QUASI-AUTOMATIC PARALLELIZATION:
 A SIMPLIFIED APPROACH
 TO MULTIPROCESSING

by
B. W. Glickfeld and R. A. Overbeek

ARGONNE NATIONAL LABORATORY, ARGONNE, ILLINOIS
Operated by THE UNIVERSITY OF CHICAGO
for the U. S. DEPARTMENT OF ENERGY
under Contract W-31-109-Eng-38

ANI,-E5-70

ANL--85-70

DE86 005120

ARGONNE NATIONAL LABORATORY
9700 South Cass Avenue
Argonne, Illinois 60439

Quasi-Automatic Parallelization: A Simplified Approach to Multiprceessing

B. W. Glickfeld
Northern Illinois University
and
R. A. Overbeek
Argonne National Laboratory

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use woutd not infringe privately cwned rights. Reference herein to any specific commercial product, process, or survice by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed hercin do not necessarily state or reflect those of the United States Government or any agency thereof.

Y-

A major purpose of the Technical Information Center is to provide the broadest dissemination possible of information contained in DOE's Research and Development Reports to business, industry, the academic community, and federal, state and local governments.

Although a small portion of this report is not reproducible, it is being made available to expedite the availability of information on the research discussed herein.

Tabic oi Contents

Abstract 1

1. Introduction 1
2. The Basic Idea and Its Implementation 3
2.1 Summary of the Parallelization Structure 4
2.2 Description of the Implementation via Macros 7
2.2.1 The gs2var Macro 12
2.2.2 The gs2init1 and gs2init2 Macros 13
2.2.3 Creation of SLAVE Processes 13
2.2.4 The WORK Routine 17
2.2.4.1 The gs2 Macro 17
2.2.4.2 The end1 and end2 Mac:os $1 \ni$
2.2.2.3 The cmplxend Maero 13
2.2.5 Complications Introduced by Multiplicity Greater Than 1 20
3. A Geometric Representation of Synchronization Dependencies 21
4. A Formal Description of the Structure 24
5. Summary of Examples 31
6. Examples 33
6.1 ADDTWO 33
6.2 CHECKTWO 37
6.3 GETDUPS 39
6.4 GETADUP A3
6.5 MATMULT 40
6.6 SORT 47
6.7 GRID 54
6.8 QR 53
References 66
Appendix A: The ADDTWO Example 67
Appendix B: The CHECKTWO Example 70
Appendix C: The GETDUPS Example 73
Appendix D: The GETADUP Example 75
Appendix E: The MATMULT Example 79
Appendix F: The SORT Example 62
Appendix G: The GRID Example 83
Appendix H: The QR-Factorization Example 91

Quasi-Automatic Parallelization: A Simplified Approach to Multiprocessing

B.W. Glickfeld

Northern Illinois University DeKalb, Illinois 60115
R. A. Overbeek

Argonne National Laboratory Argonne, Illinois 60439

Abstract

As multiprocessors become commercially available, a great: deal of concern is being focused on the problems involved in writing and debugging software for such machines. Earlier work described the use of monitors implemented by macro processors to attain portable code. This work formulates a general-purpose monitor which simplifies the programming of a wide class of numeric algorithms. We believe that the approach of describing a set of schedulable units of computation advocated by Brown offers a real simplification for the applications programmer. In this paper, we propose a straightforward programming paradigm for describing schedulable units of computation that allows the description of many algorithms with very little effort.

1. Introduction

Early work on implementing portable code for multiprocessors [4, 5, 3] resulted in the definition of a general-purpose monitor that dispatched units of work to processes. It was found that this monitor, the askfor monitor, could be effectively used to write portable implementations of numeric algorithms for multiprocessors having a globally shared memory. However, substantial effort was needed to implement the logic for managing the pool of available units of work.

As an alternative, the self-scheduling DO-loop [2] was defined, which offers a highly desirable simplicity lacking in the askfor monitor. Until recently, however, the use of this self-scheduling DO-loop has been limited to only special classes of numeric algorithms.

This paper describes efforts to extend the outlook utilized in the selfscheduling DO-loop to a much wider class of synchronization patterns. By analyzing the synchronization required by a number of algorithms, we developed an abstraction of the basic patterns relating schedulable units of computation. We discovered that this abstraction could be visualized naturally, using geometric diagrams, and that the actual code for dispatching units of computation could be reduced (fur a wide category of algorithms) to simply specifying the parameters that characterized the geometric pattern required by any particular application.

This paper presents a basic structure for a substantial class of parallel algorithms, a macro package based on that structure, and a series of geometric synchronization patterns that depict the parallelization structure. The macro package, which consists of one central macro gs2 (so called because a unit of computation is characterized by two subscripts that specify its location in a 2 dimensional depiction of the syrichronization dependencies) and some supporting macros, enables the quasi-automatic parallelization of many algorithms.

By quasi-automatic parallelization of angorithm we mean a cooperative venture between user and macro package where the work of parallelization is done by the macro monitors in the package, with minimal input from the programmer. The user must perform the simple mechanical tasks setting up the interaction between user application code and the macro monitors. In particular, he must supply certain values to the macros, i.e., see that certain values are properly defined before the relevant macro call. Underscoring the simplicity of these efforts is the fact that the user need not do any macroprocessor language coding (as contrasted, say, with the askfor monitor [5]). In addition, the common synchronization errors associated with programming multiprocessors can be dramatically reduced.

The methods used here differ from previous methods of quasi-automatic parallelization. For example, they have a far wider range of applicability than the self-scheduling DO-loop, although they fall short of the broad range of the askfor monitor. Furthermore, they are simpler to use than the askjor monitor; like the self-scheduling DO-loop, our methods do not require the user to creai.e problem-dependent data structures and problem-dependent macro definitions.

To further clarify the relationship between the self-scheduling DO-loop and the gs2 monitor, the user should consider algorithms in which the relationship between schedulable units of work can be visualized in a two-dimensional Cartesian plane. In the case of the self-scheduling DO-loop, the units of work simply form a horizontal line. No interdependencies exist between the units of work; they can all be done in parallel. The gs2 monitor allows more complex interdependencies between the units of work. Essentially, it allows the units of work
to be represented by either one or two regions in the Cartesian plane. In the case in which a single region suffices, the units of work (characterized by unique coordinates) may still have interdependencies. For example, it is possible to implement the case in which all of the units in one row must complete before those in the next row begin. Alternatively, one might weaken the constraint to the case in which a unit of work cannot be scheduled until the unit directly above it (i.e., in the previous row) has completed. Or, one might wish to introduce a dependency upon units of work in the previous row, but have the dependency include a skew factor. For example, the unit of work may become schedulable when the unit in the previous row, but one column to the right, has completed. In the case in which the units of work can he viewed as a single region in the piane, the region will be called a simplex.

While many algorithms can easily be described within the intellectual framework of a simplex, some algorithms conceptually require two disjoint plane regions. We then refer to the two regions as a 2-complex. In this case, the units within each region may have all of the dependencies introduced in the case of a simplex. In addition, there may exist scheduling constraints between the boundary elements in each region.

Examples presented in the following sections will illustrate the po:rer and range of the structure. In particular, a discrete grid version of the Dirichlet problem for a cube will display the force of the simplex, while the Householder algorithm used in the QR factorization of a matrix will display the force of the 2complex.

The examples will include all those presented by Overbeek and Lusk [5], along with the above-mentioned grid problem (used in [1] to illustrate the range of the askfor monitor,) a variant of the getdups problem presented in [3] and a parallel version of matrix multiplication. Both general and detailed analyses of all examples will be presented.

The theory and methods presented here provide portable, reliable, and efficient code which may be implemented on most multiprocessors featuring a number of processes acting on a globally shared memory. Examples of such multiprocessors include the CRAY X-MP and the Denelcor HEP. F'urther research is needed to deal with the applicability of gsn macros for $n>2$, as well as other 2 -subscript monitor structures besides the simplex and 2 -complex presented here.

2. The Basic Idea and Its Implementation

In this section we will offer an informal description of the basic ideas employed in the gs2 monitor. A formal description will be given in a later section. We will follow our informal discussion with a description of the macro
package that implements these concepts. We will illustrate its use on a straightforward example - a program to multiply two matrices. Then we will analyze a number of examples that illustrate the basic notions. We believe that these examples offer evidence of both the power and the simplicity of the approach advocated in this paper.

2.1. Summary of the Parallelization Structure

By a parallelization simplex we mean an ordered triple (S,T,U), where S is a regular region in the Cartesian integer plane, T is a function whose domain is 3 and whose range is the set of computational tasks (i.e., for each (i, j) in $\mathrm{S}, \mathrm{T}(i, j)$ is a computational task), and U is a finite (perbaps empty) set of synchronization constraints.

The Cartesian integer plane Z_{2} is the set of all ordered pairs of integers. By_{y} a region we mean a subset of Z_{2}. We call it regular if it is both
i) the set of all ordered pairs of integers lying between and including an upper boundary and a lower boundary (either of which might be jagged), and
ii) the set of all ordered pairs of integers lying between and including a left boundary and a right boundary.
For example, the rectangle below depicts a regular region.

To picture ordered pairs, we choose conventions different from the usual ones. The first coordinate is represented on the vertical axis, with larger values corresponding to lower points than do smaller values. The second coordinate is represented on the horizontal axis, with larger values corresponding to points to the right of those representing smaller values. These conventions are made because of the way a matrix is usually depicted. A matrix is indexed by ordered
pairs of integers. The first index (the row index) is usually considered as a vertical index; matrix elements with larger row indices appear below matrix elements with smaller row indices. Similarly, the second index (the column index) is usually considered as a horizontal index; matrix elements with larger column indices appear to the right of matrix elements with smaller column indices. Thus, our convention enables us to depict, in the Cartesian integer plane, the set of index pairs of a matrix so that they appear as they normally do.

There are two possible synchronization constraints on a simplex:
i) the column constraint C, which requires that no task in a column begin until all earlier tasks (i.e., those from a row with a smaller suoscript) in that column have completed, and
ii) the row constraint R, which requires that no task in a given row begin until all tasks from the preceding row (i.e., the row whose subscript is one less than that of the row under consideration) have completed.

C may include a skew factor k-- a non-negative integer such that for all j, no task in the j th column can begin until all earlier tasks in the $(j+k)$ th column, as well as all earlier tasks in the j th column, have ended.

An example of a simplex occurs when the underlying region S is an integer rectangle; such a simplex is simply a computational task matrix.

The simplex structure implies that tasks begin in lexicographic order; that is, within a given row, tasks begin in order of column subscripts, and tasks in rows with larger row subscripts begin after those in rows \#ith smaller subscripts. Although some efficiency is lost because of this restriction, the loss is not significant for the algorithms examined in this paper. It is counterbalanced by the power and simplicity of the structure, the ease of use of the macro package, and the user's ability to avoid programming macros for a macroprocessor.

During the execution of a program using the gs2 macro and a simplex structure, at any given time either all tasks in the simplex have begun or some particular point (i_{0}, j_{0}) in the underlying region S represents the current task (i.e., the task next to begin). Implying a lexicographic order may at times result in such phenomena as the following:
a) the current task is not yet ready to begin (e.g., because of the failure of the C constraint to be satisfied) while some other task is ready to begin, or
b) although the current task is ready to begin, other tasks also are ready to begin, whose beginning would in some sense be more optimal.

The disadvantages attendant to the use of the implied order are, as we have stated above, compensated for in all the examples in this paper, as well as in a substantial class outside this paper. We use the analogy from mathematics of
approximating general functions by smooth functions; what we lose in exactness we often more than recover in ease of manipulation. Here we are approximating a general sequence of points in the underlying region by one in which there is a smooth progression of subscript pairs, with analogous loss of exactness and gains in manipulability.

Although the simplex structure is adequate for most of our problems, certain of them require more regions. Thus we introduce the notion of parallelization complex or, more briefly, complex. There are two kinds of complexes: 1complexes and 2 -complexes. A 1 -complex is a simplex. A 2 -complex is ar ordered triple $\left(\left(S^{1}, T^{1}, U^{1}\right),\left(S^{2}, T^{2}, U^{2}\right), V\right)$ where the first two eiements of the triple are the simplexes $\left(S^{1}, T^{1}, U^{1}\right)$ and $\left(S^{2}, T^{2}, U^{2}\right)$, respectively, and the third element is a non-empty finite set V of cross-constraints, each of which requires that certain tasks in one of the underlying simplexes can begin only after certain other tasks in the other underlying simplex have ended. It is also required tha: the underlying regions S^{1} and S^{2} be disjoint, i.e., have no points in common.

Given a 2-complex, we will call (S^{1}, T^{1}, U^{1}) simplex 1 , and (S^{2}, T^{2}, U^{2}) simplex 2. Permissible cross-constraints include XC12 (the cross-column ccnstrainit from simplex 1 to simplex 2), XC21 (the cross-column constraint from simplex 2 to simplex 1), XR12 (the cross-row constraint from simplex 1 to simplex 2) and XR21 (the cross-row constraint from simplex 2 to simplex 1).

XC12 XC12 means that whenever j is an integer such that S^{1} and S^{2} botis have a j th column (i.e., they both contain points whose second coordinate is j), then the computational task $T^{1}(i, j)$ with the largest possible row subscript i must end before the computational task $T^{2}(\pi, j)$ with the smallest possible row subscript k can begin.

XC21 XC21 is analogously defined, with the roles of simplex 1 and simplex 2 reversed; for the largest possible $k, T^{2}(k, j)$ must end before $T^{1}(i, j)$, for the smallest possible i, can begin.
XR12 XR12 means that whenever i is an integer such that S^{1} and S^{2} both have an i th row (i.e., they both contain points whose first ccordinate is i), then all the T^{1} tasks in that row must end before the computational task $T^{2}(i, j)$ with the smallest possible j can begin.

XR21 XR21 is analogously defined, with the roles of simplex 1 and simplex 2 reversed; here all the T^{2} tasks in the i th row must end before $T^{1}(i, j)$ with the smallest possible j can begin.

In our formulation, XC12 (XC21) can apply only when S^{1} borders S^{2} from above (S^{2} borders S^{1} from above). Similarly, XR12 (XR21) can apply only when S^{1} borders S^{2} from the left (S^{2} borders S^{1} from the left). All these concepts will be presented in detail further on.

Thus, in a 2 -complex there are two disjoint simplexes, simplex 1 and simplex 2 , with disjoint underlying regions S^{1} and S^{2}. respectively, such that at least one of the simplexes in some sense borders and constrains the other (it is possible for both simplexes to border and constrain each other, as will be demonstrated in a later example).

As mentioned earlier, a 1 -complex is merely a simplex, which will be referred to as simplex 1 . The dimension of a 1 -complex is defined to be 1 , and the dimension of a 2 -complex is defined to be 2 . During the execution of a program using the gs2 macro and a 2 -complex structure, at any given time either
i) all tasks in the complex have begun, or
ii) there is either a point $\left(i_{1}, j_{1}\right)$ in S^{1} that represents the current task in simplex 1, or a point $\left(i_{2}, j_{2}\right)$ in S^{2} that represents the current task in simplex 2 , or both.
If ii) holds, the next task to begin will be either $T^{1}\left(i_{1}, j_{1}\right)$ or $T^{2}\left(i_{2}, j_{2}\right)$; by convention, priority is tilted in favor of simplex 1 . Within the complex structure, each simplex has its underlying region traversed lexicographically during program execution, subject to internal constraints from among C1, R1, C2, and R2, external cross-constraints from among XC12, XC21, XR12, and Xi21, and the above priority convention. (Note that C1 refers to the column constraint C for simple: 1 , and $R 1$ to the row constraint R for simplex 1 . C2 and $R 2$ refer to the analogous constraints for simplex 2.) It can easily be shown that the resulting parallelization is free from deadlock.

2.2. Description of the Implementation via Macros

The macro package will now be discussed, along with an elaboration of the program structure we employ to use the macros effectively.

We note that the dimension of the complex under consideration remains fixed throughout the program. However, a given program may execute many (i.e., more than 1) complexes. Each complex, of course, represents a set of computational tasks structured in a certain manner, along with certain constraints. When we say that the program executes a complex, we mean that during its execution it will perform all, or a number, of those tasks in accordance with the structure and the constraints.

Two complexes are equal if their dimensions are equal and their underlying simplexes are respectively equal. Two simplexes are equal if the underlying regions are equal as sets, the underlying task functions are identical, and the imposed constraints are identical.

When a program executes more than one complex, the complexes may differ either because of differences in the underlying regions of corresponding
simplexes, or because of differences in the underlying task functions in corresponding simplexes. However, with the program structure used in this paper, the underlying constraints in corresponding simplexes must be identical, except that they may have differing corresponding skew factors.

The formal notion of executing a complex corresponds to the intuitive notion of executing a problem. Thus the formal statement that a given prograrn may execute many complexes is equivalent to the intuitive one that one execution of a program may solve many problems.

To illustrate the actuai placement and coding of the macro statements, we include a straightforward program that computes the product of two matrices. We will reference the actual lines of code throughout the remainder of this section.

```
define(RB11,1)
```

define(RB11,1)
define(RB12,21)
define(RB12,21)
define(CB11,1)
define(CB11,1)
define(CB12, 21)
define(CB12, 21)
define(RB21,1)
define(RB21,1)
define(RB22,2)
define(RB22,2)
dptine(CB21,1)
dptine(CB21,1)
deflne(CB22, 1)
deflne(CB22, 1)

*
*

* THIS PROGRAM READS IN TWO MATRICES AND COMPUTES THEIR PROLLCT.
* THIS PROGRAM READS IN TWO MATRICES AND COMPUTES THEIR PROLLCT.
*
*

s.m**
s.m**
PROGRAM MATMUL
PROGRAM MATMUL
newproc(SLAVE)
newproc(SLAVE)
*
*

* COMMON AREA VARIABLES
* COMMON AREA VARIABLES
*
* INTEGER A(20,20), B(20,20), C(20,20)
INTEGER A(20,20), B(20,20), C(20,20)
INTEGER NPROCS, AI, AJ, BJ
INTEGER NPROCS, AI, AJ, BJ
COMMON /MAINC/ A, B, C, NPROCS, AI, AJ, BJ
COMMON /MAINC/ A, B, C, NPROCS, AI, AJ, BJ
*
* gs2var
gs2var
26 *
27
28

```
```

29
31
32
33 *

```
```

30 * INITIALIZE THE MONITOR

```
30 * INITIALIZE THE MONITOR
```

 *
    ```
    *
    *********************************************************************
    *********************************************************************
    *
    *
    gs2init1(1,00,00,00,00)
    gs2init1(1,00,00,00,00)
    *
    *
    READ (5,10) NPROCS
    READ (5,10) NPROCS
    10 FORMAT(14)
    10 FORMAT(14)
    WRITE(6,20) NPROCS
    WRITE(6,20) NPROCS
    20 FORMAT(' NPROCS = ',I4)
    20 FORMAT(' NPROCS = ',I4)
    *
    *
    ****************************************************!*******s:%*******
    ****************************************************!*******s:%*******
    *
    *
    * READ IN THE TWO INPUT MATRICES
    * READ IN THE TWO INPUT MATRICES
    *
    *
    *********************************************************************
    *********************************************************************
    *
    *
        READ (5,10) AI
        READ (5,10) AI
        READ (5,10) AJ
        READ (5,10) AJ
        READ (5,10) BJ
        READ (5,10) BJ
            DO 2 I = 1,AI
            DO 2 I = 1,AI
                DO 1 J = 1,AJ
                DO 1 J = 1,AJ
                READ (5,10) A(I,J)
                READ (5,10) A(I,J)
        CONTINLE
        CONTINLE
            CONTINUE
            CONTINUE
            DO 4 I = 1,AJ
            DO 4 I = 1,AJ
        DO 3 J = 1, BJ
        DO 3 J = 1, BJ
                READ (5,10) B(I,J)
                READ (5,10) B(I,J)
        CONTINUE
        CONTINUE
            CONTINUE
            CONTINUE
        *
        *
    MNRV1 = 1
    MNRV1 = 1
    MXRV1 = AI
    MXRV1 = AI
    MNCV1 = 1
    MNCV1 = 1
    MXCV1 = BJ
    MXCV1 = BJ
    DO 5 l = 1,AI
```

 DO 5 l = 1,AI
    ```
```

7 0
71
7 2
73
7 4
75
76
7 7
78
7 9
B0
B1
82
B3
84
85
86
87
88
89
90
91
92
93

$$
\operatorname{LFBDY1}(\mathrm{I})=1
$$

5 CONTINUE
DO $6 \mathrm{I}=1$, AI
RTBDY1 $(\mathrm{I})=\mathrm{BJ}$
6 CONTINUE
DO $7 \mathrm{I}=1$, BJ
$\operatorname{UPBDY1(I)}=1$
7 CONTINUE
DO $8 \mathrm{I}=1$, BJ
LWBDY1 (I) $=\mathrm{AI}$
8 CONTINUE
gstinit2 $(1,00,00,00,00)$
DO 30 I=1, NPROCS- 1
create(SLAVE)
30 CONTINUE
*
CALL WORK
*
WRITE $(6,40)$
40 FORMAT(' THE VALUES IN C ARE AS FOLLOWS:')
DO $41 \mathrm{I}=1$, AI
DO $42 \mathrm{~J}=1, \mathrm{BJ}$
WRITE $(6,43)$ I.J.C(I.J)
CONTINUE
41 CONTINUE
43 FORMAT(' ',IR,' ',I2,' ', 18)
STOP
END
*
**:
*

* THE SLfVE PROCESSES JUST CALL THE WORK SUBROUTINE
* WHERE THEY CLAIM TASKS TO WORK ON.
*

