aspect.
such as progra.mi transforimatioi, is mechanizable. For examlple, once an index domain miorphlismi
is specified, the derivation of the new data field from the original definition is automatable. Note
1 hat there are no restrictions on the shape of the domain nor on the domain morphism itself. as
long as it has an inverse.

The informal aspect requires insight. into the behavior of the algorithm, sometimes even a. lein ia
or two. Except for very restricted classes of problems, determining the right. domain morphism
requires insight.

The role of the compiler is to autoiiate the process of finding appropriate morphisiims. One
Ii ids classes of programs thit are broad enough to eiicoilmpass interesting a 11(1critical application
areas, ye, restrictive enough to allow t he compiler to give a reasonable solution within a reasonable
amount of time and resource.

In the general case where the compiler is limited in its capability (since it cannot prove general
iheorenms automatically). the next best thing is to provide a language and programming environment

in which the insight of the programmer can be expressed and implemented. For example, the

specification of domain morphisms allows new data. fields to be antomiatically derived. The Crystal
metalanguage [9] provides such capabilities.

1.3 The Crystal Approach to Compilation

The Crystal functional language radically simplifies the data. dependency analysis necessary for
synthesizing parallel control structures. The iiterpretatioii of the index domains and data fields
admits efficient storage ima nagement which, in conventional function language implementations, is
(lifficlilt to (10.

The novel compilation techniques include synthesis of parallel control structures. automatic

layout ad di((list ribu t.ion of(l iat a, generation of explicit c'o1nu nication from program reference pat.-
t ('"ils, and global optimization between parallel jrogram iimodules. Unless 1 ie prograiiiiiner explicitly
provides such i information, these tech 1iqu(iCe ar icliecessary for aly compiler targeting (distributed
memory architectures. For j)roblemiis that are (lynamilic in nature, the redistribution of data and
tasks is handled by the rumitimie system, utilizing bot h the static analysis obl)ained at coiipile-liime
and the dyna.imic (dependlency a iind profile of c0olmptat0ion gatheredd(luring the execu tion.

In dealing with the two related issues of miiimizimig conunuiiication overhead anid determininilig
data layout and load distribution. the compiler first. (eterlines the relative location of the data

61

structures in a virtual domain and then aggregates contiguous parts of the data structures to be

mapped into a. single processor so as to convert as many references ii t ihe sure program as pOssil)
into local memory access. For the remaining references requiring interprocessor communications, the
compiler tries to match the reference patterns with a. library of aggregate communication operators

and chooses the ones which minimize network congestion and overhead.

2 The Crystal Language

Briefly, the language provides various data types and operations over them, a set of constructors for
defining new data types, functional abstraction for creating functions, and function application. A
program is a set of possibly mutually recursive definitions. The syntax has been kept simple, with
most language constructs expressed in prefix notation, except for simple arithmetic functions, which
are infix, and the list and set comprehension that uses the standard set comprehension notation
with keywords added.

2.1 Crystal Programs

A Crystal program consists of a set of mutually recursive definitions and directives. In the interactive
version, an expression is evaluated in the standard environment augmented by the definitions. In
the compiled version, input is indicated by calling the special function Stdln and output is done by
deiiiing the special function StdOut.

A definition has the fori a : T = (and binds (to the value of (evaliiatedl ii the current
environment augmented simultaneously with all the other definitions. The 1 is the type information
used by the compiler in the allocation of resources.

Expressions are inductively built up from the constants and the identifiers by function applica-
tion, both prefix and infix, the primitive data structure forms, the set and list comprehension, and
the conditional expression. For any type expression T, e:T indicates that the value of c is of type
1.

Given any expression ([x], which may or may not contain the variable x, fn(x):T{c[x]} deotes
a. function whose value at v of type 7' is the value of c evaluated in the current environment with

.r bound to v.
An expression may also be provided with a. local environment:

(where{ di ... d }

indicates that the expression (is to be evaluated in the current environment augmented with
definitions dl.

The general form for the conditional expression is

where the big's are Boolean explressions. kiiow i as guards, and the (,s' are eXpressions of the same
type. 'lie value of the conditional expression is (A. if one bA is true and otherwise unMiefied. A

special symbol, denoted else, represents the conjunction of the negation of the other guards.
When more than one guard is t rue, an arbitrary choice leads to nondeterminism, which will not

be addressed here.

62

Let f :7' x '' - be an associative function over sove data type T and let I = list{11 I}
be a list with elements from '. The operator reduce is defined by

reduce(f./) = f(lI, f(12,f . -f(1, 1,) .).))

The operator scan is defined by

scan(f,1) = list{mi,..., m~}

where i = 11, and mi = f(ii). Note that reduce can also be defined over sets, but scan
cannot since it assumes an ordering of the elements.

2.2 Index Domains

An index domain D consists of a set of elements (called indices), a set of functions from D to D
(called communication operators), a set. of predicates. and the communication cost associated with

each c'om mu nication opera.t or.

In essence. an index domain is a data type with communication cost associated with each
function or operator. The reason for making the distinction is that. index domains will usually
be i;ite and they are used iii defining (listributed data structures (as functions over sorme index
domain), rather than t heir elements being used as values. lor example. rect aiguilar arrays can be
considered to be functions over an index domain consisting of a set of ordered pairs on a rect angular
grid. Also, the elements of an index domain can be interpret ed as locations in a logical or real space
and 1ine over which the parallel computation is defined. So we classify index domains into certain
kinds (second order types) according to how they are to be interpreted (for example, as time or

space coordinates).
The time coordinates can be detected by the compiler and implemented as a loop whose body

may contain assignminents to array elements if such a. side effect can be done safely. A time domain
can be semi-infinite and depends on the function that is being defined over it. For each execution.
those lolmain elements that are actually generated during computation are controlled by the use of
t he minimializatiov operator. N Ii imalization over a semi-infinite domain corresponds to ujiioll id'd

inimnalizat ion. which simiiulates while-loops.

Basic Index Domains

Examples of basic classes of index domains include the interval, the hypercube. and tree domains.
Il this paper we only tree the interval index domain.

An interval (1oma in, denoted interval(im. n). where m and n are integers and in < n, is an index
domain whose elements are the set of integers { in.nm + 1. in + 2,....1 } with the usual integer
functions and predicates. The communication operators are prey : i - i - 1 and next : i - i + 1.
wit h coluilijunicat iou cost 1. l(e operators lb and ub ret uirn t he lower bolIlid (1n) a nd lthe upper
bound () of the interval domain respectively. When i1 > i1. we defiiie tihe illcdex lolaiii to be i le
s1n uIe except I hat prey and next have reversed ueaiuing.

Index Domain Constructors

Given index dolnailis D aid Ek. we call construct their product (D x A). lisjoint ililioli (coprod uct)

(D + E). and function space D - E. in Itlie usual way.

63

Siiice index domains are first class objects. it is possible to dei te a new iidex domtaimi as lthe
value of a recursively defined function. For example, let 13 be some index domain, and O[A(f(r'))]
be some index domain expression. Then

box)- B
A1= fn(.c) : T u~)-

fbi (-) - 0[A(f(x))]

defines an index domain for each .r in T, with suitable guards bo and b1. In this way. quite complex.
data-dependent index domains can be constructed.

Index Domain Morphisms

Index domain morphisms formalize the notion of transforming one index domain into another. In
this paper we define a special class of known as "reshape morphisms" simply to be a bijection
between two index doimaiins.

lere are examples of some useful reshape niorphisms:

An ffin morphism is a reshape niorphisim that is an affine fmicttion from one product. of
intervals to another. Affie morphismis unify all types of loo) tranisforimat ions (interchange, per-
imutat ion. skewing) [2, 3. 6. 22. 23]. and those for deriving systolic algorit hors [1. 19. 20. 8]. For
example. if DI = interval(0.3) and I 2 = interval(0.G). then y = fn(i.j) : /)l I {(J.1): 1) x V1}
is ail affi ne milOr'pl)hisi that ellectively perriiis a loo) ittr(chlalige.

Another example illustrates a slightly more interest ing codomlaiii ofl the imorphism g by taking
the image of a function J'.

D0 = interval(0,3)

D = Do x Do

E = image(D,j:')}where{'=fn(ij):I{(i-ji+j)}

g = fn(i, j):1){(i - j. i+ j):L'}

q-1 = fn(i.j):E{((i+ j)/2.(j- i)/2):D}

Whenever it is legal to apply this affine iiorphisim to a 2-level neste(l loop structure consistent
with the data depend cies int ihe loop body [1. 2. I. 5. 7. 22]) a st ruct iire that is siiiilar. bilt
"skewed" from the original, is generated. The most common case is when elements of the inner
loop can be executed iii parallel but only hall of the elements are active in each iteration of the
outer loop. In this example. the index (lomail LE has holes. and so guards in the loops iiust test
whether i + j and i - j are even. since only these points correspond to the integral points in D.

There are numerous other lorims of reshape morphisnms ranging from "piece-wise affine" mor-
phlisms for iore complex loop t ransfor'mat ions [18]. to those that a(re' iut ally recursive with the
program (to be transformed) oFor (lymanmic data (listrilltiou.

2.3 Data Fields and Data. Field Morphisins

Data fields generalize the notion of distributed data struct ures and recursively definable functions.

Definition. A data k 1(1 isi a function over some index domain 1 into some domain of values V.

Usually, 1 'will be ihe integers or the floating point numbers; however, for higher-order data

fields. it can be some domain of data fields. l)at a fields unify the notion of (list ributed data

64

structures, such as arrays, and functions. A parallel computation is specified by a set of data field
definitions, which may be mutually recursive.

To illustrate the use of data fields, consider the following program segment written in some
imperative language (assuming there are no other statements assigning values to .4):

float array A(O..nO..n);
if i=0 or j=O then A:=e1;
for i:= 2 to n do {

for j := 2, n do {
A(ij) := A(i-1,j) + A(i,j-1) } }

Let V be the data type of floating point numbers. In the notation of data fields, the above is
written as

D0 :domain = interval(0, n)

D:domain = prod-dom(Do. Do)

a:dfield(DAV) = fn(i, j):D{i=OV 0 -+e 1
else - a(i - 1, j)+ a(i. j- 1)

New data fields can be derived using index domain morphisms.

Definition. A data fiEld iiorphlsm induced by an index domain imorphisi g :1D - E. is a
mapping

(A' -)-(D - I'):a-. aoy

where D V and E l- are sets of data fields.

Given a data field a : D - V and a domain morphism g : D - E, what we generally want is to
find the new data field n such that g(L) = a. In order to solve this equation we need the inverse
of g-that is, g needs to be a reshape morphism. Then given g and g-1. we can formally derive
a=g~(a)=aog~1.

3 Program Transformation
Data fields and domain morphisnis are semantic entities that are represented in a programming
language. Semantically, a new data field can be defined as the composition of a data field and a
domain morphism.

We assume an equational theory of the Crystal language with the usual algebraic identities and
the inference rules. We can formally transform the original program into a more efficient one.

For simplicity, we begin with a program consisting of one definition:

a = fn(r):D{ra[a]},

where r1 [a] is an expression in x possibly containing a. Through an abuse of notation, we also use

a to denote the data field defined. Next., let the reshape morphismi y a-md its inverse be given I

y = fn(r):D{r 2:L'} and -1 = fn(y)::{r:j:)}.

Semantically, what we want is a data field i satisfying « = a o g 1. llowever, merely executing
l11e program g-1 followed by a does not decrease the communication cost. What we want is a new

definition of & that does not contain either a, g, or g-1. A strategy for obtaining a new definition

for h from the definitions of a, y, and g-, is the following:

65

1. Using the identity a = a o g, replace all occurrences of a with i o y in the definition of a.

2. Using a combination of unfoldings of g and g-' and various other identities given in the

theory, eliminate all occurrences of g and g-' from the result of the first step. A very useful
transformation turns out to be te j-abstraction, where we provide a function with dumi1v
arguments in order to unfold it.

4 The Crystal Metalanguage

Since the program transformations used above are all mechanizable, we have defined a metalanguage
in which these transformations can be defined, and which furthermore allows the user to experiment
with other transformations [9, 24].

Meta-Crystal borrows ideas from ML [10] and 3-Lisp [21]. It consists of basic constructors
and selectors for each of the constructs in Crystal and operations that manipulate programs and
a set of operations for manipulating the programs, such as folding and unfolding, substitution,
and normalization or beta-reduction. Using rneta-abstrmclion, the reshape transformation can be
defined in terms of primitive manipulations of the constructs.

5 The Crystal Compiler

The Crystal compiler consists of three major stages: the front-end, the middle-analysis, and the
back-end as shown in Figure 1. The frond-end builds the abstract syntax tree and other necessary
data structures for an input Crystal program.

The middle-analysis consists of the traditional semantic and dependence analyses, the more
novel reference pattern and domain analyses. and other source level transformations. At the heart
of the compiler is a module for generatiig explicit communication from shared-miemory program
referenI(ues [12. 1-1. 15]. 1Ndx domaiii aligiiinmit[13. 16] considers 1 h 1vproblvlm of optimniizing space
allocation for arrays based on the cross-reference patterns between arrays.

'T'he availability of massively parallel machines opeiis il)u opportunity for programs witi large
scale parallelism to gain tremendous performance over those that do not. We have recently obtained
new results in program dependency analysis (more accurate dependency test in the presence of
conditional statements [17]) and developed new loo) transformation techniques [18], both resulting
in more parallelism than existing techniques.

The back-end contains the code generators and the run-time systems. The code generation
is done in two separate steps. In the first step the Crystal code generator produces procedure
calls to the communication routine supported by the run-time system together with *Lisp code for
the CM/2 or C code for the hypercube multiprocessors. The s('quential code with the run-time
library routines form the interface between the parallelzing compiler and the single processor (e.g..
superscalar architecture) compiler, as shown il Figure 1.

Imm the second, code generation is done by invoking a vendor-supported compiler to compile *Lisp
or C into lower-level or machine code. In the case of the Connection Machine 2, the *Lisp compiler
generates PARIS instructions, which we found can be further optimized by a simple expression
compiler that provides significant performance imjprovemnents as shown in the next section. Since
then. Thinking Machines has developed a new instruction set with the so-called slice-wise data
representation that allows far better control of the inderlying hardware and thus offers miuch
better performance. Unfortunately, TMC is not committed to supporting *Lisl) targeted to the
slice-wise instruct ions. (onsequemit ly. o r cit rrmiet a llpproach of *Lisp-Paris- lx pression compiler will

66

Crystal Source Code

Preprocessing

(AST, Data Dependence Graph,
Domain Information)

Front-End

Phase Decomposition

Domain Alignment Middle-Analysis Modules

Space-time Analysis

Minimal General Communication Time-index
Domain Common Analysis Management
Analysis Subexpression (Communication (Array

Elimination Library) Compaction)

Life-span
Analysis
(Storage
Management)

Sequential Code and Calls to Run Time Library Routines

Run Time

Library

Implementation IImplementation

on CM-2 BniSC/2e,c

Node Compiler

Back-End
Optimizer

iS/Linker

iPSC/2 nCUBE64(X) iPSC/86(

l'igure 1: St ructure of I he (ryst al ('oupilei.

not. be used for any fu li.(leVelomient. A direct padh 10 som(kind of int.eriediate code will be
taken instead.

67

L
Aw

Machine #Nodes Peak Mflops/node Nominal Mflops/node

iPSC/2 (Yale) 6-1 1.10 0.65

iPSC/860 (OR1NL) 128 80.00 6.00 -- 10.00

nCU BE 2 (Sandia) 1024 8.00 1.00

CM-2 (Seduto, TMC) 8096 (512 FPI) 7.00 -

Table 1: The performance of parallel machines used.

6 Performance Results

T wo benchmark prograins. one for weat her forecasting and t lie oilier for semiconductor simulation,
are used to examine the perlormaiice of tie coIipiler-geierated code on t lre' NIMIMI 1ylperciil)e
miilt processors, naniely. Iitel IPSC/2. iPSC/860. and nCUBE 6-100. and thlie SMID Connection
Machilie.

The highest megallop rates obtained using the compiler generated code on these four machines
are given in Table 2 and Table 3. As a reference, we also give the peak and nominal megaflop rates
of each of the four machines in Table 1.

6.1 Machine Configuration and System Software Used

The Intel iPSC/2 with the 80386 processor located at Yale has 64 processors, runs Unix V/386 3.2
for host operating system, NX 3.2 for t lie nodes. and provides Intel 3.2 C compiler.

The iPSC/860i naciiiie (iPSC/2 wit i i860 node processors) located at Oak Ridge National Labs
(ORN L) has 128 processors, bit at miiost 6- processors are used for this experiment. Thlis inacline
has tle C compiler supplied by the Portland Group.

The tICUBE 6-100 located at Sandia National Labs has 1K processors although only 64 processors
are ised for our experinieitit. It has a Sui l as its front-end and provides the NCC 3.11 C compiler.

The timing results for the Connect ion Machine 2 are measured on an 8K processor CM-2 where
(achi processor has 256K bits of nienory and acih group of 32 processors share a i6-bit Floating
Point Units. C.\N software version 6.0 and *I.SI compiler 6.0 are used. The * Lisp compiler
generates PAIltlS in istructioiis which is in tlie so-called field-twisc dat foriiat.

Au expression compiler developed at ale generates opltimized field-wise CNIIS itistructioiis

where the muieiiory access(s are greatly rediiced. Tle performance results witi and without tile
expressioui coipiler are presented bor lie iwo applications. All results oiI t lie Coniiectiou Machine
are extrapolated to a full CM-2 wit h 6il processors. i.e.. 2K 6--bit float ing-point iunits.

6.2 Shallow Water Equation Solver

Shallow water equation is used to inodel I hue global notions of atmospheric flows in weather forecast.
The algorithm is iterative. operating on a two-dimensional grids, with local computation at each
grid point and data. exchanges bet weeii neighboring grid points. The Crystal program for this
shallow equation solver is given ii thle appendix.

Table 2 presents the (xecut iou f iiie aid muiegallop rates of this applicat ion for different maclinies.
Il I his experiment. 6 processors are ised for each of t liet three MIM D)machines. Ihe lproblemii size

68

Machine Total Time Computation Communication Mflops

Seconds Seconds % Seconds %

iPSC/2 85.208 80.392 94.3 6.846 5.7 24.00

iPSC/860 11.805 10.371 87.9 1.552 12.1 173.21

nCUBE 2 31.269 29.479 9-4.3 2.377 5.7 65.39

CM-2 (*LISP) 67.862 43.530 6.1.1 24.332 35.9 1810.00

CM-2 (*LISP/CM IS) 47.472 23.152 -18. 24.320 51.2 26:30.00

Table 2: The performance of Shallow-water Equation Solver

used is 256K x120 (area x iteration). For the Cionnection Machine, a. much larger problem size,

16Mx 120, is used. Due to the difficulty with the iiode compiler of the i860 chip, we aren't. able
to get. much beyond 2 megaflops per processor. Given the same problem size. the computation on

an iPSC/860 processor is 8 times faster tham that of an iPS'C/2 processor while its communication
capability is about 4.5 times faster, thus result ilig in a. higher percent age ol communications overhead
ior the iP1SC/860. Quadrapli ug the Jprobllem Size for i lSC/860 increases the total rate to about 1.40

megallops, with the percentage of comuiiiinication overhead slightly higher at 13from short-message
send/receive to long-message send/receive.

For this application, CM-2 has a more significant communication overhead, about 60inter-
processor com unuication. One possible explanationi for the higher percentage communication

overhead for the CM result is the following: Each processor on a hypercube machine computes
a. sub-grid, and the data exchange involves only the boundary grid points whereas the each CM

processor iterates over tle virtual processors. forcing the data movement of all grid points either

by actual communications between processors or by local copying within lprocessors.

The speed up of execut iou I ime over increasing nu 1iber of processors o It lese mitachites a re slo% I

ill Figures 1(a.) aid 1(b). The problem size used is 6-1 Kx 120 for Ibypercu be machines, and AM x 120

for C M-2. As a CM-2 cainot be configured ito many differetit sizes, the IlK processor couiliguraLioti
is used as the basis. Some of the points in lFigure 1(b) are extrapolated from the timings on one

machine size with different lumber of virtual processors (vp-ratios). We can do this becasue vp-
ratio is the predominant factor for determining the computation time and communication time

between adjacent processors.

6.3 Bohr Code
Bohr code is an application using monte-carlo method for semiconiductor simulatiouis. It contains
tmianty itdepeendent trials (umax is the local array size ii each trial) which cal be done concurrently
on different processors, with a global reduction sunuarizing the result of all trials.

Table 3 presents t he execution time aind megaflop rates for this code. Similar to the above, 6-1
nodes are used for the three NMIMD machines for this bencihmaik. The problem size used is 411K xl

(trials x umax) for tie IIMIML) aclhites and 256Kx 6l For the CM.
Since the only comniunication needed for this application is a global reduction at the end of

program execution, coinmu nication Li me is ahI itost a itnegligible portion of total executionL tie.

69

Machine Total Time Computation Comm 1ication Mflops

Seconds Seconds % Seconds %

iPSC/2 12.413 12.331 99.3 0.01l 0.7 26.40

iPSC/860 3.348 3.320 99.2 0.028 0.8 97.87

nCUBE 2 8.148 8.115 99.6 0.033 0.1 1 10.22

CM-2 (*LISP) 45.054 43.926 97.5 1.128 2.50 2370.00

CM-2 (*LISP/CMIS) 31.460 30.350 96.5 1.110 3.53 3400.00

Table 3: The performance of Bohr code

The speedups of Bohr code on different machines are shown in Figures 1(c) and 1(d). The
problem size used here is 4Kx4 for the three MIMD machines, and 16K x10 for CM-2.

For obtaining speedup result on the CM-2. the same problem size must. be used for all machine
sizes. Due to the heavy use of memory of this applicaiton, the largest problem size can fit on
a -1K-processor configuration will 1ru1 o1 a 16K-processor machine with one virtual processor per
node. Consequently, a larger machine will be useful only with a larger Iproblem. Hence the speed up
results are only given for three configurations. Again. we ext rapolate the speeduip results based on
a single physical machine size. According to the timing result. the small percentage of the reduction
time indicates the accuracy of extiropolation alt hough, in isolation, a gloabal reduction depends on
the machine size as well as te problem Size.

References

[1] J.11. Allen. Dcpciuhene analysiss for Subscript Variabhes and Its .4 pplication to Program Tr'vans-

formation. PhD) thesis, Rice University. April 1983.

[2] .J.11. Allen and K. Kennedy. Aitomatic loop interchange. Il Procr-eing., of I&h SIUPL.4AN'84
Symposium oil ('ompi(. CoI1.strUction, pages 233-16. ACM, 198-1.

[:] J.R. Allen and K. Kennedy. Automatic translation of FORTRAN programs to vector form.
A C1 Tnansactions oil Programming Languags and Systems, 9(4):491-542, 10 1987.

(] U. hBanerjee. Data dependence in ordinary programs. Master's thesis, University of Illinois at
Urbana-Champaign. November 1976.

[5] U. Banerjee. Speedup of Ordiiuary Programs. PhD thesis, University of Illinois at Urbana-
Champaign, October 1979.

[6] U. IBanerjee. A theory of loop permulatioii. Teclinical report. Intel Corporation, 1989.

[7] M. 1urke and t. Cytron. Imtmrprocedu iral depeildeice analysis ad 1(1parallelizalion. Ii Pro-
c:didgs of thc SIPLA'. N '86. 19(i.

[s] Marina Chen , Young-il Choo. and Jingke Li. Compiling parallel pirogranis by 1)optimizing
performance. .Iournal of .Sup(romputing. 1(2):171--207, .1uly 1988.

70

so

40

.0

o iPSC/2
o 1880
a nCUBE/2

Number or Processors

(a) Speedup of Shallow-water ('ode
OI Iy,'percu) M'acliiiies

I0

0.

U

bU

mro 40
Number of Processors (K)

60

(b) Speedup of Shallow-water ('ode on CM-2

so I

o iPSC/2
0 1860
o nCUBE/2

40 -
CL

cn

20

20 40 s0
Number or Processors

(c) Speeduip of Bohr ('ode oji hIy p'.rciube
Machines

151

10l
a.

s'

S oCM--2

(d) Speedup of lohr ('ode oti ('M-2

F'igiire 2: Speedups of Shallow-water and Bohr Applications

[9] Young-il Choo and Marina Chen. A theory of parallel-prograi optinization. Technical Report
YA LEU /DCS/TR-608, Dept. of Computer Science, Yale University, Jilly 1988.

[10] M. Gordon, R. Milner, and C. Wadsworth. Edinburgh LOP'. Springer-Verlag, Berlin, 1979.

[11] R. Karp, R. Miller, and S. Winograd. ''lie organization ol coi put at ions bor uniforni recurrence
equations. Journal of ti A C. 0 -1(3):563 90. .July 1967.

71

20 40 60
Number o Processors (K)

I -"

o CM-2

..
-

,/.

./

i

ice,

_ _ __. _.. _ .1.. _ . _ , J ., . 1
IAA A A

20 F

so

[12] Jingke Li and Marina Clien. Generating explicit communications from shared-memory pro-
gramit references. In Procedings of Supercomputing'90, 1990.

[13] Jingke Li and Marina Chen. Index domain alignment: Miitnizing cost, of cross-reference
between distributed arrays. In The Proceedings of I/u 31yl Symposium on I/u Frontirs of
Alassively Parallel Computation, 1990.

[1-1] Jingke Li and Marina Chen. PIrcc(dings of /LI \\'orkshop on Piogiamming Languagui aild

Compilers for Parallel Computing, chapter Automating the Coordination of Interprocessor
Communication. MIT Press, 1990.

[15] Jingke Li and Marina Chen. Compiling communication-efficient programs for massively par-
allel machines. IEEE Transaction on Parallel and Distributed Systems, 1991.

[16] Jingke Li and Marina Chien. The data alignment phase in compiling programs for distributed-
memory machines. Journal of Parallel and Distributed Computing, 1991.

[17] Lee-chiung Lu and Marina Chien. Sitbdoumain (lependency test for massively parallelism. In
Proceedings of Supcircomputing'90, 1990.

[18] Lee-chung Lu and Marina Chen. A unified framework for systematic applications of loop
transformations. Teciical Report 818. Yale Uiiiversity, A ugust 1990.

[19] D.I. Moldovan. On the analysis and synthesis of vlsi algorithms. IEEE Transactions on
Computers, C-31(11):1121-26. Nov. 1982.

[20] P. Quinton. Automatic synthesis of systolic arrays from uniform recurrent. equations. In
Proceedings of 11th A annual Symposium OIL Computer Architectunr. pages 208--14, 198-1.

[21] Brian Camtwell Smit h. Reflecttin and sematt ics ii lisp. I Eli i' ut/ .- irnial A'A Symposium

on Principles of Pogrammning L lLagua(s. pages 23--35, Salt Lake Citv. Utah. January 198-1.
A Cl.

[22] M.J. Wolfe. Optimizing Supercompilers for Superompulers. IPhD thesis. University of Illinois
at Urbana-Champaign, Dept. of Comiputer Science, 1982.

[23] NI.J. Wolfe. Optimizing Supercompilers for Supercomputers. MIT Press, Cambridge, Mass.,
1989.

[2-1] Allan Yang. Design awd imllemlentation of meta-crystal: A metalangimage for jpa rallel program
ol)timization. Technical rejmoit, Yale LUi-iversity. 1989.

72

A New Method for Compile-

Time Granularity Analysis:

An Extended Abstract

X. Zhong, E. Tick, S. Duvvuru,

L. Hansen, A. V. S. Sastry and R. Sundararajan

University of Oregon

Abstract

We present a new granularity analysis scheme for concurrent logic programs. The main

idea is that, instead of trying to estimate costs of goals precisely, we provide a compile-time

analysis method which can efficiently and precisely estimate relative costs of active goals

given the cost of a goal at runtime. This is achieved by estimating the cost relationship

between an active goal and its subgoals at compile time, based on the call graph of the

program. teration parameters are introduced to handle recursive procedures. Compared

with methods in the literature, our scheme has several advantages: it is applicable to any

program, it gives a more precise cost estimation than static methods, and it has lighter

runtime overheads than absolute estimation methods.

1 Introduction

The importance of grain sizes of tasks in a parallel computation has been well recognized [6, 5, 7].

In practice, the overhead to execute small grain tasks in parallel may well offset the speedup

gained. Therefore, it is important to estimate the costs of the execution of tasks so that at

runtime, tasks can be scheduled to execute sequentially or in parallel to achieve the maximal

speedup.

Granularity analysis can be done at compile time or runtime or even both [7]. The compile-

time approach estimates costs by statically analyzing program structure. The program is par-

titioned statically and the partitioning scheme is independent of runtime parameters. Costs of

most tasks, however, are not known until parameters are instantiated at runtine and therefore,

the compile-time approach may result in inaccurate estimates. The runtime approach, on the

other hand, delays the cost estimation until execution and can therefore make more accurate es-

timates. However, the overhead to estimate costs is usually too large to achieve efficient speedup,

and therefore the approach is usually infeasible. The most promising approach is to try to get as

73

much cost estimation information as possible at compile time and make the overhead of runtime

scheduling very slight. Such approach has been taken by Tick [10], Debray et al. [2], and King

and Soper [4]. In this paper, we adopt this strategy.

