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NOMENCLATURE

Symbol Description
8 Viscous damplag coefficlent of a structure

Diameter of a cylinder (= 2R)

El Flexural rigidity of a cylinder

f Oscillation frequency

£, Natural frequency in vacuum

g4 Fluid force component in the x direction of the jth
cylinder

hj Fluid force component in the y direction of the jrh
cvlinder

2 Cylinder length

m Cylinder mass per unit length

N Number of cylinders in an array

P Pitch

R Radius of a cylinder (= D/2)

Re Reynolds number

t Time

T Transverse pitch

ug Displacement of the jth cylinder in the x direction

U Gap flow velocity in a tube array

Uy, Reduced flow velocity (= U/f,D)

vy Displacement of the jth cyl%nder in the y direction

X,¥,2, Cartesian coordinates

“jk'Bjk'°jk'Tjk Added-mass coefficlents

aik.Bjk.oik.r3k Fluid damping coefficients

uéjk’Bajk'aajk'Tajk Fluid viscous damping coefficients at zero flow
velocity

E;k'aik'dzE’Tgk_ Fluid stiffneas coefficlents

qéjk’séjk’oéjk’T;jk Fluid viscous damping at zero Flow velocity

Y = anzlm

Ypq Added mass matrix

4 Damping ratio

Ly Damping ratio in vacuum

Yo Eigenvalue of added-mass matrix, Ypq

vi



o Fluid density

Wy Natural frequency in radian in vacuum
‘Su55cr}2ts

i,k Cylinder number j,k (j,k = 1 to N)
n,q 1 to 2N

v Parameters measured in vacuum

vii



SOME 1SSUES CONCERNING FLUIDELASTIC INSTABILITY
OF A GROUF OF CIRCULAR CYLINDERS IN CROSSFLOW

S. S. Chen

ABSTRACT

Since the early 1970s, extensive studles of fluldelastic
instability of <circular c¢ylinders 1in crossflow have been
reported. A significant understanding of the phenomena involved
now exists. However, some confusion, misunderstanding, and
misinterpretation still remain., The objective of this report is
to discuss, on the basls of the current state of the art, a serles
of the most asked questions. Emphasis 1s placed on the
determination of the «critical flow velocity, unondimensional
parameters, stability criteria, and instability mechanisms.

I. INTRODUCTION

A group of circular cylianders submerged in crossflow can be subjected to
dynamic instability, typically referred to as fluidelastic 1instability. The
threrhold flow velocity at which cylinders undergo large oscillations 1is
called the critical flow velocity. 1If a system component Is operated at a
flow velocity above the critical value, severe damage to the component 18
likely to occur, often after a short time of operation. Therefore, operation
at a flow velocity above the critical value 1s generally not acceptable.

Since the early 19708, extensive studies of fluidelastic instability have
been reported. The studies include empirical stability criteria, mathematical
models, scale-model and full-scale evaluation tests, and design assessment. A
significant understanding of the problem now exists. However, some confusion,
misunderstanding, and misinterpretation still remain, As a matter of fact,
fluidelastic 1instability is probably one of the most debated and confusing
topics in the area of fluld-structure interactions. For example, erroneous
descriptions of the instablility mechanism have been published in journals,
these erroneous descriptions have been quoted by others working in this
subject area, and the same physical phenomena have been given different
interpretaticna,

At present, 1t is still not possible to predict the instability phenomena
from tundamental principles of fluid dynamics and the theory of elasticity,
and sume of the physics associated with the instability are not well
understocd. However, with available information, some of the unnecessary
misunderstandiag aad confusion can be avolded. The objective of this report
is to discuss several important issues on the basis of the unsteady flow
model,
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There are hundreds of publications on thils subject, A literature survey
will not be given in this report since several surveys have recently appeared
in the literature (e.g., Paidoussis 1987, Weaver and Fitzpatrick 1987]. It
should be noted that significant contributions have been made by investigators
in different countries, and progress is belng made on different aspects of the
problem.

I1. HOW SHOULD ONE DETERMINE THE CRITICAL FLO¥ VELOCITY?

The critical flow veloclity 1s defined as the flow velocity above which
cylinders undergo large oscillations. Mathematically, this {is generally
described as follows: Let the displacement of a particular cylinder be

uj(t) = ay exp(d + iwt)t . (1)

The stability of the cylinder is determined by X, which is a function of flow
velocity U, 1f X < 0, the cylinder motion 1s damped; Lf i > 0, the cylinder
displacement increases with time until nonlinear effects become important.
Therefore, the critical flow velocity can be determined from the condition
A=0,

The value of X is related to the modal damping ratio g¢ in flow. For
cylinders oscillating in a specific mode (see Appendix),

A= “Ceuwg , (2)

where wg is the oscillation frequency in flow. When the modal damping ratio
¢ s smaller than zero, the cylinders lose stability. Therefore, the flow
velocity at which a wmodal dawmping ratio becomes zero 1s the critical flow
velocity. Although this 1is the most precise method to.determine the critical
flow velocity, in practice, it has not been used because it takes much more
time to measure the modal damping ratio as a fuanction of flow veloecity., A
number of other methods that have been used to define the critical flow
velocity in laboratory and practical equipment tests are presented below.

Velocity Amplitude vs., Flow Velocity

The response (acceleration, velocity, displacement, or strain) amplitude
18 plotted as a function of flow velocity. This may be plotted in linear or
logarithmic scale, as shown in Fig. 1. The critical flow is determined from
the curve and defined as the flow velocity at which the cylinder experiences a
rapid increase 1in rzsponse, Cylinder response curves depend on cylinder
damping. Figure 1 shows typlcal response curves for small and large
damping. For small damping, turbulence excitation contributes to significant
cylinder oscillations and the critical flow wvelocity 1is more difficult to
determine because of the Iinteraction between turbulence buffeting and
fluidelastic instability. On the other hand, for high values of damping at
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the critical flow velocity, cylinder response increases very rapidly with a
small increase in flow and, 1Iin general, 1t is onot difficult to define the
critical flow velocity.