```
```

SUBROUTINE SLAVE
*
CALL WORK
RETURN
END
*

```

```

*
* THE WORK SUBROUTINE CONTAINS THE CODE TO CLAIM A TASK,
* PERFORM THE TASK, AND GO BACK TO GET ANOTHER TASK TO WORT. OH.
*

**:
*
SIIRROUTINE WORK
*

* COMMON AREA VARIABLES
INTEGER $\mathrm{A}(20,20), \mathrm{B}(20,20), \mathrm{C}(20.20)$
INTEGER NPROCS, AI, AJ, BJ
COMMON /MAINC/ A, B, C, NPROCS, AI, AJ, BJ
gs2var
*

INTEGER K
*
10 CONTINUE
gs2(1,00,00,00,00)
1000 CONTINUE
*
$\mathrm{C}(\mathrm{I}, \mathrm{J})=0$
DO $1001 \mathrm{~K}=1, \mathrm{AJ}$
C(I,J) = C(I,J) + (A(I,K) * B(K,J))
1001 CONTINUE
end 1(1,00,00,00,00)
GO TO 10
*
3000 CONTINUE

2.2.1. The gs2var Macro

The code begins with the main program. At the end of the type declarations, the first macro call is inserted; it is a call to gszuar. This macro declares the variables and common blocks to be used by the monitor package; it takes no parameters.

Prior to the call to gsßuar, eight define statements should appear in the program (e.g., see lines 1-8 in MATMUL). These statements enable certain arrajs within gsZuar to be properly defined.

The constant RB11 should be some integer constant less than or equal to the smallest row value of all simplex 1 's to be executed by the program. By a simplex 1 to be executed by a program we mean a simplex $1\left(S^{1}, T^{1}, U^{1}\right)$ belonging to a complex to be executed by that program. A row value of a simplex (S,T,U) is an integer i such that some (i, j) is in S , the underlying region of the simplex. If the smallest row value of all simplex 1 's to be executed by the program can be obtained without much difficulty, it should be used for the constant. Otherwise, the largest integer that satisfies the condition and can be obtained without much difficulty should be used.

The constant RB12 should be some integer constant greater than (but not equal to) the largest row value of all simplex 1 's to be executed by the program. If that largest row value can be obtained without much difficulty, that value $\div 1$ should be used for the constant. Otherwise, the smallest integer that satisfies the condition and can be obtained without much difficulty should be used.

The constant CB11 should be some integer constant less than or equal to the smallest column value of all simplex 1 's to be executed by the program. A column value of a simplex (S,T,U) is an integer j such that some (i, j) is in S, the underlying region of the simplex. If this smallest column value can be easily obtained, it should be used. Otherwise, the largest integer that satisfies the condition and can be obtained without much difficulty should be used.

The constant CB12 should be some integer constant greater than or equal to the sum of the largest column value of all simplex 1 's to be executed by the program and the largest skew factor of all simplex 1 's to be executed by the program. (If a skew factor is not explicitly given by the user, it defaults to 0.) if this sum can be easily obtained, it should be used. Olherwise, the smallest. integer that satisfies the condition and can be easily obtained should be used.

The remaining integer constants (RB21, RB'22, CB21, and CB22) are defined in much the same way as those just described. Here, however, simplex 2's rather than simplex 1 's are used in the definition of the constants. If a program will execute one (or many) 1-dimensional complexes (so that no simplex 2 's are relevant), the user may set RB21 to 1, RB22 to 2, CB21 to 1, and CB22 to 1.

Of course, the variables declared in gsZuar must not be used elsewhere in the program by the user in such a way as to conflict with the use dictated by the macro package. For this reason, a list of the variables declared in gsZuar is appended to this paper.

2.2.2. The gs2init1 and gs2init2 Hacros

The next macro call (after gsZuar) in the main program is to gsZinit 1. This macro initializes certain of the variables in gsZuar. During execution of the program, gsZinit 1 is called only once, regardless of how many different complexes are executed by the program. Therefore gsZinit 1 may be termed a program initialization.

The macro gs2init 1 takes 5 parameters; this parameter structure will be used repeatedly in most of our remaining macro calls (except for one call to the barrier macro, to be discussed later). The 5 parameters, denoted by $\$ 1, \$ 2, \$ 3$, $\$ 4$, and $\$ 5$, are described as follows:

1. $\$ 1$ is one character. This character is 1 if the complexes to be executed by the program (all of which must have the same dimension) are 1 -dimensional, i.e., if each of them consists of one simplex (and perhaps constraints). The character is 2 if the complexes to be executed by the program are 2 -dimensional, i.e., if each of them consists of 2 simplexes (and perhaps constraints).
2. All the remaining parameters have exactly two characters. The first character of $\$ 2$ is C if Cl holds, i.e., if the column constraint holds in simplex 1 ; otherwise it is 0 . The second character of $\$ 2$ is X if $\mathrm{XC2} 1$ holds, i.e., if the cross-column constraint from simplex 2 to simplex 1 holds; otherwise it is 0 .
3. The first character of $\$ 3$ is R if R 1 holds, i.e., if the row constraint holds in simplex 1 ; otherwise it is 0 . The second character of $\$ 3$ ir X if XR21 holds, i.e., if the cross-column constraint from simplex 2 to simplex 1 holds; otherwise it is 0 .
4. $\$ 4$ and $\$ 5$ are analogous to $\$ 2$ and $\$ 3$, respectively, with the roles of simplex 1 and simplex 2 reversed. In detail, the first character of $\$ 4$ is C if C 2 holds, i.e., if the column constraint holds in simplex 2 ; otherwise it is 0 . The second character of $\$ 4$ is X if XC 12 holds, i.e., if the cross-
column constraint from simplex 1 to simplex 2 holds; otherwise it is 0 .
5. The first character of $\$ 5$ is R if R 2 holds, i.e., if the row constraint holds in simplex 2 ; otherwise it is 0 . The second character of $\$ 5$ is X if XR12 holds, i.e., if the cross-column constraint from simplex 1 to simplex 2 holds; otherwise it is 0 .

We define the dimension of a program (within the structure that we use) to be the (common) dimension of all complexes that it executes. As indicated earlier, this dimension is equal to $\$ 1$. If it is 1 , then each complex to be executed consists only of its simplex 1 . We then set both $\$ 4$ and $\$ 5$ equal to 00 , set the second character of $\$ 3$ equal to 0 , and set the second character of $\$ 4$ equal to 0 .

We define the multiplicity m of our program to be the total number of times it will execute some complex. (Thus, repeated executions of the same complex, as well as executions of different complexes, all count towards this multiplicity.) Our exposition now temporarily diverges between programs of muliplicity $\mathrm{m}=1$ (where one complex is executed once) and programs with $m>1$. We will return in a later section to the case in which $m>1$.

Consider the case when $\mathrm{m}=1$. Then the next macro call after gszinit 1 will be to gsえinit2. It will be executed exactly once during the program, sinee we are solving one problem once. Therefore, gszinit2 is called the problem initiaiization, in contrast to the program initialization gszinit 1.

The macro gsZinit2 takes 5 parameters; they are exactly the same as those in gsZinit 1. Before gsZinit2 is called, a certain number of Fortran INTTGYR variables must be assigned values, which will be called user-supplied values to the macro. The supplying of these values is another part of the user's contribution to the quasi-automatic parallelization -- to the cooperative venture between user and macro package. Since $m=1$, there is only one complex to consider, namely, the unique complex to be executed by the program. These variables comprise the following:

MNRV1 (the minimum row value, or first coordinate, of simplex 1).

MXRV1 (the maximum row value of simplex 1).

MNCV1 (the maximum column value, or second coordinate, of simplex 1).

MXCV2 (the maximum column value of simplex 1).

MNRV2, MXRV2, MNCV2, and MXCV2 (the analogous values for simplex 2). If the dimension of the complex is 1 , then these need not be specified.

SKW1 (the skew factor for simplex 1). This is specified only when the column constraint C1 holds and has a non-zero skew factor.

SKW2 (the analogous value for simplex 2). This is specified only when the complex dimension is 2, the column constraint C2 holds, and C2 has a nonzero skew factor.

LFBDY1(JJJ), where JJJ is an integer variable (the user is free to substitute a different, conflict-free integer variable for JJJ) ranging from MNRV1 to MXRV1 (these are the left boundary values of simplex 1, whose indiees varir from the minimum row value to the maximum row value).

RTBDY1(JJJ), where JJJ is an integer variable (the user is free to substitute a different, conflict-free integer variable for JJJ) ranging from MNRV1 to MXRV1 (these are the right bourdary values of simplex 1, whose indices vary from the minimum row value to the maximum row value).

UPBDY1(JJJ), where JJJ is an integer variable (the user is free to substitute a different, conflict-free integer variable for JJJ) ranging frorr. MNCY1 to MXCV1 (these are the upper boundary values of simplex 1 , whose indices vary from the minimum column value to the maximum column value).

Furthermore, if simplex 1 cross-column const:ains simplex 2 (i.e., if XC12 holds), then the user must also supply

LWBD'Y1(JJJ), where JJJ is again an integer variable (the user is free to substitute a different, conflict-free integer variable for JJJ) ranging from MNCV1 to MXCV1 (these are the lower boundary values of simplex 1 , whose incices vary from the minimum column value to the maximum coiumn value).

It is important to note that these user-supplied values to the macro are reserved variables; the user must provide the appropriate values for precisely those named variables given above; otherwise gsZinit2 will not be able to perform properly. Of course, the dummy variable JJJ may be replaced, as indicated above.

If the program dimension is 2 , then the user must also supply to the macro the analogous values for simplex 2, namely,

LF'BDY2(JJJ), for JJJ ranging from MNRV2 to MXRV2 (these are the left boundary values for simplex 2),

RTBDY2(JJJ), for JJJ ranging from MNRV2 to MXRV2 (these are the right boundary values for simplex 2), and

UPBDY2(JJJ), for JJJ ranging from MNCV2 to MXCV2 (these are the upper boundary values for simplex 2).

Furthermore, if simplex 2 cross-constrains simplex 1 (i.e., if XC21 holds), then the user must also specify

LWBDY2(JJJ), for JJJ ranging from MNCV2 to MXCV2 (these are the lower boundary values for simplex 2).

2.2.3. Creation of SLAVE Processes

After the call to gszinitZ, while still in the main program, a certain number NPROCS - 1 of copies of a subroutine named SLAVE are created with the create macro, which is called in the form create(SLAVE). NPROCS is a Fortran INTEGER variable, declared by the user, whose value (set by the user) is the nurnber of processes that the program will employ.

The subroutine SLAVE is quite simple; all it does is CALL the subroutine WORK. WORK is also CALLed by the main program, at some time after the SLAVEs are created.

Once the SLAVEs are created, the program is executed by NPROCS processes; one of them will be executing either the main program or a copy of WORK called from that program, while each of the other NPROCS - 1 processes will be executing either its copy of SLAVE or a copy of WORK called from that copy of SLAVE.

No parameters are passed from the main program to WORK or from a SLAVE to WORK. (Thus all communication between routines is done by shared variables in COMMON.) Furthermore, no macros from the package are used in SLAVE. A RETURN statement executed by a SLAVE has the effect of a total selfannihilation; that SLAVE simply vanishes. On the other hand, a RETURN statement executed by a copy of WORK simply transfers control back to the calling program, which is either the main program or a SLAVE.

2.2.4. The WORK Routine

A macro call to gsZuar also appears in subroutine WORK. There it again declares the variables and common blocks used by the monitor. Again no parameters are used in the call to $g s Z v a r$.

Except for a numbered Fortran CONTINUE statement, which provides a target statement to transfer control to, the first executable statements of subroutine WORK are provided by the gs2 macro. The parameters used in the gs2 call are exactly the same as those used in the gszinit 1 call.

The following unifying notation will be helpful. If we have a 1 -complex corsisting of simplex $1\left(S^{1}, T^{1}, U^{1}\right)$, then we define the underlying region of the complex S to be S^{1} and the underlying computational task function T to be T^{1}. Iif, however, we have a 2 -complex $\left(\left(S^{1}, T^{1}, U^{1}\right),\left(S^{2}, T^{2}, U^{2}\right), \mathrm{V}\right)$, where simplex 1 is (S^{1}, T^{1}, U^{1}) and simplex 2 is $\left(S^{2}, T^{2}, U^{2}\right)$, then we define the underlying region of the complex S to be the union of S^{1} and S^{2}, and we define the underlying computational task function T to have the domain S and to be given by the rule that T $=T^{1}$ on S^{1} and $T=T^{2}$ on S^{2}.

2.2.4.1. The gs2 Macro

Subroutine WORK performs the computational tasks $\mathrm{T}(i, j)$ of the complex to be executed by the program. When a process begins executing the statements in WORK, the instructions in the gs 2 macro are executed.

The function of the gs2 macro is to hand out a unique pair of subscripts (i, j) from the underlying region of the complex S , so long as there remain subscript pairs from S to be handed out. Thus every time gsZ is executec., until it has handed out every subscript pair in S, it hands out a different subseript pair (i, j).

A process executing the gs \mathcal{Z} macro monitor is searching for a computational task $\mathrm{T}(i, j)$ to do. More precisely, it is searching for a subscript pair (i.j) such that the corresponding task $T(i, j)$ is ready, i.e., all the constraints on $T(i, j)$'s beginning have been satisfled. The search focuses solely on the current tasks of underlying simplexes of the complex to be executed. (As is consistent with other usage in this paper, we will simply say that (i, j) is ready as a shoit form in place of the full $T(i, j)$ is ready.)

The search will be carried out among all (either 1 or 2) simplexes of the complex being executed whose subscript pairs have not yet all been handed out to searching processes executing gsz. If simplex 1 is such a simplex, the searening process will determine if the current task of simplex 1 is ready to begin. If the task is ready, then the process will acquire the current subscript pair, exit gs2, and unlock the monitor so that a subsequent process may enter.

If simplex 1 is not such a simplex, or if the current task in simplex 1 is not yet ready to begin (i.e., some constraint is not yet satisfied), then the search will either turn to simplex 2 (if we are executing a 2 -complex and there are still subscript pairs in simplex 2 to be handed out) or loop repeatedly, determining whether the current task in simpley 1 is ready until it is; once it is ready, the process acquires the current subscript pair and exits and unlocks the monitor, just as above.

If the search turns to simplex 2, either because simplex 1 has no more subscript pairs to hand out or because the current task there is not ready, then the abore description still holds (with the roles of simplex 2 and simpley 1 reversed).

If any subscript pairs from the complex remain to be handed out when the searching process begins executing the gs2 macro, the process will eventually grab a pair and exit and unlock the monitor. This pair will be either the current. pair in simplex 1 or the current pair in simplex 2. If the current pair in simpleas 1 (simplex 2) is obtained, the process will, upon exiting the monitor, go to the statement with (reserved) label 1000 (2000). (The monitor will update its internal variables after the grab so that the same subscript pair is not handed out twize.) However, if no such pairs are left to be handed out (i.e., all the computational tasks $T(i, j)$ have been already handed out to some process), then the searching process will begin windup processing. This means that the procass will enter a delay queue and unlock the monitor so that other processes can enter and begin searching for (the no longer available) subscript pairs. Once a!l NPROCS processes have entered the monitor (i.e., begun executing the gs2 macre) to perform the (futile) search for subscript pairs, then they all exit the monitor. Upon exiting the monitor, each process will go to the statement with (reserved) label 3000. The last one out resets certain of the monitor's internal variables used during the execution of the complex (although this reset is useful only when the program will execute several complexes, i.e., when the multipiicity m is greater than 1).

Note that the subscript pairs in a simplex of the complex to be executed will be handed out in lexicographic order: $\left(i_{1}, j_{1}\right)$ precedes (i_{2}, j_{2}) if either $i_{1}<i_{2}$ or both $i_{1}=i_{2}$ and $j_{1}<j_{2}$. However, we cannot know in advance the manner in which subscript pairs from the different simplexes will be interleaved, except in that applicable cross-constraints from XC12, XC21, XR12, and XR21 must be satisfied.

2.2.4.2. The end1 and end2 Macros

Once a process is given a subscript pair and exits the monitor, it undertakes the computation of the task corresponding to that pair. If the completion of this task is a prerequisite to the beginning of some other, by means of one of the complex constraints, the gs2 macro monitor (which dispatches ready subscript pairs) must be notified when the computation of the task has ended.

This notification is accomplished with the end 1 macro for tasks in simplex 1 and with the end2 macro for tasks in simplex 2. Both macros take the same five parameters as does the gszinit 1 macro.

The macro end 1 appears at most once in subroutine WORK. It should be inserted into WORK if there is some internal constraint C1 or R1 on simplex 1, or if simplex 1 cross-constrains simplex 2 externally via either XC12 or XR12; otherwise it should not appear. The macro should be inserted into the code just after the code to perform all the computational tasks T^{1} of simplex 1 has ended.

The rules governing the use of endZ are the same, with the roles of simplex 1 and simplex 2 reversed (for example, XC21 or XR21 rather than XC12 or XR12 would mandate the use of end2). Of course, if the dimension of our complex is 1 , then endZ should not appear in the program.

2.2.4.3. The cmpluend Macro

Recall that we are still discussing the case $\mathrm{m}=1$, i.e., the case when the program executes only one complex. To complete our discussion of the macros used in this case (all macros used in the case of multiplicity 1 will also be used for higher multiplicities), we introduce the cmplaend macro.

This macro is used when some task $\mathrm{T}(i, j)$ computes a result that solves the problem under consideration, so that no new computational tasks should begin and those in progress should perform an orderly windup. It notifies the gse macro to hand out no more subscript pairs; thus, all processes that subsequently execute $g s 2$ after completing their present computational task will begin windup processing there. It also sets the reserved Fortran variable EXHST' to 0 . This indicates that the execution of the complex was terminated by the occurrence of a solution, rather than by the exhaustion of all the computational tasks without a solution being found.

The cmplxend macro will be used in a small number of examples. For instance, if any duplicate is found in the program GETADUP, amplxend is used to terminate processing.

2.2.5. Complications Introduced by Multiplicity Greater Than 1

Having discussed the use of our macros and our program structure when the program multiplicity m is 1 , we now look at the modifications needed when the multiplicity is greater than 1.

First of all, the calls to WORK in this case use a parameter. The call from the main program passes a 0 to WORK, while the calls from the SLAVES created by NPROCS - 1 all pass a 1 to WORK. WORK has the one argument WHO. Thus a process executing WORK can determine its origins. If WHO is 0 , then it comes directly from the main program; if WHO is 1 , then it comes from a SLAVE.

In the main program, a DO-loop must be set up to handle the m problems. One iteration of the loop will be performed for each problem. The body of the loop contains the call to WORK.

Just as in the case $m=1$, the main program creates NPROCS - 1 processes, each of which begins executing a copy of subroutine SLAVE. This takes place once for the entire program. When $m>1$, we will place the call to gsZinit2 after the creation of the SLAVEs, reversing the order for $m=1$. The code determining and supplying the user-supplied values for the macros will appear after the creation of the SLAVEs and before the macro call for gszinitz.

If we wish, we can place gsZinit2, together with the code providing the user-supplied values, within the above-mentioned DO-loop. This placement provides a capability to reconfigure the underlying simplex regions before each complex execution. Thus, for example, one program may perform an identical matrix analysis on successive complex executions, but for matrices of different sizes. Another might perform the same kind of sort on successive complex executions, but for arrays of different sizes. We can even, within the framework introduced here, perform a matrix analysis on one complex execution and a sort on the next, but our problems below do not utilize this capability.

When $m>1$, the non-trivial executable statements (i.e., those that ara not no-ops) of WORK begin with a call to the barmier macro. In this call barriar takes just one parameter; it appears in the form barrier(1). The barrier macro has the effect of delaying any process reaching it until all NPROCS processes are so delayed; then they are all released (in some order). The parameter 1 used here in barrier simply provides a label.

The Fortran INTEGER COMMON variable NDONE is used in a conditional branch statement to determine whether a process executing WORK should execute the gs2 macro or bypass it so as to perform windup processing for the entire program. (Windup processing for individual problems within the program is done by the gs \mathcal{Z} macro.) NDONE is initialized to 0 in the main program, and set to 1 in just after the last iteration of the m problem DO-loop is completed.

After NDONE is set to 1 , the main program calls WORK one last time for windup processing. The conditional test of NDONE is performed in WORK, immediately following the macro call to barrier and immediately preceding the macro call to gs2.

After each execution of a complex, the processes that come from a SLAVE hang on the barrier in WORK, while the process that comes directly from the main program returns to the main prograrn. This divergence of behavior for different processes is accomplished by the WHO variable described above. The subsequent call to WORK from the main program in the next iteration places this last process also at the barrier, so that now all processes can penetrate the barrier, and either the concurrent executions of copies of WORK relevant to the new problem may begin, or the final windup processing may begin.

The main program can communicate to the processes executing WORK which complex they are executing (i.e., which problem they are working on) by the use of COMMON variables.

Other than the modifications given here, the case when $m>1$ is dealt with just as the case when $\mathrm{m}=1$.

3. A Geometric Representation of Synchronization Dependencies

We now discuss the geometric "synchronization patterns" (which provide a concise pictorial description of a given parallelization structure) and their construction.

To construct the synchronization pattern, we must draw the points of the underlying region of the complex. If there are two simplexes in the complex, then the respective underlying regions are separated by a line. Thus, for example, if the underlying region of simplex 1 of a 2 -complex is

$$
S^{1}=\{(1,1),(1,2),(1,3)\}
$$

and the underlying region of simplex 2 is

$$
S^{2}=\{(2,1),(2,2),(2,3)\}
$$

the underlying region S of the entire complex is

$$
S=\{(1,1),(1,2),(1,3),(2,1),(2,2),(2,3)\}
$$

and may be drawn as:

The two underlying simplex regions above are separated by the line. Assuming no constraints, the parallelization structure, drawn below, would appear exactly as S above, except that for simplicity we usually omit coordinate labels when cirawing the synchronization pattern, as well as the line separating the simplexes.

In general, constraints are indicated on the synchronization pattern. The C constraint (internal column constraint) within a simplex is indicated by a vertical arrow connecting two neighboring points in a column, drawn from the one above to the one below. Thus, for example, suppose that the underlying region oif a 1-complex consists of the points

$$
S=\{(1,1),(1,2),(1,3),(2,1),(2,2),(2,3),(3,1),(3,2),(3,3)\} .
$$

Then S may be drawn as follows:
$\underset{1,1}{\bullet} \quad \stackrel{\bullet}{1,2}$
$\underset{2,1}{\bullet-2} \quad \underset{\mathbf{2 , 3}}{\bullet}$

If the C constraint holds in this complex, then the synchronization pattern could be drawn as

If, furthermore, this column constraint includes a positive skew factor K , that skew factor must also be indicated on the synchronization pattern by additional arrows that connect each point pair of the form ($1-1, \mathrm{~J}+\mathrm{K}$) and (I, J). Each additional arrow is drawn from some point $(\mathrm{I}-1, \mathrm{~J}+\mathrm{K})$ to the corresponding point (I, J).

Thus if this column constraint includes a skew factor of 1 , the synchronization pattern would now be drawn as

A row constraint is indicated by an arrow (with an " R " next to it) pointing from the leftmost point in each (but the last) row to the leftmost point in the row below. Thus, if the row constraint holds in the above underlying region S , the synchronization pattern would be depicted as

Of course, once we know that R holds, we dispense with C, since it is implied by R.

A cross-column constraint XC is indicated by drawing, for each point P on the lower boundary of the constraining simplex that lies directly above some point Q in the constrained simplex, a vertical arrow (with an " X " next to it) pointing downward from P to Q. Thus, for example, if we have a 2 -complex with

$$
S^{1}=\{(1,1),(1,2),(1,3),(2,1),(2,2),(2,3)\}
$$

and

$$
S^{2}=\{(3,1),(3,2),(3,3),(4,1),(4,2),(4,3)\}
$$

and the constraint XC12 holds, then S would be drawn as

and the synchronization pattern would be drawn as

Similarly, a cross-row constraint $X R$ is indicated by drawing, for each point P on the right boundary of the constraining simplex that lies immediately to the left of some point Q in the constrained simplex, a horizontal arrow pointing rightward from P to Q. Thus, for example, if we have a 2 -complex with

$$
S^{1}=\{(1,4),(1,5),(1,6),(2,4),(2,5),(2,6)\}
$$

and

$$
S^{2}=\{(1,1),(1,2),(1,3),(2,1),(2,2),(2,3)\}
$$

and the constraint XR21 holds, the underlying region S would be drawn as

and the synchronization pattern would be

Of course, all constraints that hold must be indicated on a synchronization pattern; if more than one holds, they are each indicated on the pattern.

4. A Formal Description of the Structure

In the previous sections, we have attempted to motivate our approach to scheduling units of computation based on a geometric representation in a twodimensional plane. We now give a detailed, formal presentation of the structure.

We start with some basic definitions.
Let M_{1} and M_{2} be integers, with $M_{1}<M_{2}$. The closed integer interval [M_{1}, M_{2}] is defined to be the set of all integers from M_{1} to M_{2}. All inte. vals used in this paper will be integer intervals, i.e., will contain only integers.
Let f be an integer-valued function whose domain is the interval [M_{1}, M_{2}]. The graph of f, written graph f, is the subset of the Cartesian integer plane Z_{2} consisting of those points $\left(M, f(M)\right.$), where M is in the domain [M_{1}, M_{2}]. The reversed graph of f (so-called because the roles of first and second coordinate are reversed), written rev f, is the subset of the Cartesian integer plane Z_{2} consisting of those points $(f(M), M)$, where M is in the domain [M_{1}, M_{2}].
As mentioned previously, our conventions for representing ordered pairs follow the conventions for representing elements in a matrix, rather than the more common graphical representation of Z_{2}.

Note that a matrix is actually a function of two intege: variables and that its set of index pairs is the domain of that function. Thus it is natural, in looking for a way to depict the dornain of a computational task function $T(I, J)$ which is also a function of two integer variables, to take as a starting point the usual picture for the set of index pairs of a matrix. (However, while the set of index pairs of a matrix is an integer rectangle, the domain of a computational task function is more general. For example, it may have jagged boundaries, or be an "integer line.")

We now use the notions of graph and reversed graph as building blocks to deflne regions and regular regions in the Cartesian integer plane Z_{2}. Suppose that we have two functions f and g with the same dornain $\left[M_{1}, M_{2}\right]$ and that $f(M)$ $<g(M)$ for all M in $\left[M_{1}, M_{2}\right.$]. We define the region $\mathrm{D}=\mathrm{D}(f, g)$ to be the set of all points in Z_{2} whose first coordinate M is in $\left[M_{1}, M_{2}\right]$ and whose second coordinate lies in the interval $[f(M), g(M)]$. Thus $\mathrm{D}(f, g)$ can be thought of as the set of all points in Z_{2} that. lie between (or on) the graph of f and the graph of g. Similarly, under the above conditions on f and g we define the region ray $\mathrm{D}=\operatorname{rev} \mathrm{D}(f, g)$ to be the set of all points in Z_{2} whose second coordinate L is in $\left[M_{1}, M_{2}\right.$] and whose first coordinate K lies in the interval $[f(\mathrm{~L}), g(\mathrm{~L})]$. Thus rev $\mathrm{D}(f, g)$ can be thought of as the set of all points in Z_{2} that lie between (or on) the reversed graph of f and the reversed graph of g.

Note that if S is a subset of Z_{2} which is of the form $\mathrm{D}(f, g)$, then f, g and the common domain of f and g are all uniquely determined; similarly when S is of the form rev $\mathrm{D}(f, g)$.

A subset S of Z_{2} is called a regular region if there are functions f_{1}, f_{2}, g_{1} and g_{2} such that f_{1} and g_{1} have common domains, f_{2} and g_{2} have common
domains, $S=D\left(f_{1}, g_{1}\right)$, and $S=\operatorname{rev} D\left(f_{2}, g_{2}\right)$. (In other words, to be regular S must be both a region of the form $\mathrm{D}\left(f_{1}, g_{1}\right)$ and a region of the form rev $\mathrm{D}\left(f_{2}, g_{2}\right)$.) If S is a regular region (or, in brief, regular), f_{1} is called the left boundary function of S, g_{1} the right boundary function, f_{2} the upper boundary function, and g_{2} the lower boundary function.

Now that we have the notion of "regular region" defined, we can introduce computational task functions. A computational task function (or, more briefly, task function) is a function T^{1} whose domain is a regular region S in Z_{2} and which assigns to each ($1, J$) in S some computational task $T^{1}(\mathrm{I}, \mathrm{J})$. (For convenience, we will also use the alternate notation $T h$ for $T^{1}(\mathrm{I}, \mathrm{J})$.) For purposes of the parallelization structure developed here, we are concerned not with the details of the particular computer instructions required by the $T^{1}(1, J)$, or the mathematical algorithm that the $T^{1}(I, J)$ represent, but rather with the times when the $T^{1}(1, J)$ are able to begin during the execution of a program and the times at which the $T^{1}(1, J)$ end.

Within a parallelization structure a certain number (perhaps zero) of constraints will be placed on the $T^{1}(1, \mathrm{~J})$. No $T^{1}(1, \mathrm{~J})$ may begin until all the constraints on its beginning have been satisfied; such constraints will either be internal and require that certain other $T^{1}(\mathrm{I}, \mathrm{J})$ have ended, or be external and require that certain $T^{2}(\mathrm{~K}, \mathrm{~L})$ have ended, where T^{2} is a different computational task function within the same parallelization structure.

