“ 78RL-85.70 @ @ ANL-85-70

w17

QUASI-AUTOMATIC PARALLELIZATION:
A SIMPLIFIED APPROACH
TO MULTIPROCESSING

by

B. W. Glickfeld and R. A. Overbeek

&

\\M\ONAL

¢
.q
< éo
3 2
3 A
& S
YO
. l] .
< [e]
%, <

Ao
7y ¢
'95" TY 0 £ GY\\

ARGONNE NATIONAL LABORATORY, ARGONNE, ILLINOIS

Operated by THE UNIVERSITY OF CHICAGO
for the U. S. DEPARTMENT OF ENERGY
under Contract W-31-109-Eng-38 BISTRIGUTIEN oF THIS

DOCUNENT 15 PELUATED

Distribution Category:
Mathematics and Computers
(UC-32)

ANI-E£5-70

ANL--85-70

DE86 005120
ARGONNE NATIONAL LABORATORY
9700 South Cass Avenue
Argonne, Illinois 60439

Quasi-Automatic Parallelizaticn:

A Simplified Approach to Liultiprocessing

B. W. Glickfeld
Northern Illinois University

and

F. A Overbeek
Argonne National Laboratory

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor any agency thereof, nor any of their
employces, makes any warranty, express or implied, or assumes any legal liability or responsi-
bility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately cwned rights. Refer-
ence herein to any specific commercial product, process, or suovice by trade name, trademark,
manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recom-
mendation, or favoring by the United States Government or any agency thereof. The views
and opinions of authors expressed herein do not necessarily state or reflect those of the
United States Government or any agency thereof.

October 1985

EGIBlLITY NOTICE

A major purpose of the Technl-
cal Information Center is to provide
the broadest dissemination possi-
ble of information contained in
DOE’s Research and Development
Reports to business, industry, the
academic community, and federal,
state and local governments.

Although a small portion of this
report i1s not reproducible, it Is
being made available to expedite
the availability of information on the
research discussed herein.

1

Tanic of Contents

Abstroct
1. Introduction
2. The Basic Idea and Its Implementaticn

2.1 Summary of the Parallelization Structure
2.2 Description of the Implementation via Macros

2.2.1 The gs2var Macro

2.2.2 The gsRinitl and gs2init2 Macros
2.2.3 Creation of SLAVE Processes
2.2.4 The WORK Routine

2.2.4.1 The gs2 Macro
2.2.4.2 The endl and end?2 }Macios
2.2.2.3 The cmplxend Macro

2.2.5 Complications Introduced by »ultiplicity Greater Than 1

3. A Geometric Representation of Synchronization Dependencies
4. A Formal Description of the Structure
5. Summary of Examples
6. Examples

6.1 ADDTWO

6.2 CHECKTWO

6.3 GETDUPS

6.4 GETADUP

6.5 MATMULT

8.8 SORT

6.7 GRID

6.8 QR

References

1ii

12
13
15
17
17

13
12

Appendix A: The ADDTWO Example 67

Appendix B: The CHECKTWO Example 70
Appendix C: The GETDUPS Example 73
Appendix D: The GETADUP Exarnple 75
Appendix E: The MATMULT Example 79
Appendix I: The SORT Example B2
Appendix G: The GRID Exzample 83
Appendix H: The QR-Factorization Example 91

iv

Quasi-Automatic Parallelization:
A Simplified Approach to Multiprocessing

B.W. Glickfeld

Northern lllincis University
DeKalb, Illlinois 80115

R. A Ouverbeek

Argonne National Laboratory
Argonne, Illinois 60439

ABSTRACT

As multiprocessors become commercially available, a great
deal of concern is being focused on the problems involved in writ-
ing and debugging software for such machines. FEarlier work
described the use of monitors implemented by macro processors
to attain portable code. This work formulates a general-purpose
monitor which simplifies the programming of a wide class of
numeric algorithms. We believe that the approach of describing a
set of schedulable units of computation advocated by Brown offers
a real simplification for the applications programmer. In this
paper, we propose a straightforward programming paradigm for
describing schedulable units of computation that allows the
description of many algorithms with very little effort.

1. Introduction

Early work on implementing portable code for multiprocessors [4,5, 3]
resulted in the definition of a general-purpose monitor that dispatched units of
work to processes. It was found that this moniter, the askfor monitor, could be
effectively used to write portable implementations of numeric algorithms for
multiprocessors having a globally shared memory. However, substantial effort
was needed to implement the logic for managing the pool of available units of
work.

As an alternative, the self-scheduling DO-loop [2] was defined, which offers a
highly desirable simplicity lacking in the askfor monitor. Until recently, how-
ever, the use of this self-scheduling DO-loop has been limited to only special
classes of numeric algorithms.

-2

This paper describes efforts to extend the outlook utilized in the self-
scheduling DO-loop to a much wider class of synchrenization patterns. By
analyzing the synchronization required by a number of algorithms, we developed
an abstraction of the basic patterns relating schedulable units of computation.
We discovered that this absiraction could be visualized naturally, using
geometric diagrams, and that the actual code for dispatching units of computa-
tion could be reduced (fur a wide category of algorithms) to simply specifying
the parameters that characterized the geometric pattern required by any par-
ticular application.

This paper presents a basic structure for a substantial class of parallel algc-
rithms, a macro package based on that structure, and a series of geometric syn-
chronization patterns that depict the parallelization structure. The macro
package, which consists of one central macro gs2 {so called because a unit of
computation is characterized by two subseripts that specify its location in a 2-
dimensional depiction of the synchronization dependencies) and some support-

ing macros, enables the quasi-automatic parallelization of many algorithms.

By quasi-automatic parallelization of an algorithm we mean a cooperativs
venture between user and macro package where the work of parallelization is
done by the macrc monitors in the package, with minimal input from the pre-
grammer. The user must perform the simple mechanical tasks setting up the
interaction between user application code and the macro menitors. In particu-
lar, he must supply certain values to the macros, ie., see that certain values are
properly defined before the relevant macro call, Underscoring the simplicity of
these efforts is the fact that the user need not do any macroprocessor language
coding {as contrasted, say, with the askfor monitor [5]). In addition, the com-
mon synchronization errors associated with programming multiprocessors can
be dramatically reduced.

The methods used here differ from previous methods of quasi-automatic
parallelization. For example, they have a far wider range of applicability than
the self-scheduling DO-loop, although they fall short of the breoad range of the
askfor menitor. Furthermore, they are simpler to use than the askjor monitor;
like the self-scheduling DO-loop, our methods do not require the user to creale
problem-dependent data structures and problem-dependent macro definitions.

To further clarify the relationship between the self-scheduling DO-locp and
the gs< monitor, the user should consider algorithms in which the relationship
between schedulable units of work can be visualized in a two-dimensional Carte-
sian plane. In the case of the self-scheduling DO-loop, the units of work simply
form a horizontal line. No interdependencies exist between the units of work;
they can all be done in parailel. The gs& monitor allows more complex inter-
dependencies between the units of work. Essentially, it allows the units of work

-3.

to be represented by either one or two regions in the Cartesian plane. In the
case in which a single region suffices, the units of work (characterized by unique
coordinates) may still have interdependencies. For example, it is possible to
implement the case in which all of the units in one row must complete before
those in the next row begin. Alternatively, one might weaken the constraint to
the case in which a unit of work cannot be scheduled until the unit directly
above it (i.e., in the previous row) has completed. Or, one might wish to intro-
duce a denendency upen units of work in the previous row, but have the depen-
dency include a skew factor. For example, the unit of work may become
schedulable when the unit in the previous row, but one column to the right, has
completed. In the case in which the units of work can he viewed as a single
region in the piane, the region will be called a simplez.

While many algorithms can easily be described within the intellectual
framework of a simplex, some algorithms conceptually require two disjoint plans
regions. We then refer to the two regions as a &complez. In this casz, the units
within each region may have all of the dependencies introduced in the case of 2
simplex. In addition, there may exist scheduling constraints betwesn the boun-
dary elements in each region.

Examples presented in the following sections will illustrate th= power and
range of the structure. In particular, a discrete grid version of ths Dirichlet
problem for a cube will display the force of the simplex, while the Householder
algorithm used in the QR factorization of a matrix wil! display the force of the 2-

complex.

The examples will include all those presented by Overbesk and Lusk [5],
along with the above-mentioned grid problem (used in [1] to illustrate the range
of the askfor monitor,) a variant of the getdups problem presented in [3] and a
parallel version of matrix multiplication. Both general and detziled analyses of
all exarnples will be presented.

The theory and methods presented here provide portable, reliable, and
efficient code which may be implemented on most muitiprocessors featuring a
number of processes acting on a globally shared memory. Examples of such
multiprocessors include the CRAY X-MP and the Deneicor HEP. Further research
is needed to deal with the applicability of gsn macros for n > 2, as well as other
2-subscript moniter structures besides the simplex and 2-complex presented
here.

2. The Basic Idea and It3 Implementation

In this section we will offer an informal description of the basic ideas
employed in the gs2 monitor. A formal description will be given in a later sec-
tion. We will follow our informal discussion with a description of the macro

-4 -

package that implements these concepts. We will illustrate its use on a straight-
forward example — a program to mulliply two matrices. Then we will analyze a
number of examples that illustrate the basic notions. We believe that these
exarnples offer evidence of both the power and the simplicity of the approach
advocated in this paper.

2.1. Summary of the Parallelization Structure

By a parallelization simplex we mean an ordered triple (S,T,U), where Sis a
regular region in the Cartesian integer plane, T is a function whose domain is 3
and whose range is the set of computational tasks (i.e., for each (i) in S, T(1.7)
is a computational task), and U is a finite {perbaps empty) set of synchroniza-
tion constraints.

The Cartesian integer plane Z; is the set of all ordered pairs of integers. By
a region we mean a subset of Zp. We call it regular if it is both

i) the set of all ordered pairs of integers lying between and including an
upper boundary and a lower boundary (either of which might be
jagged), and

ii) the set of all ordered pairs of integers lying between and including a

left boundary and a right boundary.

For example, the rectangle below depicts a regular region.

1,2 1,3 14 1,5 1,6 1,7

L 3 L] L] []] L]
2,2 2.3 2,4 25 26 2,7
[] L L] [] L []

3,2 3.3 3.4 3,5 3,6 3,7

5 4,6 4,7

5,2 5,3 5,4 55 5,6 5,7

To picture ordered pairs, we chocse conventions different from the usual ones.
The first coordinate is represented on the vertical axis, with larger values
corresponding to lower points than do smaller values. The second coordinate is
represented on the horizontal axis, with larger values corresponding to points to
the right of those representing smaller values, These conventions are made
because of the way a matrix is usually depicted. A matrix is indexed by ordered

-5-

pairs of integers. The first index (the row index) is usually considered as a verti-
cal index; matrix elements with larger row indices appear below malrix ele-
ments with smaller row indices. Similarly, the second index {the column index)
is usually considered as a horizontal index; matrix elements with larger column
indices appear to the right of matrix elements with smaller column indices.
Thus, our convention enables us to depict, in the Cartesian integer plane, the set
of index pairs of a matrix so that they appear as they normally do.

There are two possible synchronization constraints on a simplex:

i} the column constraint C, which requires that no task in a column begin
until all earlier tasks (i.e., those from a row with a smaller subsecript) in
that column have completed, and

ii) the row constraint R, which requires that no task in a given row begin
until all tasks from the preceding row (i.e., the row whose subscript is
one less than that of the row under consideration) have completed.

C may include a skew factor k -- a non-negative integer such that for all , no
task in the jth column can begin until all earlier tasks in the (j+k)th column, as
well as all earlier tasks in the jth column, have ended.

An example of a simplex occurs when the underlying region S is an integar
rectangle; such a simplex is simply a computational task matrix,

The simplex structure implies that tasks begin in lexicographic order; that
is, within a given row, tasks begin in order of column subscripts, and tasks in
rows with larger row subscripts begin after these in rows with smaller suk-
seripts. Although some efficiency is lost because of this restriction, the loss is
not significant for the algorithms examined in this paper. It is counterbalanced
by the power and simplicity of the structure, the ease of use of the macro pack-

age, and the user's ability to avoid programming macros for a macroprocessor.

During the execution of a program using the gs€ macro and a simplex
structure, at any given time either all tasks in the simplex have begun or some
particular point {ig.jg) in the underlying region S represents the current task
(i.e., the task next to begin). Implying a lexicographic order may at times result
in such phenomena as the following:

a) the current task is not yet ready to begin (e.g.. because of the failure
of the C constraint to be satisfied) while some other task is ready to
begin, or

b) although the current task is ready to begin, other tasks also are ready

to begin, whose beginning would in some sense be more optimal.

The disadvantages attendant to the use of the implied order are, as we have
stated above, compensated for in all the examples in this paper, as well as in a
substantial class outside this paper. We use the analogy from mathematics of

-8-

approximating general functions by smooth functions; what we lose in exactness
we often more than recover in ease of manipulation. Here we are approximating
a general sequence of points in the underlying region by one in which there iz a
smooth progression of subscript pairs, with analogous loss of exactness and
gains in manipulability.

Although the simplex structure is adequate for most of our problems, cer-
tain of them require more regions. Thus we introduce the notion of paralieliza-
tion complex or, more briefly, complex. There are two kinds of complexes: 1-
complexes and 2-complexes. A l-complex is a simplex. A 2-complex is an
ordered triple ((S!, T, Y, (S? T? U?),V) where the first two eilements of the iri-
ple are the simplexes (S, T!, U') and (S%, 7%, U?), respectively, and the third ele-
ment is a non-empty finite set V of cross-constraints, each of which requires that
certain tasks in one of the underlying simplexes can begin only after certain
other tasks in the other underlying simplex have ended. It is also reguired that
the underlying regions S! and S? be disjoint, i.e., have no points in cominoen.

Given a 2-complex, we will call (S, 71, U!) simplex 1, and (5% 7%, U?) simplex
2. Permissible cross-constraints include XC12 (the cross-column cecnsiraint
from simplex 1 to simplex 2), XC21 (the cross-column constraint from simplex 2
to simplex 1), XR12 {the cross-row constraint from simplex 1 to simplex 2) anzd
XR21 (the cross-row constraint from simplex 2 to simplex 1}.

XC12 XC12 means that whenever j is an integer such that S! and S? both
have a jth column (i.e., they both contain points whose second coor-
dinate is j), then the computational task T'(ij) with the largest pos-
sible row subscript i must end before the computational taslk T?{%7)
with the smallest possible row subscript k& can begin.

XC21 XC21 is analogously defined, with the roles of simplex 1 and simzlex 2
reversed; for the largest possible ¥k, Tz(lc.j) must end before T‘(?’.,j ,
for the smallest possible i, can begin.

XR12 XR12 means that whenever iis an integer such that S* and S® both
have an ith row (i.e., they both contain points whose first cccrdinate
is 1), then all the 7! tasks in that row must end before the computa-
tional task T%(ij) with the smallest possible 7 can begin.

XR21 XRRZ1 is analogously defined, with the roles of simplex 1 and simplex 2
reversed; here all the T? tasks in the ith row must end before T'{i,j)
with the smallest possible j can begin.

In our formulation, XC12 {XC21) can apply only when S! borders S? from above
(S? borders S! from above). Similarly, XR12 {XR21) can apply only when 5
borders S? from the left {S% borders S! from the left). All these concepts will be
presented in detail further on.

-7

Thus, in a 2-complex there are two disjoint simplexes, simplex 1 and sim-
plex 2, with disjoint underlying regions S! and S?, respectively, such that at
least one of the simplexes in some sense borders and constrains the other (it is
possible for both simplexes to border and constrain each other, as will be

demonstrated in a later example).

As mentioned earlier, a l-complex is merely a simplex, which will be
referred to as simplex 1. The dimension of a 1-complex is defined to be 1, and
the dimension of a 2-complex is defined to be 2. During the execution of a pro-
grarn using the gs& macro and a 2-complex structure, at any given time either

i) all tasks in the complex have begun, or

ii) there is either a point (i,,7,) in 3! that represents the current task in
simplex 1, or a point {iz,72) in S? that represents the current task in
simplex 2, or both.

If ii) holds, the next task to begin will be either 7'(i,,7,) or T%1i732): by conven-
tion, priority is tilted in favor of simplex 1. Within the complex structure, each
simplex has its underlying region traversed lexicographically during program
execution, subject to internal constraints from among C1, R1, C2, and E2, ext=r-
nal cross-constraints from among XC12, XC21, XR12, and XIi21, and the abov=
priority convention. {Note that C1 refers to the column constraint C for simplza:z
1, and R1 to the row constraint R for simplex 1. C2 and R2 refer to the anale-
gous constraints for simplex 2.) It can easily be shown that the ressulting paral-
lelization is free from deadlock.

2.2. Description of the Implementztion via Macres

The macro package will now be discussed, along with an elaboration of the
preogram structure we employ to use the macros effectively.

We note that the dimension of the complex under considerztion remeains
fixed throughout the program. However, a given program may execute many
(i.e., more than 1) complexes. Each complex, of course, represents a set of
computational tasks structured in a certain manner, along with certain con-
straints. When we say that the program executes a complex, we mean that dur-
ing ils execution it will perform all, or a number, of those tasks in accordance
with the structure and the constraints.

Two complexes are equal if their dimensions are equal and their underlying
simplexes are respectively equal. Two simplexes are egual if the underlying
regions are equal as sets, the underlying task functions are identical, and the
imposed constraints are identical.

When a program executes more than one complex, the complexes may
differ either because of differences in the underlying regions of corresponding

-8-

simplexes, or because of differences in the underlying task functions in
corresponding simplexes, However, with the program structure used in this
paper, the underlying constraints in corresponding simplexes must be identical,
except that they may have differing corresponding skew factors.

The formal notion of executing a complex corresponds to the intuitivs
notion of executing a problem. Thus the formal statement that a given program
may execute many complexes is equivalent to the intuitive one that one execu-
tion of a program may solve many problems.

To illustrate the actual placement and coding of the macro statements, we
include a straightforward program that compultes the product of two matrices.
We will reference the actual lines of code throughout the remainder of this sec-
tion.

1 define(RB11,1)

2 define (RB12,21;

3 define(CB11, 1)}

4 define{CB12,21)

5 define (RB21, 1)

6 define (RB22, 2)

7 define(CB21, 1)

B8 define{CB22, 1)

9

10 IR REERRESSRRESREEEER RS LR 2R RRRERREREREEEERELRESEEELEEE S EREEEE-EREESSE]
11 *

12 * THIS PROGRAM READS IN TWO MATRICES AND COMPUTES THEIR PRODUZT.
13 *

14__ I EEESSERRESRIERESEEEE S REEERRR TR R R RRERREREREREEEES R FEE-Tiguii i g
15

16 PROGRAM MATMUL

17 newproc { SLAVE)

18 *

19 * COMMON AREA VARIABLES

20 "

21 INTEGER A{20,20), B{20,20), C(20,20)

22 INTEGER NPROCS, Al, AJ, BJ

23 COMMON /MAINC/ A, B, C, NPROCS, Al, AJ, BJ

24 .

25 gs2var

26 “

27 *

N
o]

T RSN REZZRRERES SRR NN RERRRERESS TR RNREERREREREESZEIREEREIERERS LEESEEEREE]

29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
63
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
(9

*®

*

INITIALIZE THE MONITOR

[ZEEEREREREE R ES R EREE S RIS R R R RS R I E R IE RS R EE R SRR RS R R E R R R T R R R

*

10

20

gs2init1(1,09,00,00,00)

READ (5,10) NPROCS
FORMAT(14)

WRITE(8,20) NPROCS
FORMAT(' NPROCS = ', 14)

LEEE RS RS R ERE S E RS E R EREEEEEEEE RS EEEELERE SRR L LR LR L RERUEE-I I S

*

»

"

LEEEREERESEERERRERREEE SRR R R RERER R Rl R R iR bR R EE LR R R LN

A

READ IN TEE TWO INPUT MATRICES

READ (5,10) Al
READ (5,10) AJ
READ (5,10) BJ

DO 2 I = 1,Al
DO 1J =1,Ad
READ (5,10) A(I.,J)
CONTINUE
CONT INUE

DO 41 =1,AJ
DO 3 J = 1,BJ
READ (5,10) B(I,J)

CONTINUE
CONTINUE
MNRV1 = 1
MXRV1 = Al
MNCV1 = 1
MXCV1l = BJ

DO5 1 =1,Al

EEER SRR R

- 10 -

70 LFBDY1(1) = 1

71 5 CONTINUE

72

73 DOB I =1,4Al

74 RTBDY1(1) = BJ

75 6 CONT INUE

78

77 DO 7 1=1,8]

78 UPBDY1(1) = 1

79 T CONT INUE

B8O

B1 po8s Il =1,8J

82 LWBDY1(1) = Al

B3 8 CONTINUE

84

B5 gs2init2{1,00, 00,00, 00)

88

87 DO 30 I=1,NPRQCS-1

88 create(SLAVE)

89 30 CONT INUE

90 -

g1 CALL WORK

82 »

93 WRITE (8,40)

94 40 FORMAT(' THE VALUES IN C ARE AS FOLLOWS:')
85 DO 41 1 = 1,Al

96 DO 42 J = 1,BJ

97 WRITE(8.43) 1.7,C(I,1)
98 42 CONT INUE

99 41 CONTINUE

100 43 FORMAT(" P - IR £)
101 STOP

102 END

103 .

