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SOME ISSUES CONCEINING FLUIDELASTIC INSTABILITY
OF A GDUP OF CIRCULAR CYLINDERS IN CROSSFLOW

S. S. Chen

ABSTRACT

Since the early 1970s, extensive studies of fluidelastic

instability of circular cylinders in crossflow have been

reported. A significant understanding of the phenomena involved

now exists. However, some confusion, misunderstanding, and

misinterpretation still remain. The objective of this report is

to discuss, on the basis of the current state of the art, a series

of the most asked questions. Emphasis is placed on the

determination of the critical flow velocity, nondimensional

parameters, stability criteria, and instability mechanisms.

1. INTRODUCTION

A group of circular cylinders submerged in crossflow can be subjected to

dynamic instability, typically referred to as fluidelastic instability. The

threshold flow velocity at which cylinders undergo large oscillations is

called the critical flow velocity. If a system component is operated at a

flow velocity above the critical value, severe damage to the component is

likely to occur, often after a short time of operation. Therefore, operation
at a flow velocity above the critical value is generally not acceptable.

Since the early 1970s, extensive studies of fluidelastic instability have

been reported. The studies include empirical stability criteria, mathematical

models, scale-model and full-scale evaluation tests, and design assessment. A

significant understanding of the problem now exists. However, some confusion,

misunderstanding, and misinterpretation still remain. As a matter of fact,

fluidelastic instability is probably one of the most debated and confusing

topics in the area of fluid-structure interactions. For example, erroneous

descriptions of the instability mechanism have been published in journals,

these erroneous descriptions have been quoted by others working in this

subject area, and the same physical phenomena have been given different

interpretations.

At present, it is still not possible to predict the instability phenomena
from fundamental principles of fluid dynamics and the theory of elasticity,

and same of the physics associated with the instability are not well

understood. However, with available information, some of the unnecessary

misunderstanding and confusion can be avoided. The objective of this report

is to discuss several important issues on the basis of the unsteady flow

model.
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There are hundreds of publications on this subject. A literature survey
will not be given in this report since several surveys have recently appeared

in the literature [e.g., Paidoussis 1987, Weaver and Fitzpatrick 19871. It

should be noted that significant contributions have been made by investigators

in different countries, and progress is being made on different aspects of the

problem.

I. HW SHOULD ONE DETERMINE THE CRITICAL FLOW VELOCITY?

The critical flow velocity is defined as the flow velocity above which

cylinders undergo large oscillations. Mathematically, this is generally

described as follows. Let the displacement of a particular cylinder be

uj(t) - aj exp(A + iwt)t . (1)

The stability of the cylinder is determined by A, which is a function of flow
velocity U. If A < 0, the cylinder motion is damped; if A > 0, the cylinder

displacement increases with time until nonlinear effects become important.

Therefore, the critical flow velocity can be determined from the condition

A - 0.

The value of A is related to the modal damping ratio C in flow. For

cylinders oscillating in a specific mode (see Appendix),

A - Cfwf , (2)

where Wf is the oscillation frequency in flow. When the modal damping ratio

Cf is smaller than zero, the cylinders lose stability. Therefore, the flow

velocity at which a modal damping ratio becomes zero is the critical flow

velocity. Although this is the most precise method to.determine the critical

flow velocity, in practice, it has not been used because it takes much more

time to measure the modal damping ratio as a function of flow velocity. A

number of other methods that have been used to define the critical flow

velocity in laboratory and practical equipment tests are presented below.

Velocity amplitude vs. nlow Velocity

The response (acceleration, velocity, displacement, or strain) amplitude

is plotted as a function of flow velocity. This may be plotted in linear or

logarithmic scale, as shown in Fig. 1. The critical flow is determined from

the curve and defined as the flow velocity at which the cylinder experiences a
rapid increase in response. Cylinder response curves depend on cylinder

damping. Figure 1 shows typical response curves for small and large

damping. For small damping, turbulence excitation contributes to significant

cylinder oscillations and the critical flow velocity is more difficult to

determine because of the interaction between turbulence buffeting and

fluidelastic instability. On the other hand, for high values of damping at
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the critical flow velocity, cylinder response increases very rapidly with a

small increase in flow and, in general, it is not difficult to define the

critical flow velocity.

In practice, no consistent methods have been used to define the critical

flow velocity. For example, on a linear scale, Weaver and El-Kashlan (1981)

define the critical flow velocity as the point on the curve where there is a

sudden change in slope. This definition is acceptable if the change is very

sudden. It would be difficult to determine the critical flow velocity when

the change is more gradual as that given in Fig. Ia. Soper (1980) defines the

critical flow velocity as the point at which a tangent to the postcritical

response intersects the velocity axis; this is given by U1 in Figs. la and

ic. In general, this method underestimates the critical flow velocity.

In the subcritical flow velocity range, the cylinder displacement is

proportional to Ub, where b varies from about 1 to 2. A more precise

definition of the critical flow velocity is the Ucr given in Figs. la and lb,
which is defined as the intersection point of the tangent to the postcritical

response curve and a curve proportional to Ub passing point A. The difficulty

of this method is that the value of b is generally not known. An alternate

method is to extend the subcritical response curve smoothly to intersect the

tangent of the postcritical response curve at point D in Figs. La and Ic.