A method for the granularity analysis of concurrent logic programs is proposed. Although the

method can be well applied to other languages, such as functional languages, in this paper, we

discuss the method only in the context of concurrent logic programs. The key observation behind

this method is that task spawning in many concurrent logic program language implementations,

such as Flat Guarded Horn Clauses (FGHC) [12], depends only on the relative costs of tasks.

If the compile-time analysis can provide simple and precise cost relationships between an active

goal and its subgoals, then the runtime scheduler can efficiently estimate the costs of the subgoals

based on the cost of the active goal. The method achieves this by estimating, at compile time,

the cost relationship based on the call graph and the introduction of iteration parameters.

2 Motivations

Compile-time granularity analysis is difficult because most of the information needed, such as

size of a data structure and number of loop iterations, are not known until runtime. Sarkar [7]

used a profiling method to get the frequency of recursive and nonrecursive function calls for a

functional language. His method is simple and does not have runtime overheads, but can give

only a rough estimate of the actual granularity.

In the logic programming community, Tick [10] first proposed a method to estimate weights

of procedures by analyzing the call graph of a program. The method, as refined by Debray

[1], derives the call graph of the program, and then combines procedures which are mutually

recursive with each other into a single cluster (i.e., a strongly connected component in the call

graph). Thus the call graph is converted into an acyclic graph. Procedures in a cluster are

assigned the same weight which is the sum of the weights of the cluster's children (the weights

of leaf nodes are one, by definition). This method has very low runtime overhead; however,

goal weights are estimated statically and thus cannot capture the dynamic change of weights at

runtime. This problem is especially severe for recursive (or mutually recursive) procedures.

As an example of the method, consider the naive-reverse procedure in Figure 1.1 Examining

the call graph, we find that the algorithm assigns a weight of one to append/3 (it is a leaf), and

a weight of two to nrev/2 (one plus the weight of its child). Such weights are associated with

every procedure invocation and thus cannot accurately reflect execute time.

Debray et al. [2] presented a compile-time method to derive costs of predicates. The cost of a

predicate is assumed to depend solely on its input argument sizes. Relationships between input

and output argument sizes in predicates are first derived based on so-called data dependency

'The clauses in the nrev/2 program do not have guards, i.e., only head unification is responsible for commit.

74

nrev

nrev([],R) :- R=[].
nrev([HIT],R) nrev(T,R1), append(Rl,[H],R).

append([L,A) A=L.
append([HIT],L,A) :- A=EHIA1], append(T,L,A1). back to nrev

appen

back to append

Figure 1: Naive Reverse and its Call Graph

graphs and then recurrence equations of cost functions of predicates are set up. These equations

are then solved at compile time to derive closed forms (functions) for the cost of predicates and

their input argument sizes, together with the closed forms (functions) between the output and

input argument sizes. Such cost and argument size functions can be evaluated at runtime to

estimate costs of goals. A similar approach was also proposed by King and Soper [4]. Such

approaches represent a trend toward precise estimation. For nrev/2. Debray's method gives

Cost,.,(n) = 0.5n2 + 1.5 + 1, where n is the size of the input argument. This function can

then be inserted into the runtime scheduler. Whenever nrev/2 is invoked, the cost function is

evaluated, which obviously requires the value 71, the size of its first argument. If the cost is

bigger than some preselected overhead threshold, the goal is executed in parallel; otherwise, it

is executed sequentially.

The method described suffers from several drawbacks (see [13] for further discussion). First,

there may be considerable ruinitime overhead to keep track of argument sizes, which are essential

for the cost estimation at runtime. Furthermore, the sizes of the initial input arguments have

to be given by users or estimated by the program when the program begins to execute. Second,

within the umbrella of argument sizes, different metrics may be used, e.g., list length, term

depth, and the value of an integer argument. It is unclear (from [2, 4]) how to correctly choose

metrics which are relevant for a given predicate. Third, the resultant recurrence equations for

size relationships and cost relationships can be fairly complicated.

It is therefore worth remedying the drawbacks of the above two approaches. It is also

75

clear that there is a tradeoff between precise estimation and runtime overhead. In fact, Tick's

approach and Debray's approach represent two extremes in the granularity estimation spectrum.

Our intention here is to design a middle-of-the-spectrum method: fairly accurate estimation,

applicable to any procedures, without incurring too much runtime overhead.

3 Overview of the Approach

We argue here, as in our earlier work, that it is sufficient to estimate only relative costs of goals.

This is especially true for an on-demand runtime scheduler [8]. Therefore, it is important to

capture the cost changes of a subgoal and a goal, but not necessarily the "absolute" granularity.

Obviously the costs of subgoals of a parent goal are always less than the cost of the parent

goal, and the sum of costs of the subgoals (plus some constant overhead) is equal to the cost

of the parent goal. The challenging problem here is how to distribute the cost of the parent

goal to its subgoals properly, especially for a recursive call. For instance, consider the naive

reverse procedure nrev/2 again. Suppose goal nrev([1,2,3,4),R) is invoked (i.e., clause two

is invoked) and the cost of this query is given, what are the costs of nrev([2,3,4],R1) and

append(R1,[1,R)?

It is clear that the correct cost distribution depends on the runtime state of the program. For

example, the percentage of cost distributed to nrev([1,2,3,41,R) (i.e., as one of the subgoals

of nrev([1,2,3,4,5],T) will be different from that of cost distributed to nrev([1,2],R). To

capture the runtime state, we introduce an iteration parameter to model the runtime state, and

we associate an iteration parameter with every active goal. Since the cost of a goal depends

solely on its entry runtime state, its cost is a function of its iteration parameter. Several intuitive

heuristics are used to capture the relations between the iteration parameter of a parent goal and

those of its children goals. To have a simple and efficient algorithm, only the AND/OR call

graph of the program, which is slightly different from the standard call graph, is considered to

obtain these iteration relationships. Such relations are then used in the derivation of recurrence

equations of cost functions of an active goal and its subgoals. The recurrence equations are

derived simply based on the above observation, i.e., the cost of an active goal is equal to the

sunimation of the costs of its subgoals.

We then proceed to solve these recurrence equations for cost functions bottom up, first for

the leaf nodes of the modified AND/OR. call graph, which can be obtained in a similar way in

Tick's modified algorithm by clustering those mutually recursive nodes together in the AN I)/OR

call graph of the program (see Section 2). After we obtain all the cost functions, cost distribution

functions are derived as follows. Suppose the cost of an active goal is given, we first solve for its

iteration parameter based on the cost function derived. Once the iteration paranieter is solved,

costs of its subgoals, which are functions of their iteration parameters, can be derived based on

76

the assumption that these iteration parameters have relationships with the iteration paramiet er

of their parent, which are given by the heuristics. This gives the cost distribution functions

desired for the subgoals.

To recap, our compile-time granularity analysis procedure consists of the following steps:

1. Form the call graph of the program and cluster mutually recursive nodes of the

modified AND/OR call graph.

2. Associate each procedure (node) in the call graph with an iteration parameter

and use heuristics to derive the iteration parameter relations.

:1. Form recurrence equations for the cost functions of goals and subgoals.

4. Proceed bottom up in the modified AND/OR call graph to derive cost functions.

5. Solve for iteration parameters and then derive cost distribution functions for

each predicate.

4 Deriving Cost Relationships

4.1 Cost Functions and Their Recurrence Equations

To derive the cost relationships for a program, we use a graph G (called an AND/OR call

graph) to capture the program structure. Formally, G is a triple (N, E, A), where N is a set of

procedures denoted as {PIP2-. -. ,p,,} and E is a set of pair nodes such that (P1,p2) E E if and

only if P2 appears as one of the subgoals in one of the clauses of pi. Notice that there might

be multiple edges (pI, P2) because pi might call P2 in multiple clauses. A is a partition of the

multiple-edge set E such that (pI,,p2) and (pI, P3) are in one element of A if and only if p2 and

P3 are in the body of the same clause whose head is pl. Intuitively, A denotes what subgoals are

AND processes. After applying A to edges leaving out a node, edges are partitioned into clusters

which correspond to clauses and these clauses are themselves OR processes. Figure 2 shows an

example, where the OR branches are labeled with a bar, and AND branches are unmarked. Leaf

facts (terminal clauses) are denoted as empty nodes.

As in [1], we modify G so that we can cluster all those recursive and mutually recursive

procedures together and form a directed acyclic graph (DAG). This is achieved by traversing G'

and finding all strongly-connected components. In this traversing, the difference between AND

and OR nodes is immaterial, and we simply discard the partition A. A procedure is recursive

if and only if the procedure is in a strongly-connected component. After nodes are clustered

in a strongly-connected component in G, we form a DAG G', whose nodes are those strongly-

roiiiected components of G and edges are simply the collections of the edges in G. This step

can be accomplished by aim efficient algorithm proposed by Tarjan [9].

77

qsort(0, S) :- S=[J.
qsort([ITJS) :-

split (TM, S,L),
qsort(S,SS),
qsort(L,LS),
append(SS,LS,S).

split([], MS,L) S=[J, L=.
split([HITJ,H,S,L) :- H < N I

S=[HITS], split(T,M,TS,L).
split([HITJ,M,S,L) :- H >= N I

L=EHITL), split(T,M,S,TL).

sort

buck to qsor't
split append

Lack to split

Figure 2: Quick Sort: FGHC Source Code and the AND/Olt Call Graph

The cost of an active goal p is determined by two factors: its entry runtime state % during the

program execution and the structure of the program. We use an integer n, called the itcmldion

ximneker, to approximately represent state s. Intuitively, n can be viewed as an encoding of a
program runtime state. Formally, let, S be the set of program runtime states, .! be a mapping

from S to the set of natural numbers N such that Af(s) = n for s E S. It is easy to see that the

cost of p is a function of its iteration parameter n. It is also clear that the iteration parameter

of a subgoal of p is a function of n. Hereafter, suppose p,, is the Jth subgoal in the ith clause of

p. We use I(n) to represent the iteration parameter of p,. The problem of how to determine

function Ii will be discussed in Section -1.2.

To model the structure of the program, we use the AND/OH call graph (6 as an approx-

imation. In other words. we ignore the attributes of the data, such as size an(l (Iependencies.

We first derive recurrence equations of cost functions between a proce(dIre p and its subgoals by

looking at G. Let Cost,(n) denote the cost of p. Three cases arise in this derivation:

Case 1: p is a leaf node of G' which is non-recursive. This includes cases where

that p is a. built-in predicate. In this case, we simply assign a constant c as (ost)(n).

c is the cost. to execute p. For instance such cost can be chosen as the number of

machine instructions in 1).

For the next two cases, we consider non-leaf nodes p, with the following clauses (OR pro-

cesses),

78

(.1 : 11 :~ P11,---.,Pin3.

C2 : p :- P2,...,P2n2.

C, : P :- Pv,...9,Pknk.

Let the cost of each clause be Costc,(n) for I j 5 k. We now distinguish whether or not p is

recursive.

Case 2: p is not recursive and not mutually recursive with any other procedures.

We can easily see that
k

Cost,(II) 52Costc, (1).()

3=1

Conservatively, we approximate Cost,(n) as the right-hand side of the above inequal-

ity.

Case 3: p is recursive or mutually recursive. In this case, we must be careful in the

approximation, since minor changes in the recurrence equations can give rise to very

different estimation. This can be seen for split in qsort example in Section 2.

To be more precise, we first observe that some clauses are the "boundary clauses,"

that is, they serve as the termination of the recursion. The other clauses, whose

bodies have some goals which are mutually recursive with p, are the only clauses

which will be effective for the recursion. Without loss of generality, we assume for j >

u, C, are all those "mutually recursive" clauses. For a nonzero iteration parameter

n (i.e., n > 0), we take the average costs of these clauses as an approximation:

1
Cost,(n) = k 1 Costc,(n) (2)

j=U+1

and for n = 0, we take the sum of the costs of those "boundary clauses" as the

boundary condition of Cost,(7):

Cost,(0) = ZCostc,(0).
j=1

The above estimation only gives the relations between cost of p and those of its clauses. The

cost of clause C can be estimated as

nJ

Costc,(n) = CHead + L Cost,,,,,(Ipj(n)) (3)
m=1

where CHead3 is a constant denoting the cost fo- head unification of clause C, and I3 m(n) is

the iteration parameter for the 77 1 th body goal. Substituting Equation 3 back into Equation I

or 2 gives us the recurrence equations for cost functions of predicates.

79

4.2 Iteration Parameters

There are several intuitions behind the introduction of the iteration parameter. As we mentioned

above, iteration parameter n represents an encoding of a program runtilme state as a positive

integer. In fact, this type of encoding has been used extensively in program verification. e.g.,

[3], especially in the proof of loop termination. A loop Z terminates if and only it is possible to

choose a function M which always maps the runtime states of C to nonnegative integers such

that M monotonically decreases for each iteration of C. Such encoding also makes it possible

to solve the problem that once the cost of an active goal is given, its iteration parameter can

be obtained. This parameter can be used to derive costs of its subgoals (provided the iteration-

parameter functions Im are given), which in turn give the cost distribution functions.

Admittedly, the encoding of program states may be fairly complicated. Hence, to precisely

determine the iteration-parameter functions for subgoals will be complicated too. In fact, this

problem is statically undecidable since this is as complicated as to precisely determine the

program runtime behavior at compile time. Fortunately, in practice, most programs exhibit

regular control structures that can be captured by some intuitive heuristics.

To detL ,-ine the iteration-parameter functions, we first observe that there is a simple conser-

vative rule: for a recursive body goal p, when it recursively calls itself back again, the iteration

parameter must have been decreased by one (if the recursion terminates). This is similar to

the loop termination argument. Therefore, as an approximation, we can use IY(n) = i - I

as a conservative estimation for a subgoal pam which happens to be p (self-recursive). Other

heuristics are listed as follows:

1. For a body goal pin whose predicate only occurs in the body once and it is not

mutually recursive with p (i.e., not in a strongly-connected component of p), 1-1)1(1n) =

n.

2. If pi.. is mutually recursive with p and its predicate only occurs once in the body,

Iar(nZ) = n- 1.

3. If pi, is mutually recursive with p and its predicate occurs I times in the body, where

1 > 1, IJ(n) = n/I (this is integer division. i.e.. the floor function).

The intuitions behind these heuristics are simple. Heuristic 1 represents the case where

a goal does not invoke its parent. In almost all programs, this goal will process information

supplied by the parent. thus the iteration parameter remains unmodified. heuristic 2 is based

on the previous conservative principle. Heuristic 3 is based on the intuition that the iteration

is divided evenly for multiple callees. Notice for the situation in heuristic 3, we can also use

our conservative principle. However, we avoid use of the conservative principle, if possible.

80

because the resultant estimation of Cost,(n) may be an exponential function of n, which, for

most practical programs, is not correct .

These heuristics have been derived from experimentation with a number of programs, placing

a premium on the simplicity of I(n) [13]. A remaining goal of future research is to further justify

these heuristics with larger programs, and derive alternatives.

4.3 An Example: Quicksort

After we have determined the iteration-parameter functions, we have a system of recurrence

equations for cost functions. These system of recurrence equations can be solved in a bottom-

up manner in the modified graph G'. The problem of systematically solving these recurrence

equations in general is discussed in [13]. Here, we consider a complete example for the qsort/2

program given iii Figure 2.

The boundary condition for Cost.,r(n) is that Cost.qsort(O) is equal to the constant execution

cost d, of qsort/2 clause one. The following recurrence equations are derived:

Costqort(O) =d

CostqoI-t(II) = Costc2

With Heuristic 2, we have

Cost c 2 = d2 + Cost.,,jt(n) + 2Costy,, 1,t(n/2)

where d2 is the constant cost for the head unification of the second clause of qsort/2.

Similarly, the recurrence equations for Cost,,liat(n) are

Cost.8 ,,t(O) = d3

Cost3 Plit(n) = (Costc 2 + Costc,)/2

Furthermore,

Costc 2 = Coste3

= d4 + Cost.p,t(n - 1)

where (14 is time constamit cost. for the head unification of the second (a.d the third) clause of

split. We first, solve t lie recurIreince equatiomis for split, which is il the lower level il C' a 111d

a-1d I leu solve the r1tc(1((cev(jtitionsI or qsort. This gives us Cost *%(/I) = d1 + d.1 which

81

can be approximated as d4n and Cost sort(n) = d, + d2 log n+ d4 ilog n, which is thle well known

average complexity of qsort.

Finally, it should be noted that it is necessary to distinguish between tlie recursive and

nonrecursive clauses here and take the average of the recursive clause costs as an approximation.

If we simply take the summation of all clause costs together as the approximation of the cost

function, both cost functions for split and qsort would be exponential, which are not correct.

More precisely, if the summation of all costs of clauses of split is taken as Costpit(n), we will

have

Cost,,iu(n) = d3 + 2(d4 + Cost,,ta(n - 1))

The solution of Cost,,if(n) is an exponential function, which is not correct.

5 Distributing Costs

After we have derived functions of the iteration paranmeter for each procedure, we are now ready

to derive cost distributing formulae for a given procedure and its body goals. The first step is

to solve for the iteration parameter it in Equation 3 assuming that Cost,)(-n) is given at runtime

as C'. Assuming that clause i is invoked in runtime, we approximate Costc.,(n) as (', and solve

Equation 3 for n. Let n = F(C,) be the symbolic solution, which depends on the runtime value

of Cost,(n) (i.e., C,), we can easily derive costs of its subgoals of clause i as we can simply

substitute n with F(C,) in Costp,,,(Ii,,(n)), which gives rise to the cost distributing functions

we need to derive at compile time.

Let's reconsider the nrev/2 procedure. The cost equations are derived as follows:

COstnrtO(n) = COst irev(n - 1) + CostappE71(n)

COstnrev(O) = C1

CoStappen(nl) = CostPeE71A(- 1) + ,'

Costappend(O) = Q

We can easily derive the closed forms for these two cost functions as Cost,,p,(an) = / x C + c2

which can be approximated as C x n, and COStIrev(f) = Ca X 712/2. Now, given the ('ostai,.eu(n)

as C, we solve for n and have n = . ence, we have Costirev(n - 1) = Ca(V - 1)2/2

and COsta,,end(fl) = Ca . These are the desired cost distributing functions.

It should be pointed out that in some cases, it is not necessary to first derive the cost

functions and then derive the cost distributing functions since we can simply derive the cost

82

distributing scheme directly from the cost recurrence equations. For exaniple, consider the

Fibonacci function, where the cost equations are

Costflb(n) = Cf + 2 x Cost1 b(n/ 2)

Costf b(O) = Ci

Without actually deriving the cost functions of Costfib(n), we can simply derive the cost dis-

tributing relationship from the first equation as Costfib(n/2) = (CostfA(n) - Cf)/2.

Also note that at compile time, the cost distributing functions should be simplified as much

as possible to reduce the runtime overhead. It is even worthwhile sacrificing precision to get a

simpler function. Therefore, a conservative approach should be used to derive the upper bound

of the cost functions. In fact, we can further simplify the cost function derived in the following

way. If the cost function is of a polynomial form such as conk + c171 k-i + ..-. c, we simplify it

as kconk and if the cost function is of several exponential components such as ca" + c2b" where

b > a, we simplify it as (c, + c2)b". This will simplify the solution of the iteration parameter

and the cost distributing function and hence simplify the evaluation of them at runtime.

5.1 Runtime Goal Management

The above cost relationship estimation is well suited for a rmuntime scheduler which adopts an

on-demand scheduling policy (e.g., [8]), where PEs maintain a. local quetie for active goals and

once a PE becomes idle, it requests a. goal from other PEs. A simple way to distribute a goal to

a. requesting PE is to migrate an active goal in the queue. The scheduler should adopt a. policy

to decide which goal is going to be sent. It is obvious that the candidate goal should have the

maximal grain size among those goals in the queue. Hence, we can use a priority queue where

weights of goals are their grain sizes (or costs). The priority is that the bigger the costs are,

the higher priority they get. Because the scheduler only needs to know the relative costs, we

can always assume the weight of the initial goal is some fixed, big-enough number. Based on

this initial cost and the cost distributing formulae derived at compile time, every time a. new

clause is invoked, the scheduler derives the relative costs of'body goals. The body goals are then

enqueued into the priority queue based on their costs.

Some bookkeeping problems arise from this approach. First, even though we can simplify

the cost distributing functions at compile time to some extent, the runtime overhead may still

be large, since for each procedure invocation, the scheduler has to calculate the weights of the

body goals. One solution to this problem is to let the scheduler keep track of a. mnodulo counter

and when the content of the counter is not zero, the scheduler simply lets the costs of the

body goals be the same as that of their paret. Omice the c(otent. of the coumiter becomes zero,

time cost -distribuitinig 1,1(nc1iois ame used. If we caii choose an appropriate coiitting period, t Hiis

83

method is reasonable (one counter increment has less overhead than the evaluation of tile cost

estimate).

Another problem in this approach is that for long-running programs, costs may become

negative, i.e., the initial weight is not large enough. Since we require only relative costs, a

solution is to reset all costs (including those in the queue, and in suspended goals), when some

cost becomes too small. Cost resetting requires the incremental overhead of testing to determine

when to reset.

6 Conclusions and Future Work

We have proposed a new method to estimate the relative costs of procedure execution for a

concurrent language. The method is similar to Tick's static scheme [10]. but gives a more

accurate estimation and reflects runtime weight changes. This is achieved by the introduction

of an iteration parameter which is used to model recursions.

Our method is based on the idea that it is not the absolute cost, but rather the relative

cost that matters for an on-demand goal scheduling policy. Our method is also amenable to

implementation. First, our method can be applied to any program. Second, the resultant

recurrence equations can be solved systematically. In comparison, it is unclear how to fully

mechanically implement the schemes proposed in [2, 4]. Nonetheless, our method may result in

an inaccurate estimation for some cases. This is because we use only the call graph to iodel

the program structure, not the data. We admit that further static analysis of program structtire

such as argument-size relationships can give more precise estimations.

Future work in granularity analysis includes the development of a more systematic and

precise method to solve the derived recurrence equations. It is also necessary to examine this

method for practical programs, performing benchmark testing on a multiprocessor to show the

utility of the method.

Acknowledgements

E. Tick was supported by an NSF Presidential Young Investigator award.

References

[1] S. K. Debray. A Remark on Tick's Algorithm for Compile-Time Granularity Analysis.

Research note, Department of Computer Science, University of Arizona, Jumme 1989.

[2] S. K. Debray, N.-W. Lin, and M. Hermenegildo. Task Granularity Analysis in Logic Pro-

grams. In SIGPLAN Conference on Programming Language Design and Inmpcmentation,

84

pages 174-188. ACM Press, June 1990.

[3] D. Gries. Science of Progamming. Springer-Verlag, 1989.

[4] A. King and P. Soper. Granularity Control for Concurrent Logic Programs. In International

Computer Conference, Turkey, 1990.

[5] B. Kruatrachue and T. Lewis. Grain Size Determination for Parallel Processing. IEEE

Software, pages 23-32. January 1988.

[6] C. McGreary and 1. Gill. Automatic Determination of Grain Size for Efficient Parallel

Processing. Communications of the A CAI, 32:1673-1978, 1989.

[7] V. Sarkar. Partitioning and Scheduling Parallel Programs for Execution on Multiprocessors.

MIT Press, Cambridge MA, 1989.

[8] M. Sato and A. Goto. Evaluation of the KL1 Parallel System on a Shared Memory Multi-

irocessmr. In IFIP Working Conference on Parallel Processing, pages 305-318. Pisa, North

lolland, May 1988.

[9] It. E. Tarjan. Data Structures and Network Algorithms, volume 44 of Regional Conference

Series in Applied Wathcmatics. Society for Industrial and Applied Mathematics, P1hiladel-

phia PA, 1983.

[10] E. Tick. Compile-Time Granularity Analysis of Parallel Logic Programming Languages.

Net w Generation Computing, 7(2):325-337, January 1990.

[11] E. Tick. Parallel Logic Programming. MIT Press, Cambridge MA, 1991.

[12] K. Ueda. Guarded Horn Clauses. In E.Y. Shapiro, editor, Concurrent Prolog: Collected

Papers, volume 1, pages 140-156. MIT Press, Cambridge MA, 1987.

[13] X. Zhong, E. Tick, et al. Towards an Efficient Compile-Time Granularity Analysis Algo-

rithm. Technical Report CIS-TR-91-19, University of Oregon. I)epaitment of Computer

Science, September 1991.

85

GST: Grain-Size Transformations for Efficient Execution of

Symbolic Programs

Extended Abstract

Andrew A. Chien and Wuchun Feng
achien@cs.uiuc.edu feng@cs.uiuc.edu

University of Illinois
Department of Computer Science

1304 W. Springfield Avenue
Urbana, IL 61801

October 1, 1991

1 Introduction

Controlling grain size is a key issue which spans programming approaches and machine

architectures in parallel systems. The ability to effectively adjust program grain size, is

a critical component of achieving efficient, portable parallel programming. A number of

programming models have been used to express application programs with large quanti-

ties of fine-grained concurrency. Unfortunately, despite rapid improvements in processor

architecture, we currently cannot exploit such fine-grained concurrency efficiently. Even if

such architectures were available, portability issues motivate the development of grain-size

control techniques. We are pursuing the construction of a grain-size transformer system

which merges grains, increasing the execution grain size for more efficient execution.

2 Background

We are building programming systems for MIMD, distributed-memory machines. We focus

on such machines not only because they represent a scalable hardware architecture, but

also because they have no built-in policies for data movement. From a software perspective,

they represent the cleanest slate. Their message-passing structure makes communication

86

explicit, forcing the software to manage it and allowing it to be optimized explicitly. Despite

our focus on a particular machine organization, the techniques developed are applicable to

any machines for which increased locality improves performance.

If program granularity can be adjusted over a sufficiently wide range, the programs

which express fine-grained concurrency can be executed efficiently on both fine-grained and

medium-grained architectures. The fine-grain programs can become the basis for portable,

parallel programming on a family of distributed memory machines.

We would like to support both numeric and symbolic computing which involve com-

plex data structures. The issue is the complexity of data structures and the prevalence of
pointers, not the computational methods or even the application being solved.

We have been actively involved in the design and implementation of Concurrent Smaltalk

(CST) [1] and Concurrent Aggregates (CA) [2], both concurrent object-oriented program-

ming systems. These systems were initially developed to program the J-machine [3], a

fine-grained MIMD distributed-memory machine. We describe our developments in the

context of an object-based concurrent system [4]. However, our techniques should be di-

rectly applicable to most Actor languages [5, 6] and as similar to fold/unfold transformations

[7] in committed-choice logic languages [8, 9]. Extension to other programming paradigms

which do not bind program and data closely, such as functional programming approaches,

may require a different approach.

3 An Approach to Grain-Size Transformation

The objective of grain-size transformation is to adjust the dynamic execution grain size to

increase the efficiency of execution. We define a computation grain as the unit of work

performed in response to a message arrival. Computation grains are terminated for two

reasons: remote data access and synchronization. Our approach addresses both causes

by constraining data placement and merging units of synchronization based on invocation

relations. We constrain data placement in a process called abstract placement. The merging

of synchronization units is termed object coalescing.

We assume that the program has been initially formulated to express concurrency at the

object level. Consequently, transformations to increase task granularity involve attempts

to productively merge objects and their invocations. Our program transformations produce

an abstract data placement, a set of constraints which the run-time system must enforce for

correct execution, as well as program code optimized to execute with that data placement.

Together the abstract data placement and optimized code constitute a new program with

a larger execution grain size.

Efficient invocation in message-passing machines requires knowledge of data placement.

87

In recent years, the distance between shared-memory and message-passing machines has

decreased. Shared memory machines now have memory hierarchies with locality, and

message-passing machines support shared address spaces. However, one important remain-

ing difference is that message-passing machines have distinguished local and non-local access

mechanisms. This implies that the most efficient forms of local and non-local invocation

require distinct calling sequences in message-passing machines. Constraining data place-

ment allows us to avoid using the expensive remote-invocation sequence in many cases. In

contrast, shared memory machines use automatic data relocation, encouraging compilation

to a uniform, local calling sequence.

4 Abstract Placement and Object Coalescing

Abstract placement involves the constraining of data placement in a program execution.

Define the data placement constraints, C, as a set of locality sets:

C = {lSo, lS, IS2,...}

Each of the locality sets, is, contains objects. Each object is a member of exactly one

locality set.

sm = {objObj,objk,...}

Membership in the same locality set implies a data placement constraint. All objects

in a locality set must be placed together 1. Additional data placement constraints can

reduce communication and linkage requirements, but for maximum benefit, such constraints

should be added in accord with the invocation structure between objects. Data placement

restrictions can be used to reduce the number of invocation overheads along a chain of

references.

Object coalescing involves the mei-ging of synchronization units to reduce synchroniza-

tion overhead. The idea is analogous to the notion of reducing blocking in real-time systems

[10]. While abstract placement can reduce communication requirements and linkage over-

head for tasks, it may not increase the execution grain-size. In our model, objects are units

of synchronization and hence exclusion. Invocatio ., even if they are local, cross these

object boundaries and thus may suspend, terminating the grain.