104_ (B TLEREEEEEEEEARLEE R ERRERRRRE SRR RRERRRERRE ENERIEEREERELRE RN BT]
1056 »

106 * THE SLAVE PROCESSES JUST CALL THE WORK SUBROUTINE
107 * WHERE THEY CLAIM TASKS TO WORK ON.
108 *

109 2R RS RN RN ESRERY RIS RARRERNERIEERERRRR Rl ERERTIERRETEREREELEEEFERESL S

110 *

111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
128
127
128
129
130
131
1h2
133
134
135
136
137
138
139
140
141
142
143
144
145
1486
147
148
149
150
151

- 11 -

SUBROUTINE SLAVE

CALL WORK
RETURN
END

»*
[EEEES RIS SRS ERR R ESSERRRERSRIREREE YRR AR R ZRRER R EEEELR)

]

* THE WORK SUBROUTINE CONTAINS THE CODE TG CLAIM A TASK,
* PERFORM THE TASK, AND GO BACK TO GET ANOTHER TASK TO WORIX T3,

E]
AR RA MR AR AR AR RN IR L RN AR R RN R R A RI I RN RN PR R R I R AN ARG R DTl X AN

*

SITBROUTINE WORK

*

COMMON ARFEA VARIABLES

INTEGER A(20,20), B(20,20), C(20,20)
INTEGER NPROCS, AlI, AJ, BJ
COMMON /MAINC/ A, B, C, NPROCS, AI, AJ, BJ

gslvar
INTEGER K
10 CONT INUE

gs2(1,00,00, 0G,00)
1000 CONTINUE

c{1.J) = O
DO 1001 K = 1,AJ
C(1,1) = C(1,1) + (A(I,K) * B(K,I))
1001 CONTINUE

end1(1,00, 00,00, 00)
GO TO 10

3000 CONTINUE

152 RETURN
153 END

2.2.1. The gs2var Macro

The code begins with the main program. At the end of the type declara-
tions, the first macro call is inserted; it is a call to gs@var. This macro declares
the variables and common blocks to be used by the monitor package: it takes no
parameters.

Prior to the call to gs@var, eight define statements should appear in the
program {e.g., see lines 1-8 in MATMUL). These statements enable certain arrays
within gs@uar to be properly defined.

The constant RB11 should be some integer constant less than or equal to
the smallest row value of all simplex 1's to be executed by the program. By a
simplex 1 to be executed by a program we mean a simplex 1 (S*,T!, U') belong-
ing to 2 complex to be executed by that program. A row value of a simplex
(S.T,U) is an integer % such that some (i} is in S, the underlying region of the
simplex. If the smallest row value of all simplex 1's to be executed by the pro-
gram can be obtained without much difficulty, it should be. used for the con-
stant. Otherwise, the largest integer that satisfies the condition and can be
obtained without much difficulty should be used.

The constant RB12 should be some integer constant greater than (but nct
equal to) the largest row value of all simplex 1's to be executed by the program.
If that largest row value can be obtained without much difficulty, that value + 1
should be used for the constant. Otherwise, the smallest integer that satisfies
the condition and can be obtained without much difficulty sheuld be used.

The constant CB11 should be some integer constant !zss than or equal to
the smallest column value of all simplex 1's to be executed by the program. A
column value of a simplex (S,T,U) is an integer j such that some (i) is in S, the
underlying region of the simpliex. If this smallest column value can be easily
obtained, it should be used. Otherwise, the largest integer that satisfies the con-
dition and can be obtained without much difficulty should be used.

The constant CB12 should be some integer constant greater than or equal
to the sum of the largest column value of all simplex 1's to be executed by the
program and the largest skew factor of all simplex 1's to be executed by the
program. (If a skew factor is not explicitly given by the user, it defaults to 0.) ir
this sum can be easily obtained, it should be used. Olherwise, the smallest
integer that satisfies the condition and can be easily obtained should be used.

-13-

The remaining integer constants (RB21, RB22, CBZ1, and CB22) are defined
in much the same way as those just described. Here, however, simplex 2's
rather than simplex 1's are used in the definition of the constants. If a program
will execute one (or many) 1-dimensional complexes (so that no simplex 2's are
relevant), the user may set RB21 to 1, RB22 to 2, CB21 to 1, and CB22 to 1.

Of course, the variables declared in gs@var must not be used elsewhere in
the program by the user in such a way as to conflict with the use dictated by the
macro package. For this reason, a list of the variables declared in gséuar is
appended to Lhis paper.

2.2.2. The g=2initl and gs2init2 HMacros

The next macro call {(after gs2var) in the main program is to gs2init!. This
macro initializes certain of the variables in gs@vaer. During execution of the pro-
gram, gs&initl is called only once, regardless of how many different complexes
are executed by the programn. Therefore gs&init! may be termed a program ini-

tialization.

The macro gs&initl takes 5 parameters; this parameter structure will be
used repeatedly in most of cur remaining macro calls {except for one call to the
barrier macro, to be discussed later). The 5 parameters, dencted by $1, $2, 3,
$4, and $5, are described as follows:

1. $1 is one character. This character is 1 if the complexes to be exe-
cuted by the program (all of which must have the same dimension) are
1-dimensional, i.e., if each of them consists of one simplex (and
perhaps constraints). The character is 2 if the complexes to be exa-
cuted by the program are 2-dimensional, i.e., if each of them consists
of 2 simplexes {and perhaps constraints).

2. All the remaining parameters have exactly two characters. The first
character of $2 is C if C1 holds, i.e., if the column constraint holds in
simplex 1; otherwise it is 0. The second character of $2 is X if XC21
holds, i.e., if the cross-column constraint from simplex 2 to simplex 1
holds; otherwise it is 0.

3. The first character of $3 is R if R1 holds, i.e., if the row constraint holds
in simplex 1; otherwise it is 0. The second character of $3 ir X if XR21
holds, i.e., if the cross-column constraint from simplex 2 to simplex 1
holds; otherwise it is 0.

4. $4 and $5 are analogous to $2 and $3, respectively, with the roles of
simplex 1 and simplex 2 reversed. In detail, the first character of $4 is
C if C2 holds, i.e., if the column constraint holds in simplex 2; otherwise
it is 0. The second character of $4 is X if XC12 holds, i.e., if the cross-

-14 -

column constraint from simplex 1 to simplex 2 holds; otherwise it is 0.

5. The first character of $5 is R if R2 holds, i.e., if the row constraint holds
in simplex 2; otherwise it is 0. The second character of $5 is X if XR12
holds, i.e., if the cross-cclumn constraint from simplex 1 to simplex 2
holds; otherwise it is D.

We define the dimension of a program (within the structure that we use) to be
the (common) dimension of all complexes that it executes. As indicated earlier,
this dimension is equal to $1. If it is 1, then each complex to be executed con-
sists only of its simplex 1. We then set both $4 and $5 equal to 00, set the
second character of $3 equal to 0, and set the second character of $4 aqual to 0.

We define the multiplicity m of our program to be the total number of times
it will execute some complex. (Thus, repeated executions of the same complex,
as well as executions of different complexes, all count towards this multiplicity.)
Our exposition now temporarily diverges between programs of muliplicity m = 1

(where one complex is executed once) and programs with m > 1. We will return
i a later section to the case in which m > 1.

Consider the case when m = 1. Then the next macro call after gs&init] will
be to gseinit2. It will be executed exactly once during the program, since we
are solving one problem once. Therefore, gs2inite is called the proolem initiaii-
zation, in contrast to the program initialization gs2init 1.

The macro gs2init2 takes 5 parameters; they are exactly the same as those
in gs&init1. Before gs&initéis called, a certain number of Fortran INTEGER vari-
ables must be assigned values, which will be called user-supplied values to the
macro. The supplying of these values is another part of the user's contributicn
to the guasi-automatic parallelization -- to the cooperative venture between user
and macro package., Since m = 1, there is only one complex to consider,
namely, the unigue complex to be executed by the program, These variables
cornprise the following:

MNRV1 {the minimum row value, or first coordinate, of simplex 1).
MXRV1 (the maximum row value of simplex 1).
MNCV1 (the maximum column value, or second coordinate, of simplex 1).

MXCVZ (the maximum column value of simplex 1),

MNRVZ2, MXRV2, MNCV2, and MXCV2 (the analogous values for simplex 2). If
the dimension of the complex is 1, then these need not be specified.

-15-

SKW1 (the skew factor for simplex 1). This is specified only when the
colurnn constraint C1 holds and has a non-zero skew factor.

SKW2 (the analogous value for simplex 2). This is specified only when the
complex dimension is 2, the column constraint C2 holds, and C2 has a non-
zero skew factor.

LFBDY1(JJJ), where JIJ is an integer variable (the user is free to substitute
a different, conflict-free integer variable for JJJ) ranging from MNRV! to
MXRV1 (these are the left boundary values of simplex 1, whoze indices vary
from the minimum row value to the maximum row value).

RTBDY 1{JJJ), where JJJ is an integer variable (the user is free to substitute
a different, conflict-free integer variable for JJJI) ranging from MNRV1 to
MXRV1 (these are the right bounidary values of simplex 1, whose indices vary
from the minimum row value to the maximum row value).

UPBDY 1(JJJ), where JJJ is an integer variable (the user is free to substitute
a different, conflict-free integer variable for JIJ) ranging frorr. MNCY1 to
MXCV1 (these are the upper boundary values of simplex 1, whose indices
vary from the minimum column value to the maximum column value).

Furthermore, if simplex 1 cross-column constrains simplex 2 (i.e., if XC12
holds), then the user must also supply

LWBDY 1({J1J), where JJJ is again an integer variablz {the user is free to sub-
stitute a different, conflict-free integer variable for JJJ} ranging from
MNCV1 to MXCV1 {these are the lower boundary values of simplex 1, whose
incdices vary from the minimum column value to the maximum column
value).

It is important to note that these user-supplied values to the macro are
reserved variables; the user must provide the appropriate values for precisely
those named variables given above; otherwise gs2init2 will not be able to per-
form properly. Of course, the dummy variable JJJ may be replaced, as indicated
above.

If the program dimension is 2, then the user must also supply to the macro
the analogous values for simplex 2, namely,

-18 -

LFBDY2(JJ3), for JIJ ranging from MNRVZ to MXRVZ2 (these are the left boun-
dary values for simplex 2),

RTBDY2(JJI), for JIJ ranging from MNRV2 to MXRVZ2 (these are the right
boundary values for simplex 2), and

UPBDY2({JIJ), for JIJ ranging from MNCV2 to MXCV2 (these are the upper
boundary values for simplex 2).

Furthermore, if simplex 2 cross-constrains simplex 1 (i.e., if XC21 holds), then
the user must also specify

LWBDY2(JJI), for JIJ ranging from MNCVZ2 to MXCV2 (these are the lower
boundary values for simplex 2).

2.2.3. Creation of SLAVE Processes

After the call to gs&init2, while still in the main program, a certain number
NPROCS - 1 of copies of a subroutine named SLAVE are creatad with the create
macro, which is called in the form create{SLAVE). NPROCS is a Fortran INTEGER
variable, declared by the user, whose value {set by the user) is the number of
processes that the program will employ.

The subroutine SLAVE is quite simple; all it does is CALL the subroutine
WORK. WORK is also CAlled by the main program, at some time after the
SLAVEs are created.

Once the SLAVEs are created, the program is executed by NPROCS
processes; one of them will be executing either the main program or a copy of
WORK called from that program, while each of the other NPROCS - 1 processes
will be executing either its copy of SLAVE or a copy cof WORK called from that
copy of SLAVE. -

No parameters are passed from the main program to WORK or from a SLAVE
to WORK. {Thus all commmunication between routines is done by shared variables
in COMMON.) Furthermore, no macros from the package are used in SLAVE. A
RETURN statement executed by a SLAVE has the effect of a total self
annihilation; that SLAVE simply vanishes. On the other hand, a RETURN state-
ment executed by a copy of WORK simply transfers control back to the calling
program, which is either the main program or a SLAVE.

-17-

2.2.4. The WORK Routine

A macro call to gslvar also appears in subroutine WORK. There it again
declares the variables and common blocks used by the monitor. Again no
parameters are used in the call to gscvar.

Except for a numbered Fortran CONTINUE statement, which provides a tar-
get statement to transfer control to, the first executable statements of subrou-
tine WORK are provided by the gs& macro. The parameters used in the gs& call
are exactly the same as those used in the gs&init1 call.

The following unifying notation will be helpful. If we have a 1-complex cor-
sisting of simplex 1 (S, 7%, U!), then we define the underlying region of the com-
plex S to be S! and the underlying computational task function T to be T!. I,
however, we have a 2-complex ({S1,TY,U"),(S% T2 U?),V), where simplex 1 is
(S, T\, U') and simplex 2 is (S% 72, U%), then we define the underlying region of
the complex S to be the union of S! and S? and we define the underlying compu-
tational task function T to have the domain S and to be given by the rule that T
=T!'on S'and T = T?on S2

2.2.4.1. The gs2 Macro

Subroutine WORK performs the computaticnal tasks T(i,j) of the complex to
be executed by the program. When a process begins executing the statzments
in WORK, the instructions in the gs&€ macro are executed.

The function of the gs& macro is to hand out a unique pair of subscripts (i.5)
from the underlying region of the complex 3, so long as there remain subscript
pairs from S to be handed out. Thus every time gsZ is executed, until it has
handed out every subscript pair in S, it hands out a different subseript pair (7).

A process executing the gs2 macro monitor is searching for a computa-
tional task T(%,j) to do. More precisely, it is searching for a subscript pair {i.7)
such that the corresponding task T(%,j) is ready, i.e., all the constraints on
T(iJ)'s beginning have been satisfled. The search focuses solely on the currant
tasks of underlying simplexes of the complex to be executed. (As is consistent
with other usage in this paper, we will simply say that (ij) is ready as a short
form in place of the full T{1.j) is ready.)

The search will be carried out among all {either 1 or 2) simplexes of the
complex being executed whose subscript pairs have not yet all been handed out
to searching processes executing gs2. If simplex 1 is such a simplex, the search-
ing prucess will determine if the current task of simplex 1 is ready to begin. If
the task is ready, then the process will acquire the current subscript pair, exit
gs<, and unlock the monitor so that a subsequent process may enter.

-18 -

If simplex 1 is not such a simpiex, or if the current task in simplex 1 is not
yet ready to begin (i.e., some constraint is not yet satisfied), then the search will
either turn to simplex 2 (if we are executing a 2-complex and there are still sub-
sceript pairs in simplex 2 to be handed out) or loop repeatedly, determining
whether the current task in simplerx 1 is ready until it is; once it is ready, the
process acquires the current subscript pair and exits and unlocks the monitor,
just as above.

If the search turns to simplex 2, either because simplex 1 has no more sub-
script pairs to hand out or because the current task there is not ready, then th=
aboe description still holds {with the roles of simplex 2 and simplex 1
reversed).

If any subscript pairs from the complex remain to be handed cut wh«n the
searching process begins executing the gs€ macro, the procass will eventually
grab a pair and exit and unlock the monitor. This pair will be either the current
pair in simplex 1 or the current pair in simpiex 2. If the current pair in simplex
1 (simplex 2) is obtained, the process will, upon exiting the monitor, go to ths
statement with {reserved) label 1000 (2000). (The monitor will update its inter-
nal variables after the grab so that the same subsecript pair is not handed out
twize.) However, if no such pairs are left to be handed out (i.e., 2ll the computa-
tional tasks T(ij) have been already handed out to some process), then the
searching process will begin windup processing. This means thal the proc=ss
will enter a delay queue and unlock the tnonitor so that other processes can
enter and begin searching for {the no longer available) subsecript pairs. Once all
NPROCS processes have entered the monitor (i.e., begun executing thz gs&
macrc) to perform the (futile) search for subscript pairs, then they all exit the
monitor. Upon exiting the monitor, each process will go to the statement with
(reserved) label 3000. The last one out resets certain of the monitor's internal
variables used during the execution of the complex (although this reset is uzeful
only when the program will execute several complexes, i.e., when the multipli-
city m is greater than 1).

Note that the subscript pairs in a simplex of the complex to be executed
will be handed out in lexicographic order: (i,,7;) precedes {i3,72) if either i; < is
or bothi; = iz and 7, € 2 However, we cannot know in advance the manner in
which subscript pairs from the different simplexes will be interleaved, except in
that applicable cross-constraints from XC12, XC21, XR12, and XR21 must be
satisfied.

-19 -

2.2.4.2 The endl and end2 Macros

Once a process is given a subscript pair and exits the monitor, it under-
takes the computation of the task corresponding to that pair. If the completion
of this task is a prerequisite to the beginning of some other, by means of one of
the complex constraints, the gs2 macro monitor {which dispatches ready sub-
script pairs) must be notified when the computation of the task has ended.

This notification is accomplished with the enrd! macro for tasks in simplex 1
and with the end2 macro for tasks in simplex 2. Both macros take the same five
parameters as does the gs&inil ! macro.

The macro endl appears at most once in subroutine WORK. It should be
inserted into WORK if there is some internal constraint Cl1 or R1 on simplex 1,

i

Q

if simplex 1 cross-constrains simplex 2 externally via either XC12 or XR12; other-
wise it should not appear. The macro should be inserted into the code just after
the code to perform all the computational tasks T of simplex 1 has ended.

The rules governing the use of endZ are the same, with the roles of simplex
1 and simplex 2 reversed (for example, XC21 or XR21 rather than XC12 or XR12
would mandate the use of end&). Of course, if the dimension of our complex is 1,
then end? should not appear in the program.

2.2.4.3. The cmplrend Macro

Recall that we are still discussing the case m = 1, i.e., the case when the
program executes only one complex. To complete our discussion of the macrcs
used in this case (all macros used in the case of multiplicity 1 will also be used
for higher multiplicities), we introduce the cmplzend macro.

This macro is used when some task T{i,j) computes a result that solves the
problermn under consideration, so that no new computational tasks shouid begin
and those in progress should perform an orderly windup. It notifies the 52
macro to hand cut no more subscript pairs; thus, all prccesses that subse-
guently execute gs2 after completing their present computational task will
begin windup processing there. It also sets the reserved Fortran variable EXHST
to 0. This indicates that the execution of the complex was termineted by the
occurrence of a solution, rather than by the exhaustion of all the computaticnal
tasks without a soluticn being found.

The cmplrend macro will be used in a small number of examples. For
instance, if any duplicate is found in the program GETADUP, emplzend is used to
terminate processing.

-20-

2.2.5. Complications Introduced by Multiplicity Greater Than 1

Having discussed the use of our macros and our program structure when
the program multiplicity m is 1, we now look at the modifications needed when
the multiplicity is greater than 1.

First of all, the calls to WORK in this case use a parameter. The call from
the main program passes a 0 to WORK, while the calls from the SLAVES created
by NPROCS - 1 all pass a 1 to WORK. WORK has the one argument WHO. Thus a
process executing WORK can determine its origins. If WHO is 0, then it comes
directly irom the main program; if WHO is 1, then it comes from a SLAVE,

In the main program, a DO-loop must be set up to handle the m problems.
One iteration of the loop will be performed for each problem. The body of the
loop contains the call to WORK.

Just as in the case m = 1, the main program creates NFROCS - 1 processes,
each of which begins executing a copy of subroutine SLAVE, This takes place
once for the entire prograrm. When m > 1, we will place the call to gs2inil2 after
the creation of the SLAVEs, reversing the order for m = 1. The code determining
and supplying the user-supplied values for the macros will appear after the craa-
tion of the SLAVEs and before the macro call for gs&init2.

If we wish, we can place gs2inife together with the code providing the
user-supplied values, within the above-mentioned DU-loop. This placement pro-
vides a capabililty Lo reconfigure the underlying simplex regions before each
complex execution. Thus, for example, cne program may perform an identical
matrix analysis on successive complex executions, but for matrices of different
sizes. Another might perform the same kind of sort on successive complex exe-
cutions, but for arrays of different sizes. We can even, within the framework
introduced here, perform a matrix analysis on cne complex executicn and a sort
un the next, but our problems below do not utilize this capability.