On a logarithmic scale, the critical flow velocity is easier to define.
In general, both response curves in the subcritical region and postcritical

region are basically straight lines. The slope in the subcritical region

varies from 1 to 2 whereas in the postcritical region it can vary from 5 to

20. The intersection of these two lines gives the critical flow velocity.

Although this method is better, it has not been used frequently (Axisa et al.
1984, Price and Paidoussis 1987).

Frequency Spectra as a Function of Flow Velocity

A group of cylinders subjected to crossflow exhibits broad-band response
in the subcritical flow regime. In the postcritical regime, a particular mode

is dominant and the frequency spectra contain a narrow-band peak (see
Fig. 2). Therefore, the critical flow velocity is defined as the flow

velocity at which the response power spectral density (PSD) changes from a

relatively broad-band spectrum to a narrow-band spectrum (Chen and

Jendrzejczyk 1986). For a heavy fluid, this method is appropriate. However,
in a light fluid, the natural frequencies of coupled modes occur in a narrow

band. There is very little difference in the spectra before and after
instability occurs.

*.plitude Distribution as a Function of Flow Velocity

Amplitude distribution as a function of flow velocity is a plot which

displays probability density vs. normalized amplitude. The probability is

determined by the ratio of the time that the cylinder response is within an
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amplitude window to the total time t Le response is sampled. A random signal

will produce the Gaussian bell-shaped probability density function and a

periodic or discrete signal will produce a saddle-shaped probability density

function. For example, Fig. 3 shows the amplitude distribution at the

subcritical and postcritical regions. It is fairly easy to distinguish the

periodic component from narrow- and wide-band response. This technique has

not been utilized in practice.

CoLerence and Phase Functions of Cylinder Response

In fluidelastic instability regimes, motion of adjacent cylinders is

highly correlated with the coherence function of the response of adjacent

cylinders close to 1.0 and the phase function is almost constant over a large

frequency range. In subcritical regimes, the coherence function is typically

less than 0.5 and the phase function is randomly distributed over the whole

frequency range. In other words, as the flow velocity increases from the

subcritical regime to the postcritical regime, the cylinder motion is

drastically changed from a random vibration to an almost periodic, determin-

istic motion. Therefore, the critical flow velocity can be determined on the

basis of the drastic changes of the coherence and phase functions. Axisa et

al. (1986) attempted to determine critical flow velocities by using coherence

functions. Their results were consistent with those based on the plots of

amplitude vs. flow velocity.

Other IMethods

Several other methods can also be used to identify the critical flow

velocity.

" Sensory Observations: Structural response amplitudes are

determined visually or auditorily. This method requires

engineering judgment and experience and, in general, does not

provide accurate determination of Ucre

* Threshold Response Amplitude vs. Flow Velocity: The critical

flow velocity is defined as the flow velocity at which the

response amplitude exceeds a certain limit. For example, Yeung

and Weaver (1983), and Minakami and Ohtomi (1987) define the

permissible limit as 2.5% of cylinder diameter. This method is

straightforward and practically convenient, but theoretically

not correct.

* Time Ristory: Structural responses in subcritical flow regimes

and postcritical regimes are different. Time history can be

used to determine the state of the system (see Fig. 3). In some

cases, spatial plots of structural responses are particularly

useful in determining the critical flow velocity.
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Depending on the circumstances, different methods can be used in

practical cases. In most cases, the vibration amplitude vs. flow velocity is

most useful. Frequently, it is sufficient to determine the critical flow

velocity. If difficulty is encountered, the amplitude distribution as a

function of flow velocity can be used for light fluid whereas the frequency

spectra as a function of flow velocity can be used for heavy fluid. Of

cou.:se, the method that uses the modal damping ratio .f is the most precise,

but the measurement of rt may be difficult.

Several complications hamper the determination of the critical flow

velocity.

9 Vortex-Induced Oscillations: For heavy fluids, vortex-induced

lock-in oscillations and fluidelastic instability may occur in

the same range of flow velocity. One or more peaks appear in

response curves in some cases. Under these circumstances,

precise determination becomes more difficult, in particular,

when lock-in oscillations and fluidelastic instability occur at

the same flow velocity. Some of these examples have been

reported by Weaver and El-Kashlan (1981).

* Hysteresis: In heavy fluids, two critical flow velocities are

present, i.e., intrinsic critical flow velocity and excited

critical flow velocity (Chen and Jendrzejczyk 1987, Hara

1987). The difference between the two limits can be as much as

30% (see Fig. 4). In most cases, the intrinsic critical flow

velocity is reported. However, some of the reported data may be

associated with the excited critical flow velocity.

Theoretically, the stability limit from the linear theory is the

intrinsic instability. Practically, if the system is subjected

to transient overflow, the excited critical flow velocity must

be considered.

From the above considerations, it is clear that the critical flow

velocity is simple to define, but, in practice, it may be difficult to

determine. The same set of data given to two different researchers may result

in two different critical flow velocities.

