
L-85-70 0/ 3C/

T1+1

QUASI-AUTOMATIC PARALLELIZATION:

A SIMPLIFIED APPROACH

TO MULTIPROCESSING

by

B. W. Glickfeld and R. A. Overbeek

PIQNAL

0

0

l'Iy 01F

ARGONNE NATIONAL LABORATORY, ARGONNE, ILLINOIS

Operated by THE UNIVERSITY OF CHICAGO

for the U. S. DEPARTMENT OF ENERGY

under Contract W-31-109-Eng-38

*
I

AN L-85-70

1U493

rs u tt I ,,'

Distribution Category:
Mathematics and Computers

(UC-32)

ANI-G5-'70

ANL--85-70

DE86 005120
ARGONNE NATIONAL LABORATORY

9700 South Cass Avenue
Argonne, Illinois 60439

Quasi-Automatic Parallelization:

A Simplified Approach to Multiprccessing

B. W. Gicicfeld
Northern Illinois University

and

R. A. Overbeek
Argonne National Laboratory

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor any agency thereof, nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsi-
bility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use woui not infringe privately owned rights. Refer-
ence herein to any specific commercial product, process, or -rvice by trade name, trademark,
manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recom-
mendation, or favoring by the United States Government or any agency thereof. The views
and opinions of authors expressed herein do not necessarily state or reflect those of the
United States Government or any agency thereof.

October 1985

A major purpose of the Techni-
cal Information Center is to provide
the broadest dissemination possi-
ble of information contained in
DOE's Research and Development
Reports to business, industry, the
academic community, and federal,
state and local governments.

Although a small portion of this
report is not reproducible, it is
being made available to expedite
the availability of information on the
research discussed herein.

TabLI c of CJon i -0n is

Abstract 1

1. Introduction 1

2. The Basic Idea and Its Implementation 3

2.1 Summary of the Parallelization Structure I
2.2 Description of the Implementation via Macros 7

2.2.1 The gs2var Macro 12
2.2.2 The gs2initl and gs2init2 Macros 13
2.2.3 Creation of SLAVE Processes 13
2.2.4 The WORK Routine 17

2.2.4.1 The gs2 Macro 17
2.2.4.2 The endi and end2 Macu os 19
2.2.2.3 The cmplxend Macro 19

2.2.5 Complications Introduced by Multiplicity Greater Than 1 20

3. A Geometric Representation of Synchronization Dependencies 21

4. A Formal Description of the Structure 24

5. Summary of Examples 34

6. Examples 33

6.1 ADDTWO 33
6.2 CHECKTWO 37
6.3 GETDUPS 39
6.4 GETADUP A3
6.5 MATMULT 4L
6.6 SORT 47
6.7 GRID 54
6.8 QR 59

References 66

iii

Appendix A: The ADDTWO Example 67

Appendix B: The CHECKTWO Example 70

Appendix C: The GETDUPS Example 73

Appendix D: The GETADUP Example 76

Appendix E: The MATMULT Example 79

Appendix F: The SORT Example 82

Appendix G: The GRID Example 83

Appendix H: The QR-Factorization Example 91

iv

Quasi-Automatic Parallelization:
A Simplified Approach to Multiprocessing

B. W. Glickfeld

Northern Illinois University
DeKab, Illinois 60115

R. A. Olerbeek

Argonne National Laboratory
Argonne, Illinois 60439

ABSTRACT

As multiprocessors become commercially available, a great

deal of concern is being focused on the problems involved in writ-

ing and debugging software for such machines. Earlier work

described the use of monitors implemented by macro processors

to attain portable code. This work formulates a general-purpose

monitor which simplifies the programming of a wide class of

numeric algorithms. We believe that the approach of describing a

set of schedulable units of computation advocated by Brown offers

a real simplification for the applications programmer. In this

paper, we propose a straightforward programming paradigm for

describing schedulable units of computation that allows the

description of many algorithms with very little effort.

1. Introduction

Early work on implementing portable code for multiprocessors [4, 5, 3]

resulted in the definition of a general-purpose monitor that dispatched units of

work to processes. It was found that this monitor, the askfor monitor, could be

effectively used to write portable implementations of numeric algorithms for

multiprocessors having a globally shared memory. However, substantial effort

was needed to implement the logic for managing the pool of available units of

work.

As an alternative, the self-scheduling DO-loop [2] was defined, which offers a

highly desirable simplicity lacking in the askfor monitor. Until recently, how-

ever, the use of this self-scheduling DO-loop has been limited to only special

classes of numeric algorithms.

-2-

This paper describes efforts to extend the outlook utilized in the self-

scheduling DO-loop to a much wider class of synchronization patterns. By

analyzing the synchronization required by a number of algorithms, we developed

an abstraction of the basic patterns relating schedulable units of computation.

We discovered that this abstraction could be visualized naturally, using

geometric diagrams, and that the actual code for dispatching units of computa-

tion could be reduced (for a wide category of algorithms) to simply specifying

the parameters that characterized the geometric pattern required by any par-

ticular application.

This paper presents a basic structure for a substantial class of parallel algo-

rithms, a macro package based on that structure, and a series of geometric syn-

chronization patterns that depict the parallelization structure. The macro

package, which consists of one central macro gs2 (so called because a unit of

computation is characterized by two subscripts that specify its location in a 2-

dimensional depiction of the synchronization dependencies) and some support-

ing macros, enables the quasi-automatic parallelization of many algorithms.

By quasi-automatic parallelization of an algorithm we mean a cooperate

venture between user and macro package where the work of parallelization is

done by the macro monitors in the package, with minimal input from the pro-

grammer. The user must perform the simple mechanical tasks setting up the

interaction between user application code and the macro monitors. In particu-

lar, he must supply certain values to the macros, i.e., see that certain values are

properly defined before the relevant macro call. Underscoring the simplicity of

these efforts is the fact that the user need not do any macroprocessor language

coding (as contrasted, say, with the askfor monitor [5]). In addition, the com-

mon synchronization errors associated with programming multiprocessors can

be dramatically reduced.

The methods used here differ from previous methods of quasi-automatic

parallelization. For example, they have a far wider range of applicability than

the self-scheduling DO-loop, although they fall short of the broad range of the

askfor monitor. Furthermore, they are simpler to use than the askfor monitor;

like the self-scheduling DO-loop, our methods do not require the user to create

problem-dependent data structures and problem-dependent macro definitions.

To further clarify the relationship between the self-scheduling DO-loop and

the gs2 monitor, the user should consider algorithms in which the relationship

between schedulable units of work can be visualized in a two-dimensional Carte-

sian plane. In the case of the self-scheduling DO-loop, the units of work simply

form a horizontal line. No interdependencies exist between the units of work;

they can all be done in parallel. The gs2 monitor allows more complex inter-

dependencies between the units of work. Essentially, it allows the units of work

-3-

to be represented by either one or two regions in the Cartesian plane. In the

case in which a single region suffices, the units of work (characterized by unique

coordinates) may still have interdependencies. For example, it is possible to

implement the case in which all of the units in one row must complete before

those in the next row begin. Alternatively, one might weaken the constraint to

the case in which a unit of work cannot be scheduled until the unit directly

above it (i.e., in the previous row) has completed. Or, one might wish to intro-

duce a dependency upon units of work in the previous row, but have the depen-

dency include a skew factor. For example, the unit of work may become

schedulable when the unit in the previous row, but one column to the right, has

completed. In the case in which the units of work can he viewed as a single

region in the plane, the region will be called a simplex.

While many algorithms can easily be described within the intellectual

framework of a simplex, some algorithms conceptually require two disjoint plane

regions. We then refer to the two regions as a 2-complez. In this case, the units

within each region may have all of the dependencies introduced in the case of a

simplex. In addition, there may exist scheduling constraints between the boun-

dary elements in each region.

Examples presented in the following sections will illustrate the power and

range of the structure. In particular, a discrete grid version of the Dirichlet

problem for a cube will display the force of the simplex, while the Householder

algorithm used in the QR factorization of a matrix will display the force of the 2-

complex.

The examples will include all those presented by Overbeek and Lusk [5],

along with the above-mentioned grid problem (used in [1] to illustrate the range

of the askfor monitor,) a variant of the getdups problem presented in [3] and a

parallel version of matrix multiplication. Both general and detailed analyses of

all examples will be presented.

The theory and methods presented here provide portable, reliable, and

efficient code which may be implemented on most multiprocessors featuring a

number of processes acting on a globally shared memory. Examples of such

multiprocessors include the CRAY X-MP and the Denelcor HEP. Further research

is needed to deal with the applicability of gsn macros for n > 2, as well as other

2-subscript monitor structures besides the simplex and 2-complex presented

here.

2. The Basic Idea and Its Implementation

In this section we will offer an informal description of the basic ideas

employed in the gs2 monitor. A formal description will be given in a later sec-

tion. We will follow our informal discussion with a description of the macro

-4-

package that implements these concepts. We will illustrate its use on a straight-

forward example - a program to multiply two matrices. Then we will analyze a

number of examples that illustrate the basic notions. We believe that these

examples offer evidence of both the power and the simplicity of the approach

advocated in this paper.