We define a similar formalism for synchronization units. We define the set of execution

objects, as distinguished from user-defined object boundaries, as a set of synchronization

More precisely, it must be possible to address them in the same address space and use the local invocation

mechanisms, including inlining, to couple computation amongst them.

88

sets. These sets are units of exclusive access with respect to program execution. Initially,

each object belongs to a unique synchronization set. Object coalescing transformations join

the synchronization sets, reducing synchronization overhead. Typically, object coalescing

requires both objects to already be members of the same locality set. In such circumstances,
the synchronization of the new unit can be achieved efficiently. Object coalescing can be

used to reduce the number of synchronization operations along a path or reduce the interface

concurrency of a multi-access data abstraction, such as an aggregate in CA.

Naming Issues In order to formulate issues of data placement in a dynamic storage allo-

cation environment, we must be able to identify data structures and their interrelationships.

In order to effect our grain-size transformation (placement restriction and object coalesc-

ing), we must identify their point of allocation. Acquiring the full knowledge required to

identify all program data structures would require full program execution and therefore is

not feasible. Instead, we have adopted a scheme based on the notion of alias graphs [11] to

name objects at compile time. With alias graphs, we can identify the allocation points for
root, intermediate nodes, and leaves of nested structures, providing the necessary control to

implement data placement decisions and object coalescing. The advantage of alias graphs

is that they can be extended or compressed to trade off compilation cost for more accu-

rate alias information. In a grain-size transformer system, the amount of alias information

(the depth of the graphs) is related to the amount of transformation we wish to do. The

compilation cost increases for more aggressive modification of program granularity.

Inferring accurate aliasing information can be difficult, depending on the complexity of
program structure. In Larus' Curare system for parallelizing Scheme, alias graph structures
were inferred, but programmer annotations could be used to refine alias graph information.

We are pursuing a similar approach for deriving object invocation and sharing relationships.

Several reasons suggest that our system may be able to derive enough information to sig-
nificantly transform program grain size. First, many symbolic computations use multiple

layers of static structuring - data abstractions built with objects, constructive program

reuse. These layers can be effectively deduced and combined. Second, repeating sequences

of structures such as pairs in a list can deduced and used to increase grain size on sequence-

oriented phases of computation. Third, aggregate data abstractions which involve bulk

allocation such as in Concurrent Aggregates allow the expression of data-parallel opera-

tions, a natural target for grain-size adjustment [12].

Transformation Conditions Merging of locality sets and synchronization units is not

done arbitrarily. In each case, we must assure appropriate conditions to avoid changing

program functionality or reducing performance. While the merging of locality sets does

not alter a program's functional behavior, it may affect its performance. Constraining two

89

sets of objects to be placed together limits their collective concurrency to that available

at the local node2 . Naturally, this limit increases in significance as the set size increases.

In addition, there is a physical limitation to the memory resources at a computing node.

A more relevant restriction is the desire to keep storage units small, leaving the run-time

system with some opportunity to perform load balancing for computation and memory

usage.

Merging synchronization units is quite tricky. Synchronization units are part of the

programming model and merging them arbitrarily may cause deadlock. In order to deter-

mine when units can be merged safely, we need sharing and invocation information. We

obtain this information from conventional control and data flow analysis of our programs.

To deduce sharing relationships we use alias graphs as well. Static study of a number of

programs leads us to believe that there are many cases in which merging can be done safely.

We are currently collecting dynamic statistics to reconfirm our findings. While merging

synchronization domains can reduce synchronization overhead, it also limits concurrency
within the synchronization unit. Typically, the concurrency within a single unit will be

limited to a single thread.

The basic idea is to allow a programmer to specify concurrency at a fine-grain, easing

program construction and enhancing portability. Typically, this involves specifying small

data components and expressing the concurrency in operations on them. The compiler

adjusts the specified program grain-size to an execution grain size suitable for the execution

engine at hand. The net effect is to increase the size of structure components and the

amount of work associated with each invocation on that structure. In order to achieve a
real increase in grain size, we must simultaneously deal with issues of data locality and

synchronization

5 Dynamic Techniques

The program transformation techniques we have described can also be used dynamically.

The approach we are pursuing here is directly analogous to the dynamic optimization tech-

niques used by Chambers and Ungar in SELF [13, 14] to reduce invocation overhead in

object-oriented systems. Instead, we are studying the use of dynamic program optimization

to reduce linkage overhead due to data placement. Speculative application of these tech-

niques must be based on knowledge of the dynamic characteristics of concurrent object-

oriented programs. We are currently pursuing such a study. Data location transformations

and code customization can be done without deadlock-safety concerns and will give correct

execution so long as the customization is reversible. The sharing information required for

2 Future distributed memory machines may use multiprocessor nodes, but current machines only have
uniprocessor nodes.

90

object coalescing could be derived from reference counting, if used for storage reclamation.

However, even with such information, assuring that an object will never be shared requires

some analysis.

6 Summary

Grain-size adjustment is an issue which must be addressed by any portable parallel pro-

gramming system. We are developing a program transformation system which constrains

the placement of data and transforms control structures to increase tLa execution grain

size of object-based concurrent programs. While it is too early to say how successful this

approach will be, we are confident that a combination of automatic and programmer-aided

techniques will give us the ability to transform grain sizes over a modest range. The ultimate

product will be a modestly portable parallel programming system.

References

[1] W. Horwat, A. Chien, and W. Dally, "Experience with cst: programming and imple-

mentation," in Proceedings of the SIGPLAN Conference on Programming Language

Design and Implementation, pp. 101-9, ACM SIGPLAN, ACM Press, 1989.

[2] A. A. Chien and W. J. Dally, "Concurrent aggregates (ca)," in Proceedings of Second

Symposium on Principles and Practice of Parallel Programming, ACM, March 1990.

[3] W. J. Dally, A. Chien, S. Fiske, W. Horwat, J. Keen, M. Larivee, R. Lethin, P. Nuth,
S. Wills, P. Carrick, and G. Fyler, "The j-machine: a fine-grain concurrent computer,"

in Information Processing 89, Proceedings of the IFIP Congress, pp. 1147-1153, Aug.

1989.

[4] P. Wegner, "Dimensions of object-based language design," in Proceedings of OOPSLA

'87, pp. 168-82, 1987.

[5] G. Agha, Actors: A Model of Concurrent Computation in Distributed Systems. Cam-

bridge, MA: MIT Press, 1986.

[6] G. Agha, "Concurrent object-oriti A programming," Communications of the Associ-

ation for Computing Machinery, vd.. 33, pp. 125-41, September 1990.

[7] T. Kawamura and T. Kanamori, "Preservation of stronger equivalence in unfold/fold

logic program transformation," in Proceedings of the International Conference on Fifth

Generation Systems, (Tokyo, Japan), pp. 413-421, ICOT, 1988.

91

[8] V. Saraswat, K. Kahn, and J. Levy, "Janus: a step towards distributed constraint pro-

gramming," in Proceedings of the North American Conference on Logic Programming,

(Austin, Texas), October 1990.

[9] 1. Foster and S. Taylor, Strand: New Concepts in Parallel Programming. Prentice-Hall,
1990.

[10] L. Sha, R. Rajkumar, and J. Lehoczky, "Priority inheritance protocols: an approach to

real-time synchronization," IEEE Transactions on Computers, vol. 39, no. 9, pp. 1175-
85, 1990.

[11] J. R. Larus and P. N. Hilfinger, "Detecting conflicts between structure accesses," in

SIGPLAN Conference on Programming Language Design and Implementation, pp. 21-
33, ACM, 1988.

[12] P. Hatcher, M. Quinn, A. Lapadula, B. Seevers, R. Anderson, and R. Jones, "Data-

parallel programming on mimd computers," IEEE Transactions on Parallel and Dis-
tributed Systems, vol. 2, no. 3, pp. 377-383, 1991.

[13] C. Chambers and D. Ungar, "Iterative type analysis and extended message splitting,"
in Proceedings of the SIGPLAA Conference on Programming Language Design and
Implementation, pp. 150-60, 1990.

[14] C. Chambers and D. Ungar, "Customization: optimizing compiler technology for self,
a dynamically-typed object-oriented programming language," in Proceedings of SIG-
PLAN Conference on Programming Language Design and Implementation, pp. 146-60,
1989.

92

Using Domain-Specific, Abstract Parallelism

Ira Baxter and Elaine Kant
Schlumberger Laboratory for Computer Science

8311 North RR 620
Austin, Texas, 78720-0015

baxtereslcs.sib.com, kantesics.sib.com

Abstract

Discovery of potential parallelism in low level code is difficult, especially in the absence of problem domain
knowledge. An alternative is to explicitly represent maximal potential parallelism in abstract program components.

A transformation system refines a program composed of such components into a concrete program. We discuss an

experimental system in which we are installing such facilities. An example refinement sequence is provided.

1 Introduction

Compiling problem-domain independent program representations for parallel architectures is often difficult
because of the need to infer opportunities for parallelism. Because safe inference of parallelism must be con-
servative, the inferred parallelism is often considerably less than that actually available in the applications.
This problem leads to a demand for tools such as E/SP [SMD+89], ParaScope [BKK+89] and MIMDizer
[Cor90], which identify points of potential, but unverifiable, parallelism and query the programmer to de-
termine a less conservative version of the truth. Inference and query-the-programmer are both methods for
rediscovering the parallelism. All of this would be unnecessary if the knowledge of what was parallel at the
time of program construction were not lost.

An alternative approach we are pursuing is to capture the inherent parallelism (actually, absence of
execution ordering constraints) in an abstract program in a domain-specific fashion. Then a transformation
system would refine not only the program but also the parallelism information into the concrete program.
In this fashion both the expense of the conservative inference and the need to query the programmer are
minimized.

In this paper, we give a short example of an abstract domain-specific component whose full parallelism
is "refined away" (rather than rediscovered) until it is usable on a particular target machine. We also briefly
motivate the need for non-tree-structured internal representations.

2 Problem Domain

SINAPSE [KDMW90] [VDMW91] is an experimental tool to synthesize mathematical modeling programs for
a variety of similar applications. These have, to date, been primarily acoustic wave propagation problems,
typically used to validate geophysical models for oil exploration.

SINAPSE accepts specifications of typically 20 to 50 lines, and produces C, Fortran, or Connection Ma-
chine Fortran programs that solve the differential equations related to the problem domain by using a finite
differencing method. Resulting programs are typically 500 to 1500 lines in size; lines are often very dense.

A number of programs generated by SINAPSE have produced useful scientific results for Schlumberger
modelers after some post-generation hand optimization. The work described here is part of research aimed
at automating that optimization.

Synthesizing modeling programs requires knowledge of the wave propagation problem domain, knowledge
about solution techniques for problems in that domain, general programming knowledge, and control knowl-
edge to sequence the synthesis process. This class of program provides many opportunities for data-parallel
computation [HS86]; consequently, knowledge of potential parallelism and when to use it is also useful.

93

3 Synthesis Process

User-specified algorithm schemas are refined by repeatedly replacing schema components with lower-level
schemas or parameter values. These component replacements are taken from knowledge bases selected by, or
computed directly from, the specification. Rather than being the initial abstract program, the specification
simply directs the choice of schemas and parameter values.

Algorithm schemas are stated in terms of a high-level programming language called "algSinapse," which
includes assignments, conventional control constructs, array and scalar computations, references to parame-
ters, and references to other algorithm schemas.

Generic programming knowledge as well as application domain knowledge is needed to produce efficient
programs. Much of the progrunming knowledge is in the form of algorithm refinements that expand con-
structs such as parallel enumeration or matrix multiplication into built-in constructs or a combination of
loops and scalar operations depending on the target architecture and language. Rather than having a runtime
library of special-case methods (e.g., different matrix multiplications for diagonal arrays), SINAPSE derives
the special methods directly. This is accomplished by substituting representations, determined by explicitly
represented properties of interest (e.g., DIAGONAL-ARRAY or SYMMETRIC), for references to values, and
simplifying away unneeded operations and combining similar terms. This avoids the need to rewrite such
libraries for each new target language. The approach is made feasible by the use of Mathematica [Wol91],
a symbolic manipulation language as an implementation platform. There are also a number of optimizing
transformations.

One of the problems of refining abstract schemas into real programs are inefficiencies introduced because
of necessarily conservative analysis of the original schemas. These come about simply because schemas, while
optimized maximally on an individual basis, may be more optimizable when combined.

One can resolve this problem in a number of ways, of which SINAPSE currently uses two:

" General purpose optimization techniques, and

" Special case algorithm schemas.

SINAPSE has an optimizer which moves static computations outside of loops. Abstract computations are
often placed inside a loop in an originating schema simply because domain knowledge tells us they are usually
loop-index dependent. Only when the expression is actually instantiated can we determine the actual loop
dependency. If domain knowledge tells us that some expression is always loop independent, then it can be
encoded outside the loop in the schema.

The optimizer simply moves blocks of code earlier into the computation as long as this is consistent with
the data-flow constraints. This often moves code outside of loops. The moved code is placed in parallel
with the earliest statement it can precede. Thus, a free side effect of running the code motioner is the
conversion of unnecessary sequencing constructs into parallel execution constructs. A special mechanism
detects when expressions dependent only on loop indices can be moved outside the loop. The values of these
expressions will be cached in a array. More specifically, storage for the array is allocated, code to fill the
array is generated outside the loop, and the cached values from the array are referenced inside the loop. We
plan to add a common-subexpression eliminator.

Considerable payoff also occurs when the problem or target domain dictates certain properties of the
code; one can then optimize a schema in advance of supplying it to SINAPSE, thereby avoiding the expense of
dynamic optimization at program synthesis time. A price is paid for this: manual encoding of such optimized
schemas at synthesizer-construction time, and conditioning the instantiation of the special case schemas on
the domain property.

94

4 A Weak Representation for Parallelism

SINAPSE currently represents abstract programs as tree schemas containing various control constructs rep-
resenting explicit classes of parallelism:

" seq[sl,s2,. .. snj

Sequencing of state-changing constructs si

" doSeq[s,j, 1b, ub]
Iteration of statement s requiring sequential execution with index j in range lb... ub

* par[si,s2 ,...,sn]
Arbitrary execution ordering of state-changing constructs si

" doPar[s,[j1 , lb, ub1], [j2 ,l 2,ub 2],...,[jn, lbn,ubn]]
Parallel execution of (possibly compound) statement s instantiated with simultaneous assignment of
loop indices ji

doPar provides much of the opportunity to generate data-parallel programs for the Connection Ma-
chine 2 (CM2), written in CM Fortran 90. As an example, the following construct:

doPar[A[j] = B[j] * k - C[j],[j,1, size(A)]]

is converted into the Fortran 90 array statement:

A[1 : size(A)] = B[1 : size(A)] * k - C[1 : size(A)]

When the rank of a target array does not match the rank of a source, then the Fortran 90 intrinsic function:

SPREAD(value, azisNumber)

is generated to expand the source array along necessary axes.
SINAPSE algorithm schemas also allow the expression of computations on entire arrays, which pass through

virtually unchanged to CM Fortran. SINAPSE replaces entire-array operations with doPar equivalents when
the target is sequential Fortran 77. It is then trivial to generate corresponding sequential code for any par

and doPar constructs.

An explicit concession to data parallelism used in our representation is a variant of doPar:

makeA rrayvf(j 1i212, . - -,in), U1 i, IbIIubj],[u2, 82, Ub2), - -. , UnYlbn, Ubn]]

which constructs a rank n array for which each element value is defined by the function f, usually instantiated

as an expression over the index variables.
While this seems to work well for pure data-parallel constructs (for SIMD target machines such as the

CM2), this representation is too weak to represent more general parallelism. Consider four computations A,
B, C, and D, with the requirements that A occur before C, and that B occur before C and D; the present

primitives can at best express only overly-constrained versions of the requirements, thus losing the ability

to explicitly represent the potential parallelism. The partial order in which finite-difference equations must
be evaluated is one such example. In general, tree-structured representations cannot capture partial orders
(without resorting to some kind of context-sensitivity).

5 Proposed Representation

We are considering using a variant of "Unified Computation Graphs" (UCGs) [WBS+91] to represent pro-
grams. Such graphs are based on simple data-flow graphs, with the addition of shared data, control-flow
arcs (similar to program dependence graphs [FOW87]) and "exclusion constraints" between nodes. Exclusion

constraints prevent two or more parallel activities from simultaneous execution, and are usually associated
with access to overlapping parts of a shared data structure.

In Figure 1, we show computations as bubbles, data- and control-flow as solid arrows, and exclusion

dependencies as a dashed arc with no arrows. Primitive computations in bubbles are represented as trees.

95

UCGs assume global shared data among computations, while pure data-flow assumes no shared data. We
have added a representation for data shared among particular nodes, and show the storage shared by two
computations with an enclosing dashed arc. Computations not sharing data with others are not necessarily
functional; each rr.ay still have internal state. Parallel-prefix operations may be represented either by reduc-

tion operators over data aggregates, such as the Fortran 90 SUN operation, or explicitly via n-ary trees on
explicitly represented operands. We currently do not represent pipeline parallelism or multiple simultaneous

activations of each operator [AG82].
We mix notations by writing (sub)UCGs isomorphic to purely parallel (respectively sequential) constructs

as their textual par (respectively seq) equivalent.

5.1 Refinements on UCGs

A refinement is a type of transformation that introduces detail (i.e., removes possible models). Several
generic refinements of standard UCGs are possible:

Rcomp Refine a computation into a sub-UCG (Figure 2).

Rflo Refine a data-flow carrying a complex data structure into multiple data-flows carrying parts of that
structure (composing this with the previous action produces data-parallel computations when data-flow
components are homogeneous).

Rcbstract Group parallelizable computations into a single computation.

Rmerge Merge a set of parallel computations into a single computation.

Rseralize Sequentialize a pair of parallel activities by adding control-flow arc.

Rsequnce Refine an exclusion constraint arc into a control-flow arc going in either direction.

New refinements possible because of the enriched representation:

Rtor, Refine data-flow between nodes into control-flow plus shared storage.

Rcoaiesce Coalesce several shared storage regions into one.

6 Example

In this section, we sketch the refinement of a domain-specific component into good CM2 code, given our
proposed representation.

We present an equivalent Fortran 77 code fragment first, abstracted from a real modeling program,
to ensure that the reader initially sees what a conventional compiler sees. A conventional compiler must

determine which of these steps can be executed in parallel, knowing nothing of the intent.

DO 100, ix=K+1,K+N
DO 100, iy=K+1,K+N

100 padarray(ix,iy)=mu(ix-K,iy-K)
<...lots of unrelated code >
DO 128 iy=1,N

DO 128 ix=1,K

128 padarray(ix,iy) = padarray(K+1,iy)
DO 129 iy=1,N

DO 129 ix=I-K+1,N
129 padarray(ix,iy) = padarray(N-K,iy)

DO 132 ix=1,N
DO 130 iy=1,K

130 padarray(ix,iy) = padarray(ix,K+1)
DO 131 iy=N-K+1,N

131 padarray(ix,iy) = padarray(ix,N-K)

96

* '.

**.

9 5B--

* --

,* .S

* ,S* e.*

* -. S.* *

- *S

SD

ES

Computation Data/Control flow Exclusion
Dependency

Figure 1: Representation of Parallelism

" "
* "

Shre dt

97

132 CONTINUE

This code actually pads an N x N array (mu), producing an (N +2* K) x (N + 2* K) array (padarray)
with a K-wide "taper" region along all edges. This is a common operation in modeling codes on variables
representing properties of space when taper boundary conditions are used [1081]. The intent is to fill the
taper boundary areas with copies of the nearest edge of the original array; a conceptual view of this operation
is provided in Figure 3. The resulting array has nine regions. The taper edges are filled with copies of the
corresponding edge of the original array; symmetry leads one to the conclusion that the corner regions of
the padded array must be filled with values from the closest corner of the array. Each region is defined as
the set of elemerts selected by the cross-product of a particular range of indices; the upper, left hand corner
has range [i, 1, K, [j, 1, K], etc.

We give an abstract program schema defining the domain-specific notion Pad(array), using case analysis
to determine in which region an element resides:

Pad[originalarray,KJ iriSchema
N:=AxisSize(originalarray);
makeArray[

case[
1<=i<=K and 1<=j<=K: originalarray[1,1J; (* upper left corner
1<=i<=K and K+1<=j<=K+I: originalarray[,j-K+1J; (* North side *)
1<=i<=K and K+I+1<=i<=I+2*K: originalarray[l,I]; (* upper right corner
K+1<=i<=K+I and 1<=j<=K: originalarray[i-K+1,1J; (* West side *)
K+I+1<=i<=I+2*K and 1<=j<=K: originalarray[E,1J; (* lower left corner
K+I+1<=i<=I+2*K and K<=j<=K+I: originalarray[El,j-K+1J; (* South side *)
K+I+1<=i<I and K+I+1<=j<=N+2*K: originalarray[E,NJ; (* lower right *)
K+1<=i<=K+I and K+I+1<=j<=N+2*K: originalarray[i-K+1,I); (* East sid, *)
K+1<=i<=K+I and K+1<=j<=K+I: originalarray[i-K+1,j-K+1J; (* middle 0)

J, (* case *)
[i,1,I+2*K],[j,1,I+2*KJ)

This schema provides for maximum (data) parallelism, every element can be computed independently,
and thus the entire computation takes only 0(1) time on an appropriate architecture. It could be used by
SINAPSE whenever padding is required; no rediscovery of parallelism is required.

However, the computation would still be unnecessarily inefficient on a SIMD machine such as the CM2,
for which a data parallel operation requires all processing elements (PEs) to perform the same instruction
and then synchronize. Each PE must synchronously execute the entire case statement body. Assuming one

machine instruction for each operand and operator, each case requires about 15 instructions, so the nine
cases require about 135 instruction times.

We can lower this cost by eliminating runtime evaluation of the case bounds. The cases conveniently define
SIMD-compatible partitions of the instruction streams. SNAPSE assumes that a case construct precisely
covers its cases, with no overlap; thus all case clauses may be executed in parallel:

seq[I:=AxisSize(originalarray);
allocate(padarray,I+2*k,+2*a); (* creates storage for padarray *)
par[

doPar [padarray[i, jJ :=originalarray[i-K+1 .j-K+1J,
[i,K+1,K+IJ,[j,K+1,K+I]J; (* middle *)

doPar[padarray[i,jJ :=originalarray[i-K+1, 1J,
[i,K+1,K+],[j,1,KJJ; (* Vest side *)

doPar [padarray [i,jJ :=originalarray [i-K+1, I],
[i,K+1,K+IJ,[j,K+I+1,I+2*KJJ; (* East side *)

doPar [padarray [i, jJ:=originalarray [E iJ,
[i,1,K),Ej,1,KJJ; (* upper left corner

doPar[padarray[i,jJ :=originalarrayl [,j-K+1J,
Ei,1,KJ,[j,K+1,K+IJJ; (* North side *)

98

doPar [padarray [i, j] :=originalarray [1, NI ,
[i,1,K[j,K+N+1,N+2*KJ]; (* upper right corner *)

doPar [padarray[i, j :=originalarray [1,1),
[i,K+I+1,+2*KJ,[j,1,KJJ; (* lower left corner s)

doPar[padarray i,j]:=originalarrayE,j-K+1J,
[i,K+I+1,+2*K),Ej,K,K+eNJ; (* South side s)

doPar [padarray [i, j] : =originalarray [EN NJ,
[i,K+N+l, and K+I+1,N+2*KJJ; (* lower right *)

); (* par*)
padarray] (* seq s)

Each of these cases now maps directly onto a Fortran 90 array primitive, and each would execute in just a
few instructions on a CM2. However, the CM2 has only one set of data-parallel processors, so each "parallel"
case competes for the data-parallel processor resource. Static resolution of this resource contention requires
serializing access to the sot of data-parallel processors, and consequently 9 units of time are actually taken.
This can be reduced to 5 (as in the original hand-coded fragment) by combining steps. Consider Figure 4;
in stage 1, after copying the original array (1 unit), we expand the copied array along the X-axis (1 unit in
both directions); in stage 2, we expand the expanded array along the Y-axis (1 unit in both directions).

To make progress towards this reduction in effort, we apply the following refinements:

" Group (Rabstract) some parallel activities, with the intention of merging them (Rme,.), and

" Order (R,ersaliz) some parallel activities, to eventually ensure that certain properties are present when
needed.

The result is shown in Figure 5.
The activities so grouped can be combined into a single data-parallel primitive. This is because after

copying to the center, and filling east and west edges, we have entire edge rows ready to replicate vertically,
as shown in Stage 2 of Figure 4. Consequently we can rewrite the three steps:

par[
doPar [padarray [i,jJ:=originalarray [l1,

[i,1,KJ,[j,l,KJJ; (* upper left corner s)
doPar[padarray [i,j) :=originalarrayl [,j-K+1J,

[i,l,KE[j,K+1,K+NJ; (5 North side 5)

doPar [padarray [i,j :=originalarray [N],
[i,l,K,JK+N+lN+2*KJ); (s upper right corner *)

) (s par 5)

as the single step:

doPar [padarray [i, jJ :=padarray[K, jI,
[i,l,KJj,,I+2*KJ); (s upper edge s)

We similarly optimize the code for filling the lower edge.

99

On the CM2, copying from one array to another is cheap only if the copied array has the same size and
alignment in memory as the target. When the source is smaller than the destination, changing the alignment,
the communication costs are high (roughly 100 times slower than the aligned case!). We can do little about
the cost of copying originalarray. However, we need not suffer as great a cost when filling the east and
west edges; we can take advantage of the fact that an aligned copy of the east edge of the original array
is present in the target array, and copy that instead. This optimization requires that we add additional
computation-ordering constraints (Rieriaoze) to ensure that copy-original-to-center occurs before filling the
east or west edges. Having accomplished that, we can rewrite:

doPar[padarray[i,j):=originalarray[i-K+1,1J,
[i,K+1,K+IJ,[j,1,KJJ; (* West side *)

as:

doPar[padarray [i,jJ:=padarray[i,K+1J,
[i,K+1,K+], [j,1,KJJ; (* West side *)

Again, we can do the same for the east side, producing a computation in the form shown by Figure 6.
A final equivalence simplifies a set of parallel computations, each of which is connected to all of their

descendants, into a simple sequence:

seq[I:=AxisSize(originalarray);
allocate(padarray,I+2*k,I+2*k); (* creates storage for padarray *)
doPar[padarray [i,jJ :=originalarray[i-K+1,j-K+1J,

[i,K+1,K+I],[j,K+1,K+IJJ; (* middle *)
par[doPar[padarray[i,jJ:=padarray[i,K+1J,

[i,K+1,K+],[j,1,KJJ; (* West side *)
doPar[padarray[i,jJ:=padarrayE[i,K+IJ,

[i,K+1,K+LE,[j,K+I+1,N+2*KJ]; (* East side *)
]1;

par[doPar[padarray[i,j :=padarray[K+1,j],
[i,1,KJ,[;,1,N+2*KJJ; (* upper edge *)

doPar[padarray[i,j]:=padarray[K+I,j],
[i,K++1,I+2*K],Ej,1,I+2*KJ]; (* lower edge *)

]1;

padarray] (* seq *)

At the present time, SINAPSE represents the Pad component in essentially this form, rather than refining
it from a more abstract description.

At final code-generation time, we generate code in any order consistent with the partial order over the
computations and produce the following CM2 Fortran 90 code:

C copy original array
padarray(K+1:K+I,K+1:K+I)=mu(1:1,1:1)

C Fill West edge
padarray(K+1:K+I,1:K)=SPREAD(padarray(K+1:K+I,K+1),2)

C Fill East edge
padarray(K+1:K+I,K+I+1:I+2*K)=SPREAD(padarray(K+1:K+I,K+I,2)

C Fill upper boundary
padarray(1:K,1:I)=SPREAD(padarray(K+1,1:1).1)

C Fill lover boundary

padarray(K+I+1:N+2*K,I:I)=SPREAD(padarray(K+I, 1:),1)

It is interesting to compare this to the original hand-generated code. At no point must we rediscover
the parallelism from a complex, highly optimized target language code, as done by conventional compilers.
The same efficiency has been achieved from an abstract specification that could be uscd to generate code for

100

multiple architectures and languages. On a MIMD machine with low communication costs, we could assign
one processor per result-array element, and specialize the case statement for that processor at synthesis

time, providing effectively unit time execution of the padding operation. For a high-communication cost
MIMD machine, we might refine the original component into 9 parallel tasks with no shared storage, and a
final assembly step.

Since we avoid the discovery process, we also avoid the requirement to harness the often necessary problem
domain knowledge to aid this process. Conventional compilers do not have this knowledge, and thus the
application programmer must be somehow brought into the process, making compilation partly manual.

7 Lessons

For the CM2, a good strategy for generating code seems to be:

" Represent computations with functional code fragments expressing data parallelism over regions (this
should allow us to target other parallel architectures as well).

" Convert the functional fragments to side-effecting fragments over the same regions.

" Reduce operation count by merging parallel data-parallel operations on adjacent regions.

" Reduce communications cost by aligning data.