In practice, no consistent methods have been used to define the critical
flow velocity. For example, on a linear scale, Weaver and El-Kashlan (1981)
define the critical flow velocity as the point on the curve where there is a
sudden change 1in slope. This definition 1s acceptable 1f the change 1is very
sudden, It would be difficult to determine the critical flow velocity when
the change 1s more gradual as that given in Fig. la., Soper (1980) defines the
critical flow velocity as the point at which a tangent to the postcritical
response Intersects the velocity axis; this is given by U, in Figs. la and
le, 1In general, this method underestimates the critical flow velocity,

In the suberitical flow velocity range, the cylinder displacement 1is
proportional to Ub, where b varies from about 1 to 2. A more preclse
definition of the critical flow velocity is the U.,. given in Figs. la and 1b,
which 1is defined as the intersection point of the taagent to the postcritical
response curve and a curve proportional to ub passing point A. The difficulty
of this method is that the value of b is generally not known. An alternate
method is to extend the subcritical response curve smoothly to intersect the
tangent of the postcritical response curve at point D in Figs. la and lc.

On a logarithmic scale, the critical flow velocity 1s easler to define.
In general, both response curves in the subcritical region and postcritical
reglon are baslcally straight Llines. The slope in the subcritical reglon
varies from | to 2 whereas in the postcritical region it can vary from 5 to
20, The intersection of these two lines gives the critical flow wvelocity.
Although this method is better, it has not been used frequently (Axisa et al.
1984, Price and Paidoussis 1987).

Frequency Specira as a Punction of Flow Velocity

A group of cylinders subjected to crossflow exhibits broad-band response
in the subcritical flow regime. 1In the postcritical regime, a particular mode
is dominant and the frequency spectra contain a naarrow-band peak {see
Fig. 2). Therefore, the critical flow velocity is defined as the flow
velocity at which the response power spectral density (PSD) changes from a
relatively broad-band spectrum to a narrow-band spectrum (Chen and
Jendrzejczyk 1986). For a heavy fluid, this method is appropriate. However,
in a light fluid, the natural frequencies of coupled modes occur in a narrow
band. There 1is wvery little difference in the spectra before and after
instability occurs.

Amplitude Distribution as a Function of Flow Velocity

Amplitude distribution as a function of flow velocity 1g a plot which
digplays probability density vs. normalized amplitude. The probability is
determined by the ratio of the time that the cylinder response is within an
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amplitude window to the total time t i response is sampled. A random signal
will produce the Gaussian bell-shaped probability density function and a
periodic or discrete signal will produce a saddle-shaped probability density
function, For example, Fig. 3 shows the amplitude distribution at the
subcritical and postcritical regions. It 1is fairly easy to distinguish the
periodic component from narrow- and wide-band response. This technique has
not been utilized in practice.

Coberence aad Phase Functions of Cylinder Response

In fluidelastic instability regimes, motion of adjacent cylinders is
highly correlated with the coherence function of the response of adjacent
cylinders close to 1.0 and the phase function is almost constant over a large
frequency range. In subcritical regimes, the coherence function is typically
less than 0.5 and ths phase function 1is randomly distributed over the whole
frequency range. In other words, as the flow velocity increrses from the
suberitical regime to the posteritical regime, the cylinder motion is
drastically changed from a random vibration to an almost periodic, determin-
istic motion., Therefore, the critical flow velocity can be determined on the
basis of the drastic changes of the coherence and phase functlions. Axisa ot
al. (1986) attempted to determine critical flow veloclties by using coherence
functions. Their results were consistent with those based on the plots of
anplitude vs., flow velocity,

Other Methods

Several other methods can also be used to identify the critical flow
velocity.

® Sensory Observations: Structural response amplitudes are
determined wvisually or auditorily. This method requires
engineering judgment and experience and, 1a general, does not
provide accurate determination of U...

© Threshold Response Amplitude vs. Flow Velocity: The critical
flow velocity 1s defined as the flow velocity at which the
response amplitude exceeds a certaln limit. For example, Yeung
and Weaver (1983), and Minakami and Ohtomi (1987) define the
permissible limit as 2,5% of cylinder diameter, This method is
straightforward and practically convenlent, but theoretically
not correct.

¢ Time History: Structural responses in subcritical flow regimes
and postcritical regimes are different. Time history can be
used to determine the state of the system (see Fig. 3). In some

cases, spatial plots of structural responses are particularly
useful in determining the critical flow velocity.
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Depending on the circumstances, different methods can be used in
practical cases. In most cases, the vibration amplitude vs. flow velocity is
most wuseful. Frequently, it is sufficient to determine the critical flow
velocity, 1f difficulty 1is encountered, the amplitude distribution as a
function of flow velocity can be used for light fluld whereas the frequency
spectra as a function of flow velocity can be used for heavy fluid. of
cousse, the method that uses the modal damping ratio (§z is the most precise,
but the measurement of ;¢ may be difficult.

Several complications hamper the determination of the critical flow
velocity.

® Vortex—-Induced Oscillations: For heavy flulds, vortex-induced
lock-in oscillations and fluidelastic instability may occur ia
the same range of flow velocity. One or more peaks appear in
response curves 1n some cases, Under these circumstances,
precise determination becomes more difficult, in particular,
when lock-in osecillations and €luidelastic imstability occur at
the same flow velocity. Some of these examples have been
reported by Weaver and El-Xashlan (1981).