2.1. Summary of the Parallelization Structure

By a parallelization simplex we mean an ordered triple (S,T,U), where S is a

regular region in the Cartesian integer plane, T is a function whose domain is S

and whose range is the set of computational tasks (i.e., for each (i,j) in S, T(i,j)

is a computational task), and U is a finite (perhaps empty) set of synchroniza-

tion constraints.

The Cartesian integer plane Z2 is the set of all ordered pairs of integers. By

a region we mean a subset of Z2. We call it regular if it is both

i) the set of all ordered pairs of integers lying between and including an

upper boundary and a lower boundary (either of which might be

jagged), and

ii) the set of all ordered pairs of integers lying between and including a

left boundary and a right boundary.

For example, the rectangle below depicts a regular region.

1,2 1,3 1,4 1,5 1,6 1,7

* 0 0 S 0" "

2,2 2,3 2,4 2,5 2,6 2,7

" " " " " "

3,2 3,3 3,4 3,5 3,6 3,7

" " " 0 0 "

4,2 -1,3 41,4 4,5 4,6 4,7

5,2 5,3 5,4 5,5 5,6 5,7

To picture ordered pairs, we choose conventions different from the usual ones.

The first coordinate is represented on the vertical axis, with larger values

corresponding to lower points than do smaller values. The second coordinate is

represented on the horizontal axis, with larger values corresponding to points to

the right of those representing smaller values. These conventions are made

because of the way a matrix is usually depicted. A matrix is indexed by ordered

-5-

pairs of integers. The first index (the row index) is usually considered as a verti-

cal index; matrix elements with larger row indices appear below matrix ele-

ments with smaller row indices. Similarly, the second index (the column index)

is usually considered as a horizontal index; matrix elements with larger column

indices appear to the right of matrix elements with smaller column indices.

Thus, our convention enables us to depict, in the Cartesian integer plane, the set

of index pairs of a matrix so that they appear as they normally do.

There are two possible synchronization constraints on a simplex:

i) the column constraint C, which requires that no task in a column begin

until all earlier tasks (i.e., those from a row with a smaller subscript) in

that column have completed, and

ii) the row constraint R, which requires that no task in a given row begin

until all tasks from the preceding row (i.e., the row whose subscript is

one less than that of the row under consideration) have completed.

C may include a skew factor k -- a non-negative integer such that for all j, no

task in the jth column can begin until all earlier tasks in the (j+Ic)th column, as

well as all earlier tasks in the jth column, have ended.

An example of a simplex occurs when the underlying region S is an integer

rectangle; such a simplex is simply a computational task matrix.

The simplex structure implies that tasks begin in lexicographic order; that

is, within a given row, tasks begin in order of column subscripts, and tasks in

rows with larger row subscripts begin after those in rows ;ith smaller sub-

scripts. Although some efficiency is lost because of this restriction, the loss is

not significant for the algorithms examined in this paper. It is counterbalanced

by the power and simplicity of the structure, the ease of use of the macro pack-

age, and the user's ability to avoid programming macros for a macroprocessor.

During the execution of a program using the gs2 macro and a simplex

structure, at any given time either all tasks in the simplex have begun or some

particular point (i0 ,jo) in the underlying region S represents the current task

(i.e., the task next to begin). Implying a lexicographic order may at times result

in such phenomena as the following:

a) the current task is not yet ready to begin (e.g., because of the failure

of the C constraint to be satisfied) while some other task is ready to

begin, or

b) although the current task is ready to begin, other tasks also are ready

to begin, whose beginning would in some sense be more optimal.

The disadvantages attendant to the use of the implied order are, as we have

stated above, compensated for in all the examples in this paper, as well as in a

substantial class outside this paper. We use the analogy from mathematics of

-6-

approximating general functions by smooth functions; what we lose in exactness

we often more than recover in ease of manipulation. Here we are approximating

a general sequence of points in the underlying region by one in which there is a

smooth progression of subscript pairs, with analogous loss of exactness and

gains in manipulability.

Although the simplex structure is adequate for most of our problems, cer-

tain of them require more regions. Thus we introduce the notion of paralleliza-

tion complex or, more briefly, complex. There are two kinds of complexes: 1-

complexes and 2-complexes. A 1-complex is a simplex. A 2-complex is an

ordered triple ((S1, T', U),(S2 , T2 , U2),V) where the first two elements of the tri-

ple are the simplexes (S, T, U) and (S2 , T'2, U2), respectively, and the third ele-

ment is a non-empty finite set V of cross-constraints, each of which requires that

certain tasks in one of the underlying simplexes can begin only after certain

other tasks in the other underlying simplex have ended. It is also required that

the underlying regions S1 and S2 be disjoint, i.e., have no points in common.

Given a 2-complex, we will call (S, T', U') simplex 1, and (S2, T2 , U2) simplex

2. Permissible cross-constraints include XC12 (the cross-column ccnstrairn.

from simplex 1 to simplex 2), XC21 (the cross-column constraint from simplex 2

to simplex 1), XR12 (the cross-row constraint from simplex 1 to simplex 2) and

XR21 (the cross-row constraint from simplex 2 to simplex 1).

XC12 XC12 means that whenever j is an integer such that S1 and S2 both

have a jth column (i.e., they both contain points whose second coor-

dinate is j), then the computational task T(ij) with the largest pos-

sible row subscript i must end before the computational task T2('c,)

with the smallest possible row subscript k can begin.

XC21 XC21 is analogously defined, with the roles of simplex 1 and simplex 2

reversed; for the largest possible k, T2 (k,j) must end before T(i,j),

for the smallest possible i, can begin.

XR12 XR12 means that whenever i is an integer such that S1 and S2 both

have an ith row (i.e., they both contain points whose first coordinat

is i), then all the T tasks in that row must end before the computa-

tional task T(ij) with the smallest possible j can begin.

XR21 XR21 is analogously defined, with the roles of simplex 1 and simplex 2

reversed; here all the T2 tasks in the ith row must end before T'(i,j)

with the smallest possible j can begin.

In our formulation, XC12 (XC21) can apply only when S1 borders S2 from above

(S2 borders 51 from above). Similarly, XR12 (XR21) can apply only when S1

borders S2 from the left (S2 borders S1 from the left). All these concepts will be

presented in detail further on.

-7-

Thus, in a 2-complex there are two disjoint simplexes, simplex 1 and sim-

plex 2, with disjoint underlying regions S1 and 52, respectively, such that at

least one of the simplexes in some sense borders and constrains the other (it is

possible for both simplexes to border and constrain each other, as will be

demonstrated in a later example).

As mentioned earlier, a 1-complex is merely a simplex, which will be

referred to as simplex 1. The dimension of a 1-complex is defined to be 1, and

the dimension of a 2-complex is defined to be 2. During the execution of a pro-

gram using the gs2 macro and a 2-complex structure, at any given time either

i) all tasks in the complex have begun, or

ii) there is either a point (i1 ,j,) in 5" that represents the current task in

simplex 1, or a point (i2 ,j2) in S2 that represents the current task in

simplex 2, or both.

If ii) holds, the next task to begin will be either T'(i,j1) or T2 (i2 1j2); by conven-

tion, priority is tilted in favor of simplex 1. Within the complex structure, each

simplex has its underlying region traversed lexicographically during program

execution, subject to internal constraints from among C1, R1, C2, and R2, exter-

nal cross-constraints from among XC12, XC21, XR12, and X1.21, and the above

priority convention. (Note that Cl refers to the column constraint C for simpl::

1, and R1 to the row constraint R for simplex 1. C2 and R2 refer to the analo-

gous constraints for simplex 2.) It can easily be shown that the resulting paral-

lelization is free from deadlock.

2.2. Description of the Implementation via Macros

The macro package will now be discussed, along with an elaboration of the

program structure we employ to use the macros effectively.

We note that the dimension of the complex under consideration remains

fixed throughout the program. However, a given program may execute many

(i.e., more than 1) complexes. Each complex, cf course, represents a set of

computational tasks structured in a certain manner, along with certain con-

straints. When we say that the program executes a complex, we mean that dur-

ing its execution it will perform all, or a number, of those tasks in accordance

with the structure and the constraints.

Two complexes are equal if their dimensions are equal and their underlying

simplexes are respectively equal. Two simplexes are equal if the underlying

regions are equal as sets, the underlying task functions are identical, and the

imposed constraints are identical.

When a program executes more than one complex, the complexes may

differ either because of differences in the underlying regions of corresponding

-8-

simplexes, or because of differences in the underlying task functions in

corresponding simplexes. However, with the program structure used in this

paper, the underlying constraints in corresponding simplexes must be identical,

except that they may have differing corresponding skew factors.

The formal notion of executing a complex corresponds to the intuitive

notion of executing a problem. Thus the formal statement that a given program

may execute many complexes is equivalent to the intuitive one that one execu-

tion of a program may solve many problems.

To illustrate the actual placement and coding of the macro statements, we

include a straightforward program that computes the product of two matrices.

We will reference the actual lines of code throughout the remainder of this sec-

tion.

1 define (RB11, 1)

2 define(RB12, 21)

3 define(CB11, 1)

4 define(CB12, 21)

5 define (RB21, 1)

6 define (RB22, 2)

7 de fine (CB21, 1)

8 defne(CB22,1)

9

10 ** :: ;: ***

11 *

12 * THIS PROGRAM READS IN TWO MATRICES AND COMPUTES THEIR PRODUCT.

