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by

Kenneth W. Dritz

Abstract

This paper supplements the "Proposed Standard for a Generic Package of Primitive Functions
for Ada," written by the ISO-IEC/JTC1/SC22/WG9 (Ada) Numerics Rapporteur Group. Based
on recommendations made jointly by the ACM SIGAda Numerics Working Group and the Ada-
Europe Numerics Working Group, the proposed primitive functions standard is the second of

several anticipated secondary standards to address the interrelate(' -es of portability, efficiency,
and robustness of numerical software written in Ada. Its purp& atures, and developmental
history are outlined in this commentary.

At about the time that work on a proposed Ada standard for the elementary functions began in 1986, early efforts
to implement the elementary functions-square root, logarithm, trigonometric functions, and the like-underscored
the need to be able to perform certain steps in their computation with extreme accuracy. These functions are typically
implemented by transforming the argument so that it lies within a reduced range, computing the desired function
on the transformed argument by a polynomial or rational approximation (designed to be sufficiently accurate over
the relatively narrow reduced argument range) to obtain an intermediate result, and then constructing the final result
by appropriately transforming the intermediate result. Accuracy is controlled in the middle step by the choice of
approximation method, which bounds the approximation error. However, the final result can be extremely sensitive
to errors (such as roundoff errors) made in the argument reduction step. Unnecessary error can also enter in the
final step if the transformation it represents is not carried out carefully.

Details of the transformations needed in the argument reduction and result construction steps depend, of course,
on the function being implemented. In the case of the periodic functions, the essential requirement is to compute an
accurate remainder when the argument is divided by the period, if specified; when the period is allowed to default
to the irrational 27r, a technique other than a simple division is required to obtain a suitably accurate remainder.
In other cases, especially SQRT and LOG, decomposition of the argument into its exponent and fraction parts is the
starting point, with the fraction part (or a simple function of it) becoming the transformed argument; the result
construction step in these cases usually involves a simple modification-often just a scaling-of the intermediate
result by a simple function of the exponent part.

If one is interested in implementing the elementary functions in a portable fashion, how does one go about
computing accurate floating-point remainders and decomposing floating-point numbers into their constituent parts
portably? Two problems arise if one tries to do these things entirely in portable Ada: the result is inefficient,
often involving loops that require many traversals; and it cannot be proven fully accurate with Ada's model of
floating-point arithmetic, since the model caters to the weaknesses of the weakest conforming implementation of
Ada. (On machines manifesting them, such weaknesses-for example, lack of a guard digit-can introduce errors in
the argument reduction step that become amplified as the loops are traversed.) The efficiency and accuracy problems
can be solved, of course, by judicious use of representation clauses or interface programming in assembler language
or even machine language insertions, given knowledge of the host machine, but that obviously destroys portability.

Exact floating-point remainder and decomposition of a floating-point number into its constituent parts are two
examples of primitive functions-low-level floating-point functions having the property that they cannot be coded
in Ada so as to be simultaneously accurate, efficient, and portable. Since we know how to solve the accuracy and
efficiency problems when details of the underlying machine are available (indeed, some of the primitive functions
are directly available as hardware operations on specific machines), all that is really lacking is a standardized
interface to the functions. That is what the proposed generic primitive functions standard [1] provides.
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Portable implementations of the generic elementary functions standard will be the first beneficiary of the generic
primitive functions standard; others will follow. However, the generic primitive functions standard will always have
a specialized clientele: experts, probably highly trained numerical analysts, concerned with the development of high-
%pality, portable mathematical software. It is not for the average application programmer.

The proposed standard has been developed by the ACM SIGAda Numerics Working Group in collaboration with
the Ada-Europe Numerics Working Group. The proposal has been adopted by the WG9 Numerics Rapporteur Group
and is to be submitted to WG9 and its parents, leading ultimately to an ISO standard. The standardization effort
has been supported and encouraged in the United States by the Ada Joint Program Office of the U.S. Department
of Defense, and in Europe by the Commission of the European Communities.

