
Distribution Category:
Mathematics and Computers

(UC-32)

ANL-86-2

ANL--86-2

DE86 007265

ARGONNE NATIONAL LABORATORY
9700 South Cass Avenue
Argonne, Illinois 60439

LINEAR ALGEBRA ON HIGH-PERFORMANCE COMPUTERS

co to 2
o , o vu>

u u C)

cc co *-o'
to;" tom

. 6.4 C

" 0 .+

c C7 0 0 Cu

c ec

P Cu o CuCie z UC o w 2V
0 0 Cu

' oo. 2

J. J. Dongarra and D. C. Sorensen

Mathematics and Computer Science Division

January 1986

* This work was supported in part by the Applied Mathematical Sciences subprogram.of the Office of
Energy Research, U.S. Department of Energy under Contracts W-31-109-Eng-38 and DE-AC05-
840R21400.

I
Jl

A major purpose of the Techni-
cal Information Center is to provide
the broadest dissemination possi-
ble of information contained in
DOE's Research and Development
Reports to business, industry, the
academic community, and federal,
state and local governments.

Although a small portion of this
report is not reproducible, it is
being made available to expedite
the availability of information on the
research discussed herein.

CONTENTS

Abstract 1

1. Introduction 1

2. Advanced Computer Architectures 2

3. Performance of Software for Dense Matrix Factorization 7

4. Structure of the Algorithms 11

4.1 The Modules 12
4.2 Recasting LINPACK Subroutines 13
4.3 Restructuring EISPACK Subroutines 16

5. Sparsity and Structured Problems 18

5.1 Banded Systems 19

5.1.1 Stage 1 20
5.1.2 Stage 2 20
5.1.3 Stage 3 21
5.1.4 Stage 4 22

5.2 QR Factorization of a Sparse Matrix 23
5.3 Eigensystems of Triadiagonal Matrices 29

5.3.1 Partitioning by Rank-One Tearing 29
5.3.2 The Updating Probeem 30
5.3.3 The Parallel Algorithm 34

6. Implementation and Library Issues 36

7. Conclusions 37

References 39

iii

List of Figures

Fig. 4.1 LU Data References 13

Fig. 5.2.1 Zeroing Pattern of the Givens Method 24

Fig. 5.2.2 Partially Reduced Matrix 25

Fig. 5.2.3 Pipelined Row Reduction 26

Fig. 5.2.4 R as a Segmented Pipe 26

Fig. 5.2.5 Sparse Data Structure of R 27

Fig. 5.2.6 RNZ as a Segmented Pipe 28

Fig. 5.3.1 The Secular Equation 31

Fig. 5.3.2 The Computational Tree 35

Fig. 6.1 Library Scheduler 38

List of Tables

Table 1 High-Performance Computers Showing Different Levels of Parallelism 3

Table 2 Execution Rates on a CRAY-1 5

Table 3 Solving a System of Linear Equations with LINPACK in Full Precision 9

Table 4 Solving a System of Linear Equations Using the Vector Unrolling
Technique 10

Table 5 Comparison of EISPACK to the Matrix-Vector Version 19

Table 6 Results of Algorithm on Random Matrix 33

iv

Linear Algebra on High-Performance Computers*

J. J. Dongarra and D. C. Sorensen

ABSTRACT

This paper surveys work recently done at Argonne National Laboratory in

an attempt to discover ways to construct numerical software for high-

performance computers. The numerical algorithms are taken from several areas

of numerical linear algebra. We discuss certain architectural features of

advanced-computer architectures that will affect the design of algorithms. The

technique of restructuring algorithms in terms of certain modules is reviewed.

This technique has proved successful in obtaining a high level of transportabil-

ity without severe loss of performance on a wide variety of both vector and

parallel computers.

The module technique is demonstrably effective for dense linear algebra

problems. However, in the case of sparse and structured problems it may be

difficult to identify general modules that will be as effective. New algorithms
have been devised for certain problems in this category. We present examples

in three important areas: banded systems, sparse QR factorization, and sym-

metric eigenvalue problems.

1. Introduction

This paper surveys work recently done at Argonne National Laboratory in an attempt to

discover ways to construct numerical software for high-performance computers. We have

focused on numerical linear algebra problems involving dense matrices since the algorithms for

these problems are well understood in most cases. This focus has allowed us to concentrate on

utilization of the new hardware rather than on development of new algorithms for many of the

standard problems. Nevertheless, there are instances when efficient use of the architecture begs

for new algorithms, and we give examples of such instances here.

Within the last ten years many who work on the development of numerical algorithms

have come to realize the need to get directly involved in the software development process.

Issues such as robustness, ease of use, and portability are now standard in any discussion of

numerical algorithm design and implementation. New and exotic architectures are evolving that

*Work supported in part by the Applied Mathematical Sciences subprogram of the Office of Energy Research, U.S.

Department of Energy under Contracts W-31-109-Eng-38 and DE-AC05-840R21400.

-2-

depend on the technology of concurrent processing, shared memory, pipelining, and vector

components to increase performance capabilities. Within this new computing environment the

portability issue, in particular, can be very challenging. To exploit these new capabilities, one

feels compelled to structure algorithms that are tuned to particular hardware features, yet the

sheer number of different machines appearing makes this approach intractable. It is tempting to
assume that an unavoidable by-product of portability will be an unacceptable degradation in

performance on any specific machine architecture. Nevertheless, we contend that it is possible

to achieve a reasonable fraction of the performance on a wide variety of different architectures

through the use of certain programming constructs.

Complete portability is an impossible goal at this time, but a level of transportability can
be achieved through the isolation of machine-dependent code within certain modules. Such an

approach is essential, in our view, even to begin to address the portability problem. To illus-

trate the immensity of the problem, we list in Table I thirty-three commercial high-
performance computers. Most of these machines are already in use; all are projected to be

available in 1986. They are categorized here with respect to the levels of parallelism they

exploit and with respect to their memory access schemes. It is particularly noteworthy that

each of the parallel machines offers different synchronization schemes with different software

primitives used to invoke synchronization.

2. Advanced Computer Architectures

The machines listed above are representative implementations of advanced computer

architectures. Such architectures involve various aspects of vector, parallel, and parallel-vector

capabilities. These notions and their implications on the design of software are discussed
briefly in this section. We begin with the most basic: vector computers.

The current generation of vector computers exploit several advanced concepts to enhance

their performance over conventional computers:

" Fast cycle time,

" Vector instructions to reduce the number of instructions interpreted,

" Pipelining to utilize a functional unit fully and to deliver one result per cycle,

" Chaining to overlap functional unit execution, and

" Overlapping to execute more than one independent vector instruction con-

currently.

-3-

Table 1

High-Performance Computers

scalar parallel pipelined microcoded

FPS 164

FPS 264

STAR ST-100

vector

CDC CYBER 205

American Supercomputer

CRAY-1

CRAY X-P-1

Fujitsu VP (Amdahl 1000)

Galaxy YH-1

Hitachi S-810

NEC SX

Scientific Computer Systems

Alliant FX/1

Convex C-1

parallel - global memory

Elxsi

Encore

Flex

IP1

Sequent

Denelcor HEP

parallel - global memory - vector

ETA 10

Alliant FX/8

CRAY-2

CRAY-3

CRAY X-MP-2/4

parallel - local memory

Ametek

Intel iPSC

NCUBE

Connection Machine

BBN Butterfly

CDC Cyberplus

Myrias 4000

ICL DAP

Loral Instruments

-4-

Current vector computers typically provide for "simultaneous" execution of a number of

elementwise operations through pipelining. Pipelining generally takes the approach of splitting

the function into smaller pieces or stages and allocating separate hardware to each of these

stages. With this mechanism several instances of the same operation may be executed simul-

taneously, with each instance being in a different stage of the operation.

The goal of pipelined functional units is clearly performance. After some initial startup

time, which depends on the number of stages (called the length of the pipeline, or pipe length),

the functional unit can turn out one result per clock period as long as a new pair of operands is

supplied to the first stage every clock period. Thus, the rate is independent of the length of the

pipeline and depends only on the rate at which operands are fed into the pipeline. Therefore,

if two vectors of length k are to be added, and if the floating-point adder requires 3 clock

periods to complete, it would take 3 + k clock periods to add the two vectors together, as

opposed to 3 * k clock periods in a conventional computer.

Another feature used to achieve high rates of execution is chaining. Chaining is a tech-

nique whereby the output register of one vector instruction is the same as one of the input

registers for the next vector instruction. If the instructions use separate functional units, the

hardware will start the second vector operation during the clock period wh' the first result

from the first operation is just leaving its functional unit. A copy of the result is forwarded

directly to the second functional unit, and the first execution of the second vector is started.

The net result is that the execution of both vector operations takes only the second functional

unit startup time longer than the first vector operation. The effect is like having a new instruc-

tion that performs the combined operations of the two functional units chained together. On

the CRAY, in addition to the arithmetic operations, vector loads from memory to vector regis-

ters can be chained with other arithmetic operations.

It is also possible to overlap operations if the two operations are independent. If an addi-

tion and an independent multiplication operation are to be processed, the execution of the

second independent operation will begin one cycle after the first operation has started.

The key to utilizing a high-performance computer effectively is to avoid unnecessary

memory references. In most computer: lata flows from memory into and out of registers, and

from registers into and out of functional units, which perform the given instructions on the
1 ata. Performance of algorithms can be dominated by the amount of memory traffic, rather

than the number of floating-point operations involved. The movement of data between
memory and registers can be as costly as arithmetic operations on the data. This situation pro-

vides considerable motivation to restructure existing algorithms and to devise new algorithms

that minimize data movement.