® Hysteresis: In heavy fluids, two critical flow velocities are
present, 1.,e., Intrinsic critical flow wvelocity and excited
critical flow velocity (Chen and Jendrzejczyk 1987, Hara
1987). The difference between the two limits can be as much as
302 (see Fig. 4). In most cases, the intrinsic critical flow
velocity 1is reported. However, some of the reported data may be
assoclated with the exclited cricical flow velocity.
Theoretically, the stability limit from the linear theory is the
intrinsic instability. Practically, if the system is subjected
to transient overflow, the excited critical flow velocity must
be consldered.

From the above considerations, 1t 1is clear that the critical flow
velocity 1is simple to define, but, in practice, it may be difficult to
determine. The same set of data given to two differeant researchers may result
in two different critical flow velocities.

I1I. WHAT PARAMETERS SHOULD BE USED?

The three ilmportant parameters used Iin the stability criteria are mass
per unit length m, natural frequency f, and damping ratio 7. For a group of
cylinders vibrating in flow, the definition of these three parameters varies
widely., These parameters can be defined under at least the following four
different conditions:
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{1 In Vacuum (mv,fv,gv): System parameters are measured in
vacuum (practically, in air); the effect of the surrounding
fluid is ignored (all fluid force coefficients are equal to
zero).

(2) 1In Quiescent Fluid - Uncoupled Vibration (m,,f,,;,): Systea
parameters are measured for an elastic cyliander vibrating in a
fluid with the surrounding cylinders being rigid (all fluid-
force coefficients are equal to zero except ajq “jj’ or Bjj
and Bjj).

(3) In Quiescent Fluid - Coupled Vibration (m,,f.,;.): System
parameters are measured for an array of cylinders vibrating in
fluid; cthe coupling among differeat cylinders that is due to
fluid 1s included (including fluid fnertia and fluid viscous
damping).

(4) In Flow (mf,ff,;f): System parameters are measured in flow
for uncoupled and/or coupled modes; 1in general, they are
dependent on the flow velocitv,

These parameters, under different conditions, are summarized in Table 1. It
should be noted that, in a group consisting of N identical cylinders, a, f,
and ¢ are not a single set of numbers except in vacuum. In quiescent fluid,
for coupled or uncoupled vibration, there are 2N natural frequencies and modal
damping values, which are not necessarily the same. 1In flow, there are 2N

coupled modes which are functions of flow velocity. Therefore, f; and ;4 are
functions of flow velocity.

Questions have been raised regarding which set of parameters should be
used. In the literature, many variations have been utilized in reporting the

Table 1, Effective mass, natural frequency, and modal damping ratio
under different conditions

In quiescent fluid In flow
Uncoupled Coupled Uncoupled and/or
Parameters In vacuum vibration vibration coupled wmodes
Effective mass m, m, me g
Natural frequency £, f. f¢
Modal damping ratio Gy G he L
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data; these include (1) my,, f,, Zy; (2) m,, £, 5, (3) mg, f¢, g (4) my,
fus Tf (5) m,, €¢, ¢,» etc. It is apparent that all these sets cannot be
correct theoretically and the correlations developed from the data can be
expected to be dependent on the parameter set chosen.

From theoretical and practical considerations, the set of parameters
determined in vacuwum, m,, f,, and ;,, 1s the most convenient to use. It is
well defined and there is only one set of numbers. However, when there exists
additional damping associated with fluid effects, other than the viscous fluid
damping associated with u o > and E‘jk (see Appendix), such as
fluid damping in the gap of the tgbe/bagfle cleardnce of heat exchanger tubes,
these damping effects should be properly accounted for.

Other sets of parameters can also be used. For example, m,, f,, 7, can
be conveniently used for a flexible cylinder in a rigid array. 1f a set of
parameters 1s to be applied to an array of flexible cylinders, a decision must
be made on the proper set of m,, f,, and f,, 8ince there are 2N sets which may
be distinct. In this case, the set corresponding to the instability mode
should be used. Some investigators use the In-flow values, m¢, f¢, 7¢+ Slnce
these in-flow values depend on flow velocity, it is difficult to use these
parameters. Furthermore, some investigators use m, f, and 7 for mixed
conditions, such as m,, f,, and {,. This practice is not convenient and may
be theoretically incorrect,

The parameters 1in the stabllity critericn can be determined on the basis
of the unsteady flow model. The stability ciyiterion may be expressed in terms
of different sets of parameters. However, the stability criteria obtained
using different sets of parameters are different. 1In the literature, some of
the criteria are established without proper justification. This I8 another
reason for the scattering of data on stability dlagrams. In evaluating
reported data, it {s important to be aware of the parameters used by
particular investigators.

On the basis of the equations of motion for cylinders, Navier—Stokes
equations, and appropriate boundary conditions, it is straightforward to show
that the critical reduced flow velocity depends on the nondimensional
parameters f, Re, a,, U, uj, and vj {Chen 1986), where

.G —
¢ Zna, v ED
* U, w
RB-‘&U. u-—J—v. (3)
u h| U
* v,
m =R v =3V
r pD2 i [i]

and y 1s fluid viscosity (see Appendix). Therefore,
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Uy = F(;,mr,Re,u;,v;) . (4)

The critical reduced flow velosity depends on the nondimensional, subcritical
oscillation amplitudes u.,and v.. When u and v are very small, the critical
flow velocity is the Intrinsic instability flow velocity. When the effects of

and v cannot be 1ignored, the critical flow velocity will most likely be
tge excited instability flow velocity.