III. WHAT PARAMETERS SHOULD BE USED?

The three important parameters used in the stability criteria are mass

per unit length m, natural frequency f, and damping ratio C. For a group of

cylinders vibrating in flow, the definition of these three parameters varies

widely. These parameters can be defined under at least the following four

different conditions:
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(1) In Vacuum (vfvcv): System parameters are measured in

vacuum (practically, in air); the effect of the surrounding

fluid is ignored (all fluid force coefficients are equal to

zero).

(2) In Quiescent Fluid - Uncoupled Vibration (mufu,4u): System

parameters are measured for an elastic cylinder vibrating in a

fluid with the surrounding cylinders being rigid (all fluid-

force coefficients are equal to zero except ajj , aj, or Sj
and $jj).

(3) In Quiescent Fluid - Coupled Vibration (mcfcrc): System

parameters are measured for an array of cylinders vibrating in

fluid; the coupling among different cylinders that is due to

fluid is included (including fluid inertia and fluid viscous

damping).

(4) In Flow (mf,f f,cf): System parameters are measured in flow

for uncoupled and/or coupled modes; in general, they are

dependent on the flow velocity.

These parameters, under different conditions, are summarized in Table 1. It

should be noted that, in a group consisting of N identical cylinders, m, f,

and c are not a single set of numbers except in vacuum. In quiescent fluid,

for coupled or uncoupled vibration, there are 2N natural frequencies and modal

damping values, which are not necessarily the same. In flow, there are 2N

coupled modes which are functions of flow velocity. Therefore, ff and rf are

functions of flow velocity.

Questions have been raised regarding which set of parameters should be

used. In the literature, many variations have been utilized in reporting the

Table 1. Effective mass, natural frequency, and modal damping ratio
under different conditions

In quiescent fluid In flow

Uncoupled Coupled Uncoupled and/or
Parameters In vacuum vibration vibration coupled modes

Effective mass my mu Mc mf
Natural frequency fv fu c ff
Modal damping ratio S ru rc 'f
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data; these include (1) mv, fv, tv; (2) mu ,fu, Cu; (3) m, ff, Cf; (4) m ,
fv, Cf; (5) mu ,ff, Cu, etc. It is apparent that all these sets cannot be

correct theoretically and the correlations developed from the data can be

expected to be dependent on the parameter set chosen.

From theoretical and practical considerations, the set of parameters

determined in vacuum, mv, fv, and Cv, is the most convenient to use. It is
well defined and there is only one set of numbers. However, when there exists

additional damping associated with fluid effects, other than the viscous fluid

damping associated with jk' 'k, and - (see Appendix), such as

fluid damping in the gap of the tue /baffle clearance of heat exchanger tubes,
these damping effects should be properly accounted for.

Other sets of parameters can also be used. For example, mu fu, Cu can

be conveniently used for a flexible cylinder in a rigid array. If a set of

parameters is to be applied to an array of flexible cylinders, a decision must

be made on the proper set of mu, f 1, and Cu, since there are 2N sets which may
be distinct. In this case, the set corresponding to the instability mode

should be used. Some investigators use the in-flow values, mf, ff, 'f. Since

these in-flow values depend on flow velocity, it is difficult to use these

parameters. Furthermore, some investigators use m, f, and C for mixed

conditions, such as mu, f, and Cv. This practice is not convenient and may

be theoretically incorrect.

The parameters in the stability criterion can be determined on the basis

of the unsteady flow model. The stability criterion may be expressed in terms

of different sets of parameters. However, the stability criteria obtained
using different sets of parameters are different. In the literature, some of

the criteria are established without proper justification. This is another

reason for the scattering of data on stability diagrams. In evaluating

reported data, it is important to be aware of the parameters used by

particular investigators.

On the basis of the equations of motion for cylinders, Navier-Stokes

equations, and appropriate boundary conditions, it is straightforward to show

that the critical reduced flow velocity depends on the nondimensional
* *

parameters C, Re, m r, Uv, u , and vj (Chen 1986), where

Cs 
U U

~2mw Uv f D'

Re "pD , u* - , (3)
Sj U

m -- p2v -

r D2 ' j U

and u is fluid viscosity (see Appendix). Therefore,
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Ur - F(C,mr,Re,u ,v') . (4)

The critical reduced flow velocity depends on the nondimensional, subcritical

oscillation amplitudes u and v . When and vj are very small, the critical
flow velocity is the intrinsic instability flow velocity. When the effects of

u* and vj cannot be ignored, the critical flow velocity will most likely be

te excited instability flow velocity.

In most practical applications, the effect of subcritical oscillations on

the critical flow velocity can be neglected and Eq. (4) may be written as

Ur - F(c,fr,Re) . (5)

Experimental data show that the critical flow velocity does not vary

significantly with Re; therefore,

Ur - F(C ,mr) , (6)

where c and mr are the two separate parameters which characterize the

stability criteria.