-5-

Many of the algorithms in linear algebra can be expressed in terms of a SAXPY opera-

tion, y -- y+ax , i.e., adding a multiple a of a vector x to another vector y. This would result

in three vector memory references for each two vector floating-point operations. If this opera-

tion comprises the body of an inner loop that updates the same vector y many times, then a

considerable amount of unnecessary data movement will occur. Usually, a SAXPY occurring

in an inner loop will indicate that the algorithm may be recast in terms of some matrix vector

operation, such as y +- y+M*x, which is just a sequence of SAXPYs involving the columns of

the matrix M and the corresponding components of the vector x. The advantage of this is that

the y vector and the lergth of the columns of M are a fixed size throughout. Thus, it is rela-

tively easy to automatically recognize that only the columns of M need be moved into registers

while accumulating the result y in a vector register, avoiding two of the three memory refer-

ences in the innermost loop. This also allows chaining to occur on vector machines, and results

in a factor of three increase in performance on the CRAY-1. The cost of the algorithm in

these cases is determined not by floating-point operations, but by memory references.

Programs that properly use all of the features mentioned above will fully exploit the

potential of a vector machine. These features, when used to varying degrees, give rise to three

basic modes of execution: scalar, vector, and super-vector [4]. To provide a feeling for the

difference in the modes, we give in Table 2 the execution rates on a CRAY-1:

Table 2

Execution Rates on a CRAY-1

Mode of Execution Rate of Execution

Scalar 0-10 MFLOPS

Vector 10-50 MFLOPS

Super-Vector 50-160 MFLOPS

These rates represent, more or less, the upper end of their range. We define the term MFLOPS

to be a rate of execution representing millions of floating point operations (additions or multi-

plications) performed per second.

The basic difference between scalar and vector performance is the use of vector instruc-

tions. The difference between vector and super-vector performance hinges on avoiding

unnecessary movement of data between vector registers and memory. The CRAY-1 is limited

in the sense that there is only one path between memory and the vector registers. This creates

a bottlen -k if a program loads a vector from memory, performs some arithmetic operations,

and then stores the results. While the load and arithmetic can proceed simultaneously as a

chained operation, the store is not started until that chained operation is fully completed.

-6-

Most algorithms in linear algebra can be easily vectorized. However, to gain the most

out of a machine like the CRAY-1, such vectorization is usually not enough. For top perfor-

mance, the scope of the vectorization must be expanded to facilitate chaining and minimization

of data movement in addition to using vector operations. Recasting the algorithms in terms of

matrix-vector operations makes it easy for a vectorizing compiler to achieve these goals. This

is primarily due to the fact that the results of the operation can be retained in a register and

need not be stored back to memory, thus elimirating the bottleneck. Moreover, when the com-

piler is not successful, it is reasonable to hand tune these operations, perhaps in assembly
language, since there are so few of them and since they involve simple operations on regular

data structures. These modules and their use in recasting algorithms for linear algebra are dis-

cussed in detail in the next section. The resulting codes achieve super-vector performance lev-

els on a wide variety of vector architectures. Moreover, the modules have also proved

effective on parallel architectures.

Vector architectures exploit parallelism at the lowest level of computation. They require

very regular data structures (i.e., rectangular arrays) and large amounts of computation to be

effective. The next level of parallelism that may be effective is to have individual scalar pro-
cessors execute serial instruction streams simultaneously on a shared data structure. A typical

example would be the simultaneous execution of a loop body for various values of the loop

index. This is the capability provided by a parallel processor. Unfortunately, along with this
increased functionality comes a burden. If independent processors are to work together on the
same computation, they must be able to communicate partial results to each other, and this
requires a synchronization mechanism. Synchronization introduces overhead (in terms of

Machine use) that is unrelated to the primary computation. It also requires new programming

techniques that are not well understood at the moment. While this situation is obviously more
general than that of a vector processor, many of the same principles apply.

Typically, a parallel processor with globally shared memory must employ some sort of

interconnection network so that all processors may access all of the shared memory. There

must also be an arbitration mechanism within this memory access scheme to handle cases
where two processors attempt to access the same memory location at the same time. These
two requirements obviously have the effect of increasing the memory access time over that of a
single processor accessing a dedicated memory of the same type. Usually, the increase is sub-
stantial, especially if the processor and memory are at the high end of the performance spec-

trum.

-7-

Again, memory access and data movement dominate the computations in these machines.

Achieving near-peak performance on such computers relies upon the same principle. One must

devise algorithms that minimize data movement and reuse data that has been moved from glo-

bally shared memory to local processor memory. The effects of efficient data management on

the performance of a parallel processor can be dramatic. For example, performance of the

Denelcor HEP computer may be increased by a factor of 10 through efficient use of its very

large (2-Kword) register set [31]. The modules again aid in accomplishing this memory

management. Moreover, they provide a way to make effective use of the parallel processing

capabilities in a manner that is transparent to the software user. Thus, the user does not, need

to wrestle with the problems of synchronization to use the parallel processor effectively.

The two types of parallelism we have just discussed are combined when vector rather

than serial processors are used to construct a parallel computer. These machines are able to

execute independent loop bodies that employ vector instructions. The most powerful comput-

ers today are of this type; they include the CRAY X-MP line and a new, high-performance

"mini-super" FX/8 computer manufactured by Alliant. The problems with using such comput-

ers efficiently are, of course, more complex than those encountered with each type individually:

synchronization overhead becomes more significant when compared to a vector operation rather

than a scalar operation, blocking loops to exploit outer-level parallelism may conflict with vec-

tor length, etc.

Finally, a third level of complication is added when parallel-vector machines are intercon-

nected to achieve yet another level of parallelism. This is the case for the CEDAR architecture

being developed at the Center for Supercomputer Research and Development at the University

of Illinois at Urbana. Such a computer is intended to solve large applications problems that

split naturally into loosely coupled parts which may be solved efficiently on the cluster of

parallel-vector processors.

3. Performance of Software for Dense Matrix Factorization

We are interested in examining the performance of linear algebra algorithms on large-

scale scientific vector processors and on emerging parallel processors. In many applications,
linear algebra calculations consume large quantities of computer time. If substantial improve-

ments can be found for the linear algebra part, a significant reduction in the overall perfor-

mance will be realized. We are motivated to look for alternative formulations of standard algo-

rithms, as implemented in software packages such as LINPACK [8] and EISPACK [12, 29],

because of their wide use in general and their poor performance on vector computers. As

mentioned earlier, we are also motivated to restructure the algorithms in a way that will allow

these packages to be easily transported to new computers of radically different design, provided

this can be achieved without serious less of efficiency.

-8-

In this section we report on some experience with restructuring these linear algebra pack-

ages in terms of the high-level modules proposed by Dongarra et al. [6]. This experience

verifies that performance increases are achieved on vector machines and that the modular

approach offers a viable solution to the transportability issue. Restructuring often improves per-

formance on conventional computers and does not degrade the performance on any computer

we are aware of.

Both of the packages have been designed in a portable, robust fashion, so they will run in

any Fortran environment. The LINPACK routines use a set of vector subprograms called the

BLAS [22] to carry out most of the arithmetic operations. The EISPACK routines do not

explicitly refer to vector routines, but the routines do have a high percentage of vector opera-

tions which most vectorizing compilers detect. The routines from both packages should be

well suited for execution on vector computers. As we shall see, however, the Fortran pro-

grams from LINPACK and EISPACK do not attain the highest execution rate possible on a

CRAY-1 [4]. Although these programs exhibit a high degree of vectorization, the construction
that leads to super-vector performance is, in most cases, not present. We shall examine how

the algorithms can be constructed and modified to enhance performance without sacrificing

clarity or resorting to assembly language.

To give a feeling for the difference between various computers, both vector and conven-

tional, Dongarra [4] carried out a timing study on many different computers for the solution of

a 100x100 system of equations. The LINPACK routines were used in tie solution without

modification. The results are shown in Table 3.

The LINPACK routines used to generate the timings in Table 3 do not reflect the true

performance of "high-performance computers." A different implementation of the solution of

linear equations, presented in a report by Dongarra and Eisenstat [7], better reflects the perfor-

mance on such machines. That implementation is based on matrix-vector operations rather

than just vector operations. The restructuring allows the various compilers to take advantage of

the features described in Section 2. It is important to note that the numerical properties of the

algorithm have not been altered by this restructuring. The number of floating-point operations
required and the roundoff errors produced by both algorithms are exactly the same; only the

way in which the matrix elements are accessed is different.

The results are shown in Table 4. As before, a Fortran program was used, and all runs
were for full precision. The table shows the time to complete the solution of equations for a

matrix of order 300.

-9-

Table 3

Solving a System of Linear Equations

with LINPACKa in Full Precision b

OS/Compiler Ratiod MFLOPS' Time, s

CRAY X-MP-1

CDC CYBER 205

CRAY 1-S

CRAY X-MP-1

Fujitsu VP-200

Fujitsu VP-200

Hitachi S-810/20

CRAY 1-S

CDC CYBER 205

NAS 9060 w/VPF

CFT (Coded BLAS)

FTN (Coded BLAS)

CFT (Coded BLAS)

CFT (Rolled BLAS)

Fortran 77 (Comp. Directive)

Fortran 77 (Rolled BLAS)

FORT77/HAP (Rolled BLAS)

CFT (Rolled BLAS)

FTN (Rolled BLAS)

VS opt=2 (Coded BLAS)

a LINPACK routines SGEFA and SGESL were used for single precision, and routines DGEFA and DGESL were

used for double precision. These routines perform standard LU decomposition with partial pivoting and back substitution.

bFull Precision implies the use of (approximately) 64-bit arithmetic, e.g., CDC single precision or IBM double precision.

cOS/Compiler refers to the operating system and compiler used: (Coded BLAS) refers to the use of assembly language

coding of the BLAS; (Rolled BLAS) refers to a Fortran version with single-statement, simple loops; and Comp. Directive refers

to the use of compiler directives to set the maximum vector length.

dRatio is the number of times faster or slower a particular machine configuration is when compared to the CRAY 1-S using

Fortran coding for the BLAS.

