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CELEFUNT: A Portable Test Package
for Complex Elementary Functions

by

W. J. Cody

Abstract

This paper discusses CELEFUNT, a package of Fortran programs for testing complex elemen-
tary functions.

1 Introduction

CELEFUNT is a collection of test programs for the complex floating-point elementary functions
required by the 1978 ANSI Fortran Standard (CABS, CSQRT, CLOG, CEXP, CSIN/CCOS, and
the complex power function) [1]. It is a companion to the ELEFUNT package [3] introduced over
ten years ago for testing the real floating-point elementary functions and a forthcoming INTFUNT
package for testing intrinsic functions involving integers. These packages, together with the envi-
ronmental inquiry programs MACHAR [2] and PARANOIA [4], provide the means for a thorough
examination of the computational environment available to the Fortran programmer.

The next section provides a broad overview of the techniques used in CELEFUNT to assess
accuracy. Section 3 discusses portability issues, while subsequent sections discuss the individual
test programs in more detail. Each discussion includes an error analysis, a tabulation of test
results on three different systems (SUN Fortran 1.2 under SUNOS 4.1 running on a Sun 3/60,
VAX Fortran under VMS 5.3 running on a VAX 8700, and Lahey F77L 4.0 running under DOS
3.30 on an IBM/XT with a coprocessor), and an interpretation of those results to aid others in

interpreting their results.

We standardize our notation in the following discussions so that mathematical quantities are
expressed in lower case (x, sin(x), etc.) and machine quantities are expressed in upper case (X,

SIN(X), etc.). Where the distinction is not important, we will use the mathematical notation.

2 Overview of Testing

There are three widely accepted approaches to testing the accuracy of function routines. In order

of decreasing resolution these are table-driven techniques [5, 6], comparison with higher-precision

computations, and evaluation of carefully selected identities. The first of these is capable of detkr-

mining the error in a function evaluation to within a small fraction (typically 0.001 or less) of an

ulp (unit in the last place) and is by far the preferred method. Programs implementing this method

1



are portable but require great care in preparation. They also usually require lengthy machine runs
for each test; however, because these tests need be run infrequently, this latter characteristic is
not a serious drawback. The second method is capable of determining errors to within 0.5 to 1
ulp, depending on the arithmetic characteristics of the host machine. The major disadvantage
of this approach is that testing of functions written for the highest precision arithmetic on the
machine requires an inefficient extended-precision arithmetic package. Programs for testing-lower
precision functions either use the same arithmetic package (increasing portability at the expense
of efficiency) or use the native higher-precision arithmetic (increasing efficiency at the expense of
portability). The third approach is generally capable of determining errors to within less than 2
ulps, and often to within 1 ulp, depending upon the circumstances of the test (the identity used,
domain tested, etc.). Test programs implementing this approach are again highly portable.

We regard the first and third approaches as being the most practical. The use of identities is
usually adequate for distinguishing between acceptable and unacceptable function programs, but
table-driven methods are essential to identify truly exceptional function programs.

CELEFUNT relies on identities to determine the accuracy of seven different complex elementary
functions required by the 1978 Fortran standard. The general approach is to select an identity that
involves only one or two evaluations of the function under test and that is numerically stable (i.e.,
evaluation of the identity does not introduce serious contamination of the error being measured)
over some region of interest. Because we are testing complex-valued functions, we are interested
in three different error measurements: the error as a complex result, and the error in each of the
components of the result. Identities numerically stable for one of these measurements may not be
stable for all three; hence, some care is needed in the choice of the identities and of the test regions.
Details of these choices are discussed for each of the test programs a little later.

Given an identity and a test domain, the procedure is to select a reasonable number Al (we use
2,000) of test arguments from a uniform random distribution over the region. We divide the domain
of the real component into M subdomains, selecting test arguments by taking a real component
from each of the subdomains in turn, and pairing it with a random imaginary component drawn
from the undivided domain of imaginary components. Where the test domain is not rectangular,
we use a rejection procedure on the imaginary component. Clearly this approach does not provide
a truly uniform distribution in nonrectangular domains, but we do believe that the deviation from
uniformity in these cases is not detrimental to our tests.

Once the test argument has been selected, it is purified if necessary to guarantee that it and
related derived arguments are all exact machine numbers. For example, the test of CABS uses
the arguments 3 x Z, 4 x Z, and 5 x Z, where Z is random. To guarantee that rounding error
in the evaluation of these auxiliary arguments does not contaminate the tests, we perturb the last
few bits of each component of Z to form a nearby argument Z such that the products 3 x Z,
4 x Z, and 5 x Z are all exact machine-representable numbers. The details of this purification
process necessarily varies from one test to another, but it is a simple process in every case. We
then evaluate the expression

E= F(Z)-I(Z)
F(Z)

where F(Z) is the function evaluation and I(Z) is the evaluation of the identity. In this case, E is
an estimate of the complex relative error in F(Z). Analogous expressions are used to evaluate the
component errors.
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Finally, we gather error statistics for the test. The statistics reported for each region includes

N, the number of times E = 0; MRE, the maximum relative error as measured by E; RMS, the
root mean square error; and the Z and F(Z) corresponding to MRE. These latter quantities are

helpful for analysis of the computation leading to the MRE.

Both MRE and RMS are reported as an estimated loss of base-f significant digits, where 0 is
the floating-point radix. This measurement is independent of the machine wordlength and hence
is useful for comparing results on different machines with the same 3. The equations used are

MRE = max[0.0, p + ln(maxIE|)/ ln(/3)],

and

RMS = max[0.0, p + ln(Z E2 /M)/(2 ln(/3))],

where p is the number of significant base-f digits in the significand. Note that the computation of

MRE and RMS has been adjusted so they never report a negative loss of significant digits. With
these definitions the complex relative error E may not be zero even though the MRE is. This
situation can occur when the erroneous component of F(Z) is much smaller in magnitude than the
correct component. Also note that for M = 2000 and 03= 2, RMS> MRE - 5.48.