When m > 1, the non-trivial executable statements (i.e., those that arz not
no-ops) of WORK begin with a call to the barrier macro. In this call berrier Lakes
just one parameter; it appears in the form barrier(1). The barrier macro has
the effect of delaying any process rcaching it until all NPROCS processes are so
delayed; then they are all released {in some order). The parameter 1 used here
in barrier simply provides a label.

The Fortran INTEGER COMMON variable NDONE is used in a conditional
branch statement to determine whether a process executing WORK should exe-
cute the gs& macro or bypass it so as to perform windup processing for the
entire program. (Windup processing for individual problems within the program
is done by the gs2 macro.) NDONE is initialized to 0 in the main program, and
set to 1 in just after the last iteration of the m problem DO-loop is completed.

-21-

After NDONE is set to 1, the main program calls WORK one last time for windup
processing. The conditional test of NDONE is performed in WORK, immediately
following the macro call to barrier and immediately preceding the macro call to
gse.

After each execution of a complex, the processes that come from a SLAVE
hang on the barrier in WORK, while the process that comes directly from the
main program returns to the main program. This divergence of behavior for
different processes is accomplished by the WHO variable described above. The
subsequent call to WORK from the main program in the next iteration places this
last. process also at the barrier, so that now all processes can penetrats the bar-
rier, and either the concurrent executions of copies of WORK relevant to the new
problem may begin, or the final windup processing may begin.

The main program can communicate to the processes executing WOREX
which complex they are executing (i.e., which problem they are working on) by
the use of COMMON variables,

Other than the modifications given here, the case when m > 1 is dealt with

just as the case whenm = 1.

3. AGeometric Representation of Synchronization Dependzncies

We now discuss the geometric "synchronization patterns” (which provids a
concise pictorial description of a given parallelization structure) and their cca-
struction.

To construct the synchronization pattern, we must draw the points of the
underlying region of the complex. If there are two simplexes in the complex,
then the respective underlying regions are separated by a line. Thus, for exam-
ple, if the underlying region of simplex 1 of a 2-complex is

St= (1), (12), (1.3)

and the underlying region of simplex 2 is
5%=1(2.1), (22). (23) |

the underlying region S of the entire complex is
S =§ (1.1, (L2). (1.3), (2,1), (2,2), (2,3) §

and may be drawn as:

-22 -

The two underlying simplex regions above are separated by the line. Assuming
no constraints, the parallelization structure, drawn below, would appear exactly
as S above, except that for simplicity we usually omit coordinate labeis when

crawing the synchronization pattern, as well as the line separating the sim-
plexes.

In general, constraints are indicated on the synchronization pattern. The C
constraint {internal column constraint) within a simplex is indicated by a verti-
cal arrow connecting two neighboring points in a column, drawn from the one
above to the one below. Thus, for example, suppose that the underlying region of
a 1-complex consists of the points

S = {(1.1), (1.2), (13), (2.1). (2.2), (2.3). (3.1). (3.2), (3.3) }.

Then S may be drawn as follows:

[] [] L]
2,1 23 23
L] [] []

If the C constraint holds in this complex, then the synchronization pattern could
be drawn as

! ! l
| l l

If, furthermore, this column constraint includes a positive skew factor K, that
skew factor must also be indicated on the synchronization pattern by additional
arrows that connect each point pair of the form (I-1,J+K) and (1,J). Each addi-
tional arrow is drawn from some point (I-1,J+X) to the corresponding point {I,J).

-23 -

Thus if this column constraint includes a skew factor of 1, the synchroniza-

tion pattern would now be drawn as

A row constraint is indicated by an arrow {with an "R" next to it) pointing from
the leftmost point in each (but the last) row to the leftmost point in the row
below. Thus, if the row constraint holds in the above underlying region S, the
synchronization pattern would be depicted as

IR
IR

Of course, once we know that R holds, we dispense with C, since it is implied by
R.

A cross-column constraint XC is indicated by drawing, for each point P on
the lower boundary of the constraining simplex that lies directly above soma
point Q in the constrained simplex, a vertical arrow (with an "X" next to it) point-
ing downward from P to @ Thus, fcr example, if we have a 2-complex with

St=§(1.1), (1.2), (1.3), (2.1), (2.2), (2.3) }
and

S? = 1(3,1), (3,2), (3,3}, {4,1), (4,2), (4.3) 1,

and the constraint XC12 holds, then S would be drawn as

. . .
1.1 1.2 1,3
. . .
2,1 2,2 2,3

-24 -

and the synchronization pattern would be drawn as

Similarly, a cross-row constraint XR is indicated by drawing, for each point
P on the right boundary of the constraining simplex that lies immediately to the
left of some point Q in the constrained simplex, a horizontal arrow pointing
rightward from P to Q. Thus, for example, if we have a 2-complex with

St = {{1.4), (1.5), (1.8}, (2.4), (2,5), (2.8) }
and

5% = £ (1.1), (1.2), (1.3), (,1), (2,2). (2.3) §

and the constraint XR21 holds, the underlying region S would be drawn as

1.1 1.2 1,3 1.4 L3 1,6

Of course, all constraints that hold must be indicated on a synchronization pat-
tern; if more than one holds, they are each indicated on the pattern.

4, A Formal Description of the Structure

In the previous sections, we have attempted to motivate our appreach to
scheduling units of computation based on a geometric representation in a two-
dimensional plane. We now give a detailed, formal presentation of the structure.

-25.

We start with some basic definitions.

Let M; and M; be integers, with M, < M,. The closed integer interval
[M;,M;] is defined to be the set of all integers from M, to Ma. All inte._ vals
used in this paper will be integer intervals, i.e., will contain only integers.

Let f be an integer-valued function whose domain is the interval [M;,#32].
The graph of f, written graph f, is the subset of the Cartesian integer plane
Z, consisting of those points (M. f(M)). where M is in the domain [#,Mz].
The reversed graph of f (so-called because the roles of first and second
coordinate are reversed), written rev f, is the subset of the Cartesian
integer plane Zp consisting of those points (f(#M),M), where M is in the
domain [M, Hz].

As mentioned previously, our conventions for representing ordered pairs follow

the conventions for representing elements in a matrix, rather than the more

common graphical representation of 7.

Note that a matrix is actually a function of two integer variables and that its
set of index pairs is the domain of that function. Thus it is natural, in looking for
a way to depict the domain of a computational task function T(1,J) which is alsc 2
function of two integer variables, to take as a starting point the usual picture for
the set of index pairs of a matrix. (However, while the set of index pairs of a
matrix is an integer rectangle, the domain of a computational task function is
more general. For example, it may have jagged boundaries, or be an "integer
line.")

We now use the notions of graph and reversed graph as building blccks to
deflne regions and regular regions in the Cartesian integer plane Z,. Suppose
that we have two functions f and g with the same domain [#;, Mz] and that f{H)
< g(M) for all M in [M,,M:). We define the region D = D(f,g) to be the set of all
points in Z; whose first coordinate M is in [M,,M;] and whose second coordinate
lies in the interval [f{M),g(M)]. Thus D(f,g)} can be thought of as the set of all
points in Z; that lie between (or on) the graph of f and the graph of g. Similarly,
under the above conditions on f and g we define the region rav D = rev D{f.g) to
be the set of all points in Z; whose second coordinate L is in [#;,M2] and whose
first coordinate K lies in the interval [f(L).g{L)]. Thus rev D{f,g) can be thought
of as the set of all points in Z, that lie between {or on) the reversed graph of f
and the reversed graph of g.

Note that if S is a subset of Z3 which is of the form D(f,g), then /, g and the
commeoen domain of f and g are all uniquely determined; similarly when S is of
the form rev D(f.g).

A subset S of Z3 is called a regular region if there are functions f,, f3 ¢,
and gz such that f; and g, have common domains, f; and g, have common

-26-

domains, S = D{f,.9,). and S = rev D(f3.92). (In other words, to be regular S
must be both a region of the form D(f,g:) and a region of the form rev
D{f 2,92).) If Sis a regular region {(or, in brief, regular), f, is called the left boun-
dary function of S, g, the right boundary function, f; the upper boundary func-
tion, and g3 the lower boundary function,

Now that we have the notion of "regular region” defined, we can introduce
commputational task functions. A computational task function {or, more briefly,
task function) is a function 7! whose domain is a regular region S in Z; and
which assigns to each (1,J) in S some computational task T!(1.J). (For conveni-
ence, we will also use the alternate notation 7} for T!({I,J).) For purposes of the
parallelization structure developed here, we are concerned not with the Jetails
of the particular computer instructions required by the T'(1,J), or the
mathematical algoritbm that the TYI,J) represent, but rather with the times
when the T!}{1,J) are able to begin during the execution of a program and the
times at which the 7Y{1,J) end.

Within a parallelization structure a certain number {perhaps zero) of con-
straints will be placed on the T'1,J). No T}1,J) may begin until all the con-
straints on its beginning have been satisfied; such constraints will either be
internal and require that certain other T!(1.J) have ended, or be external and
require that certain 7%X,L) have ended, where T? is a different computational
task function within the same parallelization structure.

For now we will focus on internal constraints. Suppose that we have a com-
putational task function T defined on a regular region S. For {1.J) in S, the begin
time of the task T{I.J) (i.e., the time at which that task begins during the execu-
tion of a program) may be denoted by b{T(1,J}). Since our discussion henceforth
will be with reference to a particular task function which is known {rom the con-
text, for ease of notation we will suppress the explicit reference to T and instead
denote the begin time of T(1,J) simply by b(l,J). (We will sometimes use the
alternate notation by for b{l,J).) Similarly, we will denote the end time of the
task T(1,J) (i.e., the time at which that task ends during the execution of a pro-
gram) by e(1,J). (As above, we will sometimes use the alternate notation e for
e(i,j).) In general, when it is clear from the context what is meant, we will often
not distinguish between the computational task T(],J) and the point (1J) in S.
Thus, for example, we might speak of the time at which a "point begins" to mean
the time at which the computational task assigned Lo that point begins.

Let T be a computational task function whose domain is the reg-lar region
S. The basic internal constraints on T(l,J) are of two kinds, begin constraints and
end constraints. Begin constraints are of the form

-2~
i) b(LJ) >b(K.L);

i.e., the (1,J)'th task T(I,J} can begin only after the (K,L)'th task T(K,L) has begun
({1,J) and (K,L) are points in S). End constraints are of the form

i) b(LJ) > e(K.L);

Le., the {1J)'th task T(I,J) can begin only after the (K,L)'th task T(X,L) has ended
{(1.J) and {K.L)) are points in 3).

Throughout this paper, whenever (1,J) and (1K) are both in 3, and J < K, the
constraint

b{L.K) > b(L.J)

will be understocd to be imposed. The imposition of this constraint requires that
in terms of begin times, each row in the regular region S will be traversed in the
natural order (from lower column subscripts to higher column subscripts). (A
row in S is defined to be the (non-empty) set of all points in S with a particular
first coordinate; that common first conrdinate is called the row subscript of the
row. Similarly, a column in S is defined to be the {(non-empty) set of all points in
3 with a particular second coordinate; that common second coordinate is called
the column subscript of the column.) Also, throughout this paper, whenever (1,J)
and (K,L) are both in S, and I < X, the constraint

b(K,L} > b{1,J)
will be understood to be imposed. The imposition of this constraint requires that
in terms of begin times, each point in a lower row (iLe., one with a larger row
subscript) will begin after each point in a higher row (i.e., one with a smaller row
subscript.) This implies that a task in a row may begin only after all tasks in
rows with smaller row subscripts have begun.

Together, the above two constraints imply that whenever we have a regular
region S and a computational task function T defined on S, the points of S are
traversed lexicographically in terms of begin times. The tasks in each row begin
in the same order as that of the column subscripts, and the tasks in rows with
smaller row subscripts begin before the tasks in rows with larger subscripts.

An equivalent way of stating this is as follows: given distinct points (I,J) and
(K.L) in S, {I,J) begins before (K,L) if and only if either | < Kor both] = Kand J <
L.

Thus, a program executing the computational task function T defined on the
regular region S {(in terms of begin times) traverses S row by row (going from

-28-

lower row subscripts to higher row subscripis} and traverses each row going
from lower column subscripts to higher column subscripts.

We now consider the relevant internal end constraints on a computational
task function T defined on a regular region S. Unlike the two internal begin con-
straints given above which are always implied and which are the only begin con-
straints that hold in the parallelization structures used here, the relevant inter-
nal end constraints must always be explicitly given; furthermore they rnajr or
may not apply.

We can organize the internal end constraints that apply here via the notions
of row constraint and column constraint.

Definition: Let T be a computational task function defined on the regular region
S. (S,T) is row-constrained if the first (leftmost) task in a row can begin only
after all tasks in the previous row have completed. (Given a row R with row sub-
script 1, the previous row is the row with row subscript I- 1.)

Note that it follows from the first begin constraint given above that ezch task in
a row can begin no sooner than the first (leftmost) task in that row does.

Alternative weys of stating that (S,T) is row-constrained include ''the row
constraint holds in (S,T),” "the row-constraint R holds in (8,T)," or simply "R
holds in (S,T).” Usually the mention of (S,T) will be suppressed when no confu-
sion can resutt,

To express the notion "R holds in {S,T)" in formula, we write S = D(f 1.5.).
where f, and g, are the left and right boundary functions of S, respectively, and
[#M,,M3] is the common domain of f, and g,. Then we can write "R holds" as

b(M.f 1(H)}) > e(M-1.K)

whenever M-1 and M are in [#,,M3], and (M-1,K) is in S, Equivalently, we coul:!
write

b(M.f (H)) > e(M-1,K)
whenever M-1 and M are in [#,,M;], and

fl(M'l) <K< gl(M"l).

Having defined "row constraint,” we now define the other internal end con-
straint to be used in this paper, the "column constraint.”

- 29 -

Definition: Let T be a computational task function defined on the regular region
S. (S5,T) is column-constrained, with the non-negative integer L as skew factor, if
for all J, a task in the J'th column can begin only after all tasks in the J'th
column from earlier rows and all tasks in the (J+L)'th column from earlier rows
have completed. (Given as row R with row subscript I, an earlier row is a row
whose row subscript is smaller than 1. We know, from the implied begin con-
straints, that tasks in an earlier row than R will begin before any of the tasks in
R do.)

Alternative ways of stating that (S,T) is column-constrained, with skaw-
factor L," include "the column constraint, with skew factor L, holds in (5,T),"
“the column constraint C, with skew factor L holds in (S,T)," or simply "C, with
skew factor L, holds in (S,T)." Usually, the mention of {S,T) will be suppressed
when no confusion can result. Also, often the mention of the skew-factor L will be
suppressed; either it may be supplied later or, if omitted, will be understood to
be 0.

To express the notion "C, with skew factor L, holds in {(S,T)" in formula, we
write S = rev D{f 5,92), where f, and gs are the upper and lower boundary func-
tions of S, respectively, and [M,,M;] is the common domain of f; and fa Then
"C holds, with skew factor L," is equivalent to the two conditions

i} b(LJ) > e(K.J)
whenever (1,J) and (K,J) arein Sand 1> K
and

ii) b(LJ) > e(K,J+L)

whenever (1,J) and (K,J+L) are in Sand I > K.

Another equivalent formulation of "C holds, with skew factor L," is given by
the two conditions

i) b{L.I) > e (K.J)
whenever J is in [M,M2] . both I and K are in [f3(J).g2(J)], and I > K,
and

it) b{L,I) > e(K,J+L)

- 30 -

whenever J and J+L are in [M,M,]. 1is in [f2(3).g2(D)]. Kis in [f 2(J+L).g2(J+L)],
and1 > K.

Clearly a row-constrained simplex is always column constrained (with any
non-negative skew factor.) Thus we need never consider the situation where both
R end C hold. It suffices to consider (S,T) where R holds, or C holds with some
skew factor L, or no constraints hold.

Note that when R holds, we have a degenerate case of two-dimensional
parallelization (the two dimensions come from the two-dimensionality of the
Cartesian integer plane Z; and from S being a subset of Z5.) Since when R holds,
each row of computational tasks must end hefore any tasks in the next row can
begin, each row may be thought of as a separate "one-dimensional’ paralleliza-
tion unit. Thus the structure when R holds eflectively becomes that of a
sequence of one-dimensional parallelization units.

We are now ready to define the basic parallelization structure, the simplex.

Definition: A parallelization simplex {or more briefly, a simplex) is a triple
(S,T,U) where S is a regular region in Zz, T is a computational task function
defined on S, and U is a pair (C,L), where L is a non-negative integer and C is a
character, or the character R, or empty.

U merely tells us whether the simplex is column constrained with skew fac-
tor 1, row constrained, or unconstrained.

The simplex may be thought of as the basic "atom" of two-dimensional
parallelization structure. The begin c¢onstraints described earlier are internal-
ized within it. Note that no end constraint of the form b{(1,J}) < b{L.K) within a
given row ean occur. Thus a task, when waiting to begin, may be waiting for the
completion of tasks from earlier rows, but is never waiting on the completion of
tasks from the same or frorn later rows. If we are in a computational situation
where a task in a row cannot begin until ancther task in that row has ended, we
need a parallelization structure more complicated than the simplex, i.e., one in
which constraints can operate across simplex boundaries. There will also ba
instances where it will be useful for constraints operating within a column, as
well as constraints operating within a row, to be able to operate across simplex
boundaries. We now set about defining a parallelization structure (the complex)
that will allow us to deal with certain of these situations.

Definition: Let (S',T!,0U") and (S?,T% U?) be parallelization simplexes such that
the underlying regions S! and S? are disjoint, i.e., have no points in common.

-31-

Write S! = D(f,1.91;) and S% = D(f2,,92:), where f,; and g,, are the left and
right boundary functions, respectively, of S; f2; and gp are the left and right
boundary functions, respectively, of S% [My,M)z] is the common domain of fi;
and g,,; and [Mz, Mz,] is the common domain of f and gg;. (S, 7T, U') will be
said to "border (S? T2, U?) from the left" if

i) the intersection of the two intervals [#,,,M2] and [Mz,,M2:] is non-
empty, i.e., the intervals have some points in common {note that this

intersection must also be an interval), and

ii) if M is in the intersection cf the intervals [#;,, M 2] and [Mz;, Mzz], then

gulM) + 1= fq(H),

i.e., the right boundary function value for the first simplex is one less
than the left boundary value for the second simplex.

Dafinition: Let (S',T%, U!) and (S? 7% U*%) be parallelization simplexes such that
the underlying regions S! and S® are disjoint, i.e., have no points in common.
Write ST = rev D{f 12.9:2) and S? = rev D{f2:.922), where f,» and g, are ths
upper and lower boundary functions, respectively, of S!; fz2 and gpz are the
upper and lower boundary functions, respectively, of S% [M,;.M12] is the com-
mon domain of f ;3 and g ,s; and [M3,, M2] is the common domain of f 5; and g z.
(S, T, UY) will be said to "border (S?, T2, U?) from above" if
i} the intersection of the two intervals [#,;,M,2] and [Mz,,Maz] is non-
empty, i.e., the intervals have some points in commen (note that this
intersection must also be an interval), and

ii) if M is in the intersection of the intervals [M,,M,5] and [M5, M22], then

gr2(M) + 1 = fo0(H),

i.e., the lower boundary function value for the first simplex is one less
than the upper boundary function value for the second simplex.

We now focus on the external end constraints imposed by one simplex on
another(we make no use of external begin constraints in this paper.)

Definition: Let (S!,T',U!) and (S? 7% U?) be parallelization simplexes with dis-
joint underlying regions S! and S? An external end constraint from (S!,T!, U')
to (S? 7% U%) is a constraint of the form

-32 -
b(LI) > e(K.L),
where (1,J) is in 5% and (X,L) is in S1.

This says that the (I,§)'th task T?(1,J) cannot begin until the (K,L)'th task T}{K,L}
has completed. Note that we can deflne an external end constraint from
(52,172 U?) to (S, T, U") simply by requiring (1,J) to be in S* and {(K,L) to be in S?
in the above definitioa.

We now may organize the external end constraints that apply within the
parallelization structures vsed here via the notions of cross-row conscraint anc
cross-column constraint.

Definition: Let (SY,T!,U') and (S% 7% U?) be parallelization simplexes with dis-
joint underlying regions S! and S% Write S!' = D{f,.g,) and S? = D(/.g2), and
let [M,,M2] be the non-empty interval that is the intersection of the common
domain of f, and g, and the common domain of fz and gs ‘e say that
(S, T\, UY) cross-row end constrains {or sometimes, mo:z briefiy, row cocn-
strains) (5% 7%,U%) if

i) (SLTLUY) borders (5% T? U?) from the left, and

ii) for each M in [M, Mz], all tasks in the M'th row of {S!, T}, U') must end

before any tasks in the M'th row of (S%,T?, U?) may begin.