Although work on the primitive and the elementary functions standards began at about the same time, the
elementary functions standard was completed, except for some late refinements, about a year and a half earlier [9].
Earliest drafts of the primitive functions standard drew heavily from recommendations made may years earlier in
[3]; other works influencing the Ada primitive functions at an early date were [6, 11, 15, 14]. Later versions of
the primitive functions were influenced by the IEEE floating-point standards [7, 8] and by the proposed Language
Compatible Arithmetic Standard (LCAS) [12, 13]. One reason for the delay in completing the primitive functions,
relative to the elementary functions, was a series of late additions to the proposed primitive functions standard as
the result of evolving implementation experience with the elementary functions. Another was the recognition that
software intending to exploit IEEE arithmetic had to pay particular attention to some of its more subtle features,
such as denormalized numbers aad signed zeros. It took considerable effort to describe the primitive functions
so that they could be implemented in either IEEE or non-IEEE environments. This issue also had ramifications
for the elementary functions standard, resulting in a recent revision of it [10] and in the updating of its rationale
document [5].

The proposed standard for the primitive functions defines the specification of a generic package called
GENERIC.PRIMITIVEFUNCTIONS. It is a package because that is the accepted way to collect together several
related subprograms; it is generic, with generic formal parameters for the two types used for the arguments and
results of the subprograms, in view of the rules for parameter associations and the inability to anticipate the types
used in applications. The generic formal parameter FLOATTYPE gives the type to be used for the floating-point
arguments and results of subprograms in GENERIC.PRIMITIVEFUNCTIONS, while the generic formal parameter
EXPONENTTYPE gives the type to be used for the few integer arguments and results that, with one exception,' deal
with exponents of the canonical machine representation. When an instantiation of GENERIC.PRIMITIVEFUNCTIONS
is used in an implementation of the elementary functions (e.g., in the body of GENERIC.ELEMENTARYFUNCTIONS),
the FLOATTYPE of the latter should be passed through to the former, and a sufficiently wide integer type should
be associated with EXPONENTTYPE. The predefined type INTEGER probably suffices for the latter, but if one is
worried about sufficient range, then an integer type whose range covers SYSTEM. MININT .. SYSTEM. MAXINT
can be defined and used instead.

Like the elementary functions standard, the primitive functions standard permits implementations to impose
a restriction that the generic actual type associated with FLOATTYPE in an instantiation must not contain a range
constraint that reduces the range of allowable values. Implementations choosing not to impose the restriction
must be designed to be immune from the avoidable effects of such range constraints; in general, this means
that variables of type FLOATTYPE cannot safely be used for intermediate results within an implementation of
GENERICPRIMITIVEFUNCTIONS. Those imposing the restriction must document it; they can safely use such
variables, but they must behave in one of several stated ways (i.e., predictably) if the restriction is violated. (For a
detailed discussion of the genesis of this optional restriction and its implications, see the latest revision of [5]. The
freedom of an implementation to impose the restriction will be revoked in the future if and when Ada-for example,
as part of the Ada 9X revision process-acquires additional functionality that allows the declaration of variables
having the precision, but not the range, of a generic formal floating-point type.) Incidentally, implementations are
not allowed to impose a similar restriction on the generic actual types that can be associated with EXPONENT.TYPE
during instantiation; it is not difficult to implement GENERICPRIMITIVEFUNCTIONS to be efficient while limiting
the consequences of insufficient range in that generic actual type to the unavoidable raising of CONSTRAINTERROR
during a subprogram call or return.

'One of the subprograms takes an argument that is a nonzero count of the number of diits to be retained in a particular computation; the
predefined integer subtype POSITIVE is used for the corresponding parameter.