Accuracy tests based on identities are augmented with additional small tests looking at the
preservation of mathematical properties, such as exp(x) x exp(-x) = 1, and the behavior with
extreme arguments. Auxiliary tests of this type are grouped at the end of the program in increasing
order of probability of an exception that might terminate program execution.

When the test program is finished, we attempt to determine experimentally how accurate it
is by calibrating it. Calibration consists of running the test program in single-precision arithmetic
with a function program that accepts single-precision arguments, does all computations in double

precision, and then returns single-precision results. Such a function program returns values correct
to within the rounding error on the machine. Thus, the errors reported by the test program

represent the "noise" in the testing process; they measure the ability of the test program to detect
"perfection."

3 Portability Issues

The programs in this package have been written with portability in mind. To this end, we impose
strong typing; that is, every variable is declared in a Fortran TYPE statement. Although the

Fortran standard does not include a specification for double-precision complex arithmetic, most
popular compilers today provide that capability. A brief survey showed that more compilers recog-

nize the data type COMPLEX*16 than the data type DOUBLE COMPLEX, with some recognizing
both. We have therefore used the former syntax in our programs. This must be altered for those
few compilers that require a different declaration.

All floating-point or complex constants are initialized in DATA statements to localize the

changes that must be made in moving from single- to double-precision versions of the programs.

Conversion from one data type to another is explicit for the same reason, and generic names are

used for the intrinsic and elementary functions.

Where statements must be modified (DATA and TYPE statements, for example) to change
working precision, alternative statements containing the modifications are provided. Those
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statements needed for a single-precision version of the program are identified with the charac-

ters "CS" in the first two columns, those needed for a double-precision version are identified with
the characters "CD," and those needed for a calibration run are identified with the characters
"CC." Thus, a global replacement of "CS" in columns 1 and 2 with blanks prepares a single-
precision version of the test program, while a global replacement of "CD" with blanks prepares
a double-precision version. Replacing both "CS" and "CC" with blanks prepares a calibration
version complete with the necessary auxiliary function that does internal computations in double
precision. Note that the programs will not compile correctly without one of these global changes.

Finally, the package contains both a random number generator and the environmental in-
quiry program MACHAR to determine the necessary machine-dependent parameters. MACHAR
is known to malfunction on a few machines (see [2]). On those machines, the test programs must
be modified to delete the call to MACHAR and to provide the necessary machine parameter values
in some other way, perhaps in DATA statements. The comments at the top of each test program
define the needed parameters as an aid in making such changes.

Many of the test programs and MACHAR contain computations that are sensitive to the order
of evaluation and, more important, to the precision of intermediate results. These programs have
been carefully written to avoid trouble, but they may malfunction if compiler optimization alters
the order of evaluation or if it retains and uses results in higher-than-working precision. It is
imperative that compiler optimization be turned off.

Be warned that the random number program, REN, has not been tested for general-purpose
generation of random numbers. It is adequate for our use, but we cannot attest to its suitability for
any other purpose. As with the test programs, appropriate versions of both REN and MACHAR
must be prepared with global editing.

We believe these programs to be completely portable between machines and precisions subject
to the above comments.

4 Test of CABS

Let z = x + iy. Then Izi = x 2 + y2 maps the complex plane onto the positive real axis. Our
accuracy tests for CABS, which exploit this definition, are unusual in that they are completely free
of any extraneous error. The first identity used is based on the Pythagorean number set (3,4,5).
Given a random machine number X drawn from the interval (1,20), our program perturbs X in
the low-order bits to obtain V, say, so that 3V, 4V, and 5V are all exactly representable machine
numbers. This is accomplished by the Fortran statements

Y = X * EIGHT
Z=X+Y
V=Z-Y

which zeroes out the last four bits of X, provided all assignments to the left-hand variables are
at working precision. Because the significand of 5 is exactly representable in three bits, and the
number of significant bits of a product is at most the sum of the significant bits in the factors, all
of the desired products with V are exact machine numbers (the extra trailing zero bit in V protects
against the lack of a guard bit, improper rounding, etc.). Then
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Table 1: Test Results for CABS

CABS(W) - 5V

CABS(W )

where W = (3+4i)V, estimates the error in CABS(W). That is, if we let CABS(W) =IwI(1+6),

E IwI(1+ 6) - 5v

iwI(1+6) 

Multiplying numerator and denominator by (1 - 6) and retaining only first-order error terms, we
obtain

E=6.

The second test is identical to the first, except that it uses the Pythagorean number set (5,12,13)
and the last five bits of X are zeroed out. While these tests are limited to two different rays

in the complex plane, we believe that the test results are representative of the function behavior

everywhere. If doubt exists, it is easy to modify or augment the tests to use other Pythagorean

number sets or to draw X from other intervals.

The auxiliary tests include invocation of CABS for the extreme arguments Z = (3+ 4i)XMIN,

W = (5/16 + 12/16i)XMAX, and Z = 4W, where XMIN is the smallest positive normalized
floating-point number and XAIAX is the largest finite floating-point number. The first two cases

should not cause trouble, while the final computation should provoke an error return of some sort.