13 *

14 *************** * *********************************** * * ***** * .***

15

16 PROGRAM MATUL

17 newproc(SLAVE)

18 *

19 * COMMON AREA VARIABLES
20 *

21 INTEGER A(20,20), 13(20,20), C(20,20)

22 INTEGER NPROCS, AI, AJ, BJ

23 COMMON /MAINC/ A, B, C, NPROCS, Al, AJ, BJ

24 *

25 gs2var

26 *

27 *

28 *********************************

- 9 -

*

* INITIALIZE THE MONITOR
*

4*****

*

gs2initl(1,00,00,00,00)
*

READ (5,10) NPROCS

10 FORMAT(I4)

WRITE(6,20) NPROCS

20 FORMAT(' NPROCS = ', 14)
*

******************************** *********************:** **:** '****

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

(9

.***** ********** * ******

*

READ (5,10) AI

READ (5,10) AJ

READ (5,10) BJ

DO 2 I = 1,AI

DO 1 J =
READ

CONTINUE

CONTINUE

DO 4 1 = 1,AJ

DO 3 J =
READ

CONTINUE

CONTINUE

MNRV 1
MXRV 1
MNCV1

MXCV1

1,AJ

(5,10) A(I,J)

1,BJ

(5o) B(IJ)

= 1
= Al

= 1

= BJ

DO 5 I = 1,AI

*

* READ IN THE TWO INPUT MATRICES
*

1

2

3

4

*

- 10 -

LFBDY1(I) = 1

5 CONTINUE

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

?04

105

106

107

108

109

30
*

= BJ

= 1

= AI

gs2init2(1,00, 00,00,00)

DO 30 I=1,NPROCS-1

create (SLAVE)

CONTINUE

CALL WORK
*

WRITE (6,40)
40 FORMAT (' THE VALUES

DO 41 1 = 1,AI

DO 42 J = 1,BJ

WRITE(6,43)

42 CONTINUE

41

43

IN C ARE AS FOLLOWS:')

I,J,C(I,J)

CONTINUE

FORMkAT('

STOP

END
*

*

* THE SLAVE PROCESSES JUST CALL THE WORK SUBROUTINE

* WHERE THEY CLAIM TASKS TO WORK ON.
*

** **************I 'A**

DO 6 I = 1,AI

RTBDY1(I)
6 CONTINUE

DO 7 I = 1,BJ

UPBDY1(I)

7 CONTINUE

DO 8 I = 1,BJ

LWBDY1(I)

8 COUNT INUE

110 *

' , I2, ' ' , I2,' ' , I8)

- 11 -

111 SUBROUTINE SLAVE

112 *

113 CALL WORK
114 RETURN

115 END

116 *

117 **

118 *

119 * THE WORK SUBROUTINE CONTAINS THE CODE TO CLAIM A TASK,

120 * PERFORM THE TASK, AN1D GO BACK TO GET ANOTHER TASK TO WORII ON.

121 *

122 ******** ******* ************* ************* * ******* * :: :*: ::: ****

123

124 SUBROUTINE WORK

125 *

126 * COMMON AREA VARIABLES

127 *

128 INTEGER A(20,20), B(20,20), C(20,20)

129 INTEGER NPROCS, Al, AJ, BJ

130 COMMON /MAINC/ A, B, C, NPROCS, Al, AJ, BJ

131 *

152 gs2var

133 *

134 INTEGER K
135 *

136 10 CONTINUE

137

138 gs2(1,00,00,00,00)

139 1000 CONTINUE

140

141

142 C(I,J) = 0

143 DO 1001 K = 1,AJ
144 C(I,J) = C(IJ) + (A(I,K) * B(K,J))

145 1001 CONTINUE
146

147 endl(1,00,00,00,00)

148 GO TOl10

149 *

150 3000 CONTINUE

151 *

- 12 -

152 RETURN

153 END

2.2.1. The gs2var Macro

The code begins with the main program. At the end of the type declara-

tions, the first macro call is inserted; it is a call to gs2uar. This macro declares

the variables and common blocks to be used by the monitor package; it takes no

parameters.

Prior to the call to gs2lxr, eight define statements should appear in the

program (e.g., see lines 1-8 in MATMUL). These statements enable certain arrays

within gs2ucr to be properly defined.

The constant RB11 should be some integer constant less than or equal to

the smallest row value of all simplex 1's to be executed by the program. By a

simplex 1 to be executed by a program we mean a simplex 1 (S', T', U') belong-

ing to a complex to be executed by that program. A row value of a simplex

(S,T,U) is an integer i such that some (i,j) is in S, the underlying region of th2

simplex. If the smallest row value of all simnplex 1's to be executed by the pro-

gram can be obtained without much difficulty, it should be. used for the con-

stant. Otherwise, the largest integer that satisfies the condition and can be

obtained without much difficulty should be used.

The constant RB12 should be some integer constant greater than (but not

equal to) the largest row value of all simplex 1's to be executed by the program.

If that largest row value can be obtained without. much difficulty, that value + 1

should be used for the constant. Otherwise, the smallest integer that satisfies

the condition and can be obtained without much difficulty should be used.

The constant CB11 should be some integer constant less than or equal to

the smallest column value of all simplex 1's to be executed by the program. A

column value of a simplex (S,T,U) is an integer j such that some (i,j) is in S, the

underlying region of the simplex. If this smallest column value can be easily

obtained, it should be used. Otherwise, the largest integer that satisfies the con-

dition and can be obtained without much difficulty should be used.

The constant CB12 should be some integer constant greater than or equal

to the sum of the largest column value of all simplex 1's to be executed by the

program and the largest skew factor of all simplex 1's to be executed by the

program. (If a skew factor is not explicitly given by the user, it defaults to 0.) if

this sum can be easily obtained, it should be used. Otherwise, the smallest.

integer that satisfies the condition and can be easily obtained should be used.

-13-

The remaining integer constants (RB21, RB22, CB21, and CB22) are defined

in much the same way as those just described. Here, however, simplex 2's

rather than simplex l's are used in the definition of the constants. If a program

will execute one (or many) 1-dimensional complexes (so that no simplex 2's are

relevant), the user may set RB21 to 1, RB22 to 2, CB21 to 1, and CB22 to 1.

Of course, the variables declared in gs2uar must not be used elsewhere in

the program by the user in such a way as to conflict with the use dictated by the

macro package. For this reason, a list of the variables declared in gs2uar is

appended to this paper.

2.2.2. The gs2initl and gs2init2 Macros

The next macro call (after gs2uar) in the main program is to gs2 nit1. This

macro initializes certain of the variables in gs2uar. During execution of the pro-

gram, gsanit1 is called only once, regardless of how many different complexes

are executed by the program. Therefore gs2init1 may be termed a program ini-

tialization.

The macro gs2initl takes 5 parameters; this parameter structure will be

used repeatedly in most of our remaining macro calls (except for one call to the

barrier macro, to be discussed later). The 5 parameters, denoted by $1, $2, $3,

$4, and $5, are described as follows:

1. $1 is one character. This character is 1 if the complexes to be exe-

cuted by the program (all of which must have the same dimension) are

1-dimensional, i.e., if each of them consists of one simplex (and

perhaps constraints). The character is 2 if the complexes to be exe-

cuted by the program are 2-dimensional, i.e., if each of them consists

of 2 simplexes (and perhaps constraints).

2. All the remaining parameters have exactly two characters. The first

character of $2 is C if Cl holds, i.e., if the column constraint holds in

simplex 1; otherwise it is 0. The second character of $2 is X if XC21

holds, i.e., if the cross-column constraint from simplex 2 to simplex 1

holds; otherwise it is 0.

3. The first character of $3 is R if R1 holds, i.e., if the row constraint holds

in simplex 1; otherwise it is 0. The second character of $3 ir X if XR21

holds, i.e., if the cross-column constraint from simplex 2 to simplex 1

holds; otherwise it is 0.

4. $4 and $5 are analogous to $2 and $3, respectively, with the roles of

simplex 1 and simplex 2 reversed. In detail, the first character of $4 is

C if C2 holds, i.e., if the column constraint holds in simplex 2; otherwise

it is 0. The second character of $4 is X if XC12 holds, i.e., if the cross-

-14-

column constraint from simplex 1 to simplex 2 holds; otherwise it is 0.

5. The first character of $5 is R if R2 holds, i.e., if the row constraint holds

in simplex 2; otherwise it is 0. The second character of $5 is X if XR12

holds, i.e., if the cross-column constraint from simplex 1 to simplex 2

holds; otherwise it is 0.

We define the dimension of a program (within the structure that we use) to be

the (common) dimension of all complexes that it executes. As indicated earlier,

this dimension is equal to $1. If it is 1, then each complex to be executed con-

sists only of its simplex 1. We then set both $4 and $5 equal to 00, set the

second character of $3 equal to 0, and set the second character of $4 equal to 0.

We define the multiplicity m of our program to be the total number of times

it will execute some complex. (Thus, repeated executions of the same complex,

as well as executions of different complexes, all count towards this multiplicity.)

Our exposition now temporarily diverges between programs of muliplicity m = 1

(where one complex is executed once) and programs with m > 1. We will return

in a later section to the case in which m > 1.