In most practical applications, the effect of subcritical occillations on
the critical flow velocity can be neglected and Eq. (4) may be written as

U, = F(g,m.,Re) . (5)

Experimental data show that the critical flow velocity does not vary
significantly with Re; therefore, -

Ut‘ - F(Csmr) ’ (6)

where 7 and m, are the two separate parameters which characterize the
stability criceria.

IV. WHAT ARE THE INSTABILITY MECHANISMS?

Theoretically, instability occurs when
Cf-Oo (7)

For flow velocities larger than the critical flow velocity, g¢ will be a
negative value and the system motion will be amplified. This can be seen from
the equation of motion of cylinders in crossflow [see Eqs. (A.7) and (A.8) in
the Appendix]

MI{Q + [CHY + [K{Q = (&} , (8)

where [M] is the mass matrix, [C] is the damping matrix, [K] is the stiffness
matrix, {Q} is the generalized structural displacement vector, and {G} is the
excitation force vector. By premultiplying {Q} and forming the symmetric and
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antisymmetric componeits of thie resulting uatrices,
1 T 1 T
M) =5 (8] + 7)), (M) =5 (M) - M7,

[e,1 =5 (el + (c1™) , ic,i =5 (tel - 1c1”) , (9
and

1 T 1 T
(K} =5 (R} + (K)T) ,  (K,] =5 (IK] - [K]7),
we can separate terms and obtain the following:

(9 T 1@+ (BT, ¢ {8 TR Y
= (18T, 1@ + (8 Tie 1Y+ (BT He) + (e . (10)

Equation (10) equates rates of work, The terms on the right side produce a
net work resultaat, the magnitude of which, when iategrated over a closed path
through the space {Q}, depends on the path taken. The forces corresponding to
the matrices [MZI' [Cil, and [Kzl, appearing on the right side, are thus, by
definition, the nonconservative parts of the forces represented by [M], [C],
and [K]. Similarly, the terms on the left side can be shown to give rise to a
zero work resultant over any closed path, and therefore, together are the sum
of the rates of work from the potential forces and the rate of change of
kinetic energy.

Different types of 1instability mechanisms can be determined from
Eq. (10):

® Fluid-damping-controlled Instability (Single Mode Flutter): The
dominant terms are associated with the symmetric damping matrix
[Cyjl. Flutter arises because the fluid dynamic forces create
"negative damping,” that 18, a fluid force that acts in phase
with the structural velocity.

e Fluid-stiffness-controlled Instability (Coupled-Mode Flutter):
The dominant terms are assoclated with the antisymmetric
stiffness matrix [Kp]. It is called coupled-mode flutter
because a minimum of two modes are required to produce it,

All fluidelastic instabilities associated with Eq. (8) can be described
by these two mechanisms. For an instability in which fluid damping 1s the
controlling mechanism, we can consider a single degree of freedom. For



14

example, the equation of wmotion in the x direction for a single elastic
cylinder surrounded by a group of rigid cylinders is (see Appendix) .

2
w
' Y g2V oy
(1 + Yajj)aj + [chmv + Y “3 U, o ajjJaj
2y 22. )
+ (wv “3 Uvmvajj)aj 0. (11)

The natural frequency w¢, and modal damping ratio g¢ in flow are

Y .- \0.3
1 “3 Uvujj
W, = w
f 1+ . ’
Yan v
(12)
te * e |(c. + 1 ar, ) - X vkal (f‘i) AN
£ 1+ Yujj v 2 Tolj 21'3 v ij we' |
The critical flow velocity can be determined from g¢ = 0; i.e.,
3 1
2 (e, *yagys) wg
UV = YG' (w—) . (13)
B v

This 1is the equation for fluid-damping-controlled instability, in which the
instability is assoclated with the fluid damping, usually called negative
damping. In this situation, where instability is controlled by fluid damping,
the fluid damping force leads the cylinder displacement. The dominant £luid
force coefficlents are g}; and ﬂjj. For an elaatic cylinder in an array, the

fluid damping coefficients a'j or Bjj must be positive to make the cylinder
unstable in the x or y direction,.

For two elastic cylinders oscillating in the x direction, one of the
coupled modes may become unstable. Which mode becomes unstable depends on the
characteristics of the damping coefficlents. For example, if both a j and
aa’j+1 are positive, the instability will be associated with the two cylinders
t

at are moving in phase. However, if aj is positive and ay,j+1 is negative,
the two cylinders will oscillate out of pﬂase.

For fluid-stiffness—controlled instability, the antisymmetric part of the
stiffness matrix K, 1s the element that causes instability. Mathematically,

it can be stated that the antisymmetric part of stiffness makes the effective
damping leas than zero.
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Consider an example of two flexible cylinders, 1 and 2, oscillating in
alr flow. Cylinder 1 is moving only in the x direction while cylinder 2 1is
moving only 1in the y direction. Assume that the damping values of the
cylinders are zero when the flow velocity is equal to zero. In this case the
equations of mction are

[F]
. Y 2_"_ r 2 " R
2173 Uv(m )("11""1 * 912%))

2 i
*oway - 3 " 0 (“1131 *ayaby) =

(14)
b -Y_u 2 v (v .2, +8'.5.)
2 3 2171 2272

+ wb, - = Un('r a

w273 213] * B3abp) = 0 .

In order to lllustrate the role of fluld stiffness on modal damping, we
neglect the fluid damping assoclated with a{;, aj;, v}, and Bd,, as well as
the diagonal terms of fluid stiffness coefficients aj; and B3,.
Equations (l4) become

2 2,

. 2 _ Y.
al + mval 3 U W 012

T

b, =0 ,

2

(15)

Iy W2 Y 2 2 .
b2 * ”va 1T3 Uvmvr2[al 0.