For data-parallel architectures with regular communication topologies, misaligned data in operations can
be very expensive. A model of the communication costs would help to focus attention of the synthesis system
on points needing optimization. The actual optimization can be accomplished by copying to an aligned array

(creating a singly-assigned temporary variable) and allowing code motion to move the copy step to a point
where the copy is only evaluated once.

8 Conclusions

We have found tree-structured representations of parallelism to be overly constraining, and are moving
towards representations including partial orders. Such representations will allow us to both directly encode
domain-specific components with maximal parallelism, and hence enable us to perform optimization and
resource assignment based on the potential parallelism.

SINAPSE is also being enhanced in several other areas. More detailed knowledge about problem domains
such as 3D ultrasonic wave propagation is being added. Solution techniques such as finite-element methods
as alternatives to finite differencing are contemplated. We are currently adding programming knowledge
about multiple target languages. We hope to eventually generate production quality modeling programs for
parallel machines.

References

[AG82] Arvind and Kim P. Goestelow. The U-Interpreter. Computer, pages 42-49, February 1982.

[BKK+89] Vasanth Balasundaram, Ken Kennedy, Ulrich Kremer, Kathryn McKinley, and Jaspal Subhlok.
The ParaScope Editor: An Interactive Parallel Programming Tool. In Proceedings of Supercom-
puting '89, pages 540-550. ACM Press, November 1989. ACM Order Number 415892.

[Cor90] Pacific-Sierra Research Corporation. The MIMDzer User's Guide. Pacific-Sierra Research Cor-
poration, 12340 Santa Monica Blvd, Los Angeles, CA 90025, 1990.

[FOW87] Jeanne Ferrante, Karl J. Ottenstein, and Joe D. Warren. The Program Dependence Graph
and Its Use in Optimization. ACM Transactions on Programming Languages and Systems,

9(3):319-349, July 1987.

[IIS86] W. Daniel Hillis and Guy L. Steele. Data Parallel Algorithms. Communications of the ACM.
29(12):1170-1184, December 1986.

101

[1081] Moshe Israeli and Steven Orszag. Approximation of Radiation Boundary Conditions. Journal
of Computational Physics, 41:115-135, 1981.

[KDMW90] Elaine Kant, Fransois Daube, William MacGregor, and Joseph Wald. Automated Synthesis of
Finite Difference Programs. In Symbolic Computations and Their Impact on Mcchanics, PVP-
Volume 205. The American Society of Mechanical Engineers 1990, New York, NY, 1990. ISBN
0-791800598-0.

[KDMW91] Elaine Kant, Frangois Daube, William MacGregor, and Joseph Wald. Scientific Programming
by Automated Synthesis. In M. Lowry and R. McCartney, editors, Automating Software Design.
AAAI Press, 1991. To appear.

[SMD+89] K. Sridharan, M. McShea, C. Denton, B.Eventoff, J. C. Browne, P. Newton, M. Ellis, G. Gross-
bard, T. Wise, and D. Clemmer. An Environment for Parallel Structuring of Fortran Programs.
In E.C. Plachy and P.M. Kogge, editors, Proceedings of 1989 International Conference on Par-
allel Processing, pages 98-106, 215 Wagner Building, University Park, PA 16802, August 1989.
The Penn State Press.

[WBS+91] John Werth, James C. Browne, Steve Sobek, T. J. Lee, Peter Newton, and Ravi Jain. The
Interaction of the Formal and the Practical in Parallel Programming Environment Development:
CODE. Technical Report TR-91-09, Department of Computer Science, University of Texas at
Austin, April 1991.

[Wol91] Stephen Wolfram. Mathematica: A System for Doing Mathematics by Computer. Addision-
Wesley Publishing Company, Inc., Reading, Massachusetts, 1991. Second Edition.

102

A. .

-C

.. C

'e.e

se.

000.04,0.

-- 3B3

Figure 2: Refining node B

103

Ia N d

a N d
a d

a N d

Original
W Array E

b S c

b S c
b S c
b c

Figure 3: Padding an array by filling new boundaries with copies of edges

104

aaa
aaa
aaa

aaa

www

bbb

bbb
bbb
bbb

ddd
ddd
ddd

ddd

EEE

ccc

CCC
CCC
CCC

aaa a N d ddd

Copy of
WWW W Original E EEE

Array

bbb b S c ccc

Stage 1

aaa a N d ddd
aaa a N d ddd
aaa a d ddd

aaa a N d ddd

Copy of
WWW W Original E EEE

Array

bbb b S C CCC

bbb b S C CCC

bbb b S C CCC

bbb b S C cc

Stage 2

Figure 4: Padding operation optimized for Connection Machine

105

.--0 Fil11. *.
.-- Copy East % ,

Fill Original Edge 'e,
.. 'West o Cente '.,

*00,Edge *f 4-. ob4 6 b4

Fill Fill Fill Fill Fill
'.NW North NE SW South SE
',Corner Edge Corner Corner Eg Corner

F : gp

Figure 5: Refining parallel padding

106

/ copy
Original 5

eGo Centeso'o

9 04

Fil il 6

Wet as
Ede dg

Fil il
LoerUpe
BonarBuna

toS
* 00

"oDoe I

* So

0 ... o

Fiue6 ia ersetto fpdigfr aaprle ahn

107

Applying Abstract Interpretation to Indentify Vectorizable Numerical Code in Logic

Programs '

Arvind K. Bansal 2 and Dilip S. Poduval

Department of Mathematics and Computer Science

Kent State University
Kent, OH 44242, USA

E-mail: arvind@mcs.kent.edu and poduval@mcs.kent.edu

The solution of real world problems require the efficient integration of both symbolic and quan-
titative computation. In recent years, logic programming paradigm has become quite popular for
symbolic computation due to its nondeterministic and declarative style of programming which sup-

ports alternate solution, and the use of inherent polymorphism (multiple possibly infinite) which
allows same piece of code to be used for different data types. However, the current implementation
is slow, due to the extensive use of recursion, sequential data structures such as lists needed to

support the declarative style of programming, and the lack of explicit declaration of monomorphic
(single) types resulting into run time overhead of memory allocation. Current efforts to improve
the run time efficiency falls into two categories as follows:

1. exploiting inherent control parallelism - AND parallelism, OR-parallelism, and stream par-
allelism - in AND-OR tree computation model which uses concurrent spawning of processes
and their synchronization.

2. exploiting data parallelism on associative supercomputers to handLe logic programs with large

knowledge bases, and

3. Optimizing compilers based upon global data flow analysis

Approaches to incorporate parallelism in logic programs can be broadly described as follows:

1. User declared parallelism and synchronization information suitable for low level parallel logic

programming etc., and

2. User transparent incorporation and integration of parallelism.

3. Compile-time global data-flow analysis to detect AND, OR, and stream parallelism in a pro-
gram and to perform different types of optimizations such as identification of deterministic
code and to transform different class of programs to integrate all three types of parallelism.

We are interested in the last model which forms the basis of a parallelizing and optimizing
compiler in logic programs. Although parallelizing compiler seems quite promising, the execution
speed of vectorizable numerical code with large data-size is much faster (1 to 2 billion floating

point operations per second) on vector supercomputers such as pipelined vector supercomputers

'Supported in part by NSF equipment grant no. CDA 8820390
'Future Correspondence

108

or massive parallel SIMD computers, compared to 50 - 100 KLIPS (50 to 100 thousand logical

inferences per second) for the current implementation of parallel logic programs. In imperative

languages such as Fortran, the efficiency of the parallelizing and vectorizing compilers for scientific

numerical computation has been successfully demonstrated.

A major part of the vectorizable numerical code is given by definite iteration because same
set of statements are executed for every element of one or more sequences. A simple example

of vectorizable numerical code (written in Fortran like language) to add two matrices is given in

Example 1.

Example 1:
do 201= 1 to 10

20 C(l) = A(1) + B(2*I+ 3)
Note that the value of the index used to access the elements in the vector B, increments peri-

odically with a constant offset of 2 in each iteration step and the initial offset is 3.

Vectorization of such iterative programs replaces the innermost loop by a vector operation. In
the vector notation M..N:P, M stands for the lower bound of a vector-subrange, N stands for the

upper bound of the subrange, and P stands for the constant-offset in the index value to access the
vector element in next step. The corresponding vector code for the above program is C(1..10:1) =

A(1.. 10:1) + B(5..23:2).
A major issue in identifying vectrizable code is the sequentiality caused due to the lack of avail-

able values for a variable, or the change of the value of a variable in the previous steps. In both the

cases, the following statements have to wait for the values from the previous statements. While the

absence of a value for a variable is purely a synchronization issue, the sequentiality caused due to
change of value is due to destructive nature of variables in imperative languages. In logic programs,

the absence of destructive nature of variables avoids the sequentiality caused due to the later restric-

tion. The only sequentiality is caused due to dependence caused due to nonavailability of a value
which has been identified using compile-time producer-consumer relationship - the first occurrence

of a variable produces a variable and following occurrences consume variables - analysis. In contrast

to imperative languages, the problem of vectorization in logic programs is quite different due to the

presence of nondeterminism, the use of lists to simulate vectors, the lack of explicit monomorphic
type declaration, the lack of support for iterative constructs, and the lack of destructive variables.

An approach to develop efficient parallelizing compiler which integrates symbolic and numeric
computing under the framework of logic programming will incorporate

1. applying abstract interpretation to identify type information of the variables in various pred-
icates,

2. applying abstract interpretation to identify vectorizable numerical code,

3. applying abstract interpretation to identify producer-consumer relationship necessary to de-

rive data dependency,

4. transforming non-vectorizable numerical code using tail recursive programs to iterative pro-
grams which can easily be transformed to vectorizable code,

5. transform vectorizable numerical domain in logic programs to be efficiently executable code

on vector stipercomputers,

109

6. identifying deterministic code for code optimization by removing the overhead of handling

multiple environment caused by multiple clauses .

7. identifying different types of parallelism in a logic program,

8. developing parallelizing compiler exploiting AND, OR, and stream parallelism in symbolic
domain. This can be done using program transformation to existing model, or compiling the

symbolic domain and non-vectorizable domain to an extended variation of warren abstract

machine.

9. developing interface for parallelizing compiler in symbolic domain and vector codes on vector

supercomputers

10. Extend warren abstract machine to handle non-vectorizable iteration, derived type informa-
tion, along with AND, OR, and stream parallelism.

In this paper, we describe an application of abstract interpretation to identify the vectorizable
numerical code. This vector analysis scheme derives defihte iteration, the information about bound
and indices, identification of vectors simulated by lists or functors, and the derivation of vector-size.

The vector analysis scheme is based upon extending abstract domain from type domain to the
abstract domain as vector domain. Vector domain is a superset of type domain and includes vector

related information along with type related information. However, we differentiate between the
two different modules, namely abstract interpretation in type domain and abstract interpretation

in vector domain since the output of type domain is also used for producer-consumer analysis,

identifying different types of parallelism, and identifying deterministic code - codes which have no
alternative solution. The vector analysis scheme has five components, namely, generalization, vector

unification, vector summarization, concretization, and iteration analysis. The first four component
are used to propogate and collect the information in the vector domain and the last component uses
solving a system of linear equations to derive the vector-size information, and the identification and

disambiguation of index and bounds for iterative constructs simulated using tail recursive programs.
We describe various schemes and explain the algorithms. We also discuss the current issues to
integrate AND, OR, and stream parallelism with vectorization.

3Multiple environments are handled implicitly (one at a time) in Prolog by backtracking and unbinding, while,
they are explicitly handled in OR-parallel implementations

110

Data Locality

Monica S. Lam
Computer Systems Laboratory
Stanford University, CA 94305

Previous research on parallelizing compilers for sequential imperative programming languages con-
centrated on the extraction of parallelism. Recent results in the area indicate that the extraction of
parallelism is only the first step. The discovery of a large amount of parallelism does not necessarily
translate to a gain in performance because the overhead in synchronization and communication can ren-
der parallelization ineffective. Improving data locality, thus reducing the communication overhead, will
become even more important as processor speeds continue to increase much faster than communication
and memory access rates. The study of parallelism must therefore be coupled with the study of locality.

While standard scalar optimizations aim to reduce the total instruction count in a program, locality
optimizations rearrange the computation to reduce the cost of data accesses by taking better advantage of
the memory hierarchy. We take a three-tiered approach to the problem: First, we try to group operations
that use the same block of data as a unit of computation allocated to a processor. In this way, the cost of
fetching the data is amortized across all the operations using the data. If this technique does not reduce
the communication adequately, we try to allocate the computation and data to processors in a way that
minimizes interprocessor communication. Lastly, if communication is unavoidable, we try to hide the
latency of the communication by overlapping the data fetches with computation on other data.

We have been focusing on two different computation domains which require different techniques
in gathering the information necessary for locality optimizations. They are dense matrix computations
where a fully automatic compiler approach is feasible, and coarse-grain tasks where linguistic support is
necessary.

1 Dense Matrix Computations

Our data analysis in the domain of dense matrix computations focuses on those array references whose
indices can be expressed as affine functions of the loop indices. We have developed a reuse analyzer that
identifies those iterations that use the same data[4]. The idea is based on finding the kernel of a matrix
constructed from the index functions of an array access. This analysis provides the information useful for
all the three locality optimizations described above. We have succeeded in using the information to block
computations automatically, we are currently investigating the topics of better computation placement
and prefetching.

To successfully convert codes in practice into their blocked version, we need to combine the ba-
sic blocking transform with other loop restructuring transforms such as loop permutation, reversal and
skewing. We model these transformations of permutation, reversal and skewing and their combinations

This research was supported in part by DARPA contract N00014-87-K-0828.

111

as unimodular matrix transforms[5]. This approach applies not only to code whose dependences are
representable as distance vectors, but also to the more general domain of direction vectors as well. This
formulation reduces the locality optimization problem to finding the best matrix transform that exploits

the reuse discovered in our reuse analysis.
Our algorithm can automatically block codes such as matrix multiplication, a successive over-

relaxation (SOR) code, LU factorization without pivoting and Givens QR factorization. Performance
evaluation reveals that blocking can improve uniprocessor workstations by a factor of 3 to 4; its impact
on multiprocessor is even more significant as it reduces memory contention, permitting a near linear
speed up on multiprocessor systems.

2 Coarse-Grain Parallelism

The high-level data reuse pattern, that is necessary to exploit coarse-grain parallelism effectively, is hard
to extract automatically from a program. Fortunately, this level of information is well understood by
the programmer of the application. We need only to provide linguistic support so that the programmer
can easily convey the information to the optimizer. Existing imperative parallel programming languages
generally require the programmer to express the parallelism in terms of low level control. Not only
is the programming task difficult and error-prone, it is impossible to extract the high level data usage
information from the program.

We have developed a parallel programming language called Jade that allows a data-oriented expression

of parallelism while fully supporting the imperative programming paradigm[l, 2, 3]. Starting with a
sequential program, a programmer simply augments those sections of code to be parallelized with side
effect information. The Jade system automatically infers from the side effect information the allowable
parallelism between these sections of code, which are also known as tasks. The Jade system finds not just
static parallelism but also parallelism that can only be derived at run time. Using Jade can significantly
reduce the time and effort required to develop a parallel version of an imperative application with serial
semantics. Jade has been implemented as extensions to C, FORTRAN, and C++, and currently runs on
the Encore Multimax, Silicon Graphics IRIS 4D/240S, and the Stanford DASH multiprocessors.

The responsibility of blocking the computation to promote data reuse falls on the programmer. Jade al-
lows the programmer to express the side effects of an arbitrary unit of computation in terms of user-defined
objects, rather than memory locations on individual read/write operations. This support of abstraction
enables the programmer to use his application knowledge in choosing the right granularity of synchro-
nization. The Jade language allows the programmer to express the information simply and directly. The
programmer need not reduce the information down to low level control constructs; the system automat-
ically coordinates the hardware resources to perform the computation correctly and concurrently. By
hiding the low level details from the programmer, the program is easier to write and it is more portable.
Moreover, with the side effect information specified by the programmer, the system can further optimize
the program by better data and computation placement and data prefetching.

Jade is designed to be compatible with compiler optimizations. Since the language does not have
any implicit communication operators, a compiler can optimize individual tasks as if they are simple
sequential codes. Automatic parallelizing techniques, such as blocking, can be applied to the more
regular parts of the computation, thus enabling the programmer to concentrate on the more application
specific form of parallelism. By combining both language technology and compiler optimizations that
focus on data locality optimizations, we hope to develop a system that can exploit parallelism in a wide

112

array of applications.
The research described in this talk is performed jointly with Michael Wolf, Martin Rinard, Daniel

Scales and Jennifer Anderson.

References

[1] M. S. Lam and M. C. Rinard. Coarse-grain parallel programming in Jade. In Proc. Third ACM
SIGPLAN Symposium on Principles and Practice of Parallel Programming, April 1991.

[2] M. C. Rinard and M. S. Lam. Semantic foundations of Jade. In Proc. 19th Annual ACM Symposium
on Principles of Programming Languages, January 1992.

[3] D. J. Scales, M. C. Rinard, M. S. Lam, and J. M. Anderson. Hierarchical concurrency in Jade. In
Fourth Workshop on Languages and Compilers for Parallel Computing, August 1991.

[4] M. E. Wolf and M. S. Lam. A data locality optimizing algorithm. In Proc. ACM SIGPLAN 91
Conference on Programming Language Design and Implementation, pages 30-44, June 1991.

[5] M. E. Wolf and M. S. Lam. A loop transformation theory and an algorithm to maximize parallelism.
IEEE Transactions on Parallel and Distributed Systems, October 1991.

113

Compiling FP for Data-Parallel Systems

(Extended Abstract)

Clifford Walinsky* Deb Banerjeet

Department of Mathematics & Computer Science
Dartmouth College

Hanover, NH 03755

Abstract

Il data-parallel programming, operations are performed simultaneously on all elements of
large data structures. Backus's FP functional language promotes this view. FP provides a
large set of data rearrangemenet primitives, and a useful set of functional combining forms that
are applied to entire data structures. We present an overview of an FP compiler that generates
programs capable of exploiting data-parallelism. The FP compiler determines the effects of data
rearrangement functions at compile-time, thereby avoiding creation of large intermediate data
structures, and reducing communication overhead. FP and its compiler are formally specified,
reducing ambiguity concerning constructs of the language and results of the compiler.

1 Introduction

R-ceiit developments in computer design have made it possible to export a particular form of imas-

sive parallelism: data-parallelism [11]. Examples of data-parallel systems include the Connectioil
Machlinu [20], the ICL/DAP, the MPP [4], Blitzen [6], and ILIAC-IV.

Ill data-parallel systems, distinct elements of data structures are stored in distinct processors.

Software data structures are then aligned most naturally to the physical configuration of processors,

which is typically a multi-dimensional grid. Because processors operate synchronously, operations

are performed on entire data structures. Data-parallel programming style is very different froii
conventional programming. In conventional languages, iteration and recursion are used to perform

operations on individual elements of data structures. In data-parallel progrannning, operations to
cornbine and rearrange data are applied to entire data structures, making iteration and recursion

less important.

De-eiphasis of iteration and recursion makes realization of efficient parallel implementatioiis

much easier. The programs in Figure 1, written in a conventional notation employing iteration, both
sum all elements of a vector V. Sophisticated analysis is required to determine that simultaneous

evaluation of the body of the first program's loop will not yield significant performance improvermemt

(pipelied processing is more appropriate), while simultaneous evaluation is appropriate for the
SOCoid prograrn.

*clifford.walinskydartmouth.edu
tdeb.banerjeeedartmouth.edu

114

Summation Program I Summation Program 2

S := 0; for i in i..lg(|V|) do

for i in 0..|VI-1 do for j in 0..|VI-l do
S := S + VEi) if j mod 2 = 0 then

V[j] := V[j + V[j+2 1)]

Figure 1: Summation Programs

Limiiiting iteration and recursion makes data-rearrangement much more important. For example,

to sum corresponding elements of two vectors, the data-parallel style dictates the following steps.

. Corresponding elements of the vectors are first paired so that corresponding elements reside
within the local memory of a single processor.

2. Next, every processor adds the two elements stored in its local memory.

The first step of data-parallel vector addition involves data-rearrangement. Using FP, it has
been our experience that the number of operations that rearrange data far exceeds the number

1ieeded to combine values. Without a methodology for optimizing data movement and reducing
the Inumber of intermediate data structures produced from data rearrangement, compiled programs

would perform very poorly. Wadler also describes techniques fir eliminating intermediate data
structures in functional programs [21][22]. His optimizations are adapted for linked data structures,
such as lists, and require enhancement to take advantage of vector indexing operations that occur
in data-parallel programming.

A particular class of data rearrangement functions is amenable to compiler analysis and opti-
miization. A routing function copies (a subset of) values from input to output in a data-independent

imanmier. That is, the actions of a routing function are entirely dependent on the shape of the in-
put, rather than the particular value of the input. Reversal of the order of elements in a vector

is a routing function, because the ultimate destinations of elements in the vector are unaffected
Iy their values. By contrast, a function that sorts elements of a vector is not a routing function,
SiIIce (stinations of elements are entirely dependent on values. The class of expressible routing

himnctions is quite large, and may exceed the requirements of most applications.

Inherent resource imitations of data-parallel architectures also impose additional restrictions
on iteration and recursion. In general these constructs are implemented most efficiently when pro-
cessors are able to conduct different activities simultaneously. However, in functional programming

systems, the activities of processors may involve complex stack manipulation, garbage collection,
aid process migration tasks. These tasks would easily overwhelm the relatively modest computa-
tiomial power and small local memory space of processors in data-parallel systems. In the CM-2, for
example. each processor contains a 1-bit ALU, and can access at most 8K bytes of local memory.

Itealizing the limitations and opportunities of data-parallel systems, the FP language [3] seems
well-suited for corrpilation. FP has a large set of data rearrangement primitives, and a useful set of

hiuitional coiribining forms that encourage a style of programming where operations are applied to

itir" hita structures. Currently, we have implemented a prototype system that translates FP to

C VM--'-ri rami [19]. Conipilation employs "structure inference" to determine the form of inputs aid

115

iitjputs to all expressions [23]. We apply optimizations during compilation to limit the number of

intermediate data structures and amount of data movement incurred from data rearrangement [8].
Since we are currently translating FP programs to an imperative language, and since we impose

many restrictions on FP programs, it may seem that our approach dilutes many of the advantages

of functional programming.. To the contrary, even with the restrictions we impose, FP prograinining

provides important benefits. First, the combining forms of FP enable easy composition of program
units. Our structure inference system helps to determine if function composition is meaningful, for

failure of structure inference implies the presence of a program error. While composition of FP

programs is extremely natural, composition of imperative language programs is relatively difficult,

because name conflicts may arise, and because data dependencies may not be satisfied. To see this,

consider the difficulties constructing a program to sum two vectors, A and B, by composing the

two summation programs in Figure 1. The composition requires many nan-e changes. If complex

data dependencies were more prevalent between the two programs, the composition would be even
harder to perform.

A second advantage in favor of FP is demonstrated by Backus [3]. FP has a well-developed

algebra, enabling program improvements to proceed automatically and reliably. By contrast, im-

provemnents to imperative language programs, especially those involving globi analysis, are often
difficult to perform correctly.

FP is difficult to compile because programs contain no description of the data structures they
are manipulating. Structure inference has been a key discovery that enables us to infer descriptions

of inputs and outputs of all functions in programs. This inference technique is described in Section

2. 1. Structure inference produces type information and can statically compute vector lengths. Since

vector length determination is undecidable in general, we have had to restrict the class of programs

suitable for structure inference.

Inferred structure information is utilized by a formally described compiler that produces low-

level language programs. The compiler is described in Section 2. Encouraging preliminary perfor-

mance results for the compiler are examined in Section 3.
We assume that the reader has no knowledge of the FP language. The next subsection provides

an overview of FP. The final subsection of this section reviews other implementations of parallel

fuictional programming languages. As this paper appears in a logic programining forum, we

gravfully acknowledge the important contribution of Prolog in making our ideas realizable. The

format of this paper is very much an extended abstract; we intentionally eliminate much detail.

'Ihe reader is encouraged to examine other references for greater detail [23][8].

1.1 The Data-Parallel FP Dialect

John Backus described FP in his Turing Award lecture in 1978. Concurrent with publication of

FP. Mag6 [15] described a massively parallel computer system, called the FPM, for evaluating FP.

Development of the FPM was never completed.

An FP program is a finite collection of (possibly mutually recursive) function definitions. Every
function definition describes a partial function mapping over FP data objects. Function definitions

consist of primitive functions and functionals that combine functions. All functions are strict-for

all functions f, f(L) = 1, where I denotes the error value.

Certain subexpressions within FP function definitions are designated for parallel evaluation.
(urrently, these subexpressions may not be recursively defined, and may not contain iteration.

Parallel FP functions map over parallel FP objects, which may be scalar values, tuples (fixed-

116

Iengtli sequences of objects), or vectors (finite but unknown-length sequences of similarly structured
objects). Vectors and tuples may be nested, producing for example vectors of tuples. A vector
of' n eleinents-xi,... IX-is denoted [X 1,..., x]. A tuple of n elements-xi,..., x-is denoted

(I!. .. . , Xn).
lTabs I describes the set of primitive parallel FP functions used in examples of this paper.

[Auitctions are combined with five special functionals-higher-order functions that take other func-
tions as arguments and return functions over parallel FP data objects. The functionals are defined
in Table 2. Due to data dependencies, Backus's original definition of the insert functional requires
soc mtiiple of n parallel time steps for evaluation on an n-element vector, even with an unlim-
ited inimber of processors. The pairwise insert, by contrast, requires only [lg ni parallel time steps
wien applied to n-element vectors.

1u action Name Function Description
Primitive Computational Functions

AXd d ition(+)

NI multiplication(x)

Pimuittice Routing Functions

uaple Selection(inn)

Ir aisposition (trans) I

+(x) = Jy1 + y2, if x = (yi, y2);
1, otherwise.

x (x) =y 1 x y2 , ifx = (yi,y2);
1, otherwise.

1,

trans(x) =

I)istribute-left(distl) distl(x) =

Distribute-right(distr) distr(x) =

Pairing(pair)

{
{

ifx = (y,....,yn) and 1 < i < n;
otherwise.

[[x1,1 , . .. , xm,1], . .. , [zi,n,, * ., zm,n]],
if x = [[x1,1,. . .,[i, , . . . ,

[Xm,i, . . . , m,n]];

I, otherwise.

[(, y1) , . .. , (x, yn)],

if, x= (x,[y1,...,yn]);

I, otherwise.

[(x 1 , y), . . . , (xa, y)],

if x = ([x1,..., z,], y);

1, otherwise.

[(u'y1), .. ,(Xz,yn)],
pair(x)= if"oh=([i,...,],[y,...,yn);

1, otherwise.

Table 1: FP Primitives

117

Functional Name Functional Description

Composition(f o g) f o g(x) = f(g(x))

Apply-all(a f)f(X)= ([f (X0),., f (A),if X=[Xi,.., Xn];
1,f otherwise.

(fiz),. . nz),if f,(x) $ I;Tupling([fi,..., fn]) [f, fn](){= 1W....A),oteise
W J1, otherwise.

Y, if X = [Y];

Pairwise Insert(/f) /f(x) = f X.,]), /f([Xn+1,. .. ,
if X = [XI, .1n;

1, otherwise.

Table 2: FP Functionals

1.2 FP Programming Examples

Backus's original matrix-multiply program is presented below.

def MM = aa(IP) o PairUp.
def IP = /(+) o a(x) o pair.
def PairUp = a(distl) o distr o [12,transo22 J.

Function MM is provided a tuple of two matrices, each represented by a vector of vectors. The

PairUp function forms a matrix of pairs of every row of the first matrix with every column of the

second. The acr(IP) function then applies the inner-product function IP to each row-column pair.

We still need to show that the MM program specifies parallel activities that a compiler can exploit.
If literally translated, the PairUp function could produce a large number of intermediate data

structures. However, creation of these intermediate data structures is avoided with our compilation

techniques. The IP function is evaluated simultaneously on a matrix of row-column pairs. Since

each product is computed essentially in constant time, and the summation of products is performed

in timie proportional to the length of each row, the entire program specifies a logarithmic time (in

the length of each row of the first matrix) parallel procedure.

This function definition exemplifies the style of programs suitable for data-parallel evaluation.

Itouting functions (PairUp in this example) often dominate, because they are necessary for dis-

tributing data to the appropriate functional units for computational operations. Recursion and

iteration are far less important than in other functional programming languages. Some of the ben-

elks of these constructs are subsumed by the extensive set of routing functions provided with FP,
aid the apply-all and pairwise-insert functionals. Certainly, recursion and higher-order functions

are important programming tools; however, many useful programs can be produced without them.

1.3 Related Work Parallelizing Functional Languages

Development of parallel functional programming languages and systems has been ongoing for many

years. Most systems developed and proposed so far consist of heterogeneous (MIMD) processes.

118

Iat allow languages [16][18] expose parallelism at the instruction level-the finest grain possible. In
contrast to data-parallel languages, instructions are executed asynchronously. The Id language [18]

iiicorJporates regular data structures similar to arrays, called I-structures. Typically a computational

pioc.ss is initiated at each element of an I-structure, expoiting a high degree of available parallelism.