2



Perhaps the most significant difference between the two standards, other than subject area, is their respective
handling of accuracy requirements. The elementary functions standard allowed implementations to approximate the
exact mathematical result but constrained the approximation error by requiring implementations to satisfy "maximum
relative error" bounds. In contrast, the primitive functions standard requires implementations to deliver the exact
mathematical result defined for each function, whenever that result is representable; approximations are permitted
only when the mathematical result is not representable and is smaller in magnitude than the smallest normalized
positive floating-point number; and even then, the result is constrained to be one of the adjacent representable
numbers. This level of accuracy is an essential aspect of the definition of the functions as operations on machine
numbers yielding related machine numbers, without which their utility in argument reduction, etc., would be
compromised. Achievinbg the required accuracy is not something that can be accomplished portably in Ada, at
least not without making assumptions about the performance of the hardware that go well beyond the requirements
imposed by the Ada model of floating-point arithmetic. On the other hand, the required accuracy can be easily
and efficiently achieved by targeting implementations for specific environments and by utilizing knowledge of the
machine representations in conjunction with appropriate operations (often integer or bit operations), accessed if
necessary through low-level interfaces. A precedent for the accuracy required of the primitive functions can be
found in the Ada attribute T' BASE' LAST for a floating-point type T: by definition, it has full machine-number
accuracy, which, in general, exceeds model-number and safe-number accuracy.

Because the primitive functions transform machine numbers into other well-defined machine numbers, the
standard includes a discussion of exactly wat is meant by "floating-point machine number" within the context
of the subprograms' definitions. What numbers are in the set of machine numbers? Does that set include the
extra-precise numbers that some Ada implementations generate as a consequence of using extended registers for
intermediate results? The answer to the latter question must be no, for otherwise the precise mathematical formulas
used to specify the results of some of the functions would imply that the output from a function must be extra-
precise if its input is, and yet the programmer has no means to ensure that that wilt be the case. Thus, it is clearly
stated that the "machine numbers" referred to throughout the standard are the storable machine numbers-the
ones that can be (a) stored; (b) propagated by assignment, parameter association, and function returns; and (c)
characterized by the representation attributes FLOATTYPE' MACHINE.MANTISSA, FLOATTYPE' BASE' FIRST, and
FLOATTYPE' BASE' LAST. Implementations of the primitive functions are entitled to assume that only storable
machine numbers will be seen as arguments, and implementations of Ada must uphold that assumption (by forcing
storage, if necessary, before calling a primitive function) in order for implementations of the primitive functions
to have any hope of conforming to the standard.

Furthermore, because some hardware (e.g., that implementing IEEE arithmetic) has the capability of repre-
senting denormalized numbers-those with the minimum exponent and an unnormalized fraction part-one must
also be precise about whether the set of machine numbers includes them. The standard says that it does if the
hardware has the capability of representing them and the Ada implementation uses the hardware in such a way that it
actually generates them; otherwise, it does not. This is especially significant when talking about "adjacent machine
numbers," since the machine number adjacent to the smallest positive normalized number, in the direction toward
zero, will be a denormalized number if the hardware and Ada implementation recognize denormalized numbers,
and zero otherwise. It is also germane to the approximations that are permitted when a defined result falls in the
denormalized range and is not exactly representable.

Some hardware (again, typically hardware conforming to IEEE arithmetic) has the capability of representing
both positive and negative zeros (i.e., the sign of zero is relevant in some contexts). Like the elementary functions
standard, the primitive functions standard allows signed zeros to be exploited if they are present in the hardware,
but does not require them to be exploited. And like the elementary functions standard, the primitive functions
standard does not give the required sign of each zero result (when signed zeros are being exploited), but leaves
that to other standards or interpretations. 2 The behavior of one of the primitive functions, COPY-.SIGN, does depend
on the sign of a zero argument (when signed zeros are being exploited), as is also true of ARCTAN and ARCCOT in
the elementary functions. The standard also clarifies that plus and minus zero are not to be considered "adjacent"
(and therefore different) machine numbers, in any context where adjacency is relevant; thus, the "neighbors" of
zero do not depend on the sign of zero.