Table 1 presents the results of running our test program on three representative systems. The

calibration runs found no errors at all, corroborating our assertion that the test procedure was

5

Test/Machine N MRE RMS

|(3x, 4x)t vs 5x
x E (1,20)

Sun 3/60 Cal./SP/DP 2000 0.00 0.00
IBM XT, Lahey Cal./SP/DP 2000 0.00 0.00
VAX, Cal./SP/G-DP 2000 0.00 0.00

|(5x, 12x)I vs 13x
x E (1,20)

Sun 3/60 Cal./SP/DP 2000 0.00 0.00
IBM XT, Lahey Cal./SP/DP 2000 0.00 0.00
VAX, Cal. 2000 0.00 0.00
VAX, SP 1246 0.30 0.00
VAX, G-DP 0 1.00 0.51



itself error-free. Indeed, the first test never detected an error on any of the machine/precision

combinations tested. Although the VAX routines were not perfect in the second test, the maximum
relative error detected was only 1 bit, indicating that the programs are accurate to within rounding
error. The routines all passed the auxiliary tests, with the SUN programs returning a value of oo
in the last test, and the other two systems aborting execution with error messages that did not
identify CABS as the culprit. Overall, these CABS programs appear to be superb.

5 Test of CSQRT

Represent z in polar coordinates, z = peB. Then =~ = + /2 maps the complex plane slit
along the negative real axis onto the right half of the complex plane.

Accuracy tests of CSQRT are based on the identity z2 = z applied over the square region
with vertices at (0,0), and (10,10), and again over the square region with vertices at (0,0) and
(-100, 100). The algebraic sign of the result must be changed in the second case.

Roundoff error in the computation of Z * Z is minimized by purifying both X and Y, the real
and imaginary components of Z, so that slightly more than half of the trailing bits are zero in each
case and the products X * X, Y * Y, and X * Y are all exact machine numbers. Then Z * Z is
explicitly constructed with real component X * X - Y * Y and imaginary component 2 * X * Y.
Roundoff error is limited to at most one rounding error in the real component, and the imaginary
component is completely free of error.

The magnitude of the complex error in CSQRT is estimated as the absolute value of

E- CSQRT(Z * Z) - Z
CSQRT(Z * Z)

Let CSQRT(Z* Z) = (z2 )(1 + E)(1 + 6), where 6 is the relative error in the CSQRT function and
E is the relative error in evaluating Z * Z. Because the arguments have been purified, E is a real
quantity, the error>: the real component of Z * Z. Then

/z2(1j+)(1+6)z
/z (l+E)(1 +

If one ignores higher-order terms in the errors, this simplifies to

E= 6+e/2.

Thus E contaminates 6, the error we wish to measure, with half the rounding error in the evaluation
of the real component of Z * Z. We expect this contamination to be small and the statistics based
on E to be a reliable indicator of the accuracy of CSQRT.

To measure the error in the real component of CSQRT(Z * Z), set

= REAL{CSQRT(Z * Z)} - X

REAL{CSQRT(Z * Z)}

Letting b be the relative error in the real component of SQRT(Z * Z), we have

'{z(1 + E)}(1 + b)
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Table 2: Test Results for CSQRT

Error in Error in
Test/Machine Vector Error Real Component Imag. Component

N MRE RMS N MRE RMS N MRE RMS

(zx z) vs z
z E (0, 10) x (0, 10)

Sun 3/60 Cal./SP/DP 2000 0.00 0.00 2000 0.00 0.00 2000 0.00 0.00
Sun 3/60 DP 1999 0.00 0.00 1999 0.00 0.00 1999 0.14 0.00
IBM XT, Lahey Cal./SP 2000 0.00 0.00 2000 0.00 0.00 2000 0.00 0.00
IBM XT, Lahey DP 1999 0.00 0.00 1999 9.46 3.98 2000 0.00 0.00
VAX, Cal. 2000 0.00 0.00 2000 0.00 0.00 2000 0.00 0.00
VAX, SP 1826 1.17 0.00 1826 1.39 0.00 1826 1.00 0.00
VAX, G-DP 1172 1.16 0.00 1172 1.37 0.01 1172 1.38 0.02

-(zx z) vs z
z E (0, -100) x (0,100)

Sun 3/60 Cal./SP/DP 2000 0.00 0.00 2000 0.00 0.00 2000 0.00 0.00
IBM XT, Lahey Cal./SP 2000 0.00 0.00 2000 0.00 0.00 2000 0.00 0.00
IBM XT, Lahey DP 1998 0.00 0.00 1999 0.27 0.00 1999 0.01 0.00
VAX, Cal. 2000 0.00 0.00 2000 0.00 0.00 2000 0.00 0.00
VAX, SP 1836 1.00 0.00 1836 1.00 0.00 1836 1.01 0.00
VAX, G-DP 1201 1.14 0.00 1201 1.34 0.00 1201 1.36 0.00

Again ignoring higher-order terms in the errors, we can simplify this to

= 6 +E/2.

Similarly,

E=b+c/2

measures the error in the imaginary component of CSQRT(Z * Z). These expressions show that E
and E are reasonable estimates of the component errors.

The calibration results presented in Table 2 verify the quality of our test program, and the other
results indicate the overall high quality of the programs tested. The large error detected in the real
component in the first double-precision test under the Lahey compiler on the XT occurred for a Y
over 3,000 times larger than X, hence for Z * Z large and close to the negative real axis. Because
all other sources of error have been eliminated, and all of the other programs tested handled this
same case with little or no error, we suspect that Lahey's CSQRT has a problem computing results
very close to the imaginary axis.