Consider the case when m = 1. Then the next macro call after gscInit1 will

be to gs2init2. It will be executed exactly once during the program, since we

are solving one problem once. Therefore, gs2inrit2 is called the problem initiai-

zation, in contrast to the program initialization gs2initl.

The macro gs2init2 takes 5 parameters; they are exactly the same as those

in gs2initl. Before gs2init2 is called, a certain number of Fortran INTEGER vari-

ables must be assigned values, which will be called user-supplied values to the

macro. The supplying of these values is another part of the user's contribution

to the quasi-automatic parallelization - to the cooperative venture between user

and macro package. Since m = 1, there is only one complex to consider,

namely, the unique complex to be executed by the program. These variables

comprise the following:

MNRV1 (the minimum row value, or first coordinate, of simplex 1).

MXRV1 (the maximum row value of simplex 1).

MNCV1 (the maximum column value, or second coordinate, of simplex 1).

MXCV2 (the maximum column value of simplex 1).

MNRV2, MXRV2, MNCV2, and MXCV2 (the analogous values for simplex 2). If

the dimension of the complex is 1, then these need not be specified.

-15-

SKW1 (the skew factor for simplex 1). This is specified only when the

column constraint C1 holds and has a non-zero skew factor.

SKW2 (the analogous value for simplex 2). This is specified only when she

complex dimension is 2, the column constraint C2 holds, and C2 has a non-

zero skew factor.

LFBDY1(JJJ), where JJJ is an integer variable (the user is free to substitute

a different, conflict-free integer variable for JJJ) ranging from MNRV1 to

IMXRV1 (these are the left boundary values of simplex 1, whose indices vary

from the minimum row value to the maximum row value).

RTBDY1(JJJ), where JJJ is an integer variable (the user is free to substitute

a different, conflict-free integer variable for JJJ) ranging from MNRV1 to

MXRV1 (these are the right boundary values of simplex 1, whose indices vary

from the minimum row value to the maximum row value).

UPBDY1(JJJ), where JJJ is an integer variable (the user is free to substitute

a different, conflict-free integer variable for JJJ) ranging frorr MNCV1 to

MXCV1 (these are the upper boundary values of simplex 1, whose indices

vary from the minimum column value to the maximum column value).

Furthermore, if simplex 1 cross-column constrains simplex 2 (i.e., if XC12

holds), then the user must also supply

LWDY1(JJJ), where JJJ is again an integer variable (the user is free to sub-

stitute a different, conflict-free integer variable for JJJ) ranging from

MNCV1 to MXCV1 (these are the lower boundary values of simplex 1, whose

indices vary from the minimum column value to the maximum column

value).

It is important to note that these user-supplied values to the macro are

reserved variables; the user must provide the appropriate values for precisely

those named variables given above; otherwise gs2init2 will not be able to per-

form properly. Of course, the dummy variable JJJ may be replaced, as indicated

above.

If the program dimension is 2, then the user must also supply to the macro

the analogous values for simplex 2, namely,

- 16 -

LFBDY2(JJJ), for JJJ ranging from MNRV2 to MXRV2 (these are the left boun-

dary values for simplex 2),

RTBDY2(JJJ), for JJJ ranging from MNRV2 to MXRV2 (these are the right

boundary values for simplex 2), and

UPBDY2(JJJ), for JJJ ranging from MNCV2 to MXCV2 (these are the upper

boundary values for simplex 2).

Furthermore, if simplex 2 cross-constrains simplex 1 (i.e., if XC21 holds), then

the user must also specify

LWBDY2(JJJ), for JJJ ranging from MNCV2 to MXCV2 (these are the lower

boundary values for simplex 2).

2.2.3. Creation of SLAVE Processes

After the call to gs2ilnit2, while still in the main program, a certain number

NPROCS - 1 of copies of a subroutine named SLAVE are created with the create

macro, which is called in the form create(SLAVE). NPROCS is a Fortran INTEGER

variable, declared by the user, whose value (set by the user) is the number of

processes that the program will employ.

The subroutine SLAVE is quite simple; all it does is CALL the subroutine

WORK. WORK is also CALLed by the main program, at some time after the

SLAVEs are created.

Once the SLAVEs are created, the program is executed by NPROCS

processes; one of them will be executing either the main program or a copy of

WORK called from that program, while each of the other NPROCS - 1 processes

will be executing either its copy of SLAVE or a copy of WORK called from that

copy of SLAVE.

No parameters are passed from the main program to WORK or from a SLAVE

to WORK. (Thus all communication between routines is done by shared variables

in COMMON.) Furthermore, no macros from the package are used in SLAVE. A

RETURN statement executed by a SLAVE has the effect of a total self-

annihilation; that SLAVE simply vanishes. On the other hand, a RETURN state-

ment executed by a copy of WORK simply transfers control back to the calling

program, which is either the main program or a SLAVE.

-17-

2.2.4. The WORK Routine

A macro call to gs2uar also appears in subroutine WORK. There it again

declares the variables and common blocks used by the monitor. Again no

parameters are used in the call to gs2uar.

Except for a numbered Fortran CONTINUE statement, which provides a tar-

get statement to transfer control to, the first executable statements of subrou-

tine WORK are provided by the gs2 macro. The parameters used in the gs2 call

are exactly the same as those used in the gs2nit1 call.

The following unifying notation will be helpful. If we have a 1-complex con-

sisting of simplex 1 (S, T', U'), then we define the underlying region of the com-

plex S to be S and the underlying computational task function T to be T'. If,

however, we have a 2-complex ((S, T', U),(S2 , T2, U 2),V), where simplex 1 is

(S', T, U') and simplex 2 is (S2, T2 , U2), then we define the underlying region of

the complex S to be the union of S1 and S2, and we define the underlying compu-

tational task function T to have the domain S and to be given by the rule that T

= T' on S' and T = T2 on S2.

2.2.4.1. The gs2 Macro

Subroutine WORK performs the computational tasks T(i,j) of the complex to

be executed by the program. When a process begins executing the statements

in WORK, the instructions in the gs2 macro are executed.

The function of the gs2 macro is to hand out a unique pair of subscripts (i,j)

prom the underlying region of the complex S, so long as there remain subscript

pairs from S to be handed out. Thus every time gs2 is executed'., until it has

handed out every subscript pair in S, it hands out a different subscript pair (i,j).

A process executing the gs2 macro monitor is searching for a computa-

tional task T(i,j) to do. More precisely, it is searching for a subscript pair (i.j)

such that the corresponding task T(ij) is ready, i.e., all the constraints on

T(ij)'s beginning have been satisfied. The search focuses solely on the current

tasks of underlying simplexes of the complex to be executed. (As is consistent

with other usage in this paper, we will simply say that (ij) is ready as a short

form in place of the full T(ij) is ready.)

The search will be carried out among all (either 1 or 2) simplexes of the

complex being executed whose subscript pairs have not yet all been handed out

to searching processes executing gs2. If simplex 1 is such a simplex, the search-

ing process will determine if the current task of simplex 1 is ready to begin. If

the task is ready, then the process will acquire the current subscript pair, exit

gs2, and unlock the monitor so that a subsequent process may enter.

- 18 -

If simplex 1 is not such a simplex, or if the current task in simplex 1 is not

yet ready to begin (i.e., some constraint is not yet satisfied), then the search will

either turn to simplex 2 (if we are executing a 2-complex and there are still sub-

script pairs in simplex 2 to be handed out) or loop repeatedly, determining

whether the current task in simple?- 1 is ready until it is; once it is ready, the

process acquires the current subscript pair and exits and unlocks the monitor,

just as above.

If the search turns to simplex 2, either because simplex 1 has no more sub-

script pairs to hand out or because the current task there is not ready, then the

above description still holds (with the roles of simplex 2 and simplex 1

reversed).

If any subscript pairs from the complex remain to be handed out wh'n the

searching process begins executing the gs2 macro, the process will eventually

grab a pair and exit and unlock the monitor. This pair will be either the current

pair in simplex 1 or the current pair in simplex 2. If the current pair in simpleX

1 (simplex 2) is obtained, the process will, upon exiting the monitor, go to the

statement with (reserved) label 1000 (2000). (The monitor will update its inter-

nal variables after the grab so that the same subscript pair is not handed out

twice.) However, if no such pairs are left to be handed out (i.e., all the computa-

tional tasks T(i,j) have been already handed out to some process), then the

searching process will begin windup processing. This means that the process

will enter a delay queue and unlock the monitor so that other processes can

enter and begin searching for (the no longer available) subscript pairs. Once all

NPROCS processes have entered the monitor (i.e., begun executing the gs2

macro) to perform the (futile) search for subscript pairs, then they all exit the

monitor. Upon exiting the monitor, each process will go to the statement with

(reserved) label 3000. The last one out resets certain of the monitor's internal

variables used during the execution of the complex (although this reset is useful

only when the program will execute several complexes, i.e., when the multipli-

city m is greater than 1).

Note that the subscript pairs in a simplex of the complex to be executed

will be handed out in lexicographic order: (i1 ,j 1) precedes (i2 , 2j) if either it < i2

or both i1 = i2 and j, <3i2. However, we cannot know in advance the manner in

which subscript pairs from the different simplexes will be interleaved, except in

that applicable cross-constraints from XC12, XC21, XR12, and XR21 must be

satisfied.