2There are four exceptions, however. The required signs of zero results from ADJACENT, SUccESSOR, PREDEcESSOR, and COPYSIGN are
spelled out in the standard because those functions are intimately concerned with representations.
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Early versions of the proposed primitive functions standard did not permit any approximations: when the exaCt
mathematical result was not representable, they called for the raising of an exception to signal that fact. Indeed, this
applied not just to underflow situations, 3 but to overflow as well. An exception called REPRESENTATIONERROR was
reserved for that purpose. Commenting on an early version of the proposal, an observer convinced the committee
that it would be better to signal overflow in the usual way (i.e., by raising the predefined exception provided by
Ada for that contingency) and that it would also be better to provide a result conforming to the Ada standard in
cases of underflow (including flushing to zero, if nothing better could be done) instead of raising an exception. An
overflow or underflow in the result of a primitive function is most likely to occur when the primitive function is
us( 1 for scaling purposes in the final step of some other computation, such as that of an elementary function. In
such a case, the elementary function would overflow or underflow as well, and it would be undesirable to force the
latter to intercept a REPRESENTATIONERROR exception arising in the former just so that it could substitute some
other behavior. As the primitive functions standard is now written, an overflow or underflow occurring in the result
of a primitive function called to perform scaling in the final step of the computation of an elementary function can
simply be propagated from the primitive function through the elementary function co the latter's caller, which will
thus satisfy the requirements of the elementary functions standard in a most efficient way.

With underflows reported by approximations and overflows signaled by the appropriate predefined exception,
there was no longer any need for the REPRESENTATION.ERROR exception, which was accordingly eliminated.
No exceptions are declared by GENERICPRIMITIVEFUNCTIONS. Only predefined exceptions may be raised by
implementations of the primitive functions, and even those are restricted (as they were in the elementary functions
standard) to specific cases where they are unavoidable.

The subprograms (fourteen functions and one procedure) in GENERIC.PRIMITIVE...FUNCTIONS can be orga-
nized into four groups for presentation purposes. In the discussions that follow, arguments and results are of the
floating-point type FLOATTYPE except where noted, and / stands for the value of FLOAT-TYPE' MACHINERADIX.

The first group comprises basic decomposition, composition, and scaling subprograms for floating-point
numbers. These are the EXPONENT, FRACTION, COMPOSE, and SCALE functions :nd the DECOMPOSE procedure.

EXPONENT is primarily useful in argument reduction steps, where it gives a coarse indication of the magnitude
of its argument. Except when X = 0.0, the function EXPONENT(X) delivers-as a value of the integer type
EXPONENTTYPE-the unique integer k such that pk-1 < XJ <,3k. This definition is entirely mathematical and not
related to the representation of X on the machine. Thus, as a positive X decreases through the normalized range and
into the denormalized range, EXPONENT(X) continues to decrease, even though the exponent part of the machine
representation of X stops decreasing when the smallest normalized number is reached. In fact, on the assumption
that FLOAT.TYPE'MACHINEEMIN is the value of that minimum exponent,4 EXPONENT(X) can return a value that
is less than FLOATTYPE'MACHINEEMIN (e.g., when i is denormalized). Finally, EXPONENT(0.0) is defined in
this standard to deliver 0.

The EXPONENT function can be computed on typical hardware by extracting and unbiasing the exponent field
of the representation, with a special case for X = 0.0 and with additional steps required when X is denormalized.
EXPONENT corresponds closely to the IEEE recommended function 1ogb, which is usually available in hardware,
except that its result is of an integer type instead of a floating-point type.

Some observers contended that EXPONENT(0 .0) should not be 0; the most mathematically sensible alternative,
-oo, which can be represented on IEEE hardware at least, is ruled out by the integer-type result of EXPONENT. The
committee staunchly preferred to stick with an integer type for the representation of the integer values delivered
by this function, especially when it concluded that a result of zero for a zero argument is often a "don't care"
case anyway (in the sense that the potential caller of EXPONENT will avoid the call and take a different path, when
X = 0.0), and is probably harmless when not. Another alternative, raising an exception to signal an illegal argument
when X = 0.0, was ruled out because it is unnecessarily harsh when a zero result is harmless.