Our compiler also implements regular data structures (FP's sequences) as arrays, and can spawn
processes at each array element.

Tlie IIDG (Highly Distributed Graph Reduction) system [7], ParAlfi [12], and various parallel

Lisp and Scheme implementations [13] have language evaluators located at each processor. In

coitra st to dataflow systems, these systems exploit mainly course-grained parallelism. Due to

tie inherent resource limitations of data-parallel systei,.s, data-parallel implementation of HDG
appears to be impractical.

ParAlfi programs contain explicit statements directing the mapping of processes to physical pro-
cessors. This mapping problem is substantially reduced in data-parallel systems because processes
are always mapped to distinct virtual processors, and the mapping of virtual to physical processors

is performed automatically according to problem size. Much work has been conducted in the devel-
opment of CM-Fortran [19], determining proper physical layout of data to reduce inter-processor

conmunication [14]. At this early stage in its development, the Connection Machine FP compiler

generates CM-Fortran programs enabling it to obtain reasonably good layout of data structures.

Mou and Hudak have developed a data-parallel functional language, called Divacon [17]. Futic-
tions designated for parallel evaluation are evaluated in a divide-and-conquer manner. With two

coimmmuInication functions, mirror and correspondence, PDC schemas can be compiled into efficient
Code suitable for evaluation on data-parallel architectures. Additional communication primitives

would make programs easier to comprehend and produce, but may complicate compilation.
l3lelloch presents -scan primitives" to replace memory access operations in PRAM models,

resulting in more realistic performance analysis [5]. Blelloch also demonstrates how scan can
simplify algorithm description. Data-parallel FP implements the insert functional that is similar,
algebraically, to the scan operation.

VP functions that exploit data-parallelism are defined over entire data structures. By contrast,

languages such as Crystal [9] decompose problems by specifying values of individual computational
elements with recursion equations. Similarities do exist, in that user-defined routing functions are
specified with "access function mappings," which are similar to recursion equations.

Many researchers have already reCognized the opportunities for optimization provided by routing
functions. For example, APL compilers tag arrays with information about ravel and dimension
order so that evaluation of routing functions can be avoided entirely in some cases [10].

2 Compilation

Our comipiler operates in three phases. In the first phase, structure inference determines the
st ructure of inputs and outputs of all functions designated for parallel evaluation. The second
phase uses structure inference information to emit an intermediate-language program. In the final

pliase. standard dataflow optimizations are performed on intermediate-language programs to avoid

ridundant data movement and data structure creation.

119

2.1 Structure Inference

A structure is an abstraction of the form of a data structure. Function M describes the set of

values denoted by a structure. Ground structures and M are inductively defined as follows.

" Scalar types int, real, and bool are scalar structures. If s is a scalar structure, MIs] is the
set of all values representable in scalar type s.

" For n > 0, if sl,..., s,, are structures, tuple(s,... , s,) is a tuple structure.

M[tuple(s,. .. ,s)] = {(z1,.. .,Xn)Ixi E M[si],for 1 < i < n}.

" If s is a structure, and n is a non-negative integer, array(n, s) is an n-element array structure.

M[array(n, s)] = {[X1, .. ., xn]i EM[s], for 1< i < n}.

Notice that every structure denotes a nonempty set.

If si and S2 are ground structures, si -- S2 is a structure mapping denoting the set of all partial
functions from the set of values M[s] to the set of values M[s2 J.

We posit the existence of disjoint, denumerable sets of length variables and structure variables.

A itotn-ground structure contains length variables (and more generally, length expressions) within
array structures-rather than just constant lengths, and structure variables in addition to scalar
structures. Structure s' is an instance of structure s if there is a binding 0 of non-negative integers
to length variables, and structures to structure variables, such that s' = O(s). When si and S2 are

iion-ground structures,s1 - S2 is a denotation for the following class of partial functions:

S1 - S2 = U {MIs'1]-+MIs']Is' -+' is a ground instance of si s2 }

The purpose of structure inference is to deduce a most general structure mapping that. charac-
terizes each function within an FP program. The inference system possesses a set of axioms, one
for each primitive function, and a set of inference rules, one for each functional. When a function

f is inferred to belong to the class of functions si -+ S2, we write f : s, -+ S2. Some of the axioms

and inference rules used by the inference system are listed below.

Multiplicatioii(x)

tup' 2 (real, real) - real

Pairing(pair)

tuple 2 (array(n,c), array(n,fl)) - array(n, tuple 2 (a, d))

Comiposition(o)

f :/-.y

g :c-3

f 0 g : a -- + -Y

120

A pply-all(o)

f : ce -4 3

a(f) : array(n,oc) -+ array(n,fl)

Each inference rule is conditional and specifies how deductions are to be performed. In each
rule, the conclusion below the line is derivable if the premise above the line can be demonstrated.

The inference rule for composition will generally require syntactic unification of the input structure
for J with the output structure for g.

Example 2.1 Using the inference rules above, the following deduction tableau can be created for

tl110 lutiction a(x) o pair, which occurs within MM (page 5).

x tuple 2 (real, real) -+ real pair : tuple2 (array(n, real), array(n, real))

a(x) :array(n, tuple2 (real, real)) -+ arr-y(n, tuple 2(real,real))

- array(n, real)
a(x) o pair : tuple2 (array(n, real), array(n, real))

- array(n, real)

2.2 Compiler Specification

The cotipiler emits imperative intermediate-language programs. The intermediate language has
been designed to be translatable to lower-level, machine-specific languages, and to be amenable for

performing dataflow optimizations.
The only construct in the intermediate language uniquely suited for data parallelism is the for

all-loop. This construct has the form below.

for all I < i < u do

<statements>

'Tlie syntactically enclosed <statements> are evaluated simultaneously on u - I processors. Pro-

cessors are arrayed within a space defined by nested for all-loops. Each processor within an

n-diiensilonal space is assigned a unique n-tuple of indices (ii, ... , in), where each i lies within
a fixed numeric range. To evaluate the above for all-loop within n enclosing loops, each proces-

sor is assigned a unique n + 1-tuple of indices (i1, i2,... ,inin+1), where I < in+1 < u. At each
processor, index variable i will be assigned the n + 1' element of the processor's identifying tuple.

To associate program variable names with structures, the compiler makes use of "structure-name

t rees." A structure-name tree is a structure whose leaves (scalar structures) are program variables.

A stricture-name tree t' is a variant of a structure-name tree I if there is a substitution a of new
variable names for those appearing in t such that t' = o(t). For example, tuple2 (A, array(n, B))
is a structure-name tree, possessing a variant tuple2 (C, array(n, D)). We use a function variant to
cuistruct. variants from structure-name trees.

The compiler makes extensive use of a syntactic function V. DI('i,[i]) = (12, [I) produces a
staiteient to copy a data structure described by a structure-naiie tree t2 to a new data structure

described by ti, which must be a variant of t 2 . The index expression lists I'and 'contain indexiig

information Fron enclosing for all-loops. V is defined recursively below, based on the possible
..I rci' lforms.

12"

" When .4 and B are variable names:

'D[(B, [i):=(A,r[J =
B[iI:=A[j].

* D[(tuplef(t',...,t'),[i1):=(tuple,(tl,...,t),[j))]=

D [(W', [1)): =(h1, [D)); ..-. ; I [(t', [?I): =(tn, [D))]

" 'D[(array(n, t'), [i):=(array(n, t), [1)] =
for all 0 < i < n do

E1[(t', [4, i]): =(t, [V, i])].

The compilation function, Cif : tj]' produces an intermediate-language program equivalent to

PP function f; t is the structure-name tree describing f's input; and ' is a list of index variables

produced from enclosing for all-loops. C also returns a new structure-name tree describing its
output. C is defined recursively, based on the form of the FP function to compile. To reduce space,
we list just a few of the rules defining C, below.

* Cipair : tuple2 (array(n, t), array(n,t2))]V=
(for all 0 < i < n do

V [(t' ,[,i) = ,[,i)]

D[t2, i)=(t2,[,),

ar ray(n, tuple2WfI , t2))),

where t' = variant(ti) and t' = variuz*t(t2).

* CIx :tuple2 (A,B)]J=
(C[il:=A[ii x B[I,

C),

where C is a new variable name.

* C[f 0y : t]7=
(SY; Sj,
t3),

where (S9,t2) = Cg : t1i, and (Sf,i3) = C[f : t2Ji.

* Ca(f) : array(n,I)J?=
(for all 0 < i < n do

Sf ,

array(n, t')),

where (Sf, t') = C[f, t](i, i).

Example 2.2 We continue Example 2.1 by describing the intermediate-language program pro-
duced hy compiling a(x) o pair, which is found within the MM program (page 5). Recall that

tle inferred input structure for this function is tuple2 (array(n, real), array(n, real)). We construct.
a structure-name tree from this input structure by replacing all scalar types with unique variable

names. The initial list of index variables provided to function C is empty, denoted by E. Compilation
proceeds --bottom-up," according to the following steps.

122

1. Cpair : tuple2 (array(n, A), array(n, B))]c =
(for all 0 < i < n do

C[i]:=A[i];
D[i]:=B[i],

array(n, tuple 2 (C, D)))

2. Cx :tuple2 (C, D)Jj =
(E[j]:=C[j] x DU],

E)

3. Cr(x) : array(n, tuple2(C, D))]c =

(for all 0 <j < n do

E[j]:=C[j] x DU],
arr ay(n, E))

41. Cja(x) o pair : tuple2 (array(n, A), array(n, B))]E =
(for all 0 < i < n do

C[i]:=A[i];
D[i]:=B[i];

for all 0 <j < n do

E[j]:=C[j] x DU],
array(n, E))

2.3 Intermediate-Program Improvements

\Vhile we have successfully translated FP to an imperative intermediate language, the resulting

programs can be greatly improved. For example, the final program of Example 2.2 can easily be
shortetied to the following more condensed form.

for all 0 < i < n do

E[i]:=A[i] x B[i]

II this section we introduce a number of transformations on intermediate-language programs that

CaII reduce their storage requirements and improve efficiency. These transformations are based

on standard program improvement techniques. They have been specialized to FP's intermediate

linguage. Because control structures of the intermediate language are quite simple, and programs
arl geiierally single-assignment, the transformations require only local analysis within straight-line

segments of statements.

We first, review some standard definitions [2], adapting them to the intermediate language. An
assignment statement of the form A[i) := e defines variable A. If a variable B appears in the

right-hand side of the assignment statement, the statement uses B. A definition of A reaches to a

use of A (the definition and use must be distinct statements) if there is a straight-line statement
sequence from the definition to the use, and there is no intervening definition of A. Note that

imperative languages generally require dataflow graphs to determine reaching definitions.

Definition Propogation If a statement A[i) := e is the only definition of A that reaches to

staleient 1B3D := e2, then all occurrences of A[il in e2 can be replaced by el. Installces of
deliitiloll)propogation are easily detected. Any definition of a variable A that reaches to a use of

123

A must be the only use; the compiler will not emit intervening definitions of A. A more powerful
definition propogation rule can also be defined to accomodate syntactic differences between the

definedd variable, A[il, and its use inside e2.

Dead-Code Elimination If a program contains no uses of a variable A, and A is not an output of
the program, all definitions of A may be removed. Typically, dead code will appear after definitions
have been propogated.

Loop Fusion Loop fusion can create straight-line sequences of statements amenable to definition
propogation and dead-code elimination out of adjacent for all-loops. Two for all-loops with
identical bounds can be incorporated into a single loop [1], as follows. Suppose there are two
adjacent statements within the intermediate-language program of the following form.

for all I < i < u do

Si;
for all 1 < j < u do

S2

When we let S3 be the result of replacing index j by i throughout statement S2 , the following
statement is equivalent to the above statements.

for all I < i < u do

Si;
S3

The equivalence holds as long as index i occurs nowhere within statement S 2-a requirement that
can be upheld quite easily by the FP compiler in its choice of index names. Refinements to this

improvement rule can be devised to accomodate differing bounds on for all-loops.

The dataflow optimizations described here may seem ad hoc, providing very little indication
ahout the achievable performance of compiled programs. We have also developed a formal descrip-

tion of routing functions, using a formalism we call "access function mappings." Composition of
access function mappings eliminates redundant copying. The intermediate-language improvements
of this section have been selected to produce the same effects as composition of access function

mappings.

3 Performance Measurements

W\ith lie improvements mentioned in Section 2.3, program MM (page 5) has been compiled to the
interminediate-language program in Figure 2. A cursory inspection should demonstrate the close

similarity between this program and one written in a more conventional language. We view the
results of this program and others as successful demonstrations of the compiler. Actual performance
of this program corroborates these favorable results.

Performance of the compiled MM program running on the CM-2 is charted in Figure 3. Ties

presented in this graph (in milliseconds) are averages over a number of experiments. VP-ratios
indicate problem size. For each vp-ratio 2", the input matrix dimensions are 26 x 21 and 2+" x 2'.
The program of Figure 2 has been slightly modified, replacing the for-loop that computes /+ with

124

(1) for all 0 < j< n do

(2) for allO<i<mdo

(3) for all O<k<pdo
(4) H[j, i, k]:=AUjk] x B[k, i];

(5) for x:=1 to [lgn| do

(6) for all O<k<pdo
(7) if k mod 2' = 0 then

(6) H[j, i, k]:=H[j, i,k]+H[ji, k + 2X-1];
(9) fji]:1=H[j, i,0];

Figure 2: Compiled Version of MM

a system library call. Multiplying 64 x 512 by 512 x 64 matrices on 8K processors (and 256 floating
point processors), yields 13.4 MFLOPS (32-bit floating point multiply instructions per second). By
comparison, the CM library routine for computing matrix multiply, performed on two 128 x 128
mtiatrices (giving the same number of multiplications), yields performance of 36.5 MFLOPS. We are
eiicoUiraged that our performance is within a factor of three of ;he highly optimized system routine,
although the system routine is capable of operating on much larger matrices than the program of
Figure 2.

Figure 3: MM Performance

In addition to total times, the performance graph also breaks down individual activities within
the program. The "cross vp-set move" phase sets the processor grid to three dimensions when the
for all-loop at line (3) of the program in Figure 2 is entered. The "spread" phase copies each
muiatrix across three dimensions. The "multiply" phase multiplies corresponding elements. Finally,
the -CM/+" phase sums across the third dimension of the product array. While communication
doilinates total evaluation time at all vp-ratios, this communication is essential for the algorithm.

Table 3 describes the degree of improvement in performance of a compiled version of the MM

prorugram before and after the improvements suggested in Section 2.3. This version of the MM program
performs integer arithmetic, which can be slower on the CM-2 than floating-point. Problem sizes
are smtialler than those presented in Figure 3 because the unimproved programs exhaust memory
resources long before the improved versions.

125

Matrix Multiply Performance

157 cross vp-set move
E150 E 150EEJspread

........ 9Sra
I 00 93 rriess Multiply
50 5DI CM-./+

0
vp-ratio vp-ratio vp-ratio

64 128 256

Times (msecs)
Matrix Dimensions Unoptimized Optimized

16 x 16 and 16 x 16 113 15

32 x 32 and 32 x 32 278 21
64 x 64 and 64 x 64 2,045 63

Table 3: Effects of Program Improvements

4 Summary

We have described a compiler for a dialect of Backus's FP language. The compiler generates

intermediate-language programs suitable for data-parallel evaluation. The dialect of FP we have

selected for compilation retains the simple algebraic properties of the original FP language. Further,
we can perform structure inference on all programs written in this dialect to describe input and
output structures of all program expressions. The intermediate-language is similar to conventional

languages currently available for data-parallel systems. In fact our compiler was easily adapted to
directly produce CM-Fortran programs. We have defined a set of program improvements that take

advantage of the single-assignment nature of intermediate-language programs.

We have a number of outstanding research objectives. We end this paper outlining these goals.

Iteration and Recursion The chief limitation we currently impose on FP programs is that they
should be non-recursive and non-iterative. Backus defined FP to permit no programmer-defined

higher-order functions, though these restrictions are removed in FFP.

The restrictions on iteration and recursion can be partially lifted by imposing structure preser-

vation on these constructs. For example, assuming that function f maps every structure a to

another structure a, the following inference rule for iteration holds.

f : a - a
p : a -+ bool

while p do f : a -- a

i1 all iterative and recursively-defined functions preserve structure, the number of processes

needed for function evaluation will always be fixed at the beginning of evaluation. On the other
hand, nore dynamic allocation of processes will result in a more expressive language, with perhaps

poorer performance due to the overhead of dynamic process management.

Programmer-Defined Routing FP defines a large set of routing functions. While it is possible

to claim that the existing supply of routing functions is sufficient and "natural," many situations

arise in which programmer definition of new routing functions, using the existing set, is at best

ungainly. The PairUp function clearly exposes these difficulties. We have been experimenting with
a notation fcr programmers to directly describe routing functions, without recourse to a special

set [8]. We have also enhanced the compilation function to generate code for programmer-defined
routing functions.

Incorporating Machine Characteristics into Compilation On massively parallel architec-

tures there may be different message transmission facilities within the same multi-computer system.

126

in the CM-2 for example, message transmission between physically adjacent processors can be up to
two orders of magnitude faster than transmission between arbitrary processors. As a consequence,
on the CM-2, the copy statement in line (2) below should be evaluated as a general message

transmission when c is greater than some threshhold value, say 100.

(1) for all0<i<n do

(2) B[i]:=A[i + c]

When c is less than the threshhold, the program above should transmit values along physically
adjacent processors in c steps. The specific value of c for which different message transmission
Facilities should be utilized is dependent on the technology of the multi-computer system. To
recognize and exploit these tradeoffs, we may need to translate the intermediate-language to a

lower-level language in which communication facilities are ekplicity specified.

Acknowledgements

We thank Pushpa Rao for her editorial comments. Research facilities have been generously provided

by Iartiouth College and the University of Victoria.

References

[1] F.E. Allen & J. Cocke, A Catalogue of Optimizing Transformations, Design and Optimization

of Coipilers (R. Rustin, ed.), Prentice-Hall, pp. 1-30, 1972.

[2] A.V. Aho, R. Sethi & J.D. Ullman, Compilers: Principles, Techniques, and Tools, Addison-
Wesley, 1986.

[3] J. Backus, Can programming be liberated from the von Neumann style? A functional style
and its algebra of programs, CA CM, 21(8), pp. 613-641 (Aug. 1978).

[4] K.E. Batcher, Design of a Massively Parallel Processor, IEEE Trans. Computers, vol. C-29,

pp. 836-44 (Sept. 1980).

[5] G.E. Blelloch, Scans as Primitive Parallel Operations, IEEE Transactions on Computers,

36(11), pp. 1526-38 (Nov. 1989).

[6] D.W. Blevins, et al., Blitzen: A Highly Integrated Massively Parallel Machine, Journal of

Parallel and Distributed Computing, no. 8, pp. 150-60 (1990).

[7] G.L. Burn, Implementing Lazy Functional Languages on Parallel Architectures, Parallel Com-

poters: Object-oriented, Functional, Logic (P.C. Treleaven, ed.), John Wiley & Sons, 1990

(Chapter 5).

[8] D. Banerjee & C. Walinsky, An Optimizing Compiler for FP* - A Data-Parallel Dialect of
y, to appear in 3rd International Symposium on Parallel and Distributed Processing, Dallas

(Dec. 1991).

127

[9] M.C. Chen, A Parallel Language and Its Compilation to Multiprocessor Machines or VLSI,
13th Annual ACM Symposium on Principles of Programming Languages, pp. 131-39 (Jai.

1986).

[10] L.J. Guibas & D.K. Wyatt, Compilation and Delayed Evaluation in APL, 5th Annual ACM
Symposium on Principles of Programming Languages, Tucson, AZ, pp. 1-8 (Jan. 1978).

[11] W.D. Hillis & G.L. Steele, Jr., Data Parallel Algorithms, CA CM, 29(12), pp. 1170-83 (Dec.
1986).

[12] P. Hudak, Para-Functional Programming, IEEE Computer, 19(8), pp. 60-70 (Aug. 1986).

[13] Parallel Lisp: Languages and Systems, 1989 US/Japan Workshop on Parallel Lisp (T. Ito

& R.H. Halstead, Jr, eds.), in Lecture Notes in Computer Science, Springer-Verlag, vol. 441,
1989.

[14] K. Knobe, J.D. Lukas & G.L. Steele, Jr., Data Optimization: Allocation of Arrays to Reduce

Communication on SIMD Machines, Journal of Parallel and Distributed Computing, 8, pp.
102-18 (1990).

[15] G.A. Mag6, A Network of Microprocessors to Execute Reduction Languages Parts I and II,
International Journal of Computer and Information Sciences, vol. 8, no. 5, pp. 349-385 (1979),
and vol. 8, no. 6, pp. 435-71 (1979).

[16] J.R. McGraw, The VAL Language: Description and Analysis, ACM TOPLAS, 4(1), pp. 44-82,
(Jan. 1982).

[17] Z.G. Mou & P. Hudak, An Algebraic Model for Divide-and-Conquer and Its Parallelism, The

Journal of Supercomputing, vol. 2, pp. 257-78 (1988).

[18] R.S. Nikhil, ID Version 88.1 Reference Manual, Computation Structures Group Memo 284,
Laboratory for Computer Science, MIT, 1988.

[19] CM-Fortran Reference Manual (Version 5.2-0.6), Thinking Machines Corporation, Cambridge,
Massachussets.

[20] L.W. Tucker & G.G. Robertson, Architecture and applications of the Connection Machine,

IEEE Computer, 21(8), pp. 26-38 (Aug. 1988).

[21] P.L. Wadler, Listlessness is Better than Laziness: Lazy Evaluation and Garbage Collection
at Compile-time, 1984 ACM Symposium on Lisp and Functional Programming, Austin, pp.
45-52 (Aug. 1984).

[22] P.L. Wadler, Listlessness is Better than Laziness II: Composing Listless Function, 1985 Work-
shop on Programs as Data Objects, Copenhagen, in: Lecture Notes in Computer Science,

Springer-Verlag, vol. 217, pp. 282-305, 1985.

[23] C. Walinsky & D. Banerjee, A Functional Programming Language Compiler for Massively

Parallel Computers, 1990 ACM Conference on Lisp and Functional Programming, Nice, pp.
131-38 (June 1990).

128

Improving compilation of implicit parallel programs

by using runtime information

John Sargeant
Dept of Computer Science
University of Manchester

Manchester M13 9PL
England

(js@cs.man.ac.uk)

Abstract

In our quest for the "Holy Grail" of efficient implicit parallelism, we have op-ed for

a conventional architecture with physically distributed but virtually shared memory (the

EDS machine), and a Large Grain Graph Rewriting computational model. On programming

languages, we hedge our bets, but the work described here uses a (strict) functional language.
This set of choices eliminates many of the problems and brings those which remain into sharp

focus. "All" we need to do is achieve efficient dynamic load balancing, high granularity, and
good data structure locality.

We are investigating an approach whereby the program is first compiled with monitoring
.ode inserted, and run (using relatively small data sets) to produce statistics which are fed
back into the compiler which then produces optimised parallel code. For strict functional

programs, the production of statistics is straightforward, although automatically using them
effectively is not. The paper discusses a number of issues, including the effect of higher-ofrder

functions and other more advanced language features, and various practical problems.

This work is embryonic, but the method seems to have significant advantages over static
analysis or hand annotation, and also provides extra performance information for the pro-
grammer.

1 Introduction

We are interested in hardware and software for scalable, wide-purpose, implicitly parallel sys-

tems. In such systems, the programmer is responsible for expressing parallel algorithms to
solve a problem, and writing them in a language with implicit parallelism. For scalability, the

machine needs to have physically distributed memory, although it may well be logically shared.

Efficient mapping of the program onto the machine is the responsibility of "the system", not of

the programmer. This mapping involves (at least) the following tasks:

* Detection of tasks which can correctly be executed in parallel.

* Deciding where to execute the parallel tasks (load balancing).

9 Detection of tasks which are large enough to be efficiently executed in parallel (granularity

control).

129

* Minimising overheads due to data communication (data locality control).

This will be discussed here in the context of strict (higher-order) functional programs, as
these represent the simplest useful case, although we are actually interested in more general

cases. In the strict functional case, it is straightforward to detect potential parallel tasks at

compile time. Likewise, it is generally agreed that load balancing has to be done at runtime,

and many mechanisms have been investigated. The interesting question is which part of "the

system" should be responsible for granularity and data locality control. Section 3 discusses the

options for this, but first I describe the environment in which this work takes place.

2 Background

2.1 The EDS project

The work described here is a (very small) part of the European Declarative System (EDS)
project[3, 4, 2]. This is a large ESPRIT II project, involving ICL, Bull, Siemens and many
smaller partners. The main aim of the project is to produce a parallel database machine,
although there is some work on LISP and Prolog implementation.

The EDS hardware consists of conventional (SPARC) processors, each with local memory,

connected by a high-bandwidth multistage switching network. Although the store is physically

distributed, it is globally addressable, and the hardware is therefore well suited to our purposes.

The mainstream EDS software consists of a UNIX-like operating system, and a compilation

route from ESQL (an extended version of the SQL database query language). The database uses

"static" parallelism in the sense that the data is distributed according to a compiler-generated

distribution function, and the computation is done where the data is. Our role in EDS is to

investigate more dynamic forms of parallelism, and the work described here is part of this.

2.2 The Large Grain Graph Rewriting computational model

The basic principles of the LAGER model are as follows:

* By default, conventional stack-based serial execution takes place. At a point where paral-

lelism can be generated, the compiler plants both serial and parallel code. At runtime, a

test is done to see if the parallelism is actually needed. If not, serial execution continues.

* If parallelism is required, a packet is created which encapsulates a parallel task (called

an instance in EDS terminology). The stack location which will receive the result of the

instance is assigned a special value called a hole. The spawning task continues serially.

* When the spawned instance terminates, it fills in the hole. If the spawning process needs

a value which is still a hole, it suspends until the hole is filled in, and another process is

run if possible.

* Remote data accesses also cause suspension. In the EDS machine, data is copied in
sectors (of 128B) and is cached by the virtual memory system. The total number of

instances executed is therefore the number of parallel processes started, plus the number
of suspensions due to holes or sector copies. We define the granularity to be the average

number of instructions executed per instance.

130

A version of LAGER [10] is implemented using C and macros which expand to calls to

low-level EDS parallelism handling primitives. We have a compiler, called FTC [9] which takes
the FPM internal format of the Hope+ compiler [6] and produces C-LAGER code. This use of

C as an assembly language is very convenient, but has the disadvantage that an inline process
switch (on a hole or remote data access) involves switching a whole C runtime stack. Together
with the need to save and restore all the SPARC registers, this makes such process switches

uncomfortably expensive, and we therefore work quite hard to minimise the number of them.

Other features of LAGER, including a version implemented as an abstract machine code

and its translation to SPARC machine code, are described in [8]

2.3 An example program

The following Hope+ program grows a balanced binary tree and then sums it.:

data Tree(num) == Leaf(num) ++ Node(Tree(num) X Tree(num));

dec grow : num -> Tree(num);

--- grow(O) <= Leaf(0);

--- grow(n) <= Node(grow(n-1),grow(n-1));

dec treesum : Tree(num) -> num;

--- treesum(Leaf(k)) <= k+1;

--- treesum(Node(n,m)) <= 1 + (treesum(n) + treesum(m)) div 2;

treesum(grow(12));

The significant part of C-LAGER code produced by the compiler is as follows: For grow:

Spawn(int,result.1,grow(argi - 1));

result_2 = grow(argi - 1);
TestHole(result_1);

result = mk-tuple3(2, resultj1, result_2);

and for treesum:

Spawn(int,result-l,treesum(locall[l]));

result.2 = treesum(local1[2J);

TestHole(resulti1);

result = 1 + ((result.1 + result.2) / 2);

Spawn is a macro which tests whether parallelism is required and if so creates an instance

to do the parallel task. TestHole tests for a hole and causes a suspension if a hole is found. In

general, if n tasks can be done in parallel, the compiler plants n-1 Spawns and leaves the last
one to be done serially. This requires fairly straightforward static analysis, which also detects

trivial (ie. non-recursive) functions and avoids trying to Spawn them.
To achieve good speedup for even this very simple, obviously parallel, program is surprisingly

difficult. It is necessary to control granularity by ensuring that only the Spawns high up in

131

the execution tree actually create parallel tasks. For near-linear speedup, it is also necessary

to cause the treesums to be executed where their data is, and to reconcile this with the needs

of the dynamic load balancing. There are a number of traps and pitfalls, even in getting the
basic mechanisms right. These issues are discussed in detail in [11].

2.4 Some experience with a parallel application program

Howard [5] wrote a relational database implementation in Hope+. The program loads a
database and then allows SQL queries to be made on it. The program is quite unusual in

being a substantial functional program (around 1500 lines of Hope+) which was written from
the beginning with parallelism in mind. Relations are implemented as tree structures, and

queries as transformations on trees. The need to generate significant parallelism from relatively
small data sizes (to allow detailed simulation) meant that fairly inefficient join algorithms were
used. The program is therefore not competitive with conventional SQL implementations, but
is a good example of irregular manipulations on non-trivial data structures.