For now we will focus on internal constraints. Suppose that we have a cornputational task function T defined on a regular region S. For ($1, J$) in S, the begin time of the task $T(I, J)$ (i.e., the time at which that task begins during the execution of a program) may be denoted by $b(T(1, J))$. Since our discussion henceforth will be with reference to a particular task function which is known from the context, for ease of notation we will suppress the explicit reference to T and instead denote the begin time of $T(1, J)$ simply by $b(1, J)$. (We will sometimes use the alternate notation $b_{I J}$ for $b(I, J)$.) Similarly, we will denote the end time of the task $T(1, J)$ (i.e., the time at which that task ends during the execution of a program) by $e(1, J)$. (As above, we will sometimes use the alternate notation $e_{I J}$ for $\mathbf{e}(\mathrm{i}, \mathrm{j})$.) In general, when it is clear from the context what is meant, we will often not distinguish between the computational task $T(\mathrm{I}, \mathrm{J})$ and the point (I, J) in S . Thus, for example, we might speak of the time at which a "point begins" to mean the time at which the computational task assigned to that point begins.

Let T be a computational task function whose domain is the regalar region S. The basic internal constraints on $T(1, J)$ are of two kinds, begin constraints and end constraints. Begin constraints are of the form
i) $\quad \mathrm{b}(\mathrm{I}, \mathrm{J})>\mathrm{b}(\mathrm{K}, \mathrm{L})$;
i.e., the ($1, J$)'th task $T(I, J)$ can begin only after the (K, L)'th task $T(K, L$) has begun ((I, J) and (K, L) are points in S). End constraints are of the form
ii) $b(1, J)>e(K, L)$;
i.e., the (I, J)'th task $T(\mathrm{I}, \mathrm{J})$ can begin only after the (K, L)'th task $T(\mathrm{~K}, \mathrm{~L})$ has ended ((I, J) and (K, L) are points in S).

Throughout this paper, whenever (I, J) and (I, K) are both in S , and $\mathrm{J}<\mathrm{K}$, the constraint

$$
b(I, K)>b(I, J)
$$

will be understood to be imposed. The imposition of this constraint requires that in terms of begin times, each row in the regular region S will be traversed in the natural order (from lower column subscripts to higher column subscripts). (A row in S is defined to be the (non-empty) set of all points in S with a particular first coordinate; that common first coordinate is called the row subscript of the row. Similarly, a column in S is defined to be the (non-empty) set of all points in S with a particular second coordinate; that common second coordinate is called the column subscript of the column.) Also, throughout this paper, whenever ($1, \mathrm{~J}$) and (K, L) are both in S , and $\mathrm{I}<\mathrm{K}$, the constraint

$$
\mathrm{b}(\mathrm{~K}, \mathrm{~L})>\mathrm{b}(\mathrm{I}, \mathrm{~J})
$$

will be understood to be imposed. The imposition of this constraint requires that in terms of begin times, each point in a lower row (i.e., one with a larger ruw subscript) will begin after each point in a higher row (i.e., one with a smaller row subscript.) This implies that a task in a row may begin only after all tasks in rows with smaller row subscripts have begun.

Together, the above two constraints imply that whenever we have a regular region S and a computational task function T defined on S, the points of S are traversed lexicographically in terms of begin times. The tasks in each row begin in the same order as that of the column subscripts, and the tasks in rows with smaller row subscripts begin before the tasks in rows with larger subscripts.

An equivalent way of stating this is as follows: given distinct points (I, J) and (K , L) in S , (I, J) begins before (K, L) if and only if either $\mathrm{I}<\mathrm{K}$ or both $\mathrm{I}=\mathrm{K}$ and $\mathrm{J}<$ L.

Thus, a program executing the computational task function T defined on the regular region S (in terms of begin times) traverses S row by row (going from
lower row subscripts to higher row subscripts) and traverses each row going from lower column subscripts to higher column subscripts.

We now consider the relevant internal end constraints on a computational task function T defined on a regular region S. Unlike the two internal begin constraints given above which are always implied and which are the only begin constraints that hold in the parallelization structures used here, the relevant internal end constraints must always be explicitly given; furthermore they may or may not apply.

We can organize the internal end constraints that apply here via the notions of row constraint and column constraint.

Definition: Let T be a computational task function defined on the regular region S . (S, T) is row-constrained if the first (leftmost) task in a row can begin only after all tasks in the previous row have completed. (Given a row R with row subscript I, the previous row is the row with row subscript I-1.)

Note that it follows from the first begin constraint given above that each tack in a row can begin no sooner than the first (leftrnost) task in that row does.

Alternative ways of stating that (S, T) is row-constrained include "the row constraint holds in (S, T)," "the row-constraint R holds in (S, T)," or simply "R holds in (S, T)." Usually the mention of (S, T) will be suppressed when no confusion can result.

To express the notion " R holds in (S,T)" in formula, we write $S=D\left(f_{1, \mathcal{G}_{1}}\right)$, where f_{1} and g_{1} are the left and right boundary functions of S, respectively, and [M_{1}, M_{2}] is the common domain of f_{1} and g_{1}. Then we can write " R holds" as
$\mathrm{b}\left(M, f_{\mathrm{l}}(M)\right)>\mathrm{e}(\mathrm{M}-1, \mathrm{~K})$
whenever $M-1$ and M are in $\left[M_{1}, M_{2}\right.$] and ($M-1, K$) is in S. Equivalently, we could write
$\mathrm{b}\left(M, f_{1}(M)\right)>e(\mathrm{M}-1, \mathrm{~K})$
whenever $\mathrm{M}-1$ and M are in $\left[M_{1}, M_{2}\right]$, and

$$
f_{1}(\mathrm{M}-1)<\mathrm{K}<g_{1}(\mathrm{M}-1)
$$

Having defined "row constraint," we now define the other internal end constraint to be used in this paper, the "column constraint."

Definition: Let T be a computational task function defined on the regular region S. $(\mathrm{S}, \mathrm{T}$) is column-constrained, with the non-negative integer L as skew factor, if for all J, a task in the J'th column can begin only after all tasks in the J'th column from earlier rows and all tasks in the ($\mathrm{J}+\mathrm{L}$)'th column from earlier rows have completed. (Given as row R with row subscript I, an earlier row is a row whose row subscripi is smaller than I. We know, from the implied begin constraints, that tasks in an earlier row than R will begin before any of the tasks in R do.)

Alternative ways of stating that (S, T) is column-constrained, with skewfactor L, " include "the column constraint, with skew factor L , holds in (S, T)," "the column constraint C, with skew factor L holds in (S, T)," or simply "C, with skew factor L , holds in (S, T)." Usually, the mention of (S, T) will be suppressed when no confusion can result. Also, often the mention of the skew-factor L will be suppressed; either it may be supplied later or, if omitted, will be understood to be 0 .

To express the notion " C , with skew factor L , holds in (S, T)" in formula, we write $S=\operatorname{rev} \mathrm{D}\left(f_{2}, g_{2}\right)$, where f_{2} and g_{2} are the upper and lower boundary functions of S , respectively, and $\left[M_{1}, M_{2}\right]$ is the common domain of f_{2} and \hat{J}_{2}. Then "C holds, with skew factor L, ," is equivalent to the two conditions
i) $b(\mathrm{I}, \mathrm{J})>\mathrm{e}(\mathrm{K}, \mathrm{J})$
whenever (I, J) and (K, J) are in S and $\mathrm{I}>\mathrm{K}$
and
ii) b $(\mathrm{I}, \mathrm{J})>e(\mathrm{~K}, \mathrm{~J}+\mathrm{L})$
whenever (I, J) and ($\mathrm{K}, \mathrm{J}+\mathrm{L}$) are in S and $\mathrm{I}>\mathrm{K}$.
Another equivalent formulation of "C holds, with skew factor L, " is given by the two conditions
i) $b(I, J)>e(K, J)$
whenever J is in $\left[M_{1}, M_{2}\right]$, both I and K are in $\left[f_{2}(\mathrm{~J}), g_{2}(\mathrm{~J})\right]$, and I $>\mathrm{K}$, and
ii) $\mathrm{b}(\mathrm{I}, \mathrm{J})>\mathrm{e}(\mathrm{K}, \mathrm{J}+\mathrm{L})$
whenever J and $\mathrm{J}+\mathrm{L}$ are in $\left[M_{1}, M_{2}\right]$, I is in $\left[f_{2}(\mathrm{~J}), g_{2}(\mathrm{~J})\right], \mathrm{K}$ is in $\left[f{ }_{2}(\mathrm{~J}+\mathrm{L}), g_{2}(\mathrm{~J}+\mathrm{L})\right]$, and $\mathrm{I}>\mathrm{K}$.

Clearly a row-constrained simplex is always column constrained (with any non-negative skew factor.) Thus we need never consider the situation where both R end C hold. It suffices to consider (S, T) where R holds, or C holds with some skew factor L , or no constraints hold.

Note that when R holds, we have a degenerate case of two-dimensional parallelization (the two dimensions come from the two-dimensionality of the Cartesian integer plane Z_{2} and from S being a subset of Z_{2}.) Since when R holds, each row of computational tasks must end before any tasks in the next row can begin, each row may be thought of as a separate "one-dimensional" parallelization unit. Thus the structure when R holds effectively becomes that of a sequence of one-dimensional parallelization units.

We are now ready to define the basic parallelization structure, the simplex.

Definition: A parallelization simplex (or more briefly, a simplex) is a tripte ($\mathrm{S}, \mathrm{T}, \mathrm{U}$) where S is a regular region in $Z_{2}, \mathrm{~T}$ is a computational task function defined on S, and U is a pair (C, L), where L is a non-negative integer and C is a character, or the character R, or empty.

U merely tells us whether the simplex is column constrained with skew factor L_{4}, row constrained, or unconstrained.

The simplex may be thought of as the basic "atom" of two-dimensional parallelization structure. The begin constraints described earlier are internalized within it. Note that no end constraint of the form $b(1, \mathrm{~J})<b(\mathrm{I}, \mathrm{K})$ within a given row can occur. Thus a task, when waiting to begin, may be waiting for the completion of tasks from earlier rows, but is never waiting on the completion of tasks from the same or frorn later rows. If we are in a computational situation where a task in a row cannot begin until another task in that row has ended, we need a parallelization structure more complicated than the simplex, i.e., one in which constraints can operate across simplex boundaries. There will also be instances where it will be useful for constraints operating within a column, as well as constraints operating within a row, to be able to operate across simplex boundaries. We now set about deflning a parallelization structure (the complex) that will allow us to deal with certain of these situations.

Definition: Let (S^{1}, T^{1}, U^{1}) and (S^{2}, T^{2}, U^{2}) be parallelization simplexes such that the underlying regions S^{1} and S^{2} are disjoint, i.e., have no points in common.

Write $S^{1}=\mathrm{D}\left(f_{11}, g_{11}\right)$ and $S^{2}=\mathrm{D}\left(f_{21}, g_{21}\right)$, where f_{11} and g_{11} are the left and right boundary functions, respectively, of $S^{1 ;} f_{21}$ and g_{21} are the left and right boundary functions, respectively, of $S^{2} ;\left[M_{11}, M_{12}\right]$ is the common domain of f_{11} and g_{11}; and $\left[M_{21}, M_{22}\right.$] is the common domain of f_{21} and $g_{21} .\left(S^{1}, T^{1}, U^{1}\right)$ will be said to "border (S^{2}, T^{2}, U^{2}) from the left" if
i) the intersection of the two intervals $\left[M_{11}, M_{12}\right]$ and [M_{21}, M_{22}] is nonempty, i.e., the intervals have some points in common (note that this intersection must also be an interval), and
ii) if M is in the intersection of the intervals $\left[M_{11}, M_{12}\right]$ and $\left[M_{21}, M_{22}\right.$, then

$$
g_{11}(M)+1=\boldsymbol{f}_{21}(M)
$$

i.e., the right boundary function value for the first simplex is one less than the left boundary value for the second simplex.

Definition: Let (S^{1}, T^{1}, U^{1}) and (S^{2}, T^{2}, U^{2}) be parallelization simplexes such that the underlying regions S^{1} and S^{2} are disjoint, i.e., have no points in common. Write $S^{1}=\operatorname{rev} \mathrm{D}\left(f_{12}, g_{12}\right)$ and $S^{2}=\operatorname{rev} \mathrm{D}\left(f_{22}, g_{22}\right)$, where f_{12} and g_{12} are the upper and lower boundary functions, respectively, of $S^{1} ; f_{22}$ and g_{22} are the upper and lower boundary functions, respectively, of S^{2}; $\left[M_{11}, M_{12}\right]$ is the corrmon domain of f_{12} and g_{12}; and [M_{21}, M_{22}] is the common domain of f_{22} and g_{22}. (S^{1}, T^{1}, U^{1}) will be said to "border (S^{2}, T^{2}, U^{2}) from above" if
i) the intersection of the two intervals $\left[M_{11}, M_{12}\right]$ and $\left[M_{21}, M_{22}\right.$] is nonempty, i.e., the intervals have some points in common (note that this intersection must also be an interval), and
ii) if M is in the intersection of the intervals $\left[M_{11}, M_{12}\right.$] and $\left[M_{21}, M_{22}\right.$], then

$$
g_{12}(M)+1=f_{22}(M)
$$

i.e., the lower boundary function value for the first simplex is one less than the upper boundary function value for the second simplex.

We now focus on the external end constraints imposed by one simplex on another(we make no use of external begin constraints in this paper.)

Definition: Let (S^{1}, T^{1}, U^{1}) and (S^{2}, T^{2}, U^{2}) be parallelization simplexes with disjoint underlying regions S^{1} and S^{2}. An external end constraint from (S^{1}, T^{1}, U^{1}) to (S^{2}, T^{2}, U^{2}) is a constraint of the form

$$
b(\mathrm{I}, \mathrm{~J})>e(\mathrm{~K}, \mathrm{~L})
$$

where (I, J) is in S^{2} and (K, L) is in S^{1}.
This says that the (I, J)'th task $T^{2}(\mathrm{I}, \mathrm{J})$ cannot begin until the (K, L)'th task $T^{1}(\mathrm{~K}, \mathrm{~L})$ has completed. Note that we can define an external end constraint from (S^{2}, T^{2}, U^{2}) to (S^{1}, T^{1}, U^{1}) simply by requiring ($1, \mathrm{~J}$) to be in S^{1} and (K, L) to be in S^{2} in the above definition.

We now may organize the external end constraints that apply within the parallelization structures used here via the notions of cross-row consuraint and cross-column constraint.

Definition: Let (S^{1}, T^{1}, U^{1}) and (S^{2}, T^{2}, U^{2}) be parallelization simplexes with disjoint underlying regions S^{1} and S^{2}. Write $S^{1}=\mathrm{D}\left(f_{1}, g_{1}\right)$ and $S^{2}=\mathrm{D}\left(f_{2}, g_{2}\right)$, and let $\left[M_{1}, M_{2}\right.$] be the non-empty interval that is the intersection of the common domain of f_{1} and g_{1} and the common domain of f_{2} and g_{2}. We say that (S^{1}, T^{1}, U^{1}) cross-row end constrains (or sometimes, mons briahy, row constrains) (S^{2}, T^{2}, U^{2}) if
i) $\left(S^{1}, T^{1}, U^{1}\right)$ borders $\left(S^{2}, T^{2}, U^{2}\right)$ from the left, and
ii) for each M in $\left[M_{1}, M_{2}\right.$], all tasks in the M'th row of (S^{1}, T^{1}, U^{1}) must end before any tasks in the M^{\prime} th row of (S^{2}, T^{2}, U^{2}) may begin.
In formula, condition ii) may be written as
ii') $\mathrm{b}(M, \mathrm{~N})>\mathrm{e}(M, \mathrm{~K})$
whenever $f_{2}(M)<\mathrm{N}<g_{2}(M)$ and $f_{1}(M)<\mathrm{K}<g_{1}(M)$, or alternatively as

$$
\text { ii") } \mathrm{b}\left(M, f_{2}(M)\right)>\mathrm{e}(M, \mathrm{~K})
$$

whenever $f_{1}(M)<\mathrm{K}<g_{1}(M)$.

Conditions ii') and $\mathrm{ii}^{\prime \prime}$) are equivalent because of the implied internal begin constraints within (S^{2}, T^{2}, U^{2}), which require that no task in the M^{\prime} th row of (S^{2}, T^{2}, U^{2}) may begin until the leftmost task in that row (i.e., the task with column subscript $f_{2}(M)$) does.

Having defined cross-row constraints, we now turn to the definition of cross-column constraints.

Definition: Let (S^{1}, T^{1}, U^{1}) and (S^{2}, T^{2}, U^{2}) be parallelization simplexes with disjoint underlying regions S^{1} and S^{2}. Write $S^{1}=\operatorname{rev} \mathrm{D}\left(f_{1}, g_{1}\right)$ and $S^{2}=$ rev
$\mathrm{D}\left(f_{2}, g_{2}\right)$, and let [M_{1}, M_{2}] be the non-empty interval that is the intersection of the common domain of f_{1} and g_{1} and the common domain of f_{2} and g_{2}. We say that (S^{1}, T^{1}, U^{1}) cross column end constrains (or sometimes, more briefly, column constrains) (S^{2}, T^{2}, U^{2}) if
i) $\left(S^{1}, T^{1}, U^{1}\right)$ borders $\left(S^{2}, T^{2}, U^{2}\right)$ from above, and
ii) for each M in $\left[M_{1}, M_{2}\right.$], the last task in the M^{\prime} th column of (S^{1}, T^{1}, U^{1}) (i.e., the one with the largest row subscript) must end before the first task in the M^{\prime} th column of (S^{2}, T^{2}, U^{2}) (i.e., the one with the smallest row subscript) can begin.

Condition ii) may be written as
ii') $\mathrm{b}\left(f_{2}(M), M\right)>\mathrm{e}\left(g_{1}(M), M\right)$.

Note that by interchanging the roles of the two simplexes in each of the above two definitions, we can define " $\left(S^{2}, T^{2}, U^{2}\right)$ cross-row constrains (S^{1}, T^{1}, U^{1})" as well as " $\left(S^{2}, T^{2}, U^{2}\right)$ cross-column constrains (S^{1}, T^{1}, U^{1})."

Linguistic variants of " $\left(S^{1}, T^{1}, U^{1}\right)$ cross-row constrains (S^{2}, T^{2}, U^{2})" will include " $\left(S^{1}, T^{1}, U^{1}\right)$ row constrains ($\left.S^{2}, T^{2}, i^{2}\right), "$ " $\left(S^{2}, T^{2}, U^{2}\right)$ is eross-cow constrained by $\left(S^{1}, T^{1}, U^{1}\right)$," and " $\left(S^{2}, T^{2}, U^{2}\right)$ is row constrained by (S^{1}, T^{1}, U^{1})." Similar variants will be used for " $\left(S^{1}, T^{1}, U^{1}\right)$ cross-column constrains (S^{2}, T^{2}, U^{2})."

We are now able to define the notion of "parallelization complex," or, more briefly, "complex." All parallelization structures dealt with in this paper fall within this category. Two kinds of complexes will be utilized here, namely, 1complexes and 2 -complexes. The dimension of an n-complex, where n is either 1 or 2 , is defined to be n. Future research is needed to define and apply comple;as with dimension greater than 2 .

Definition: A parallelization 1-complex (or, more briefly, a 1-complex) is merely a simplex $\left(S^{1}, T^{1}, U^{1}\right)$. A 2-complex is an ordered triple $\left(\left(S^{1}, T^{1}, U^{1}\right),\left(S^{2}, T^{2}, U^{2}\right), Y\right)$ whose first element is a simplex (S^{1}, T^{1}, U^{1}), whose second element is a simpler (S^{2}, T^{2}, U^{2})), and whose third element V is a non-empty set of 1 to 4 character strings chosen from among the strings "XC12", "XC21", "XR12", and "MR21." Thus V indicates the cross-constraints that hold between the simplexes of the complex; if XR12 is in V, then (S^{1}, T^{1}, U^{1}) cross-row constrains (S^{2}, T^{2}, U^{2}), while if XR21 is in V, then (S^{2}, T^{2}, U^{2}) cross-row constrains (S^{1}, T^{1}, U^{1}). Similar interpretations are given to XC12 and XC21.

If $\left(S^{1}, T^{1}, U^{1}\right)$ is a 1 -complex or the first element of a 1 -complex, it will be referred to as the simplex 1 of that complex (or, more briefly, as simplex 1).

Similarly, if (S^{2}, T^{2}, U^{2}) is the second element of a 2 -complex, it will be referred to as simplex 2.

5. Summary of Examples

We now summarize the examples to be presented. As indicated earlier, they comprise the set of examples that appear in the two Overbeek and Lusk papers [$4,5,3]$. Added to this set are an example computing an approximate solution to a discretization of the Dirichlet problem for a three-dimensional grid, which Overbeek and Lusk use in their classes in parallel processing given at the Argonne National Laboratory, and an example "GETADUP" (a modification of the example "GETDUPS"), which provides a simple illustration of a 2 -complex structure.

The flrst example, ADDTWO, is simply the vector addition of two vectors, with the component additions done in parallel. Here we have a 1 -cornplex whose underlying region is simply a rectangle with one row. There are no ecnstraints imposed on the simplex. ADDTWO illustrates how the self-scheduling DO-loop (see Overbeek and Lusk [2]) is handled as a special case of the gs. macro with cne row in the underlying region of the relevant simplex.

The second example, CHECKTWO, is the modification of ADDTYO ootained by considering the problem of determining whether the sum of two vectors has a component greater than or equal to 100 . Here we have a 1 -complex whose underlying region is identical with that of ADDTWO; again there are no constraints. CHECKTWO illustrates the use of the "cmplaend" macro, which institutes windup processing once some component greater than or equal to 100 is found.

The third example, "GETDUPS," considers the problem of determining all the duplicates (for purposes of this problem, "duplicates" means successive components that are equal) in the sum of two vectors. The parallelization structure is a 1 -complex whose underlying region has two rows. This example provides an elementary introduction to the use of the column constraint C. Alternative formulations introduce the skew factor; one formulation uses a skew factor of 0 , while the other uses a skew factor of 1.

The fourth example, "GETADUP," is the modification of "GETDUPS" obtained by simply trying to determine whether the sum of two vectors has a duplicate, rather than trying to determine all the duplicates. This provides our first example of a parallelization structure that is a 2 -complex; each simplex has one row. It also illustrates the cross-column constraint XC21, and incidentally provides another use of the cmplaend macro.

The fifth example, MATMULT, computes the product of two matrices, with the (independent) computations of the elements of the product matrix done in
parallel. MATMULT provides an elementary example of a parallelization structure that is a simplex, bas no constraints, and whose underlying region is a rectangle in the Cartesian integer plane whose sides can have any number of points and are parallel to the coordinate axes.

The sixth example, "SORT," performs a shell sort on several one-dimensional arrays of differing lengths. It gives rise to a simplex whose underlying region has a jagged right boundary (as well as a jagged lower one.) The rows of this region correspond to stages of the sort. SORT introduces the use of the row constraint R. Furthermore, it illustrates how repeated simplex executions are handled -- in particular, how the underlying region of the structure is reconfigured prior to a new complex execution. The reader is provided with a self-contained explanation of the Shell sort.

The seventh example, "GRID," provides an approximate solution to a discrete analogue of the Dirichlet problem for a cube. The parallelization structure is a 1 -complex. The underlying region is an integer rectangle whose number of rows is the number of iterations to be performed and whose number of columns is two less than the number of columns of the grid imposed on the cube. The relevant constraint is the column constraint C, with skew factor 1. Tiro copies of the grid are used; an iteration updates one copy by producing, on the other copy, function values that are averages of the "nearest neighbor" function values on the copy to be updated. Each updating of an interior slice of the grid parallel to the yz plane provides a separate computational task.

GRID provides a non-elementary example with wide physical application which is elegantly and simply dealt with via the gsi macro in conjunction with the parallelization structure introduced in this paper. The resulting program is significantly simpler and shorter than that obtained via the "askfor" monitor and, of course, requires no user-coded macros.

The eighth and last example, "QR," performs the Householder algorithm used in the $Q R$ factorization of a square matrix. It provides a non-elementary example of a 2-complex structure that illustrates the power of the macro package presented here. The underlying region is a right isosceles integer triangle in the Cartesian integer plane. Simplex 1 has the hypotenuse as its underlying region, while the remaining points of the triangle form the underlying region for simplex 2. Tasks associated with simplex 1 are called "creates," while tasks associated with simplex 2 are called "applies."

This example uses the C2, XR12 and XC21 constraints. XR12 means here that each "create" must be completed before a corresponding row of "applies" can begin. XC21 and C2 together mean here that a column of "applies" must be completed before the corresponding "create" can begin, and each "apply" must be completed before the "apply" directly below it can begin.

As in the last example, the user here who only has to insert the macros with correct parameters (as well as provide the relevant reserved variables with values) is spared the considerable complexity of writing his own monitor macros (for contrast, see the treatment of this example via the askfor monitor in [1].)

6. Fxamples

6.1. ADDTFO

A and B are two vectors with the sarne number N of elements. N is assumer to be less than or equal to 1000 . A and B are to be added so as to produce C, i.e.,

$$
C(J,=A(J)+B(J) \text { for } 1 \leqslant J \leqslant N .
$$

The N additions are all independent of one another.
This parallelization structure may be described by a simplex whose underlying region S has 1 row and N columns. S is the $1 x N$ integer rectangle depicta:? below for the representative case $\mathrm{N}=5$:

$$
\begin{array}{ccccc}
\bullet & \bullet & \bullet & \bullet & \bullet \\
1,1 & 1,2 & 1,3 & 1,4 & 1,5
\end{array}
$$

For each $(1, \mathrm{~J}), T_{1 J}$ is the task "add $\mathrm{A}(\mathrm{J})+\mathrm{B}(\mathrm{J})$ to produce $\mathrm{C}(\mathrm{J})$. ."
There are no row or column constraints in this simplex. Thus the macro sall parameters include no C's, R's, or X's; for example, the call to the gs2 macro is given by $\operatorname{gs} 2(1,00,00,00,00)$.

User-supplied values to the gs¿uar macro are as follows:

$$
\begin{aligned}
& R B 11=1 \\
& R B 12=2 \\
& C B 11=1 \\
& C B 12=1000 \\
& R B 21=1 \\
& R B 22=2 \\
& C B 21=1 \\
& C B 22=1
\end{aligned}
$$

The above values are supplied to the gsZuar macro via eight define statements. The last four values (RB21, RB22, CB21 and CB22) are formal values; they
are relevant only to simplex 2 , while the parallelization structure here involves only simplex 1 . In future examples involving only one simplex these four values will not be mentioned, but the same values should always be supplied.

User-supplied values to the gs2init2 macro are as follows:

$$
\begin{aligned}
& M N R V 1=1 \\
& M X R V 1=1 \\
& M N C V 1=1 \\
& M X C V 1=N \\
& L F B D Y 1(1)=1 \\
& \operatorname{RTBDY1}(1)=N \\
& U P B D Y 1(J)=1 \text { for } 1 \leq J \leq N .
\end{aligned}
$$

The above values are supplied to the gsZinit2 macro via Fortran assignment statements; of course, those for UPBDY1 are supplied within a DO loop.
Note: This example can be handied easily by the getsub macro (see the Overbeek and Lusk papers). It illustrates that the getsub macro can be viewed as the special case of the gs 2 macro obtained when the parallelization structure is a simplex and the underlying region S consists of exactly one row.

Since there are no constraints in this example, the synchronization pattern here is exactly the same as the picture of the underlying region S given above.

6.2. CHECKTWO

This is the last example dealt with in the Overbeek and Lusk tutorial [2]. It deals with a sequence of identical problems. The individual problem takes two vectors A and B with the same number N of elements (N is assumed to be less than or equal to 1000) and determines whether the sum C of A and B, defined just as in ADDTWO by

$$
C(J)=A(J)+B(J), \text { for } 1 \leq J \leq N
$$

has some component $\mathrm{C}(\mathrm{J})$ greater than 100.
Thus we wish to add corresponding components of A and B and keep going either until all are added, with none of the sums being greater than 100 (this is called a solution by exhaustion, since we have exhausted all the tasks to be done without satisfying the given condition), or until some one component sum exceeds 100 . If this event happens, then no new component surns should begin,
while all those already begun but not yet completed should be terminated in an orderly way (the way this is accomplished here is by allowing them to complete), and then "windup processing" should take place.

The parallelization structure here is precisely the same as in ADDTWO, since the possibility of terminating thie computation without performing all N component sums is superimposed on the parallelization structure rather than being a part of it.

Thus once again we have a simplex whose underlying region S has 1 row and N columns. S is the 1 xN integer rectangle drawn below for the representative case $\mathrm{N}=5$:

For each $(1, \mathrm{~J}), T_{1 J}$ is the task "add $A(J)+B(J)$ to produce $C(J)$, and terminate the problem if $C(J)>100$."

Just as with ADDTWO, there are no row or column constraints in the simplex. The macro call to $g s 2$ is done via $g s 2(1,00,00,00,00)$.

The user-supplied values to both the gs $2 v a r$ and the gs 2init 2 macros are exactly the same as in ADDTWO. Thus the user-supplied values to the gs $2 v a r$ macro are as follows:

$$
\begin{aligned}
& R B 11=1 \\
& R B 12=2 \\
& C B 11=1 \\
& C B 12=1000 \\
& R B 21=1 \\
& R B 22=2 \\
& C B 21=1 \\
& C B 22=1
\end{aligned}
$$

Similarly, the user-supplied values to the gsZinit2 macro are

$$
\begin{aligned}
& M N R V 1=1 \\
& M X R V 1=1 \\
& M N C V 1=1 \\
& M X C V 1=N
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{LFBDY} 1(1)=1 \\
& \operatorname{RTBDY} 1(1)=N \\
& \operatorname{UPBDY} 1(J)=1 \text { for } 1 \leq J \leq N
\end{aligned}
$$

Termination in the event of the condition $C(J)>100$ being satisfied is accomplished via the "end of complex" macro cmplxend. This macro sets variables that are internal to the gs2 macro monitor so that no new subscript pairs will be handed out. Then once a process completes a component sum and returns to the $g s 2$ monitor, it enters into a windup processing stage of the problem. Furthermore, cmplzend will set the variable EXHST to 0, indicating that the possibility of exhausting all the tasks in the problem without finding one for which the sum $C(J)$ exceeds 100 has been ruled out.

To deal with a sequence of such problems, we utilize the barriar macro in a manner virtually identical to the way the Overbeek-Lusk barrier macro is used in their tutorial (in their "Shell sort" program). This same method is used in our version of the "Shell sort"; this is one of the subsequent examples below. As noted there, when using our barrier macro to enable the repeated exacution oi the gs 2 macro in a given program, it should be called by the macro call berrier (1), and the statement after it should be labeled 3001.

6.3. GETDUPS

A and B are two vectors with the same number N of elements. N is assumed to be less than or equal to $1000 . A$ and B are to be added to produce C, i.e.,

$$
C(J)=A(J)+B(J), \text { for } 1 \leq J \leq N
$$

The N additions are all independent of each other. For each $J, 2 \leq J \leq N, D(J)$ is set equal to 0 if $C(J)$ and $C(J-1)$ duplicate each other, i.e., if

$$
C(J)=C(J-1)
$$

and is set equal to 1 otherwise. $D(1)$ is set equal to 1 .
The parallelization structure may be described as a simplex whose underlying region has 2 rows and N columns. More specifically, S is the $2 x N$ integer rectangle depicted below for the representative case $\mathrm{N}=5$:

For each $(1, J), T_{1 J}$ is the task
add $A(J)+B(J)$ produce $C(J)$.
For $(2,1), T_{21}$ is the task
set $D(1)=1$.
For $2 \leq J \leq N, T_{2 J}$ is the task
set $D(J)=0$ if $C(J)=C(J-1)$ and set $D(J)=1$ otheruise.
The parallelizaiion structure here has one constraint, i.e., the column constraint C with skew factor 0 . This constraint requires that
$b_{2 J} \geq e_{1 J}$ for $1 \leq J \leq N$,
i.e., that for all $J, T_{2 J}$ cannot begin until after $T_{1 J}$ ends.

The fact that in a simplex each row is traversed from left to right, i.e., that
$b_{I J}<b_{I K}$ whenever $J<K$,
enables the constraint to be formulated this easily. Let us see how the column constraint C, together with left to right row traversal work together here. Suppose, for example, that the next task to begin is T_{29}. Then we know that T_{22} has already begun; since the column constraint must have been satisfied for (2,2), T_{12} must have completed, i.e. $C(2)$ has already been computed. Once the column constraint is satisfled for (2,3), then T_{13} has completed, i.e. $C(3)$ has been computed. Since $C(2)$ and $C(3)$ have already been computed, T_{23}, which determines whether or not they are equal, may then begin.

Since there is a column constraint C in this structure, the gs? masro should be called by $g s 2(1, C 0,00,00,00)$.

User-supplied values to the gsivar macro are as follows:

$$
\begin{aligned}
& R B 11=1 \\
& R B 12=3 \\
& C B 11=1 \\
& C B 12=1000 .
\end{aligned}
$$

User-supplied values to the gs\&init2 macro are as follows:

$$
\begin{aligned}
& M N R V 1=1 \\
& M X R V 1=2 \\
& M N C V 1=1 \\
& M X C V 1=N
\end{aligned}
$$