IV. WHAT ARE THE INSTABILITY MECHANISMS?

Theoretically, instability occurs when

Cf - 0 . (7)

For flow velocities larger than the critical flow velocity, cf will be a

negative value and the system motion will be amplified. This can be seen from

the equation of motion of cylinders in crossflow [see Eqs. (A.7) and (A.8) in

the AppendixI

[M(Q) + [CI{J + [Kl{Q} - {G} , (8)

where [MI is the mass matrix, [C] is the damping matrix, [K] is the stiffness
matrix, {Q) is the generalized structural displacement vector, and {G} is the

excitation force vector. By premultiplying {Q) and forming the symmetric and
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antisymmetric compone its of the resulting .atrices,

[M1I - 2 ([MI + [M]T) , [M2j -- 2([MI - [MIT)

[C11 - 2 ([cI + [CIT) , [C21 m= 2([ci - [CIT) (9)

and

[K11 -. 2([K] + [KIT) , [K2 I --2([KI - [KIT)

we can separate terms and obtain the following:

{Q}T[M ]{} + {Q}T[C2I{Q} + { }T

- ({}T[M2I{Q} + {(}T[CIJ{Q} + {Z} T[KJ{Q}) + {f}T{G} . (10)

Equation (10) equates rates of work. The terms on the right side produce a

net work resultant, the magnitude of which, when integrated over a closed path

through the space {Q}, depends on the path taken. The forces corresponding to

the matrices [M21, [C1I, and [K21, appearing on the right side, are thus, by

definition, the nonconservative parts of the forces represented by [M, [CI,

and [K]. Similarly, the terms on the left side can be shown to give rise to a

zero work resultant over any closed path, and therefore, together are the sum
of the rates of work from the potential forces and the rate of change of

kinetic energy.

Different types of instability mechanisms can be determined from

Eq. (10):

" Fluid-damping-controlled Instability (Single Mode Flutter): The

dominant terms are associated with the symmetric damping matrix

[C11. Flutter arises because the fluid dynamic forces create

"negative damping," that is, a fluid force that acts in phase

with the structural velocity.

* Fluid-stiffness-controlled Instability (Coupled-Mode Flutter):

The dominant terms are associated with the antisymmetric

stiffness matrix [K21. It is called coupled-mode flutter

because a minimum of two modes are required to produce it.

All fluidelastic instabilities associated with Eq. (8) can be described

by these two mechanisms. For an instability in which fluid damping is the

controlling mechanism, we can consider a single degree of freedom. For
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example, the equation of motion in the x direction for a single elastic

cylinder surrounded by a group of rigid cylinders is (see Appendix)

2

(1 + ya)A + (2cvwv + UvYjj - U Vaj )a

+ (w2- uAc )a ) =0 . (11)

The natural frequency wf, and modal damping ratio ;f in flow are

r1_- 3 U2v.0.5

I n
wf 1 + Ysa v

(12)

=f 1 + Yc j + 1 a ) - 2 U.a.( ) )

The critical flow velocity can be determined from C - 0; i.e.,

2 2w (Cv+ a' ) w
U " Ya .(W-) .(13)vjw

This is the equation for fluid-damping-controlled instability, in which the

instability is associated with the fluid damping, usually called negative

damping. In this situation, where instability is controlled by fluid damping,
the fluid damping force leads the cylinder displacement. The dominant fluid

force coefficients are a jj and 3 j. For an elastic cylinder in an array, the
fluid damping coefficients ajj or 13 j must be positive to make the cylinder

unstable in the x or y direction.

For two elastic cylinders oscillating in the x direction, one of the

coupled modes may become unstable. Which mode becomes unstable depends on the

characteristics of the damping coefficients. For example, if both ajand

aj d+1are positive, the instability will be associated with the two cylinders

that are moving in phase. However, if a is positive and aj+1 is negative,

the two cylinders will oscillate out of phase.

For fluid-stiffness-controlled instability, the antisymmetric part of the

stiffness matrix K2 is the element that causes instability. Mathematically,

it can be stated that the antisymmetric part of stiffness makes the effective

damping less than zero.
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Consider an example of two flexible cylinders, I and 2, oscillating in

air flow. Cylinder 1 is moving only in the x direction while cylinder 2 is

moving only in the y direction. Assume that the damping values of the

cylinders are zero when the flow velocity is equal to zero. In this case the

equations of motion are

2

1 -~ U (a' A~1; + 12b2)
Y2 v22"

A 3 v w 3xvv11112 2
+ W2 a1 - 3 U2W(a'na1 + a12b2) *0

(14)
2

2- U 3vv"2 1(2' 322b2

+ W 2b2 - Y3Uv2 o(T' a + 22b2) - 0

In order to illustrate the role of fluid stiffness on modal damping, we
neglect the fluid damping associated with ali, 0129 T11, and 812, as well as
the diagonal terms of fluid stiffness coefficients a'l and 522*
Equations (14) become

2 _ 2 2~S+ a - U1 3 v va12b2 0'

(15)

b2 + b2 - 3-UwT1a - 0 .

Without the fluid stiffness coupling that is associated with a1 2 and T, the

two cylinders are uncoupled with their natural frequency equal to wv and their

modal damping equal to zero. With fluid stiffness coupling of a12 and t2 1 , it

is straightforward to show that the natural frequency and modal damping ratio

of Eqs. (15) are

(16)

f -2r 3 v 1221 v

Therefore, the fluid stiffness terms associated with a1 2 and T21 reduce the

natural frequency and contribute to damping. Note that the damping value is

positive for one mode and negative for the other. If this damping plus the



16

other structural and fluid damping is equal to zero, the system will become

unstable. Since the instability is caused by the fluid stiffness, it is

called fluid-stiffness-controlled instability.