In formula, condition ii) may be written as
ii') b(M,N) > e{M.K)
whenever [(M) <N < go(#) and f (M) <K < g,(H), or zlternatively as

ii") b(M.f 2(H)) > e(HX)
whenever f (M) <K < g,(H).

Conditions ii') and ii"") are equivalent because of the implied internal begin con-
straints within (S? T? U?), which require that no task in the M'th row of
(S?,T?,U? may begin until the leftmost task in that row (ie., the task with
colurmnn subseript f (M) does.

Having deflned cross-row constraints, we now turn to the definition of
cross-column constraints.

Definition: Let (S, T.U") and (S% T% U?) be parallelization simplexes with dis-
joint underlying regions §' and 5% Write S! = rev D{f,g,) and 5% = rev

- 83 -

D(f292), and let [M,,M5] be the non-empty interval that is the intersection of
the common domain of f; and g, and the common domain of f; and g, We say
that (S!,7',U') cross column end constrains {(or sometimes, more briefly,
column constrains) (5%, 7%, U?) if

i) (ShT'UY) borders (S% T2 U®?) from above, and

ii) for each M in [M,,M;], the last task in the M'th column of (S, T, U}
(i.e., the one with the largest row subscript) must end before the first
task in the M'th column of {52 7% U?) (i.e., the one with the smallest
row subscript) can begin.

Condition ii) may be written as

i) b(f o(M), M) > e(g (M), H).

Note that by interchanging the roles of the two simplexes in each of the above
two definitions, we can define "(S%,T? U?) cross-row constrains (S!, 7!, UY)" as -
well as (5% 72, U?) cross-column constrains (S!, T, U1)."

Linguistic variants of "(S.,TY,U!) cross-row constrains (S2 7% U%)" will
include "(S.T!U!) row constrains (S% 7% U%)," "(S% T? U% is cross-row con-
strained by (S1, 7!, U')," and "(S% 7%, U?) is row consirained by (S!, 7%, I/1)." Simi-
lar variants will be used for "(S* T, U*) cross-column constrains {S?, T%, U?)."

We are now able to define the notion of "parallelization complex,”" or, more
briefly, “complex.” All parallelization structures dealt with in this paper fall
within this category. Two kinds of complexes will be utilized here, nam=!y, 1-
complexes and 2-complexes. The dimension of an n-complex, where n is either 1
or 2, is defined to be n. Future research is needed to define and apply comple:zs
with dimension greater than 2.

Definition: A parallelization 1-complex (or, more briefly, a 1-complex) is merely
a simplex (S, T, U!). A 2-complex is an ordered triple ((S' T, UY),{S% T? U?),V}
whose first element is a simplex (5!, 7!, U*), whose second element is a simplex
(S?,T% U%), and whose third element V is a non-empty set of 1 to 4 character
strings chosen from among the strings "XC12", "XC21", "XR12", and "XR21." Thus
V indicates the cross-constraints that hold between the simplexes of the com-
plex; if XR12 is in V, then (S!, T, U') cress-row constrains (S? T? U%), while if
XR21 is in V, then {S?, T? U?) cross-row constrains (S*, 7},). Similar interpreta-
tions are given to XC12 and XC21,

If (S, T, U") is a 1-complex or the first element of a 1-complex, it will be
referred to as the simplex 1 of that complex (or, more briefly, as simplex 1).

- 34 -

Similarly, if (S% 7%, U?) is the second element of a 2-complex, it will be referred
to as simplex 2.

5. Summary of Examples

We now sumrmnarize the examples to be presented. As indicated earlier, they
comprise the set of examples that appear in the two Overbeek and Lusk papers
[4,5,3]. Added to this set are an example computing an approximate solution to
a discretization of the Dirichlet problem for a three-dimensional grid, which
Overbeek and Lusk use in their classes in parallel processing given at the
Argonne National Laboratory, and an example "GETADUP" (a modification of the
example "GETDUPS"), which provides a simple illustration of a 2-complex struc-
ture.

The first example, ADDTWO, is simply the vector addition of iwo vectors,
with the componznt additions done in parallel. Here we have a 1-complex whosa
underlying region is simply a rectangle with one row. There are no ccnstraints
imposed on the simplex. ADDTWO illustrates how the self-scheduling DC-loop (see
Overbeek and Lusk [2]) is handled as a special case of the gs2 macro with cne
row in the underlying region of the relevant simplex.

The second example, CHECKTWO, is the modification of ADDTWO obtained by
considering the problem of determining whether the sum of two vectors has a
commponent greater than or egual to 100. Here we have a l-complex whose
underlying region is identical with that of ADDTWO; again there are no con-
straints. CHECKTWO illustrates the use of the "ecmplrend’ macro, which insti-
tutes windup processing once some component greater than or equal vo 100 is
found.

The third example, "GETDUPS," considers the problem of determining all
the duplicates {for purposes of this problem, "duplicates” means successive
cormmponents that are equal) in the sum of two vectors. The parallelization struc-
ture is a 1-complex whose underlying region has two rows. This example provides
an elementary introduction to the use of the column constraint C. Alternative
formulations introduce the skew factor; one formulation uses a skew factor of 0,
while the other uses a skew factor of 1.

The fourth example, "GETADUP,"” is the modification of "GETDUPS" obtained
by simply trying to determine whether the sum of two vectors has a duplicate,
rather than trying to determine all the duplicates. This provides our first exam-
pie of a parallelization structure thal is a 2-complex; each simplex has one row.
it also illustrates the cross-column constraint XC21, and incidentally provides
another use of the cmplrend macro.

The fifth example, MATMULT, computes the product of two matrices, with
the (independent) computations of the elements of the product matrix done in

- 35 -

parallel. MATMULT provides an elementary example of a parallelization structure
that is a simplex, has no constraints, and whose underlying region is a rectangle
in the Cartesian integer plane whose sides can have any number of points and
are parallel to the coordinate axes.

The sixth example, "SORT,” performs a shell sort on several one-dimensional
arrays of differing lengths. It gives rise to a simplex whose underlying region has
a jagged right boundary (as well as a jagged lower one.) The rows of this region
correspond to stages of the sort. SORT introduces the use of the row constraint
R. Furthermore, it illustrates how repeated simplex executions are handled -- in
particular, how the underlying region of the structure is reconfigured prior to a
new complex execution. The reader is provided with a self-contained explanation
of the Shell sort.

The seventh example, "GRID,” provides an approximate solution to a
discrete analogue of the Dirichlet problem for a cube. The parallelization struc-
ture is a 1-complex. The underlying region is an integer rectangle whese number
of rows is the number of iterations to be performed and whose number of
columns is two less than the number of columns of the grid imposad on the
cube. The relevant constraint is the column constraint C, with skew factor 1. Two
copies of the grid are used; an iteration updates cne copy by producing, on the
other copy, function values that are averages of the "nearest neighbor” function
values on the copy to be updated. Each updating of an interior slice of the grid
parallel to the yz plane provides a separate computational task.

GRID provides a non-elementary example with wide physical applicaticn
which is elegantly and simply dealt with via the gs& macro in conjunction wikl
the parallelization structure introduced in this paper. The resulting program is
significantly simpler and shorter than that obtained via the "askfor" monitcr
and, of course, requires no user-coded macros.

The eighth and last example, "QR,"” performs the Householder algorithm
used in the QR factorization of a square matrix. It provides a non-elementary
example of a 2-complex structure that illustrates the power of the macro pack-
age presented here. The underlying region is a right isosceles integer triangle in
the Cartesian integer plane. Simplex 1 has the hypotenuse as its underlying
region, while the remaining points of the triangle form the underlying region for
simplex 2. Tasks associated with simplex 1 are called "creates,” while tasks asso-
ciated with simplex 2 are called "applies.”

This example uses the C2, XR12 and XC21 constraints. XR12 means here that
each "create” must be completed before a corresponding row of "applies” can
begin. XC21 and C2 together mean here that a column of "applies” must be com-
pleted before the corresponding "create” can begin, and each "apply'' must be
completed before the "apply” directly below it can begin.

- 38 -

As in the last example, the user here who only has to insert the macros with
correct parameters (as well as provide the relevant reserved variables with
values) is spared the considerable complexity of writing his own monitor macros
(for contrast, see the treatment of this example via the askfcr monitor in [1].)

8. Exampples

6.1. ADDTWO

A and B are two vectors with the same number N of elements. N is assumed
to be less than or equal to 1000. A and B are to be added so as to produce C, i.e,,

C(J, = A(J)+B(J) for 1sJ<N.

The N additions are all independent of one ancther.

This parallelization structure may be described by a simplex whose under-
lying region S has 1 row and N columns. S is the 1xN integer rectangle degictza
below for the representative case N = 5:

1,1 1,2 1,3 1,4 1,5

For each (1,1}, T, is the task "add A(J) + B(J) to produce C(J)."

There are no row or column constraints in this simplex. Thus the macro zall
parameters include no C's, R's, or X's; for example, the call to the gs2 macro is
given by gs2(1,00,00,00,00).

User-supplied values to the gs@var macro are as follows:

RB11 =1
RE12=2
CB11 =1
CB12 = 1000
FB21 =1
kEB22 =2
CB21=1
CBz2=1

The above values are supplied Lo the gsdvar macro via eight define state-
ments. The last four values (RB21, RB22, CB21 and CB22) are formal values; they

-37-

are relevant only to simplex 2, while the parallelization structure here involves
only simplex 1. In future examples involving only one simplex these four values
will not be mentioned, but the same values should always be supplied.

User-supplied values to the gs2init2 macro are as follows:

MNRV1 =1
MXRV1=1
MNCV1=1
MXCV1=N

LFBDY1(1) = 1
RTBDY1{1) = N
UPBDY1(J) = 1 for 1<J<N.

The above values are supplied to the gs2init2 macro via Fortran assignment
statements; of course, those for UPBDY1 are supplied within a DO loop.

Note: This example can be handled easily by the geisub macro (see the Overbeek
and Lusk papers). It illustrates that the getsub macro can be viewed as the spe-
cial case of the gs2 macro obtained when the parallelization structure is a sim-
plex and the underlying region S consists of exactly one row.

Since there are no constraints in this example, the synchronization pattern
here is exactly the same as the picture of the underlying region S given above.

8.2. CHECKTWO

This is the last example dealt with in the Overbeek and Lusk tutorial [2]. It
deals with a sequence of identical problemns. The individual problem takes two
vectors A and B with the same number N of elements (N is assumed to be less
than or equal tc 1000) and determines whether the sum C of A and B, defined
just as in ADDTWO by

C{J) = A(J)+B(J), for 1=J=<N

has some component C{J) greater than 100.

Thus we wish to add corresponding components of A and B and keep going
either until all are added, with none of the sums being greater than 100 {this is
called a solution by exhaustion, since we have exhausted all the tasks to be done
without satisfying the given condition), or until some one component sum
exceeds 100. If this event happens, then no new component surms should begin,

-38-

while all those already begun but not yet completed should be terminated in an
orderly way (the way this is accomplished here is by allowing them to complete),
and then "windup processing” should take place.

The parallelization structure here is precisely the same as in ADDTWO, since
the possibility of terminating tiie computation without performing all N com-
ponent sums is superimposed on the parallelization structure rather than being
a part of it.

Thus once again we have a simplex whose underlying region S has 1 row and
N columns. S is the 1xN integer rectangle drawn below for the representative
case N = 5:

1,1 1,2 13 1,4 1,5

For each {1,1), Ty, is the task "add A(J) + B{J) to produce C{J}, and terminate the
problem if C(J)>100."

Just as with ADDTWO, there are no row or column constraints in the simplex.
The macro call to gs2 is done via gs2(1,00,00,00,00).

The user-supplied values to both the gs2var and the gs2inift2 macros are
exactly the same as in ADDTWO. Thus the user-supplied values to the gs2var
macro are as follows:

RB11 =1
kB12 =2
CF11=1
CB12 = 1000
RE21=1
RE22 =2
CB21=1
CBe2R =1

Similarly, the user-supplied values to the gs&inif2 macro are

MNRV1 =1
MXRV1=1
MNCV1=1

MXCV1 =N

-39 -

LFBDY1(1) = 1
RTBDY1(1) = N
UPBDY1{J)} = 1 for 1sJ<N.

Termination in the event of the condition C(J)>100 being satisfied is
accomplished via the "end of complex” macro ecmplzxend. This macro sets vari-
ables that are internal to the gs2 macro monitor so that no new subscript pairs
will be handed out . Then once a process comnpletes a component sum and
returns to the gs2 monitor, it enters into a windup processing stage of the prob-
lem. Furthermore, cmplzend will set the variable EXHST to 0, indicating that the
possibility of exhausting all the tasks in the problem without finding one for
which the sum C(J) exceeds 100 has been ruled out.

To deal with a sequence of such problems, we utilize the barrier macroin a
manner virtually identical to the way the Overbeek-Lusk barrier macro is used
in their tutorial (in their "Shell sort" program). This same method is used in our
version of the "Shell sort”; this is one of the subsequent examples below. As
noted there, when using our barrier macro to enable the repeated executicn of
the gs2 macro in a given program, it should be called by the macro call dcer-
rier (1), and the statement after it should be labeled 3001.

6.3. GETDUPS

A and B are two vectors with the same number N of eiements. N is assumed
to be less than or equal to 1000. A and B are to be added to produce C, i.e.,

C(J) = A(J)+B(J), for 1sJ<N,
The N additions are all independent of each other. For each J, 2<J/<V, D{J) is
set equal to 0 if C{J) and C{J—1) duplicate each other, i.e., if

c(J) = C(J~1),
and is set equal to 1 otherwise. D(1) is set equal to 1.

The parallelization structure may be described as a simplex whose underly-
ing region has 2 rows and N columns. More specifically, 8 is the 2xN integer rec-
tangle depicted below for the representative case N = 5;

1,1 1,2 1,3 1.4 1,5

- 40 -

For each {1,]), T,; is the task
add A(J)+B(J) produce C(J).

For (2,1), Ty, is the task
set D{(1) = 1.

For 2=J=<N, Ty, is the task
set D(J) = 0if C(J) = C(J—1) and set D{J} = 1 otherwise.

The parallelizaiion structure here has one constraint, i.e., the column con-
straint C with skew factor 0. This constraint requires that

sz:L’E W for 1_<.JSN,

i.e., that for all J, T2y cannot begin until after Tyy ends.

The fact that in a simplex each row is traversed from left to right, i.e., that

by <bx whenever J<K,

enables the constraint to be formulated this easily. Let us see how the column
constraint C, together with left to right row traversal work together here. Sug-
pose, for example, that the next task to begin is T23. Then we know that Tz has
already begun; since the column constraint must have been satisfied for (2,2),
T, must have completed, i.e. C(2) has already been computed. Once the
column constraint is satisfied for (2,3), then T3 has completed, i.e. C(3) has
been computed. Since C(2) and C(3) have already been computed, Tza, which
determines whether or not they are equal, may then begin.

Since there is a column constraint C in this structure, the gs?2 macro
should be called by gs2(1,£0,00,00,00).

User-supplied values to the gs@var macro are as follows:

RB11=1
RB12 =3
CBl11=1
CE12 = 1000.

User-supplied values to the gs&init2 macro are as foilows:

MNRV1I =1
MXRV1=2
MNCV1 =1

MXCV1i=N

- 41 -

LFBDY1(1) =1

LFBDY1(2) = 1

RTBDY1{1) = N
RTBDY1(2) = N
UPBDY1{(J) = 1 for 1=J<N.

A picture of the synchronization pattern for N = 5 is given by

l ! { | l

It is instructive to examine now some variants of the parallelization struc-
ture described above in connection with the same problem.

First, suppose that all the D(J) are initialized to 1. Then task Tz;, which is
"set D(1) equal to 1," is redundant. We may then redefine Ty, to be the "empty
task” ¢ and write

Ta = 9.

Notice that the column constraint C remains in full force, so that Tz; cannot

begin execution until 7'y, i.e.,
c(1) = A(1)+B(1)

completes.

Although Ty, is the null task, we cannot completely remove it from the
parallelization structure. If this were attempted by redefining LFBDY1{2) to be 2
(we assume that N=2), then Ty would only be constrained to start after T
(C(2) = A(2)+B(2)) ends. Thus it would be possible for T to start before T},
ended, ie., before C{1) was computed to be A(1) + B(1). But this would thwart
the purpose of Ty, which is to compare C{1) and C(2).

Note that with the initializaton of all D{J) to 1, we may simplify the task Tp;
for 2=J<N to

set D(J) = 0if C(J/—-1) = C(J).
There is no need to specify what happens otherwise, since D({J) is already equal
to 1 when T, begins execution.

Thus, by modifying the parallelization structure used in this example, we
have introduced the concept of a "null task.” Further modifications will ilustrate

-42 -

the concept of "skew factor” and of "jagged boundary.”

Let us remove Ty, (whether it be "set D(1) = 1" or the null task ¢) and then
shift the remaining tasks in the second row one unit to the left.

In other words, we deflne a new task function 7! by the rules

T}, = T, for 1=/<N,

and

T;_}J = TZ(J+1) for 1=J/=N—1.

Define the region S?! to be
St={(1,J): 1=J<sN Ut (3.J): 1sJsN~1].

Then the simplex (S!,T!-U') also models the "getdups” example, so long as U?,
which indicates the constraints on the simplex, indicates the column constraint
C with skew factor 1,

S! now has a jagged right boundary; although RTBDY1(1) is stiil N, now
RTBDY1(2) is N—1. The synchronization pattern may now be depicted (again for
N=15) as

The user-supplied values must also be modified. Now CB12 = 1001, since the
skew factor of 1 must be taken into account.

An equivalent formulation would be to extend S! (restoring the straight
right boundary) and to define T3y to be the null task p. The skew factor is still 1,
and CB12 is still N+1. But now once again the user-supplied value RFBDY1(2) is
N. The synchronization pattern for N = 5 may now be drawn as

| R A T |

Since there is no N+1'st column in S!, T}y is constrained only by T}y.

-43 -

8.4. GETADUP

This modification of example 2 providas an instructive, elementary example
of a parallelization 2-complex.

As in example 2, A and B are two vectors with the same number N of ele-
ments. N is assumed to be less than or equal to 1000. A and B are to be added to
produce C via

C(J) = A(J)+B(J), for 1=/<N.

The N component additions are all mutually independent.

We wish to determine if any successive C(J)’s duplicate each other, ie., if
there is some J such that

2<J<N and C(J-1) = C(J).

All we care about is whether there are any such duplicates. Therefore, if we find
one duplicate pair, we can terminate the computation.

We initialize D{(J) to be 1 for 1<J<N. For 2<J<N, D(J) is set equal to O if
C(J-1) = C{J). A certain bit (actually, 2 Fortran INTEGER variable named
EXHST) is initialized to 1. If some D{J) is set to 0, then this bit is set to 0 and the
comnputation for this problem is terminated in an orderly manner, including
perhaps printing out the result that there is a duplicate. If no D(J) is set to O,
this bit remains at 1. Thus, after all the D{(J) are determined, termination prz-
cessing may include printing out the result that there are no duplicates.

The parallelization structure may be described as a 2-complex whose two
simplexes are (S', T, U'), which is simplex 1, and (S? T2 U?), which is simplex 2.
As is always the case with our priority convention for 2-complexes, simplex 1 has
higher priority than simplex 2. This implies that when a process executes the
gs2 macro searching for a subseript pair ready to begin execution from among
the current pair in simplex 1 and the current pair in simplex 2, it tilts its search
in favor of simplex 1 by examining that current pair first.

Here S is the 1xN integer rectangle (drawn for N = 5)

1,1 1,2 1,3 1,4 1,5

and for each (1,J) such that 1<J/<N, T% is the task
"add A(J) to B(J) to produce C(J)."
S!is (for N = 5) the integer rectangle

21 2,2 2.3 2,4 2,5

- 44 -

T4, is the null task ¢. For 2<J<N, T4, is the task

if C(J~1) = C(J), then set D(J) = 0, begin no new computational tasks and
instead do windup processing, and clear a bit {EXHST) indicating that the
computation has been terminated by the finding of a duplicate pair, rather
than by performing all the 7§ and finding no duplicates.

Since there are no internal constraints within the individual simplexes, U!
and U? are empty. However {as is always the case with a 2-complex according to
the definition here), there is a cross constraint. Simplex 2 column constrains
simplex 1, i.e., XC21 holds. This means that

Td; cannot begin until 7# has ended,
when 1sJ<N.