Without the fluid stiffness coupling that is associated with ciz and 73, the
two cylinders are uncoupled with their natural frequency equal to w, and their
modal damping equal to zero. With fluid stiffness coupling of o], and 13, it
is straightforward to show that the natural frequency and modal damping ratio
of EBqs. (15) are

D Vl - ;? .

(16)

Therefore, the fluid stiffness terms associated with 032 and t3; reduce the
natural frequency and contribute to damping. Note that the damping value is
positive for one mode and negative for the other, If this damping plus the
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other sgtructural and fluid damping 1is equal to zero, the aystem will become
unstable, Since the 1instability is caused by the fluid stiffness, it 1s
called fluid-stiffness-controlled instability.

The approach taken here 1s to present the integrated effect of the flow
field on cylinder oscillations. The detailed flow field around the cylinders,
its physical characteristics, and the origin of the flow variations have not
been considered. Using this approach, as long as the system becomes unstable
when ¢¢ = 0, we call it fluidelastic 1instability. TIn this sense, we ignore
the physics of the flow field. When ¢ = 0, with elther damping-controlled or
stiffness-controlled instability, other effects, assoclated with vortex
shedding and flow separation, may contribute ‘o iastability. These aspects of
the problem have not been seriously studied in the past.

V. WHAT ARE THE VALUES OF THE EXPONENT OF THE MASS—DAMPING PARAMETER?

It 1s customary to combine the mass and damping together as a single
parameter, called the mass-damping parameter. The satabllity criterion
developed in the early 1970s (Connors 1970) shows that the critical flow
velocity 1s proportional to the half power of the mass-damping parameter.
Subsequently, other 1investigators (Weaver \d Grover 1978, Chen and
Jendrzejczyk 1981l) found that the exponent may vary from 0 to 1. Other
experimental dara (Tanaka and Takahara 1981, Chen and Jendrzejcyzk 1983,
Weaver and Fitzpatrick 1987) show that it may vary from 0 to = depending on
the array aad range of &g (= Zucm/pDz). In practice, the exponent is
typlcally taken to be 0,5 althougii it is not necessarlily correct to do so.

Experimental Data

Systematlc studies of the exponent o have been performed for different
tube arrays. This was accomplished by testing tube arrays with different
damping values or mass ratins or a combination of both parameters. The
exponents that are based on the experimental data are given in Table 2. The
following features are noted:

® For a tube row, square arrays, and rotated square arrays, the
exponent is 0.5 for large §5. The only exception is the value
given by Price and Paidoussis (1987). Their value is based on a
singla elastic cylinder surrounded by rigid tubes. The reason
for the deviation 1s not knowm.

® For normal and parallel triangular arrays, the exponent appears
to be less than 0.%. In particular, for the normal triangular

array, it is approximately 0.3.

® At low §g, n0 conclusion can be made regarding the exponent.
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Table 2. Values of a in studies where critical flow velocity is a function
of the mass-damping parameter

Mass-dampling

Investigators Tube array parameter a
Connors (1970) Tube row, 8 to 110 0.5
T/D = 1.41]
Ishigal et al, Tube rows, 5 to 180 0.5
(1973) T/D = 1.19, 1,34,
1.79, 2.14, 2,68
Tanaka (1980) Tube row 20 to 130 0.5
T/D = 1.33
Tanaka and Square array 10 to 130 0.5
Takahara (1981) P/D= T/D = 1.33
Chen (1984) Tube rows and > 4 0.5
all tube arrays
Price aad Paidoussis Square array 5 to 1000 0.25
(1987) P/D = T/D = 1.5
(a single flexible
cylinder only)
Minakami and Triangular array and 0.2 and 60 0.5
Ohtomi (1987) rotated triangular
array, P/D = 1.3
Weaver and Grover Rotated triangular 2 to 30 0.21
(1978) array,
P/D & 1,375
Weaver and El-Kashlan Rotated trlangular 10 to 60 0.29

(1980)

array,
P/D = 1.375
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Design Guides

On the basis of available experimental data and mathematical wmodels,
geveral design guidelines are proposed. The exponents to the mass-damping
parameter vary widely:

® Pettigrew et al. (1978): The exponent is 0.5 for all tube
arrays and all §..

® Chen (1984): The exponent depends on tube arrangsments and
g+ For large 64, it is 0.5, and for small §
0.05 to 0.2,

ms LT varies from

® Blevins {(1984): For 0.25 ¢ Spy a = 0.21; for 0.25 £ 84 2 0.75,
a = 0; and for §g > 0.75, a = 0.5.

® Weaver and Fitzpatrick (1987): The exponent depends on tube
arrangement and §4. For large &g, it is 0.58 (45°, 90°), 0.40
(60°), and 0.3 (30°), and for small 64, it is zero.

Mathematical Models

The exponents based on different wathematical models are different.

® Quasi-Static Theory: Only fluid stiffness forces are
considered. The critical flow wvelocity 1is proportional to the
half power of the mass-damping parameter.

® (Quasi-Steady Theory: In the quasi-steady theory, bLoth fluld-
damping and fluid stiffneas forces are included. Fluid
gtiffness coefficlents are independent of Uy; therefore, for
fluld-stiffness-controlled {instablility, a 1Is equal to O0.5.
Fluid damping coefficlents are a function of U.. At low § , no
conclusion can be made regarding the value of a.

® Unsteady Flow Theory: At low §5, fluid force coefficlents are a
function of U,; no conclusion can be made regarding the value of
a. At large &, all fluld force coefficlents are approximately
independent of U,, and a = 0.5.