The approach taken here is to present the integrated effect of the flow

field on cylinder oscillations. The detailed flow field around the cylinders,

its physical characteristics, and the origin of the flow variations have not

been considered. Using this approach, as long as the system becomes unstable

when cf - 0, we call it fluidelastic instability. In this sense, we ignore

the physics of the flow field. When c - 0, with either damping-controlled or

stiffness-controlled instability, other effects, associated with vortex

shedding and flow separation, may contribute 'o instability. These aspects of

the problem have not been seriously studied in the past.

V. WHAT ARE THE VALUES OF THE EXPONENT OF THE MASS-DAMPING PARANETER?

It is customary to combine the mass and damping together as a single

parameter, called the mass-damping parameter. The stability criterion

developed in the early 1970s (Connors 1970) shows that the critical flow

velocity is proportional to the half power of the mass-damping parameter.

Subsequently, other investigators (Weaver 'd Grover 1978, Chen and

Jendrzejczyk 1981) found that the exponent may vary from 0 to 1. Other

experimental data (Tanaka and Takahara 1981, Chen and Jendrzejcyzk 1983,

Weaver and Fitzpatrick 1987) show that it may vary from 0 to = depending on

the array and range of 6s (- 2wcm/pD 2 ). In practice, the exponent is
typically taken to be 0.5 although it is not necessarily correct to do so.

Experimenta

Systematic studies of the exponent a have been performed for different
tube arrays. This was accomplished by testing tube arrays with different

damping values or mass ratios or a combination of both parameters. The

exponents that are based on the experimental data are given in Table 2. The

following features are noted:

" For a tube row, square arrays, and rotated square arrays, the

exponent is 0.5 for large 6s. The only exception is the value
given by Price and Paidoussis (1987). Their value is based on a

single elastic cylinder surrounded by rigid tubes. The reason

for the deviation is not known.

" For normal and parallel triangular arrays, the exponent appears

to be less than 0.5. In particular, for the normal triangular

array, it is approximately 0.3.

" At low 6s, no conclusion can be made regarding the exponent.
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Table 2. Values of a in studies where critical flow
of the mass-damping parameter

velocity is a function

Mass-damping
Investigators Tube array parameter a

Connors (1970)

Ishigai et al.

(1973)

Tanaka (1980)

Tanaka and
Takahara (1981)

Chen (1984)

Price and Paidoussis
(1987)

Minakami and
Ohtomi (1987)

Weaver
(1978)

Weaver
(1980)

and Grover

and E1-Kashlan

Tube row,
T/D - 1.41

Tube rows,
T/D - 1.19, 1.34,
1.79, 2.14, 2.68

Tube row
T/D - 1.33

Square array
P/D - T/D = 1.33

Tube rows and
all. tube arrays

Square array
P/D - T/D - 1.5
(a single flexible
cylinder only)

Triangular array and
rotated triangular
array, P/D - 1.3

Rotated triangular
array,
P/D - 1.375

Rotated triangular
array,
P/D - 1.375

8 to 110

5 to 180

20 to 130

10 to 130

>4

5 to 1000

0.2 and 60

2 to 30

10 to 60

0.5

0.5

0.5

0.5

0.5

0.25

0.5

0.21

0.29



18

Design Guides

On the basis of available experimental data and mathematical models,

several design guidelines are proposed. The exponents to the mass-damping

parameter vary widely:

" Pettigrew et al. (1978): The exponent is 0.5 for all tube

arrays and all 6.s

" Chen (1984): The exponent depends on tube arrangements and

dm. For large ds, it is 0.5, and for small 6m, it varies from
0.05 to 0.2.

" Blevins (1984): For 0.25 < Sm, a - 0.21; for 0.25 S 6 . 0.75,

a - 0; and fr ds> 0.75, a 0.5.

" Weaver and Fitzpatrick (1987): The exponent depends on tube

arrangement and 6s. For large ds, it is 0.58 (45, 900), 0.40

(600), and 0.3 (300), and for small 6s, it is zero.

Mathematical Models

The exponents based on different mathematical models are different.

" Quasi-Static Theory: Only fluid stiffness forces are
considered. The critical flow velocity is proportional to the
half power of the mass-damping parameter.

" Quasi-Steady Theory: In the quasi-steady theory, both fluid-

damping and fluid stiffness forces are included. Fluid

stiffness coefficients are independent of Ur; therefore, for
fluid-stiffness-controlled instability, a is equal to 0.5.

Fluid damping coefficients are a function of Ur. At low 6m, no

conclusion can be made regarding the value of a.

" Unsteady Flow Theory: At low 6s, fluid force coefficients are a

function of Ur; no conclusion can be made regarding the value of

a. At large as, all fluid force coefficients are approximately
independent of Ur, and a - 0.5.

From experimental data, mathematical models, and proposed design

guidelines, some general conclusions can be made about the exponent.

" At high 6s, mass ratio and damping ratio can be combined into a

single parameter. However, at low 6 ,, they generally cannot be

combined into a single parameter.
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* At high 5s, since all fluid force coefficients are approximately

independent of Ur, the exponent to the mass-damping parameter is

0.5.