The synchronization pattern may be drawn as

Points in simplex 'l lie on the top line, while points in simplex 2 lie on the
bottom line. As indicated earlier, simplex 1 points take priority over simplex 2
points.

The fact that computation can be terminated because of a condition being
satisfied for some T}; is not part of the synchronization pattern. It enters into
the program through the use of the macro cmplzend.

Note that this method of structuring the problem offers the advantage that
if a duplicate pair is discovered early enough, many of the simplex 2 additions
may not be done, because they are superflucus and their superfluity was
discovered in time.

Since the only constraint is the cross-column constraint XC21, the gs2
macro call is given by gs 2(2,0X,00,00,00).

User-supplied values for simplex 1 to the gs@var macro are as follows:

RB11 =2
RB12 =3
CR11=1
CB12=N.

User-supplied values for simplex 2 to the gs2var macro are as follows:

- 45-

kB21=1
RB22 =2
CB21=1
CB22 = N.

User-supplied values for simplex 1 to the gs&inil2 macro are as follows:
MNRV1 =2
MXRV1=2
MNCV1=1
MXCV1=N
LFBDY1(2) =1
RTBDY1(2) = N
UPBDY1(J) = 2 for 1sJ<N
LWBDY1(J) = 2 for 1s/<N.

User-supplied values for simplex 2 to the gs&init2 macro are as follows:

MNRVZ =1
MXRV2 =1
MNCVR2 =1
MXCV2 =N

LFBDY2{1) = 1

RTBDY2(1) = N
UPBDY2(J) = 1 for 1<J<N
LWBDY2(J) = 1 for 1sJ<N.

The macro cmplzend is used to handle termination in the case when a
duplicate is found, just as in example CHECKTWO above. In particular, it will then
set the variable EXHST to 0.

6.5. MATMULT

Let A and B be matrices, where A has M rows and N columns, and B has N
rows and P columns. M, N, and P are all assumed to be less than or equal to 300.
A and B are to be multiplied together by matrix multiplication to produce the
MxP matrix C. If A(],J), B(J,K) and C(I,K) denote, respectively, the (LJ)'th ele-
nient of A, the (J,K)'th element of B, and the (I.K)'th element of C, then we can

-48 -

write the formula for matrix multiplication as

C{I.K) = f‘,A(!,J)xB(J.K)
/=1

for all /,K where 1</<M and 1<K<P.

The MP distinct computations of the C(I,K) are all independent. A substan-
tial amount of the parallelization potential in this matrix multiplication may be
obtained fairly simply. To do this, we use a simplex whose underlying region S
has M rows and N columns. More specifically, S is the MxP integer rectangle dep-
icted below for the case M =4 and P = 8.

1,1 1,2 1,3 1,4 1,5 1,6

.
2,1 2,2 2,8 2,4 2,5 2.6
.

31 32 33 34 35 3.0

41 42 43 44 45 48

For each (LK) in S, Ty is the task

compute C(LK) via the formula

CULK) = Jg}lA(I,J)xB(J.I()

Since all the tasks T(I,K) are independent, this parallelization structure has
no constraints; therefore, since no constraints need be indicated on the sya-
chronization pattern, the picture of the synchronization pattern coincides with
the abuve integer rectangle.

Also, since there are no constraints, the gs2 macro may be called via
gs 2(1,00,00,00,00).

User-supplied values to the gsdvar macro are as follows:
kE11 =1
KF12 = 301

- 47 -

CB11=1
CB 12 = 300.

User supplied values to the gs2inilZ macro are as follows:

MNRV1 =1
MXRV1I=M
MNCV1=1
MxXCcvi=PFP

LFBDY1{I) = 1 for 1<[<H
RTBDY1(I) = P for 1<]/<M
UPBDY1(J) = 1 for 1=J<P.

This is a basic example of a two-dimensional parallelization structure whose
underlying region is an integer rectangle with sides of arbitrary length and
which has no constraints imposed.

6.6. SORT

Three Shell sorts are to be performed in this example: the first on a vector
of 100 elements, the second on a vector of 1000 elements, and the third on a
vector of 10000 elements. We are going to set, in the gs2 context, the exact same
Shell sort example dealt with in Overbeek and Lusk [2], on pages 13-20.

This example will illustrate, among other things, how in the gs& setting
regions with jagged boundaries occur, how the internal row constraint R arises,
how the {internal) row-constraint synchronization pattern is depicted, and ho
multiple instances of the samme problem are handled within one program (e.g.,
three Shell sorts on arrays of different lengths within one program).

In connection with the last question, recall that the program structure util-
ized nere will always have a main program, a subroutine SLAVE, and a subroutine
WORK. The program will emmploy NPROCS processes. One of these processes will
begin executing the main program. At some time during the execution of the
main program, it will create the remaining NPROCS-1 processes, each of which
will begin executing a copy of SLAVE. All subroutine SLAVE doces is to call subrou-
tine WORK. The main program will also call WORK. No parameters will be passed
when the main program creates a copy of SLAVE.

If our program is to deal only with one instance of one problem, then no
parameters are passed when WORK is called, either by the main program or by a
copy of SLAVE.

-48 -

However, if multiple instances of one problem are contemplated, then one
parameter will be passed whenever WORK is called; it will be received in WORK by
the Adurnmy integer variable WHO. When the main program calls WORK, it will
pass the value 0; but when a SLAVE calls WORK, it will pass the value 1. Thus a
copy of WORK will be able to use the variable WHO to determine whether its
immediate ancestor is the main program or a SLAVE and thus to where, after a
particular instance of the problem has been completed, control should be
transferred. The use of the variable WHO in this way is illustrated in the
Overbeek-Lusk tutorial {in particular, see p. 20, note 4, as well as the preceding
code). It should also be clear from an examination of the {(more structured) ver-
sion of the Shell sort presented here.

We will return later in this example to the question of dealing with the mul-
tiple instances of a Shell sort. But for now, let us turn to the gquestion of deaﬁng
with one Shell sort.

We begin by giving, for completeness, a somewhat formal summary presen-
tation of the Shell sort Lo be used here. If the reader would like a more intuitive
exposition, he should consult the Overbeek-Lusk tutorial at pages 13-20,

First an overview of our presentation. To sort a sequence
Lip Tg """ Ty
means to rearrange the values z; while keeping the subscripts
i, ia 0 ik
so that the rearranged sequence
Yip Yip "7 Vig
is monotone increasing, 1.e.,
Yy, SYip, S - =Yg,

We assume here, of course, that the sequence of integer indices is strictly mono-
tone increasing, i.e., that

1.'1 <'Lg< e <'LK
The “insertion to the left” (/L) scrt sorts the z, by first sorting the first

{(leftmost) two T, then the first three, then the first four, and so on, until all the

T, are sorted.

IL is the function composition of the /I, (insert the J'th element to the left)
sorts. For 2<J<K /L; sorts the first J =, if the first /—1 2, are already sorted.

-49 -

In formula,
Il =[LK‘IL}{‘_1' 'ILs'ILg

where ' is used to denote function composition. Thus to apply 1L to a sequence,
first apply /La, then /L3, and so on until /ig.

The action of the IL; may be defined recursively. [L; sorts a seguence
Y, + ¥i, DY doing nothing if the two values are in the right order and otherwise

interchanging the two values, producing a sorted sequence 2; , z;,

fLg sorts a sequence
'Mil 1 '5'1'.,, 1 yian

where it is assumed that the sequence vy, , i, is already sorted, as follows: if y;,
and ¥y, are in the right order, then ILg does nothing. Otherwise it interchanges

the values of ¥y, and ¥;,, producing the output sequence

24, Zig s 24

Now IL, is applied to the sequence 24, 24, to produce a sorted result
Wy, W W,
In general, IL; sorts the sequence
Yipo Yig 70 v Wiy
where it is assumed that the sequence
W Yip 7 Wy,
is already sorted, as follows: if y;, , and y;, are in the right order, then [y does

ncothing. Otherwise it interchanges the values of y, e and y; ,+ producing the out-

put sequence
Zip Zip T By
Now IL;_, is applied to the subsequence
Zip Zip T Fy
to produce the sorted result
Uk, Whpe 77 L Uy,
The Shell sort sorts a sequence of distinct integers

Xy, g, " ‘,ZN.

-50-

It takes as given a suitable decreasing sequence of integers

Gi1>Ge> -+ >Gy,
where 1 = Gy and Gy < %V The G; are called "gaps,” and Gy is called the j'th
gap-
Within the framework of this example, the gaps Gj, together with the
number of gaps #, will be defined by the relations

Gu =1,
Q = BGI+1 + 1 for ISISM—]..
3G, + 1< N,

and
3(3G, + 1} +1=N.
The Shell sort is done in M iterations, one for each gap &;. The j'th itera-
tion begins by decomposing its input sequence
2,2 ", 2N
into G; separate, disjoint subsequences, each of which is of the form
Zq: Zg+Gpr Fqi2Gp 0 z&wa,.
where
1<sg =G,
and H is the largest integer such that
g+ HG <N

(Note that successive indices in the above sequence of z's differ by Gj: thus the
term "gap" for the G;j.)

The j'th iteration continues by applying /L to sort each of the Gy separate,
disjoint subseguences. Then these sorted subsequences are reassembled into a
sequence

wllwzl T .'UJM

This sequence is the output (result) of the j'th iteration and becomes the input
sequence to the (j+1)'st iteration if 5 = M. The result of the M'th iteration is the
result (output) of the Shell sort and is completely sorted.

Now that the summary presentation of the Shell sort is done, we turn to set-
ting up the relevant Fortran program and parallelization structure. Let A be an

-51-

array with N elements, where N is assumed to be less than or equal to 10000.
AQ1). A(2), - L AN)
is the sequence to be sorted by the Shell sort. The sort will be done in M itera-
tions, with gaps
GAP(1), GAP(2), ' - - ., GAP(M).
The gaps and M will be obtained by first constructing a sequence
XGAP(1), XGAP(2), - - - , XGAP(K)
by setting
XGAP(1) = 1,
XGAP(L) = 3XGAP(L-1) + 1for L =2
and letting K be the smallest integer such that
XGAP(K)=N
where N is the number of integers to be sorted. Then we set
M= K-2,
and

GAP(I) = XGAP(M +1-I) for 1sI<M.

Thus the sequence of GAP's from 1 to M is simply the sequence of XGAs from 1
to M, but taken in reverse order.

The parallelization structure is a simplex whose underlying region has M
rows and N columns, where N is the number of elements to be sorted and M is
the number of iterations to be performed. More specifically, S is the region in
the Cartesian integer plane consisting of all integer pairs (1,J) such that

1</< M, and 1<J < GAP([).

A representaiive picture of S for the case when M = 3 is presented below.
The relevant gaps then are

GAP(1) = 13, GAP(2) =4, and GAP(1)=1.

.
1,1 1,2 1,3 1,4 1,5 1,6 1,7 1,8 1,9 1,10 1,11 1,12
. . . .
2,1 2,2 2,3 2.4

1,13

-52 -

Thus, the Shell sort exhibits a simplex with a jagged right boundary.
For each (1.J) in S, T}, is the task

apply the "“insertion to the left sort” IL to the subsequence of A cbtained by
considering only those values A(l) whose indices I belong to the sequence

J, J+GAP(I), J+2GAP(]), -+ - , J+QGAP(I),

where Q is the largest integer such that

J + QGAP(I) = N.

For a flxed I, where 1=/<}, the computational tasks in the I'th row, i.e.

{7y« 1< J < GAP(I)],

provide the tasks for the I'th iteration of the Shell sort. The set of all computa-
tional tasks, i.e.,

§Ty:1s 1< M, 1< J=x< GAP(I)},

provide the tasks for one full Shell sort.

It is natural here to impose the constraint that the (I-1)'st iteration be com-
pleted before the I'th iteration begins, i.e., to impose the row constraint R on
our simplex. When R is the internal constraint of a simplex, all the parallelism to
be obtained is contained within the individual rows of tasks; we are effectively
doing a serial DO loop of individual rows. (Within each row all the tasks may be
performed in parallel, subject only to the implied begin constraint that the tasks
within a row begin in order of their column subseripts.)

The row constraint R is represented on the picture of the underlying region
S by an arrow {(with an "R") pointing down from the leftmost element of each
{but the last) row to the leftmost point in the next row.

Thus the synchronization pattern for this example when M = 3 may be
drawn as

{R

IR

-53-

Since the parallelization structure is that of a simplex with the row con-
straint R, the call to the gs2 macro is given by gs2(1,00, R0,00,00).

User-supplied values to the gs@var macro are as follows:

RB11 =1
KB12 =20
CB11 =1
CB12 = 10000.

User-supplied values to the gs&inite macro are as follows:

HMNRV1 = 1
MXRVi=H
MNCV1 =1
HXCV1 = GAP(1)

LFBDY1{I) = 1 for 1<I<H
RTBDY1(I) = GAP([) for 1<I<H
UPBDY1(J) = 1 for 1<J<GAP(I).

To supply these values, the user must first compute M and
GAP(1), -+ . GAP(M).

As we remarked earlier, in this example we will do not only one Shell sort
but three. Performing more than orie Shell sort, i.e., executing the simplex more
than once, involves a use of the barrier macro virtually identical to the use Over-
beek and Lusk give their barrier macro {at p.19, line 189, of the tutorial) in their
Stell sort program. Although there are certain differences between our barrier
macro and the one used by Overbeek and Lusk, for purposes of this paper the
reader need only note that the call to our burrier macro when it is used to sup-
port multiple complex executions is given by "barrier(1)" and that the Fortran
statement which follows the call "barrier(1)" should be labeled 30G0.

Each time a new Sheli sort is done, the user-supplied values to the gsZinit2
macro that have changed need to be recomputed. In this example, where three
Shell sorts are done on vectors with differing numbers of elements, we will find it
simplest to recompute before each Shell sort all the user-supplied values to the
gs2init2 macro.

To accomplish this, we must also recompute M and GAP{1), - -+ , GAP(M).
{This recomputation could be simplified considerably if the order of the vectors
to be sorted was reversed, i.e., if the 10000 element vector was sorted first, then
the 1000 element vector, and last the 100 element vector. But it is more

- 54 -

instructive to consider the case that requires more recomputation.)

Once the user-supplied variables to gs8inif2 are recomputed, then a call to
that macro (in the form "gs2init2(1,00,R0,00,00)") will provide certain appropri-
ate initializations needed for the particular problem (i.e., Shell sort) under con-
gideration. Immediately following the "problem initialization" performed by
gs2initZ should be the call to subroutine WORK.

6.7. GRID

We now consider an example that is a discrete model of the Dirichlet prob-
lem for a cube in Euclidean three-dimensional space. In that problem, one is
given a continuous function f defined on the boundary of the cube and must
extend f to a continucus function g defined on the whole cube such that g is har-
monic on the interior of the cube, i.e., g satisfles the Laplace equation

Gzz + Gy = 0.

Here we are given a 'discrete cube” (i.e., a three-dimensional cubic grid)
and a function [defined on the boundary of the grid. We are to produce a thrze-
dimensional Tortran array whose indices are the coordinates of the grid, whos=z
values at grid boundary points are the same as the values of f, and which is in
some sense a discrete analogue of a harmonic function.

A harmonic funciion satisfies the property that its value at a peint is the
average of its values in a neighborhood of that point. We obtain our array by
using a discrete analogue of this averaging property.

We employ two 3-dimensional Fortran arrays A end B. The indices of A, as
well as the indices of B consist of the points of the cubic grid under considara-
tion. The values of A and B for indices which correspond to grid boundary points
are always identical to the function values of f at those points. The values of A at
interior grid points are initially set to 0.

A fixed number of iterations is set in advance. In an odd iteraticn, the inte-
rior values of B are computed by averaging neighboring values of A. In an even
iteration, the roles of A and B are reversed. A column constraint, with skew fac-
tor 1, provides for the necessary synchronization.

After the given number of iterations has been completed, the last array to
be computed (A if the number of iterations is even, B if it is odd) provides the
desired discrete analogue of an approximate solution of the Dirichlet problem.

Now we focus in more sharply on the details. Let DIM be a positive integer
such that 2<D/M=<20. Let A and B be 20x20x20 three-dimensional real arrays.
For purposes of this problem we will focus on those elements A(LJ,K) of A and on
those elements B(I,J,K) of B whose coordinates I, J, and K all are less than or

- 55 -

equal to DIM. With this restriction in focus, A and B both represent real-valued
functions defined on the three-dimensional integer cubic grid

D = [1,DIMX[1.DIM]x[1,DIM].

The boundary of D, dencted by dD, is defined as the union of the 6 sets

[1]x[1,PrM %[1.DIH]
[DIMIX[1. YDIM X[1,ZDIM]
[1.DrM Ix[1]%[1,.DIH]
[1,DIH X[DIM |z[1.DIH]
[1.DIM %[1.DIH]z[1]
[1,DIM %[1,DiM |z [DIH).

The interior of D, denoted by int D , is defined as D—dD, i.e., the set of
points of D that are not on the boundary of D. It can be represented as a Carte-
sian product by

int D = [2,D/M -1]x[2,DIM -1]x[2,DIM —1}.
We are given a function f defined on dD. We will exhibit a method of extend-
ing it to a function g defined on all of D.
Define, for all (I,J,K) in dD,
AUIJ Ky=f{(J.K}Y and B(!.J.K)= f{I.J.K).

Throughout the computation the values of A(1,J,K) and B(l,J,X) for (1,J,X) in dD
will remain unchanged.

Initialize
A(ILJ,K) =0 for all ({,J,K)in int D.
A specific positive number M of iterations is given. Assume M to be less than or
equal to 1000.

The parallelizaticn structure may be described by a simplex whose underly-
ing region S has M rows and DIM—-2 columns. More specifically, S is the
Mx({DIM —2) integer rectangle drawn for the representative case M = 5 and DIM =
8 below.

- 56 -

1,2 1,3 14 1,5 1,6 L7
22 283 24 95 26 2,7
3,2 3,3 3,4 3,5 3,6 3,7
42 43 44 45 48 47

5,2 5,3 5,4 5,5 5,6 5,7

Tz is the task

compute all the B(2,],K), where (2,J,K) is in the interior of D, by setting
B(2,J,X) equal to the average of the A values at the six neighboring points of
(2.3.K).

Those six neighboring points are

(1,4,K), (3.J,K). (8,J-1,K), (B, J+1,K), (8J,K—1) and (2,J,K+1).

T3 may be thought of as updating the values of the A function on the interior
grid slice 7 = 2 by computing B values there, each of which is the average of the
six neighboring A values.

More generally, for 2<L<DIM -1, T, is the task

compute all the B(L,J,K), where (L,J,K) is in the interior of D, by setting

B(L.J.K) equal to the average of the A values at the six neighboring points of

{L.J.X).

Ty; can be thought of as updating the A values on the interior grid slice 7/ =
(here, 1 denotes an integer variable ranging over the first coordinate in thres-
dimensional space) by averaging, just as in the particular case L=2 describsd
above.

We have now described the first row of tasks Ty; of the parallelization sim-
plex. We will now define the remaining rows of tasks. If | is an odd integer, and
1=<f<M, then whenever 2<.sM -1 Ty has exactly the same definition as does
Tyr- T is the task

-57-

compute all B(L,J,K), where (L,J K) is in the interior of D, by setting B(L,J.K)
equal to the average of the A values at the six neighboring points of (L.J,K).

Ty, can be thought of as updating the values of the A function on the interior
grid slice / = L by averaging, just the same as T;;. These updated values are
used as the new values of the B function.

If 1is even, Ty has the same definition as T, except that the roles of A and
B are reversed. Now Tz is the task

compute all A(L,J,K), where (1,J,K) is in the interior of D, by setting A(L.J,X)
equal to the average of the B values at the six neighboring points of (L.J,X).

For I even, Ty can be thought of as updating the values of the B function on the
interior grid slice] = L by averaging. These updated values are used as the new
values of the A function.

The simplex here has cne constraint, namely, the column constraint C with
skew factor 1. This constraint says that

byy=e ;) whenever 2</<M and 2<J<DIM -1,

and

biy=e 1)/ +1) Whenever 2=/} and 2<J<DIiM -2,

To summarize, A starts off with the given values f on dD and the value 0 on
int D. During the first iteration B (as it always does) assumes the given values f
on dD. However, at each point of int D, B takes on the value obtained by averag-
ing the six values of A at "neighbors” of that point. This iteration "updates” the
values of A on I); the updated values are those of Bon D.

During the second iteration the roles of A and B are reversed. As always, A
assumes the values of f on dD. However, on int D, at each point A takes on the
average of the six neighboring values of B. (These values of B are those obtained
during the first iteration.) The column constraint C, with skew factor 1, ensurss
that a second iteration task Tp; will not begin until the first iteration tasks
Tyw-1)» T and Ty(y¢y) have all ended. Once these tasks have ended, B has all
those needed updated values produced by the first iteration which serve as
inputs to Tyy.