Poor results were obtained by just taking the code produced by the FTC compiler, be-
cause too many unnecessarily small processes were spawned. On the other hand, attempts to
distribute the data and then follow it around (using hand-modified code) also produced poor

results, because less parallelism was exploited and the data following and load balancing inter-
fered with each other. In the end, the best results were obtained by compiling purely serial code,

and then inserting Spawns in carefully chosen places. By this technique, reasonable speedups

(up to 10 with 16 processors) were obtained. However, this performance was far from optimal.

Consider the following sample figures, obtained from the EDS machine simulator [7]

PEs Instances Copies Granularity Speedup
1 1 0 27193142 1.0
2 902 576 30200 1.9
4 3S41 1554 7758 3.5

8 7754 3011 3588 6.0

16 19542 5794 1457 9.0

The instances figure is the number of instances started plus the number of suspensions,
as described above. The granularity is the total number of instructions executed divided by
the number of instances. Speedup is simulated runtime divided into the 1-processor simulated

runtime. As the number of processors is increased, the granularity falls sharply, because of
increasing numbers of sector copies, and also because increasing numbers of small processes are
being generated, showing that the load balancing becomes less effective. Clearly the scalability
to large numbers of processors is poor.

The conclusions we drew from this exercise were:

* It's possible to get reasonable results for small numbers of processors by straightforward
load balancing, provided that the instances spawned are carefully chosen.

* For more scalable results, more sophisticated distribution, including some data following,
would be required.

* The program was too complex to do this by hand. A better understanding of the tradeoffs
should be obtained on smaller programs first.

132

* In order to tackle real programs eventually, much better tools are needed. The following

sections suggest what some such tools should do.

3 Approaches to the mapping problem

A mentioned above, the process of efficiently mapping an implicitly parallel program onto a

parallel machine with physically distributed memory involves control of granularity and data

locality. There are a number of approaches to this problem.

3.1 Static analysis

Static analysis is of limited benefit, because we are dealing with dynamic properties of programs.

For instance, the sizes and shapes of computation trees are not known statically. Likewise, the
sizes and shapes of the data structures produced and consumed by computations are not known

statically. Neither, in general, is the pattern of sharing of data. Higher-order functions reduce

still further the amount which is known at compile-time.

However, it is obviously important to obtain as much information as possible statically, and

there are a number of things we can do. The easiest case is to recognise trivial (ie. non-recursive)

functions as not being worth spawning. The current FTC compiler in fact does this.

A slightly more sophisticated technique is to place a partial ordering on functions, by saying

A > B if A calls B (so mutually recursive functions are equal in this ordering). For instance,

consider the following fragment of a matrix multiplication program:

--- elemmult(val,nil,col) <= val ;
--- elemmult(val,rh::rt,ch::ct) <= elemmult(val+(rh*ch),rt,ct)

--- rowmult(row,nil) <= nil ;
--- rowmult(row,h::t) <= elemmult(O,row,h)::rowmult(row,t)

--- matmult(nil,b) <= nil ;
--- matmult(h::t,b) <= rowmult(h,b)::matmult(t,b)

A compiler can determine that matmult > rowmult > elemmult and therefore probably

deduce that the right thing to do is to spawn the calls of rowvmult from matmult'
Program transformation has a role to play. For instance, the treegrow program above can be

transformed into one where the data structure is consumed as soon as it it produced, and thus

improve its performance by avoiding remote data access.2 This would take away the point of the

program as a benchmark, and could not be done for more complex cases such as the database

example. On the other hand, it does suggest a powerful use of program transformation, in

reducing the distance between the production and consumption of data structures.

Abstract interpretation may also be useful, for instance in determining whether data struc-

tures can be shared or not. However, since abstract domains are limited to a small number

of discrete points, abstract interpretation, as with all these techniques, necessarily gives infor-

mation about discrete qualities (defined or not defined, shared or not shared etc.) and we are

lFor reasons not relevant, here, it's better to spawn the smaller computation, and do the larger one serially.
2 My thanks to David Lester for pointing this out.

133

interested in continuous quantities. The sort of thing we want to know is whether f(x) is big
enough to spawn, or whether g(p, q) references p more frequently than q or vice-versa.

3.2 Runtime heuristics

Runtime techniques, on the other hand, have to work with very limited information to be

acceptably efficient, and so are inevitably heuristic in nature.

For instance, lazy task creation[1] is a useful technique to improve granularity and reduce idle

time, by avoiding premature commitment to serial execution, and favouring tasks higher in the

computation tree to those lower down. However, Aharoni[12] shows that lazy task creation alone

does not prevent the system from spawning many small tasks, especially for programs which
have insufficient parallelism to occupy all the processors. Aharoni in turn suggests an adaptive

scheme where the computation tree is locally expanded breadth-first to reveal its shape, and

the generation of parallel tasks is adjusted according to the information this provides. Aharoni
shows that the method adapts very quickly to changes in the nature of the computation tree,

and produces some impressive results. Unfortunately, breadth-first expansion is essential to the
technique, and is unacceptably inefficient compared to the depth-first stack-based evaluation

used by LAGER and similar models.
In the past, we have favoured the use of runtime mechanisms where possible. However,

mechanisms using simple, purely local, information tend to be ineffective, whereas using more
complex, global information makes them expensive. A good example is the search for a "throt-

tle" to control the excess parallelism which wrecked the Manchester Dataflow Machine[13].

Early proposals involved hardware to schedule individual tokens. This didn't work because the

hardware didn't have enough local information to get the scheduling right. The solution we
eventually adopted involved a data structure which was a fairly complete representation of the

computation tree, and this would probably have been very expensive in a large-scale machine.

3.3 Annotations

The usual solution to the problem is to give the problem back to the programmer, in the form

of annotations. This is currently the best available technique we know of, but there are a

number of reasons for considering it undesirable as the complexity of programs, and the size of

machines, increase.

9 Annotations are a hassle, and require considerable skill to get right. At least that was
our experience with the database program described above.

* Annotations may be machine-dependent; a small shared-store machine will have very
different requirements to a large distributed-store machine. Annotations therefore need
to be parameterised by machine characteristics.

* Annotations need to be introduced or modified when existing code is ported or incorpo-
rated into new programs. There is some loss of modularity, as the user of a function has

to know something of its runtime characteristics.

* In, for instance, divide-and-conquer programs, the same set of function calls has very

different characteristics depending on its position in the execution tree. Annotations
therefore need to be parameterised by this position, or something equivalent.

134

It seems, then, that the inability of either static analysis and runtime heuristics to solve the

problem forces us to use complex, heavily parameterised, annotations. There is one other way
to find out the properties of a program: by running it.

4 Outline of the technique

The basic idea is to run the program, on relatively small data, with profiling code inserted.

The statistics thus collected are analysed by an "expert system" (parameterised by the char-
acteristics of the machine) which produces a set of recommendations which are fed back to the
compiler, which then produces optimised parallel code. The problem then divides into finding
suitable measures, and deciding how to use them. The first of these turns out to be straightfr .-
ward, at least for the class of programs we're dealing with. The second is, of course, the hard

part.

4.1 What measures should we use?

We require measures which are independent of the actual execution order of the program, and
which scale sensibly with the problem size.

One important measure is the total amount of work required to execute a function, ie. the
cost of execution on one processor, which we'll call C1. This is what a standard execution pro-
filer, such as prof, gives you. Another is the length of the critical path through the program, or

equivalently the time taken if arbitrarily many processors are available, ignoring all overheads

of parallel execution. This is C,. The ratio

Cl/C, =1I

is known as the average parallelism of the program. TI is a good abstract measure of program

parallelism and is independent of the actual execution order. It is straightforward to plant code
which will accumulate these figures. Each function passes back its result, plus values for C 1

and C,. At a point where several expressions could be evaluated in parallel, the overall value

of C 1 is the sum of the individual C values, and the overall C in the maximum of the C.

values. Analogous measures D, and D, can be defined for data structures.

4.2 Calculating cost functions

let C 1 (E) be the 1-processor cost of evaluating expression E (e.g. the number of clock cycles

required), C.(E) be the infinite processors cost, V(E) be the value returned by E, where E is
one of the following:

a constant, K

a builtin function or operator, op(E1 ... En)

a user-defined function, f(E1 ... En)

a conditional expression, if EO then El else E2

135

In principle, C1 (E) and Co,(E) can be calculated as follows. Constants are assumed to be

created by sequential code, the cost of which can be statically determined:

C1(K) = C., (K) = StaticCost(K)

For a builtin function, C is the cost of evaluating the arguments, plus the cost of executing

the builtin itself. This will often be statically determined, but in general may be a function of

the values of its arguments (e.g. the cost of allocating a memory cell may depend on its size):

C1(op(E1 ... En)) = C1 (E1) + ... + C1(En) + StaticCost(op, V(E1) ... V(En))

Since we are assuming strictness, the argument expressions may be evaluated in parallel,

so C is the maximum of the C values for the subexpressions, plus the cost of executing the

builtin (assumed to be done serially):

C.(op(E1... En)) = max(C,(E1)...C,(En)) + StaticCost(op, V(E1)...V(En))

For a user-defined function call, C1 consists of the cost of evaluating the arguments, the

cost of the call itself (assumed to be the same for any function call of n arguments), and the

cost of evaluating the function given the values of the arguments:

C1(f(E1 ... En)) = C 1(E1) + . . .+ C1(En) + CallCost(n) + C(f(v(E1) ... V(en)))

Again, the argument expressions can be evaluated in parallel, but all must be evaluated be-

fore the function can be called, and the call itself is assumed to be done serially (no distinction

is made between the costs of serial and parallel calls in this abstract model):

C,(f(EI ... En)) = max(C,(E1)... .Co(En)) + CallCost(n) + Co(f(v(E1) ... V(En)))

The C1 cost of a conditional expression is the cost of evaluating the condition, plus the cost

of evaluating the selected expression, plus the cost (assumed static) of executing the conditional

itself:

C1(if EO then El else E2)=
C 1(EO) + StaticCost(ifthenelse) + (if(V(EO) = true) then C(El) else C1(E2))

Since the evaluation has to be done serially, the equation for Cinf is similar:

Co(if EO then El else E2) =
Co(EO) + StaticCost(ifthenelse) + (if(V(EO) = true) then C(E1) else C.(E2))

The equations for C reflect the influence of data dependencies on the program. When
expressions can be evaluated in parallel, the maximum Cco value is taken. When data depen-

dencies require serial evaluation, the C values are added. Although it is necessary to execute
the program to find C 1 and C,, because they depend in general on some V(Ei) values, the

136

actual execution order does not matter - it could be serial or it could be some arbitrary parallel

order. For data structures without sharing (i.e. trees), D 1 and D, are easy to calculate. Such

a structure is one of:

a constant, K

a tuple containing other structures, tuple(S1 ... Sn)

It's convenient to define

D1(K) = Do,(K) = 0

The D 1 cost for a tuple is the sum of the cost of the subtrees plus the space occupied by
the tuple itself, including any (static) overhead:

D1(tuple(Sl ... Sn)) = D 1 (S1) + ... + D1(Sn) + n + StaticCost(node)

for D,, we take the maximum and add 1 to give the critical path length:

D.(tuple(S1...Sn)) = max(Do(S1) ... D,(Sn)) + 1

The inherent parallelism of a data structure can be defined by

DI/Do = DII

For instance a simple list has DI = 1, reflecting the fact that operations on it are likely to

be serial, while a balanced binary tree of n levels has DI = 2/n.

The definition of D also works for general acyclic graphs. Unfortunately, the definition

of D, is dubious in the presence of sharing, since a shared substructure will be counted once

for each time it is referenced. Although it's not difficult to define D 1 for a graph in terms of

the total space occupied by the graph, this is expensive to calculate in general. Instead, we

will stick with the above definition of D1 , and therefore of DI, even for graphs. Apart from

practical considerations, it may be reasonable to define DI this way, because if a structure is

referenced from n places, n parallel processes can use these references to access the structure

at the same time.

4.3 Accumulating raw data

The compiler plants code which accumulates values for C 1 etc., based on the above definitions.

In practice, of course, the equations for a number of primitives can be combined, to give more

efficient code. Each function call returns a tuple containing its actual result, plus the values of

C1 and C.
Producing D 1 and D figures is similarly easy. Each heap cell is extended with two integer

fields. When a tuple is created, the values of D1 and Dinf are calculated from the values stored

in the substructures, according to the formulae above, and stored in turn. The values can then

137

be reported each time a structure is passed as an argument to, or returned as a result from, a

function.
The figures produced need to be associated with the points at which functions are called,

rather than the bodies, in order to distinguish between calls from different places. For instance,
consider the matrix multiply example above. The call to rowmult from matmult deals with a
whole row, so will consistently have a high C1 . The recursive call within rowmult itself will
vary in size depending on how much of the row is left. The analysis should show that doing

rowmult and matmult in parallel is a better bet than the elemmult/rowmult pair.
To avoid confusion between static and dynamic meanings of the word "call" , we will refer

to the place in the program text where a function is called as a callpoint. The monitoring code
accumulates, for each calpoint, figures such as the number of calls, the means and standard
deviations of C, and C,, and of the D 1 and D figures for the parameters and the result.

For instance, the code for the body of the treegrow function looks as follows:

returnval* grow(argl)
{ int result, C1=0, Cinf=0;

if (0 == argi)
{
result = mk.tuple2(1, 0);
C1 += 2; Cinf += 1;

else {
result = mk.tuple3(2,
update(grow(arg.mon(argl - 1,0, &STATS[4])), &STATS[4]),
update(grow(arg-mon(argl - 1,0, &STATS[5])), &STATS[5]) ' .

C1 += 5 + C1.cost(&STATS[4]) + C1_cost(&STATS[5]);

Cinf += max(2 + Cinf-cost(&STATS[4]), 2 + Cinf-cost(&STATS[5]));

}
C1 += 2; Cinf += 2;

return(pack(result,C1,Cinf));

} /* end of function grow */

The result of the function is of type returnval, ie a record containing the result and values
for C 1 and C,. Within the function, these are represented as variables, which are updated at
various points. The statistics are held in a global array, STATS, with an entry for each calpoint

(so the first recursive call of grow is callpoint 4, and the second is callpoint 5).
A number of utility functions update the stats. pack simply creates a record containing

the result, C 1 and C. This record is used by update to update the stats for the calpoint.
argmon updates the values of D 1 ard Do for an argument. CLcost and Cinfcost recover
the appropriate values to put into the expressions for the overall values of C and C for the
function.

Using callpoints rather than lumping all calls to a function together clearly gives more
accurate results. However, it is not necessary to stop there. In general, the behaviour of
a function may depend on its position in the overall call tree. For instance, if A calls B, the
behaviour of B may differ depend on whether A was called from P or from Q. However, detecting
this requires more expensive monitoring, and implies a cost at "real" runtime, since if there

138

really was a difference the calling mechanism would have to know which route it came from.

Using static calpoints seems a good compromise between complexity and accuracy, but more
experience is needed to confirm this.

Another question is what are sensible values to accumulate. There are many possibilities,

for instance:

Averages: Average values for C 1 and C for each callpoint of each function. Likewise, average
values for D 1 and D,. for the data structures they consume and produces.

Standard deviations: SDs for the above measures. Of course the SD can be calculated on
the fly - it's not necessary to keep all the values.

Histograms: A more accurate picture of the spread of values may be required than that

provided by a simple mean and SD. This could be done by keeping histograms showing

how many times the values fall within certain ranges.

Correlations: It may be useful to know how the values of C 1 and C for a function, and D 1

and D for its output, vary with the values of D 1 and D, for the arguments.

Other statistics which could be useful are the number of data structure accesses done by
a function and maybe the amount of data it creates (different from the output D 1 because it

includes garbage, but excludes structures provided as arguments and counts shared structures

only once). A function which does a high proportion of data references to computation should

be sent to its data, whereas the load balancing should be free to do what it wants with a

function doing little data accessing.

4.4 What should we do with them?

The most immediate benefit is that we get values of H for the program, and for its components.

This suggests a maximum number of processors on which it is sensible to run the program

(especially if H is small and varies little with data size), and identifies serial bottlenecks. This

is itself very useful; it takes naive programmers some time to come to terms with Amdahl's

Law.

The next easiest case is sets of calpoints which can be executed in parallel and which have

consistent values of C 1 (ie. a low standard deviation). If two or more have high mean C1 ,
they should be executed in parallel, otherwise not. When calpoints have widely varying Cis,

(eg. in recursive divide-and-conquer programs) things are obviously more difficult. A promising

technique is to attempt to generate parallel tasks for those instances of such callpoints which

are higher up the dynamic call tree. This is explored in more detail in the next section.

Functions which act as net producers or consumers of data can be identified by correlating

the D 1 values of their parameters and results with their C, values. Generally speaking, pro-

ducers of large data structures should be load balanced, whereas consumers should follow their

data. Functions which produce large, parallel data structures, (large D1 , small D) even if

they themselves are serial, can also be identified, and are candidates for enforced distribution

in order to distribute the result data structure. An example of this occurs in the database

program, which initially reads in the database serially, but the data structure thus created is
then used in parallel.

139

Clearly an analyser program which works well for large programs on large machines needs

to be very sophisticated. Nevertheless, the ease with which a substantial amount of information

can be extracted suggests that the technique has promise.

4.5 Using information about call depth

The depth of each call can be checked in the monitoring code, and correlated with C1 . The

information isn't normally available in the live code, but it would be possible to pass the call

depth as an extra parameter. The overhead of this wouldn't be large, since it would only Ie

necessary to do it for calls near the top of the call tree. However, the absolute call depth does

not in general give the right information. For instance, the full version of the treegrow program

has a "loop" to generate a series of trees:

dec itergrow : num X num -> num;

--- itergrow(ts,O) <= ts;

--- itergrow(tsize,count) <= itergrow(treesum(grow(tsize)),count-1);

The recursive calls within the treesum and grow functions have highly variable C1 . Counting

the absolute call depth is not adequate, since the depth at which treesum and grow are called
varies as itergrow recurses. However, the calls to treesum and grow from within itergrow

provide good starting points. If these callpoints can be identified as roots, the computation

can be distributed with very good granularity. What we really want to know, therefore, are

call depths relative to nodes which are the roots of parallel subtrees. The problem therefore

reduces to the problem of identifying such nodes. This is crucial, since if they can be found

reliably, good granularity can be obtained without using sophisticated runtime load balancing
heuristics, and indeed the load balancing in general becomes much less critical.

There are several ways in which we might attempt to detect these nodes. They represent

places in which the computation "changes mode" and would therefore be expected to be related
to specific calpoints, as in the example. They can probably be identified on statistical evidence

(high C 1 and H, few calls in total etc.) but in fact they can probably be found statically from

inspection of the static call graph.

5 Higher-order functions

Higher-order functions are important in the functional style of programming. In general-purpose

parallel programming they are arguably even more important, because it is desirable to have

libraries of standard functions which manipulate data structures using parallel algorithms, and
such functions are in many cases naturally higher-order.

However, such functions present a number of problems. Consider one of the simplest of such

library functions, map.

--- map(f, nil) <= nil;

--- map(f, h::t) <= f(h)::map(f, t);

In principle, the call to f can be evaluated in parallel with the recursive call to map. So

should it be? The writer of map cannot know, because it depends on the properties of f. It

140

is therefore necessary to use information about f at runtime to decide whether to spawn a

parallel task or not. One way to implement this is to represent f as a pointer into a table which

contains, as well as the code pointer, a value which indicates whether f should be evaluated

serially, spawned in parallel, or made to follow its argument, etc. (In the case of a partially

parameterised function, the table pointer will be part of a packet containing the argument
values already collected.)

For statistics-gathering purposes, it is necessary to treat the call to f rather differently to a

first-order callpoint. For some programs f may be always big enough, or always too small, but

in general it will be different for different fs. It is therefore necessary to record statistics for

each f. Again, this can be done by representing f as a pointer into a table, in which the figures

are accumulated.
As before, there is a tradeoff between the amount of information gathered and the accuracy

of the results. It is not clear, for instance, whether it is necessary to keep separate statistics for
each function for each higher-order callpoint, or whether functions used this way have consistent

behaviour across callpoints. Likewise, it is not obvious whether it is sensible to use information
from all the calls to a function (including the first-order ones) in deciding whether to spawn it

when used this way.

6 Results

One option to the FTC compiler plants code which can be run serially to generate the statistics.

A very primitive version of the analyser exists. It does some granularity analysis, but currently

makes no attempt to deal with data locality issues.

Currently, the software is not sufficiently stable to produce interesting results from large
programs. However, the appendix shows some statistics produced from the matrix multiplica-
tion program mentioned earlier, and discusses some of the things the figures show. I do not

claim that the program is beyond the wit of programmer to annotate (although there are one

or two surprises). I do claim the converse, namely that most3 annotations a programmer might

write on that program can be generated automatically.

7 Open issues

7.1 The question everybody asks

How do you know that your test data is large enough, and covers all the cases? Of course

this can't be answered rigorously, but intuitively the results should be robust given reasonable
testing.

For a program to be worth this treatment, it must either have a large runtime on real
data, or be expected to run many times. After all, 100MIP serial workstations will soon be

commonplace. Conversely, it will be quite reasonable to run programs for, say, a few minutes

on such workstations to produce the statistics, thereby gathering a great deal of information.

It is hard to imagine that a program which runs for 10 minutes (slowed down by, say a factor

of 3 by the monitoring) will behave radically differently when run for 10 hours for real.

31 say most rather than all, because with this very regular program there are, of course, special-purpose tricks

to distribute the data evenly etc.

141

The statistics are additive; results from runs with different data can be combined in sensible

ways. Although quantitative results are produced, they do not have to be exact. It is not

necessary to test every case provided that all the substantial parts of the program are run.

For instance, in a database implementation, it would be necessary to test all of the various

join algorithms implemented. But this testing would be necessary anyway, as part of the normal

development of the program.

7.2 Different programming styles

The techniques described above rely on the fact that, for strict functional programs, the relevant

statistics are independent of execution order. For more general programs, this is not the case.

For instance, in an imperative program using locks or barrier synchronisation, the value of

C, can be affected by whether a process on the critical path is held up by a lock or barrier.

In a lazy functional language implementation, the is a similar dependence on whether shared
values are evaluated on the critical path or elsewhere. There is a further problem in this case

in measuring the size of lazy data structures.
I conjecture that the techniques described above can probably be adapted to work in these

cases; the nondeterminism is localised and results obtained from one evaluation order are likely
to be approximately correct for others. There are, however, classes of program for which

evaluation order critically affects performance, for instance in branch-and-bound algorithms
and some nondeterministic logic programs. In such cases, it is necessary to have a detailed

understanding of the problem to know what a "sensible" evaluation order is.

7.3 "Software engineering" and practical problems

A tool is only useful if it fits well into the overall process of producing software. There are
several areas where quite a lot of work would be needed to develop a production tool.

Combination of results. There have to be sensible ways of combining results from different

runs, and from different modules, preferably without explicit guidance from the user.

This does not seem to present any problems in principle, since the results are essentially
additive.

User interfaces. A helpful user interface is required to ease the process of going through

the cycle of testing, results production, and feedback, while ensuring that all significant
parts of the program are properly tested. It is also necessary to present the information

extracted from the statistics in a suitably concise and meaningful way.

Robustness. It is important that small changes to a module (which move callpoints around,
for instance) do not require the whole process to be done all over again. On the other
hand, it is necessary to detect when a change to a module does affect the way it should
be executed, and even the way other modules should be executed.

8 Conclusions

Large-scale implicit parallelism is difficult. We need the best tools we can produce. It is

unclear at present exactly what tools are required, and which parts of the "system" should be

142

responsible for the various parts of the mapping problem. However, this paper has suggested a

new labour-saving device.

It is too early to be confident of how effective the approach will be, but the quantity of

interesting, quantitative, information which can easily be produced is promising.

9 Acknowledgements

The Lager computational model and its C implementation are largely the work of Ian Watson.
When this paper says "we" it usually means "Ian and I". Various past members of the EDS
and Flagship projects contributed to the software, notably Paul Watson, Nigel Paver and Mark

Greenberg. The work required to produce the FTC compiler was greatly reduced by being able

to use the Imperial College Hope+ front end.

References

[1] Lazy task creation: a technique for increasing the granularity of parallel pro-

grams E. Mohr, D.A. Kranz & R. H. Halstead ACM Conference on Lisp and Functional
Programming, Nice, France, June 1990.

[2] A process and memory model for a parallel distributed-memory machine P.
Istaverinos, L. Borrmann ConPar 90, LNCS 457, pp 479-488

[3] EDS Hardware Architecture, M. Ward, P. Townsend, G. Watzlawik ConPar 90, LNCS
457, pp 816-827

[4] Design and simulation of a multistage interconnection network, R. Holzner, S.
Tonmann, ConPar 90, LNCS 457, pp 385-396

[5] A Relational Database Management System in a Pure Functional Language,
C. Howard, MSc.dissertation, University of Manchester, 1990.

[6] Hope+, N. Perry, Report IC/FPR/LANG/2.5.1/7, Imperial College, London, 1988

[7] EDS Parallel Machine Simulator, N.C. Paver, EDS report, EDS.UD.31.MO01, Univer-
sity of Manchester, 1990

[8] Large Grain Graph Reduction on a RISC Architecture, N.C. Paver, MSc. disser-

tation, University of Manchester, 1989.

[9] FTC: the FPM to Lager-C Compiler, J. Sargeant, EDS report EDS.UD.31.M002,
University of Manchester, 1990

[10] C-Lager Definition, I. Watson, EDS report EDS.UD.31.M004, University of Manchester,

1990

[11] Some experiments in controlling the dynamic behaviour of parallel functional
programs J. Sargeant, I. Watson, Proc. Workshop on the Parallel Implement'.tion of

Functional Languages, Southampton, June 1991, Southampton University tech. report
CSTR 91-07, pp 103-121.

143

[12] A strategy for the run-time management of fine-grain parallelism, G. Aharoni,
Y. Farber, A. Barak, Proc. Workshop on the Parallel Implementation of FUnctional Lan-
guages, Southampton, June 1991, Southampton University tech. report CSTR 91-07, pp
227-245.

[13] Control of parallelism in the Manchester Dataflow Machine, C.A. Ruggiero,
J Sargeant, Third International Conference on Functional Programming Languages and

Computer Architecture, September 1987, LNCS 274.

A Results for the matrix multiplication program

The following is the full version of the matrix multiplication program, with callpoints (as num-
bered by the compiler) indicated in curlies. Of course this is not claimed to be an efficient

matrix multiplication program.

dec elemmult: num X list(num) X list(num) -> num
elemmult(val,nil,col) <= val ;

--- elemmult(val,rh::rt,ch::ct) <= {6}elemmult(val+(rh*ch),rt,ct)

dec rowmult: list(num) X list(list(num)) -> list(num)
--- rovmult(row,nil) <= nil ;
--- rowmult(row,h::t) <= {2l'ielemmult(O,row,h)::{22}rowmult(row,t)

dec matmult: list(list(num)) X list(list(num)) -> list(list(num))
--- matmult(nil,b) <= nil ;
--- matmult(h::t,b) <= {15}rowmult(h,b)::{16}matmult(t,b)

dec kroneker: num X num -> num ;
--- kroneker(i,j) <= if (i = j) then 1 else 0

dec position: num X num -> num ;
--- position(i,j) <= 100*i + j ;

dec genrowpos: num X num X num -> list(num)

--- genrowpos(i,j,n) <= if (j > n) then nil
else {13}position(i,j): :{14}genrowpos(i,j+1,n)

dec genmatpos: num X num -> list(list(num))
--- genmatpos(i,n) <= if (i > n) then nil

else {9}genrowpos(i,1,n)::{10}genmatpos(i+1,n)

dec genrowkron: num X num X num -> list(num)

--- genrowkron(i,j,n) <= if Qj > n) then nil

else {11}kroneker(i,j)::{12}genrowkron(i,j+1,n)

dec genmatkron: num X num -> list(list(num))

--- genmatkron(i,n) <= if (i > n) then nil
else {7}genrowkron(i,1,n)::{8}genmatkron(i+1,n)

144

dec printlist: list(num) -> list(char);

--- printlist(nil) <= nil;

--- printlist(h::t) <= {17}numtostr(h) <> ", " <> {18}printlist(t);

dec printmat: list(list(num)) -> list(char);

--- printmat(nil) <= nil;

--- pr int mat (h: : t) <= {19}pr int list (h) <> "\n" <> f20}Printmat (t) ;

let n == 20

in let ml == {1}genmatpos(1,n)
in let m2 == {2}genmatkron(1,n)

in {5}termout({4}printmat({3}matmult(ml,m2)) <> "\n");

The compiler works out the sets of calpoints which can be executed in parallel, which are:

[1 2) [3) [4) [5) [6) [78) [9 10) [11) [12) [13)
[14) [15 16) [17 18) [19 20) [21 22)

Sets of 1 callpoint are not interesting (unless we want to do forced data distribution). Sets
of more than 2 occur in some programs (eg. doing matrix multiplication with quadtrees rather
than lists). For the pairs, on this 20*20 data size, we get the following:

1: "genmatpos from toplevel" one
C1 = 2942, Cinf = 161, D1 = 840, Dinf = 40

2: "genmatkron from toplevel" one

C1 = 2542, Cinf = 161, DI = 840, Dinf = 40

The first line gives the calpoint number, identifies the callee and caller, and gives the

number of calls. In general, the maximum, and mean values of the various stats, along with

a crude histogram are given, although when, as here, there is only one call, a more compact
format is used. The D 1 and D,, figures for the result are always given, those for arguments are

given when they are non-zero (ie. for structured arguments only).