For solving a system of n equations, approximately 213n3 + 2n2 operations are performed (we count both additions and

multiplications).

Computer

.36

.48

.54

.57

.64

.72

.74

1

1.5

1.8

33

25

23

21

19

17

17

12

8.4

6.8

.021

.027

.030

.032

.040

.040

.042

.056

.082

.101

-10-

Table 4

Solving a System of Linear Equations

Using the Vector Unrolling Technique

OS/Compiler MFLOPS Time, s

CRAY X-MP-4 a

CRAY X-MP-2 b

Fujitsu VP-200

Fujitsu VP-200

CRAY X-MP-2 b

Hitachi S-810/20

CRAY X-MP-1 c

CRAY X-MP-1 c

CRAY 1-M

CRAY 1-S

CRAY 1-M

CRAY 1-S

CDC CYBER 205

NAS 9060 w/VPF

CFT (Coded ISAMAX)

CFT (Coded ISAMAX)

Fortran 77 (Comp. Directive)

Fortran 77

CFr

FORT77/HAP

CFT (Coded ISAMAX)

CFT

CFT (Coded ISAMAX)

CFT (Coded ISAMAX)
CFr

CFT

ftn 200 opt=1

VS opt=2 (Coded BLAS)

'These timings are for four processors, with manual cha' ges to use parallel features.

b These timings are for two processors, with manual changes to use parallel features.

c These timings are for one processor.

Similar techniques of recasting matrix decomposition algorithms in terms of matrix-vector

operations have provided significant improvements in the performance of algorithms for the

eigenvalue problem. In a paper by Dongarra, Kaufman, and Hammarling [8] many of the rou-

tines in the EISPACK collection were restructured to use matrix-vector primitives, resulting in

improvements by a factor of two to three in performance over the standard implementation on

vector computers such as CRAY X-MP, Hitachi S-810/20, and Fujitsu VP-200.

Using the matrix-vector operations as primitives in constructing algorithms can also play

an important role in achieving performance on multiprocessor systems with minimal recoding

effort. Again, the recoding is restricted to the relatively simple modules, and the numerical pro-

perties of the algorithms are not altered as the codes are retargeted for a new machine. This
feature takes on added importance as the complexity of the algorithms reach the level required
for some of the more difficult eigenvalue calculations. A number of factors influence the per-
formance of an algorithm in multiprocessing. These include the degree of parallelism, process

Computer

356

257

220

183

161

158

134

106

83

76

69

66

31

9.7

.051

.076

.083

.099

.113

.115

.136

.172

.215

.236

.259

.273

.59

1.9

- 11 -

synchronization overhead, load balancing, interprocessor memory contention, and modifications

needed to separate the parallel parts of an algorithm.

To exploit the computational advantages offered by a parallel computer, a parallel algo-

rithm must partition the work into tasks, or processes, that can execute concurrently. These

cooperating processes usually have to communicate with each other, to claim a unique

identifier or follow data dependency rules, for example. Communication takes place at syn-

chronization points within the instruction streams defining the process. The amount of work in

terms of number of instructions that may be performed between synchronization points is

referred to as the granularity of a task. The need to synchronize and to communicate before

and after parallel work will greatly affect the overall execution time of the program. Since the
processors have to wait for one another instead of doing useful computation, it is obviously

better to minimize that overhead. In the situation where segments of parallel code are execut-

ing in vector mode, typically at ten to twenty times the speed of scalar mode, granularity

becomes an even more important issue, since communication mechanisms are implemented in

scalar mode.

Granularity is also closely related to the degree of parallelism, which is defined to be the

percentage of time spent in the parallel portion of the code. Typically, a small-granularity job

means that parallelism occurs in an inner-loop level (although not necessarily the innermost

loop). In this case, even the setup time in outer loops will become significant (not to mention

the frequent task synchronization needs).

Matrix-vector operations offer the proper level of modularity for achieving both perfor-

mance and transportability across a wide range &f computer architectures. Evidence has

already been given for a variety of vector architectures. In the following sections, we shall
present evidence supporting their suitability for parallel architectures.

In addition to computational evidence, several factors support the use of these modules.

First, we can easily construct the standard algorithms in linear algebra out of these types of
modules. Also, the matrix-vector operations are simple and yet encompass enough computation

that they can be vectorized and also parallelized at a reasonable level of granularity [4, 7, 10,
31]. Finally, the modules can be constructed in such a way that they hide all of the machine-

specific intrinsics required to invoke parallel computation, thereby shielding the user from

being concerned with any machine-specific changes to the library.

4. Structure of the Algorithms

In this section we discuss the way algorithms may be restructured to take advantage of

the modules introduced above. Typical recasting that occurs within LINPACK and EISPACK
subroutines is discussed here. We begin with definitions and a description of the efficient

implementation of the modules themselves.

- 12 -

4.1 The Modules

Only three modules are required for recasting LINPACK in a way that achieves super-

vector performance.

z = Mw (matrix x vector),

M = M - wz (rank one modification), and

z = Tz (solve a triangular system).

Efficient coding of these three routines is all that is needed to transport the entire package from

one machine to another while retaining close to top performance.

We shall describe some of the considerations that are important when coding the matrix-

vector product module. The other modules require similar techniques. For a vector machine

such as the CRAY-1, the vector times matrix operation should be coded in the form

(4.1.1) y(*)+<-y(*) + M(*,)x() for j= 1,2,...,n .

In (4.1.1) the * in the first entry implies this is a column operation. The intent here is that a

vector register is reserved for the result while the columns of M are successively read into vec-

tor registers, multiplied by the corresponding component of x, and then added to the result

register in place. In terms of ratios of data movement to floating-point operations, this arrange-

ment is mest favorable: it involves one vector move for two vector floating-point operations

(compared to the three vector moves needed to get the same two floating-point operations

when a sequence of SAXPY operations are used).

This arrangement is perhaps inappropriate for a parallel machine because one would have

to synchronize the access to y by each of the processes, and this would cause busy waiting to

occur. One might do better to partition the vector y and the rows of the matrix M into blocks

y1 Yi M 1
Y2 Y2 M2

. + *x

Yk Yk Mk

and self-schedule individual vector operations on each of the blocks in parallel:

y;- y + Mix for i = 1,2,...,k .

That is, the subproblem indexed by i is picked up by a processor as it becomes available, and

the entire matrix-vector product is reported done when all of these subproblems have been

completed.

If the parallel machine has vector capabilities on each of the processors, this partitioning

introduces short vectors and defeats the potential of the vector capabilities for small- to
medium-size matrices. A better way to partition in this case is

- 13 -

x 1
x2

y +<-y + (M1 , M2 , .' , Mk)

Xk

Again, subproblems are computed by individual processors. However, in this scheme, we must

either synchronize the contribution of adding in each term M~x or write each of these into tem-

porary locations and hold them until all are complete before adding them to get the final result.

This scheme does prove to be effective for increasing the performance of the factorization sub-

routines on the smaller (order less than 100) matrices. From the data access scheme for LU

decomposition shown in Figure 4.1, we see that during the final stages of the factorization,

vector lengths become short regardless of matrix size. For the smaller matrices, subproblems

with vector lengths that are below a certain performance level represent a larger percentage of

the calculation. This problem is magnified when the row-wise partitioning is used.

ZZ2STEP I

STEP 2

Figure 4.1 LU Data References

4.2 Recasting LINPACK Subroutines

We now turn to some examples of how to use the modules to obtain various sandard

matrix factorizations. We begin with the LU decomposition of a general nonsingular matrix.

Restructuring the algorithm in terms of the basic modules described above is not so obvious in

the case of LU decomposition. The approach described here is inspired by the work of Fong

and Jordan [11], who produced an assembly language code for LU decomposition for the

CRAY-1. That code differed significantly in structure from those commonly in use because it
did not modify the entire k-th reduced submatrix at each step but only the k-th column of that

matrix. This step was essentially a matrix-vector multiplication operation.

Dongarra and Eisenstat [4] showed how to restructure the Fong and Jordan implementa-

tion explicitly in terms of matrix-vector operations and were able to achieve nearly the same

- 14 -

performance from a Fortran code as Fong and Jordan had done with their assembly language

implementation. The pattern of data references for factoring a square matrix A into PA = LU

(with P a permutation matrix, L a unit lower triangular, and U an upper triangular) is shown in

Figure 4.1. At the k-th step of this algorithm, a matrix formed from columns 1 through k-1

and rows k through n is multiplied by a vector constructed from the k-th column, rows 1

through k-1, with the results added to the k-th column, rows k through n. The second part of

the k-th step involves a vector-matrix product, where the vector is constructed from the k-th

row, columns 1 through k-i, and a matrix constructed from rows 1 through k-1 and columns

k+1 through n, with the results added to the k-th row, columns k+1 through n.