Note that if Ty, is ready to begin, i.e., T,y is the current task in the simplex
and the constraints imposed on Tg; by the column constraint with skew factor 1
are satisfled, then T,; and T,y have completed, by the definition of the
column constraint with skew factor 1. But if />2, then Ty(y_;) must have already
begun, since Ty is the current task, and a row in a simplex is traversed in order
of column subscripts. Thus T,y-;) must also have ended, since its end was a
prerequisite (via the column constraint) to the beginning of Tg(y_)).

- 58 -

The odd iterations all are identical to the first, except that each time
through the values of B are computed using the values of A obtained during the
previous iteration. Similarly the even iterations are all identical to the second,
with the roles of A and B interchanged from what they were with regard to odd
iterations.

The L'th task of the N'th iteration cornputes the updated values on the slice
of int D consisting of all points of int D whose first coordinate is L.

The values computed during the last (M'th) iteration are taken to be th=
final result. Thus, these are the values of A on D if M is even, and the values of 73
onDif M is cdd.

The column constraint C, with skew factor 1, always ensures that the
correct inputs to the task 7Ty, are in place before that task can begin. Since the
simplex has the column constraint C, the macro call to gs2 is exactly the seme
as that used in the GETDUPS example, namely, gs2(1,£0,00,00,00). Note that
the skew factor does not affect the parameters in the macro call.

User-supplied values to the gs2var macro are as follows:

RB11=1
KEB12 = 1001
CBE11=2
CB12 = 20.

User-supplied values to the gs&init2 macro are as follows:

MNRV1 =1
MXRV1I=M
MNCV1 =2

MXCV1 = DIM-1

LFBDY1(I) =2 for 1=I<H
RTBDY{I) = DIM~1 for 1<[<M
UPBDY1(J) = 1 for 2<J=<DIM -1
SKW1 =1

Note that the skew factor ! is introduced here as a user-supplizd value via
the variable SKW1.

A picture of the synchronization pattern is given by

-59-

8.8. QR

The formulation of this problem is essentially taken from Overbeek and
Lusk [1, p. 26].

We study a parailelization structure involved in performing the QR factoriza-
tion of a matrix, more specifically, in performing Householder’s algorithm. It is
not necessary to understand what the algorithm does; it is necessary to under-
stand the following synchronization reguirements.

1. The first step in performing Householder's algorithm on an NxN matrix is to
"create the reflection for column 1." This reflection can then be applied to
all remaining columns.

2. A reflection will be created for each column J. The reflection for column J
can be created only after

a. all reflections for columns L, where L <J, have been created, and

b. for all L</, the reflection for column L has been applied to the J'th
column.

3. The reflection for column K can be applied to all columns J, where X<J.
However, for a given column K, these "applies' must take place in order.
More specifically, the application of the reflection for column X to column
J, if J>1, cannot begin until the reflection for column X has been applied to
column J—1.

We can reformulate these synchronization requirements as follows:

(A) For each J, 1</<N, there is a task C(J) "create the reflection for column
J'-fl

«B80 -

(B) For each J,K, 1<J<KsN, there is a task A(J,K) "apply the reflection for
column J to column K."

{C) C{J) cannot begin until all A(L,J) have ended, where 1<L</J.
(D) A(J.K) cannot begin until A(/~1,K) has ended, if J=2.

And of course, since a reflection cannot be applied until it has been created, we
have

(E) Whenever 1<J <K<N, A{(J,K) cannot begin until C{/) has ended.
Note that the requirement
"C(J) cannot begin until C(L) has ended, for L<J"
need not be included, since it follows from (C) and (E).
Note further that (C) may be replaced by the weaker condition
(C') Whenever /=2, C{J) cannot begin until A{J/—1,J) has ended.
This is because {C) follows from (C') and (D).

Thus we have a "minimal” set of synchronization requirements (4), (B), {(C’),
(D), and (E) upon which we can base our parallelization structure.

The parallelization structure may be described by a 2-complex
((S, TLUY), (S5 TR, UR), V).
The underlying region S* of simplex 1 is the set of all points in the integer Carte-
sian plane that have coordinates {(J,J/), where 1</<N. In other words, S! is the

integer line segment from (1,1) to {N,N). A picture of S! when N = 8 is dravm
below.

1,1

[2=]
Lo

3,3

4,4

5,5

6,6

-B1-

For each {/,J) in S, T}, is the task C(J), "create the reflection for column J."

The underlying region S? of simplex 2 is the set of all points (/,K) in the
integer Cartesian plane such that 1</ <K=N. In other words, S? is the integer
triangle whose "boundaries” are the three integer line segments

J+1 =K, for 1sJ<sN -1,
J =1, for 2=K<N,
K=N, forls/<sN-1.

S? (for N = 8) is the integer triangle drawn below.

1,2 1,3 1,4 1,5 1,6

2,3 24 2,5 2,6

3,4 3,5 3,6

. .
4,5 4,6
»

5,8

In accordance with the convention in force here, the J coordinate {the first
coordinate) will be on the vertical axis, with lower points corresponding to larger
values of J, and the K coordinate (the second coordinate) will be on the horizon-
tal axis, with points to the right corresponding to larger values of X.

For each {/,K) in S% Tfy is the task A(J/,K) "apply the reflection for column J
to column X.

The underlying region S of the 2-complex, which is the union of S! and 5%,
is therefore the integer triangle whose "boundaries” are the three integer line
segments

J =K, for 1=J=N
J =1, for 1=K<N
K=N, for 1=J=N.

S (for N = B) is the integer triangle drawn below.

-82-

The line separates the two underlying regions S' and S2 Points in S? lie below
the line, while points in S2 lie above. .

To find the constraints associated with the 2-complex, we interpret the syn-
chronization requirements {C'), (D) and (E) given above.

Condition (C’) requires that for J=2, C(J) cannot begin until A(J—1,J) has
ended. This translates into requiring that T}, cannot begin until Tﬁr-;); has
ended, i e., that

b rze (7 -1/ for J=2.
Bt this states that simplex 2 constrains simplex 1, i.e., that the cross-column
constraint XC21 holds.

Condition (D) requires that for J=2, A(J,K) cannot begin until A(J,K~-1)
has ended, i.e., that Tf cannot begin until Tf(;{—n has ended. This is precisely
the condition

bsx=ey k-1

when J22, and (/,K) and {/,K—1) are in S® But this states that simplex 2 is
columnn constrained, i.e., that the constraint C2 (with skew factor 0) holds.

-63-

Finally, Condition (E) requires that whenever 1<J/<K<N, A(/.K) cannot
begin until C{J) has ended, i.e. that Tf cannot begin until 7); has ended. This is
precisely the condition

byp=e,y,
when 1=J<KsN.

But this is equivalent to the condition that simplex 1 cross row constrains sim-
plex 2, i.e., that the constraint XR12 holds.

Therefore, the parallel structure used here is the 2-complex

((S\TLUY), (818, U7), V).

where S!, S® T!, and 7% are as described above. U!, the set of internal con-
straints on simplex 1, is empty. %, the set of internal constraints on simplex 2,
consists of the column constraint C2 with skew factor 0. V, the set of cross con-
straints, contains the cross-column constraint XC21 and the cross-row con-
straint XR12.

Therefore, for this example, the gs 2 macro call is gs 2(2,0X,00,C0.0X).

User-supplied values for simplex 1 to the gs2var macro are as follows {we
assurne that N, the size of the square matrix, is less than or equal to 300):

kB11 =1
FE12 = 301
CB11=1
CB12 = 300.

User-supplied values for simplex 2 tn the gs&var macro are as follows:

KB21 =1
FKEB22 = 300
CBR21=2
CE22 = 300,

User-supplied values for simplex 1 to the gs&initZ macro are as follows:

MNRV1=1
JT:IXRVI =N
MNCYV1=1
MXCVi=N

LFBDY1(I) = I for 1=/<N

-84 -

RTBDY1(I) = I for 1</<N
UPBDY1{J) = J for 1sJ<N
LWBDY(J) = J for 1sJ<N.

User-supplied values for simplex 2 to the gs2init2 macro are as follows:

MNRV2 =1
MXRVZ = N-1
MNCV2 =2
MXCVR =N

LFBDY2(I) = I +1 for 1sI<N—1
RTBDY2(I) = N for 1<I<N—-1
UPBDY2(J) = 1 for 2<J<N.
LWBDY2(J) = J—1 for 2sJ<N.

Note: The formulation of this problem in Overbeek and Lusk [1, p. 28] deals
with the performance of the Householder algorithm for several matrices, rather
than for just on=. This use of the g5 2 macro for multiple problems is handled by
the use of the barrier macro, called in the form barrier(1), jus. as in the SORT
and CHECKTWO problems dealt with earlier. Prior to the time a new Householder
algorithm computation is begun, and the problem initializer gs2init2 is exe-
cuted, the user-supplied values that have changed must be resupplied by the
user. Thus, for example, if the dimension of the matrix is changed, then MXRV1,
MXRVZ2, MXRV2, MXCVZ, as well as all the underlying region boundaries
(LFBDY1, LFBDY2, RTBEDY1, RTEDY2, LWBDYl, LWBDY2, UPBDY1, and
UPBDY?2) should be recomputed before the relevant use of gs2inif 2 in the main
program.

As is always the case (by convention) with a 2-complex, simplex 1 holds
priority over simplex 2. This implies that if the current task in simplex 1 and the
current task in simplex 2 are both ready to begin a process begins executing
gs2 searching for a task to perform, then that process will select the current
task in simplex 1.

Thus, here the "creates"” take priority over the "applies.” This scheme has
the advantage that once a “create” is completed, it can remove a direct row end
constraint on a whole row of "applies” (the XR12 constraint), while a completed
"apply” can remove a direct column end contraint only on the task directly
beneath it {the C2 or XC21 constraint). (Strictly speaking, one might say that a
completed “apply” removes, on the average, a constraint on half a row of
"applies,” with reference to the row below that of the completed "apply.”) Qf

-85 -

course, if one wished, one could give the "applies’ priority by switching the
indices on the two simplexes of the complex.

Let us examine another perspective on the advantage obtained by giving
“creates" priority over “applies.” As the applies Tf complete for K suitably near
N, they free up processes that cannot begin a new task until the "create”
T{+1yv+1) completes. To avoid having these processes have significant periods of
unnecessary inactivity, the "create” TEJ+1)(J+1) should begin before tasks Tfy for
K near N whenever possible. Assigning priority to "creates” accomplishes this.

The synchronization pattern given by this complex is drawn below (for the
representative case N = 8).

e
e
R
o

The horizontal arrows represent the XR12 constraint. The (plain) vertical
arrows represent the C2 constraint. The vertical arrows with an "X" represent
the XCZ21 constraint.

-88 -

1.

J. Clausing, R. Hagstrom, E. Lusk, and R. A. Overbeek, "“A Technique for
Achieving Portability Among Multiprocessors: Implementation on the
Lemur," Poralliel Computing, 1985. (to appear)

Harry F. Jordan, Parallel Programming on the HEP Multiple Instruction
Stream Computer, August 20, 1981,

E. Lusk and R A. Overbeek, "“Use of monitors in FORTRAN: a tutorial on the
barrier, self-scheduling DO-loop. and askfor monitors,'” ANL-84-51, Argonne
National Laboratory, July 1984.

Ewing L. Lusk and Ross A. Overbeek, “Implementation of Monitors with Mac-
ros: A Programming Aid for the HEP and Other Parallel Processors,'' Tech-
nical Report ANL-83-57, Argonne National Laboratory., Argonne, Illinois,
December 1983.

E. L. Lusk and R. A Overbeek, ““Use of Monitors in FORTRAN: a Tutorial on
the Barrier, Self-Scheduling Do-Loop, and Askfor Monitors,” in Paralisl
MIMD Computation: The HEP Supsrcomputer and its Applications, ed. J. S.
Kowalik, The MIT Press, 1985.

- 87 -

Appendix A
The ADDTWQ Example

define{RB11,1)
define(RB12, 2)
define(CB11,1)
define (CB12, 1000)
define(RB21,1)
define(RB22, 2)
define{CB21, 1)
define{CB22, 1)

PROGRAM ADDTWO

newproc (SLAVE)
]
* COMMON AREA VARIABLES
]
INTEGER A(1000), B(1000), C(1000)
INTEGER NPROCS, N
COMMON /MAINC/ A, B, C, N, NPROCS
[

W oo R R K R R RN R R N K O R A R R T
' .

* DECLARE THE VARIABLES AND COMMON TO SUPPORT THE MONITOR

»

R o o e R ok A R R R R R R R A R R K B R R RO e
.

gs2var
*

INTEGER I,TS,TE
-
B R R KR RN R K KK K R R R R K A K T R
.

* INITIALIZE THE SELF-SCHEDULING DO-LOOP MONITOR

]
[J R S3REERESREEER SRS SRR R R R R R R RRR SRR R R RN IR N BE R R R R R]
[]

gs2init1(1,00,00,00,00)
®
I E I ESEERERERREEEESEEERRERERERESEREEERERRE R RRESEERE R R R R-RE R EEE BUE BEEL
L

* READ IN THE NUMBER OF PROCESSES TO RUN IN PARALLEL

LR R RS R R E Rl R Rl Rl Rl R R R R R s s d R i 0 B Repth,l RRph]
*

READ {5,10) NPROCS
10 FORMAT{14)

WRITE(6,20) NPROCS
20 FORMAT(' NPROCS = ',14)
]

A RS AR R RN EERENEEELEEREREEEIEREREEESEELETEEEEEERRERLER SRR EREEEE TR TR

- 88 -

*®
* READ IN THE TWO INPUT VECTORS
[]

2R R RS RS SS R RS RS RS ER R ERRERlRRR YRR R R RS R RS
L]

READ (5,10) N

READ (5,10) (A(1), I = 1,N)
READ (5,10) (B(1), I = 1,N)
W
MNEV1 = 1
MXRV1 = 1
MNCV1 = 1
MXCV1 = N
LFBDY1(1) =1
RTBDY1(1) = N
DO 17 I=1,N
UPBDY1(1) = 1
17 CONT INUE
gs2init2(1,00,00,00,00)
L
IR EEEEE SRR ERAREE SRR RS EERERRRERE R R AR R Rz R R R R AR R RN R REEErE R
]
* CREATE THE SLAVE PROCESSES
-

LEREE SRS E R EES ERREEES RS R RS EEE R EE R R R R RS RN R RS RN NEEEEO Y
[]

clock(TS)
n
DG 30 I=1,NPROCS-1
create(SLAVE)
30 CONTINUE
[3
CALL WORK
]
clock(TE)
TE=TE - TS
WRITE(8,40) TE
40 FORMAT(' TOTAL TIME = ',18)
"
WRITE (6,10) (C(I), I = 1,N)
STOP
END
]

[FERTRERERES RS ERE R EREREERRE RSl s i b R R R R R R R RS EF RS TG
®

* THE SLAVE PROCESSES JUST CALL THE WORK SUBROUTINE TO ADD UP
* ELEMENTS UNTIL THE END OF THE VECTOR IS REACHED. THE PRCCESSEZD
* THEN EXIT (WHICH IS ASSUMED TQO DESTROY THEM).
L]
I LTI NI T TITTTTTTITTITTR OTTYTYTT
|
SUBROUT INE SLAVE
"

CALL WORK

RETURN
END

L
L EE RN RRIZIN RIS YRR IR R RL R ERR R R R 2RI R R 2R Rt Rl Ll
-

* THE WORK SUBROUTINE JUST CAUSES A PROCESS TO GRAB AVAILABLE
* SUBSCRIPTS UNTIL ALL OF THE WORK HAS BEEN COMPLETED. AT THAT
* POINT THE SUBROUTINE EXITS. NOTE THAT IF THERE IS A SINGLE
* PROCESS (I.E., NO SLAVES), THE ALGORITHM STILL WORKS JUST
* FINE.
L]
LR AL ESRE R R IR R N R R ERRERRERIEREZRELERERER R R R R-RE 2 S RIRCREE B0}
»
SUBROUT INE WORK
L]
* COMMON AREA VARIABLES
.
INTEGER A(1000), B(1000), C{1000)
INTEGER NPROCS, N
COMMON /MAINC/ A, B, C, N, NPROCS
|
gs2var
[]
INTEGER 1
L]

10 CONTINUE
"

L AR E S R ER R R R R E RS S R RS E R PR R R R RER R AR LR R LR R R R
]

* CLAIM THE NEXT AVAILABLE SUBSCRIPT (RETURNED IN I)

»
I EERER SRS REER SRR ER IR RS R ERRRR R E R R R R R R R B0 8 B0 B R R Bl A4

gs2(1.00,00,00,00)
1000 CONTINUE
o

C(J) = A(J) + B(J)

GO TO 10

*

3000 CONTINUE
RETURN

END

-0 -

Appendix B
The CHECKTWO Example

define(RB11,1)
define{RB12,2)
define (CB11,1)
define (CB12, 1000)
define(RB21, 1)
define {RB22, 2)
define {CB21, 1)
define (CB22, 1)

A EREEREREREESEEEEE SR EREEE RS E R R R R R RS R R R R R LR LR R R BE EICE NI R

PROGRAM CHKTWO

* newproc (SLAVE)
* COMMON AREA VARIABLES
*
[]
INTEGER A{1000}, B{1000), C{1000)
INTEGER NPRGCS,N
INTEGER 1
COMMON /MAINC/ A, B, C, N, NPROCS
®
gsevar
»
gs2init1(1, 00,00, 00, 00)
*

READ (5,10) NPROCS
10 FORMAT(14)
WRITE(S,20) NPROCS
20 FORMAT('NPROCS = ', 14)

W oo R o oo s e O R R TR R MR S R R N s G

L
* READ IN THE TWO INPUT VECTCRS
*®
L E RS REESEEE SRR R RS ER R R RN RS R R R R ERR R R EREREREERERDERERTE FODIEEEE]
[3
READ({5,11) N
READ(5,11)(A(I), T = 1,N)
READ(5,11)(B(1), 1 = 1,N)
*
DO 42 JJ = 1,N
C(JI) = -1
42 CONTINUE
|
MNRV1 = 1
MXRV1 = 1
MNCV1 = 1

- 71 -

MXCV1 = N

"
DO 43 11 = MNRV1,MXRV1
LFBDY1(I1} = 1
RTBDY1(II) = N

43 CONTINUE

DO 44 JJ = MNCV1,MXCV1

UPBDY1(JJ) = 1

LWBDY1{JJ) =
44 CONTINUE

gs2init2(1,00,00,00,00)

DC 30 I=1,NPROCS-1
create(SLAVE)
30 CONTINUE

CALL WORK

IF(EXHST .EQ. 1) THEN
WRITE(8, 77)
ELSE
WRITE(S, 78)
ENDIF
77 FORMAT(’ ', ' THERE IS NO VALUE GREATER THAN 100°)
78 FORMAT(® ', ' THERE IS A VALUE GREATER THAN 100')
WRITE(S, 40)
40 FORMAT(' THE VALUES IN THE C VECTOR ARE AS FOLLOWS: ')
WRITE(S, 12)(C(1)}, I=1,N)
11 FORMAT(I4)
12 FORMAT{' *.14)
STOP
END

[]
LA ERE SRR LSRR RRERR R RS R R iRt R R R R R R R 2R Rl B R R R RNEE]
SUBROUTINE SLAVE
]
CALL WORK
RETURN
END

[
n
!******#mt#**:I***ttt.#ttt**t#*ttt*tt-tt!t-tﬁ**#tt#lﬂ*tttttfi**$"«.1*=:==‘.|'-;=:1::.'='-!|
. .
SUBROUTINE WORK
|
INTEGER I
INTEGER A{1000), B{1000), C{(1000)
INTEGER NPROCS, N
COMMON /MAINC/ A, B, C, N, NPROCS

3000

- T2 -

gs2var

CONTINUE
gs2(1,00,00,00,00)
CONTINUE

C(I) = A(J) + B(])
IF(C(J).GT.100) THEN

crplxend{1,00,00,00,00)
ENDIF

end1(1,00,00,00,00)
GO TO 10

CONT INUE
RETURN
END

-73 -

Appendix C
The GETDUFS Example

define(RB11,1)
define(RB12, 3)
define{CB11, 1)
define{CB12, 1000)
define (k821, 1)
define (RB22, 2)
define{CB21, 1)
define{CB22,1)

I E S EE R SRR RS RRE RS ERRREST R R RS R R Rt R R R R R B b b R At) n

[
*« C= A+ B. THEN D IS CREATED AS A VECTOR IN WHICH EACH ELEMENT
« 1S SET AS FOLLOWS: D{I) = 0 IFF {C(I) = C(I-1). THOSE ELEMENTS
* OF D WHICH ARE NOT SET TO 0 ARE SET TO 1. D(1) IS ALWAYS SET

« TO 1.