The companion function FRACTION is also useful in argument reduction steps. For nonzero X, FRACTION(X) is
defined to yield X .-- k, where k is as defined above for EXPONENT; FRACTION(0.0) is 0.0. Thus, FRACTION(X) is
the fraction part of the canonical form of the floating-point number X (normalized, however, when X is denormalized).
This function can be computed on typical hardware by extracting the fraction field of the representation, with a
special case for X = 0.0 and with additional steps required when X is denormalized.

3For simplicity, this is understood to mean either actual underflow or merely denorrnalization, which is also known as "gradual underfiow."
4This is a reasonable assumption, without which some numbers expressible in the canonical form would not be representable. It requires,

however, that the definition of canonical form be relaxed to allow unnormalized fraction parts.

4



Often, both the exponent part and the fraction part of a floating-point number are needed in argument reduction.
For such occasions, the procedure DECOMPOSE, which computes and delivers both simultaneously through a pair
of arguments of mode "out," is provided.

The function COMPOSE is essentially the inverse of DECOMPOSE; it constructs a floating-point value from a given
fraction and exponent part. Except when FRACTION = 0.0, COMPOSE(FRACTION, EXPONENT)-for arguments
of the floating-point type FLOATTYPE and the integer type EXPONENTTYPE, respectively-delivers the value
FRACTION - 1 EXPOKET-k (if it is representable), where k is the unique integer such that pk l _< IFRACTIONI < 3k.

COMPOSE (0.0, EXPONENT) delivers 0.0 for any EXPONENT. If the defined result is not representable, then the
appropriate predefined exception is raised in overflow situations, and one of the adjacent representable numbers is
delivered in underflow situations. Note that the FRACTION argument is not required to be a pure fraction, with a
zero exponent part (as if it had been obtained from the FRACTION function previously); rather, the fraction part of
FRACTION is extracted and used to construct the result. It should be obvious that this function can be computed, on
typical hardware, by appropriate manipulations of the fraction and exponent parts of floating-point quantities, as for
the previous functions. COMPOSE finds representative uses in the result construction step of mathematical functions.

The remaining function of the first group, SCALE, is similar to COMPOSE; it has uses both in result construction
steps and in argument conditioning (for Euclidean norms, complex arithmetic, and some matrix computations, for
example). It takes arguments X and EXPONENT and returns X . 3 EPONEMT (with the same provisions for dealing with
overflow and underflow as exhibited by COMPOSE). SCALE is analogous to the IEEE recommended function scalb.
When implemented by directly manipulating the exponent part of a foating-point number, it is potentially more
efficient than multiplying or dividing by a power of the hardware radix, and by definition it retains full accuracy
(multiplication and division, even by a power of the hardware radix, can lose accuracy on systems lacking guard
digits for these operations). The function is sometimes available as a hardware operation.

The functions of the first group are not all independent. In theory, it is sufficient to have just EXPONENT and
SCALE, or alternatively EXPONENT and COMPOSE; the others can be obtained in terms of these two. For greater
efficiency, however, implementations should code each independently using the most direct interface to low-level
representations and operations available.

The second group of subprograms comprises directed rounding functions (ROUND, TRUNCATE, FLOOR, and
CEILING, all of which yield an integer value in the floating-point type FLOAT..TYPE) and an exact remainder
function (REMAINDER).