```
\(L F B D Y 1(1)=1\)
\(L F B D Y 1(2)=1\)
\(R T B D Y 1(1)=N\)
\(R T B D Y 1(2)=N\)
\(U P B D Y 1(J)=1\) for \(1 \leq J \leq N\).
```

A picture of the synchronization pattern for $\mathrm{N}=5$ is given by

It is instructive to examine now some variants of the parallelization structure described above in connection with the same problem.

First, suppose that all the $D(J)$ are initialized to 1 . Then task $T_{\varepsilon_{1}}$, which is "set $\mathrm{D}(1)$ equal to 1, " is redundant. We may then redefine T_{21} to be the "empty task" φ and write

$$
T_{21}=\varphi
$$

Notice that the column constraint C remains in full force, so that T_{21} cannot begin execution until T_{11}, i.e.,

$$
C(1)=A(1)+B(1)
$$

completes.
Although T_{21} is the null task, we cannot completely remove it from the parallelization structure. If this were attempted by redefining LFBDY1(2) to be 2 (we assume that $N \geq 2$), then T_{22} would only be constrained to start after T_{12} ($C(2)=A(2)+B(2))$ ends. Thus it would be possible for T_{22} to start before T_{11} ended, i.e., before $C(1)$ was computed to be $A(1)+B(1)$. But this would thwart the purpose of T_{22}, which is to compare $\mathrm{C}(1)$ and $\mathrm{C}(2)$.

Note that with the initializaton of all $D(J)$ to 1 , we may simplify the task $T_{2 J}$ for $2 \leq J \leq N$ to
set $D(J)=0$ if $C(J-1)=C(J)$.
There is no need to specify what happens otherwise, since $D(J)$ is already equal to 1 when $T_{2 J}$ begins execution.

Thus, by modifying the parallelization structure used in this example, we have introduced the concept of a "null task." Further modifications will illustrate
the concept of "skew factor" and of "jagged boundary."
Let us remove T_{21} (whether it be "set $D(1)=1$ " or the null task φ) and then shift the remaining tasks in the second row one unit to the left.

In other words, we define a new task function T^{1} by the rules

$$
T_{1}^{\mathbf{1} J}=T_{1} \text { for } 1 \leq J \leq N,
$$

and

$$
T_{R J}^{l}=T_{2(J+1)} \text { for } 1 \leq J \leq N-1 .
$$

Define the region S^{1} to be

$$
S^{1}=\{(1, J): 1 \leq J \leq N\} \cup\{(2, J): 1 \leq J \leq N-1\} .
$$

Then the simplex ($S^{1}, T^{1} \cdot U^{1}$) also models the "getdups" example, so long as U^{1}, which indicates the constraints on the simplex, indicates the column constraint C with skew factor 1.
S^{1} now has a jagged right boundary; although RTBDY1(1) is still N, now RTBDY1(2) is $N-1$. The synchronization pattern may now be depicted (again for $\mathrm{N}=5$) as

The user-supplied values must also be modified. Now $C B 12=1001$, since the skew factor of 1 must be taken into account.

An equivalent formulation would be to extend S^{1} (restoring the straight right boundary) and to define $T_{2 N}^{1}$ to be the null task φ. The skew factor is still 1 , and CB12 is still $\mathrm{N}+1$. But now once again the user-supplied value RFBDY1(2) is N . The synchronization pattern for $\mathrm{N}=5$ may now be drawn as

Since there is no $\mathrm{N}+1$ 'st column in $S^{1}, T_{2 N}^{1}$ is constrained only by $T_{1 N}^{1}$.

6.4. GETADUP

This modification of example 2 provides an instructive, elementary example of a parallelization 2-complex.

As in example 2, A and B are two vectors with the same number N of elements. N is assumed to be less than or equal to 1000 . A and B are to be added to produce C via

$$
C(J)=A(J)+B(J), \text { for } 1 \leq J \leq N
$$

The N component additions are all mutually independent.
We wish to determine if any successive $C(J)$'s duplicate each other, i.e., if there is some J such that

$$
2 \leq J \leq N \text { and } C(J-1)=C(J) .
$$

All we care about is whether there are any such duplicates. Therefore, if we find one duplicate pair, we can terminate the computation.

We initialize $\mathrm{D}(J)$ to be 1 for $1 \leq J \leq N$. For $2 \leq J \leq N, \mathrm{D}(\mathrm{J})$ is set equal to 0 if $C(J-1)=C(J)$. A certain bit (actually, a Fortran INTEGER variable named EXHST) is initialized to 1 . If some $D(J)$ is set to 0 , then this bit is set to 0 and the computation for this problem is terminated in an orderly manner, including perhaps printing out the result that there is a duplicate. If no $D(J)$ is set to 0 , this bit remains at 1 . Thus, after all the $\mathrm{D}(\mathrm{J})$ are determined, termination processing may include printing out the result that there are no duplicates.

The parallelization structure may be described as a 2-complex whose two simplexes are (S^{1}, T^{1}, U^{1}), which is simplex 1 , and (S^{2}, T^{2}, U^{2}), which is simplex 2. As is always the case with our priority convention for 2 -complexes, simplex 1 has higher priority than simplex 2 . This implies that when a process executes the gs 2 macro searching for a subscript pair ready to begin execution from among the current pair in simplex 1 and the current pair in simplex 2, it tilts its search in favor of simplex 1 by examining that current pair first.

Here S^{2} is the $1 \times N$ integer rectangle (drawn for $\mathrm{N}=5$)

$$
\begin{array}{ccccc}
\bullet & \bullet & \bullet & \bullet & \bullet \\
1,1 & 1,2 & 1,3 & 1,4 & 1,5
\end{array}
$$

and for each $(1, J)$ such that $1 \leq J \leq N, T_{1 J}^{2}$ is the task
"add $\mathrm{A}(\mathrm{J})$ to $\mathrm{B}(\mathrm{J})$ to produce $\mathrm{C}(\mathrm{J}) . "$
S^{1} is (for $N=5$) the integer rectangle

2,1	2.2	2,3	2,4	2,5

$T_{2_{1}}$ is the null task φ. For $2 \leqslant J \leqslant N, T_{2 J} \frac{1}{}$ is the task
if $C(J-1)=C(J)$, then set $D(J)=0$, begin no new computational tasks and instead do windup processing, and clear a bit (EXHST) indicating that the computation has been terminated by the finding of a duplicate pair, rather than by performing all the T / j and finding no duplicates.
Since there are no internal constraints within the individual simplexes, U^{1} and U^{2} are empty. However (as is always the case with a 2 -complex according to the definition here), there is a cross constraint. Simplex 2 column constrains simplex 1, i.e., XC21 holds. This means that
$T_{2 J}$ cannot begin until $T_{1 J}^{2}$ has ended, when $1 \leq J \leq N$.

The synchronization pattern may be drawn as

Points in simplex 1 lie on the top line, while points in simplex 2 lie on the bottom line. As indicated earlier, simplex 1 points take priority over simplex 2 points.

The fact that computation can be terminated because of a condition being satisfied for some $T_{2 J}^{l}$ is not part of the synchronization pattern. It enters into the program through the use of the macro cmpleand.

Note that this method of structuring the problem offers the advantege that if a duplicate pair is discovered early enough, many of the simplex 2 additions may not be done, because they are superfluous and their superfluity was discovered in time.

Since the only constraint is the cross-column constraint XC21, the gs 2 macro call is given by $g s 2(2,0 X, 00,00,00)$.

User-supplied values for simplex 1 to the gsZuar macro are as follows:

$$
\begin{aligned}
& R B 11=2 \\
& R B 12=3 \\
& C B 11=1 \\
& C B 12=N .
\end{aligned}
$$

User-supplied values for simplex 2 to the gsえuar macro are as follows:

$$
\begin{aligned}
& R B 21=1 \\
& R B 22=2 \\
& C B 21=1 \\
& C B 22=N .
\end{aligned}
$$

User-supplied values for simplex 1 to the gsZinit2 macro are as follows:

$$
\begin{aligned}
& M N R V 1=2 \\
& M X R V 1=2 \\
& M N C V 1=1 \\
& M X C V 1=N \\
& L F B D Y 1(2)=1 \\
& \operatorname{RTBDY1(2)=N} \\
& U P B D Y 1(J)=2 \text { for } 1 \leq J \leq N \\
& L W B D Y 1(J)=2 \text { for } 1 \leq J \leq N .
\end{aligned}
$$

User-supplied values for simplex 2 to the gsZinit2 macro are as follows:

$$
\begin{aligned}
& M N R V 2=1 \\
& M X R V Z=1 \\
& M N C V Z=1 \\
& M X C V Z=N \\
& \operatorname{LFBDY2}(1)=1 \\
& \operatorname{RTBDYZ}(1)=N \\
& U P B D Y 2(J)=1 \text { for } 1 \leq J \leq N \\
& L W B D Y 2(J)=1 \text { for } 1 \leq J \leq N .
\end{aligned}
$$

The macro cmplxend is used to handle termination in the case when a duplicate is found, just as in example CHECKIWO above. In particular, it will then set the variable EXHST to 0 .

6.5. MATEULT

Let A and B be matrices, where A has M rows and N columns, and B has N rows and P columns. M, N, and P are all assumed to be less than or equal to 300. A and B are to be multiplied together by matrix multiplication to produce the MxP matrix C. If $A(1, J), B(J, K)$ and $C(I, K)$ denote, respectively, the ($1, \mathrm{~J}$)'th element of A, the (J, K) 'th element of B, and the (I, K)'th element of C, then we can
write the formula for matrix multiplication as

$$
C(I, K)=\sum_{J=1}^{N} A(I, J) \times B(J, K)
$$

for all I, K where $1 \leq I \leq M$ and $1 \leq K \leq P$.
The MP distinct computations of the $\mathrm{C}(\mathrm{I}, \mathrm{K})$ are all independent. A substantial amount of the parallelization potential in this matrix multiplication may be obtained fairly simply. To do this, we use a simplex whose underlying region S has M rows and N columns. More specifically, S is the $M x P$ integer rectangle depicted below for the case $M=4$ and $P=6$.

For each (I, K) in $\mathrm{S}, T_{I K}$ is the task compute $\mathrm{C}(\mathrm{I}, \mathrm{K})$ via the formula

$$
C(I, K)=\sum_{J=1}^{N} A(I, J) \times B(J, K)
$$

Since all the tasks $T(1, K)$ are independent, this parallelization structure has no constraints; therefore, since no constraints need be indicated on the synchronization nattern, the picture of the synchronization pattern coincides with the above integer rectangle.

Also, since there are no constraints, the gs 2 macro may be called via gs $2(1,00,00,00,00)$.

User-supplied values to the gsZvar macro are as follows:

$$
\begin{aligned}
& R B 11=1 \\
& R B 12=301
\end{aligned}
$$

$$
\begin{aligned}
& C B 11=1 \\
& C B 12=300 .
\end{aligned}
$$

User supplied values to the gsZinit2 macro are as follows:

$$
\begin{aligned}
& M N R V 1=1 \\
& M X R V 1=M \\
& M N C V 1=1 \\
& M X C V 1=P \\
& \operatorname{LFBDY1} 1(I)=1 \text { for } 1 \leq I \leq M \\
& \operatorname{RTBDY} 1(I)=P \text { for } 1 \leq I \leq M \\
& \operatorname{UPBDY1}(J)=1 \text { for } 1 \leq J \leq P .
\end{aligned}
$$

This is a basic example of a two-dimensional parallelization structure whose underlying region is an integer rectangle with sides of arbitrary length and which has no constraints imposed.

6.6. SORT

Three Shell sorts are to be performed in this example: the first on a vector of 100 elements, the second on a vector of 1000 elements, and the third on a vector of 10000 elements. We are going to set, in the gs 2 context, the exact same Shell sort example dealt with in Overbeek and lusk [2], on pages 13-20.

This example will illustrate, among other things, how in the gs 2 setting regions with jagged boundaries occur, how the internal row constraint R arises, how the (internal) row-constraint synchronization pattern is depicted, and how multiple instances of the same problem are handled within one program (e.g., three Shell sorts on arrays of different lengths within one program).

In connection with the last question, recall that the program structure utilized inere will always have a main program, a subroutine SLAVE, and a subroutine WORK. The program will employ NPROCS processes. One of these processes will begin executing the main program. At some time during the execution of the main program, it will create the remaining NPROCS-1 processes, each of which will begin executing a copy of SLAVE. All subroutine SLAVE does is to call subroutine WORK. The main program will also call WORK. No parameters will be passed when the main program creates a copy of SLAVE.

If our program is to deal only with one instance of one problem, then no parameters are passed when WORK is called, either by the main program or by a copy of SLAVE.

However, if multiple instances of one problem are contemplated, then one parameter will be passed whenever WORK is called; it will be received in WORK by the dummy integer variable WHO. When the main program calls WORK, it will pass the value 0; but when a SLAVE calls WORK, it will pass the value 1 . Thus a copy of WORK will be able to use the variable WHO to determine whether its immediate ancestor is the main program or a SLAVE and thus to where, after a particular instance of the problem has been completed, control should be transferred. The use of the variable WHO in this way is illustrated in the Overbeek-Lusk tutorial (in particular, see p. 20, note 4, as well as the preceding code). It should also be clear from an examination of the (more structured) version of the Shell sort presented here.

We will return later in this example to the question of dealing with the multiple instances of a Shell sort. But for now, let us turn to the question of dealing with one Shell sort.

We begin by giving, for completeness, a somewhat formal summary presentation of the Shell sort to be used here. If the reader would like a more intuitive exposition, he should consult the Overbeek-Lusk tutorial at pages 13-20.

First an overview of our presentation. To sort a sequence

$$
x_{i_{1}}, x_{i_{2}} \cdots, x_{i_{K}}
$$

means to rearrange the values $x_{i_{k}}$ while keeping the subscripts

$$
i_{1}, i_{2}, \cdots, i_{K}
$$

so that the rearranged sequence

$$
y_{i_{1}}, y_{i_{e^{\prime}}} \cdots, y_{i_{K}}
$$

is monotone increasing, i.e.,

$$
y_{i_{1}} \leq y_{i_{2}} \leq \cdots \leq y_{i_{K}}
$$

We assume here, of course, that the sequence of integer indices is strictly monotone increasing, i.e., that

$$
i_{1}<i_{2}<\cdots<i_{K} .
$$

The "insertion to the left" (IL) scrt sorts the $x_{i_{k}}$ by first sorting the first (leftmost) two $x_{i_{k}}$, then the first three, then the first four, and so on, until all the $x_{i k}$ are sorted.

IL is the function composition of the $I L_{J}$ (insert the J 'th element to the left) sorts. For $2 \leq J \leq K I L_{J}$ sorts the flrst $J x_{i_{k}}$ if the first $J-1 x_{i_{k}}$ are already sorted.

In formula,

$$
I L=I L_{K} \cdot I L_{K-1} \cdot \cdots \cdot I L_{\mathrm{s}} \cdot I L_{2}
$$

where , is used to denote function composition. Thus to apply IL to a sequence, first apply $I L_{2}$, then $I L_{3}$, and so on until $I L_{K}$.

The action of the $I L_{J}$ may be defined recursively. $I L_{2}$ sorts a sequence $y_{i_{1}}, y_{i_{2}}$ by doing nothing if the two values are in the rig'at order and otherwise interchanging the two values, producing a sorted sequence $z_{i_{1}}, z_{i_{2}}$.
$I L_{3}$ sorts a sequence

$$
u_{i_{1}}, y_{i_{a}}, y_{i_{3^{\prime}}}
$$

where it is assumed that the sequence $y_{i_{1}}, y_{i_{2}}$ is already sorted, as follows: if $y_{i_{2}}$ and $y_{i_{3}}$ are in the right order, then $I L_{3}$ does nothing. Otherwise it interchanges the values of $y_{i_{2}}$ and $y_{i_{3}}$ producing the output sequence

$$
z_{i_{1}}, z_{i_{2}}, z_{i_{5}}
$$

Now $I L_{2}$ is applied to the sequence $z_{i_{1}}, z_{i_{2}}$ to produce a sorted result

$$
u_{i_{1}}, w_{i_{2}}, w_{i_{i_{3}}}
$$

In general, $I L_{J}$ sorts the sequence

$$
y_{i_{1}}, y_{i_{2^{\prime}}} \cdots, y_{t_{f^{\prime}}}
$$

where it is assumed that the sequence

$$
y_{i_{1}}, y_{i_{\mathrm{R}^{\prime}}} \cdots, y_{i_{t_{-1}}}
$$

is already sorted, as follows: if $y_{i_{J-1}}$ and $y_{i_{J}}$ are in the right order, then $I L_{J}$ does nothing. Otherwise it interchanges the values of $y_{i_{j-1}}$ and $y_{i_{r}}$, producing the output sequence

$$
z_{i_{1}}, z_{i_{2}} \cdots, z_{i_{J}}
$$

Now L_{J-1} is applied to the subsequence

$$
z_{i_{1}}, z_{i_{2}}, \cdots, z_{i_{j-1}}
$$

to produce the sorted result

$$
u_{i_{1}}, u_{i_{2}}, \cdots, w_{i_{\mu}} .
$$

The Shell sort sorts a sequence of distinct integers

$$
x_{1}, x_{2}, \cdots, x_{N}
$$

It takes as given a suitable decreasing sequence of integers

$$
G_{1}>G_{2}>\cdots>G_{N},
$$

where $1=G_{M}$ and $G_{1}<\frac{N}{3}$. The G_{j} are called "gaps," and G_{j} is called the j'th gap.

Within the framework of this example, the gaps G_{j}, together with the number of gaps M, will be deflned by the relations

$$
\begin{aligned}
& G_{M}=1, \\
& G_{I}=3 G_{I+1}+1 \text { for } 1 \leq I \leq M-1, \\
& 3 G_{1}+1<N,
\end{aligned}
$$

and

$$
3\left(3 G_{1}+1\right)+1 \geq N
$$

The Shell sort is done in M iterations, one for each gap G_{j}. The j 'th iteration begins by decomposing its input sequence

$$
z_{1}, z_{2}, \cdots, z_{N}
$$

into G_{j} separate, disjoint subsequences, each of which is of the form

$$
z_{q}, z_{q+G_{j}}, z_{q+2 C_{j}}, \cdots, z_{q+H G_{j}}
$$

where

$$
1 \leq q \leq G_{j},
$$

and H is the largest integer such that

$$
q+H G_{j} \leq N .
$$

(Note that successive indices in the above sequence of z 's differ by G_{j}; thus the term "gap" for the G_{j}.)

The j'th iteration continues by applying $I L$ to sort each of the G_{j} separate, disjoint subsequences. Then these sorted subsequences are reassembled into a sequence

$$
w_{1}, w_{2}, \cdots, w_{N}
$$

This sequence is the output (result) of the j 'th iteration and becomes the input sequence to the $(j+1)$ 'st iteration if $j \leq M$. The result of the M^{\prime} th iteration is the result (output) of the Shell sort and is completely sorted.

Now that the summary presentation of the Shell sort is done, we turn to setting up the relevant Fortran program and parallelization structure. Let A be an
array with N elements, where N is assumed to be less than or equal to 10000.

$$
A(1), A(2), \cdots, A(N)
$$

is the sequence to be sorted by the Shell sort. The sort will be done in M iterations, with gaps

$$
\operatorname{GAP}(1), \operatorname{GAP}(2), \cdots, \operatorname{GAP}(M) .
$$

The gaps and M will be obtained by first constructing a sequence

$$
X G A P(1), X G A P(2), \cdots, X G A P(K)
$$

by setting

$$
\begin{aligned}
& X G A P(1)=1, \\
& X G A P(L)=3 X G A P(L-1)+1 \text { for } L \geq 2
\end{aligned}
$$

and letting K be the smallest integer such that

$$
X G A P(K) \geq N
$$

where N is the number of integers to be sorted. Then we set

$$
M=K-2,
$$

and

$$
G A P(I)=X G A P(M+1-I) \text { for } 1 \leq I \leq M .
$$

Thus the sequence of GAP's from 1 to M is simply the sequence of XGAF's from 1 to M, but taken in reverse order.

The parallelization structure is a simplex whose underlying region has M rows and N columns, where N is the number of elements to be sorted and M is the number of iterations to be performed. More specifically, S is the region in the Cartesian integer plane consisting of all integer pairs (I, J) such that

$$
1 \leq I \leq M, \text { and } 1 \leq J \leq G A P(I) .
$$

A representative picture of S for the case when $M=3$ is presented below. The relevant gaps then are

$$
G A P(1)=13, \quad G A P(2)=4, \quad \text { and } \quad G A P(1)=1 .
$$

-	-	-	-	-	-	-	-	-	-	-	-	
1,1	1,2	1,3	1,4	1,5	1,6	1,7	1,8	1,9	1,10	1,11	1,12	,13

| \bullet | \bullet | \bullet |
| :---: | :---: | :---: | :---: |
| $\mathbf{2 , 1}$ | \bullet | \bullet |

Thus, the Shell sort exhibits a simplex with a jagged right boundary.
For each (l, J) in $\mathrm{S}, T_{I J}$ is the task
apply the "insertion to the left sort" IL to the subsequence of A obtained by considering only those values $A(I)$ whose indices I belong to the sequence

$$
J, J+G A P(I), J+2 G A P(I), \cdots, J+Q G A P(I),
$$

where Q is the largest integer such that

$$
J+Q G A P(I) \leq N .
$$

For a flxed I, where $1 \leq I \leq M$, the computational tasks in the I'th row, i.e.
$\left\{T_{I J}: 1 \leq J \leq G A P(I)\right\}$,
provide the tasks for the I 'th iteration of the Shell sort. The set of all computational tasks, i.e.,

$$
\left\{T_{I J}: 1 \leq I \leq M, 1<J=\leq \operatorname{GAP}(I)\right\},
$$

provide the tasks for one full Shell sort.
It is natural here to impose the constraint that the (I-1)'st iteration be completed before the I'th iteration begins, i.e., to impose the row constraint R on our simplex. When R is the internal constraint of a simplex, all the parallelism to be obtained is contained within the individual rows of tasks; we are effectively doing a serial DO loop of individual rows. (Within each row all the tasks may be performed in parallel, subject only to the implied begin constraint that the tasks within a row begin in order of their column subscripts.)

The row constraint R is represented on the picture of the underlying region S by an arrow (with an " R ") pointing down from the leftmost element of each (but the last) row to the leftmost point in the next row.

Thus the synchronization pattern for this example when $M=3$ may be drawn as

Since the parallelization structure is that of a simplex with the row constraint R , the call to the gs 2 macro is given by $g s 2(1,00, R 0,00,00)$.

User-supplied values to the gsฉ̌var macro are as follows:

$$
\begin{aligned}
& R B 11=1 \\
& R B 12=20 \\
& C B 11=1 \\
& C B 12=10000 .
\end{aligned}
$$

User-supplied values to the gsZinit2 macro are as follows:

$$
\begin{aligned}
& M N R V 1=1 \\
& M X R V 1=M \\
& M N C V 1=1 \\
& M X C V 1=G A P(1) \\
& \operatorname{LFBDY1}(I)=1 \text { for } 1 \leq I \leq M \\
& \operatorname{RTBDY1}(I)=G A P(I) \text { for } 1 \leq I \leq M \\
& U P B D Y 1(J)=1 \text { for } 1 \leq J \leq G A P(I)
\end{aligned}
$$

To supply these values, the user must first compute M and $G A P(1), \cdots, G A P(M)$.

As we remarked earlier, in this example we will do not only one Shell sort but three. Performing more than one Shell sort, i.e., executing the simplex more than once, involves a use of the barrier macro virtually identical to the use Overbeek and Lusk give their barrier macro (at p.19, line 189, of the tutorial) in their Sbell sort program. Although there are certain differences between our barrier macro and the one used by Overbeek and Lusk, for purposes of this paper the reader need only note that the call to our barrier macro when it is used to support multiple complex executions is given by "barrier(1)" and that the Fortran statement which follows the call "barrier (1)" should be labeled 3000.

Each time a new Shell sort is done, the user-supplied values to the gsZinit2 macro that have changed need to be recomputed. In this example, where three Shell sorts are done on vectors with differing numbers of elements, we will find it simplest to recompute before each Shell sort all the user-supplied values to the gszinit2 macro.

To accomplish this, we must also recompute M and $G A P(1), \cdots, G A P(M)$. (This recomputation could be simplified considerably if the order of the vectors to be sorted was reversed, i.e., if the 10000 element vector was sorted first, then the 1000 element vector, and last the 100 element vector. But it is more
instructive to consider the case that requires more recomputation.)
Once the user-supplied variables to g s2init2 are recomputed, then a call to that macro (in the form "gsZinitZ(1.00, R0,00,00)") will provide certain appropriate initializations needed for the particular problem (i.e., Shell sort) under consideration. Immediately following the "problem initialization" performed by gsZinitZ should be the call to subroutine WORK.

6.7. GRID

We now consider an example that is a discrete model of the Dirichlet problem for a cube in Euclidean three-dimensional space. In that problem, one is given a continuous function f defined on the boundary of the cube and must extend f to a continuous function g defined on the whole cube such that g is harmonic on the interior of the cube, i.e., g satisfies the Laplace equation

$$
g_{x x}+g_{y y}=0
$$

Here we are given a "discrete cube" (i.e., a three-dimensional cubic grid) and a function f defined on the boundary of the grid. We are to produce a threedimensional Fortran array whose indices are the coordinates of the grid, whose values at grid boundary points are the same as the values of f, and which is in some sense a discrete analogue of a harmonic function.

A harmonic function satisfies the property that its value at a point is the average of its values in a neighborhood of that point. We obtain our array by using a discrete analogue of this averaging property.

We employ two 3-dimensional Fortran arrays A and B. The indices of $A, a s$ well as the indices of B consist of the points of the cubic grid under consideration. The values of A and B for indices which correspond to grid boundary points are always identical to the function values of f at those points. The values of A at interior grid points are initially set to 0 .

A fixed number of iterations is set in advance. In an odd iteration, the interior values of B are computed by averaging neighboring values of A . In an even iteration, the roles of A and B are reversed. A column constraint, with skew factor 1 , provides for the necessary syrehronization.

After the given number of iterations has been completed, the last array to be computed (A if the number of iterations is even, B if it is odd) provides the desired discrete analogue of an approximate solution of the Dirichlet problem.

Now we focus in more sharply on the details. Let DIM be a positive integer such that $2 \leq D I M \leq 20$. Let A and B be $20 \times 20 \times 20$ three-dimensional real arrays. For purposes of this problem we will focus on those elements $A(I, J, K)$ of A and on those elements $\mathrm{B}(\mathrm{I}, \mathrm{J}, \mathrm{K})$ of B whose coordinates I, J, and K all are less than or
equal to DIM. With this restriction in focus, A and B both represent real-valued functions defined on the three-dimensional integer cubic grid

$$
D=[1, D I M] \times[1, D I M] \times[1, D I M] .
$$

The boundary of D, denoted by dD , is defined as the union of the 6 sets

$$
\begin{aligned}
& {[1] \times[1, D I M] \times[1, D I M]} \\
& {[D I M] \times[1 . Y D I M] \times[1, Z D I M]} \\
& {[1, D I M] \times[1] \times[1, D I M]} \\
& {[1, D I M] \times[D I M] x[1, D I M]} \\
& {[1, D I M] \times[1, D I M] x[1]} \\
& {[1, D I M] \times[1, D I M] x[D I M] .}
\end{aligned}
$$

The interior of D, denoted by int D, is defined as $D-d D$, i.e., the set of points of D that are not on the boundary of D. It can be represented as a Cartesian product by

$$
\text { int } D=[2, D I M-1] \times[2, D I M-1] \times[2, D I M-1]
$$

We are given a function f defined on $d D$. We will exhibit a method of extending it to a function g defined on all of D.

Define, for all ($\mathrm{I}, \mathrm{J}, \mathrm{K}$) in dD ,

$$
A(I, J, K)=f(I, J, K) \text { and } B(I, J, K)=f(I, J, K) .
$$

Throughout the computation the values of $\mathrm{A}(\mathrm{I}, \mathrm{J}, \mathrm{K})$ and $\mathrm{B}(\mathrm{I}, \mathrm{J}, \mathrm{K})$ for ($\mathrm{I}, \mathrm{J}, \mathrm{K}$) in dD will remain unchanged.

Initialize

$$
A(I, J, K)=0 \text { for all }(I, J, K) \text { in int } D .
$$

A specific positive number M of iterations is given. Assume M to be less than or equal to 1000.

The parallelization structure may be described by a simplex whose underlying region S has M rows and DIM-2 columns. More specifically, S is the $M \times(D I M-2)$ integer rectangle drawn for the representative case $\mathrm{M}=5$ and $\mathrm{DIM}=$ 8 below.

T_{12} is the task
compute all the $\mathrm{B}(2, \mathrm{~J}, \mathrm{~K})$, where ($2, \mathrm{~J}, \mathrm{~K}$) is in the interior of D , by setting $B(2, J, K)$ equal to the average of the A values at the six neighboring points of (2,J,K).
Those six neighboring points are

$$
(1, J, K),(3, J, K),(2, J-1, K),(2, J+1, K),(2, J, K-1) \text { and }(2, J, K+1) .
$$

T_{12} may be thought of as updating the values of the A function on the interior grid slice $I=2$ by computing B values there, each of which is the average of tine six neighboring A values.

More generally, for $2 \leqslant L \leq D I M-1, T_{1 L}$ is the task
compute all the $\mathrm{B}(\mathrm{L}, \mathrm{J}, \mathrm{K})$, where ($\mathrm{L}, \mathrm{J}, \mathrm{K}$) is in the interior of D , by setting $B(L, J, K)$ equal to the average of the A values at the six neighboring points of ($\mathrm{L}, \mathrm{J}, \mathrm{K}$).
$T_{1 L}$ can be thought of as updating the A values on the interior grid slica $I=L$ (here, I denotes an integer variable ranging over the first coordinate in thresdimensional space) by averaging, just as in the particular case $\mathrm{l}=2$ described above.

We have now described the first row of tasks $T_{1 L}$ of the parallelization simplex. We will now define the remaining rows of tasks. If 1 is an odd integer, and $1 \leq I \leq M$, then whenever $2 \leq L \leq M-1 T_{I L}$ has exactly the same definition as does $T_{1 L} . T_{I L}$ is the task
compute all $B(L, J, K)$, where (L, J, K) is in the interior of D, ty setting $B(L, J, K)$ equal to the average of the A values at the six neighboring points of ($\mathrm{L}, \mathrm{J}, \mathrm{K}$).
$T_{I L}$ can be thought of as updating the values of the A function on the interior grid slice $I=L$ by averaging, just the same as $T_{1 L}$. These updated values are used as the new values of the B function.

If I is even, $T_{I L}$ has the same definition as $T_{1 L}$, except that the roles of A and B are reversed. Now $T_{I L}$ is the task
compute all $A(L, J, K)$, where (L, J, K) is in the interior of D, by setting $A(L, J, K)$ equal to the average of the B values at the six neighboring points of ($\mathrm{L}, \mathrm{J}, \mathrm{K}$).
For I even, $T_{I L}$ can be thought of as updating the values of the B function on the interior grid slice $I=L$ by averaging. These updated values are used as the new values of the A function.

The simplex here has one constraint, namely, the column constraint C with skew factor 1. This constraint says that

$$
b_{I J} \geq e_{(I-1) J} \text { whenever } 2 \leq I \leq M \text { and } 2 \leq J \leq D I M-1 \text {, }
$$

and

$$
b_{I J} \geq e_{(I-1)(J+1)} \text { whenever } 2 \leq I \leq M \text { and } 2 \leq J \leq D I M-2 .
$$

To summarize, A starts off with the given values f on $d D$ and the value 0 on int D. During the first iteration B (as it always does) assumes the given values \hat{f} on dD . However, at each point of int D, B takes on the value obtained by averaging the six values of A at "neighbors" of that point. This iteration "updates" the values of A on D; the updated values are those of B on D.

During the second iteration the roles of A and B are reversed. As always, A assumes the values of f on $d D$. However, on int D, at each point A talses on the average of the six neighboring values of B. (These values of B are those obtained during the first iteration.) The column constraint C , with skew factor 1 , ensures that a second iteration task $T_{2 J}$ will not begin until the first iteration tasks $T_{1(J-1),} T_{1 J}$ and $T_{1(J+1)}$ have all ended. Once these tasks have ended, B has all those needed updated values produced by the first iteration which serve as inputs to $T_{2 J}$.

Note that if $T_{2 J}$ is ready to begin, i.e., $T_{2 J}$ is the current task in the simplex and the constraints imposed on $T_{2 J}$ by the column constraint with skew factor 1 are satisfied, then $T_{1 J}$ and $T_{1(\gamma+1)}$ have completed, by the definition of the column constraint with skew factor 1 . But if $J>2$, then $T_{2(J-1)}$ must have already begun, since $T_{2 J}$ is the current task, and a row in a simplex is traversed in order of column subscripts. Thus $T_{1(J-1)}$ must also have ended, since its end was a prerequisite (via the column constraint) to the beginning of $T_{2(J-1)}$.

The odd iterations all are identical to the first, except that each time through the values of B are computed using the values of A obtained during the previous iteration. Similarly the even iterations are all identical to the second, with the roles of A and B interchanged from what they were with regard to odd iterations.

The L'th task of the N'th iteration computes the updated values on the slice of int D consisting of all points of int D whose first coordinate is L.

The values computed during the last (M^{\prime} 'th) iteration are taken to be the final result. Thus, these are the values of A on D if M is even, and the values of $]$ on D if M is odd.

The column constraint C, with skew factor 1, always ensures that the correct inputs to the task $T_{I J}$ are in place before that task can begin. Since the simplex has the column constraint C, the macro call to $g s 2$ is exactly the same as that used in the GETDUPS example, namely, $g s 2(1, C 0,00,00,00)$. Note that the skew factor does not affect the parameters in the macro call.

User-supplied values to the gsえuar macro are as follows:

$$
\begin{aligned}
& R B 11=1 \\
& R B 12=1001 \\
& C B 11=2 \\
& C B 12=20 .
\end{aligned}
$$

User-supplied values to the gsZinit2 macro are as follows:

```
MNRV1 = 1
\(M X R V 1=M\)
\(M N C V 1=2\)
\(M X C V 1=D I M-1\)
\(\operatorname{LFBDY1}(I)=2\) for \(1 \leq I \leq M\)
\(R T B D Y 1(I)=D I M-1\) for \(1 \leq I \leq M\)
    \(U P B D Y 1(J)=1\) for \(2 \leq J \leq D I M-1\)
    \(S K W 1=1\).
```

Note that the skew factor 1 is introduced here as a user-supplied value via the variable SKW1.

A picture of the synchronization pattern is given by

6.8. QR

The formulation of this problem is essentially taken from Overbeek and Lusk [1, p. 26].

We study a parallelization structure involved in performing the QR factorization of a matrix, more specifically, in performing Householder's algorithm. It is not necessary to understand what the algorithrn does; it is necessary to understand the following synchronization requirements.

1. The first step in performing Householder's algorithm on an NxN matrix is to "create the reflection for column 1." This reflection can then be applied to all remaining columns.
2. A reflection will be created for each column J. The reflection for column J can be created only after
a. all reflections for columns L, where $L<J$, have been created, and
b. for all $L<J$, the reflection for column L has been applied to the J^{\prime} 'th column.
3. The reflection for column K can be applied to all columns J, where $K<J$. However, for a given column K , these "applies" must take place in order. More specifically, the application of the reflection for column K to column J, if $J>1$, cannot begin until the reflection for column K has been applied to column $J-1$.

We can reformulate these synchronization requirements as follows:
(A) For each $J, 1 \leq J \leq N$, there is a task $C(J)$ "create the reflection for column J."
(B) For each $J, K, 1 \leq J<K \leq N$, there is a task $A(J, K)$ "apply the reflection for column J to column K."
(C) $C(J)$ cannot begin until all $A(L, J)$ have ended, where $1 \leq L<J$.
(D) $A(J, K)$ cannot begin until $A(J-1, K)$ has ended, if $J \geq 2$.

And of course, since a reflection cannot be applied until it has been created, we have
(E) Whenever $1 \leq J<K \leq N, A(J, K)$ cannot begin until $C(J)$ has ended.

Note that the requirement
" $C(J)$ cannot begin until $C(L)$ has ended, for $L<J$ "
need not be included, since it follows from (C) and (E).
Note further that (C) may be replaced by the weaker condition
(C') Whenever $J \geq 2, C(J)$ cannot begin until $A(J-1, J)$ has ended.
This is because (C) follows from (C^{\prime}) and (D).
Thus we have a "minimal" set of synchronization requirements (A), (B), (C'), (D), and (E) upon which we can base our parallelization structure.

The parallelization structure may be described by a 2 -complex

$$
\left(\left(S^{1}, T^{1}, U^{1}\right),\left(S^{2}, T^{2}, U^{2}\right), V\right)
$$

The underlying region S^{1} of simplex 1 is the set of all points in the integer Cartesian plane that have coordinates (J, J), where $1 \leq J \leq N$. In other words, S^{1} is the integer line segment from (1,1) to (N, N). A picture of S^{1} when $N=6$ is drawn below.

$$
\stackrel{\bullet}{4,4}
$$

For each (J, J) in $\left.S^{1}, T\right\}_{J}$ is the task $C(J)$. "create the reflection for column J."
The underlying region S^{2} of simplex 2 is the set of all points (J, K) in the integer Cartesian plane such that $1 \leq J<K \leq N$. In other words, S^{2} is the integer triangle whose "boundaries" are the three integer line segments

$$
J+1=K, \text { for } 1 \leq J \leq N-1,
$$

$J=1, \quad$ for $2<K \leqslant N$.
$K=N$, for $1 \leq J \leq N-1$.
S^{2} (for $N=6$) is the integer triangle drawn below.

In accordance with the convention in force here, the J coordinate (the first coordinate) will be on the vertical axis, with lower points corresponding to larger values of J, and the K coordinate (the second coordinate) will be on the horizontal axis, with points to the right corresponding to larger values of K.
For each (J, K) in S^{2}, T_{K}^{2} is the task $A(J, K)$ "apply the reflection for column J to column K.

The underlying region S of the 2-complex, which is the union of S^{1} and S^{2}, is therefore the integer triangle whose "boundaries" are the three integer line segments

$$
\begin{aligned}
& J=K, \quad \text { for } \quad 1 \leq J \leq N \\
& J=1, \quad \text { for } \quad 1 \leq K \leq N \\
& K=N, \quad \text { for } \quad 1 \leq J \leq N .
\end{aligned}
$$

S (for $N=6$) is the integer triangle drawn below.

The line separates the two underlying regions S^{1} and S^{2}. Points in S^{1} lie below the line, while points in S^{2} lie above.

To find the constraints associated with the 2-complex, we interpret the synchronization requirements (C^{\prime}), (D) and (E) given above.

Condition (C') requires that for $J \geq 2, C(J)$ cannot begin until $A(J-1, J)$ has ended. This translates into requiring that $T\}_{\mathcal{J}}$ cannot begin until $T(J-1) J$ has ended, i.e., that

$$
b_{J J} \geq \varepsilon_{(J-1) J} \text { for } J \geq 2 .
$$

Bit this states that simplex 2 constrains simplex 1, i.e., that the cross-column constraint XC21 holds.

Condition (D) requires that for $J \geq 2, A(J, K)$ cannot begin until $A(J, K-1)$ has ended, i.e., that $T \rho_{K}^{2}$ cannot begin until $T_{(K-1)}^{\prime}$ has ended. This is precisely the condition

$$
b_{J K} \geqq \varepsilon_{J(K-1)}
$$

when $J \geq 2$, and (J, K) and $(J, K-1)$ are in S^{2}. But this states that simplex 2 is column constrained, i.e., that the constraint C2 (with skew factor 0) holds.

Finally, Condition (E) requires that whenever $1 \leq J<K \leq N, A(J, K)$ cannot begin until $C(J)$ has ended, i.e. that $T \rho_{K}$ cannot begin until $\left.T\right\}$, has ended. This is precisely the condition

$$
b_{J K} \geq \varepsilon_{J J} .
$$

when $1 \leq J<K \leq N$.
But this is equivalent to the condition that simplex 1 cross row constrairs simplex 2 , i.e., that the constraint XR12 holds.

Therefore, the parallel structure used here is the 2 -complex

$$
\left(\left(S^{1}, T^{1}, U^{1}\right),\left(S^{2}, T^{2}, U^{2}\right), V\right)
$$

where S^{1}, S^{2}, T^{1}, and T^{2} are as described above. U^{1}, the set of internal constraints on simplex 1 , is empty. U^{2}, the set of internal constraints on simplex 2 , consists of the column constraint C 2 with skew factor 0 . V , the set of cross constraints, contains the cross-column constraint XC21 and the cross-row constraint XR12.

Therefore, for this example, the $g s 2$ macro call is $g s 2(2,0 X, 00, C 0,0 X)$.
User-supplied values for simplex 1 to the gszuar macro are as follows (we assume that N , the size of the square matrix, is less than or equal to 300):

$$
\begin{aligned}
& R B 11=1 \\
& R B 12=301 \\
& C B 11=1 \\
& C B 12=300 .
\end{aligned}
$$

User-supplied values for simplex 2 th the gsえuar macro are as follows:

$$
\begin{aligned}
& R B 21=1 \\
& R B 22=300 \\
& C B 21=2 \\
& C B 22=300 .
\end{aligned}
$$

User-supplied values for simplex 1 to the gsZinit2 macro are as follows:

$$
\begin{aligned}
& M N R V 1=1 \\
& M X R V 1=N \\
& M N C V 1=1 \\
& M X C V 1=N
\end{aligned}
$$

$$
L F B D Y 1(I)=I \text { for } 1 \leq I \leq N
$$