The special argument tests uncovered important problems with the double-precision program
on the Sun and both programs on the VAX. The Sun program returned a real component of oo
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and all of the VAX tests failed with an overflow error message for the argument (1 + i)XMAX,
where XMAX is the largest floating-point number. Curiously, the programs functioned correctly
for the argument (1 + i)XMIN, where XMIN is the smallest positive normalized floating-point
number. The obvious programming mistake should have given an underflow message in the latter
case, so the mistake is more subtle.

6 Test of CLOG

Again represent z in polar coordinates, z = pe'G. Then ln z = In p + i9 maps the complex plane slit
along the negative real axis onto the infinite strip IyI < ir, with the unit circle mapping onto the
imaginary axis in that strip.

The accuracy tests of CLOG are based on the identity ln z = ln (z2 )/2 applied over the rect-
angular regions with vertices at (2,0) and (10,10), (1000,-1000) and (2000,-4000), and (e,-e) and
(0.25,-0.25), where e is of the order of roundoff error on the machine. For these tests, arguments
are purified in the same way as for the tests of CSQRT, so the imaginary component of Z * Z is
exact. Because none of our test regions include the unit circle, the real part of ln (z) never vanishes.

The magnitude of the complex error in CLOG is estimated as the absolute value of

E _ CLOG(Z) - CLOG(Z * Z)/2

CLOG(Z)

Let 6 be the complex relative error in CLOG(Z), E be the relative error in evaluating Z * Z, and
a be the relative error in evaluating CLOG(Z * Z). Then

E-ln(z)(1+ 6) - ln(z 2 [1 + E])(1 + a)/2
ln(z)(1 +6)

which reduces to
E= -a- E

21n(z)

when higher-order terms in the error are neglected. The corresponding estimate for error in the
real component is

?[ln(z)](1 + 6) - i{ln(z2[1 + c])}(1 + &)/2
R{ln(z)(1 + 6)}

which reduces to

2 x R{ln(z)}

The reduced expression for the error in the imaginary component,

is even simpler, because E is real.
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Table 3: Test Results for CLOG

Error in Error in
Test/Machine Vector Error Real Component Imag. Component

N MRE RMS N MRE RMS N MRE RMS

In(z) vs ln(z 2 )/2
z E (2, 10) x (0, 10)

Sun 3/60 Cal./SP 1988 0.00 0.00 2000 0.00 0.00 1988 0.95 0.00
Sun 3/60 DP 1696 0.98 0.00 1724 1.00 0.00 1963 0.97 0.00
IBM XT, Lahey Cal./SP 1988 0.00 0.00 2000 0.00 0.00 1988 0.95 0.00
IBM XT, Lahey DP 1978 0.86 0.00 1994 0.86 0.00 1980 0.95 0.00
VAX, Cal. 1988 0.00 0.00 2000 0.00 0.00 1988 0.95 0.00
VAX, SP 983 1.46 0.00 1573 1.47 0.00 1248 1.30 0.00
VAX, G-DP 1085 0.99 0.00 1524 1.00 0.00 1406 1.74 0.00

z E (1000, 2000)x
(-1000, -4000)

Sun 3/60 Cal./SP 2000 0.00 0.00 2000 0.00 0.00 2000 0.00 0.00
Sun 3/60 DP 1908 0.99 0.00 1931 1.00 0.00 1975 0.96 0.00
IBM XT, Lahey Cal./SP/DP 2000 0.00 0.00 2000 0.00 0.00 2000 0.00 0.00
VAX, Cal. 2000 0.00 0.00 2000 0.00 0.00 2000 0.00 0.00
VAX, SP 981 1.00 0.00 1883 1.00 0.00 1044 1.28 0.12
VAX, G-DP 1395 0.99 0.00 1386 1.00 0.00 1475 0.99 0.00

z E (e, 0.25) x (-E, -0.25)

Sun 3/60 Cal./SP 1988 0.41 0.00 1996 0.41 0.00 1992 0.94 0.00
Sun 3/60 DP 1648 0.97 0.00 1673 1.00 0.00 1969 0.97 0.00
IBM XT, Lahey Cal./SP 1988 0.41 0.00 1996 0.41 0.00 1992 0.94 0.00
IBM XT, Lahey DP 1973 0.92 0.00 1987 0.93 0.00 1982 0.96 0.00
VAX, Cal. 1988 0.41 0.00 1996 0.41 0.00 1992 0.94 0.00
VAX, SP 894 1.46 0.00 1455 1.69 0.00 1209 1.30 0.00
VAX, G-DP 972 1.38 0.00 1390 1.56 0.00 1392 1.35 0.00

In all of these expressions, the first two error terms are inherent to E, which involves two evalu-
ations of CLOG. Coefficients for the terms involving E involve division by twice some component of
ln(z). The selection of test regions guarantees that these coefficients are less than 1 in magnitude.
For example, in the first test 0.693 < In 2 K !? In z IIln z, so the coefficients of E in E and E are
bounded above by 0.722.

The calibration results for these tests presented in Table 3 show that the testing error is bounded
by one bit. Note in particular that the calibration results are identical for all three systems tested,
attesting to the validity of these results across systems. We see nothing in the tabulated results
for the system-supplied routines to indicate problems.
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As with the CSQRT tests, the double-precision program on the Sun and both programs on
the VAX malfunctioned for th. argument (XMAX,XMAX). The Sun program returned a real

component of oo, and all of the VAX tests failed with an overflow error message.

7 Test of CEXP

Let z = x + iy. Then exp z = exp (x)(cos y + i sin y) is a periodic function of period 2iri. It maps
the infinite horizontal strip jyj <; r into the complex plane slit along the negative real axis. The
real axis is mapped onto the positive real axis, the imaginary axis within the strip is mapped onto
the unit circle, and the lines IyI = 7r are mapped onto the slit.