One can construct the factorization by analyzing the way in which the various pieces of

the factorization interact. Let us consider decomposition of the matrix A into its LU factoriza-

tion, with the matrix partitioned in tae following way:

L11 U11 u12 U13

12 1 u 2 u23

L31 132 L33 U33

Multiplying L and U together and equating terms with A, we have

All = L11U11 a12 = L11u12 A13 = LuU13

a 2= liU11 an = 21u12+ u2 -a23= 1iU_ +u

A31 = L31U11 a32 = L31U12 + u22132 A33 = L31U13 + 132u23 + L33U33

We can now construct the various factorizations for LU decomposition by determining

how to form the unknown parts of L and U, given various parts of A, L, and U. For example,

Given the triangular matrices L11 and U11, to construct vectors

I1 2 and u12 and scalar uu we must form u12 = Lila12, IT = Uia 2,
u2 = a - 11u12

Since these operations deal with triangular matrix L11 and U11, they can be expressed in terms

of solving triangular systems of equations.

Given the rectangular matrices L1 and U13, and the vectors l

and u12, we can form vectors 13 and u23 and scalar u22 by form-

ing u23 = a23 - 12 U13, u2 = a - 12u12, and 132 = (a23 - L3u12)/u2,

- 15 -

Since these operations deal with rectangular matrices and vectors, they can be expressed in

terms of simple matrix-vector operations.

Given the triangular matrix L11 , the rectangular matrix L31 , and

the vector 12, we can construct vectors u12 and 132 and scalar

u22 by forming u12= Ljja1 2, u22= a22 - 121u12,
132 = (a32 - L3u12)/u22.

These operations deal with a triangular solve and a matrix-vector multiply.

The same ideas for use of high-level modules can be applied to other algorithms, includ-

ing matrix multiply, Cholesky decomposition, and QR factorization.

For the Cholesky decomposition the matrix is symmetric and positive definite. The fac-

torization is of the form

A=LLT,

where A = AT and is positive definite. If we assume the algorithm proceeds as in LU decompo-
sition, but references only the lower triangular part of the matrix, we have an algorithm based

on matrix-vector operations that accomplishes the desired factorization.

The final method we shall discuss is the QR factorization using Householder transforma-

tions. Given a real mxn matrix A, the routine must produce an mxm orthogonal matrix Q and an
nxn upper triangular matrix R such that

A=Q].

Householder's method consists of constructing a sequence of transformations of the form

(4.2.1) I- awwT, where a ww = 2.

The vector w is constructed to transform the first column of a given matrix into a multiple of
the first coordinate vector e. At the k-th stage of the algorithm one has

Q. 1A =r RI S1

and wk is constructed such that

(4.2.2) r I-awkwr A 1 = .

The factorization is then updated to the form

Q rA =Rk S
QthAk

with

Q=I 01- OLwkw] '

- 16 -

However, this product is not explicitly formed, since it is available in product form if we sim-

ply record the vectors w in place of the columns they have been used to annihilate. This is the

basic algorithm used in LINPACK [5] for computing the QR factorization of a matrix.

The algorithm may be coded in terms of two of the modules. To see this, note that the

operation of applying a transformation shown on the left-hand side of (4.2.2) above may be

broken into two steps:

(4.2.3) zii -= wA (vector x matrix)

and

A = A - awz (rank-one modification).

4.3 Restructuring EISPACK Subroutines

As we have seen, all of the main routines of LINPACK can be expressed in terms of the

three modules described in Section 4.1. The same type of restructuring may be used to obtain

efficient performance from EISPACK subroutines. A detailed description may be found in
Ref. 8. In the following discussion we outline some of the basic ideas used there.

Many of the algorithms implemented in EISPACK have the following form:

Algorithm (4.3.1):

For i = 1,....

Generate matrix T,

Perform transformation Ai1 +- T;A;771

End .

Because we are applying similarity transformations, the eigenvalues of Ai+1 are those of A.
Since the application of these similarity transformations represents the bulk of the work, it is
important to have efficient methods for this operation. The main difference between this situa-

tion and that encountered with linear equations is that these transformations are applied from

both sides. The transformation matrices T, used in (4.3.1) are of different types depending on

the particular algorithm.

The simplest are the stabilized elementary transformation matrices of the form T = LP,

where P is a permutation matrix required to maintain numerical stability [12, 29, 32] and L has

the form

- 17 -

1

1
1
* 1

* 1

The inverse of L has the same structure as L and may be written in terms of a rank-one

modification of the identity as follows:

L~1 =1[
0 I - wel'

with efw = 0. If we put

A B
PAPT = C D '

then

1 0 A B I 0
TAT11= 0 I+wet C D 0 I-wet

A ~B - b1wT

[C+wct D+wdI -fiwT- SiwwTJ'

where cf = efC, d= efD, b1 = Be1 , fl = Del , S81,= dfe1 and e is the first coordinate vector (of

appropriate size). The appropriate module to use, therefore, is the rank-one modification.

However, more can be done with the rank-two correction that takes place in the modification

of the matrix D above.

In most of the algorithms, the transformation matrices T, are Householder matrices of the

form (4.2.1). This results in a rank-two correction that might also be expressed as a sequence
of two rank-one corrections. Thus, it would be straightforward to arrange the similarity

transformation as two successive applications of the scheme (4.2.3). However, more can be

done with a rank-two correction, as we now show.

First, suppose that we wish to form (I-awwT)A(I-puuT), where fur a similarity transforma-

tion a = j3 and w = u. We may replace the two rank-one updates by a single rank-two update

using the following algorithm:

- 18 -

Algorithm 4.3.2:

1. vT = wTA

2. x=Au

3. yT = vT-(.qwTx)uT

4. Replace A by A-f3xuT-awyT

As a second example applicable to the linear equation setting, suppose that we wish to form
(I-awwT)(I-puuT)A. Then, as with Algorithm 4.3.2, we might proceed as follows:

Algorithm 4.3.3:

1. vT=wTA

2. x= uTA

3. yT = vT-(jwTu)xT

4. Replace A by A-PuxT-awyT

In both cases we can see that Steps 1 and 2 can be achieved by calls to the matrix-vector and

vector-matrix modules. Step 3 is a simple vector operation, and Step 4 is now a rank-two

correction, and one gets four vector memory references for each four vector floating-point
operations (rather than three vector memory references for every two vector floating-point

operations, as in Step 2 of Algorithm 4.2.3).

These techniques have been used successfully to increase the performance of EISPACK

on various vector and parallel machines. The results of these modifications are reported in full

detail in Ref. 8. Table 5 gives a typical example of the performance increase possible with

these techniques.

5. Sparsity and Structured Problems

Modules work well for full dense-matrix problems, but different constructs may be

needed for sparse or special structures. These constructs are likely to be specific to parallel
machines, which typically cannot be based on the modules described above. We give three
examples of such algorithms here. These algorithms all have portions that might take advan-

tage of certain vector constructs, but the primary gain in all of them is through the explicit use
of parallel computation. Each example has requirements for synchronization, and in some
cases additional computation may be present that would not be needed for the serial algorithm.
Nevertheless, all of these have proved effective in terms of speedup over the corresponding

serial algorithm. One of the algorithms has actually proved faster than the corresponding serial

code even when it is run on a serial machine.

- 19 -

Table 5

Comparison of EISPACK to

the Matrix-Vector Version

Routines

ELMHES

ORTHES

ELMBAK

ORTBAK

TRED1

TRBAK1

TRED2

SVD (no vectors)

SVD (vectors)

REDUC

REBAK

Order

50

1.5

2.5

2.2

3.6

1.5

4.2

1.6

1.7

1.6

1.8

4.4

100 Machine

2.2

2.5

2.6

3.3
1.5

3.7

1.6
2.0

1.7

2.2

5.8

CRAY-1

CRAY-1

CRAY-1

CRAY-1

CRAY X-MP-1

CRAY X-MP-1

CRAY X-MP-1

Hitachi S-810/20

Hitachi S-810/20

Fujitsu VP-200

Fujitsu VP-200

GAll versions are in Fortran.

5.1 Banded Systems

An important structured problem that arises in many applications such as numerical solu-
tion of certain PDE problems is the solution of banded systems of linear equations. We con-
sider algorithms for solving narrow-banded, diagonally dominant linear systems which are suit-

able for multiprocessors.

Let the linear system under consideration be denoted by

(5.1.1) Ax=f,

where A is a banded diagonally dominant matrix of order n. We assume that the number of

superdiagonals m < n is equal to the number of subdiagonals. On a sequential machine such a

system would be solved with Gaussian elimination without pivoting, at a cost uf O(m2n) arith-

metic operations. We describe here an algorithm for solving this system on a multiprocessor

of p processing units. Each unit may be a sequential machine, a vector machine, or an array of

processors. In this paper, however, we consider only p sequential processing units.

i

- 20 -

Let the system (5.1.1) be partitioned into the block-tridiagonal form

A 1 B 1 x1 f

C2 A 2 B2 x2 f2

(5.1.2) =

Cp..i A,_ 1 Bp_1 x, 1i fn-1
C, A, x~ f,

where Ai, 1 i p-1, is a banded matrix of order q = [n/pl and bandwidth 2m + 1 (same as A),

[0 0

and

(5.1.3b)C41 = [0 '

in which A, and 4i. are lower and upper triangular matrices, respectively, each of order m.

The algorithm consists of four stages.

5.1.1 Stage 1

Obtain the LU factorization

(5.1.4) A,=L;, 1s isp,

using Gaussian elimination without pivoting, one processor per factorization. Here L; is unit

lower triangular matrix, and U; is a nonsingular upper triangular matrix. Note that each A; is

also diagonally dominant.

The cost of this stage is O(m2n/p) arithmetic operations; no interprocessor communication

is required.