```
\(\operatorname{RTBDY1}(I)=I\) for \(1 \leq I \leq N\)
\(\operatorname{UPBDY1}(J)=J\) for \(1 \leq J \leq N\)
\(L W B D Y 1(J)=J\) for \(1 \leq J \leq N\).
```

User-supplied values for simplex 2 to the gsZinit2 macro are as follows:

```
\(M N R V 2=1\)
\(M X R V 2=N-1\)
\(M N C V 2=2\)
MXCV2 \(=N\)
\(\operatorname{LFBDY2}(I)=I+1\) for \(1 \leq I \leq N-1\)
\(\operatorname{RTBDY2}(I)=N\) for \(1 \leq I \leq N-1\)
\(U P B D Y 2(J)=1\) for \(2 \leq J \leq N\).
\(L W B D Y 2(J)=J-1\) for \(2 \leqslant J \leqslant N\).
```

Note: The formulation of this problem in Overbeek and Lusk [1, p. 26] deals with the performance of the Householder algorithm for several matrices, rather than for just one. This use of the gs 2 macro for multiple problems is handled by the use of the barrier macro, called in the form barrier(1), jusu as in the SORT and CHECKTWO problems dealt with earlier. Prior to the time a new Householder algorithm computation is begun, and the problem initializer gs Zinit2 is executed, the user-supplied values that have changed must be resupplied by the user. Thus, for example, if the dimension of the matrix is changed, then MXRV1, $M X R V 2, M X R V 2, M X C V 2$, as well as all the underlying region boundaries (LFBDY1, LFBDY2, RTBDY1, RTBDY2, LWBDY1, LWBDY2, UPBDY1, and $U P B D Y 2$) should be recomputed before the relevant use of gs 2 init 2 in the main program.

As is always the case (by convention) with a 2 -complex, simplex 1 holds priority over simplex 2. This implies that if the current task in simplex 1 and the current task in simplex 2 are both ready to begin a process begins executing $g s 2$ searching for a task to perform, then that process will select the current task in simplex 1.

Thus, here the "creates" take priority over the "applies." This scheme has the advantage that once a "create" is completed, it can remove a direct row end constraint on a whole row of "applies" (the XR12 constraint), while a completed "apply" can remove a direct column end contraint only on the task directly beneath it (the C2 or XC21 constraint). (Strictly speaking, one might say that a completed "apply" removes, on the average, a constraint on half a row of "applies," with reference to the row below that of the completed "apply.") Of
course, if one wished, one could give the "applies" priority by switching the indices on the two simplexes of the complex.

Let us examine another perspective on the advantage obtained by giving "creates" priority over "applies." As the applies T_{K}^{2} complete for K suitably near N, they free up processes that cannot begin a new task until the "create" $T_{(J+1)(J+1)}$ completes. To avoid having these processes have signiffcant periods of unnecessary inactivity, the "create" $T_{(J+1)(J+1)}$ should begin before tasks T_{K}^{2} for K near N whenever possible. Assigning priority to "creates" accomplishes this.

The synchronization pattern given by this complex is drawn below (for the representative case $N=8$).

-

The horizontal arrows represent the XR12 constraint. The (plain) vertical arrows represent the C2 constraint. The vertical arrows with an ' X " represent the XC21 constraint.

Referencea

1. J. Clausing, R. Hagstrom, E. Lusk, and R. A. Overbeek, "A Technique for Achieving Portability Among Multiprocessors: Implementation on the Lemur," Parallel Computing, 1985. (to appear)
2. Harry F. Jordan, Parallel Programming on the HEP Multiple Instruction Stream Computer, August 20, 1981.
3. E. Lusk and R. A. Overbeek, "Use of monitors in FORTRAN: a tutorial on the barrier, self-scheduling DO-loop, and askfor monitors," ANL-84-51, Argonne National Laboratory, July 1984.
4. Ewing L. Lusk and Ross A. Overbeek, "Implementation of Moniturs with Macros: A Programming Aid for the HEP and Other Parallel Processors," Technical Report ANL-83-97, Argonne National Laboratory, Argonne, Illinois, December 1983.
5. E. L. Lusk and R. A. Overbeek, "Use of Monitors in FORTRAN: a Tutorial on the Barrier, Self-Scheduling Do-Loop, and Askfor Monitors," in Parallel MIMD Computation: The HEP Supercomputer and its Applications, ed. J. S. Kowalik, The MIT Press, 1985.

Appendix A
The ADDTWO Example