ROUND, of course, delivers the value of its argument, rounded to the nearest integer, with ties being broken by
choosing the even integer; this corresponds to IEEE unbiased rounding. Ada already has something comparable
in its predefined conversion between floating-point and integer types. The ROUND function differs in having a
floating-point result type and in specifying that ties will be broken by choosing the even integer. ROUND and the
other directed rounding functions are supposed to produce their floating-point results without going through an
intermediate conversion to an integer type, which could raise an exception (often the higher-precision floating-point
types can accommodate larger integer values than can be represented in the available integer type of widest range).
TRUNCATE simply discards the fractional part, thereby rounding in the direction of zero. FLOOR and CEILING round
in the negative and positive directions, respectively. All of these functions can be programmed efficiently at a low
level and might even exist as hardware operations.

The REMAINDER function delivers the exact remainder upon dividing its first floating-point argument by its
second floating-point argument. More precisely, REMAINDER(X, Y) finds an integer quotient q and a remainder r
such that r = X - Y - q; it delivers r. Algorithms exist for computing the result exactly, and reasonably efficiently,
regardless of the relative magnitudes of the dividend and divisor, the operation is available as a hardware instruction
on some machines.

There are two customary ways of defining the quotient q, which determines the corresponding remainder r.
One way defines q as the integer obtained by rounding the exact value of X/Y towards zero. This gives r the sign
of the dividend and a magnitude less than that of the divisor; it is the definition used by Ada for its predefined
"rem" operator on integer-type operands, yielding an integer-type result. The other way defines q as the integer
nearest the exact value of X/Y, with ties broken by choosing the even integer. This, in turn, gives r a magnitude
not greater than half that of the divisor and a sign that may be either positive or negative. Because the latter
definition, corresponding to the IEEE rem operation, is slightly preferred by numerical analysts for such purposes
as argument reduction in the arbitrary-cycle versions of the trigonometric functions, it is what has been adopted for
the primitive functions standard. It is tempting to offer this function in the form of an overloading of the predefined
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"rem" operator, and indeed an earlier version of the proposed standard did so. However, the two overloaded "rem"
operators would have distinctly different numerical behavior (e.g., 43 rem 5 yields 3, whereas 43.0 rem 5.0
would yield -2. 0), so to avoid confusion the functional form REMAINDER(X, Y) was preferred for the floating-point
remainder operation in GENERIC.PRIHITIVEFUNCTIONS.

The third group of subprograms contains the PREDECESSOR, SUCCESSOR, and ADJACENT functions, which allow
a floating-point machine number to be perturbed by the smallest possible amount to obtain the next larger or smaller
machine number. The principal use for these functions is in testing mathematical software, where very fine control
over test arguments is sometimes needed. As defined, they are also useful for generating the machine numbers
(denormalized, if the hardware has that capability) adjacent to zero.

PREDECESSOR and SUCCESSOR are one-argument functions that deliver the machine number adjacent to their
argument in the direction inferred from the name, whereas ADJACENT is a two-argument function that returns the
machine number adjacent to its first argument in the direction of the second argument. The latter function is
provided for applications in which the direction of motion is not known in advance and needs to be determined
dynamically; it is identical to the IEEE recommended function nextafter. There is another difference between
ADJACENT and the other two functions: PREDECESSOR and SUCCESSOR raise the predefined exception signaling
overflow upon an attempt to move beyond the first or last floating-point machine number, while ADJACENT never
raises an exception (it is not possible to move beyond the range of machine numbers with it). The committee
debated whether it was extravagant to have both sets and found itself split into two camps, neither of which wanted
to give up its preferred choice. It was argued that one could not be assured of obtaining the other set if only one
set were provided, because of a well-known weakness in the Ada model of floating-point arithmetic that makes the
comparison of nearby floating-point numbers indeterminate.