" Although some of the data show that a is less than 0.5 for

normal and parallel triangular arrays, if only these data at

high ds are considered, the exponent is close to 0.5.

VI. WHAT MATHEMATICAL [M)DELS ARE APPROPRIATE?

Many mathematical models describe the instability of cylinder arrays in
crossflow. These models can be classified according to three theories, as
summarized in Table 3 (Chen 1987). Which one is appropriate?

This is a simple question, but it is difficult to provide a simple

answer. Some general conclusions can be made.

" The unsteady flow theory includes all fluid effects; therefore,

it is applicable in all parameter ranges. Unfortunately, at

this time, it is not possible to base the prediction of the flow

field on the unsteady flow theory.

* The quasi-steady flow theory is applicable to most cases, in

particular, at high reduced flow velocity. It includes only fluid

damping and fluid stiffness.

* The quasi-static flow theory is applicable to fluid-stiffness-

controlled instability. Since fluid-damping forces are not included,
no damping-controlled instability can be predicted. A single elastic

cylinder in a rigid array will not become unstable.

For future development, the quasi-steady flow theory can be improved for

large Ur and unsteady flow must be adopted for small Ur.

In the literature, different cylinder models are used to determine the

critical flow velocity:

(1) Coupled-Mode Model: A group of flexible cylinders oscillating

in an instability mode,

(2) Single-Cylinder Model: A single, flexible cylinder within a

rigid array.

(3) Constrained-Mode Model: A group of flexible cylinders

oscillating in a prescribed mode.



Table 3. Instability characteristics for different flow theories

Characteristic Quasi-static flow theory Quasi-steady flow theory Unsteady flow theory

Fluid forces Fluid stiffness
Fluid stiffness

Fluid damping
Fluid damping
Fluid stiffness

Fluid inertia

Dependence of fluid force
coefficients on Ur

Instability mechanism
instability

Dominant terms in
Eq. (10) in controlling
instability

Minimum degrees of
freedom to cause
instability

Multiple stability-
instability regions

Effect of detuning

Special form of
instability criterion
for constrained mode

No

Fluid-stiffness-controlled
or fluid-damping-
controlled instability

K2n

controlled instability

Two

No

Important
controlled instability,
not important for fluid-
damping-controlled
instability

Ur M 60.5

Yes

Fluid-stiffness-controlled
controlled or fluid-
damping-controlled
instability

C1 for fluid-damping-
controlled instability

K2 for fluid-stiffness-

One

No

Important for stiffness-
flow theory

Ur 
.

Yes

Fluid-stiffness-

Same as quasi-steady
flow theory

One

Yes

Same as quasi-steady

Ur - C(Ur)6 0 . 5

N
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The critical flow velocity based on the coupled-mode model represents the

true value and the mode represents the mode shape. The other two models are

approximate solutions.

* Single-Cylinder Model: The coupling terms of various fluid

force components are ignored. Only the fluid-damping-controlled

type instability can be studied with the model; no fluid-

stiffness-controlled type instability can be found when this

model is used. The critical flow velocity determined from this

model will. be, in general, larger than that for a coupled-mode

model.

" Constrained-Mode odel: In this model, the motion pattern is

assumed, i.e., the instability may not actually be an insta-

bility mode. Therefore, the accuracy of the critical flow

velocity depends on how good the assumed mode is. In most

cases, the constrained-mode model will predict a higher critical

flow velocity.

In a practical heat exchanger, there are often thousands of tubes. In

such cases the coupled-mode model will involve thousands of equations. Do we
need to include all tubes in the model? The answer is obviously no. In the

practical case, the flow distributions are not uniform. Normally, only the

critical areas must be examined. Of course, it requires some effort to

identify the critical areas. Once these areas are specified, a finite group

of cylinders can be included in the coupled-mode model. For different arrays,
the following number of cylinders can be included to provide a reasonably

accurate prediction:

a Tube Rows: Three flexible cylinders in 'a rigid row of cylinders,

* Square Array: Niue cylinders within a rigid array,

s Triangular Array: Seven cylinders within a rigid array.

Although neither complete analytical solutions nor experimental data for

different tube arrays are available to compare the accuracy of the simplified

coupled-mode model, it is expected that, for practical applications, a full
coupled-mode model is not needed.

VII. CONCLUDING REMARKS

It is apparent that fluidelastic instabilities of a group of cylinders in

crossflow is one of the most debated and confusing topics on the interactions

between fluid and structure in recent history. It is fairly common that

papers published on this subject contain incorrect statements. Furthermore,

some of the incorrect statements are quoted by others working in this field.
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Under such circumstances, designers and researchers are still facing some

difficulty in resolving this problem. Designers can use available design

guides. Design guides that are more reliable are needed to establish the

critical flow velocity more precisely under different flow conditions. For

researchers, this subject will remain a problem for further studies, including

theoretical, numerical, and experimental programs.

In this report, a series of issues on this subject was discussed and

appropriate solutions were pointed out. It is not possible to provide

satisfactory answers to all questions. Nevertheless, these discussions will
provide some guidelines on the future development of the subject and avoid

unnecessary confusion and misunderstanding.