- 19 -

2.2.4.2. The endi and end2 Macros

Once a process is given a subscript pair and exits the monitor, it under-

takes the computation of the task corresponding to that pair. If the completion

of this task is a prerequisite to the beginning of some other, by means of one of

the complex constraints, the gs2 macro monitor (which dispatches ready sub-

script pairs) must be notified when the computation of the task has ended.

This notification is accomplished with the eTd1 macro for tasks in simplex 1

and with the end2 macro for tasks in simplex 2. Both macros take the same five

parameters as does the gs2initl macro.

The macro endl appears at most once in subroutine WORK. It should be

inserted into WORK if there is some internal constraint C1 or R1 on simplex 1, or

if simplex 1 cross-constrains simplex 2 externally via either XC12 or XR12; other-

wise it should not appear. The macro should be inserted into the code just after

the code to perform all the computational tasks T1 of simplex 1 has ended.

The rules governing the use of end2 are the same, with the roles of simplex

1 and simplex 2 reversed (for example, XC21 or XR21 rather than XC12 or XR12

would mandate the use of end2). Of course, if the dimension of our complex is 1,

then end2 should not appear in the program.

2.2.4.3. The cmplxendMacro

Recall that we are still discussing the case m = 1, i.e., the case when the

program executes only one complex. To complete our discussion of the macros

used in this case (all macros used in the case of multiplicity 1 will also be used

for higher multiplicities), we introduce the cmplzerd macro.

This macro is used when some task T(i,j) computes a result that solves the

problem under consideration, so that no new computational tasks should begin

and those in progress should perform an orderly windup. It notifies the gs?

macro to hand out no more subscript pairs; thus, all processes that subse-

quently execute gs2 after completing their present computational task will

begin windup processing there. It also sets the reserved Fortran variable EXHST

to 0. This indicates that the execution of the complex was terminated by the

occurrence of a solution, rather than by the exhaustion of all the computational

tasks without a solution being found.

The cmplzend macro will be used in a small number of examples. For

instance, if any duplicate is found in the program GETADUP, cmplxend is used to

terminate processing.

- 20-

2.2.5. Complications Introduced by Multiplicity Greater Than 1

Having discussed the use of our macros and our program structure when

the program multiplicity m is 1, we now look at the modifications needed when

the multiplicity is greater than 1.

First of all, the calls to WORK in this case use a parameter. The call from

the main program passes a 0 to WORK, while the calls from the SLAVES created

by NPROCS - 1 all pass a 1 to WORK. WORK has the one argument WHO. Thus a

process executing WORK can determine its origins. If WHO is 0, then it comes

directly irom the main program; if WHO is 1, then it comes from a SLAVE.

In the main program, a DO-loop must be set up to handle the m problems.

One iteration of the loop will be performed for each problem. The body of the

loop contains the call to WORK.

Just as in the case m = 1, the main program creates NPROCS - 1 processes,

each of which begins executing a copy of subroutine SLAVE. This takes place

once for the entire program. When m > 1, we will place the call to gs2init2 after

the creation of the SLAVEs, reversing the order for m = 1. The code determining

and supplying the user-supplied values for the macros will appear after the crea-

tion of the SLAVEs and before the macro call for gs2init2.

If we wish, we can place gs2init2, together with the code providing the

user-supplied values, within the above-mentioned DO-loop. This placement pro-

vides a capability to reconfigure the underlying simplex regions before each

complex execution. Thus, for example, one program may perform an identical

matrix analysis on successive complex executions, but for matrices of different

sizes. Another might perform the same kind of sort on successive complex exe-

cutions, but for arrays of different sizes. We can even, within the framework

introduced here, perform a matrix analysis on one complex execution and a sort

on the next, but our problems below do not utilize this capability.

When m > 1, the non-trivial executable statements (i.e., those that are not

no-ops) of WORK begin with a call to the barrier macro. In this call barrier takes

just one parameter; it appears in the form barrier(1). The barrier macro has

the effect of delaying any process reaching it until all NPROCS processes are so

delayed; then they are all released (in some order). The parameter 1 used here

in barrier simply provides a label.

The Fortran INTEGER COMMON variable NDONE is used in a conditional

branch statement to determine whether a process executing WORK should exe-

cute the js2 macro or bypass it so as to perform windup processing for the

entire program. (Windup processing for individual problems within the program

is done by the gs2 macro.) ND ONE is initialized to 0 in the main program, and

set to 1 in just after the last iteration of the m problem DO-loop is completed.

- 21 -

After NDONE is set to 1, the main program calls WORK one last time for windup

processing. The conditional test of NDONE is performed in WORK, immediately

following the macro call to ba-rrier and immediately preceding the macro call to

gs2.

After each execution of a complex, the processes that come from a SLAVE

hang on the barrier in WORK, while the process that comes directly from the

main program returns to the main program. This divergence of behavior for

different processes is accomplished by the WHO variable described above. The

subsequent call to WORK from the main program in the next iteration places this

last process also at the barrier, so that now all processes can penetrate the bar-

rier, and either the concurrent executions of copies of WORK relevant to the new

problem may begin, or the final windup processing may begin.

The main program can communicate to the processes executing WORK

which complex they are executing (i.e., which problem they are working on) by

the use of COMMON variables.

Other than the modifications given here, the case when m > 1 is dealt with

just as the case when m = 1.

3. A Geometric Representation of Synchronization Dependencies

We now discuss the geometric "synchronization patterns" (which provide a

concise pictorial description of a given parallelization structure) and their ccn-

struction.

To construct the synchronization pattern, we must draw the points of the

underlying region of the complex. If there are two simplexes in the complex,

then the respective underlying regions are separated by a line. Thus, for exam-

ple, if the underlying region of simplex 1 of a 2-complex is

5" = J (1,1), (1,2), (1,3) J

and the underlying region of simplex 2 is

S2 = 1 (2,1), (2,2), (2,3)

the underlying region S of the entire complex is

S = 1 (1,1), (1,2), (1,3), (2,1), (2,2), (2,3)

and may be drawn as:

1,1 1,2 1,3

2,1 ~2',r2 ',3

- 22-

The two underlying simplex regions above are separated by the line. Assuming

no constraints, the parallelization structure, drawn below, would appear exactly

as S above, except that for simplicity we usually omit coordinate labels when

drawing the synchronization pattern, as well as the line separating the sim-

plexes.

In general, constraints are indicated on the synchronization pattern. The C

constraint (internal column constraint) within a simplex is indicated by a verti-

cal arrow connecting two neighboring points in a column, drawn from the one

above to the one below. Thus, for example, suppose that the underlying region of

a 1-complex consists of the points

S = j (1,1), (1,2), (1,3), (2,1), (2,2), (2,3), (3,1), (3,2), (3,3) l.

Then S may be drawn as follows:

* 0 .

1,1 1,2 1,3

2,1 2,2 2,3

3,1 3,2 3,3

If the C constraint holds in this complex, then the synchronization pattern could

be drawn as

I I 1I
. 0 0

If, furthermore, this column constraint includes a positive skew factor K, that

skew factor must also be indicated on the synchronization pattern by additional

arrows that connect each point pair of the form (I-1,J+K) and (I,J). Each addi-

tional arrow is drawn from some point (I-1,J+K) to the corresponding point (I,J).

- 23-

Thus if this column constraint includes a skew factor of 1, the synchroniza-

tion pattern would now be drawn as

A row constraint is indicated by an arrow (with an "R" next to it) pointing from

the leftmost point in each (but the last) row to the leftmost point in the row

below. Thus, if the row constraint holds in the above underlying region S, the

synchronization pattern would be depicted as

IR

Of course, once we know that R holds, we dispense with C, since it is implied by

R.

A cross-column constraint XC is indicated by drawing, for each point P on

the lower boundary of the constraining simplex that lies directly above some

point Q in the constrained simplex, a vertical arrow (with an "X" next to it) point-

ing downward from P to Q. Thus, fcr example, if we have a 2-complex with

S' = j (1,1), (1,2), (1,3), (2,1), (2,2), (2,3) j
and

S2 = j (3,1), (3,2), (3,3), (4,1), (4,2), (4,3) i,
and the constraint XC12 holds, then S would

1,1 1,2

be drawn as

1,3

" 0 0

2, 1 2,2 .2,3

* " "

3,1 3,2 3,3

0

4,1
4

4,2
4

4,3

- 24-

and the synchronization pattern would be drawn as

Similarly, a cross-row constraint XR is indicated by drawing, for each point

P on the right boundary of the constraining simplex that lies immediately to the

left of some point Q in the constrained simplex, a horizontal arrow pointing

rightward from P to Q. Thus, for example, if we have a 2-complex with

S' = j (1,4), (1,5), (1,6), (2,4), (2,5), (2,6) j

and

S2 = j (1,1), (1,2), (1,3), (2,1), (2,2), (2,3)

and the constraint XR21 holds, the underlying region S would be drawn as

0 0 0 .

1.1 1,2 1,3 1,4

21 2,e 3 4

.

1,5
.

1,6

. 0

2,5 2,6

and the synchronization pattern would be

. . . -. . . .

. . . -+ 0 0

Of course, all constraints that hold must be indicated on a synchronization pat-

tern; if more than one holds, they are each indicated on the pattern.