The units in which C1 and Cinf are measured are currently pretty arbitrary, and the system

is totally untuned. Very roughly, a C1 in 4 figures certainly justifies spawning a task, one in 2
figures usually does not. These two functions are, of course, only called once and are big enough
to be worth doing in parallel. Notice the large, parallel, data structures which are produced

(the matrices, of course).

7: "genrowkron from genmatkron" 20
! stat max mean SD <100 100-1K 1K-1OK >10K

C1 122 122 0 0 20 0 0
Cinf 82 82 0 20 0 0 0
DI 40 40 0 20 0 0 0
Dinf 20 20 0 20 0 0 0

8: "genmatkron from genmatkron" 20

! stat max mean SD <100 100-1K IK-10K >10K
C1 2415 1208 732 1 7 12 0

145

Cint
Dl
Dinf

157
798

39

9: "genroupos f
! stat max
Cl 142
Cint 82

Dl 40
Dint 20

10: "genmatpos
! stat max
Cl 2795
Cinf 157

Di 798

Dinf 39

115 33
399 242

28 8

genmatpos" 20
mean SD
142 0
82 0
40 0
20 0

from genmatpos" 20
mean SD
1398 847

115 33
399 242

28 8

These two pairs are very similar. In each case,

or genrowpos) is rather small. However, we might

the smaller one of the pair (genrowcron
well want to distribute the output data

structure. Another argument for spawning them is that, since these functions produce data but
don't consume it, they will run to completion once spawned, rather than process switching on
remote data accesses.

Callpoints 11,12 and 13,14 are not candidates for parallel execution, because the kronecker
and position functions can statically be seen to be trivial. For what it's worth, the statistics
confirm this:

11: "kroneker from

! stat max
Cl 2
Cint 2

Dl 0
Dint 0

genrovkron" 400
mean SD

2 0
2 0
0 0
0 0

<100
400
400
0
0

100-1K
0
0
0
0

1K-1OK
0
0
0
0

We now come to the big ones:

15: "rowmult from matmult" 20
! stat

Cl
Cinf
Dl
Dint
arg 0
Dl
Dint
arg I
Dl
Dint

max
3322

161
40
20

40
20

840
40

mean
3322

161
40
20

40
20

840
40

SD

0
0
0
0

0
0

0
0

<100 100-1K 1K-1OK >10K
0
0

20
20

20
20

0
20

0
20
0
0

0
0

20
0

20
0
0
0

0
0

0
0

16: "matmult from matmult" 20

146

5
2

19

<100
0

20
20
20

<100
1
5
2

19

15
17

0

100-1K
20
0
0
0

100-1K
6

15
17

0

0
0
0

1K-10K
0
0
0
0

1K-IOK
13

0
0
0

0
0
0

>10K
0
0
0
0

>10K
0
0
0
0

>10K
0
0
0
0

0
0
0
0

0
0

0
0

! stat
Cl
Cinif
Dl
Dinf
arg 0
Dl
Dinf
arg 1
Dl
Dinf

max
63196

218
798

39

798

39

840
40

mean
31599

181
399

28

399

28

840
40

SD
0

44
242

8

242

8

0
0

<100
1
1
2

19

2

19

0
20

100-1K
0
19

17

0

17

0

20
0

1K-10K
3
0
0
0

0
0

0
0

>10K
16
0
0
0

0
0

0
0

This is clearly the key pair to parallelise. It is also clear from the sizes of the arguments
that some data following may be required, and in particular, that a good plan is for rowmult
to follow its second argument.

17: "numtostr from
! stat max
Cl 59
Cinf 27

D1
Dinf

4

2

18: "printlist

! stat max
Cl 1237
Cini 85
Dl 6
Dinf 3

arg 0
Dl 38

Dinf 19

printlist"

mean
53
24

4

2

400
SD

6
2

0
0

from printlist" 400
mean SD

563 348
53 19

5 1
2 0

19

9

11

5

numtostr is a standard function

surprisingly, it doesn't take long and

which converts a number to a string for printing. Not
we can forget this one.

19: "printlist
! stat max
Cl 1302

Cini 88

Dl 6
Dinf 3

arg 0
Dl 40
Din! 20

20: "printmat f

! stat max

Cl 22774

Cin! 146
Dl 10

from printmat" 20
mean SD
1185 129

85 2
6 0
3 0

40
20

0
0

a printmat" 20
mean SD
11960 6970

113 30

8 2

<100
400
400
400
400

<100
40
400
380
380

100-1K
0
0
0
0

100-1K
316
0
0
0

1K-1OK
0
0
0
0

1K-10K
44

0
0
0

0
0

>10K
0
0
0
0

>10K
0
0
0
0

0
0

380
380

0
0

<100
0

20
20
20

20
20

<100
1
4

19

100-1K
0
0
0
0

0
0

100-1K
0
16

0

IK-10K
20
0
0
0

0
0

1K-b0K
7

0
0

>10K
0
0
0
0

0
0

>10K
12
0
0

147

Dint 5 4 1 19 0 0 0
arg 0
D1 798 399 242 2 17 0 0

Dint 39 28 8 19 0 0 0

This one may come as a serious shock to the programmer. In fact, the program spends
almost as much time printing the result matrix as it does doing the actual multiplication. The

reason is that, since the implementation does not have sharing analysis, the repeated appends
in printmat produce many copies of the array. In this case, they are largely done in parallel,
but very often production of the answers in this fashion can be a serious serial bottleneck in
otherwise parallel programs.

Anyway, taking these figures at face value, they suggest that spawning is appropriate, and
also suggest data sharing, since the output data structures are much smaller than the arguments.

21: "elemmult from rowmult" 400
! stat max mean SD <100 100-1K 1K-1OK >10K

C1 161 161 0 0 400 0 0
Cint 101 101 0 0 400 0 0
DI 0 0 0 0 0 0 0
Dint 0 0 0 0 0 0 0
arg 1
DI 40 40 0 400 0 0 0
Dint 20 20 0 400 0 0 0
arg 2

DI 40 40 0 400 0 0 0
Dinf 20 20 0 400 0 0 0

22: "rowmult from rowmult" 400
! stat max mean SD <100 100-1K 1K-10K >10K

C1 3156 1579 957 20 120 260 0
Cint 158 124 32 20 380 0 0
D1 38 19 11 380 0 0 0
Dinf 19 9 5 380 0 0 0
arg 0
DI 40 40 0 400 0 0 0
Dint 20 20 0 400 0 0 0
arg 1
D1 798 399 242 40 340 0 0
Dint 39 28 8 380 0 0 0

This final case is similar in structure to the matmult/rowmult case, but less clearcut. Should

we try to parallelise just one level of the multiplication, or two? The answer is, in part, that it

depends on the machine. The hope is that an "expert system" with knowledge of the machine

parameters, should be able to make this decision better than a programmer trying to decide
how to annotate these callpoints.

148

Generalized Iteration Space and the
Parallelization of Symbolic Programs

(Extended Abstract)

Luddy Harrison

October 15, 1991

Abstract

A large body of literature has developed concerning the automatic
parallelization of numerical programs, and a quite separate literature
has developed concerning the parallelization of symbolic programs.
Because many symbolic programs make heavy use of array data and
iterative constructs, in addition to more "symbolic" language features
like pointers and recursion, it is desirable to fuse these bodies of work
so that results developed for numerical programs can be applied to
symbolic ones, and generalized so that they apply to the variety of
language constructs encountered in symbolic computations. In this
paper is described a framework, called generalized iteration space, that
allows one to unify dependence analysis of array computations with
dependence analysis of pointer computations. It is shown that sub-
scripted array accesses as well as pointer dereferences can be seen as
linear functions of generalized iteration space. We are applying this
framework to the automatic parallelization of C and Lisp programs in
two parallelizing compilers at CSRD, called Parcel [Har89] and Miprac

[HA89].

149

1 Dependence Analysis of Numerical Pro-

grams

A few, quite simple ideas form the basis for virtually all dependence testing
methods for numerical programs. (By numerical programs is meant those
that consist mainly of loops that manipulate arrays of numbers.)

We begin with a definition of dependence, which is ordinarily something
like this:

A dependence exists between two memory accesses if both of them
access the same location in memory and at least one of them
modifies the location.

When the location accessed has a simple, unambiguous name like x then

the dependence test is trivial. A dependence obviously exists between two
statements like

x = 10

y=x

by the definition.
When the location accessed is an array element the dependence test is

subtler. If the accesses occur in a loop, we have a situation like this:

do i = 1 to 100
a[f(i)] = R S1

L = a[g(i)] S2

The question is, are there values 1 < i, i' < 100 such that f(i) = g(i)?
Suppose that i and i' are found that satisfy this equation. Then there is a
dependence between these s i.tciit'ail. We might be more precise and attach

a direction to the dependence. This direction is simply the sign of i' - i. We
say that the dependence has direction ">","<, or "=" according to whether

i' - i is positive, negative, or zero.

We may have several loops surrounding the references, in which case i

and i' become vectors i and i' of index variables, one index variable per loop

150

surrounding each reference. f(i) and g(i') are then expressions involving

several index variables rather than just one.

Now, if f and g are linear functions of i and i', then linear (or integer)
programming can be used to decide if f(i) = g(P) has a solution. If this is
unacceptably expensive, then an approximation to linear programming, like

Banerjee's test [Ban79], can be applied instead (at the cost of some precision).
This has been a most dreadful compression of a very lively area of re-

search. For a complete treatment, the reader is urged to see [Ban86], [ZC90],
[PW86], [TIF86], [Wol82].

2 Iteration Space = Time

Consider a program that consists of a single nest of n do loops. A vector i
that denotes a particular setting of the index variables of the loops, defines a

point in a multidimensional space (n dimensions), called the iteration space.
For example, if the index variables, from outermost to innermost, are ii, i2
and i3, then i = (2,7,3) would be the point corresponding to the second
iteration of the outer loop, the seventh iteration of the middle loop, and the
third iteration of the inner loop. We could identify i as a point in time during
the execution of the loop. If S is a statement in the inner loop, then S(2,7,3) is
the instance of S (a particular execution of the statement S) that occurs at
time (2, 7,3). The iteration space is totally ordered, so that it makes sense

to say that (2, 7, 3) is earlier than (2, 8,1).
This way of marking time is well defined independently of the iteration

variables ii, i2 and i3. That is, it would still make sense to speak of the
point in time i = (2,7,3) even if there were no variables i1 = 2, i3 = 7
and i3 = 3 visible to the programmer. i would be the point in time at
which control had entered the header of the inner loop for the third time,
after having entered the header of the middle loop for the seventh time, after
having entered the outer loop for the second time. Note how the nesting
of the loops is built into the iteration vector: each time the outer loop is
entered, the counters of the inner loops are reset to zero, like the digits of an

odometer.

Looked at in this light, f(i) and g(P) are functions of time (the iteration
space) rather than of variables in the program. The dependence test answers
this question: are there times at which a[f(i)] and a[g(P)] are the same

151

memory location? The research on dependence testing of numerical programs

to date lets us say this:

When the memory locations that a program accesses are a linear
function of time, then its dependences may be decided accurately
at compile-time.

3 What Makes a Symbolic Program Non-

numerical?

In Section 1 the theory of dependence testing of numerical programs was
summarized. What is it about symbolic programs that makes it difficult to
apply this theory directly to them? Apparently symbolic programs don't
use so much a different set of programming language constructs, as a larger

set. Cursory examination of the source code of a compiler or a Unix utility

or a computer algebra package will turn up plenty of do loops and arrays.
However, there is more variety: data is organized in linked structures and
arrays (and in mixtures of the two) and while loops and procedure calling
(including recursion) are used to control the execution.

We would be making great progress toward parallelizing symbolic pro-
grams if we could make a similar statement for them as for numerical pro-
grams; namely that we can analyze their dependences accurately when the
locations they access are a linear function of time. To accomplish this, we
apparently need two things: a notion of time that pertains to recursive pro-
cedures and while loops as well as to do loops, and a way of looking at
the locations accessed by pointer dereferencing as functions of time (and of-

ten, we hope, linear functions of time), analogously to the way we viewed
subscripts into arrays.

4 Generalizing the notion of time to arbi-

trary control structures

As was pointed out in Section 2, an iteration space is well-defined quite
apart from the index variables of a loop nest. We may look at our iteration
vector i as simply a count of the number of times control has passed into

152

each loop header (since the last time control exited that loop altogether).
Just as easily, in a program with procedure calls and while loops, we may
speak of a vector j where each element of j is associated with each procedure

entrance and while loop header, and the count associated with each control

flow point is incremented when control passes into that point. In this way,

we define a natural generalization of the iteration space, and thus a natural
generalization of our notion of time.

By recursion a loop may become nested within itself, or the outer loop
in a nest may become tested within the inner loop (by a call to the proce-

dure containing the loop nest, from the body of the inner loop). We must
therefore take care to define this generalization of iteration space in a way
that preserves the old definition but handles the new situation appropriately.

Suppose we look at a do loop as a tail-recursive procedure L. There would
then be two points in the program text where L is called: one outside of L

(to initiate the loop) and one in the body of L (to invoke the next iteration).
When control exits the final iteration of L it causes all the iterations to exit
(in reverse order) up to the last call to L from the outside. If we make the
rule that the count in j associated with L equals the number of active in-

stances of the body of L, then it is easy to see that the iteration vector j
for a simple nest of do loops is built exactly as i was before. To verify this,
let the nest have three tail-recursive procedures, L1, L2 and L3. There is a

call to L3 (from the outside) in the body of L2, and another in the body of
L3 itself, and likewise for L2 and Li. The critical point is this: every time
n iterations of L3 execute, they cause the the count associated with L3 to
be incremented until it reaches n. When the nth iteration exits, the count is
decremented by 1 (there is one fewer activations of L3), and likewise for the
n - 1th iteration, and so on until the call to L3 from the outside is exited, at
which point the count associated with L3 is reset to zero. We are then ready
for a fresh instance of L3, in the next iteration of the surrounding loop (L2).

We've established that our new iteration vector j is built, in the case of
a simple nest of do loops, in a way that preserves the standard definition
of iteration space. However, j is well-defined for any point in time during

the execution of a program that consist of procedures that call one another
(whether they represent loop bodies or are ordinary procedures). This is a

most useful fact, which can be turned into an interprocedural dependence
test for a large class of programs.

Before moving on, let us make two observations about this generalized

153

iteration space. First, consider this program:

Li: do i = I to 100
a[2i + k] = b[3i + k]

If this is our program in its entirety, then the corresponding iteration vector

j has one element corresponding to the iterations of L1. The subscript a[2i
+ k] is linear in j (since k is fixed). However, suppose that Li is instead in

the body of a procedure f and that elsewhere in the program appears the
code

L2: do k = 1 toi100
call f

where k is the location in Li and L2. Now j has three elements, for L2, f and
L1 respectively. The subscript a[2i + k] is still linear in j. If j = (4,1,7)
for example, then i = (0-4+01 + 1 -7) and 2i = (0-4+0-1 +2-7) and
2i+k = (1 -4+0 -1+2-7).

Indeed, the program might be such that f is recursive, and that the
subscript expression is a function of the control flow through f as well. In
this way, we can reason about dependences for larger and larger units of

control flow in the program.

The point of this example is to show that interprocedural dependence

testing is greatly simplified when all of the memory locations accessed by the
program are referred to a single standard of time (the generalized iteration

space).

The second observation is this: the points in the generalized iteration
space as we have defined it do not name unique points in time during the
program execution. For example, it may happen that the body of L2 contains

two calls to f:

L2: do k = 1 to 100
call f
call f

in which case the iteration vector j = (4,1,7) could occur more than once.
This is not a problem, as long as we are mindful of the fact, but it is also easy
to remedy this by using call sites rather than procedures as the control flow
points that represented by elements of the iteration vector j. See also [Har89]
for a different notion of interprocedural time, that gives rise to unique names
for points during the execution.

154

5 Generalized Induction Variables

A do loop has two aspects: repetitive control flow and an index variable
that is a linear function of the control flow. This linkage is most convenient,
because it means that subscript functions which are a linear function of index
variables are also a linear function of the iteration space. Indeed, when we
normalize do loops so that their index variables run from 1 to an upper bound
by a step of 1, we are making this fact explicit. It is the fact that they are
functions of a single iteration space that makes it possible for us to compare
different subscript functions and test for their overlap.

When our program contains while loops and procedure calls, the rela-
tionship between the variables of the program and its iteration space is not
so manifest; we must work to establish that certain variables are linear in
the control-flow of the program. Space does not permit a description here,
but it is quite easy to develop a flow analysis (an abstract interpretation if
you like) that expresses variables and other quantities in a program as linear
functions of the gene.'alized iteration space, and experimentation reveals that
this is quite robust in practice. Let us take it for granted, then, that we can
establish with good accuracy when an arithmetic variable x is a linear func-
tion of J, and what constant coefficients must be attached to each element
of j to give the value of x at any program point.

With such a rest we obtain at once an interprocedural dependence test
for array accesses, in 'he setting of recursive procedures and while loops.
For example, the program above that has L2, f and Li could just as easily
have been written as Ihree tail-recursive procedures by the the programmer.
Once we establish (by flow analysis) that k = (1,0,0) .5 and i = (0,0,1) -5
and therefore that 2i + k = (1, 0, 2) -j, then testing for dependences between
"iterations" of Li or L2 is straightforward. This is already an important step
toward parallelizing symbolic programs effectively, because it allows us to
apply many of the techniques developed for Fortran programs in the setting
of more general control-flow constructs.

6 Birthdates of Dynamically Allocated Data

Recall that in section3 it was claimed that we needed two things to apply
the (conventional) theory of dependence testing in the symbolic setting: a

155

generalized notion of iteration space, and a way of looking at any memory

access (whether array or pointer) as a function of that iteration space. At
this point we've established the new iteration space and claimed that it is

easy to express ordinary induction variables and linear combinations of them

as linear functions of this generalized iteration space. It remains for us to
show a correspondence between an arbitrary memory access and this iteration
space.

Suppose that an object is allocated (as by malloc) at a point S in the text
of a program, and at time i (the birthdate of the object). We may identify
(S,) as the address of the object; it distinguishes the object from all others
(let's assume that i is unique during the execution of the program). Now
suppose that (S,) is but one of many objects allocated at the program point
S during the execution (that is, there are other instances of S), and that each
such object points to another in a chain. Let (S, i') be the successor of (S, i)
in this chain. If i' - i is a constant vector (for all pairs of objects (S,) and
(S, i') that are neighbors in the chain), then the memory locations of this

chain are a linear function of time. This will happen, for example, if the
(S,)'s form a linked list or doubly linked list constructed by the iterations
of a loop or tail-recursive procedure, and a similar pattern would arise if

the (S,)'s formed a tree built by a recursive procedure or even by several

mutually recursive procedures.

Now, i and P are two points in time during the execution of the program,
and it might not be useful or practical to compute them at compile time, for
there may be an infinitude of such vectors. (Similarly, it is not ordinarily
useful or practical to manipulate the individual iterations of a nest of do
loops in conventional dependence testing.)

However, if P - % is a constant vector, it is very reasonable to compute

its value during compilation. We could do it this way: when our object is
allocated at point S, attach to it the vector j = 0 (all zeroes). Then, as the
object undergoes movements of control flow (that is, as procedures are called

and returned from) we increment and decrement the elements of j so that
the net effect of these movements are recorded in j. When we reach S again

and allocate another object, and link it to the object to which we attached
J, we will have j = - i. That is, j will be the time between the birthdate of
the two objects, by its construction. Thus we can compute P - Z (provided

that it is a constant vector; that is, provided that it is independent of the
choice of i and P) with computing any i or'*.

156

7 Dependence Testing over Birthdates

By the foregoing method we may obtain a program analysis that attaches to

every pointer, the difference in time between the birthdate of the object that
contains the pointer and the object to which it points.

Now consider a traversal during which the data structure created above

is modified. Suppose it has this form:

F:

ptr->info = 0

ptr = ptr->link
call F

and consider the variable ptr. Suppose that its value is (S, io) at the be-
ginning of L. After the first iteration of L, ptr becomes (S,io + j, and after
the second iteration, (S, io + 2 - j, and so on. By the same means that we
may recognize when an arithmetic value is a linear function of the iteration

space, we may recognize that ptr is a linear function of the iteration space,

and thus that the memory accesses ptr->info = 0 are a linear function of

the iteration space. In this case we have a natural dependence test, namely,

to show that there is no j # j' such that io + j = io + j'. This is precisely
the sort of equation that arose when we were testing for dependences among
subscripts, and can be solved by exactly the same means (linear or integer
programming or an approximation thereto). It is straightforward to general-

ize this idea to nests of loops and recursive procedures operating over linked

data.

In the example I've chosen the traversal of the data structure is isomor-

phic to its construction (that is, the control flow during the construction is

isomorphic to the control flow during its traversal) but the dependence test
would apply if the traversal were

F:
ptr->info = 0

ptr = ptr->ptr->link
call F

In this case the equation to be satisfied would be io+2- j = o+2- j' subject
to j $ j'. Here, the 2 -j' comes from the addition of j' twice (once as each
link is crossed).

157

There is therefore no requirement that the construction and traversal be

isomorphic, only that they be linear in time as we have defined it.

8 Mixed Array and Pointer Dependence Test-

ing
If it is true as claimed, that symbolic programs make heavy use of arrays and

conventional iteration in addition to recursion and linked structures, then it
is important to observe that both subscripted arrays and pointers are viewed

in this framework as functions of a single iteration space. Suppose we see

two accesses like foo->a[2i+7] and bar->a[3j+2i]. Suppose further that
we obtain equations dl and d2 for the birthdates of foo and bar as we did

for ptr above, and that we obtain equations si and s2 for the subscripts

2i+7 and 3j+2i as we did for the subscript 2i+k above. Then there is a
dependence between these references only if there is a solution to

d1(i) = d2 (i') and 81(2) = 32(2').

That is, the two equations must be satisfied by a single pair of time points i

and i'.

9 Related Work

It has been the goal of this paper to discuss the relationship between depen-
dence testing in numerical programs and the dependence testing of symbolic
programs used in Miprac. A complete comparison of the dependence analy-
sis used in Miprac to other methods for analyzing symbolic programs (e.g.,
[LH88],[HN90],[Gua87],[CWZ90]) can't be given here since the dependence
analysis algorithm used in Miprac has not been presented completely here.
The interested reader may obtain [Har9l] which contains a lengthy compar-

ison of Miprac's methods to other research in the parallelization of symbolic

programs.

158

10 Conclusion

It is possible to generalize the notion of iteration space and linear memory
access so that they apply usefully to the dependence testing of symbolic
programs. We have constructed one experimental compiler (Parcel) that
applied this framework to Scheme programs with good success, and are cur-
rently building a more powerful and flexible system (Miprac) that applies
this framework to C, Fortran, and Common Lisp programs.

References

[Ban79] Uptal D. Banerjee. Speedup of Ordinary Programs. PhD thesis,
University of Illinois at Urbana-Champaign, October 1979.

[Ban86] Utpal Banerjee. Dependence Analysis for Supercomputing. Kluwer,
Boston, MA, 1986.

[CWZ90] David R. Chase, Mark Wegman, and F. Kenneth Zadeck. Analysis
of pointers and structures. In ACM SIGPLAN '90 Conference on
Programming Language Design and Implementation, pages 296-310,
1990.

[Gua87] Vincent Antony Guarna. Analysis of c programs for parallelization
in the presence of pointers. Technical Report 695, Center for Su-
percomputing Research and Development, University of Illinois at
Urbana-Champaign, 1987.

[hA89] W.L. Harrison III and Z. Ammarguellat. The design of parallelizers
for symbolic and numeric programs. In Takayasu Ito and Robert
Halstead, editors, Paraslel Lisp: Languages and Systems (US/Japan
Workshop on Parallel Lisp, Sendai, Japan, June 1989), pages 235-

253. Springer-Verlag, June 1989. Lecture Notes in Computer Science

#441.

[Har89] W.L. Harrison III. The interprocedural analysis and automatic par-
allelization of scheme programs. Lisp and Symbolic Computation:
an International Journal, 2(3/4):179-396, 1989.

159

[Har9l] W.L. Harrison III. Pointers, procedures and parallelization. Techni-

cal Report (Work In Progress), Center for Supercomputing Research

and Development, University of Illinois at Urbana-Champaign, Oc-
tober 1991.

[HN9O] L. Hendren and A. Nicolau. Parallelizing programs with recursive

data structures. IEEE Transactions on Parallel and Distributed Sys-
tems, January 1990.

[LH88] J. Larus and P. N. Hilfinger. Restructuring lisp programs for con-
current execution (summary). In Conference Record of the ACM
SIGPLAN Symposium on Parallel Programming, 1988.

[PW86J D.A. Padua and M. J. Wolfe. Advanced compiler optimizations for
supercomputers. Communications of the ACM, 29(12), December
1986.

[TIF86] Remi J. Triolet, Francois Irigoin, and Paul Feautrier. Direct par-
allelization of call statements. In Proceedings of the SIGPLAN '86
Symposium on Compiler Construction, pages 176--185, 1986.

[Wol82] M. J. Wolfe. Optimizing Supercompilers for Supercomputers. PhD
thesis, University of Illinois at Urbana-Champaign, October 1982.

[ZC90] Hans Zima and Barbara Chapman. Supercompilers for Parallel and
Vector Supercomputers. Frontier Series. ACM Press, 1990.

160

Dataflow Analysis of Concurrent Logic Languages

Ian Foster, Argonne National Laboratory
Will Winsborough, Penn State University

We present a framework for the definition and verification of static analyses of
concurrent logic programming languages. We illustrate the framework by construct-
ing an analysis to recognize consumers that receive data structures that have no other
consumer. Such information enables a compile-time decision to reuse data-structure
storage when the consumer is done with it. The principal feature of the analyses
constructed using our approach is that they need not simulate directly the numer-
ous possible interleavings of process reductions that can occur during execution of a
parallel program. This feature is intended to make our analyses affordable.

161

Compiler Support for the Refinement and Composition of Process
Structures

Ian Foster, Argonne National Laboratory

We present recent work concerned with the specification of spatial organization
in parallel programs. First, we describe linguistic constructs (defined as extensions
to the parallel programming language PCN) that allow specifications for the logic
and physical layout of a parallel program to be developed simultaneously, in the
same stepwise refinement process. These constructs (described in the attached paper)
provide a natural framework for the composition of programs defined in terms of
specialized topologies, such as an FFT on a linear array. They also allow us to
untangle the problems of specifying layout and program logic: the layout hierarchy
can be modified independently of program logic to alter resource allocation decisions,
changing performance but not correctness.

Second, we describe the compiler techniques used to implement these constructs on
distributed memory computers. Source-to-source transformations are used to trans-
late programs augmented with the mapping constructs into simpler programs aug-
mented with calls to mapping libraries. These mapping libraries encode expertise
about optimal embeddings of complex topologies in particular physical machines.
A novel aspect of the compiler is its use of a programmable transformation system
called Program Transformation Notation (PTN). This provides a metalanguage for
specifying program transformations.

162

On the Refinement and Composition

of Process Structures

Ian Foster
Mathematics and Computer Science Division

Argonne National Laboratory
Argonne, IL 60439, USA

1 Introduction

Refinement, hierarchy, composition, and reuse are four related ideas that together form a basis for
good program design [15, 18]. These ideas are well-understood and frequently applied in sequential

programming. Unfortunately, although the ideas are in principle directly applicable in parallel pro-
gramming [2], in practice they are rarely used when designing programs for large parallel computers.
In particular, it is rare to find genuinely reusable libraries for MIMD parallel computers.

We believe that this situation is explained in part by the fact that components of parallel pro-
grains must often be regarded as having an extent in space as well as in time. Concurrent pro-
gramming notations typically allow the specification of temporal organization (e.g., do A and B
concurrently, then do C), but not spatial organization (e.g., do A in half of the machine, B in the
other half, and C everywhere). Hence, the spatial organization or layout of a program must be
managed in an ad-hoc manner, often by writing code to manipulate machine addresses. Programs
expressed in such low-level terms must be modified to execute in a different configuration or in a
subset of the available occssoiso, huctce, they are not easily initcgratcd into larger programs.