5.1.2 Stage 2

If we premultiply both sides of (5.1.2) by

diag(AT1, AZ 1 , ... Af),

we obtain a system of the form

IK El

F2q ,E 2

(5.1.5)

where E,= (E;, 0), F, = (0, F.if 1152>.Sv .nr T. 0;),

given by

= Al'

and

in which E; and F; are matrices of m columns

Fi= Ai 0Ca

and will, in general, be full. In other words, E,, ;, anld g; are obtained by solving the linear

systems

A A 0 Ci

LjUj[FOj,;gj] = [, 90 i

for 1 5 i p; here, C, = 0 and A,, =0. Each processor 2 5 k p-1 handles 2m + 1 linear systems

of the form LkUkv = r, while processors 1 and p each handle m+1 linear systems of the same

form.

The cost at this stage is O(m 2 n/p) arithmetic operations; no interprocessor communications

are needed.

5.1.3 Stage 3

Let ZA and i be partitioned, in turn, as follows:

PLJ S
Fi = Mi , and Ei= N ,

LQi T

Also, let g; and xi be conformally partitioned:

- 21 -

2 g1
82

$,,.1

gm

x1

x2

x - 1

xis

Fp1 I Ep1

FPIqJ

where P;, Q;, Si, and 'TeRm"". 1

h--z yzi--z

gi= w; and x;= z;

'hzi-1 121--1

- 22 -

As an illustration we show the system (5.1.5) for p=3.

Im

'V

Si

N1

T1

Im

I'

P2

M2

Q2

IV

In

P3

M3

Q3

S 2

N2

T2

Ina

Ir

IM

Yo

Z1

yi

Y2

z2

y3

y4

z3

ys

ho

Wi

h1

h2

W2

h3

h4

W 3

h5

Observe that the unknown vectors yi, y2, y3, and y4 (each of order m) are disjoint from the rest

of the unknowns. In other words, the m equations above and the m equations below each of

the p-1 partitioning lines form an independent system of order 2m(p-1). We shall refer to this

system as the "reduced system" Ky=h, which is of the form

Imn

P2

Q2

T1

I0
0

0

0

In

P3

Q3

0
S 2

T2

0

0

0

In

P4

0
S3

T3

In

Ira

Psi

Qp-i

TP-2

In

0

o 0
0 Sp-

In Tp-i

PP iM

y1

Y2

y3

y4

ys

y6

Y2p-5
Y2p-4

Y2p-3

Y2p-2

h1

h2

h3

h4

hs

h6

h2p3--
h2p 2

(5.1.6)

The cost of the algorithm to be used for salving (5.1.6) depends on the interconnectir net-
work. Processor 1 contains T1 and hi; processor j, 2 1 j p-1, contains Pj, Q1, S,, T, a d h2;-2,

h2. 1 ; and processor p contains P, and h2p-2. Hence, if the processors are linearly connected, we
can only solve (5.1.6) sequentially at the cost of O(m 3p) steps, where a step is the cost of an
arithmetic operation or the cost of transmitting a floating-point number from one processor to

either of its immediate neighbors. We should add here that since A is diagonally dominant, it
can be shown that (5.1.6) is also diagonally dominant and hence can be solved with Gaussian
elimination without pivoting.

5.1.4 Stage 4

Once the y;'s are obtained, with yi in processor 1, y2-2 and y2,-1 in processor
j (2 j: p-1), and y2p-2 in processor p, the rest of the components of the solution vector of
(5.1.5) may be computed as follows. Processor k, 1 s k s p, evaluates

- 23 -

(5.1.7) zk = Wk-Mky 3 Nya

with processors 1 and p performing the additional tasks

Yo = h0-S1y2,

(5.1.8) y _1 = h2 ..1-Qy..3,

respectively (Ml and N, are nonexistent and are taken to be zero in this equation). The cost of

this stage is O(mnfp) steps, with no interprocessor communication.

For a linear array of processors, the speedup of this algorithm over the classical sequen-

tial algorithm behaves as follows:

speedup

000

P0 p

where po and ao are O(4nmn). Stage 2 dominates the computation until po; then the communica-

tion costs affect the performance, and Stage 3 has a greater influence.

5.2 QR Factorization of a Sparse Matrix

The version of Householder's method for the QR factorization of a dense matrix given in

Section 4.2 is well suited to vector and parallel-vector architectures. However, for parallel pro-
cessors without vector capabilities, this may not be the algorithm of choice. An alternative is

to use a parallel version of Givens method. There are many papers on this subject especially
within the study of systolic arrays of processors [13, 14, 28]. Here we present a variant of

these techniques that is suitable for parallel processors with far more computing power in a
single processor than considered in the systolic array case. This method, first presented by
Dongarra, Sameh, and Sorensen [9], is called the Pipelined Givens method.

The Pipelined Givens method is well suited to the architecture and synchronization
mechanism of the Denelcor HEP computer. However, any parallel computer with globally
shared memory and a relatively inexpensive synchronization primitive could take advantage of

this method.

- 24 -

Two factors explain why this algorithm is more successful than Householder's method on

such a parallel computer. As demonstrated by the computational results presented in Ref. 9,
memory references play a far more important role in determining algorithm performance on a
parallel machine such as the HEP than they do on serial machines. The Givens algorithm
requires half as many array references as the Householder method. In addition, the Pipelined
Givens method offers a greater opportunity to keep many (virtual) processors, busy because it
does not employ a fork-join synchronization mechanism and does not have the inherent serial
bottlenecks present in the Householder method. Moreover, there is an opportunity to adjust the
level of granularity through the specification of a certain parameter (discussed below), to mask

synchronization costs with computation.

The serial variant cf the Givens method that we consider is as follows. Given a real mxn
matrix A, the goal of the algorithm is to apply elementary plane rotations G5j that are con-

structed to annihilate the ji-th element of the matrix A. Such a matrix may be thought of as a
2x2 orthogonal matrix of the form

7 a

where a2 +y2=.. If

a aT

bT

represents a 2xn matrix, then, with proper choice of y and a, a zero can be introduced into the

a position with left multiplication by G. When embedded in the nxn identity, the matrix G, is

of the form

Gy = I+Dy ,

where all elements of DL, are zero except possibly the ii, i, ji, and .# entries. The matrices G
are used to reduce A to upper triangular form in thie following order:

(G ,. .- G2mG1 m]. ---[G,.1. -.-G2aGiis [Gi...2n-...- - G2,n-1G1, .. [G12]A = (].

The order of the zeroing pattern may be seen in the 6x5 example:

x x x x x

x x x x

Q2cQ3 x x x

Q7 C's 4 Qo x

Figure 5.2.1 Zeroing Pattern of the Givens Method

In Figure 5.2.1 the symbol x denotes a nonzero entry of the matrix, and the symbol (* means
that entry is zeroed out by the k-th transformation. This order is important if one wishes to

- 25 -

"pipeline" the row reduction process. Pipelining may be achieved by expressing R as a linear

array in packed form by rows and then dividing this linear array into equal-length pipeline seg-
ments. A process is responsible for claiming an unreduced row of the original matrix and

reducing it to zero by combining it with the existing R matrix using Givens transformations. A

new row may enter the pipe immediately after the row ahead has been processed in the first

segment. Each row proceeds one behind the other until the entire matrix has been processed.

However, because of data dependencies, these rows must not be allowed to get out of order,

once they have entered the pipe.

The synchronization required to preserve this order is accomplished using an array of

locks, with each entry of the array protecting access to a segment of the pipe. A process gains

access to the next segment by locking the corresponding entry of the lock array before unlock-
ing the entry protecting the segment it currently occupies. Granularity may be adjusted to hide

the cost of this synchronization by simply altering the length of a segment. Segment boun-

daries do not correspond to row boundaries in R. This feature has the advantage of balancing
the amount of work between synchronization points, but the disadvantage of having to decide

on one of two possible computations at each location within a segment: compute a transforma-

tion or apply one.

The method is more easily grasped if one considers the following three diagrams. In Fig-

ure 5.2.2 we represent the matrix A in a partially decomposed state. The upper triangle of the
array contains the current state of the triangular matrix R. The entries (a a a a a) and the

entries (a J3 J3) represent the nonzero components of the next two rows of A that must be

reduced.

x x x x x

x x x x

x x x

xx

x

a a a a a
f3 p p pp

Figure 5.2.2 Partially Reduced Matrix

A natural way to pipeline this reduction process is shown in Figure 5.2.3. There we see
the row (a a a a a) being passed through the triangle R during the reduction process, with the
row (13 1 1 3) flowing immediately behind it. The position of the 1 row and the a row inter-
leaved within the rows of R is meant to indicate that they are ready to be combined with the

first and second rows of R, respectively. The first entry of the a row has been zeroed by

- 26 -

computing and applying the appropriate Givens transformation as described above, and we are

ready to zero out the second entry. In a serial algorithm this a row would be completely

reduced to zero before beginning to reduce the a row. However, this process may be pipelined

by beginning to combine the P row with the first row of R as soon as the a row is ready to be

combined with the second row of R. Since the first row of R is modified during the introduc-
tion of a zero in the first position of the a row, it is important that the processing of the a row
be suitably synchronized with the processing of the a row. In practice, after initial startup,
there would be n rows in the pipe throughout the course of the computation.

x x x x x

'v x x xa aaaa
xxxSa a a a

x x x

xx

x

Figure 5.2.3 Pipelined Row Reduction

A disadvantage of the scheme just described is that the granularity becomes finer as the
process advances, because the length of the nonzero entries in a row of R decreases. A better
load balance and a natural way to adjust the granularity may be achieved by considering the
matrix R as a linear array divided into segments of equal length.