[3

x

[ZELER SRS SRS R EELE RS EREREER LSRR RS RS R R R L R EE R REELEELEERER ER B EE]

PROGRAM GETDUP

newproc {SLAVE)
*
* COMMON AREA VARIABLES
]
INTEGER A(1000), B(1000), C(1000), D{1000)
INTEGER NPROCS, N
COMMON /MAINC/ A, B, C. D, N, NPROCS
"
gs2var
]
INTEGER 1
'
]
L ES RS EERFEFEEEERER SRR RRRR R R ER-RRRRERESESERERREERE RS- FR-FF RN B R R
*
. INITIALIZE THE MONITORS
*

I EEET R EE AR ER SRR R R R R R Rl R RERRR R R EREREETEENEREREEYEENEESE]
*
gseiniti1({1,C0,00,00,00)
»
READ (5,10) NPROCS
10 FORMAT(14)
WRITE(8, 20) NPROCS
20 FORMAT(' NPROCS = ', 14)

»
LELESEREEEREEEEEEEEEEEE-LER IR LR R R LR SRR Rl R 2R BN R R EEY FIFIEREES
*.

* READ IN THE TWO INPUT VECTORS

- 74 -

[EEESE LRSS EEEEEES R RS RS RS R RS R R R R R R R st 2 a2 R R il s R R R R R R 0N
"

READ (5,10) N
READ (5,10) (A(I), 1
READ {5,10) (B(1), 1

I n
T
ZZ

MNRV1
MXRV1
MNCV1
MXCV1
LFBDY1(1)
LFBDY1(2)
RTBDY1(1)
RTHDY1(2)

Wi nmnn
= DO

W

1
1
N
N
DO 25 I=1,N

UPBDY1(1)
25 CONTINUE

1

gs2init2(1,C0,00,00,00)

DO 30 I=1,NPROCS-1

cereate (SLAVE)
ao CONTINUE
»
CALL WORK
L
WRITE (6,40)

40 FORMAT(' THE VALUES IN THE C VECTOR ARE AS FOLLOWS:')
WRITE (6,10) (C(I). I = 1,N)
WRITE (8.50)

50 FORMAT(' THE VALUES IN THE D VECTOR ARE AS FOLLOWS:')
WRITE (8,10) (D(1), I = 1,N)

»
W ok ok ok ol sk o e o e e oo o e e o o ok o o o ok e ok e ok i % ol e e e R e
*

* THE SLAVE PROCESSES JUST CALL THE WORK SUBROUTINE TO ADD UP

* ELEMENTS UNTIL THE END OF THE VECTOR IS REACHED. THE PROCESSLS
* THEN EXIT (WHICH 1S ASSUMED TO DESTROY THEM).
]
[]
]

LEZEEREEER EREEEEEES R R ER RS R R EE R R LS R EREEEE R R LR R RN RO R e U

SUBROUTINE SLAVE

L
CALL WORK
RETURN
END
*
I EEZERES PR EEEEREEREEEEEE RS SR Z RS EEEREEREEEEEEIEREREE SRR ERERSE R EREE RUSENER]
[]

* THE WORK SUBROUTINE PERFORMS A 2-STAGE COMPUTATION. FIRST,
* C=A+ B IS COMPUTED. THE SECOND STAGE CALCULATES D.

- 75 -

»
(A FRELRESREENERE SRS RE LR LIRS RS RS ERRRZT RTINS TR RERD SRR,

L

SUBROUT INE WORK

& »

COMMON AREA VAR!ABLES

INTEGER A(1000), B{1000), C(1000), D{1000)
INTEGER NPROCS, N
COMMON MAINC/ A, B, C, D, N, NPROCS

gs2var
INTEGER 1
10 CONTINUE

gs2(1.C0,00,00,00)
1000 CONTINUE
>

IF (I .EQ. 1) THEN
C(J) = A(J) + B{J)
ELSE
IF {(J .GE. 2) THEN
IF (C(J) .EQ. C(J-1)) THEN
D(J) =0
ELSE
D(J) =1
ENDIF
ELSE
D(1) = 1
ENDIF
ENDIF

end1{1,C0,00,00,00)
GO TO 10

3000 CONTINUE
L]

RETURN
END

-78 -

Appendix D
The GETADUP Example

define(RB11,2)
define(RB12, 3)
define (CB11,1)
define (CB12, 1000)
define (RB21, 1)
define (RB22,2)
define{CB21, 1)
define{CB22, 1000)

LEEEEEREESREEL SRR EREEELERESEE R ERE R EERERE SRR RS N ERSEREEREREREREIEES I R N NI

PROGRAM GETADP
. newproc { SLAVE)
* COMMON AREA VARIABLES

L
L

INTEGER A(1000), B(1000), C(1000), D(1000)
INTEGER NPROCS,N

INTEGER 1

COMMON /MAINC/ A, B, C,D, N, NPROCS

gs2var
gs2init1(2,0X, 00,00, 00)

READ (5,10) NPROCS
10 TFORMAT(14)
WRITE(6,20) NPROCS
20 FORMAT('NPROCS = ',14)

L EZ RS RS ESEERERREREEEEERESELEREEEEEEIE-REEE LR R EREEEREZSE RN ERE B BE-E 0 B

L]

* READ IN THE TWO INPUT VECTORS

LERESERE L RERESE EENE R ER L R ERERRERS R R R EERERENEEREETSERILEE PSR

|

READ(5,11) N
READ{5,11)(A(1), T = 1,N)
READ{5,11)}(B(1), I = 1,N)

DO 42 JJ = 1,N
c(Jd) = -1
D{JJ) = -1

42 CONTINUE

MNRV1
MXRV1

Ho
oo

7T
78

40

50

11
12

MNCV1
MXCV1

DO 43

LFBDY1(1
RTBDY1({11)

1
N

11

CONT INUE

1

- 77 -

DO 44 JJ = MNCV1 MXCV1

UPBDY1({JJ)
LWBDY1{JJ)

CONT INUE

MNRV2
MXRV2
MNCVZ2
MXCva

DO 45

LFBDY2(1
RTBDY2(]

2 e

Il

CONT INUE

D =1
1) =

DO 48 JJ = MNCVZ MXCv2

UPBDY2(JJ)
LWBDY2(JJ)

CONTINUE

gs2init2(2,0X, 00,00,00)

DO 30 I=1,NPROCS-1
create(SLAVE)

CONTINUE

CALL WORK

IF{EXHST .EQ. 1) THEN

WRITE(S, 77)

ELSE

WRITE(S, 78)

ENDIF
FORMAT('
FORMAT ('

WRITE(6, 40)
FORMAT(' THE VALUES IN THE C VECTOR ARE AS FOLLOWS: ')
WRITE(8, 12)(C(1), I=1,N)
WRITE(S, 50)

FORMAT(' THE VALUES IN THE D VECTOR ARE AS FOLLOWS:

' THERE ARE NO DUPLICATES')
' THERE IS A DUPLICATE')

WRITE(S, 12)(D(I), I=1,N}

FORMAT(14)
FORMAT(’
STOP
END

", 14)

*)

- 78 -

]
LRI L EREEEEERERES RN RSN RS R R R R RlRRERIERES NN 2]
]

SUBROUT INE SLAVE
[]

CALL WORK

RETURN

END

*
L]

LAEEEEEERLEE RS ELEL SRR AR R RRRE R R 2R 2R LR LR R R BRGNP
*

SUBROUTINE WORK

INTEGER 1
INTEGER A{1000), B{1000), C(1000), D(1000)
INTEGER NPROCS, N
COMMON /MAINC/ A, B, C, D, N, NPROCS
gs2var

10 CONT INUE
gs2(2,0X,00,00,00)

1000 CONTINUE

IF(J.GT.1) THEN
IF(C(J).EQ.C(I-1)) THEN

D(J) =0
arplxend(2, 0X, 00,00, 00)
ENDIF

ENDIF

end1(2,0X,00,00,00)
GO TO 10

2000 CONTINUE
c(J) = A(J) + B(J)
end2(2, 0X, 00,00, 00)
GO TO 10

3000 CONTINUE
RETURN
END

-79 -

Appendix
The MATMULT Example

define{RB11, 1)
define{RB12, 301)
define{CB11,1)
define{CB12, 300)
define(RB21, 1)
define(RB22,2)
define{CH21,1)
define{CBz?,1)

I T I T T N T L L L L LR s
[]

* THIS PROGRAM READS IN TWO MATRICIES AND COMPUTES THEIR PRODUCT.

-

L L T T L LI T T T

PROGRAM MATMUL

newproc{SLAVE)
L}
* COMMON AREA VARIABLES
.)
INTEGER A(20,20), B(20,20), C(20,20)
INTEGER NPROCS, AI, AJ, BJ
COMMON -/MAINC/ A, B, C, NPROCS, Al, AJ, BJ
*
gsavar
-
[]

(AL RT SRR SIS IR E R TR R R R R 2R R0 R R 2R A R Rl gl Bck b E-Ranh R
*

. INITIALIZE THE MONITOR

"
IR RN EERERRESEELRRREERRR SRR RER R AR R R R-ERE-REEEEREEEEREEEER R EE R I S]
-
gs2initi(1,00,00,00,00)
»

READ (5,10) NPROCS
10 FORMAT(14)

WRITE(8,20) NPROCS
20 FORMAT(' NPROCS = ',14)
[

AR Rl ZRE SR EREREEEE SRR R ERERERERRERRER R R R R R RS R NS IR BT RE BN Ry
-
* READ IN THE TWO INPUT MATRICIES
]
IR R RTER SRR TR ER SRR R LR iR R Rl R R RN YRR R R LR E L E L PR
-

READ (5,10) Al

READ (5,10) AJ

03 =

40

42
41

- BO -

READ (5,10) BJ

DO 2 I = 1,Al
DC1J =1,A
READ (5,10) A(I.J)
CONTINUE
CONTINUE

DO 4 I = 1,AJ
DO 3] =1,BJ
READ (5,10) B(1,J)

CONTINUE
CONT INUE
MNRV1 = 1
MXRV1 = Al
MNCV1 = 1
MXCV1 = BJ

DO 5 I = 1,Al
LFBDY1{1) = 1
CONT I NUE

DO 6 I = 1,Al
RTEDY1(1) = BJ
CONTINUE

DO71=1,BJ
UPBDY1(I) = 1
CONT INUE
DOB1l=1,BJ
LWBDY1(I) = Al
CONTINUE
gs2init2(1,00,00,00,00)
DO 30 I=1,NPROCS-1
create(SLAVE)
CONTINUE
CALL WORK

WRITE (8,40)

FORMAT(' THE VALUES IN C ARE AS FOLLOWS:

DO 41 1 = 1,A]
DO 42 J = 1,BJ
WRITE(8,43) 1,J.C(1.,J)
CONTINUE
CONTINUE
FORMAT/(" 12,0 .12, 0L 18)
STOP
END

')

- B81 -

.
L ER IR SRR R R R R R TN R R R R RS RS RN R SRR R SR AR RS R E RN SRR RERE RS RE LR R RN LSRR
.

* THE SLAVE PROCESSES JUST CALL THE WORK SUBROUTINE
* WHERE THEY CLAIM TASKS TO WORK ON.

*
IR EEEERREEREREE LR ERERRELEEEEE SRR ERERRE R Rl il ittt h L b nhiiarl)

»

SUBROUTINE SLAVE

*
CALL WORK
RETURN
END

»

L EEERERERESEREEE SRR RS RS E R RS ERRERLEREEEEREEEREEEEREEEER EOEEE
L]

* THE WORK SUBROUTINE CONTAINS THE CODE TO CLAIM A TASK,
* PERFORM THE TASK, AND GO BACK TO GET ANOTHER TASK TO WORK ON.

»
L2 SRS SRE RS EREREEREEERERERE SR ERERRERERE R R R R R ERERERSHEHRS R RBCESLE]

"

SUBROUT INE WORK

®
* COMMON AREA VARIABLES
*
INTEGER A(20,20), B(R0,20), C{20,20)
INTEGER NPROCS, Al, AJ, BJ
COMMON /MAINC/ A, B, C, NPROCS, Al, AJ, BJ
"
gs2var
»
INTEGER K
»

10 CONT INUE

gs2(1,00,00,00,00)
1000 CONTINUE

C(1,1) =0

DO 1001 K = 1,AJ

C{I.J) =C(1,1) + (A(1,K) * B(X,I1))
1001 CONTINUE

end1(1,00,00,00, 00)

GO TO 10
®
3000 CONTINUER
"

RETURN

END

-82-

Appendix F
The SORT Example

define(RB11,1)
define(RB12, 20)
define{CB11,1)
define(CB12, 10000)
define(RB21, 1)
define (RB22, 2)
define(CB21,1)
define{CB22, 1)

LER R EL R EELE R SRR AR LRSS LR Rl LRl iR s il sl i R Rt il s LR ISR L]

THIS PROGRAM DEMONSTRATES THE "BARRIER" AND "SELF-SCHEDULING DO-LOOP"
SYNCHRONIZATION PRIMITIVES. IT FILLS IN A VECTOR (A) WITH VALUE3 IN
DESCENDING ORDER. THEN IT USES A SHELL SORT (SEE KNUTH'S 3RD VOLULLE
ON SORTING AND SEARCHING ALGORITHMS) TO SORT THE VALUES INTO
ASCENDING ORDER. TIMES ARE ACQUIRED FOR TABLE SIZES OF 100, 1CCC, AdD
10000.

2 B ¥ E &£ R % ¥

L EEZEREEERREEEE R ERELEREREE SR LR ER R EREEREEELESEEEEREREE 0 BE CERETCERE

PROGRAM SRTPCGM
newproc{SLAVE)
COMMON AREA VARIABLES

* ¥ % %

INTEGER A(10000)

INTEGER NPROCS, M, N, GAP(20), NDONE, XGAP(20)
INTEGER I,7.X

COMMON MMAINC/ GAP, A, M, N, NPROCS, NDONE

*
gsdvar
]
gs2init1(1,00,R0,00,00)
]
|]
[]
L EEEEER SRR SRR R RESESERER TR R RREERE R E -2 R R R EREEEEREEEEEREEOEE

»
* INITIALIZE THE BARRIER AND SELF-SCHEDULING DO-LOOP MONITORS
L
(EXEEEERES RN ST RRRESE RS L EREREEE LR R LR RS R Rt s AR ER R R R E RS B B RER
 }
n
* NDONE = 0
READ (5,10) NPROCS
10 TFORMAT(14)
WRITE(8,20) NPROCS
20 FORMAT(' NPROCS = ', 14)

- 83 -

DO 30 I=1,NPROCS-1
create(SLAVE)
30 CONT INUE
[3

-

L

[FLEES RS RTZRREAR S E]ER R RN RN REREREREREEERRN RN ERREDERRERBE-BEXE R
[3

* READ IN THE NUMBER OF PROCESSES TO RUN IN PARALLEL

»

[F IR R R RIS EER SR NSRS REERESE R R RS2SR R REEERELER B BT EGEEHE
*

]

LR ER N RS RERARES IR TR EREZE AR 2222 R R EE R ELE EERENEEISEE]
L]

* THE MAIN LOGIC JUST FILLS IN THE TABLE AND SORTS IT.
* TIMINGS ARE TAKEN FOR TABLES QF 100, 1000, AND 10000.

LA R RN R AT RS ENRERERRRR R R R R R R 2R s R AR R R ERREERERNESEE XL FREEEEE
b |
N=10
DO 50 I=1,3
N=10 *N
»

DO 35 K= 1,N
A(K) = (N-K) + 1

35 CONT INUE
XGAP(1) = 1
DO 36 K = 2,20

XGAP(K) = 3*XCGAP(K-1) + 1
IF(XGAP(X) .GE.N) GO TO 37

36 CONT INUE
37 M = K-2
.

DO 38 K = 1,M
GAP(K) = XGAP(M+1-K)

38 CONT INUE

L]
MNRV1 = 1
MXRV1 = M
MNCV1 = 1
MXCV1 = GAP(1)

*

DO 45 I1 = MNRV1,MXRV1

LFBDY1(11) = 1

RTBDY1(I1) = GAP(I1)
45 CONTINUE

DO 46 JJ = MNCV1,MXCV1
UPBDY1(JJ) = 1
46 CONTINUE

gs2init2(1,00,R0,D0,00)

- 84 -

*
WRITE(6,776) (A(LL), LL = 1,N)
776 FORMAT(' ',10I5)
CALL LOOP{0)
*
WRITE(8,777) (A(KK), KX = 1,N)

777 FORMAT{' ',10I5)
50 CONT INUE
L]

Ak ok oo e s o K e o K R A R R R R R e R R R R R R N R R R R R R R kR R R R R R R K Rk e

-

* ONE LAST CALL TO LOOP IS REQUIRED TO FREE THE OTHER PROCESS®S
* FROM THE BARRIER (SO THEY CAN EXIT).

L]

L FE RS REERER SRR R SRR R SRR R R R R R R R RS R R R R R E R R R EREE SR EREUNEE PO

*

. NDONE = 1

» CALL LOOP(0)
STOP
END

o

L]

LR EEIESEESRREERLESEEEREEEERER R Rl EREEEEEE AR EEERELIERESERE IS R

n

* THE SLAVE PROCESSES JUST HANG ON THE BARRIER IN THE "LOOP"
* AND HELP WHEN A TABLE 1S TO BE SORTED.

|

I EERIERERE S SRR SRR RS RRRERERE RS R IR R R R E R B R R AR B B R s I

L

SUBROUTINE SLAVE
[
CALL LOOP(1)
RETURN
END

THE SORT ROUTINE 1S EXECUTED BY THE MASTER PROCESS. IT JUST
CALCULATES THE RADIX FOR EACH PASS OF THE SHELL SORT, AND JOIHC
THE SLAVE PROCESSES WHEN WORKING ON EACH PASS.

THE RADIX VALUES ARE HT, ... H2, H1l: Hl IS i; HI IS (3*H({I-1;
H{T+2) >= N. SEE KNUTH FOR ARGUMENTS IN FAVOR OF THESE VALUGS.

LEREIERESEREREE SRR EREERE RS R AR LR RSl R TR Rt R R R R R EN-BREE N E R

THE LOOP ROUTIN& 1S THE CODE REQUIRED TO COORDINATE THE NPRCCS
PROCESSES AS THEY EXECUTE ONE PASS OF A SHELL SORT. NOTE THE
BARRIER AT THE TOP, WHICH IS USED TO CAUSE THE PROCESSES TO
WAIT FOR THE VECTOR TC BE SET UP AND THE INCREMENT CHOSEN.

THEN A SELF-SCHEDULING DO-LOOP 1S USED TO ALLOCATE SUDBSCRITS.
NOTE THAT THE MASTER PARTICIPATES IN THIS LCGIC, S0 THE PROGIL?
CAN BE RUN WITH NPROCS SET TO 1.

£ % * F 2 # ¥ R E R ¥F E R X F R X E B

I EESRERESEEEESEREEEEREREEEES SRS ERE SRR EREER R R R R R REREE-EURE E -

- BS -

*
IR FRESERY IR FERR RN SR EL RS RS EFESREERE SRR ENRERESE RN ERE R R SRR REEYE R SR B R
*
L 3

SUBROUT INE LOOP (WHO)
INTEGER WHO

INTEGER 1, J, K, L

INTEGER A{10000), T

INTEGER NPROCS,M, M, GAP(20), NDONE

COMMON /MAINC/ GAP, A. M, N, NPROCS, NDONE

gsavar

10 CONTINUE

barrier(1)
3001 IF(NDONE.EQ.I) GO TO 4000
»

gs2{1,00,R0,00,00)

1000 DO 30 K = J+GAP(I) , N, GAP(I)
DO 40 L = K, J+GAP(I1), -GAP(I)
1F{A{L-GAP(1)).GT.A(L)) THEN

T = A(L-GAP(1))
A(L-GAP(1)) = A(L)

A(L) =T
ELSE

GO TO 30
ENDIF

40 CONT INUE
30 CONT INUE

end1{1,00,R0,00,00)
GO TO 10

3000 CONTINUE
1F(WHO.EQ. 1) GO TO 10
4000 CONTINUE
RETURN
END

Appendix G
The GRID Example

define (RB11, 1)
define{RB12, 1001)
define{CB11, 2)
define {CB12, 20)
define{RB21, 1)
define(RB22, 2)
define (CB21, 1)
define (CB22, 1)

PROGRAM GRID
newproc{SLAVE)

THE FUNCTION OF THIS PROGRAM IS TO APPROXIMATE THE VALUE OF A
FUNCTION 'PHI' SATISFYING BOUNDARY CONDITIONS

PHI{(X.,Y,)Z) =X *X - Y * Y+ X *Y *Z
FOR (X,Y.Z) ON THE BOUNDARY OF THE GRID. THE VALUE AT AN INTER!..:
POINT 1S APPROXIMATED AS THE AVERAVE VALUE OF THE NEIGHEORING
POINTS.