4. A Formal Description of the Structure

In the previous sections, we have attempted to motivate our approach to

scheduling units of computation based on a geometric representation in a two-

dimensional plane. We now give a detailed, formal presentation of the structure.

- 25-

We start with some basic definitions.

Let M1 and M2 be integers, with M1 < M2 . The closed integer interval

[M1,M2] is defined to be the set of all integers from M to M2 . All inte. vals

used in this paper will be integer intervals, i.e., will contain only integers.

Let f be an integer-valued function whose domain is the interval [M1 ,M2].

The graph of f, written graph f, is the subset of the Cartesian integer plane

Z2 consisting of those points (M,f(M)), where M is in the domain [M1 MA2].

The reversed graph of f (so-called because the roles of first and second

coordinate are reversed), written rev f, is the subset of the Cartesian

integer plane Z2 consisting of those points (f(M),M), where M is in the

domain [M1 ,M2].

As mentioned previously, our conventions for representing ordered pairs follow

the conventions for representing elements in a matrix, rather than the more

common graphical representation of Z2 .

Note that a matrix is actually a function of two intege: variables and that its

set of index pairs is the domain of that function. Thus it is natural, in looking for

a way to depict the domain of a computational task function T(I,J) which is also a

function of two integer variables, to take as a starting point the usual picture for

the set of index pairs of a matrix. (However, while the set of index pairs of a

matrix is an integer rectangle, the domain of a computational task function is

more general. For example, it may have jagged boundaries, or be an "integer

line.")

We now use the notions of graph and reversed graph as building blocks to

define regions and regular regions in the Cartesian integer plane Z2 . Suppose

that we have two functions f and g with the same domain [M1 ,M2] and that f(M)

< g(M) for all M in [MI,M2]. We define the region D = D(f,g) to be the set of all

points in Z2 whose first coordinate M is in [M1 ,M2] and whose second coordinate

lies in the interval [f(M),g(M)]. Thus D(f,g) can be thought of as the set of all

points in Z2 that lie between (or on) the graph of f and the graph of g. Similarly,

under the above conditions on f and g we define the region rev D = rev D(f,g) to

be the set of all points in Z2 whose second coordinate L is in [M1 ,M2] and whose

first coordinate K lies in the interval [f(L),g(L)]. Thus rev D(f,g) can be thought

of as the set of all points in Z2 that lie between (or on) the reversed graph of f
and the reversed graph of g.

Note that if S is a subset of Z2 which is of the form D(f,g), then f, g and the

common domain of f and g are all uniquely determined; similarly when S is of

the form rev D(f,g).

A subset S of Z2 is called a regular :gion if there are functions f 1, f 2, g1

and g2 such that f i and g1 have common domains, f2 and g2 have common

- 26 -

domains, S = D(f 1 ,g1), and S = rev D(f2,g2). (In other words, to be regular S

must be both a region of the form D(f 1,g 1) and a region of the form rev

D(f 2,g2).) If S is a regular region (or, in brief, regular), f 1 is called the left boun-

dary function of S, g1 the right boundary function, f 2 the upper boundary func-

tion, and g 2 the lower boundary function.

Now that we have the notion of "regular region" defined, we can introduce

computational task functions. A computational task function (or, more briefly,

task function) is a function T1 whose domain is a regular region S in Z2 and

which assigns to each (I,J) in S some computational task T1 (I,J). (For conveni-

ence, we will also use the alternate notation TI. for T1 (I,J).) For purposes of the

parallelization structure developed here, we are concerned not with the details

of the particular computer instructions required by the T1 (I,J), or the

mathematical algorithm that the T'(I,J) represent, but rather with the times

when the T'(I,J) are able to begin during the execution of a program and the

times at which the T1 (I,J) end.

Within a parallelization structure a certain number (perhaps zero) of con-

straints will be placed on the T1 (I,J). No T1 (I,J) may begin until all the con-

straints on its beginning have been satisfied; such constraints will either be

internal and require that certain other T1 (I,J) have ended, or be external and

require that certain T2 (K,L) have ended, where T2 is a different computational

task function within the same parallelization structure.

For now we will focus on internal constraints. Suppose that we have a com-

putational task function T defined on a regular region S. For (I,J) in S, the begin

time of the task T(I,J) (i.e., the time at which that task begins during the execu-

tion of a program) may be denoted by b(T(I,J)). Since our discussion henceforth

will be with reference to a particular task function which is known from the con-

text, for ease of notation we will suppress the explicit reference to T and instead

denote the begin time of T(I,J) simply by b(I,J). (We will sometimes use the

alternate notation b1J for b(I,J).) Similarly, we will denote the end time of the

task T(I,J) (i.e., the time at which that task ends during the execution of a pro-

gram) by e(I,J). (As above, we will sometimes use the alternate notation e1 1 for

e(i,j).) In general, when it is clear from the context what is meant, we will often

not distinguish between the computational task T(I,J) and the point (I,J) in S.

Thus, for example, we right speak of the time at which a "point begins" to mean

the time at which the computational task assigned to that point begins.

Let T be a computational task function whose domain is the regular region

S. The basic internal constraints on T(1,J) are of two kinds, begin constraints and

end constraints. Begin constraints are of the form

-27-

i) b(I,J) > b(K,L);

i.e., the (1,J)'th task T(I,J) can begin only after the (K,L)'th task T(K,L) has begun

((I,J) and (K,L) are points in S). End constraints are of the form

ii) b(1,J) > e(K,L);

i.e., the (1,J)'th task T(I,J) can begin only after the (K,L)'th task T(K,L) has ended

((I,J) and (K,L) are points in S).

Throughout this paper, whenever (I,J) and (I,K) are both in S, and J <K, the

constraint

b(I,K) > b(I,J)

will be understood to be imposed. The imposition of this constraint requires that

in terms of begin times, each row in the regular region S will be traversed in the

natural order (from lower column subscripts to higher column subscripts). (A

row in S is defined to be the (non-empty) set of all points in S with a particular

first coordinate; that common first coordinate is called the row subscript of the

row. Similarly, a column in S is defined to be the (non-empty) set of all points in

S with a particular second coordinate; that common second coordinate is called

the column subscript of the column.) Also, throughout this paper, whenever (I,J)

and (K,L) are both in S, and I <K, the constraint

b(K,L) > b(I,J)

will be understood to be imposed. The imposition of this constraint requires that

in terms of begin times, each point in a lower row (i.e., one with a larger row

subscript) will begin after each point in a higher row (i.e., one with a smaller row

subscript.) This implies that a task in a row may begin only after all tasks in

rows with smaller row subscripts have begun.

Together, the above two constraints imply that whenever we have a regular

region S and a computational task function T defined on S, the points of S are

traversed lexicographically in terms of begin times. The tasks in each row begin

in the same order as that of the column subscripts, and the tasks in rows with

smaller row subscripts begin before the tasks in rows with larger subscripts.

An equivalent way of stating this is as follows: given distinct points (J,J) and

(K,L) in S, (I,J) begins before (K,L) if and only if either I <K or both I = K and J <

L.

Thus, a program executing the computational task function T defined on the

regular region S (in terms of begin times) traverses S row by row (going from

-28-

lower row subscripts to higher row subscripts) and traverses each row going

from lower column subscripts to higher column subscripts.

We now consider the relevant internal end constraints on a computational

task function T defined on a regular region S. Unlike the two internal begin con-

straints given above which are always implied and which are the only begin con-

straints that hold in the parallelization structures used here, the relevant inter-

nal end constraints must always be explicitly given; furthermore they may or

may not apply.

We can organize the internal end constraints that apply here via the notions

of row constraint and column constraint.

Definition: Let T be a computational task function defined on the regular region

S. (S,T) is row-constrained if the first (leftmost) task in a row can begin only

after all tasks in the previous row have completed. (Given a row R with row sub-

script 1, the previous row is the row with row subscript I - 1.)

Note that it follows from the first begin constraint given above that each task in

a row can begin no sooner than the first (leftmost) task in that row does.

Alternative ways of stating that (S,T) is row-constrained include "the row

constraint holds in (S,T)," "the row-constraint R holds in (S,T)," or simply "R

holds in (S,T)." Usually the mention of (S,T) will be suppressed when no confu-

sion can result.

To express the notion "R holds in (S,T)" in formula, we write S = D(f1,g1),

where f 1 and g 1 are the left and right boundary functions of S, respectively, and

[M 1 ,M2] is the common domain of f 1 and g 1. Then we can write "R holds" as

b(M,f 1(M)) > e(M-1,K)

whenever M-1 and M are in [M1 ,M2], and (M-1,K) is in S. Equivalently, we could

write

b(M,f 1(M)) > e(M-1,K)

whenever M-1 and M are in [M1 ,M2], and

f 1(M-1) < K < g1 (M-1).

Having defined "row constraint," we now define the other internal end con-

straint to be used in this paper, the "column constraint."

- 29 -

Definition: Let T be a computational task function defined on the regular region

S. (S,T) is column-constrained, with the non-negative integer L as skew factor, if

for all J, a task in the J'th column can begin only after all tasks in the J'th

column from earlier rows and all tasks in the (J+L)'th column from earlier rows

have completed. (Given as row R with row subscript I, an earlier row is a row

whose row subscript is smaller than I. We know, from the implied begin con-

straints, that tasks in an earlier row than R will begin before any of the tasks in

R do.)