The final group of subprograms contains miscellaneous functions-namely, COPYSIGN and LEADINGPART.
The COPY.SIGN function, often found in other languages and represented in LCAS by sign and in the IEEE

recommended functions by copysign, delivers the value obtained by transferring the sign of its second argument to
the first (but otherwise retaining all the precision of the first argument). This function is often useful in giving the
final result of some computation the appropriate sign (without resorting to an if-then-else test) after having stripped
the sign away in the argument reduction step, perhaps by using the very same function to set it positive there.
In highly accurate and portable code, this function is preferable to negation and the abs operator because those
can lose low-order digits on hardware lacking a guard digit for subtraction. On hardware distinguishing the sign
of zero (such as IEEE hardware), and where the implementation of GENERICPRIMITIVEFUILCTIONS chooses to
exploit the capability of signed zeros, COPYSIGN is required to distinguish between plus zero and minus zero for
its second argument; thus, it confers the sign of its second argument on the result even when the second argument
is zero. COPY..SIGN was a late addition to GENERICPRIMITIVE.FUNCTIONS.

LEADING.PART, another late addition, was motivated by the LCAS trunc operation. It delivers the value of
its first argument with only some of the leading radix-digits retained (the number of them given by the value of
the second argument, which is of the predefined type POSITIVE), and with the remaining radix-digits-the low-
order digits-replaced by zeros. This function plays a leading role in sophisticated strategies for simulating higher
precision, where a floating-point number needs to be decomposed into a major portion of limited precision and an
additive residue. The leading part is usually used as a factor in a subsequent multiplication by a small integer,
such that the result has a sufficiently small number of radix-digits to be represented exactly within the model of
floating-point arithmetic. The residue can be accurately obtained by subtraction, assuming the starting value has
o more precision than that of safe numbers.

Two functions in the earliest versions of the proposed standard, both taken from [3], were dropped along the
way. These were RECIPROCALRELSPACING(X) and ABSSPACING(X), which give information about the spacing
of machine numbers in the neighborhood of X. Although they are useful for fine control over the termination of an
iterative algorithm, or for measuring and reporting error, committee members did not find them important enough
to retain; when the committee was unable to justify their inclusion to the satisfaction of some observers, it decided
to omit them.

The relationship between functions in GENERICPRIMITIVE.FUNCTIONS and certain required operations or
recommended functions of the IEEE floating-point standards has been mentioned repeatedly in this rationale. It is

'The preceding discussion only scratches the surface of the long and involved history of this opeation. Many other alternatives, some of
which made their way into earlier drafts of the standard, were considered at one time or another.
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anticipated that relevant functions in GENERICPRIMITIVEFUNCTIONS will serve as the realization of some of the
functionality of the proposed IEEE binding for Ada [4].

The relationship between functions in GENERICPRIMITIVEFUNCTIONS and some of the features of LCAS
has also been discussed. The fair degree of overlap between the two has prompted the suggestion that every-
thing in LCAS that is not already built into Ada should be available in GENERICPRIMITIVEFUNCTIONS in a
compatibly defined way. The obvious benefit of following that suggestion to the letter would be the ability of
an LCAS binding for Ada to point to GENERICPRIMITIVEFUNCTIONS as the embodiment of that part of its
functionality not built into Ada. Unfortunately, this goal was not expounded early enough in the development of
GENERICPRIMITIVE.FUNCTIONS, and a few differences remain.

Several partial implementations of GENERIC.PRIMITIVEFUNCTIONS, varying in the degree to which they
exploit knowledge of the underlying machine, exist. Some of them have tried to be relatively general, that is,
adaptable to different architectures by suitable choice of parameters; none have yet tried to be as efficient as
possible.

Through a report [16] to the Ada 9X Requirements Team, the SIGAda Numerics Working Group has had
an influence on Ada 9X as a result of the work it did in developing the proposed primitive and elementary
functions standards. The report contains a discussion of the problems of writing high-quality, portable mathematical
software; it included a number of Ada 9X revision requests aimed at solving some of these problems. One of the
recommendations was to include the functionality of GENERICPRIMITIVEFUNCTIONS in the Ada language, in
the form of attributes (of the function kind). Several of the issues discussed in the report have been accepted by
the Ada 9X Requirements Team as requirements for Ada 9X [2], including the incorporation of both elementary
functions and primitive functions in optional annexes in Ada 9X.
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