(Pu P2P131P14 Ps P22IP23 P24 P25P33 P34 P3sP P45 P55)

Figure 5.2.4 R as a Segmented Pipe

In Figure 5.2.4 we depict the nonzero elements of R as p5, and note that in this linear array the
natural row boundaries occur at entries p3. The length of a segment is 3 in this example, and

we denote pipe segment boundaries with I. In general, we specify the number of segments
desired. Then the length of a segment is

n(n + 1)/2

number of segments]'

The number of segments is an adjustable parameter in the program. The a row and a row are
represented as in Figure 5.2.3, with the a row entering the second segment and the R row
entering the first segment. The difference between this scheme and the one depicted in Figure
5.2.3 is that the a row is not fully combined with the first row of R before processing of the a
row is begun. To keep the rows in order, a row must gain entry to the next segment before
releasing the current segment. If the number of segments is equal to the number of nonzero
elements of R, then this algorithm reduces to a variant of the more traditional dataflow

- 27 -

algorithm presented in Refs. 13, 14, and 28. Computational experience reported in Ref. 9 indi-

cates that performance is not extremely sensitive to this. parameter. The optimal length of a

segment appeared to be approximately n, but performance degraded noticeably only with

extremely large or extremely small segment lengths.

We now turn to the main point of interest in this discussion, the case when the matrix A

is large and sparse. The algorithm we present was developed by Heath and Sorensen [21] as

an generalization of the Pipelined Givens method to the sparse case. Specifically, we assume

that the matrix

ATA

is suitably sparse. In this case there are well-established techniques [17] for determining a per-

mutation matrix P such that

PTATAP = RTR

has a sparse Cholesky factor R. This permutation is obtained from the symbolic nonzero struc-
ture of the matrix A and is designed to reduce the number of nonzeros in the factor R as much
as possible. It is of considerable interest to parallelize this symbolic step, but for this discus-
sion we have concentrated only on parallelizing the numerical portion of the algorithm, which
involves applying Givens transformations to the matrix AP to produce R.

r11 r12

r33 r35 r36

r44 r45

r55 r56

r66

r57

r67

r77

DIAG r11 r22 r33 ,r44 r55 r66 r77

RNZ r12 r14 r24 r35 r36 r45 r56 r57 r56

XRNZ 1 3 4 6 7 9 10

NZSUB 2 4 5 6 5 6 7

XNZSUB 1 2 3 5 6 6

Figure 5.2.5 Sparse Data Structure of R

- 28 -

The algorithm is virtually identical to the serial algorithm. There are some notable excep-

tions, however, an explanation of which requires an understanding of the data structure for R

as illustrated in Figure 5.2.5. The RNZ array contains the off-diagonal nonzero entries of R in

packed form. It is evident that the RNZ array lends itself to the same segmentation and that the

row reduction process may be pipelined in almost exactly the same way as the R array in the

dense case. The natural row boundaries are determined by the array XRNZ. The i-th entry of

this array points to the location of the first nonzero in the i-th row of the full array R. The

arrays NZSUB and XNZSUB are used to determine the column indices of entries in RNZ as

described in Ref. 15. The RNZ array is divided into equal length segments as shown in Figure

5.2.6.

RNZ r12 r14 I r24 r35 I r36 r45 I r56 r57 I r56 |

Figure 5.2.6 RNZ as a Segmented Pipe

Just as in the dense case, a process is responsible for claiming a row and then combining

it with the current R array using Givens transformations. These processes synchronize as

before: The first nonzero of the unreduced row is determined, the location of the segment con-
taining the corresponding row boundary in RNZ is determined, entry is gained to that segment

(by reading an asynchronous variable on the HEP), and then the row reduction is started. To
preserve the co-rectness of the factorization, once the pipeline has been entered by a process, it
must stay in proper order. A process keeps itself in proper order by gaining access to the next

segment before releasing the segment it currently owns. In the dense case, every process has
work to do in every segment. In the sparse case, however, there may be segments where no

work is required because the sparsity pattern of the row currently being reduced allows it to

skip several rows of R .

This phenomenon is best understood when illustrated by example. Consider a row which

has the initial nonzero structure

a=(0 a 0 x 0 0 0),

and suppose this row is to be reduced to zero against the nonzero R structure shown in Figure

5.2.5 with RNZ segmented as shown in Figure 5.2.6. The first nonzero of the row a is in posi-
tion 2, so it is first combined with row number 2. This row starts at position 3, as indicated

by the second entry of XRNZ, and position 3 is in segment number 2 in RNZ. The diagonal

entry r2., is used together with the first nonzero in a tc compute the Givens transformation, and

then this transformation is applied to element r24 together with the entry in position 4 of a. No
fill is created in a, so after the application there is one nonzero at position 4. Thus, row 3 may

be skipped. Row 4 begins in position 6 of RNZ, which is in segment 3. Entry is gained to
segment 3, and then segment 2 is released and the factorization proceeds. In this example the
next row boundary required happens to be in the adjacent segment. In general, however, there

- 29 -

might be several segments between the relevant row boundaries. In that case, entry into each

of the intervening segments must be gained and released to ensure that the proper order is

maintained between the various rows being processed.

Computational results reported by Heath and Sorensen [21] show that this scheme

achieves near-perfect speedup on typical problems such as those found in Refs. 16 and 20.

The scheme has the advantage of using existing data structures that are found in SPARSPAK

and thus does not require modification of the user interface in existing codes that rely on this

package. Such routines can take advantage of this speedup without modification.

5.3 Eigensystems of Tridiagonal Matrices

The final problem we consider is that of determining the eigensystem of a real nxn sym-
metric matrix A, finding all of the eigenvalues and corresponding eigenvectors of A. It is well

known [30, 32] that under these assumptions

(5.3.1) A = QDQT, with QTQ=I,

so that the columns of the matrix Q are the orthonormal eigenvectors of A and
D = diag(8 1,S 2,...,S~) is the diagonal matrix of eigenvalues. The standard algorithm for comput-
ing this decomposition is first to use a finite algorithm to reduce A to tridiagonal form using a

sequence of Householder transformations, and then to apply a version of the QR algorithm to

obtain all the eigenvalues and eigenvectors of the tridiagonal matrix [12, 29, 30, 32]. In Sec-
tion 4.3 we discussed a method for parallelizing the initial reduction to tridiagonal form. We
now describe a method for parallelizing the computation of the eigensystem of the tridiagonal

matrix.

The method is based on a divide-and-conquer algorithm suggested by Cuppen [3]. A

fundamental tool used to implement this algorithmn is a method developed by Bunch, Nielsen,

and Sorensen [2] for updating the eigensystem of a symmetric matrix after modification by a
rank-one change. This rank-one updating method was inspired by some earlier work of Golub
[19] on modified eigenvalue problems. The basic idea of the new method is to use rank-one
modifications to tear out selected off-diagonal elements of the tridiagonal problem in order to
introduce a number of independent subproblems of smaller size. The subproblems are solved

at the lowest level using the subroutine TQL2 from EISPACK. Results of these problems are

successively glued together using the rank-one modification routine SESUPD that we have

developed based upon the ideas presented in Ref. 2.

In the following discussion we describe the partitioning of the tridiagonal problem into

smaller problems by rank-one tearing. Then we describe the numerical algorithm for gluing
the results back together. The organization of the parallel algorithm is laid out, and finally

some preliminary computational results are presented.

- 30 -

5.3.1 Partitioning by Rank-One Tearing

The crux of the algorithm is to divide a given problem into two smaller subproblems. To
do this, we consider the symmetric tridiagonal matrix

T1 'ee1
(5.3.2) T = r

Relek T2

Tr 0 ek

0 T2 +% l (ek eT)

where 1<_k s n and ej represents the j-th unit vector of appropriate dimension. The k-th diago-
nal element of T1 has been modified to give AI, and the first diagonal element of T2 has been
modified to give T2. There are some numerical difficulties here concerning possible cancella-
tion. A way to overcome these difficulties is discussed fully in Ref. 5.

Now we have two smaller tridiagonal eigenvalue problems to solve. According to Equa-
tion (5.3.2) we compute the two eigensystems

i = Q1D1QI, T2 = Q2D2Q-

This gives

Q1D1QT 0 ek
(5.3.3) T = 0 Q2 D2QJ + , (ei , ef)

Qi 0 D 1 0 q 1Q 0
= 0 Q2 0 D2 + q2 ',j2 0 Qi

where q1 = QTek and q2 = Qe 1. The problem now is to compute the eigensystem of the interior
matrix in Equation (5.3.3). A numerical method for solving this problem has been provided in

Ref. 2, and we shall discuss this method in the next section.

It should be fairly obvious how to proceed from here to exploit parallelism. One simply
repeats the tearing on each of the two halves recursively until the original problem has been

divided into the desired number of subproblems; then the rank-one modification routine may be
applied from bottom up to glue the results together again.

5.3.2 The Updating Problem

The general problem we are required to solve is that of computing the eigensystem of a

matrix of the form

(5.3.4) QhDJT= D + pzz,

where D is a real nxn diagonal matrix, a is a scalar, and z is a real vector of order n. It is

assumed without loss of generality that z has Euclidian norm 1.

As shown in Ref. 2, if D = diag(S1,82," ' ',',S.), with S1< 2< -.. <S. and no component . of
the vector z is zero, then the updated eigenvalues $, are roots of the equation

-31-

fiX) -1+ PI- - =.

Golub [19] refers to this as the secular

described by the graph in Figure 5.3.1.

6,

6,1 a

d2 J

equation. The behavior of its roots is completely

-'3 A 13
6

Figure 5.3.1 The Secular Equation

Moreover, as shown in Ref. 2, the eigenvectors (i.e., the columns of 6 in (5.3.4)) are
given by the formula

(5.3.6)

with 'y chosen to make 14 ill= 1, and with A = diag(i-$;,62-$,"'" ' .-.). Because of this

structure, an excellent numerical method may be devised to find the roots of the secular equa-

tion and, as a by-product, to compute the eigenvectors to full accuracy.