COMMON AREA VARIABLES

2 ®# F % % 8 ¥ ¥ % B B B E

REAL PHI, A(20,20,20).B{20,20, 20)
INTEGER N,NPROCS,XDIM, YDIM,ZDIM
COMMON /POOL/ A,B,N,NPROCS,XDIM, YDIM, ZDIM
* DECLARE THE VARIABLES AND COMMON TO SUPPORT THE MONITOR
gs2var

* DECLARE THE WORKING VARIABLES
INTEGER I,J,.K.X,Y,2,1S,1E,IT

GET THE DIMENSIONS OF THE GRID

+ % % *

READ (5,20) XDIM,YDIM, ZDIM
20 FORMAT(314)

WRITE(6,21) XDIM,YDIM,ZDIM
21 FORMAT(' XDIM=',I4,' YDIM=',l4,* ZDIM=',14)
&

* GBT THE NUMBER OF ITERATIONS TO PERFORM
*

REAU (5,80) N

- 87 -

B0 FORMAT(I4)

READ (5,100) NPROCS
100 FORMAT(14)

WRITE(8.101) N,NPROCS
101 FORMAT(' N=',14.' NPROCS=',I4)
L]

gseinit1(1,Co0,00,00,00)

MNRV1 =1

MXRV1 = N

MNCV1 = 2

MXCV1 = XDIM - 1
DO 102 I=1,N

LFBDY1(1) = 2
RTBOY1{1) = XDIM - 1
102 CONTINUE
L

DO 103 1=2,XDIM-1
UPBDY1(1) = 1

103 CONTINUE

.

SKW1 = 1

gs2init2(1,C0, 00,00, 00)
.
* INITIALIZE THE INTERIOR OF THE GRID TO ZERO

DO 110 1=2,XDIM-1
DO 120 J=2,YDIM-1
DO 130 K=2,ZDIM-1
A(1I,J,K)y =0
130 CONT INUE
120 CONTINUE
110 CONT INUE

INITIALIZE THE BOUNDARY OF THE GRID
THE FACES X = 1 AND X = XDIM

|
| J
]
'
DO 140 J=1,YDIM
DO 150 K=1,ZDIM
A(1,1,K) = PHI(1,]1.K)
BiI.J.K) = A(1,1.K)
A(XDIM,], K) = PHI(XDIM,J,X)
B(XDIM, I .X) = A(XDIM,J,K)
150 CONTINUE
140 CONTINUE

I

* THE FACES Y = 1 AND Y = YDIM

DO 160 I=1,XDIM
DO 170 K=1,ZDIM
A(1,1,K) = PHI{I,1,K)
B(I,1.K) = A(I,1,X)

A(1,YDIM,.K)
B(1,YDIM.K)
170 CONT INUE
160 CONTINUE
L]

PHI{1,YDIM,K)
A(I,YDIM,K)

. THE FACES Z2 = 1 AND Z = ZDIM

DO 180 I1=1,XDIM
DO 190 J=1,YDIM
A(1,1,1) = PHI(1.J,1)
B(I.J.1) = A(1.J3.1)
A(1,J,ZDIM) = PHI(I,J,ZDIM)

B(1.J.ZDIM) = A(I,J.ZDIM)
190 CONTINUE
180 CONTINUE
*
clock(1S)
| 2
*« CREATE THE SLAVE PROCESSES
»
DO 220 1 = 1,NPROCS-1
create(SLAVE)
220 CONTINUE
CALL WORK
clock{1E)
IT = 1E - I3

WRITE(8,221) IT
221 FORMAT(' TOTAL TIME = *,112)
|

IF (MOD(N.2) .EQ. 0) THEN
CALL PRCUBE(A)

ELSE
CALL PRCUBE(B)

ENDIF
-

STOP

END
[]
I SRR RS ZRERER R REREERERERRE R IR R RS RRRERREERERERESRS R ER R R E E-E EE & IR
™
. PHI FUNCTION
L
 E R RIS SR EEERESRREEREEEEEREEEEEREIRRERREREREREER-F-E 21 EEEES SRR R ECE-E T
E 3

FUNCTION PHI(X,Y,Z)

INTEGER X,Y,Z

PHI = (X *X) - (Y *Y) + (Z * 2Z)
. PHI = 1

RETURN

END
»

LEERRE SRR E R R R R EER SRR RS R R R R R R R EEEREE LR

- B9 -

[]
. : SLAVE PROCESSES
*
IR RSN RS ERERERESRESEERR SRR RN R R R RN R RRRIEREELI ISR 2R
*
SUBROUTINE SLAVE
L}
CALL WORK
RETURN
END

]

I EREEERER SR RERE SR RS RTIERE R R R R R R R RRRIRERERERER LR ERY ARSI
»

. WORK SUBROUTINE

]

(AR SRR AN ERESRERAAEREERRER 2R AR RS ER LERE-EAE
|

SUBROUT INE WORK

]
|]
* COMMON AREA VARIABLES
»
REAL A(20,20,20),B(20,20,20)
INTEGER N,NPROCS, XDIM, YDIM, ZDIM
COMMON /POOL/ A,B,N,NPROCS, XDIM, YDIM, ZDIM
gs2var
INTEGER 1,7
»
- -
* DECLARE THE VARIABLES AND COMMON TO SUPPORT THE MONITOR
L
»
10 CONT INUE

gs2(1,C0,00,00,00)

1000 CONTINUE
IF (MOD(1.2) .EQ. 1) THEN
CALL COMP(A,B.,J)

ELSE
CALL COMP(B,A,J)
ENDIF
end1(1,C0,00,00,00)
[
GO TO 1C
™
3000 CONTINUE
RETURN
END
o

N o e ol e o e ke ok sk e Tk ok ok e ke ol sk ok e ke ake die o ol o ol ok ke ok ok ke ok e ol e ol o o i ok o ok ol T ok ot o ol me ol e ok o s sttt e
»

* COMPUTE SUBOUTINE

x

([E AR R RS R ERELEEREIZE RS SRR RS E R R R TSRS SR R R RS R EF R

- 80 -

SUBROUTINE COMP(P,Q,X)

REAL P(20,20,20),Q(20,20,20)
INTEGER X

* COMMON AREA VARIABLES
REAL A({20,20,20),B(20,20,20)
INTEGER N,NPROCS,XDIM,YDIM, ZDIM
COMMON /POOL/ A,B,N,NPROCS,XDIM, YDIM, ZDIM
INTEGER ,J.K

DO 10 J=2,YDIM-1

DO 20 K=2,ZDIM-1
Q(X,J.K) = (P(X-1,3.K) + P(X+1,J,K) +

- Pfx.J-l.K) + PEX.J+1.K) +

- P(X,J.K-1) + P(X,J,X+1)) / 8.0
20 CONTINUE
10 CONT INUE
]

RETURN

END

.

L EEELEE SRR RE AR R RS R Rt R R R LR 2 0 DR R D RN B o o il DO
*

. SUBROUTINE PRCUBE

]

LR R RN RERESEER I SRR R R SRR R YRR EERLTSRERERERENE DR R YR B0
L

SUBROUTINE PRCUBE(M)
REAL M(20,20,20)

|]
]
[]
* COMMON AREA VARIABLES
]
REAL A(20,20,20),B(20,20,20)
INTEGER N,NPROCS,XDIM, YDIM, ZDIM
COMMON /POOL/ A,B, N, NPROCS,XDIM, YDIM, ZDIM
E
INTEGER 1,7,K
x
DO 10 I=1,XDIM
DO 20 J=1,YDIM
DO 30 K=1,ZDIM
WRITE (€,40) 1,J,K,M(I,J.K)
40 FORMAT(® X= *,I4,' Y= ',14," Z= ', 14, VALUE ',F10.5)
30 CONTINUE

20 CONTINUE

10 CONTINUE
RETURN
END

- 91 -

Appendix H
The QR-Factorization Example

define(RB11,1)
define(RB12,301)
define(CB11,1)
define{CB12,300)
define(RB21,1)
define(RB22,300)
define(CB21,2)
define(CB22,300)

»

00300 b e a0 e ol e e e e ol o o0 o 0 20 o a2 e e e e o0 e 0 ol e e ool ol e a0 ol o o ol ol e e ke o e
*

* THE MAIN LOGIC

L]

[PIESREE IR PR R e QbR bR A TR ORI PR e b it st iy Pilil)]
]

PROGRAM QRFAC

newproc{QSLAVE)

REAL A(301,300),A:A(301,300),B(301)

INTEGER WSIZE,NPROCS, M, N, I, NDONE
COMMON /MAINC/ A, B, N, M, NPROCS, NDONE

gs2var

gs2init 1(2,0X,00,C0, 0X)

NDONE =0
NCW CREATE THE WORKERS

-

]

READ (5,1111) NPROCS
1111 FORMAT(l4)

WRITE(S.1112) NPROCS
1112 FORMAT(' NPROCS=",14)

DO600I=1, NPROCS -1
create(QSLAVE)
600 CONTINUE
[]

C
WRITE(8B,40)
40 FORMAT(" QRFAX DECOMPOSITION TIMING')
DO 200 N = 10,50,10

MNRV1 =1
MXRV1=N
MNCV1=1

MXCV1 =N

MNRVR = 1
MXRV2 = N-1
MNCVZ2 = 2
MXCV2 = N
DO 555 Il = 1,N

LFBDY1(Il) = II
RTBDY1{lI) = II
555 CONTINUE

DO 556 11 = 1,N
UPBDY1(JJ) = §I
LWBDY1{JJ} = JJ

556 CONTINUE

DO 557 11 = 1,N-1
LFBDY2(I) = 11 + 1
RTBDY2(ll) = N

557 CONTINUE

DO 558 §J = 2N
UPBDY2(JJ) = 1
LWBDY2(JJ} = 17 - 1

558 CONTINUE

gs2init2(2,0X,00,C0,0X)

DO 20J = 1,N
DO 101=J.N
AA(LT) = -I%J

AA(JT) = 2*AA(LT)
10 CONTINUE
AA(L]) = 0.0
20 CONTINUE
WRITE(8,50)N
50 FORMAT(/' ORDER IS ',15/}
DO70J=1N
DO6BOI= 1N
A(LT) = AA(LY)
60 CONTINUE
70 CONTINUE

DO 1035 = 1,N
DO 1021 =1,N
A(LJ) = AA(LT)

102 CONTINUE
103 CONTINUE

WSIZE =3

clock(I)

Ti=1

M=N
CALL WORK(0)

clock(I)

-92 -

-03-

T2e=1-T1
WRITE(6,110) T2
IF({ N .LE. 50) WRITE(6, 1000) (B(i).I = 1,N)
1000 FORMAT(5X,E12.5)
110 FORMAT{' MONITOR VERSION TIME = ',E12.3)
C
DO 1137 = 1N
DO 112 1= 1,N
A(LI) = AA(LJD)
112 CONTINUE
113 CONTINUE
200 CONTINUE
NDONE = 1
CALL WORK(0)
12350 CONTINUE
STOP
END

*

THE WORK SUBROUTINE

SUBROUTINE WORK(FLAG)
INTEGER FLAG

REAL A(301,300),B(301)

INTEGER NPROCS, M, N, NDONE

COMMON /MAINC/ A, B, N, M, NPROCS, NDONE
gsevar

INTEGER 1
INTEGER L

DECLARATIONS FOR CREF AND APREF

s & & B

REAL ZERO,TAU
INTEGER NK,KM1
REAL ENCRM
REAL THETA
DATA ZER0O/0.0/

L 3
L
e 00 00 e e e o o S ok e o 0 agc ol ok o ol b SO o a0t s e o ol e o0 o0 ol sl e ool el ol ok el R o
"

5 CONTINUE
barrier(1)

3001 IF(NDONE .EQ. 1) GO TO 4000
10 CONTINUE
gs2(2,0X,00,C0,0X)

*

-94 -

* N IS THE NUMBER OF COLUMNS IN THE MATRIX

]

* K IS SET TO THE COLUMN UPON WHICH A REFLECTION IS TO BE

* CREATED OR APPLIED

L

* L IS MEANINGFUL ONLY WITH AN RC OF 1 (APPLY A REFLECTION).
* IT THEN GIVES THE REFLECTION NUMBER TO APPLY

®
e 3 e o e e 20 0 o0 i ok 2 i e 0 ok o ol o e 3 ol ohe e 30 3ol 3 e e e ol e ofe i R sie e ol ol ke ok ool e s i e ol ol e ol ol ol ok
*

* CREATE THE REFLECTOR FOR THE K-TH COLUMN
»
20706 o 36 200 300 a0 e S e o o0 3k oI S 2 e 3 30 3 o0 o ol e ol e e 30 o e R e o Nl o o o e ol ol e e ie e e ol ke o el R
C
1000 CONTINUE
KM1=1-1
NK=N-I1+1
C
C NOW COMPUTE AND STORE THE K-TH REFLECTOR
C

TAU = ENORM(NK,A(I1)
TAU = SIGN(TAU,A(LI))
B(1) = -TAU
A(LI) = A(LI) + TAU
LERELEEAER LI R Lt A sl s b E i i et 2t Rt it Lt]
™
. NOW SIGNAL THAT THE REFLECTION HAS BEEN CREATED
[]
2 LI PR EER R R R LS AR PRI E IR EES L ELE T B E R REEES LR L L LY]
*

end1(2,0X,00,C0,0X)

|
. NOW GET THE NEXT TASK
o
GO TO 10
o o e s o o i gt ol e s 000 o ok ol e ol e gk o el e 0 e ol e s e ol ale o ol o e ok gt o i e R g sl ol e kR
[]
. APPLY THE NEXT REFLECTION (THE L-TH)
" TO THE K-TH COLUMN

»
e e o oo o o o 0ol ol o o e o o ol a0 o S0 0 o e e ol s R e e Sl Xkl Sene i e ok ak R

2000 CONTINUE
THETA = ZERO
DOS0L=1M
THETA = THETA + A(L.J)*A(L.I)
50 CONTINUE
THETA = THETA/(B(I)*A(1]))
DOBOL=1M
A(L.J) = A(L,J) + THETA*A(L,])
80 CONTINUE

end?2(2,0X,00,C0,0X)

]
]

-95 -

GO TO 10

3000 CONTINUE

IF (FLAG .EQ. 1) GOTO 5

4000 CONTINUE

*

RETURN
END

ke sk s sk ok 3 30 sl e sk st i s ofe ol e e e e e o e e e sl s S s e s e et s o e ol o e o ok il s e sk kool sk ook ok el

]

* QSLAVE
E g

e s e o o 20 a0 0 ool ol ke e a3 a0 o e e 06 30 o O o ol e e e e 3B ok o oo 0 3 N o s AR R A o R K B

L

aaoaaaaaoaoaaagaaoaaaaaaaOaQaa

SUBROUTINE QSLAVE

REAL A(301,300),B(301)

INTEGER NPROCS, M, N, NDONE

COMMON /MAINC/ A, B, N, M. NPROCS, NDONE

gsevar

CALL WORK(1)

RETURN

END

REAL FUNCTION ENORM(N.X)
INTEGER N

REAL X{N)

ook e e ok R

FUNCTION ENORM

GIVEN AN N-VECTOR X, THIS FUNCTION CALCULATES THE
EUCLIDEAN NORM OF X.

THE EUCLIDEAN NORM IS COMPUTED BY ACCUMULATING THE SUM OF
SQUARES IN THREE DIFFERENT SUMS. THE SUMS OF SQUARES FOR THE
SMALL AND LARGE COMPONENTS ARE SCALED SO THAT NO OVERFLOWS
OCCUR. NON-DESTRUCTIVE UNDERFLOWS ARE PERMITTED. UNDERFLCYS
AND OVERFLOWS DO NOT OCCUR IN THE COMPUTATION OF THE UNSCALED
SUM OF SQUARES FOR THE INTERMEDIATE COMPONENTS.

THE DEFINITIONS OF SMALL, INTERMEDIATE AND LARGE COMPONENTS
DEPEND ON TWO CONSTANTS, RDWARF AND RGIANT. THE MAIN
RESTRICTIONS ON THESE CONSTANTS ARE THAT RDWARF**2 NOT
UNDERFLOW AND RGIANT**2 NOT OVERFLOW. THE CONSTANTS

GIVEN HERE ARE SUITABLE FOR EVERY KNOWN COMPUTER.

THE FUNCTION STATEMENT IS
REAL FUNCTION ENORM(N.X)
WHERE

-96 -

N IS A POSITIVE INTEGER INPUT VARIABLE.

X IS AN INPUT ARRAY OF LENGTH N.
SUBPROGRAMS CALLED

FORTRAN-SUPPLIED ... ABS,SGRT

ARGONNE NATIONAL LABORATORY. MINPACK PROJECT. MARCH 1980.
BURTON S. GARBOW, KENNETH E. HILLSTROM, JORGE J. MORE

aaaoaaaaaoaaaaaQ

o i

INTEGER |
REAL AGIANT.FLOATN,ONE, RDWARF. RGIANT.$1,52,53,XABS,
X IMAX,X3MAX,ZERO
DATA ONE,ZERO,RDWARF,RGIANT /1.0E0,0.0ED,.294E-38,. 17E39/
S1 = ZERO
$2 = ZERO
S3 = ZERO
X1MAX = ZERO
X3MAX = ZERO
FLOATN = N
AGIANT = RGIANT/FLOATN
DOSOI=1,N
XABS = ABS(X(1))
IF (XABS .GT. RDWARF .AND. XABS .LT. AGIANT) GO TO 70
IF (XABS .LE. ROWARF) GO TO 30

SUM FOR LARGE COCMPONENTS.

aaQn

IF (XABS .LE. X1MAX) GO TO 10
S1 = ONE + S15{X1MAX/XABS)**2
XIMAX = XABS
GO TO 20
10 CONTINUE
S1 = S1 + (XABS/XIMAX)**2
20 CONTINUE
GO TO €0
30 CONTINUE

SUM FOR SMALL COMPONENTS.

IF (XABS .LE. X3MAX) GO TO 40

S3 = ONE + S3*(X3MAX/XABS)**2

X3MAX = XABS

GO TO 50
40 CONTINUE

IF (XABS .NE. ZERO) S3 = S3 + (XABS/X3MAX)**2
50 CONTINUE
80 CONTINUE

GO TO 80

70 CONTINUE

Qo

-97-

C SUM FOR INTERMEDIATE COMPONENTS.
C
S2 = S2 + XABS**2
80 CONTINUE
90 CONTINUE
C
C CALCULATION OF NORM.
C
IF {S1 .EQ. ZERO) GO TO 100
ENORM = X1MAX*SQRT(S1+(S2/X1MAX)/X1MAX)
GO TO 130
100 CONTINUE
IF (S2 .EQ. ZERO) GO TO 110
IF (S2 .GE. X3MAX)
. ENORM = SQRT{S2#ONE+(X3MAX/52)*(X3MAX*S3)))
IF (S2 .LT. X3MAX)
. ENORM = SQRT{X3MAX*((S2/X3MAX)+({X3MAX*33)))
GO TO 120
110 CONTINUE
ENORM = X3MAX*SQRT(S3)
120 CONTINUE
130 CONTINUE

RETURN
C
C LAST CARD OF FUNCTION ENORM.
Cc

END

Internal:

External:

Distribution for ANIL-85-70

K. L. Kliewer

A. B. Krisciunas

P. C. Messina

R. A. Overbeek {40)
W.P
M. Pool

T. M. Woods (2)

G. i
D

v

ANL Patent Department
ANL Contract File

ANL libraries

TIS Files {6)

DOE-TIC, for distribution per UC-32 (167)
Manager, Chicago Operations Office, DOE
Mathematics and Computer Science Division Review Committee:
J. L. Bona, U. Chicago
T. L. Brown, U. of lllineis, Urbana
S. Gerhart, MCC, Austin, TX
G. H. Golub, Stanford U,
W. C. Lynch, Xerox Corp., Palo Alto
J. A. Nohel, U. of Wisconsin, Madison
M. F. Wheeler, Rice U.
D. Austin, ER-DOE
J. Greenberg, ER-DOE
G. Michael, L1L
B. W. Glickfeld, Northern Illinois University (20)