Our tests of CEXP exploit the identity exp(z) = exp(z - A)exp(A), A = (1 + i)/16 , over
appropriate regions. Should the real or imaginary components of exp (z) be significantly less in

magnitude than the corresponding components of exp (z - A), the product exp (z - A) exp (A)
must involve the subtraction of nearly equal quantities and hence a lage cancellation error. To
minimize this problem, we choose regions that test the exponential dependence on x while staying
away from regions in which sill (y) or cos (y) vanishes or even approaches a zero with increasing
y. The rectangles with vertices at (0,0.0625) and (1,1), (1.625,1.625) and (3,3), and (16,16) and
(17,17) meet these requirements.

The magnitude of the complex error in CEXP is estimated as the absolute value of

E-CEXP(Z) - CEXP(Z - D.EL)(1 + CDEL)

CEXP(Z)

where the term 1 + CDEL represents exp (A) to several decimal places beyond working precision.
Errors in this expression are controlled in two ways. First, the arguments are purified so both Z
and Z - DEL are exact machine numbers, and second, the product is computed as

CEXP(Z - DEL) + CEXP(Z - DEL)CDEL,

reducing the rounding error to a level that can be ignored. Remaining errors in E are 6, the complex
relative error in CEXP(Z), and o, the relative error in evaluating CEXP(Z - DEL). Thus

E - exp (z)(1 + 6) - exp (z - A) exp (A)(1 + a)

exp (z)(1+6)

If only first-order error terms are retained, this becomes

E=6 - a.

The expressions for the errors in the real and imaginary components are analogous.

Table 4 summarizes the test results. Note that the calibration runs on the three systems are

in general agreement, and that the MRE measured in the calibration runs is consistent with our
analysis. Based on the tabulated results, the CEXP routines tested look good.
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Table 4: Test Results for CEXP

Error in Error in
'Pest/Machine Vector Error Real Component Imag. Component

N MRE RMS N MRE RMS N MRE RMS

ez vs ez-6e 5

6 = (1 + i)/16

z E (0, 1) x (1/16, 1)

Sun 3/60 Cal./SP 1121 0.98 0.00 1512 1.00 0.00 1479 1.02 0.00
Sun 3/60 DP 539 1.96 0.15 1010 2.00 0.17 995 1.93 0.18
IBM XT, Lahey Cal./SP 1129 0.97 0.00 1489 0.99 0.00 1513 1.00 0.00
IBM XT, Lahey DP 1127 0.99 0.00 1495 1.00 0.00 1505 1.00 0.00
VAX, Cal. 1150 0.98 0.00 1502 1.00 0.00 1528 1.00 0.00
VAX, SP 574 1.85 0.11 1077 1.90 0.12 985 1.98 0.17
VAX, G-DP 530 1.74 0.14 1023 1.99 0.15 982 1.97 0.21

z E (1.625, 3) x (1.625, 3)

Sun 3/60 Cal./SP 1069 0.97 0.00 1483 1.06 0.00 1449 1.22 0.00
Sun 3/60 DP 558 1.73 0.11 1061 1.95 0.10 1000 2.03 0.19
IBM XT, Lahey Cal./SP 1116 0.98 0.00 1528 0.99 0.00 1453 1.22 0.00
IBM XT, Lahey DP 1155 0.97 0.00 1546 1.00 0.00 1477 1.18 0.00
VAX, Cal. 1105 0.98 0.00 1529 1.10 0.00 1457 1.10 0.00
VAX, SP 541 1.75 0.12 1012 1.93 0.14 1036 2.08 0.17
VAX, G-DP 515 1.91 0.14 998 1.95 0.19 981 1.96 0.18

z E (16, 17) x (16, 17)

Sun 3/60 Cal./SP 1093 0.92 0.00 1469 1.00 0.00 1490 1.00 0.00
Sun 3/60 DP 518 1.86 0.16 985 1.90 0.21 1016 1.98 0.15
IBM XT, Lahey Cal./SP 1117 0.92 0.00 1471 1.00 0.00 1523 1.00 0.00
IBM XT, Lahey DP 1103 0.97 0.00 1476 1.02 0.00 1495 1.00 0.00
VAX, Cal. 1115 0.92 0.00 1467 1.05 0.00 1520 1.00 0.00
VAX, SP 526 1.83 0.18 974 2.17 0.23 1019 1.98 0.16
VAX, G-DP 485 1.85 0.21 942 1.98 0.25 957 1.92 0.21

Special tests include a brief check that exp (z) exp (-z) = 1, tests with special arguments, and
tests with arguments with components so extreme that an error return of some sort is warranted.
The Sun routines always returned a result. Computations with arguments with large negative real
components returned zero results, those with large positive imaginary components (so the compu-
tation of the requisite sin (y) and cos (y) values makes little sense) proceeded without complaint,
and those with large positive real components returned (oo, oo). The Lahey routines aborted the
first case with an overflow(!) message, aborted the second case with a correct error message, and
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incorrectly returned (0,0) in the last case with no indication of an error. The first two cases were
processed without complaint on the VAX, but the third correctly aborted with an overflow message.

8 Test of Complex Power Function

The complex power function is the exponentiation function, z' = exp (w I z). The obvious al-
gorithm is not the most accurate way to compute this function in the real case [3]. Instead, a
self-contained computation that evaluates and uses w In z to beyond working precision is best. The
corresponding algorithm for the complex case has not been published and is probably not known
yet. To achieve the most accuracy, single-precision routines might do all internal computations in
double precision, and double-precision routines on machines with IEEE floating-point arithmetic
might do all internal computations in extended precision. Routines implementing the mathematical
definition in working precision will struggle for accuracy.