From experimental data, mathematical wmodels, and proposed design
guidelines, some general conclusions can be made about the exponent.

® At high § , mass ratio and damping ratio can be combined into a
single parameter. However, at low §, they generally cannot be
combined into a single parameter.
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At high §., since all fluld force coefficients are approximately
independent of U,, the exponent to the mass-damping parameter is
0.5.

Although some of the data show that o {is less than 0.5 for

normal and parallel triangular arrays, if only these data at
high 8§, are considered, the exponent is close to 0.5.

VI. WHAT MATHEMATICAL MODELS ARE APPROPRIATE?

Many mathewmatical models describe the instability of cylinder arrays in

crossflo
summariz

Thi
answer,

W, These models can be classified according to three theories, as
ed in Table 3 (Chen 1987), Which one is appropriate?

8 1s a simple question, but it is difficult to provide a simple
Some general conclusions can be made.

The unsteady flow theory includes all fluld effects; therefore,
it 1is applicable 1in all parameter ranges. Unfortunately, at
this time, it is not possible to base the prediction of the flow
ield on the unsteady flow theory.

The quasi-steady flow theory is applicable to most cases, 1n
particular, at high reduced flow velocity. Tt includes only fluid
damping and fluid stiffness.

The quasi-static flow theory 18 applicable to fluid-stiffness-
controlled fnstability. Since fluid—-damping forces are not incluced,
no damping—-controlled instability can be predicted. A single elastic
cylinder in a rigid array will not become unstable.

For future development, the quasi-steady flow theory can be improved for

large U,

In

and unsteady flow must be adopted for small U..

the literature, different cylinder models are used to determine the

critical flow velocity:

(1)

(2)

(3)

Coupled-Mode Model: A group of flexible cylinders oscillating
in an instability mode,

Single-Cylinder Model: A single, flexible cylinder within a
rigld array.

Constrained-Mode Model: A group of flexible cylinders
oscillating in a prescribed mode.



Table 3.

Instabllity characteristics for different flow theories

Characteristic

Quasi-static flow theory

Quasi-steady flow theory

Unsteady flow theory

Fluid forces

Dependence of fluid force
coefficients on U,

Instability mechanism
instability

Dominant terms in
Eq. (10) in controlling
instability

Minimum degrees of
freedom to cause
instability

Multiple stability-
instability regions

Effect of detuning

Special form of
instability criterion
for constrained mode

Fluid stiffness
Fluid stiffness

No

Fluid-stiffness-controlled
or fluid-damping-
controlled instability

K2

controlled inmstability

Two

No

Important

controlled instabiliity,
not important for fluid-
damping—-controlled
instability

0.5
U, = 8§

Fluid damping
Fluid damping
Fluid stiffness

Yes
Fluid-stiffness—controlled
controlled or fluild-
damping-controlled
instability

¢ for fluid-damping-

controlled instablility
Ky for fluid-stiffness-

One

No

Important for stiffress-
flow theory

0.5
U! = §

Fluld 1nertia
Yes

Fluid-stiffness-

Same as quasi-steady
flow theory

One

Yes

Same as quasi-steady

0c
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The critical flow velocity based on the coupled-mode model represents the
true value and the mode represents the mode shape, The other two models are
approximate solutions.

® Single-Cylinder Model: The coupling terms of various fluid
force components are ignored, Only the fluid-damping-controlled
type instabllity can be studied with the model; no fluid-
stiffness-controlled type instability can be found when this
model is used. The critical flow velocity determined from this
model will be, 1in general, larger than that for a coupled-mode
model.

» Constralned-Mode dodel: 1n this model, the motion pattern 1s
assumed, i.e., the 1instability may not actually be an insta-
bility mode. Therefore, Lhe accuracy of the critical flow
velocity depends on how good the assumed mode 1is, In most
cases, the constrained-mode model will predict a higher critical
flow velocity,

In a practical heat exchanger, there are often thousands of tubes. 1In
such cases the coupled—mode model will involve thousands of equations. Do we
need to include all tubes in the model? The answer is obviously no. 1In the
practical case, the flow distributions are not uniform. Normally, only the
critical areas must be examined. 0f course, it requires som= effort to
identify the critical areas. Once these areas are specified, a finite group
of cylinders can be included in the coupled-mode wodel. For different arrays,
the following number of cylinders can be included to provide a reasonably
accurate prediction:

® Tube Rows: Three flexible cylinders in a rigid row of cylinders,
9 Square Array: Nlue cylinders within a rigid array,
® Triangular Array: Seven cylinders within a rigid array.

Although neither complate analytical solutlons nor experimental data for
differeat tube arrays are available to compare the accuracy of the simplified
coupled-mode model, it {s expected that, for practical applications, a full
coupled-mode model is not needed.

ViI. CONCLUDING REMARKS

It is apparent that fluidelastic instabilities of a group of cylinders in
crossflow 1s one of the most debated and confusing topics on the interactions
between fluid and structure 1in recent history. It is fairly common that
papers published on this subject contain incorrect statements. Furthermore,
some of the incorrect statements are quoted by others working in this field.
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Under such cilrcumstances, designers and researchers are still facing some
difficulty 1in resolving this problem, Designers can use available design
guides, Design guides that are more reliable are needed to establish the
critical flow velocity more precisely uader different flow condltions. For
researchers, this subject will remaln a problem for furtiher studies, including
theoretical, numerical, and experimental programs.

In this report, a series of issues on this subject was discussed and
appropriate solutions were polnted out. It 1s not possible to provide
satisfactory answers to all questions. Nevertheless, these discussions will
provide some guldelines on the future development of the subject and avoid
unnecessary confusion and misunderstanding.