Alternative ways of stating that (S,T) is column-constrained, with skew-

factor L," include "the column constraint, with skew factor L, holds in (S,T),"

"the column constraint C, with skew factor L holds in (S,T)," or simply "C, with

skew factor L, holds in (S,T)." Usually, the mention of (S,T) will be suppressed

when no confusion can result. Also, often the mention of the skew-factor L will be

suppressed; either it may be supplied later or, if omitted, will be understood to

be 0.

To express the notion "C, with skew factor L, holds in (S,T)" in formula, we
write S = rev D(f 2 ,92), where f 2 and g 2 are the upper and lower boundary func-

tions of S, respectively, and [M1 ,M2] is the common domain of f 2 and f 2. Then

"C holds, with skew factor L," is equivalent to the two conditions

i) b(I,J) > e(K,J)

whenever (J,J) and (K,J) are in S and I > K

and

ii) b(I,J) > e(KJ+L)

whenever (I,J) and (KJ+L) are in S and I > K.

Another equivalent formulation of "C holds, with skew factor L," is given by

the two conditions

i) b(I,J) > e (K,J)

whenever J is in [M1 ,M2] , both I and K are in [f 2 (J),g 2 (J)], and I > K,

and

ii) b(I,J) > e(K,J+L)

- 30-

whenever J and J+L are in [M,M2], I is in [f 2 (J),g2 (J)], K is in [f 2 (J+L),g2 (J+L)],

and I > K.

Clearly a row-constrained simplex is always column constrained (with any

non-negative skew factor.) Thus we need never consider the situation where both

R and C hold. It suffices to consider (S,T) where R holds, or C holds with some

skew factor L, or no constraints hold.

Note that when R holds, we have a degenerate case of two-dimensional

parallelization (the two dimensions come from the two-dimensionality of the

Cartesian integer plane Z2 and from S being a subset of Z2 .) Since when R holds,

each row of computational tasks must end before any tasks in the next row can

begin, each row may be thought of as a separate "one-dimensional" paralleliza-

tion unit. Thus the structure when R holds effectively becomes that of a

sequence of one-dimensional parallelization units.

We are now ready to define the basic parallelization structure, the simplex.

Definition: A parallelization simplex (or more briefly, a simplex) is a triple

(S,T,U) where S is a regular region in Z2 , T is a computational task function

defined on S, and U is a pair (C,L), where L is a non-negative integer and C is a

character, or the character R, or empty.

U merely tells us whether the simplex is. column constrained with skew fac-

tor L, row constrained, or unconstrained.

The simplex may be thought of as the basic "atom" of two-dimensional

parallelization structure. The begin constraints described earlier are internal-

ized within it. Note that no end constraint of the form b(I,J) < b(I,K) within a

given row can occur. Thus a task, when waiting to begin, may be waiting for the

completion of tasks from earlier rows, but is never waiting on the completion of

tasks from the same or from later rows. If we are in a computational situation

where a task in a row cannot begin until another task in that row has ended, we

need a parallelization structure more complicated than the simplex, i.e., one in

which constraints can operate across simplex boundaries. There will also be

instances where it will be useful for constraints operating within a column, as

well as constraints operating within a row, to be able to operate across simplex

boundaries. We now set about defining a parallelization structure (the complex)

that will allow us to deal with certain of these situations.

Definition: Let (S', T', U') and (S2, T2 , U2) be parallelization simplexes such that

the underlying regions S and S2 are disjoint, i.e., have no points in common.

- 31 -

Write S1 = D(f,1,g1) and S2 = D(f 2 1 ,92 1), where f 1 and g91 are the left and

right boundary functions, respectively, of S1; f 21 and g2 are the left and right

boundary functions, respectively, of S2; [M11,Mi2] is the common domain of f

and g 1; and [M21 ,M2 2] is the common domain of f 21 and g2 1 . (S", T', U') will be

said to "border (S2, T2, U2) from the left" if

i) the intersection of the two intervals [M,,,M, 2] and [M2 1 ,M 2 2] is non-

empty, i.e., the intervals have some points in common (note that this

intersection must also be an interval), and

ii) if M is in the intersection of the intervals [M,,,Mi2] and [M2 1 ,M22], then

g91(M) + 1 = f 21(1),

i.e., the right boundary function value for the first simplex is one less

than the left boundary value for the second simplex.

Defnition: Let (S, T, U') and (S2 , T2 , U2) be parallelization simplexes such that

the underlying regions S1 and S2 are disjoint, i.e., have no points in common.

Write SI = rev D(f1 2 1 g, 2) and S2 = rev D(f22,g8 2 2), where f 12 and g 2 are the

upper and lower boundary functions, respectively, of S1; f 22 and g2 2 are the

upper and lower boundary functions, respectively, of S2; [M,,,M, 2] is the corn-

mon domain off,12 and g 2 ; and [M21 ,M22] is the common domain of f 22 and g2.

(S1, T, U') will be said to "border (S2, T2 , U2) from above" if

i) the intersection of the two intervals [M,,,M, 2] and [M21 ,MN2] is non-

empty, i.e., the intervals have some points in common (note that this

intersection must also be an interval), and

ii) if M is in the intersection of the intervals [M,,,M1 2] and [M2 ,M22], then

g12 (M) + 1 =f2(),

i.e., the lower boundary function value for the first simplex is one less

than the upper boundary function value for the second simplex.

We now focus on the external end constraints imposed by one simplex on

another(we make no use of external begin constraints in this paper.)

Definition: Let (S, T', U') and (S2 , T2 , U2) be parallelization simplexes with dis-

joint underlying regions S' and S2. An external end constraint from (S, T', U')

to (S2 , T2, U2) is a constraint of the form

- 32-

b(I,J) > e(K,L),

where (I,J) is in S2 and (K,L) is in S'.

This says that the (I,J)'th task T 2(I,J) cannot begin until the (K,L)'th task T(K,L)

has completed. Note that we can define an external end constraint from

(S2, T2, U2) to (S, T', U') simply by requiring (I,J) to be in S and (K,L) to be in S2

in the above definition.

We now may organize the external end constraints that apply within the

parallelization structures used here via the notions of cross-row constraint and

cross-column constraint.

Definition: Let (S1, T', U') and (S2, T2, U2) be parallelization simplexes with dis-

joint underlying regions S' and S2. Write S' = D(f 1,g,) and S2 = D(f 2,g 2), and

let [M1,M2] be the non-empty interval that is the intersection of the common

domain of f 1 and g, and the common domain of f 2 and g2 '. We say than

(S1, T, U') cross-row end constrains (or sometimes, mo briefly, row con-

strains) (S2, T, U2) if

i) (S, T1, U') borders (S2, T2 , U2) from the left, and

ii) for each M in [M,,M 2], all tasks in the M'th row of (S, 71, U') must end

before any tasks in the M'th row of (S2,7T2, U2) may begin.

In formula, condition ii) may be written as

ii') b(M,N) > e(M,K)

whenever f 2 (M) < N < g 2 (M) and f ,(M) < K < g ,(M), or alternatively as

ii") b(M,f 2(M)) > e(M,K)

whenever f ,(M) <K <g ,(M).

Conditions ii') and ii") are equivalent because of the implied internal begin con-

straints within (S2, T, U2), which require that no task in the M'th row of
(S2, T, U2) may begin until the leftmost task in that row (i.e., the task with

column subscript f 2 (M)) does.

Having defined cross-row constraints, we now turn to the definition of

cross-column constraints.

Definition: Let (S, T1, U) and (S2, T2, U2) be parallelization simplexes with dis-

joint underlying regions S' and S2. Write S' = rev D(f 1,g 1) and S2 = rev

-33 -

D(f2,g2), and let [M1 ,M] be the non-empty interval that is the intersection of

the common domain off i and g1 and the common domain of f 2 and g2. We say

that (Si, T, U1) cross column end constrains (or sometimes, more briefly,

column constrains) (S2, T, 1U2) if

i) (Sl,T1, U1) borders (S2, T2, U2) from above, and

ii) for each M in [M,,M2], the last task in the M'th column of (S, T, U)
(i.e., the one with the largest row subscript) must end before the first

task in the M'th column of (S2, T2, U2) (i.e., the one with the smallest

row subscript) can begin.

Condition ii) may be written as

ii') b(f 2 (M),M) > e(g 1(M),M).

Note that by interchanging the roles of the two simplexes in each of the above

two definitions, we can define "(S2, T2, US) cross-row constrains (S, T, U)" as

well as "(S2, T2, U2) cross-column constrains (S1, T, U1)."

Linguistic variants of "(S1, T V, U) cross-row constrains (S2, 7,, U))"Will

include "(S1, T, U1) row constrains (S, ST2, U2)," "1(S2, T, US) is cross-row con-

strained by (S1, T, U)," and "(S2, T, U2) is row constrained by (S, T, U1)." Simi-

lar variants will be used for "(S1, T', U) cross-column constrains (S2, T, US).