Our tests are based on three different identities. The first test compares zW, w = 1 + Oi, against
z in the rectangular region with vertices at (1,0) and (10,10). This is the purest test possible,
measuring the accuracy of the direct exp (ln) cycle; it should easily distinguish between routines
that use extra precision internally and those that do not. The magnitude of the complex error in

this test is estimated as the absolute value of

Z** w - Z
E = z**

where W = (1,0). Because all arguments are exact, there is no need for argument purification.

The usual error analysis reduces this to
E= 6,

where 6 is the complex relative error in exponentiation. Error estimates for the real and imaginary
components are analogous.

For a binary machine, we can estimate the reported value of the vector MRE as follows. The
major contribution to the relative vector error is in the computation of exp (In p), where p is the
modulus of z. Further, the relative error in the real exponential function is roughly the absolute
error in its argument. In exponentiation routines that use higher-precision arithmetic internally
(such as the routine in our calibration runs), the absolute error in ln p will be negligible. In other
routines, the detected MRE in our tests should roughly equal the integer part of ln (p) for p the
maximum modulus in the test region. This integer is 2, which is representable in 2 bits. We
therefore expect that calibration runs and tests of routines exploiting higher-precision arithmetic
will find no error in this case and that tests of routines exploiting the definition of exponentiation

in working-precision arithmetic will report losses slightly greater than 2 bits.

Results reported in Table 5 completely support this analysis. They suggest that the Lahey
routines and the single-precision routine on the Sun use higher-precision arithmetic internally, and
that all other routines tested use working-precision arithmetic.

12



Table 5: Test Results for Complex Power

Error in Error in

Test/Machine Vector Error Real Component Imag. Componni
N MRE RMS N MRE RMS N MRE RMS

Z(1) vs z

z E (1,10) x (0,10)

Sun 3/60 Cal./SP 2000 0.00 0.00 2000 0.00 0.00 2000 0.00 0.00
Sun 3/60 DP 471 2.02 0.42 818 3.16 0.69 839 2.09 0.43
IBM XT, Lahey Cal./SP/DP 2000 0.00 0.00 2000 0.00 0.00 2000 0.00 0.00
VAX, Cal. 2000 0.00 0.00 2000 0.00 0.00 2000 0.00 0.00
VAX, SP 378 2.06 0.55 718 3.11 0.82 793 2.33 0.56
VAX, G-DP 365 2.14 0.66 715 3.28 0.90 733 2.42 0.70

z(2,)vs z * z
z E (1,10) x (0,10)

Sun 3/60 Cal. 1995 0.95 0.00 1995 0.96 0.00 2000 0.00 0.00
Sun 3/60 SP 1993 0.95 0.00 1993 0.96 0.00 2000 0.00 0.00
Sun 3/60 DP 186 2.65 1.22 403 4.41 1.78 486 3.39 1.27
IBM XT, Lahey Cal./SP 1998 0.82 0.00 1998 0.83 0.00 2000 0.00 0.00
IBM XT, Lahey DP 1997 0.42 0.00 1997 0.43 0.00 2000 0.00 0.00
VAX, Cal. 1997 0.84 0.00 1997 0.85 0.00 2000 0.00 0.00
VAX, SP 149 2.97 1.40 375 5.24 2.06 421 3.65 1.45
VAX, G-DP 135 2.98 1.51 353 4.67 2.03 397 3.36 1.54

zW vs (z * Z)w/2

z, w E (4,10) x (4,10)

Sun 3/60 Cal./SP 2000 0.00 0.00 2000 0.00 0.00 2000 0.00 0.00
Sun 3/60 DP 1792 6.50 3.80 1793 13.03 7.83 1792 16.42 10.94
IBM XT, Lahey Cal./SP 2000 0.00 0.00 2000 0.00 0.00 2000 0.00 0.00
IBM XT, Lahey DP 1981 0.66 0.00 1988 4.26 0.00 1993 0.94 0.00
VAX, Cal. 2000 0.00 0.00 2000 0.00 0.00 2000 0.00 0.00
VAX, SP . 1222 6.44 4.38 1225 12.74 7.80 1224 12.90 7.86
VAX, G-DP 1294 6.67 4.35 1302 17.80 12.32 1303 16.07 10.60

The second test compares z, w = 2+Oi, against z2 in the same rectangular region less a wedge
about the line x = y. This is a more difficult test of exponentiation than the first test, but is still
simple enough to permit reasonably detailed analysis. We purify Z as in the other tests involving
Z * Z so there is no rounding error in forming the imaginary component and minimal error in the
real component. The magnitude of the complex error in this test is estimated as the absolute value
of

E = Z**1W - Z*+Z

Z**IWvz
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where W = (2,0). Let 6 be the complex relative error in exponentiation, and E the relative rounding

error in Z * Z. Then

E (zw)(1+b)-z
2 (1+c)

(zw)(1 +6)
This simplifies to

E=b6- E,

where again only first-order error terms are retained. The error estimates for the real component is

analogous, but the E term disappears in the error estimate for the imaginary component (because
of argument purification).