In the following discussion we assume that p > 0 in (5.3.5). A simple change of vari-

ables may always be used to achieve this, so there is no loss of generality. The method we

shall describe was inspired by the work of More' [25] and Reinsch [26, 27] and relies on the

use of simple rational approximations to construct an iterative method for the solution of Equa-

tion (3.2). Given that we wish to find the i-th root 8; of the function f in (3.2), we may write

this function as

fA) = 1 + ()+ j(X),

(5.3.5)

41= YiAiz,

- 32 -

where

and

pi+1 s;-

From the graph in Figure 5.3.1 it is seen that the root $; lies in the open interval (8,;.,.). For ?
in this interval, all of the terms of yi are negative and all of the terms of 4 are positive. We
may derive an iterative method for solving the equation

-y(A)= 1 + ()

by starting with an initial guess 7 in the appropriate interval and then constructing simple
rational interpolants of the form

q- r+s- '

where the parameters p, q, r, and s are defined by the interpolation conditions

(5.3.7) --- =Y(o), r + ss _))

(q -((S 4)=

The new approximate X to the root $; is then found by solving

(5.3.8) -E = 1 + r + -s_

It is possible to construct an initial guess that lies in the open interval (8A). A sequence of
iterates {4} may then be constructed as we have just described, with Xk.1 being derived from

Xk as X was derived from 0 above. It is proved in Ref. 3 that this sequence of iterates con-
verges quadratically from one side of the root and does not need any safeguarding.

During the course of this iteration, the quantities 8; - Xk are maintained, and the iterative
corrections to 4k are added to these differences directly. As the iteration converges, the lower
order bits of these quantities are corrected to full accuracy. Since these differences make up
the diagonal entries of the matrix A; appearing in (5.3.6), this allows computation of the
updated eigenvectors to full accuracy and avoids cancellation that would occur if we first com-
puted the roots and then formed the differences.

Another important numerical aspect of the updating problem is "deflation." There are two
cases where such deflation occurs: when two given roots are nearly equal, and when certain
components of the vector z are "small." The effects of such deflation can be dramatic, for the
amount of computation required to perform the updating is greatly reduced. We shall not
present here the details nor the numerical motivation for deflation. We simply remark that the

- 33 -

result of deflation is to replace the updating problem (5.3.4) with one of smaller size. This is

accomplished by applying similarity transformations consisting of several Givens transforma-

tions. If G represents the product of these transformations, the result is

G(D + pzzT)GT = Dl-pzlzo] + E,

where

I|E I| eIID + pzzT II,

with e roughly the size of machine precision. The cumulative effect of su'h errors is additive,

and thus the final computed eigensystem QdjT satisfies

II A - Q)QTIl s eT||A|I,

where fr is order 1 in magnitude. The reduction in size of D1 - pzizT over the original rank-one
modification can be spectacular in certain cases. The details of deflation, as well as further

numerical results, may be found in Ref. 5; we indicate the potential in Table 6.

In this table we report the results of this algorithm on a tridiagonal matrix with pseudo-
random nonzero entries in the interval [-1,1]. The table entries show ratios of execution time

required by TQL2 (from EISPACK) to that required by the parallel algorithm on the same

machine with the same compiler options and the same environment. In all cases the time

reported by TQL2 was obtained by executing it as a single process. It should be emphasized

that in all cases the computations were carried out as though the tridiagonal matrix had come

from Householder's reduction of a dense symmetric matrix to tridiagonal form. The identity
was passed in place of the orthogonal basis that would have been provided by this reduction,

but the arithmetic operations performed were the same as those that would have been required

to transform that basis into the eigenvectors of the original symmetric matrix.

Table 6

Results of Algorithm on Random Matrix (order = 150)

Ratio of Execution Time TQL2 time

parallel time

VAX 785/FPA Denelcor HEP Alliant FX/8 CRAY X-MP-1 CRAY X-MP-4

12 15.2 1.8 4.52.6

- 34 -

These results are remarkable because speedups greater than the number of physical pro-

cessors were obtained in all cases. The gain is due to the numerical properties of the deflation

portion of the parallel algorithm. In all cases the word length was 64 bits, and the same level

of accuracy was achieved by both methods. The measurement of accuracy used was the max-

imum 2-norm of the residuals Tq - Aq and of the columns of QTQ - I. The results are typical
of the performance of this algorithm on random problems. Indeed, speedups become more

dramatic as the matrix order increases. In problems of order 500, speedups of 15 have been

observed on the CRAY-XMP-4 (a four-processor machine); and speedups over 50 have been

observed on the Alliant FX/8 (an eight-processor machine). The CRAY results can actually be
improved because parallelism at the root finding level was not exploited in the implementation

run on the CRAY but was fully exploited on the Alliant. Finally, we remark that deflation

does not occur for all matrices; examples are given in Ref. 5.

5.3.2 The Parallel Algorithm

Although it is fairly straightforward to see how to obtain a parallel algorithm, certain

details are worth discussing further. We begin by describing the partitioning phase. This
phase amounts to constructing a binary tree with each node representing a rank-one tear and
hence a partition into two subproblems. A tree of level 3 therefore represents a splitting of
the original problem into eight smaller eigenvalue problems. Thus, there are two standard
symmetric tridiagonal eigenvalue problems to be solved at each leaf of the tree. Each of these
problems may be spawned independently without fear of data conflicts. The tree is then

traversed in reverse order, with the eigenvalue updating routine SESUPD applied at each node
joining the results from the left-son and right-son calculations. The leaves each define
independent rank-one updating problems, and again there is no data conflicts between them.
The only data dependency at a node is that the left- and right-son calculations must have been

completed. As this condition is satisfied, the results of two adjacent eigenvalue subproblems
are ready to be joined through the rank-one updating process, and this node may spawn the
updating process immediately. Information required at a node to define the problem consists of
the index of the element torn out, together with the dimension of the left- and right-son prob-
lems. For example, if n = 50 with a tree of level 3, we have the computational tree shown in

Figure 5.3.2.

The tree defines eight subproblems at the lowest level. The ginning indices of these
problems are 1, 7, 13, 19, 26, 32, 38, and 44. The dimensii or each of them may be read off

from left to right at the lowest level as 6, 6, 6, 7, 6, 6, 6, and 7, respectively. As soon as the
calculation for the problems beginning at indices 1 and 7 has been completed, a rank-one
update may proceed on the problem beginning at index 1 with dimension 12. The remaining
updating problems at this level begin at indices 13, 26, and 38. There are then two updating
problems at indices 1 and 26, each of dimension 25, and a final updating problem at index 1 of

dimension 50.

-35-

a

a a

18 a

12 18 12 18

7 19 42 44

6 6 6 7 6 6 6 7

Figure 5.3.2 The Computational Tree

Evidently, we lose a degree of large-grain parallelism as we move up the tree. However,

more parallelism is to be found at the root-finding level; and the amount of this increases as

we travel up the tree, so there is ample opportunity for load balancing in this scheme. The

parallelism at the root-finding level stems from the fact that each of the root calculations is

independent and requires read-only access to all but one array - the array that contains the

diagonal entries of the matrix A, described above. For computational efficiency we may decide

on an advantageous number of processes to create at the outset. In the example above, that
number was 8. Then, as we travel up the tree, the root-finding procedure is split into 2, 4, and

finally 8 parallel parts in each node at level 3, 2, and 1, respectively. As these computations

are roughly equivalent in complexity on a given level, it is reasonable to expect to keep all

processors devoted to this computation busy throughout.

- 36 -

6. Implementation and Library Issues

The notion of introducing parallelism at the level of the modules as detailed in Section 4

presents an unpleasant situation. All of the algorithms are properly considered low-level

library subroutines when taken in the context of a large-scale applications code. If properly

designed, such codes rely on software libraries to perform calculations of the type discussed

here. When designing a library, one wishes to conceal machine dependencies as much as possi-

ble from the user. Also, in the case of transporting existing libraries to new machines, one

wishes to preserve user interfaces in order to avoid unnecessary modification of existing code

that references library subroutines. These important considerations seem to be difficult to

accommodate if we are to invoke parallelism at the level described above. It would appear that

the user must be conscious of the number of parallel processes required by the library subrou-

tines throughout his program. This situation is the result of physical limitations on the total
number of processes allowed to be be created. Should the library routines be called from mul-

tiple branches of a parallel program, the user could inadvertently attempt to create many more

processes than allowed.

A second issue arises within the context of merely programming the more explicitly

parallel algorithms discussed in Section 5. These algorithms present far more challenging syn-
chronization requirements than the simple fork-join construct used to implement the modules

on a parallel machine. How can these routines be coded in a transportable way?

A possible solution that will have impact on both situations has been inspired by work of

Lusk and Overbeek on methodology for implementing transportable parallel codes. We have

adapted the "pool of problems" approach they present [23, 24] to the problem of constructing

and implementing transportable software libraries. We use a package called SCHEDULE,
which we have designed for the user familiar with a Fortran programming environment. The

approach relies upon the user's adopting a particular style of expressing a parallel program.
Once this has been done, the subroutines and data structure provided by SCHEDULE will
allow implementation of the parallel program without dependence on specific machine intrin-

sics. The user is required to fully understand the data dependencies, parallel structure, and

shared memory requirements of the program.