One of the 1ssues, which has not been adequately addressed, 1is the
paysics of fluid across an array of cylinders. We can look at this problem
from three viewpoints:

® Analytical Study: Practically no valid solutions are available
for flow field around an array of oscillating cylinders. It is
probably unlikely that an analytical prediction method can be
developed for gemeral arrays of cylinders in crossflow at the
practical flow range, namely, moderate to high.

® Experimental Study: There are very limited studies on the flow
field assoclated with cylinders oscillating In crossflow.
Published data provide some insights into the physics of fluid,
but many more tests are needed,

® Numerical Study: Numerical solutions for motion-dependent fluid
forces for cylinders are not available. Although the numerical
technique is expected to be useful in certaln flow ranges, it is
not expected to be applicable for the entire range of Reynolds
number,

In the past, extenslive efforts have been made to obtain the resultant
effect, 1i.e., deterrination of the critical flow velocity. Very Llittle
attention has been paild to the physics. Until the physics of flow across
cylinders 1is better understood, 1t will probably be difficult to make a
gignificant contribution to the prediction of critical flow velocity.
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APPENDIX: AN UNSTEADY FLOW MODEL FOR FLUIDELASTIC INSTABILITY
OF A GROUP OF CIRCULAR CYLINDERS IN CROSSFLOW

1. Equations of Motion

Consider a group of N identical circular cylinders with radius R (= D/2)
subjected to crossflow as shown in Fig., A.l. The axes of the cylinders are
parallel to the z axis and flow is parallel to the x axis. The subscript j is
used to denote variables associated with cylinder j. The varlables associated
with the cylinder motion in the x and y directions are flexural rigidty EI,
cylinder mass per unit length m, structural damping coefficient Cg, and
displacement uy; and v.. The equations of motion for cylinder j in the x and y
directions are {(Chen and Jeadrzejczyk 1983)

au Ju a‘u N 37u 3%V
3 3 h] " nl K
EI +C —~+m + ¥ pnRY(a +o )
3z s 3t 3t kel Ik 5.2 Jk 5,2
N 2 | 2 av
- pU Ux - plU k
¥ k§1 (Cagyie + 5 ajid 55+ (954 ) 5
N
+ kgl pU (ajkuk + ojk k) =0, (A.1)
a“vj avj Bzvj z [ 32u 32vk]
EI . + C + m + prR {1 + 8
3z° s 3t at? k=l 7 Ik 5¢2
N 42 av,
' —
* kzl (T + 5 jk] at (Bojk e Bjk] 3t
N

where t 18 time; p £s fluid density; U is flow wvelocity; w 18 circular
frequency of oscillations, Tjks agk. Tiks and Bjk are added-mass coefficients;
qjk' oojk’ Tojk, and B o ate luid viscous damping at zero flow velocity;
alk' oik' Tjk, and Bjk are fleid damping coefficients attributed to flow; and
ajkr Ojks Tiko and By, are fluid stiffness coefficlents. Note that fluid
damping coefiicients and fluid stiffness coefficieats are functions of reduced
flow velocity Uy, (= U/fgD; f¢ 18 the oscillation frequency of the cylinders).
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(0) A GROUP OF CIRCULAR CYLINDERS

B
y ?hj

O L

(b) FLUID FORCE AND CYLINDER DISPLACEMENT
COMPONENTS

Fig. A.1l. A group of cylinders in crossflow
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The in-vacuum variables are wmass per unit length m, modal damping ratio
gy» and natural frequency f, (= mvlﬁn). The values for f,, and g, can be
calculated from the equation of motion and appropriate boundary conditons, or
from tests in vacuum {prictically in air). The modal function of the cylinder

vibrating in vacuum and in fluid is ¢(z);
2
%-f wz(z)dz =1 ,
o

where £ 1s the length of the cylinders. Let

uy(z,t) = aj(EN(z) ,

vj(z,t) = bj(t)w(Z) R

(A.3)

(A.4)

vhere aé(t) and b (t) are functions of time only. Calculation of Eqs. (A.l)

and (A.2) ylelds
dzaj day 5, o2 )r:a : ata, dzbk)
—="t 2L w ==+ Bt a, —5 +to., —
dtz v v dt v ) L I Jk dtz jk dtz
' '’
+ g (“_01_‘5?.8_‘54.001“ d_b.‘_‘) pu’ ; (a! ia_‘_‘.H,- ii‘_‘.)
ey e m 4t e 4k dt jk at
pU2 N
- Z (afidy * o5hy) =
2 2
2 N d d"b
___JL + 2 __;l prR k
w + w, b + l T + B ]
dt v v dt v) m o jk dt2 jk dtz
2
N d db 2 N d db
+ z Ojk ak + k) - pU z (T' ak 8 k)
kel ‘'m 3t m 3t Wy Jk dt jk dt
UZ N

arw k§1 (1i8y + Byby) = 0

When the dimensionless parameters are

(A.5)
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o . [¢]
; =a ’ b ==,
o, ojk v va
:) k_ - prz
m, %ojk * n °
{A.6)
Togk _ _,
w Tojk. !
Bojk _
o, ojk ’
Eqs. (A.5) becouwe
N
'aj+w{k=):.l(ajké +ojkk)+2;ma+zw ojkak+ajkk)
LAY ey
- = Ul— (a'.a, +3'. b )
“3 v o2y jkk jkk
N
Y 2.2
+ wvaj 3 Uvmv kz (a’ ka'k + Ojk k) (A.7)
- N " . N .
L
by + ¥ kzl (T¥e * Byely? + Zo0by + 13;1 e (Vi3 ¥ Bojk B
Y 2 3 N . .
W) I Gt 8hd)
% k=1
N
2 - Y__ 2 2 v " -
+ mvbj 1'3 Uvmv kﬁl (Tjka'k + Bjkbk) o, (A.8)

where the dot denotes differentiation with respect to t.
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2. Vibration in Quiescent Fluid