```
define(RB11,1)
define(RB12,2)
define(CB11,1)
define(CB12,1000)
define(RB21,1)
define(RB22,2)
define (CB21,1)
define(CB22,1)
    PROGRAM ADDTWO
    newproc(SLAVE)
*
* COMMON AREA VARIABLES
*
    INTEGER A(1000), B(1000), C(1000)
    INTEGER NPROCS, N
    COMMON /MAINC/ A, B, C, N, NPROCS
*
************************************************************************
*
* DECLARE THE VARIABLES AND COMMON TO SUPPORT THE MONITOR
*
************************************************************************
*
    gs2var
    INTEGER I,TS,TE
*
**************************************************************************
*
* INITIALIZE THE SELF-SCHEDULING DO-LOOP MONITOR
*
*************************************************************************
*
    gs2init1(1,00,00,00,00)
*
********************************************************************
*
* READ IN THE NUMBER OF PROCESSES TO RUN IN PARALLEL
官
***********************************************************************
*
    READ (5,10) NPROCS
10 FORMAT(I4)
    WRITE(6,20) NPROCS
20 FORMAT(' NPROCS = ',I4)
*
```

*
* READ IN THE TWO INPUT VECTORS
*

**
*
READ (5,10) N
READ (5,10) (A(I), I = 1,N)
READ (5,10) (B(I), I = 1,N)
*
MNRV1 = 1
MXRV1 = 1
MNCV1 = 1
MXCV1 = N
LFBDY1 (1) = 1
RTBDY1(1) = N
DO 17 I=1,N
UPBDY1(I) = 1
17 CONTINUE
gs2init2(1,00,00,00,00)
*
**
*

* CREATE THE SLAVE PROCESSES
*

5*:*******
*
clock(TS)
DO 30 I=1,NPROCS-1
create(SLAVE)
30 CONTINUE
CALL WORK
*
clock(TE)
TE = TE - TS
WRITE(6,40) TE
40 FORMAT(' TOTAL TIME = ',I6)
*
WRITE (6,10) (C(I), I = 1,N)
STOP
END
*
**
*

* THE SLAVE PROCESSES JUST CALL THE wORK SUBROUTINE TO ADD UP
* ELEMENTS UNTIL THE END OF THE VECTOR IS REACHED. THE PRCCESSES
* THEN EXIT (WHICH IS ASSUMED TO DESTROY THEM).
*

*
SUBROUTINE SLAVE
CALL WORK

```

RETURN
END
*
***************************************************************
*
* THE WORK SUBROUTINE JUST CAUSES A PROCESS TO GRAB AVAILABLE
* SUBSCRIPTS UNTIL ALL OF THE WORK HAS BEEN COMPLETED. AT THAT
- POINT THE SUBROUTINE EXITS. NOTE THAT IF THERE IS A SINGLE
* PROCESS (I.E., NO SLAVES). THE ALGORITHM STILL WORKS JUST
- FINE.
*

*
SUBROUTINE WORK
*
* COMMON AREA VARIABLES

INTEGER A(1000), B(1000), C(1000)
INTEGER NPROCS, N
COMMON /MAINC/ A, B. C, N, NPROCS
*
gs2var
*
INTEGER I
*
10 CONTINUE
*
********************************************************************
*
* CLAIM THE NEXT AVAILABLE SUBSCRIPT (RETURNED IN I)
*
************************************************************:
- gs2 (1.00,00,00,00)

1000 CONTINUE
*
\(C(J)=A(J)+B(J)\)
GO TO 10
*
3000 CONTINUE
RETURN
END

\section*{Appendix B}

The CHECKTHO Example
```

define(RB11,1)
define(RB12,2)
define(CB11,1)
define(CB12,1000)
define(RB21,1)
define (RBZ2,2)
define(CB21,1)
define(CB2Z,1)

```

PROGRAM CHKTWO
* newproc (SLAVE)
* COMMON AREA VARIABLES

INTEGER \(\mathrm{A}(1000), \mathrm{B}(1000), \mathrm{C}(1000)\)
INTEGER NPROCS,N
INTEGER I
COMMON /MAINC/ A, B, C, N, NPROCS
*
- gs2var
gs2init1 ( \(1,00,00,00,00\) )
READ \((5,10)\) NPROCS
FORMAT (I4)
WRITE \((6,20)\) NPROCS
20 FORMAT('NPROCS = ', 14)
*
中
*

*
* READ IN THE TWO INPUT VECTORS
*

*
\(\operatorname{READ}(5,11) \mathrm{N}\)
\(\operatorname{READ}(5,11)(\mathrm{A}(\mathrm{I}), \mathrm{I}=1, \mathrm{~N})\)
\(\operatorname{READ}(5,11)(B(I), I=1, N)\)
DO \(42 \mathrm{JJ}=1, \mathrm{~N}\)
\(C(J J)=-1\)
42
CONTINUE
*
\[
\begin{aligned}
& \text { MNRV1 }=1 \\
& M X R V 1=1 \\
& M N C V 1=1
\end{aligned}
\]
```

 MXCV1 = N
 *

4 3 ~ C O N T I N U E ~
DO 43 II = MNRV1,MXRV1
LFBDY1(II) = 1
RTBDY1(II) = N
*
DO 44 JJ = MNCV1,MXCV1
UPBDY1(JJ) = 1
LWBDY1(JJ) = 1
44
*
*
DO 30 1=1,NPROCS-1
create(SLAVE)
CONTINUE
*
*
*
*
IF(EXHST .EQ. 1) THEN
WRITE(6,77)
ELSE
WRITE(6,78)
ENDIF
77 FORMAT(' '. ' THERE IS NO VALUE GREATER THAN 100')
78 FORMAT(' ', ' THERE IS A VALUE GREATER THAN 100')
WRITE(6,40)
40 FORMAT'(' THE VALUES IN THE C VECTOR ARE AS FOLLOWS: ')
WRITE(6,12)(C(I), I=1,N)
FORMAT (I4)
FORMAT(' '.14)
STOP
END
*

```

*

SUBROUTINE SLAVE
CALL WORK RETURN
END

SUBROUTINE WORK
INTEGER I
INTEGER A(1000), B(1000), C(1000)
INTEGER NPROCS, N
COMMON /MAINC/ A, B, C, N, NPROCS


Appendix C The GBiDUPS Example
```

define(RB11,1)
define(RB12,3)
define (CB11,1)
define(CB12, 1000)
define (kB21, 1)
define (RB22,2)
define(CB21,1)
define(CB22,1)

```
*************************************************************sw
* \(\mathrm{C}=\mathrm{A}+\mathrm{B}\). THEN D IS CREATED AS A VECTOR IN WHICH EACH ELEMENT
- IS SET AS FOLLOWS: \(D(I)=0 \mathrm{IFF}(C(I)=C(I-1)\). THOSE ELEMENTS
* OF D WHICH ARE NOT SET TO O ARE SET TO 1. D(1) IS ALWAYS SET
- TO 1.
*


PROGRAM GETDUP
newproc (SLAVE)
*
* COMMON AREA VARIABLLES

INTEGER \(A(1000), B(1000), C(1000), D(1000)\)
INTEGER NPROCS, N
COMMON /MAINC/ A, B, C, D. N, NPROCS
gs2var
INTEGER I

\section*{*}
*

*
* INITIALIZE THE MONITORS
*
*
gs2initi(1, C0,00,00,00)
*
READ (5,10) NPPOCS
10
FORMAT (I4)
WRITE \((6,20)\) NPROCS
FORMAT(' NPROCS = ', I4)
* READ IN THE TWO INPUT VECTORS
```

|
READ (5,10) N
READ (5,10) (A(I), I = 1,N)
READ (5,10) (B(I), I = 1,N)
*
MNRV1 = 1
MXRV1 = 2
MNCV1 = 1
MXCV1 = N
LFBDY1(1) = 1
LFBDY1(2) = 1
RTBDY1(1) = N
RTBDY1(2) = N
DO 25 I=1.N
UPBDY1(I) = 1
25 CONTINUE
gs2init2(1, C0,00,00,00)
DO 30 I=1,NPROCS-1
create(SLAVE)
CONTINUE
CALL WORK
*
WRITE (6,40)
40 FORMAT(' THE VALUES IN THE C VECTOR ARE AS FOLLOWS:')
WRITE (6,10) (C(I), I = 1,N)
WRITE (6.50)
50 FORMAT(' THE VALUES IN THE D VECTOR ARE AS FOLLOWS:')
WRITE (6,10) (D(I), I = 1,N)
STOP
END
*
**
*

* THE SLAVE PROCESSES JUST CALL THE WORK SUBROUTINE TO ADD UP
* ELEMENTS UNTIL THE END OF THE VECTOR IS REACHED. THE PROCESSES
* THEN EXIT (WHICH IS ASSUMED TO DESTROY THEM).
*

*
SUBROUTINE SLAVE
CALL WORK RETURN
END
*
*

* THE WORK SUBROUTINE PERFORMS A 2-STAGE COMPUTATION. FIRST,
* $\mathrm{C}=\mathrm{A}+\mathrm{B}$ IS COMPUTED. THE SECOND STAGE CALCULATES D.

```
```

*

SIת3ROUTT INE WORK
*

* C(MMON AREA VARIABLES
INTEGER A(1000), B(1000), C(1000), D(1000)
INTEGER NPROCS, N
COMMON /MAINC/ A, B, C, D, N, NPROCS
* gs2var
INTEGER I
* CONTINUE
1 0 0 0
gs2(1.C0,00,00,00)
CONTINUE
* IF (I .EQ. 1) THEN
C}(\textrm{J})=\textrm{A}(\textrm{J})+\textrm{B}(\textrm{J}
ELSE
IF (J .GE. 2) THEN
IF (C(J).EQ. C(J-1)) THEN
D(J) = 0
ELSE
D(J) = 1
ENDIF
ELSE
D(1) = 1
ENDIF
ENDIF
end1(1.C0,00,00,00)
GO TO 10
*

3000 CONTINUE
RETURN
END

```

\section*{Appendix D}

\section*{The GETADUP Example}
```

define(RB11,2)
define(RB12,3)
define(CB11,1)
define(CB12,1000)
define (RB21, 1)
define (RB22,2)
define(CB21,1)
define (CB22, 1000)

```

PROGRAM GETADP
```

* newproc(SLAVE)

```
* COMMON AREA VARIABLES
*
*

INTEGER \(A(1000), B(1000), C(1000), D(1000)\)
INTEGER NPROCS, N
INTEGER I
COMMON /MAINC/ A. B. C.D. N, NPROCS
gs2var
*
gs2init1(2,0X,00,00,00)
RFAD ( 5,10 ) NPROCS
FORMAT(I4)
WRITE(6,20) NPROCS
20 FORMAT('NPROCS \(=\cdot, 14\) )
\(\operatorname{READ}(5,11) \mathrm{N}\)
\(\operatorname{READ}(5,11)(\mathrm{A}(\mathrm{I}), \mathrm{I}=1, \mathrm{~N})\)
\(\operatorname{READ}(5,11)(\mathrm{B}(\mathrm{I}), \mathrm{I}=1, \mathrm{~N})\)
*
DO \(42 \mathrm{JJ}=1 . \mathrm{N}\)
\(C(J J)=-1\)
\(\mathrm{D}(\mathrm{JJ})=-1\)
42 CONTINUE
\[
\begin{aligned}
& \text { MNRV1 }=2 \\
& \text { MXRV1 }=2
\end{aligned}
\]
```

 MNCV1 = 1
 MXCV1 = N
 DO 43 II = MNRV1,MXRV1
 LFBDY1(II) = 1
 RTBDY1(II) = N
 4 3
MNRV2 = 1
MXRV2 = 1
MNCV2 = 1
MXCVZ = N
DO 45 II = MNRV2,MXRV2
LF'BDY2(II) = 1
RTBDY2(II) = N
CONTINUE
DO $46 \mathrm{JJ}=\mathrm{MNCVZ}, \mathrm{MXCV} 2$
UPBDY2(JJ) = 1
LWBDY2(JJ) = 1
CONTINUE
gs2init2(2,0X,00,00,00)
DO 30 1=1,NPROCS-1
create(SLAVE)
30 CONTINUE
IF(EXHST .EQ. 1) THEN
WRITE(6,77)
ELSE
WRITE(6,7B)
ENDIF
77 FORMAT(' ', ' THERE ARE NO DUPLICATES')
78 FORMAT(' ', ' THERE IS A DUPLICATE')
WRITE (6,40)
40 FORMAT(' THE VALUES IN THE C VECTOR ARE AS FOLLOWS: ')
WRITE(6,12)(C(I), I=1,N)
WRITE(6,50)
50 FORMAT(' THE VALUES IN THE D VECTOR ARE AS FOLLOWS: ')
WRITE(6,12)(D(I), I=1,N)
FORMAT (I4)
FORMAT(' ',14)
STOP
END

```
*

-
SUBROUTINE SLAVE
*
CALL WORK
RETURN
END
*
*
***************************************************************:
*
SUBROUTINE WORK
*
INTEGER I
INTEGER \(A(1000), B(1000), C(1000), D(1000)\)
INTEGER NPROCS, N
COMMON /MAINC/ A, B, C, D, N, NPROCS
*
*
gs2var
10 CONTINUE
*
- gs2(2,0X,00,00,00)
*
1000 CONTINUE
*
IF(J.GT. 1) THEN
IF(C(J).EQ.C(J-1)) THEN
\(D(J)=0\)
cmplxend ( \(2,0 \mathrm{X}, 00,00,00\) )
ENDIF
ENDIF
*
end1(2,0X,00,00,00)
GO TO 10
*
2000 CONTINUE
\(\mathrm{C}(\mathrm{J})=\mathrm{A}(\mathrm{J})+\mathrm{B}(\mathrm{J})\)
end2 \((2,0 X, 00,00,00)\)
GO TO 10
3000 CONTINUE
RETURN
END

\section*{Appendix E}

\section*{The MATMULT Example}
```

define(RB11,1)
define(RB12,301)
define(CB11,1)
define(CB12,300)
define(RB21,1)
define(RB22,2)
define(CB21,1)
define(CBER,1)

*

* THIS PROGRAM READS IN TWO MATRICIES AND COMPJTES THEIR PRODUCT.
*

PROGRAM MATMUL
newproc (SLAVE)
*

- COMMON AREA VARIABLES
INTEGER A(20,20), $\mathrm{B}(20,20), \mathrm{C}(20,20)$
INTEGER NPROCS, AI, AJ, BJ
COMMON -/MAINC/ A, B. C, NPROCS, AI, AJ, BJ
gs2var
*
*

***:

* INITIALIZE THE MONITOR
*

**:
*

- gs2initi(1,00,00,00,00)
RFEAD (5,10) NPROCS
10 FORMAT (I4)
WRITE $(6,20)$ NPROCS
FORMAT(' NPROCS = ',14)
20
*

***:
*

* READ IN THE TWO INPUT MATRICIES
*
*

$\operatorname{READ}(5,10) \mathrm{AI}$
$\operatorname{READ}(5,10)$ AJ

```
```

READ $(5,10)$ BJ
DO $2 \mathrm{I}=1, \mathrm{AI}$
DO $1 \mathrm{~J}=1$, AJ
READ (5, 10) A(I, J) CONTINUE
CONTINUE
DO $4 \mathrm{I}=1$, AJ
DO $3 \mathrm{~J}=1$. JJ
READ (5.10) B(1,J)
CONTINUE
CONTINUE
MNRV1 $=1$
MXRV1 $=\mathrm{AI}$
MNCV1 $=1$
$\mathrm{MXCV} 1=\mathrm{BJ}$
DO $5 \mathrm{I}=1, \mathrm{AI}$
LFBDY1 $(\mathrm{I})=1$
CONTINUE
DO $6 \mathrm{I}=1, \mathrm{AI}$
RTBDY1(I) $=\mathrm{BJ}$
6 CONTINUE
DO $7 \mathrm{I}=1$, BJ
UPEDY1 $(\mathrm{I})=1$
CONTINUE
DO $8 \mathrm{I}=1$, BJ
LWBDY1(I) $=\mathrm{AI}$
CONTINUE
gs2init2(1,00,00,00,00)
DO 30 I=1,NPROCS-1
create(SLAVE)
CONTINUE
CALL WORK
WRITE $(6,40)$
40 FORMAT(' THE VALUES IN C ARE AS FOLLOWS: ')
DO $41 \mathrm{I}=1$.AI
DO $42 \mathrm{~J}=1$. BJ
WRITE $(6,43) 1, \mathrm{~J}, \mathrm{C}(\mathrm{I}, \mathrm{J})$
CONTINUE
CONTINUE
FORMAT(' ', 12,' ', I2,' ', I8)
STOP
END

```
* THE SLAVE PROCESSES JUST CALL THE WORK SUBROUTINE
* WHERE THEY CLAIM TASKS TO WORK ON.
*
*

SUBROUTINE SLAVE
CALL WORK RETURN
END
*
```

**

```
*
* THE WORK SUBROUTINE CONTAINS THE CODE TO CLAIM A TASK,
* PERFORM THE TASK, AND GO BACK TO GET ANOTHER TASK TO WORK ON.
*

*
SUBROUT INE WORK
*
* COMMON AREA VARIABLES
*
INTEGER \(A(20,20), B(20,20), C(20,20)\)
INTEGER NPROCS, AI, AJ, BJ
COMMON /MAINC/ A, B, C, NPROCS, AI, AJ, BJ
*
- gs2var

INTEGER K
*
10 CONTINUE
\(\operatorname{gs} 2(1,00,00,00,00)\)
1000
CONTINUE
*
\(C(I, J)=0\)
DO \(1001 \mathrm{~K}=1\), AJ
\(C(I, J)=C(I, J)+(A(I, K) * B(K, J))\)
1001 CONTINUE
end1 (1,00,00,00,00)
GO TO 10

\section*{*}

3000 CONTINUE
*
RETURN
END

Appendix \(F\)
The SORT Example
```

define(RB11,1)
define(RB12,20)
define(CB11,1)
define(CB12,10000)
define (RB21,1)
define(RB22,2)
define(CB21,1)
define (CB22,1)

```
*
* THIS PROGRAM DEMONSTRATES THE "BARRIER" AND "SELF-SCHEDULING DO-LOOP" * SYNCHRONIZATION PRIMITIVES. IT FILLS IN A VECTOR (A) WITH VALUES IN * DESCENDING ORDER. THEN IT USES A SHELL SORT (SEE KNUTH'S 3RD VOLUNE
* ON SORTING AND SEARCHING ALGORITHMS) TO SORT THE VALUES INTO
* ASCENDING ORDER. TIMES ARE ACQUIRED FOR TABLE SIZES OF 100, 100'., AND * 10000.
-


PROGRAM SRTPGM
* newproc(SLAVE)
* COMMON AREA VARIABLES
*
*
INTEGER A(10000)
INTEGER NPROCS, M. N, GAP(20), NDONE, XGAP(20)
INTEGER I, J, K
COMMON /MAINC/ GAP, A, M, N, NPROCS, NDONE
*
gsZvar
gs2init1(1, 00, R0, 00, 00)
```

DO $30 \mathrm{I}=1$. NPROCS -1
create(SLAVE)
$\mathrm{N}=10$
DO $50 \mathrm{I}=1,3$
$\mathrm{N}=10 * \mathrm{~N}$
DO $35 \mathrm{~K}=1, \mathrm{~N}$
$A(K)=(N-K)+1$
$\operatorname{XGAP}(1)=1$
DO $36 \mathrm{~K}=2,20$
$\operatorname{XGAP}(\mathrm{K})=3 * \operatorname{XGAP}(\mathrm{~K}-1)+1$
IF (XGAP(K).GE.N) GO TO 37
CONTINUE
$\mathrm{M}=\mathrm{K}-2$
DO $38 \mathrm{~K}=1 . \mathrm{M}$
$\operatorname{GAP}(K)=\operatorname{XGAP}(\mathrm{M}+1-\mathrm{K})$
CONTINUE
MNRV1 = 1
MXRV1 $=\mathrm{M}$
MNCV1 $=1$
MXCV1 $=\operatorname{GAP}(1)$
*
DO 45 II = MNRV1, MXRV1
LFBDY1 (II) $=1$
$\operatorname{RTBDY1}(\mathrm{II})=\operatorname{GAP}(\mathrm{II})$
CONTINUE
DO $46 \mathrm{JJ}=$ MNCV1, MXCV1
UPBDY1 (JJ) $=1$
CONTINUE
gs2init2($1,00, \mathrm{RO}, 00,00)$

```
*
    WRITE(6.776) (A(LL), LL = 1.N)
776
FORMAT(' '.1015)
    CALL LOOP(0)
*
77
50 CONTINUE
*
*
* ONE LAST CALL TO LOOP IS REQUIRED TO FREE THE OTHER PROCESEES
* FROM THE BARRIER (SO THEY CAN EXIT).
*
*********************************************************************
*
* NDONE = 1
* CALL LOOP(0)
    STOP
    END
*
|
```



```
*
* THE SLAVE PROCESSES JUST HANG ON THE BARRIER IN THE "LOOP"
* AND HELP WHEN A TABLE IS TO BE SORTED.
SUBROUTINE SLAVE
CALL LOOP(1) RETURN
```

```
END
```

END

* THE SORT ROUTINE IS EXECUTED BY THE MASTER PROCESS. IT JUST'
* CALCULATES THE RADIX FOR EACH PASS OF THE SHELL SORT. AND JOlHE
* THE SLAVE PROCESSES WHEN WORKING ON EACH PASS.
* THE RADIX VALUES ARE HT, ... H2, H1: H1 IS 1; HI IS (3 * H (I-1) 1) ; * $H(T+2)>=N$. SEE KNUTH FOR ARGUMENTS IN FAVOR OF THESE VAididis.
* THE LOOP ROUTINE IS THE CODE REQUIRED TO COORDINATE THE NPROCB
* PROCESSES AS THEY EXECUTE ONE PASS OF A SHELL SORT. NOTE THE
* barrier at the top, which is used to cause the processeis to
* WAIT FOR THE VECTOR TO BE SET UP AND THE INCREMENT CHOSF'N.