The basic philosophy taken here is that Fortran programs are naturally broken into sub-
routines that identify self-contained units of computation and that operate on shared data struc-

tures. Typically, these data structures are rectangular arrays; and the portion of the data struc-
ture to be operated on is often identified by passing an element of the array that is treated
within the subroutine as the first element of the array to be operated on. This standard tech-

nique is extremely useful in implementing a parallel algorithm in the style adopted in
SCHEDULE. Morever, it allows one to call upon existing library subroutines without any
modification, and without having to write an envelope around the library subroutine call in
order to conform to some unusual data-passing conventions imposed by a given parallel pro-
gramming environment. One defines a shared data structure and subroutines to operate on this

- 37 -

data structure. Then a parallel(izable) program is written in terms of calls to these subroutines,

which in principle may be performed independently or according to data-dependency require-

ments which the user is responsible for defining. The result is a serial program that could run

in parallel if there was a way to schedule the units of computation on a system of parallel pro-

cessors while obeying the data dependencies.

SCHEDULE works in a manner similar to an operating system to schedule processes that

are ready to execute. It consists of two queues: a process queue and a ready queue. A process

identifies a subroutine call and pointers to addresses needed to make the call. A process tag is

placed on the ready queue when its data dependencies have been satisfied. In addition, work

routines are constructed that are capable of assuming the identity of any process appearing on

the queue. A fixed number of these routines are devoted to the library. They are activated

(created, forked, etc.) at the outset of the computation and remain activated throughout the

course of this computation. Within this scheme, calls to matrix vector routines (for example)

are not made explicitly. Instead, they are put on the process queue to be performed as soon as

they can be picked up by one of the workers through the scheduler mechanism. Transportabil-

ity is achieved because the actual references to machine-specific synchronization primitives are

few in number and are isolated in two low-level SCHEDULE routines. These, together with

the specific means for creating or forking processes, are the only items that need to be changed

when moving from one machine to another. A schematic of the abstract idea behind the

scheduler is represented in Figure 6.1.

7. Conclusions

We have presented a sampling of the ideas for algorithms and implementation techniques

that we have been considering recently in the Mathematics and Computer Science Division at
Argonne National Laboratory. Traditionally, our activities have involved the development of

algorithms and techniques for implementing these algorithms in a transportable manner. We
view the work presented here as an extension of these activities, an extension that will help us

address similar problems that are arising with the advent of exotic computer architectures. We

find the subject challenging and rewarding in terms of its potential. We encourage others to

join us in pursuing methodologies and software techniques that will enable effective use of the

developing hardware.

- 38 -

USERC001

CALL MATRIX CALL MATRIX
VECTOR ROUTINE VECTOR ROUTINE VECTOR ROUTINE

SCHEDULER

0 R 0 R

R 0 R 0

1K C K C

E E

I s s
s s

Figure 6.1 Library Scheduler

- 39 -

References

[1] R. G. Babb II, Parallel Processing with Large Grain Data Flow Techniques, IEEE Com-

puter 17, No. 7 , pp. 55-61, July 1984.

[2] J. R. Bunch, C. P. Nielsen, and D. C. Sorensen, Rank-One Modification of the Symmetric

Eigenproblem, Numerische Mathematik 31, pp. 31-48, 1978.

[3] J. J. M. Cuppen, A Divide and Conquer Method for the Symmetric Tridiagonal Eigen-

problem, Numerische Mathematik 31, pp. 31-48, 1978.

[4] J. J. Dongarra, Performance of Various Computers Using Standard Linear Equations

Software in a Fortran Environment, Argonne National Laboratory Report MCS-TM-23,

updated August 1984.

[5] J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W. Stewart, UNPACK Users' Guide,

SIAM Publications, Philadelphia, 1979.

[6] J. J. Dongarra, J. Du Croz, S. Hammarling, and R. J. Hanson, A Proposal for an
Extended Set of Fortran Basic Linear Algebra Subroutines, Argonne National Laboratory

Report MCS-TM-41, Revision 1, October 1985.

[7] J. J. Dongarra and S. C. Eisenstat, Squeezing the Most out of an Algorithm in CRAY For-

tran, ACM Trans. Math. Software 10, No. 3, pp. 221-230, 1984.

[8] J. J. Dongarra, L. Kaufman, and S. Hammarling, Squeezing the Most out of Eigenvalue
Solvers on High-Performance Computers, Argonne National Laboratory Report MCS-
TM-46, January 1985 (to appear in Linear Algebra and' Its Applications).

[9] J. J. Dongarra, A. H. Sameh, and D. C. Sorensen, "Some Implementations of the QR

Factorization on an MIMD Machine," Argonne National Laboratory MCS-TM-25,
October 1984 (to appear in Parallel Computing).

[10] J. J. Dongarra and D. C. Sorensen, A Fully Parallel Algorithm for the Symmetric Eigen-

value Problem, in preparation.

[11] K. Fong and T. L. Jordan, Some Linear Algebra Algorithms and Their Performance on

CRAY-1, Los Alamos Scientific Laboratory Report UC-32, June 1977.

- 40 -

[12] B. S. Garbow, J. M. Boyle, J. J. Dongarra, and C. B. Moler, Matrix Eigensystem Rou-

tines - EISPACK Guide Extension, Lecture Notes in Computer Science, Vol. 51,

Springer-Verlag, Berlin, 1977.

[13] W. Gentleman, Error Analysis of the QR Decomposition by Givens Transformations,

Linear Algebra and Its Applications 10, pp. 189-197, 1975.

[14] M. Gentleman and H. T. Kung, "Matrix Triangularization by Systolic Arrays," in
Proceedings SPIE 298 Real-Time Signal Processing IV, San Diego, California, 1981.

[15] A. George and M. T. Heath, Solution of Sparse Linear Least Squares Problems Using

Givens Rotations, Linear Algebra and Its Applications 34, pp. 69-83, 1980.

[16] J. A. George, M. T. Heath, and R. J. Plemmons, Solution of Large-Scale Sparse Least
Squares Problems Using Auxiliary Storage, SIAM J. on Sci. and Stat. Computing 2, pp.

416-429, 1981.

[17] A. George and J. Liu, Computer Solution of Large Sparse Positive Definite Systems,

Prentice-Hall, Englewood Cliffs, New Jersey, 1981.

[18] W. Givens, Numerical Computation of the Characteristic Values of a Real Symmetric

Matrix, Oak Ridge National Laboratory Report ORNL-1574, 1954.

[19] G. H. Golub, Some Modified Matrix Eigenvalue Problems, SIAM Review 15, pp. 318-

334 1973.

[20] G. H. Golub and R. J. Plemmons, Large Scale Geodetic Least Squares Adjustments by

Dissection and Orthogonal Decomposition, Linear Algebra and Its Applications 34, pp.
3-28, 1980.

[21] M. T. Heath and D. C. Sorensen, A Pipelined Givens Method for Computing the QR-

Factorization of a Sparse Matrix Argonne National Laboratory Report MCS-TM-47,
February 1985 (to appear in Linear Algebra and Its Applications).

[22] C. Lawson, R. Hanson, D. Kincaid, and F. Krogh, Basic Linear Algebra Subprograms
for Fortran Usage, ACM Trans. Math. Software 5, pp. 308-371, 1979.

- 41 -

[23] B. Lusk and R. Overbeek, Implementation of Monitors with Macros: A Programming Aid

for the HEP and Other Parallel Processors, Argonne National Laboratory Report ANL-

83-97, 1983.

[24] E. Lusk and R. Overbeek, An Approach to Programming Multiprocessing Algorithms on

the Denelcor HEP, Argonne National Laboratory Report ANL-83-96, 1983.

[25] J. J. More', The Levenberg-Marquardt Algorithm: Implementation and Theory, Proceed-

ings of the Dundee Conference on Numerical Analysis, ed. G. A. Watson, Springer-
Verlag, 1978.

[26] C. H. Reinsh, Smoothing by Spline Functions, Numerische Mathematik 10, pp. 177-183,

1967.

[27] C. H. Reinsh, Smoothing by Spline Functions II, Numerische Mathematik 16, pp. 451-

454, 1971.

[28] A. Sameh and D. Kuck, On Stable Parallel Linear System Solvers, J. of the ACM 25, pp.

81-91, 1978.

[29] B. T. Smith, J. M. Boyle, J. J. Dongarra, B. S. Garbow, Y. Ikebe, V. C. Klema, and C.
B. Moler, Matrix Eigensystem Routines - EISPACK Guide, Lecture Notes in Computer

Science, Vol. 6, 2nd edition, Springer-Verlag, Berlin, 1976.

[30] G. W. Stewart, Introduction to Matrix Computations, Academic Press, New York, 1973.

[31] D. C. Sorensen, Buffering for Vector Performance on a Pipelined MIMD Machine, Paral-

lel Computing 1, pp. 143-164, 1984.

[32] J. H. Wilkinson, The Algebraic Eigenvalue Problem, Clarendon Press, Oxford, 1965.

- 42 -

Distribution for ANL-86-2

Internal:

J. J. Dongarra (40)
K. L. Kliewer
A. B. Krisciunas
P. C. Messina
G. W. Pieper
D. M. Pool
D. C. Sorensen (40)
T. M. Woods (2)

ANL Patent Department
ANL Contract File
ANL Libraries
TIS Files (6)

External:

DOE-TIC, for distribution per UC-32 (167)
Manager, Chicago Operations Office, DOE
Mathematics and Computer Science Division Review Committee:

J. L. Bona, U. Chicago
T. L. Brown, U. of Illinois, Urbana
S. Gerhart, MCC, Austin, Texas
G. Golub, Stanford University
W. C. Lynch, Xerox Corp., Palo Alto
J. A. Nohel, U. of Wisconsin, Madison
M. F. Wheeler, Rice U.

D. Austin, ER-DOE
J. Greenberg, ER-DOE
G. Michael, LLL