One of the issues, which has not been adequately addressed, is the

physics of fluid across an array of cylinders. We can look at this problem

from three viewpoints:

" Analytical Study: Practically no valid solutions are available

for flow field around an array of oscillating cylinders. It is
probably unlikely that an analytical prediction method can be

developed for general arrays of cylinders in crossflow at the

practical flow range, namely, moderate to high.

* Experimental Study: There are very limited studies on the flow
field associated with cylinders oscillating in crossflow.
Published data provide some insights into the physics of fluid,

but many more tests are needed.

" Numerical Study: Numerical solutions for motion-dependent fluid

forces for cylinders are not available. Although the numerical

technique is expected to be useful in certain flow ranges, it is
not expected to be applicable for the entire range of Reynolds

number.

In the past, extensive efforts have been made to obtain the resultant

effect, i.e., determination of the critical flow velocity. Very little

attention has been paid to the physics. Until the physics of flow across

cylinders is better understood, it will probably be difficult to make a

significant contribution to the prediction of critical flow velocity.
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APPENDIX: AN UNSTEADY FLOW IUODEL FOR FLUIDEIASTIC INSTABILITY
OF A GROUP OF CIRCULAR CILINDERS IN CROSSFLOW

1. Equations of option

Consider a group of N identical circular cylinders with radius R (= D/2)

subjected to crossflow as shown in Fig. A.1. The axes of the cylinders are

parallel to the z axis and flow is parallel to the x axis. The subscript j is
used to denote variables associated with cylinder j. The variables associated

with the cylinder motion in the x and y directions are flexural rigidty El,

cylinder mass per unit length m, structural damping coefficient Cs, and

displacement u1 and v . The equations of motion for cylinder j in the x and y

directions are (Chen and Jendrzejczyk 1983)

24u
EI - + CS

N

k -

N

k=i

a 4 v
EI - +

azZ

a2u
mi +

at2
N 2

k-1 p R2 ajk

a 2u

ate

[(&ojk + ajk a + ojk +

2v

+jk 
at2k

w jk 8

pU2 (a"kuk + Okvk) - 0

a
s at

a 2v

+ae

at2
N

k-1

(A.1)

2 2
9 auk avk2u

Sa t jka + tkata ta

N (-k+pkU+ jk + i 8 vk

+ I1 T k+ w at+k w jk)a
N

k-1
PU2TkUk + u k) - , (A.2)

where t is time; p is fluid density; U is flow velocity; w is circular
frequency of oscillations; ajk ,jk' rjk, and sjk are added-mass coefficients;

aMI ka ojk zjk, and 8' are fluid viscous damping at zero flow velocity;
a k, 0k, rik, and 83k are fluid damping coefficients attributed to flow; and
ajk, Qjk Tjk, and ajk are fluid stiffness coefficients. Note that fluid
damping coef icients and fluid stiffness coefficients are functions of reduced
flow velocity Ur (n U/f fD; f f is the oscillation frequency of the cylinders).
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U

(a) A GROUP OF CIRCULAR CYLINDERS

y

V.

0 g1 u.

0oX

(b) FLUID FORCE AND CYLINDER DISPLACEMENT
COMPONENTS

Fig. A.l. A group of cylinders in crossflow
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The in-vacuum variables are mass per

Cv, and natural frequency fv (= wv/2n).
calculated from the equation of motion and

from tests in vacuum practicallyy in air).

vibrating in vacuum and in fluid is 4(z);

1 21 4r (z)dz -1
0

unit length m, modal damping ratio
The values for fv and Cv can be
appropriate boundary conditons, or

The modal function of the cylinder

(A.3)

where R is the length of the cylinders. Let

uj(zt) - aj(t)*(z) ,

(A.4)

vj(z.t) - bj(t)*(z) ,

where a (t) and bj(t) are functions of time only.

and (A.2) yields

d2a da

dt2 + vd +vaj

2 N

m k-il

d ak

( jk dt2

Calculation of Eqs. (A.1)

d2b

c jk dt

Q' db 2

+ ojk k)pU
m dt mw

N
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dbk

dt
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ajk dt + jk

+ Gjkbk) - 0

db 22 N

2v~w -a-+wb +22 k& 1vwvdt +vbj fm ki

N
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- U2
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m i at
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(Tk rt2 8jk

U2  N
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N
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k-i

When the dimensionless parameters are

N
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m dt
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8ojk

Eqs. (A.5) become

N

+2 v vaj +i
k-1

wv aojkak

(1jkak + ajkbk)

22 N

+ va- U 2 w
vj 3vvk-l

N

k-i

Ca: kak + ajkbk) - 0 ,

(Tjk + %bk) + 2r vvb +
N

k-1
WV (tojkak + 8oJkbk)

(tjk k + 3jkbk)

U2
2 N

- YU w
3 vvk1 (Tjka k + Skbk) - 0

where the dot denotes differentiation with respect to t.
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N
'a + Yk

k31

(aj'k + ajkbk)

2
W

-3
3

N

k-i

+ aojkbk)

b

(A.7)

2
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+ w2b
v j

(A.8)
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2. Vibration in Quiescent Fluid

In quiescent fluid, Uv = 0,

N

k=1
(cjkj + ajkbk)

N
+ 2Cw a. +

k-l (v a ojka k + aojkbk

+ v2aj = 0

b + y
N

k=1

(A.9)

(TjkAk + %jkbk)

N
+ t b+ ~w (z' . a+8' b)
v v j k=1 v ojkk ojk k

+ vbj 0 . (A.10)

From Eqs. (A.9) and (A.10), the vibrational characteristics in quiescent fluid

can be calculated. These include uncoupled and coupled vibration.