We address this problem by extending the parallel program design process to allow the logic
and layout of a program to be developed in a single refinement process. Recall that in the stepwise
refinement methodology, a problem is successively decomposed into subproblems in order to untan-
gle seemingly interdependent aspects of the design. Each refinement step generates code defining
subprograms introduced in previous decompositions. In order to permit the refinement of spatial
organization, we reify the topology in which a program executes. A program executes initially in a
topology corresponding to the underlying physical machine. At each refinement step, the program-
mer has the option of associating refined topologies with subprograms introduced by refinement. A
refined topology is obtained by applying a specified remapping operation to the current topology.
This operation may, for example, alter the spatial organization of the nodes in the topology or re-
strict subsequent execution to a subset of these nodes. In this way, a hierarchy of virtual topologies

is developed, complimenting the hierarchical structure of the program logic.
This approach permits a methodical development of efficient spatial organizations in machines

for which the physical organization of computations is important. This is the case, for example, in
networks and parallel computers with non-uniform memory access times. However, we claim that the
underlying concepts have deeper significance: they provide a natural framework for the composition

(and hence reuse) of parallel programs on any MIMD parallel computer. They permit programs
defined in terms of specialized topologies (e.g., an FFT on a linear array, a reduction operator on a

mesh, or a self-scheduling structure [5]) to be integrated painlessly into larger programs. Topologies
also provide a natural context for the integration of data-parallel operations into a MIMD framework:
subsets of available computational resources can be defined, and workers replicated within subsets

163

to perform computations. Finally, the approach allows us to untangle the problems of specifying
mapping and program logic: the mapping hierarchy can be modified independently of program logic
to alter layout or resource allocation decisions, changing performance but not correctness.

To permit a practical vehicle for experimentation with these ideas, we have defined and im-
plemented a set of extensions to the concurrent programming notation PCN [3]. The extensions
include annotations for specifying refinement of topologies and replication of computations within
topologies. The utility of replication is enhanced by a linguistic construct called the port, a dis-
tributed data structure used to establish communication links between processes executing within
a virtual topology. The implementation is integrated with an existing PCN compiler for multicom-
puters, multiprocessors, and networks [8]. The extended language has been applied to a variety of
programming problems, and has proved particularly useful in a project developing and evaluating
algorithms for use in numerical simulations of climate (e.g., [6]). The design and implementation
of such algorithms is complicated by a spherical problem domain and widespread use of implicit
methods with complex communication structure. The use of virtual topologies has simplified the
specification of algorithms and permitted the reuse of core components.

The work reported in this paper provides for the first time a truly general framework for the
specification of spatial organization of programs. In addition, it significantly extends the range of
parallel programming problems to which refinement and composition techniques can usefully be
applied. In particular, it makes it possible to define genuinely reusable libraries for MIMD parallel
computers.

Virtual topologies are often used to provide a more convenient view of a parallel computer (e.g.,
[10, 17]). However, these mappings typically apply to the whole computer and hence do not simplify
composition. Our use of ports is analogous to the use of pins to compose packages in VLSI [13]. The
term port has also been used to describe constructs used to establish interprocess communications
in ensembles [9]. A similar idea underlies Browne et al.'s CODE environment, which allows the
definition of "software chips" connected by "pins" [1]. However, these proposals include no notion
of virtual topologies or of replication of ports over a restricted extent, and hence are more limited in
their applicability. Hudak and Kelly define functional notations for sp.- ifying process mapping and
interconnection [11, 12]. However, these proposals do not support hierarchical structures, replication,
or the composition of process networks.

The rest of this paper is structured as follows. In Section 2, we introduce the notion of topology
and define useful properties of topologies. In Sections 3 and 4, we decribe an integration of topologies
into a programming notation, and demonstrate the use of the notation in examples. In Sections 5
and 6, we outline implementation techniques and contrast our ideas with other related proposals.

2 Topologies

We first define a topology, the map functions used to construct new topologies, and certain useful
properties of topologies.

Topology. A topology is a collection of computing sites or nodes. We represent a topology X by
a < D, T > pair where the domain X.D is a vector of node names and the type X.T indicates how
the nodes are organized in space. For example:

Xo = <<sunl, sun2, sun3>, array(3)> (a set of workstations)
X, = <<p0,...,p 5 2 7>, mesh({17,32})> (a 528-node mesh)

We refer to topologies such as these, in which the domain contains physical names, as physical
topologies. It is also possible to define virtual topologies, in which the domain is a vector of integer
indices into the domain of another physical or virtual topology.

164

Maps. A map function M takes a topology X and generates a new virtual topology X', in which
the domain X'.D is a vector of integer indices into X.D. Maps can transform topologies in a variety
of ways. We distinguish three general classes of transformation:

Reshaping (or aliasing): The domain of the new topology is reordered and/or its type is changed.
For example, M. reorganizes the nodes in a topology X (which must be an 8-node array) as a 4 x 2
mesh:

M. : X -. X
if X.T = array(8),
where X' =<< 0, ... , 7 >, mesh({4, 2))>.

The 0, ... , 7 in X'.D are the indices of the eight nodes in X.

Restriction: The new topology includes only a subset of the nodes in the parent topology. For
example, Mb and M, define different embeddings of a 2 x 2 submesh in a 4 x 2 mesh:

MA : X - X', M : X -+ X",
if X.T = mesh({4,2}),
where X' = <<0, 1, 2, 3 >, mesh({2, 2)>, and

X" = <<0, 2, 4, 6 >, mesh({2, 2})>.

Expansion: The new topology embeds more than one node in each node of the parent topology.
For example, Md embeds an s-node array in a 2 x 2 mesh by creating two array nodes in each node:

Md : X -+X',

if X.T = mesh({2,2}),
where X' = <<0, 0, 1, 1, 2, 2, 3, 3 >, array(8)>.

Maps can be composed. We say that a topology U, obtained by the application of the composition
of a series of map functions to a topology X, is derived from X. For example, the topology B =<<
0, 0, 1, 1, 2, 2, 3, 3 >, array(8) > can be derived from a topology A =<< do, ... , d7 >, array(8) > by
application of the maps Md o Mb o M. or Md o M, o M..

Properties of Topologies. In the following, let X be a topology and let U represent the topologies
U1, ... , Uk, all derived from X.

1. indices(X) = {0, ... , ID I}.
2. nodes(X, I) = {X.Di I i EI)

3. (Extent) Consider a topology V derived from a topology X by the composition of maps M1 ,

... ,MM . Name the intermediate topologies Xi,..., Xn. 1 , where X = Mi(Xi- 1), 0 < i < n,
with Xo = X and X, = V. Define I = nodes(Xhsi), 1 < i < n, and I = indices(V).
Define the extent of V in X as:

extent(V. T) = nodes(X, I)

Informally, the extent of V in x is the set of nodes in X that contain nodes in V.

4. U are disjoint in X if extent(Ui, X) n ... f extent(U, X) = 40.

5. U cover X if extent(U, X) U ... U extent(Uk, X) = indices(X).

6. U are 1-to-1 in X if extent(U 1, X) U ... U extent(Uk, X), when constructed as a multiset,
has no duplicate elements.

7. U are co-extensive in X if extent(U 1, X) = ... = extent(Uk, X) g indices(X).

165

3 Integration in a Programming Notation

We are interested in concurrent programming notations in which refinement and composition are
supported in a useful manner, and in which it is possible to achieve a separation of concerns between
program logic and process mapping. Strand [7] and PCN [3] both meet these requirements. We
choose to work with PCN here.

The Notation. A PCN solution to a programming problem is a set of programs, each with the
general form:

name(argi,....,arg)
declaration 1 , ... , declaration,,;
{ op progi, ... , progn}

where k, m > 0, n > 0 and op is one of "|l", ";", or "?", indicating that the program calls progi,
progn are to be executed concurrently, in sequence, or as a set of guarded commands, respectively.
The program calls may invoke either other PCN programs or procedures in sequential languages
such as Fortran and C.

Program calls composed with the parallel operator 1| interact by reading and writing shared
single-assignment variables. As in Strand and related dataflow languages, these variables are initially
undefined, can be written once, and once written cannot be modified. An attempt to read an
undefined variable suspends until a value is provided.

PCN is supported by n compiler 11111 iim I u Nytptem whieh ensure that program calls in parallel
compositions execute correctly wherever they are located. In particular, it is possible to map all
program calls to a single processor or to raidomly selected processors.

Program development in PCN typically proceeds via a sequence of refinement steps. For example,
when specifying a hierarchical manager/worker scheduler, we may indicate in a first program that
the scheduler is structured as a manager and two subschedulers:

scheduler() /* Program (1) */
{|| manager(sl,s2),

subscheduler(si),
subscheduler(s2)

}
This program defines three concurrent program calls (which we may think of as processes): a manager
and two subschedulers, connected by shared variables si and s2. We may then refine the definition
of subscheduler to indicate that it consists of a submanager and some number of workers. Further
refinement steps provide definitions for the worker and manager programs.

Refining Topologies. Code such as Program (1) specifies the creation of sets of processes but
does noL indicate how these processes are to be organized in a parallel computer. Experience
suggests tha' this decision is in general sufficiently difficult to warrant programmer intervention.
We introduce liimuistic constructs which permit the programmer to develop a specification for the
spatial organization. of a program.

We assume that every program executes within a context: a <X, i> pair, where X is a topology
and i E indices(X) i !presents the node in X on which the program is executing. By default, new
program calls in program definitions introduced during refinement execute in the same context as
their parent program. However, the programmer also has the option of specifying that subprograms
should execute in a new context, obtained from the parent context by the application of a relocation,
remap, or replication operator.

166

Relocation: A relocation operation causes a program to execute on a different node within the
same topology. The new node is a function of the current context:

Relocate : < X, i> - < X, R(X, i)>,

where R is the relocation operator.
We represent relocation in PCN by the infix operator 0. For example, if the current context is

an array, we may locate the manager program on the 0th node by writing:

manager(sl,s2)00

Remapping: A remapping operation causes a program call to execute within a new topology
derived from the current context's topology by the application of a map function M (Section 2):

Remap : < X, i>--+ < M(X),O> .

The remapping may reshape, restrict, and/or expand the current topology. We represent remapping
in PCN by the infix operator in. For example, if the map subarray(i, I) yields the ith of I disjoint
subarrays in an array topology, then to locate the two subscheduler programs in disjoint subarrays,
we write:

scheduler() /* Program (2) */
{f| manager(si,s2)C0,

subscheduler(si) in subarray(0,2),
subscheduler(s2) in subarray(1,2)

}
Replication: A replication operation invokes a program call on each node of the current context's

topology:

Replicate : < X, i > -+ <X,0 >, ... , < X,IX.D| -1 > .

We represent replication in PCN by quantification over the indices of the topology. For example,
we may specify that a subscheduler is to comprise one submanager (on node 0) and a number of
workers (one per other node) as follows:

subscheduler(s)
{| i over 0. .nodes(-1 : i==0 -> submanager(s,...)0,

i!=0 -> worker(...)Ali'

As this program shows, replication allows us to define self-sizing programs that adapt automat-
ically to available resources: subscheduler populates whatever topology is specified in the calling
program. This permits resource allocation decisions to be decoupled from problem solving logic. For
example, removing the in annotations from Program (2) changes the behavior of the subprograms
(both execute throughout the entire array) but does not require changes to subscheduler.

Self-sizing can also be used to control the amount of internal concurrency in a processor: a
remapping is used to expand the number of nodes in a topology by some chosen factor. This provides
more processes per processor, hence permitting overlapping of computation and communication.

Adaptive Mapping. The functions topologyo) and size() allow programs to define layouts
that are specialized to particular topologies.

topology() : Returns a {type, size} term representing the current context's topology.

nodes() : Returns the number of nodes in the current context's topology.

167

For example, we may have implemented efficient embeddings of a program for mesh and array
topologies. We also want our program to exeiite (perhaps suboptimally) in any other topology.
Hence, we specify that our application should utilize the mesh embedding in a mesh topology; any
other topology is remapped to an array:

program()
{ ? topologyO) ?= mesh(.) -> spawn..in.mesho),

default -> spawn.inAarrayo) in array

}
The concepts presented in this section permit a methodical development of declarative specifi-

cations for resource allocation decisions, and permit these decisions to be decoupled from problem-
solving logic. In addition, they make it possible to specify the composition of parallel programs,
even when the programs being composed are defined in terms of alternative topologies. For example,
libraries containing a parallel FFT defined in terms of an array topology and a broadcast defined in
terms of a mesh can be composed with a simple remapping. This is possible because layout within
individual programs is specified relative to the current context rather than in absolute terms.

4 Communication in Process Structures

It is often necessary to establish communication channels between groups of processes when defining
or composing process structures. The shared single-assignment variable provides a powerful mecha-
nism for specifying communication and synchronization between individual processes. We define a
linguistic construct called the port that provides the same functionality for process structures.

A port is a distributed data structure with a specified number of items in each node of the current
topology. Each item is an ordinary single-assignment variable and can be used for communication
and synchronization in the usual way. A port is declared with a port declaration as a 1-dimensional
array with size determined by the declaration and the underlying topology. For example, we might
write port p [2); to declare a distributed port structure p with two entries, p[2*i) and p[2*i+1,
on each node (O<i<nodes()) of the underlying topology.

We illustrate the use of ports to establish communication channels between co-extensive struc-
tures and within a process structure created by replication.

Co-extensive Structures. Consider the problem of developing a parallel PDE solver using do-
main decomposition techniques. At each step, we must perform a global reduction across all domains
to find the maximum allowable time step, exchange boundary values between neighboring domains,
and advance the solution in each domain.

An elegant solution to this programming problem is obtained by defining the solver as the
composition of two simpler process structures: one for performing global reductions (reduce) and
one for performing nearest-neighbor communications (solve). The reduce structure is a spanning
tree with one leaf in each node of the current topology; each leaf expects to receive a stream of values
from some other (anonymous) process, and responds to each such value by returning the result of
the global reduction. The solve structure is a set of solvers, one per node of the current topology;
each solver expects to be able to send values to an (anonymous) reducer and receive reduced values.

We require a mechanism for specifying that when composing reduce and solve, a communica-
tion channel should be established between the reducer/solver process pair that is created on each
node. This is achieved by using a purl. Nugiccuing for the noincjiL the need to establish internal
communications and process structure within reduce and solve, and assuming an array topology,
we write:

pde..solvero)

168

port p[11;
{I reduce(p), solve(p)}

reduce(p)

port p[1];

{II i over 0. .nodeso)-i: reducer(p i])'i'}

solve(p)
port p[i];

{|| i over 0..nodeso-1 : solver(pUi)@'i'}

The pde-solver is defined as the composition of reduce and solve. The port p has one entry p[i)
on each node of the current topology. Both reduce and solve replicate subprograms (reducer and
solver) throughout the current topology. The reducer and solver processes created on the ith
node are both given p[i] as an argument. This single assignment variable provides the required

connection.
The role of ports in this example can be explained by an analogy with VLSI design. Think

of the solve and reduce structures as VLSI cells. Each cell comprises some internal nodes and
communication structure, plus a set of pins for connecting to other cells. The port construct provides
a mechanism for specifying how pins in different cells are to be connected. In this case, each port in
solve is connected to the corresponding port in reduce.

Replicated Structures. Ports can also be used to establish communications between nodes in
replicated structures. For example, solver requires internal communication channels for the ex-
change of information between neighboring subdomains. If the solver employs one-dimensional
domain decomposition and periodic boundary conditions, then the necessary internal communica-
tion links (two input and two output channels in each process) can be established by defining two
additional ports, 1 and r:

solve(p)
port p[1], 1[1), r[1];
{|| i cver 0..nodeso-l : solver(p[i],r[i],rE(i+1)%nodesO),l[i],l[(i-1)%nodes0))'i'}

The internal structure of reduce can be developed in a similar way.
A port can also be used in subscheduler to establish communications between workers and the

submanager. A port a ; declared and each worker is assigned its local port a [iJ as its communication
channel to the submanager. The submanager itself is given the entire port as an argument.

subscheduler(...)
port s[1);
{| i over 0. .nodeso-1 : i==0 -> submanager(s)Q0,

i!=0 -> vorker(si)Q'i'
}

5 Implementation Notes

The language extensions described in this paper are being implemented using source-to-source trans-
formation techniques. PCN programs augmented with the additional constructs defined in previous
sections are transformed to pure PCN and linked with libraries implementing embeddings. The
transformations are specified with a programmable transformation system called Program Transfor-
mation Notation (PTN). To date, relocatioi awl remapping have been implemented and applied to
several geophysical modeling problems. Implementation of the replication constructs is ongoing.

169

The implementation is based on a small set of simple ideas. Topologies are represented at run-
time by PCN process structures. Relocation within a topology is achieved by message passing within
the process structure representing the topology. Messages are terms representing relocated program
calls (e.g., the term {"f" ,x} represents the program call f(x)) and are interpreted as requests
to initiate execution of the specified program call. This implementation of process migration is

possible because the PCN run-time system provides access to variables (e.g., x) regardless of process
location. Remapping is achieved by spawning a new process structure on top of the process structure
representing the current topology. The spawning of the new structure is achieved by using relocation
operations. Replication is implemented in a similar way.

It is important to understand that the techniques described in this paper do not impose any
overhead on program execution. Process structures laid out using virtual topologies execute directly
on the underlying hardware without any layers of run-time interpretation. Some overhead is incurred
when laying out processes, as each virtual topology in a hierarchy must be created. However, this
overhead can be avoided when necessary by providing libraries that embed virtual topologies directly
in the underlying physical topology. This produces a "standalone program", so called because it
invokes no mapping code at run time.

6 Related Work

Virtual Machines. Taylor proposes the virtual machine as a means of achieving architecture
independence, scalability, and programming convenience on parallel computers [17]. This construct
encourages the programmer to view a computer as an infinite computing surface with interconnec-
tions forming a linear array, mesh, etc. Computations are spawned on this surface by recursively-
defined programs annotated with Logo-like mapping constructs (e.g., OfQd, Obvd in a linear array)
[14, 16]. These annotations inspired the current proposal's relocation operators.

Virtual machines have proved extremely useful in several parallel programming systems [17, 7].
However, although the view of a computer as an infinite surface provides scalability, it makes it
difficult to achieve an optimal granularity on a particular computer. In contrast, the current proposal
permits precise fitting to the size of a particular machine. In addition, the notions of refinement and
composition are absent from Taylor's work.

Ensembles. Griswold et al. propose an abstraction called an ensemble as a means of organizing
data, computation, and communication in distributed memory computers [9]. They define mecha-
nisms for mapping data and code to processors and linking ports in different processors to create
a communication network. In this respect, an ensemble is much like a physical topology. In addi-
tion, different phases of a computation can employ different ensembles, providing a limited form of
remapping. However, the ensemble concept does not support hierarchy, restriction, expansion, or
relocation. No implementation has been reported.

CODE. Browne et al. propose a calculus of composition for parallel program components [1].
This allows programmers to define operators specifying interconnections between components called
software chips. Connections express data dependencies and mutual exclusion dependencies rather
than communication channels; neverllIciss, (here are many similarities between these connections
and the port construct described in the present proposal. However, Browne et al.'s calculus is very
abstract and they do not show how these ideas might be integrated into a programming notation.
The notion of virtual topology is entirely absent.

Functional Programming. Hudak's para-functional programming permits programmers to con-
trol mapping by means of annotations on expressions [11]. As annotations can be arbitrary expres-

170

sions, some degree of abstraction is presumably possible. However, the notation does not admit
notions of hierarchy, replication, or composition of process networks.

In Kelly's Caliban system, programmers can associate moreover clauses with function defini-
tions to provide a declarative specification of processes and expected communication channels [12].
Constructs such as pipelines and meshs can be defined and reused. However, the goal of Kelly's pro-
posal is not to specify process mapping but to provide information about expected communication
patterns, for use by a compiler. No implementation has been reported.

Concurrent Aggregates. Chien and Dally describe a concurrent object-oriented language called
Concurrent Aggregates (CA) [4]. They seek to remove the sequential bottleneck associated with
message-passing in object-oriented languages by allowing the definition of homogeneous collections
of objects called aggregates. A run-time system routes messages addressed to an aggregate to one of
its members. In common with the current proposal, CA allows the definition of concurrent structures
which can then be composed with other structures to build a concurrent program. However, issues
associated with spatial organization of such structures are not addressed.

7 Conclusions

We have defined a framework within which the familiar ideas of refinement, hierarchy, composition,
and reuse can be applied to the development of parallel programs. The key idea underlying this
framework is the use of spatial layout as an organizational principle: a context in which to specify
replication, composition, communication, and other important issues. We show that it is possible
for a programming notation to support a refinement methodology in which a program's logic and
spatial organization are developed concurrently. Refinement then produces a hierarchy of virtual
topologies, complimentary to the hierarchical organization of the parallel program.

The approach has a number of important benefits. First, the ability to embed virtual topolo-
gies inside other virtual or physical topologies (by remapping, restriction, or expansion) makes it
possible to build complex programs by the composition of simpler programs. This is the case even
if subprograms are defined in terms of different topologies. Second, design decisions concerning
resource allocation and spatial organization can be decoupled from program logic, as such decisions
are expressed in the composition that combines subprograms, not the subprograms themselves.
Third, virtual topologies allow the underlying physical topology to be either hidden or made visible
at various levels of abstraction. This makes it possible both to achieve portability and to write
programs that exploit aspects of the underlying hardware. Fourth, virtual topologies provide a
convenient context for embedding various data-parallel operations in a MIMD context. For exam-
ple, it is straightforward to define programs that perform reductions, broadcasts, or SIMD/SPMD
computations within a topology.

The concepts and techniques presented in this paper form the basis for a larger project developing
a template-based parallel programming environment. A template is a reusable component imple-
menting a parallel program structure such as a domain decomposition strategy, parallel transform,
or load balancing algorithm. Virtual topologies provide an elegant framework in which to discuss
the definition, reuse, and composition of templates.

Acknowledgments

The development of these ideas benefited from discussions with K.M. Chandy. Thanks to Steve
Hammond for his help in implementation.

This work was supported by the Applied Mathematical Sciences subprogram of the Office of
Energy Research, U.S. Department of Energy, under Contract W-31-109-Eng-38.

171

References

[1] Browne, J., Werth, J., and Lee, T., Intersection of parallel structuring and reuse of software
components, Proc. Intl Conf. on Parallel Processing, Penn State Press, 1989.

[2] Chandy, C., and Misra, J., Parallel Program Design, Addison-Wesley, 1989.

[3] Chandy, C., and Taylor, S., An Introduction to Parallel Programming, Jones and Bartlett, 1991.

[4] Chien, A., and Dally, W., Concurrent Aggregates, Proc. A CM Symp. on Principles and Practice
of Parallel Programming, 1990, 187-196.

[5] Foster, I., Automatic generation of self-scheduling programs, IEEE Trans. on Parallel and
Distributed Systems, Jan. 1991.

[6] Foster, I., Gropp, W., and Stevens, R., The parallel scalability of the spectral transform method,
Mon. Wea. Rev., March 1992.

[7] Foster, I., and Taylor, S., Strand: New Concepts in Parallel Programming, Prentice Hall, En-
glewood Cliffs, N.J., 1989.

[8] Foster, I., and Taylor, S., A compiler approach to concurrent program refinement (in prepara-
tion).

[9] Griswold, W., Harrison, G., Notkin, D., and Snyder, L., Port ensembles: A communication ab-
straction for nonshared memory parallel programming, Proc. Intl Conf. on Parallel Processing,
Penn State Press, 1990.

[10] Ho, C.-T. and Johnsson, L., On the embedding of arbitrary meshes in Boolean cubes with
expansion two dilation two, Proc. Intl Conf. on Parallel Processing, Penn State Press, 188-191,
1987.

[11] Hudak, P., Para-functional programming, IEEE Computer, 60-70, Aug 1986.

[12] Kelly, P., Functional Programming for Loosely-Coupled Multiprocessors, MIT Press, 1989.

[13] Mead, C., and Conway, L., Introduction to VLSI Systems, Addison Wesley, 1980.

[14] Pappert, S., Mindstorms: Cildren, Computers, and Powerful Ideas, Basic Books, New York,
N.Y., 1980.

[15] Parnas, D., On the criteria to be used in decomposing systems into modules, CACM 15(12),
1053-1058, 1972.

[16] Shapiro, E., Systolic programming: a paradigm for parallel processing, Proc. Intl Conf. on 5th
Generation Computer Systems, Tokyo, 458-71, North Holland.

[17] Taylor, S., Parallel Logic Programming Techniques, Prentice Hall, Englewood Cliffs, N.J., 1989.

[18] Wirth, N., Program development by stepwise refinement, CA CM, 14, 1971, 221-227.

172

List of Contributors

K. Aida, Waseda University, Tokyo, Japan
Deb Banerjee, Dartmouth College, Hanover, New Hampshire
Arvind Bansal, Kent State University, Kent, Ohio
Ira Baxter, Schlumberger Laboratory for Computer Science, Austin, Texas
Marina Chen, Yale University, New Haven, Connecticut
Andrew A. Chien, University of Illinois, Urbana, Illinois
Young-il Choo, Yale University, New Haven, Connecticut
S. Duvvuru, University of Oregon, Eugene, Oregon
Wuchun Feng, University of Illinois, Urbana, Illinois
Ian Foster, Argonne National Laboratory, Argonne, Illinois
Guang R. Gao, McGill University, Canada
L. Hansen, University of Oregon, Eugene, Oregon
William Ludwell Harrison Ill, University of Illinois, Urbana, Illinois
Laurie Hendren, McGill University, Canada
Seema Hiranandani, Rice University, Houston, Texas
H. Honda, Waseda University, Tokyo, Japan
Elaine Kant, Schlumberger Laboratory for Computer Science, Austin, Texas
Hironori Kasahara, Waseda University, Tokyo, Japan
Ken Kennedy, Rice University, Houston, Texas
Carl Kesselman, California Institute of Technology, Pasadena, California
Charles Koelbel, Rice University, Houston, Texas
Ulrich Kremer, Rice University, Houston, Texas
Monica S. Lam, Stanford University, Stanford, California
Steve Lucco, University of California at Berkeley, Berkeley, California
Hakan Millroth, Uppsala University, Sweden
Masao Morita, Mitsubishi Research Institute, Japan
S. Narita, Waseda University, Tokyo, Japan
M. Okamoto, Waseda University, Tokyo, Japan
Dilip S. Poduval, Kent State University, Kent, Ohio
John Sargeant, University of Manchester, Manchester, U.K.
A. V. S. Sastry, University of Oregon, Eugene, Oregon
Oliver Sharp, University of California at Berkeley, Berkeley, California
R. Sundararajan, University of Oregon, Eugene, Oregon
Evan Tick, University of Oregon, Eugene, Oregon
Chau-Wen Tseng, Rice University, Houston, Texas
Kazunori Ueda, ICOT, Japan
Cliford Walinsky, Dartmouth College, Hanover, New Hampshire
Will Winsborough, Pennsylvania State University
X. Zhong, University of Oregon, Eugene, Oregon

173

Distribution for ANL-91134

Internal:

J. M. Beumer (50)
F. Y. Fradin
I. Foster (30)
H. G. Kaper
G. W. Pieper
R. Stevens
D. P. Weber
C. L. Wilkinson

ANL Patent Department
ANL Contract File
TIS Files (3)

External:

DOE-OSTI, for distribution per UC-405 (58)
ANL Libraries
Manager, Chicago Operations Office, DOE
Mathematics and Computer Science Division Review Committee:

W. W. Bledsoe, The University of Texas, Austin
P. Concus, Lawrence Berkeley Laboratory
E. F. Infante, University of Minnesota
M. J. O'Donnell, University of Chicago
D. O'Leary, University of Maryland
R. O'Malley, Rensselaer Polytechnic Institute
M. H. Schultz, Yale University

K. Aida, Waseda University, Tokyo, Japan
D. Banerjee, Dartmouth College
A. Bansal, Kent State University
I. Baxter, Schlumberger Laboratory for Computer Science
J. Cavallini, Department of Energy - Energy Research
M. Chen, Yale University
A. A. Chien, University of Illinois, Urbana
Y. Choo, Yale University
S. Duvvuru, University of Oregon
W. Feng, University of Illinois, Urbana
G. Ft. Gao, McGill University
L. Hansen, University of Oregon
W. L. Harrison III, University of Illinois, Urbana
L. Hendren, McGill University
S. Hiranandani, Rice University
H. Honda, Waseda University, Tokyo, Japan
F. Howes, Department of Energy - Energy Research
E. Kant, Schlumberger Laboratory for Computer Science
H. Kasahara, Waseda University, Tokyo, Japan
K. Kennedy, Rice University

174

C. Kesselman, California Institute of Technology
T. Kitchens, Department of Energy - Energy Research
C. Koelbel, Rice University
U. Kremer, Rice University
M. S. Lam, Stanford University
S. Lucco, University of California at Berkeley
H. Millroth, Uppsala University, Sweden
M. Morita, Mitsubishi Research Institute, Japan
S. Narita, Waseda University, Tokyo, Japan
D. Nelson, Department of Energy -Energy Research
M. Okamoto, Waseda University, Tokyo, Japan
D. S. Poduval, Kent State University
J. Sargeant, University of Manchester, U.K.
A. V. S. Sastry, University of Oregon
0. Sharp, University of California at Berkeley
R. Sundararajan, University of Oregon
E. Tick, University of Oregon
C-W. Tseng, Rice University
K. Ueda, ICOT, Japan
C. Walinsky, Dartmouth College
W. Winsborough, Pennsylvania State University
X. Zhong, University of Oregon

175