In quiescent fluid, U, = O,

N

A, + A, +g,.b
3 L Gyt
L] N L] [ ]
] ]
+ chmvaj + kgl mv(aojkak + oojkbk)
+ wlay = 0 (A.9)
ve] ' .
- N -
b, + a + b
N

[ ] N . 1 »
+ ngmvbj + kzl wv(rojkak + Bojkbk)
+ 2 i
wvbj =0, i (A. 10)

From Eqs. (A.9) and (A.10), the vibrational characteristics in quiescent fluid
can be calculated. These include uncoupled and coupled vibration.

Uncoupled Vibration: A flexible cylinder vibrates in an array of rigid
cylinders. All coupling terms can be ignored. For example

)mva toa, =0. (A.11)

(1 +ya,)3, + (% +a] 5

13 3

From Eq. (A.1l), it 1is easily shown that, for uncoupled vibration, the
effective mass m,, natural frequency w,, and damping {, are given by

m,

- 2
u m+p1'rRajj,

w
v

“u T 0.5 ° (A.12)
(1 + Yajj)

1
. Sy + O.Saojj
)0.5

%u

{1l + Yujj
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There are N natural frequenciea and damping wvalues for a group of N
cylinders. In Eqs., (A,12), if ay and uo are replaced by 8_1 and Bojj
respectively, the results correspon to the mtion in the y direction.

Coupled Vibration: When all cylinders are flexible, the motions are
coupled. The effective mass, modal damping, and natural frequency can be
calculated from Eqs. (A.9) and (A.10). These parameters are denoted by m,,
f.» and g,

Very simple results can be obtained with Eqs. (A.9) and (A.10) and the
symmetric property of the added-mass coefficients for 2jkr Tk Tiko and
Bjk' Let the added—-mass matrix be

[y | =j-2% 2 3% , j,k=1toN, p,q=1¢to 2N, (A.13)

Since vy iz symmetric, there are 2N eigenvalues which are positive numbers
and denoted by yu, (p = 1 to 2N), and the corresponding normalized eigenvectors
are given by {ep ; 1.e.,

[qu]{eq} = uP{ep} - (A'll‘)

Let E be the modal matrix formed from the column of eigenvectors, and the

damping matrix dpq be
ol K "o’ Kk
D) = [ 1 = [P35 00% ) gk et 0N, paelroaN,  (A15)
Toik 1 Pojk
and
[cpq) = (EITIDI(E] ,  pyg =1 to 2N. (A.16)

The values of m,, f., and ¢, are then given by

m, = m + pﬂRzup s

Yy

o = . (A.17)
c (1+Yup)0°5

|
4 075 (cv + 0.5 cpp) .

(1 + Yup)
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There are 2N natural frequencies and modal damping values corresponding to the
2N coupled modes. In Eq. (A.17), the coupling terms due to fluid damping Yp

(p # qQ) have been ignored; the results are the approximate solution for moda?
damping of coupled modes. Alternatively, the exact soclutions of natural
frequency f, and modal damping ratio 7. can be calculated directly from
Egs. (A.9) and (A.1Q).

3. Vibration in Flowing Fluid

In flowing fluid, Eqs. (A.7) and (A.8) describe the motion of an array of
cylinders. From these two equations, the natural frequencles and modal
damping ratios of the system can be calculated as follows:

{A.18)
e = 0(YsgyUy) &

The stability of a cylinder array is determined from Eqs. (A.7) and
(A.8). The nondimensional parameters in Eqs. (A.7) and (A.8) are vy, g, Uy,

ks I3k Tike Bk agjks Jojkr Tojkr Bojkr  %Jk»  Fjk»  Tik»
Bjk’ ugk, o}k, Tﬁk: and ng. Therefore, the critical flow velocity can be
written in a functional form as

= ‘ ! ' ' '
Y F(Y’Cv’"v/m'ajk’ojk’rjk’ajk'Jojk’oojk'rojk’sojk'

“;]k’ggk’%k’sgik’agk’cgk’rgk’sgk) . (A.19)

For a glven array of cyliaders, if fluid force coefficients are
independent of U,, then

U = F(rugy) (4.20)

i.e., the critical flow velocity is a function of mass ratio and damping ratio
only.

In light fluid, fluid {nertia and damping associated with the quiescent
fluid can be neglected. Equations (A.7) and (A.8) can be written

. . 2
aj + chmvaj + wvaj
Y 2 N mi . . 2
"% L Gt ogd e t bl =0, A2
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) . )
b. + 2 wb, +uw’d
v
. vy . (A.21)
Y 2 N w3 . . 2 (Contd.)
- —_ 1 1 A " " -
3% kgl [ el * Bkb * ey (a8l = 0

In light fluid, all fluid force coefficlents are approximately independent of

2
U, and the oscillation frequency is approximately equal to w,. Then YUy plays
the same role as %,; both of them contribute to system damping. The modal

damping for a particular mode can be written
- _ 2
tg =gy - Cy U, , (A.22)

where C depends on fluld damping and fluid stiffness coefficients,
Instability occurs if ¢ = 0; i.e.,

1,5y 0.5
b = ¢ (3
or (A.23)
tnz m 0+
U v
fo® (—37) .
v oD

Thus, the critical flow velocity is a function of the mass—-damping parameter
and proportional to its half power.
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