The line x = y maps into the positive imaginary axis in this test. Arguments close to this line
can contribute massive unavoidable error to the computation. For such arguments, the In part of
the exponentiation computation results in an imaginary component close to 7r/4. Regardless of
how accurate this computation is, there is some rounding error in the result (albeit much smaller
when done in higher-precision arithmetic than when done in working precision). This component

is doubled to a value very close to ir/2 and then used as an argument to the sin function in

computing the real component of the complex exp. The relative error in the result is roughly equal
to the number of significant figures of agreement between the argument and ir/2. Potentially, the

real component could lose all significance in this test (losses of 12 or more bits were encountered
during refinement of our test procedures). Because the real component is small in magnitude in

comparison to the imaginary component, this large component error does not greatly affect the
measured vector error. Nevertheless, we have rejected all test arguments with y within 5% of
x, thus eliminating a wedge-shaped region from our test domain. With this restriction, it is not
difficult to show that the maximum agreement between the argument to the sin and ir/2 is 5 bits.

We expect the MRE on the real component. to report a loss of about 5 bits on binary machines,
with the vector MRE significantly better than that. The results in Table 5 again corroborate our

analysis, and incidentally strengthen our suspicions about which routines use only working-precision

arithmetic.

Our final test corresponds more closely to what might be encountered in practice. It compares
zw against (z2 )w/ 2 for pairs of arguments drawn from the square region with vertices at (4,4) and
(10,10). Z is purified as before, and W is purified to guarantee that W/2 is also an exact machine
number. Then the vector error is estimated as the magnitude of

E -Z**W -(Z*Z)**(W/2)

Z**W

Let 6 be the complex relative error in Z * *W, a the relative error in (Z * Z) * *(W/2), and E the

relative rounding error in Z * Z. Then

E - (zw)(1 + 6) - {[z2 (1 + E)]w/2}(1 + a)

(zw)(1 + 6)

Retaining only first-order terms, we can simplify this to

E = 6 - a -(w/2)E.

Clearly the w/2 factor on E is significant and can dominate all other errors in this expression.

Unfortunately, such behavior limits this test to a demonstration of the inherent uncertainty of
complex exponentiation; it is useless as a true measure of the quality of exponentiation.
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The corresponding estimate for the error in the real component is

E_- (z'')(1 + 6) - R{[z(1 + E)]w/2}(1 + Q)

R(zw)(1 + 6)

where 6, &, and E (because of argument purification) are all real. Again ignoring higher-order terms
in the errors, we simplify this to

E= 6 - - R(W/2)E.

Similarly,

- Z(z")(1 + b) - 0{[z2(1 + E)]w/2}(1 + &)
9(zw)(1 + 6)

which simplifies to
= 6 -& - (W/2)c,

is an estimate of the error in the imaginary component.

Table 5 records large errors for routines we suspwrt. use only working-precision arithmetic. The
magnitude of these errors is discouraging, but note how often the identity was satisfied exactly.
These results demonstrate the difficulty of the computation, and especially how bad things can get
for unfortunate argument combinations. Alas, the routines tested here will probably represent the
state of the art until an algorithm is found that is as effective and efficient as the algorithm for the

real case.

Finally, the test program includes a check with extreme arguments and a check of the special
case zZ where z = 0 + Oi. All of the programs tested did well with the extreme arguments. In the
00 case the Sun programs returned NaNs while the Lahey and VAX programs aborted with invalid
argument messages.

9 Test of Complex CSIN/CCOS

Let z = x + iy. Then sin (z) = sin (x)cosh (y) + i cos (x)sinh(y) and cos (z) = cos (x) cosh (y) -
i sin (x) sinh (y) are periodic functions of period 27ri that map infinite vertical strips of width it into
the complex plane with slits along the real axis for lxi > 1.

Our tests of CSIN and CCOS exploit the identities sin(z) = sin (w)cos (A) + cos(w)sin(A)
and cos (z) = cos (w) cos (A) - sin (w) sin (A), where w = z - A and A = (1 + i)/16 . We minimize
subtraction error in these identities by restricting our tests to regions where y > 1/16 (so the
hyperbolic functions are all positive) and where sin x and cos x have the same sign and about the
same magnitude. Specifically, the test of sin z is applied over the region with x and y drawn from
(1/16,10), and both tests are applied over the region with x and y drawn from (16,17). For these
regions, since all arguments in the identities are exact machine numbers, argument purification is
not necessary. Finally, numerical stability is enhanced by setting r = cos (A) - 1 and computing
sin (w)cos (A), for example, as sin(w)+ r sin (w). Both sin(A) and r are small complex constants
that can be precomputed and stored in DATA statements.

The magnitude of the error in CSIN is estimated as the absolute value of

CSIN(Z) - [CSIN(W)CCOS(D) + CCOS(W)CSIN(D)]
CSIN(Z)
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where D is A. Let 6, o, and v denote the relative errors in CSIN(Z), CSIN(W), and CCOS(W),

respectively. Then,

E -_sin(z)(1 + 6)- [sin(w)cos (0)(1 + a) + cos(w)sin(A)](1 + v)
sin (z)(1 + 6)

Retaining only first-order error terms, we reduce this expression to

E=6 - Mc - Nv,

where

M _Si n(w)mos(

M= sin (z)

and
N =cos (w) sin (A)

sin (z)

For the first test region, x and y each drawn from (1/16,1), IMI <0.96 and INI < 1 (see Table 6).

Indeed, INI decreases rapidly as z moves away from (1 + i)/16, assuming a value of about 0.75 for
z= 1+i.