Uncoupled Vibration: A flexible cylinder vibrates in an array of

cylinders. All coupling terms can be ignored. For example

(1 + Ya ) + (2 v + ai )wv j + wva - 0

rigid

(A.11)

From
effective

Eq. (A.11), it is easily shown that, for uncoupled vibration, the

mass mu, natural frequency wu, and damping Cu are given by

mu = m + pWR 2 j

v

(1 + Ya 0)Ycj)

i v + 0.5'

Cu + Ya )0.5'

(A.12)
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There are N natural frequencies and damping values for a group of N

cylinders. In Eqs. (A.12), if ajj and a jj are replaced by j and j
respectively, the results correspond' to the motion in the y direction.

Coupled Vibration: When all cylinders are flexible, the motions are

coupled. The effective mass, modal damping, and natural frequency can be

calculated from Eqs. (A.9) and (A.10). These parameters are denoted by mc,

fc, andCc.

Very simple results can be obtained with Eqs. (A.9) and (A.10) and the

symmetric property of the added-mass coefficients for ajk, ajkp Tjk, and

ojk. Let the added-mass matrix be

[YI - -jk jk , j,k - 1 to N , p,q - I to 2N . (A.13)
pq

jk jk

Since YTpq is symmetric, there are 2N eigenvalues which are positive numbers

and denoted by ui (p - 1 to 2N), and the corresponding normalized eigenvectors

are given by {ep}; i.e.,

[YpqJ{eq} = p{ep) . (A.14)

Let E be the modal matrix formed from the column of eigenvectors, and the

damping matrix dpq be

[D] - [dpq - [-oik_ _ioj] , j,k - 1 to N , p,q - 1 to 2N , (A.15)
Pq T, i o,

ojk i Sojk,

and

[Cpq - [E]T[DI[E] , p,q - 1 to 2N . (A.16)

The values of mc, c, and Cc are then given by

mc - m + pnR2

wv
oc * .5 r(A.17)- (1 + Y ()4.17

p

(1 + 0.5 v + 0.5 cP)
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There are 2N natural frequencies and modal damping values corresponding to the

2N coupled modes. In Eq. (A.17), the coupling terms due to fluid damping y
(p # q) have been ignored; the results are the approximate solution for moda

damping of coupled modes. Alternatively, the exact solutions of natural

frequency f. and modal damping ratio cc can be calculated directly from

Eqs. (A.9) and (A.10).

3. Vibration in Flowing Fluid

In flowing fluid, Eqs. (A.7) and (A.8) describe the motion of an array of

cylinders. From these two equations, the natural frequencies and modal

damping ratios of the system can be calculated as follows:

ff = fff(yv,Uv)

(A.18)

1f = Cf(Y,tvUv) .

The stability of a cylinder array is determined from Eqs. (A.7) and

(A.8). The nondimensional parameters in Eqs. (A.7) and (A.8) are y, Cv, Uv,

auk' 0 jk' Tjk' 3jk' ajk' a ,jk' Tojk' t 3 jk, ajk, ajk, jk'
8 jk, ajk' ak, Tjk, and (3 k. Therefore, the critical flow velocity can be
written in a functional form as

Uv = F(Y , "v w,ajk ojk 'jk jk 'ojk ojk 'Tojk 'oojk '

ajkkkkTjka9k ,ak,..kT k'sk . (A.19)

For a given array of cylinders, if fluid force coefficients are

independent of Uv, then

Ur - F(y,Cv) , (A.20)

i.e., the critical flow velocity is a function of mass ratio and damping ratio

only.

In light fluid, fluid inertia and damping associated with the quiescent

fluid can be neglected. Equations (A.7) and (A.8) can be written

jt + 2c vwv1 j + W v

2N 2
y 2 [V - 2

-3 UV k(akak + ajkbk) +wV(a.kak + a kbk)] 0 , (A.21)
.k-(
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b. + 2 w b + w2b
S v v j vj 

(A.21)

N 2 (Contd.)

YU 2  2a0
3Uv kk1Lw .kk+kk) + v kak + 8 jkk'

In light fluid, all fluid force coefficients are approximately independent of

UV and the oscillation frequency is approximately equal to wv. Then YUv plays
the same role as ; both of them contribute to system damping. The modal
damping for a particular mode can be written

C - C y U2 , (A.22)

where C depends on fluid damping and fluid stiffness coefficients.
Instability occurs if ctf= 0; i.e.,

U r 0.5
UV C

or (A.23)

2ir m 0.5

v pD

Thus, the critical flow velocity is a function of the mass-damping parameter
and proportional to its half power.
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