```

```

* NOTE THAT THE MASTER PARTICIPATES IN THIS LCGIC, SO THE PROGMi:
* CAN BE RUN WITH NPROCS SET TO 1.

```
```

*

**
*
*
SUBROUTINE LOOP(WHO)
INTEGER WHO
INTEGER I, J, K, L
INTEGER A(10000), T
INTEGER NPROCS,M, N, GAP(20), NDONE
COMMON /MAINC/ GAP, A, M, N, NPROCS, NDONE
*
gs2var
10 CONTINUE
barrier(1)
3001 IF(NDONE.EQ.1) GO TO 4000
*
gs2(1,00,R0,00,00)
*
1000 DO 30 K = J+GAP(I), N, GAP(I)
DO 40 L = K, J +GAP(I), -GAP(I)
IF(A(L-GAP(I)).GT.A(L)) THEN
T = A(L-GAP(I))
A(L-GAP(I)) = A(L)
A(L) = T
ELSE
GO TO 30
ENDIF
4 0 ~ C O N T I N U E ~
30 CONTINUE
end1(1,00, RO,00,00)

* GO TO 10
*

3 0 0 0 ~ C O N T I N U E ~
IF(WHO.EQ.1) GO TO 10
4 0 0 0 ~ C O N T I N U E ~
RETURN
END

```

\section*{Appendix G The GRID Example}
```

define(RB1 1, 1)
define(RB12,1001)
define(CB11,2)
define (CB12,20)
define(RB21,1)
define(RB22,2)
define(CB21,1)
define(CB22.1)

```

PROGRAM GRID
newproc (SLAVE)
.
*
* THE FUNCTION OF THIS PROGRAM IS TO APPROXIMATE THE VALUE OF A
* FUNCTION 'PHI' SATISFYING BOUNDARY CONDITIONS
```

* PHI (X,Y,Z) = X * X - Y * Y + X * Y * Z

```
* FOR (X,Y,Z) ON THE BOUNDARY OF THE GRID. THE VALUE AT AN INTER2.
* POINT IS APPROXIMATED AS THE AVERAVE VALUE OF THE NEIGHEORING
* POINTS.
*
* COMMON AREA VARIABLES

REAL PHI,A(20,20,20), B(20,20,20)
INTEGER N, NPROCS, XDIM, YDIM, ZDIM
COMMON /POOL/ A, B,N, NPROCS,XDIM, YDIM, ZDIM
* DECLARE THE VARIABLES AND COMMON TO SUPPORT THE MONITOR
gs2var
* DECLARE THE WORKING VARIABLES

INTEGER I, J, K, X,Y,Z, IS, IE, IT
*
*
* GET THE DIMENSIONS OF THE GRID

READ (5,20) XDIM, YDIM, ZDIM
20 FORMAT(3I4)
WRITE \((6,21)\) XDIM, YDIM, ZDIM
21 FORMAT(' XDIM='.I4,' YDIM='.14,' ZDIM=',I4)
*
* GET THE NUMBER OF ITERATIONS TO PERFORM

REAL \((5,80) \mathrm{N}\)
```

80 FORMAT(14)
READ (5.100) NPROCS
100 FORMAT(14)
WRITE(6, 101) N,NPROCS
101 FORMAT(' N='.14.' NPROCS='.14)
gs2init1(1,C0,00,00,00)
MNRV1 = 1
MXRV1 = N
MNCV1 = 2
MXCV1 = XDIM - 1
DO 102 l=1,N
LFBDY1(I) = 2
RTBDY1(I) = XDIM - 1
CONTINUE
DO 103 I=2.XDIM-1
UPBDY1(1) = 1
103 CONTINUE
*
SKW1 = 1
gs2init2(1,C0,00,00,00)

* INITIALIZE THE INTERIOR OF THE GRID TO ZERD
DO 110 I=2, XDIM-1
DO 120 J=2,YDIM-1
DO 130 K=2,ZDIM-1
A(I,J,K) = 0
CONTINUE
CONTINUE
CONTINUE
*
* INITIALIZE THE BOUNDARY OF THE GRID
* THE FACES X = 1 AND }X=XDI
DO 140 J=1,YDIM
DO 150 K=1,ZDIM
A(1,J,K) = PHI (1,J,K)
B(1,J,K) = A(1,J,K)
A(XDIM, J,K) = PHI (MDIM,J,K)
B(XDIM,J,K) = A(XDIM,J,K)
CONTINUE
CONTINUE
* THE FACES Y = 1 AND Y = YDIM
* DO 160 I=1,XDIM
DO 170 K=1,ZDIM
A(I,1,K) = PHI(I, 1,K)
B(I,1,K) = A(I,1,K)

```
```

 A(I,YDIM,K) = PHI (I, YDIM, K)
 B(I,YDIM,K) = A(I,YDIM,K)
 CONTINUE
 CONINUE

* THE FACES Z = 1 AND Z = ZDIM
DO 180 I=1. XDIM
DO 190 J=1,YDIM
A(1,J,1) = PHI(I,J,1)
B(I,J,1) = A(I,J,1)
A(I,J,ZDIM) = PHI (I,J,ZDIM)
B(I,J,ZDIM) = A(I,J,ZDIM)
CONTINUE
CONTINUE
clock(IS)
*
* CREATE THE SLAVE PROCESSES
* DO 220 I = 1,NPROCS-1
create(SLAVE)
220 CONTINUE
CALL WORK
clock(IE)
IT = IE - IS
WRITE(6,221) IT
221 FORMAT(' TOTAL TIME = ',112)
* IF (MOD(N,2) .EQ. 0) THEN
CALL PRCUBE(A)
ELSE
CALL PRCUBE(B)
ENDIF
* STOP
END
*

**
*

* PHI FUNCTION
*
*

FUNCTION $\mathrm{PHI}(X, Y, Z)$
INTEGER X,Y,Z
PHI $=(\mathrm{X} * \mathrm{X})-(\mathrm{Y} * \mathrm{Y})+(\mathrm{Z} * \mathrm{Z})$
PHI $=1$
RETURN
END

```
*
* . SLAVE PROCESSES
*
***********************************************************************
*
SUBROUTINE SLAVE
CALL WORK
    RETURN
    END
*
*******************************************************************
*
* WORK SUBROUTINE
*
*********************************************************************
*
SUBROUTINE WORK
```


*

```
*
* COMMON AREA VARIABLES
```

```
*
```

* REAL A(20,20,20),B(20,20,20)
INTEGER N,NPROCS,XDIM,YDIM,ZDIM
COMMON /POOL/ A,B,N,NPROCS,XDIM,YDIM,ZDIM
gsZvar
INTEGER I,J
*
*
* DECLARE THE VARIABLES AND COMMON TO SUPPORT THE MONITOR
*
*

10 CONTINUE
gs2(1,00,00,00,00)
*
1000 CONTINUE
IF (MOD(I. 2) .EQ. 1) THEN
CALL COMP(A,B,J)
ELSE
CALL COMP(B,A,J)
ENDIF
end1(1,C0,00,00,00)
*
GO TO 10
*
3000 CONTINUE
RETURN
END
*
**
*

* COMPUTE SUBOUTINE
*

**

```
```

 SUBROUTINE COMP(P,Q,X)
 REAL P(20,20,20),Q(20,20,20)
 INTEGER X
 *
* COMMON AREA VARIABLES
* REAL A(20,20,20),B(20,20,20)
INTEGER N,NPROCS,XDIM,YDIM, ZDIM
COMMON /POOL/ A,B,N,NPROCS,XDIM,YDIM, ZDIM
INTEGER I,J,K
DO 10 J=2., YDIM-1
DO 20 K=2,ZDIM-1
Q(X,J,K) = (P(X-1,J,K) + P(X+1,J,K) +
P(X,J-1,K) + P(X,J+1,K) +
-
P(X,J,K-1) + P(X,J,K+1)) / 6.0
20
10
* REIURN
END
*

**
SUBROUTINE PRCUBE
*
**s%
*
SUBROUTINE PRCUBE(M)
REAL M(20,20,20)
*
*
*

* CCMMON AREA VARIABLES
* REAL A(20,20,20),B(20,20,20)
INTEGER N,NPROCS,XDIM,YDIM,ZDIM
COMMON /POOL/ A, B,N,NPROCS,XDIM,YDIM, ZDIM
INTEGER I,J,K
* DO 10 I=1,XDIM
DO 20 J=1.YDIM
DO 30 K=1,ZDIM
WRITE (\epsilon,40) I,J,K,M(I,J,K)
FORMAT(' X= '.I4,' Y= ',I4,' Z= '.14,' VALUE ',F10.5)
CONTINUE
CONTINUE
10 CONTINUE
RETURN
END

```

Appendix H The QR-Factorization Example
```

define(RR11,1)
define(RB12,301)
define(CB11,1)
define(CB12,300)
define(RB21,1)
define(RB22,300)
define(CB21,2)
define(CB22,300)
*

```

```

*
* THE MAIN LOGIC
*

```

```

* PROGRAM QRFAC
newproc(QSLAVE)
REAL A(301,300),AI(301,300),B(301)
INTEGER WSIZE,NPROCS, M, N, I, NDONE
COMMON /MAINC/ A. B, N, M, NPROCS, NDONE
*
* gsZvar
* gsZinit 1(2,0X,00,C0,0X)
NDONE = O
* NOW CREATE THE WORKERS
* READ (5,1111) NPROCS
1111 FORMAT(14)
WRITE(6,1112) NPROCS
1112 FORMAT(' NPROCS=',14)
DO 600I = 1, NPROCS - 1
create(QSLAVE)
600 CONTINUE
*
*

C
WRITE}(6,40
40 FORMAT(' QRFAX DECOMPOSITION TIMING')
DO 200 N = 10,50,10
MNRV1 = 1
MXRV1 = N
MNCV1 = 1
MXCV1 = N

```
```

 MNRV2 = 1
 MXRV2 = N-1
 MNCVZ = 2
 MXCVZ = N
 DO 555 II = 1,N
 LFBDY1(II) = II
 RTBDY1(II) = II
 5 5 5 ~ C O N T I N U E ~
DO 556 JJ = 1,N
UPBDY1(JJ) = JJ
LWBDY1(JJ) = JJ
5 5 6 ~ C O N T I N U E ~
DO 557 II = 1,N-1
LFBDYZ(II) = II + 1
RTBDYZ(II) =N
557 CONTINUE
DO 558 JJ = 2,N
UPBDYZ(JJ) = 1
LWBDYZ(JJ) = JJ - 1
5 5 8 ~ C O N T I N U E ~
gs2init2(2,0X,00.C0,0X)
DO 20 J = 1,N
DO 10I = J,N
AA(I,J) = -I*J
AA(J,I) = 2*AA(I,J)
10 CONTINUE
AA(J,J) =0.0
2O CONTINUE
WRITE(6,50)N
50 FORMAT(/' ORDER IS ',I5/)
DO 70 J = 1,N
DO 60I = 1,N
A(I,J) = AA(I,J)
CONTINUE
CONTINUE
D0 103 J = 1,N
D0 102 I = 1,N
A(I,J) = AA(I,J)
102 CONTINUE
103 CONTINUE
WSIZE = 3
clock(I)
T1 = I
M=N
CALL WORK(0)
clock(I)

```
```

 T2 = I - T 1
 WRITE(6,110) T2
 IF(N.LE. 50) WRITE(6,1000) (B(I),I = 1,N)
 1000 FORMAT(5X,E12.5)
110 FORMAT(' MONITOR VERSION TTME = ',E12.3)
C
DO 113 J = 1,N
DO 112I=1,N
A(I,J) = AA(I,J)
112 CONTINUE
113 CONTINUE
200 CONTINUE
NDONE = 1
CALL WORK(0)
12350 CONTINUE
STOP
END

* THE WORK SUBROUTINE
* SUBROUTINE WORK(FLAG)
INTEGER FLAG
* REAL A(301,300),B(301)
INTEGER NPROCS, M, N, NDONE
COMMON /MAINC/ A, B, N, M, NPROCS, NDONE
*
* gs2var
INTEGER I
INTEGER L
*
*
* DECLARATIONS FOR CREF AND APREF
* REAL ZERO,TAU
INTEGER NK,KM.
REAL ENORM
REAL THETA
DATA ZERO/0.0/
*
*

*
5 CONTINUE
barrier(1)

```
3001 IF(NDONE .EQ. 1) GO TO 4000
10 CONTINUE
    gs2(2,0X,00, C0,0X)
```

* N IS THE NUMBER OF COLUMNS IN THE MATRIX
*
* K IS SET TO THE COLUMN UPON WHICH A REFLECTION IS TO BE
* CREATED OR APPLIED
*
* L IS MEANINGFUL ONLY WITH AN RC OF 1 (APPLYY A REFLECTION).
* IT THEN GIVES THE REFLECTION NUMBER TO APPLY
*

```

```

*
* CREATE THE REFLECTOR FOR THE K-THi COLUMN
*

```

```

C
1000 CONTINUE
KM1 = I-1
NK=N-I + 1
C
C NOW COOMPUTE AND STORE THE K-TH REFLECTOR
C
TAU = ENORM(NK,A(I,I))
TAU = SIGN(TAU,A(I,I))
B(I) = -TAU
A(I,I) = A(I,I) + TAU

```

```

*
* NOW SIGNAL THAT THE REFLECTION HAS BEEN CREATED
*

```

```


 end1(2,0X,00,C0,0X)
 *
* NOW GET THE NEXT TASK
* GO TO 10

```

```

*
* APPLY THE NEXT REFLLECTION (THE L-TH)
* TO THE K-TH COLUMN
*

```

```

2 0 0 0 ~ C O N T I N U E ~
THETA = ZERO
DO 50 L = I,M
THETA = THETA + A(L,J)*A(L,I)
50 CONTINUE
THETA = THETA/(B(I)*A(I,I))
DO 60 L = I,M
A(I, J) = A(L,J) + THETA*A(L,I)
60
CONTINUE
*
*
end2(2.0X,00,C0,0X)
*

```
*
*
3000 CONTINUE
IF (FLAG .EQ. 1) GO TO 5
4000 CONTINUE
RETURN
END
*
**********************************************************
*
* QSLAVE
*

*
SUBROUTINE QSLAVE
REAL A(301,300),B(301)
INTEGER NPROCS, M, N, NDONE
COMMON /MAINC/ A, B, N, M, NPROCS, NDONE
*
*
*
gsZvar
CALL WORK(1)
RETURN
END
REAL FUNCTION ENORM (N, X)
INTEGER N
REAL X(N)
C **********
C
C FUNCTION ENORM
C
C GIVEN AN N-VECTOR X, THIS FUNCTION CALCULATES THE
C EUCLIDEAN NORM OF X.
C
C THE EUCLIDEAN NORM IS COMPUTED BY ACCUMULATING THE SUM OF
C SQUARES IN THREE DIFFERENT SUMS. THE SUMS OF SQUARES FOR THE
C SMALL AND LARGE COMPONENTS ARE SCALED SO THAT NO OVERFLOWS
C OCCUR. NON-DESTRUCTIVE UNDERFLOWS ARE PERMITTED. UNDERFLOHS
C AND OVERFLOWS DO NOT OCCUR IN THE COMPUTATION OF THE UNSCALED
C SUM OF SQUARES FOR THE INTERMEDIATE COMPONENTS.
C THE DEFINITIONS OF SMALL, INTERMEDIATE AND LARGE COMPONENTS
C DEPEND ON TWO CONSTANTS, RDWARF AND RGIANT. THE MAIN
C RESTRICTIONS ON THESE CONSTANTS ARE THAT RDWARF**2 NOT
C UNDERFLOW AND RGIANT** \({ }^{*}\) NOT OVERFLOW. THE CONSTANTS
C GIVEN HERE ARE SUITABLE FOR EVERY KNOWN COMPUTER.
C
C THE FUNCTION STATEMENT IS
C REAL FUNCTION ENORM(N,X)
C
C WHERE
```

C
C N IS A POSITIVE INTEGER INPUT VARIABLE.
C X IS AN INPUT ARRAY OF LENGTH N.
C
C SUBPROGRAMS CALLED
C FORTRAN-SUPPLIED ... ABS,SGRT
C
C ARGONNE NATIONAL LABORATORY. MINPACK PROJECT. MARCH }1980
C BURTON S. GARBOW, KENNETH E. HILLSTROM, JORGE J. MORE
C
C
INTEGER I
REAL AGIANT,FLOATN,ONE,RDWARF,RGIANT,S1,S2,S3,XABS,
X1MAX,X3MAX,ZERO
DATA ONE,ZERO,RDWARF,RGIANT /1.0E0,0.0E0,.294E-38..17E39/
S1 = ZERO
S2 = ZERO
S3 = ZERO
X1MAX = ZERO
X3MAX = ZERO
FLOATN = N
AGIANT = RGIANT/FLOATN
DO 90I = 1, N
XABS = ABS(X(1))
IF (XABS .GT. RDWARF .AND. XABS .LT. AGIANT) GO TO 70
IF (XABS .LE. RDWARF) GO TO 30
C
C
C
IF (XABS .LE. X1MAX) GO TO 10
S1 = ONE + S1*(X1MAX/XABS)**2
X1MAX = XABS
GO TO 20
10 CONTINUE
S1 = S1 + (XABS/X1MAX)**2
20 CONTINUE
GO TO EO
30 CONTINUE
C
C SUM FOR SMALL COMPONENTS.
IF (XABS .LE. X3MAX) GO TO 40
S3 = ONE + S3*(X3MAX/XABS)**2
X3MAX = XABS
GO TO 50
40 CONTINUE
IF (XABS .NE. ZERO) S3 = S3 + (XABS/X3MAX)**2
CONTINUE
CONTINUE
GO TO 80
70 CONTINUE
C

```
```

C SUM FOR INTERMEDIATE COMPONENTS.
C
S2 = S2 + XABS**2
80 CONTINUE
90 CONTINUE
C
C CALCULATION OF NORM.
C
IF (S1 .EQ. ZERO) GO TO 100
ENORM = X1MAX*SQRT(S1+(S2/X1MAX)/X1MAX)
GO TO }13
100 CONTINUE
IF (S2 .EQ. ZERO) GO TO 110
IF (S2 .GE. X3MAX)
* ENORM = SQRT(S2*(ONE+(X3MAX/S2)*(X3MAX*S3)))
IF (S2 .LT. X3MAX)
* ENORM = SQRT(X3MAX*((S2/X3MAX)+(X3MAX*S3)))
GO TO 120
110 CONTINUE
ENORM = X3MAX*SQRT(S3)
120 CONTINUE
130 CONTINUE
RETURN
C
C LAST CARD OF FUNCTION ENORM.
C
END

```

\section*{Distribution for ANI-85-70}

\section*{Internal:}
K. L. Kliewer
A. B. Krisciunas
P. C. Messina
R. A. Overbeek (40)
G. W. Pieper
D. M. Pool
T. M. Woods (2)

ANL Patent Department
ANL Contract File
ANL Libraries
TIS Files (6)

\section*{External:}

DOE-TIC, for distribution per UC-32 (167)
Manager, Chicago Operations Office, DOE
Mathematics and Computer Science Division Review Committee:
J. L. Bona, U. Chicago
T. L. Brown, U. of Illinois, Urbana
S. Gerhart, MCC, Austin, TX
G. H. Golub, Stanford U.
W. C. Lynch, Xerox Corp., Palo Alto
J. A. Nohel, U. of Wisconsin, Madison
M. F. Wheeler, Rice U.
D. Austin, ER-DOE
J. Greenberg, ER-DOE
G. Michael, Lh山
B. W. Glickfeld, Northern Illinois University (20)```