Analysis of the error measurement for the real component is more complicated. Set

_ REAL{CSIN(Z)} - REAL{CSIN(W)CCOS(D) + CCOS(W)CSIN(D)}

REAL{CSIN(Z)}

Let 6 be the relative error in REAL(CSIN(Z)), o, and a, be the relative errors in the real and imag-
inary components of CSIN(W), respectively, and v,. and vi be the relative errors in the components
of CCOS(W). The usual substitution and simplification yield

E =b6- Mra,.+M o,- Nfl/f+ Nv,

where
_ sin (w)R cos (A)

R sin (z)'

M _ sin (w ) cos (A )MRsin (z)

i cos (w)? sin (A)
?Rsin(z)

and
_ cos (w)Z sin (A)

N sin(z)

The analogous expressions for the relative error in the imaginary component are

E = 6- Mro7 -l - Nfl/f - ii

where
_ R sin (w)Z cos (A)

'r 3 sin (z)
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Table 6: Bounds on Error Magnification for CSIN/CCOS Tests

Test

SIN SIN COS
x, y E (1/16,1) x, y E (16,17) x, y E (16,17)

max IMI 0.96 0.94 0.08
maxIN| 1.00 0.08 0.94

maxI M,.I 0.96 0.92 0.20
max|IMiI 0.04 0.01 0.07
rnaxINI,. 1.00 0.20 1.14
max|1N;| 0.04 0.06 0.01

max|IM.j 0.09 0.01 0.06
max|M;I 1.01 1.14 0.20
max|lNl 1.09 0.07 0.01
maxN;|I 0.04 0.20 0.92

- sin(w)R cos (A)
M sin (z)

T _ cos (w)Z sin(0)
N sin(z)

and
- cos(w)R sin(L)

Z sin (z)

The magnitude of the error in CCOS is estimated as the absolute value of

E - CCOS(Z) + [CSIN(W)CSIN(D) - CCOS(W)CCOS(D)]
CCOS(Z)

The expressions for E, E, and t are the same as for the tests of CSIN, except that now

M - sin (w) sin(A)
cos(z)

N - cos(w)cos(L)
cos(z) '

rLsin (w)Rsin(A)

soi(w)sin(0)
R cos (z)'
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Table 7: Test Results for CSIN/CCOS

Error in Error in
Test/Machine Vector Error Real Component Imag. Component

N MRE RMS N MRE RMS N MRE RMS

sin(z) vs sin(w + 6)

w = z - 6,6 = (1 + i)/16

z E (1/16,1) x (1/16,1)

Sun 3/60 Cal./SP
Sun 3/60 DP
IBM XT, Lahey Cal./SP
IBM XT, Lahey DP
VAX, Cal.
VAX, SP
VAX, G-DP

z E (16,17) x (16,17)

Sun 3/60 Cal./SP
Sun 3/60 DP
IBM XT, Lahey Cal./SP
IBM XT, Lahey DP
VAX, Cal.
VAX, SP
VAX, G-DP

cos(z) vs cos(w + 6)
w = z - 6,6 = (1 + i)/16

z E (16,17) x (16,17)

Sun 3/60 Cal./SP
Sun 3/60 DP
IBM XT, Lahey Cal./SP
IBM XT, Lahey DP
VAX, Cal.
VAX, SP
VAX, G-DP

0.98
1.72
0.98
0.93
0.98
3.38
3.24

0.95
1.90
0.94
0.95
0.95
1.78
1.92

0.00 1445
0.12 1016
0.00 1466
0.00 1526
0.00 1498
0.70 916
0.68 956

0.00 1518
0.12 1062
0.00 1527
0.00 1556
0.00 1513
0.17 996
0.33 918

1.25 0.00 1510
1.99 0.17 1064
1.40 0.00 1548
1.00 0.00 1521
1.79 0.00 1470
2.04 0.26 625
2.22 0.28 613

1.00 0.00 1458
1.96 0.13 1015
1.00 0.00 1461
1.00 0.00 1492
1.00 0.00 1421
1.89 0.18 983
2.17 0.33 849

1.00 0.00
1.99 0.09
0.99 0.00
0.99 0.00
1.00 0.00
4.93 1.68
4.77 1.72

1.11 0.00
1.92 0.16
1.11 0.00
1.00 0.00
1.11 0.00
2.09 0.19
2.20 0.34

1085 0.96 0.00 1440 1.00 0.00 1520 0.99 0.00
525 1.74 0.13 1034 2.09 0.15 994 1.98 0.16

1102 0.96 0.00 1437 1.00 0.00 1540 0.99 0.00
1104 0.95 0.00 1441 1.00 0.00 1539 0.99 0.00
1106 0.96 0.00 1 i11 1.00 0.00 1535 1.00 0.00
504 1.79 0.18 954 1.97 0.23 1026 1.87 0.15
394 1.87 0.32 890 2.28 0.35 897 2.09 0.32
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1104
558

1135
1156
1103
296
306

1088
557

1101
1142
1061
506
385
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_ cos(w)RScos(A)
= ?cos (z)'

h _cos(w)Q cos( )

? c o s ( z)s'

ro sin(w) sin(A)

o(os(z)
- Zsin (w)R sin (A)
N rcos (z)

- ?cos (w)Z cos (L)
Z cos (z)'

and
Z cos (w)? cos (A)

3 cos(z)

Bounds on the magnitudes of all of these values for the three test domains are given in Table 6.
Examination of the table shows that potentially two extraneous rounding errors contaminate test
results in the first test region, but that at most one contaminates the other test results. We expect,
therefore, that the MRE reported in calibration runs and tests of routines using higher-precision
arithmetic internally will be about 1.00, and that other MRE values will be about 2.00. The
tabulation of results in Table 7 generally confirms this expectation. Although the errors reported
for the first test on the VAX are large, they are not particularly alarming.

The test program concludes with a series of short tests of the periodicity of CSIN and of the
response to extreme or near-extreme real and imaginary components of the argument. All routines
checked passed these tests; they all accepted large real components of the arguments without
complaint, and all gave error returns for large imaginary components (the value oo + ioo on the
Sun, an underflow message on the PC, and an overflow message on the VAX).
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