We are now able to define the notion of "parallelization complex," or, more

briefly, "complex." All parallelization structures dealt with in this paper fall

within this category. Two kinds of complexes will be utilized here, namely, 1-

complexes and 2-complexes. The dimension of an n-complex, where n is either 1

or 2, is defined to be n. Future research is needed to define and apply comple::es

with dimension greater than 2.

Definition: A parallelization 1-complex (or, more briefly, a 1-complex) is merely

a simplex (S, T, U'). A 2-complex is an ordered triple ((S, T, Ui),(S, T, U),V)

whose first element is a simplex (S1, T', U1), whose second element is a simplex

(S5, T, U2)), and whose third element V is a non-empty set of 1 to 4 character

strings chosen from among the strings "XC12", "XC21", "XR12", and "XR21." Thus

V indicates the cross-constraints that hold between the simplexes of the com-

plex; if XR12 is in V, then (S, T, U') cross-row constrains (S, TS, U2), while if

XR21 is in V, then (S2, T2, U2) cross-row constrains (S', T , U'). Similar interpreta-

tions are given to XC12 and XC21.

If (S, T1, U) is a 1-complex or the first element of a 1-complex, it will be

referred to as the simplex 1 of that complex (or, more briefly, as simplex 1).

-34-

Similarly, if (S2, T2, U2) is the second element of a 2-complex, it will be referred

to as simplex 2.

5. Summary of Examples

We now summarize the examples to be presented. As indicated earlier, they

comprise the set of examples that appear in the two Overbeek and Lusk papers

[4, 5, 3]. Added to this set are an example computing an approximate solution to

a discretization of the Dirichlet problem for a three-dimensional grid, which

Overbeek and Lusk use in their classes in parallel processing given at the

Argonne National Laboratory, and an example "GETADUP" (a modification of th

example "GETDUPS"), which provides a simple illustration of a 2-complex struc-

ture.

The first example, ADDTWO, is simply the vector addition of two vectors,

with the component additions done in parallel. Here we have a 1-complex vhos

underlying region is simply a rectangle with one row. There are no constraints

imposed on the simplex. ADDTWO illustrates how the self-scheduling DO-loop (see

Overbeek and Lusk [2]) is handled as a special case of the gs2T macro with one

row in the underlying region of the relevant simplex.

The second example, CHECKTWO, is the modification of ADDTWO obtained by

considering the problem of determining whether the sum of two vectors has a

component greater than or equal to 100. Here we have a 1-complex whose

underlying region is identical with that of ADDTWO; again there are no con-

straints. CHECKTWO illustrates the use of the "cmplxend" macro, which insti-

tutes windup processing once some component greater than or equal to 100 is

found.

The third example, "GETDUPS," considers the problem of determining all

the duplicates (for purposes of this problem, "duplicates" means successive

components that are equal) in the sum of two vectors. The parallelization struc-

ture is a 1-complex whose underlying region has two rows. This example provides

an elementary introduction to the use of the column constraint C. Alternative

formulations introduce the skew factor; one formulation uses a skew factor of 0,

while the other uses a skew factor of 1.

The fourth example, "GETADUP," is the modification of "GETDUPS" obtained

by simply trying to determine whether the sum of two vectors has a duplicate,

rather than trying to determine all the duplicates. This provides our first exam-

ple of a parallelization structure that is a 2-complex; each simplex has one row.

It also illustrates the cross-column constraint XC21, and incidentally provides

another use of the cmplxend macro.

The fifth example, MATMULT, computes the product of two matrices, with

the (independent) computations of the elements of the product matrix done in

- 35-

parallel. MATMULT provides an elementary example of a parallelization structure

that is a simplex, has no constraints, and whose underlying region is a rectangle

in the Cartesian integer plane whose sides can have any number of points and

are parallel to the coordinate axes.

The sixth example, "SORT," performs a shell sort on several one-dimensional

arrays of differing lengths. It gives rise to a simplex whose underlying region has

a jagged right boundary (as well as a jagged lower one.) The rows of this region

correspond to stages of the sort. SORT introduces the use of the row constraint

R. Furthermore, it illustrates how repeated simplex executions are handled -- in

particular, how the underlying region of the structure is reconfigured prior to a

new complex execution. The reader is provided with a self-contained explanation

of the Shell sort.

The seventh example, "GRID," provides an approximate solution to a

discrete analogue of the Dirichlet problem for a cube. The parallelization struc-

ture is a 1-complex. The underlying region is an integer rectangle whose number

of rows is the number of iterations to be performed and whose number of

columns is two less than the number of columns of the grid imposed on the

cube. The relevant constraint is the column constraint C, with skew factor 1. Two

copies of the grid are used; an iteration updates one copy by producing, on the

other copy, function values that are averages of the "nearest neighbor" function

values on the copy to be updated. Each updating of an interior slice of the grid

parallel to the yz plane provides a separate computational task.

GRID provides a non-elementary example with wide physical application

which is elegantly and simply dealt with via the gs2 macro in conjunction with

the parallelization structure introduced in this paper. The resulting program is

significantly simpler and shorter than that obtained via the "askfor" monitor

and, of course, requires no user-coded macros.

The eighth and last example, "QR," performs the Householder algorithm

used in the QR factorization of a square matrix. It provides a non-elementary

example of a 2-complex structure that illustrates the power of the macro pack-

age presented here. The underlying region is a right isosceles integer triangle in

the Cartesian integer plane. Simplex 1 has the hypotenuse as its underlying

region, while the remaining points of the triangle form the underlying region for

simplex 2. Tasks associated with simplex 1 are called "creates," while tasks asso-

ciated with simplex 2 are called "applies."

This example uses the C2, XR12 and XC21 constraints. XR12 means here that

each "create" must be completed before a corresponding row of "applies" can

begin. XC21 and C2 together mean here that a column of "applies" must be com-

pleted before the corresponding "create" can begin, and each "apply" must be

completed before the "apply" directly below it can begin.

- 36-

As in the last example, the user here who only has to insert the macros with

correct parameters (as well as provide the relevant reserved variables with

values) is spared the considerable complexity of writing his own monitor macros

(for contrast, see the treatment of this example via the askfcr monitor in [1].)

6. Examples

6.1. ADDTWO

A and B are two vectors with the same number N of elements. N is assumed

to be less than or equal to 1000. A and B are to be added so as to produce C, i.e.,

C(J, = A(J)+B(J) for 1sJ N.

The N additions are all independent of one another.

This parallelization structure may be described by a simplex whose under-

lying region S has 1 row and N columns. S is the 1xN integer rectangle depict "

below for the representative case N = 5:

.

1,1 1,2 1,3 1,4 1,5

For each (1,J), T11 is the task "add A(J) + B(J) to produce C(J)."

There are no row or column constraints in this simplex. Thus the macro call

parameters include no C's, R's, or X's; for example, the call to the gs2 macro is

given by gs2(1, 00,00,00,00).

User-supplied values to the gs2uar macro are as follows:

RB11 = 1

RB12 = 2

CB11 = 1

CB12 = 1000

RB21 = 1

RB22 = 2

CB21 = 1

CB22 = 1

The above values are supplied to the gs2uar macro via eight define state-

ments. The last four values (RB21, RB22, CB21 and CB22) are formal values; they

- 37 -

are relevant only to simplex 2, while the parallelization structure here involves

only simplex 1. In future examples involving only one simplex these four values

will not be mentioned, but the same values should always be supplied.

User-supplied values to the gs2irnit2 macro are as follows:

MNRV1 = 1

MXRV1 = 1

MNCV1 = 1

MXCV1 = N

LFBDY1(1) = 1

RTBDY1(1) = N

UPBDY1(J) = 1 for 1 J N.

The above values are supplied to the gs2init2 macro via Fortran assignment

statements; of course, those for UPBDY1 are supplied within a DO loop.

Note: This example can be handled easily by the getsub macro (see the Overbeek

and Lusk papers). It illustrates that the getsub macro can be viewed as the spe-

cial case of the gs2 macro obtained when the parallelization structure is a sim-

plex and the underlying region S consists of exactly one row.

Since there are no constraints in this example, the synchronization pattern

here is exactly the same as the picture of the underlying region S given above.

6.2. CHECKT'WO

This is the last example dealt with in the Overbeek and Lusk tutorial [2]. It

deals with a sequence of identical problems. The individual problem takes two

vectors A and B with the same number N of elements (N is assumed to be less

than or equal to 1000) and determines whether the sum C of A and B, defined

just as in ADDTWO by

C(J) = A(J)+B(f), for 1 sN

has some component C(J) greater than 100.

Thus we wish to add corresponding components of A and B and keep going

either until all are added, with none of the sums being greater than 100 (this is

called a solution by exhaustion, since we have exhausted all the tasks to be done

without satisfying the given condition), or until some one component sum

exceeds 100. If this event happens, then no new component sums should begin,

-38-

while all those already begun but not yet completed should be terminated in an

orderly way (the way this is accomplished here is by allowing them to complete),

and then "windup processing" should take place.

The parallelization structure here is precisely the same as in ADDTWO, since

the possibility of terminating the computation without performing all N com-

ponent sums is superimposed on the parallelization structure rather than being

a part of it.

Thus once again we have a simplex whose underlying region S has 1 row and

N columns. S is the 1xN integer rectangle drawn below for the representative

case N = 5:

1,1 1,2 1,3 1,4 1,5

For each (1,J), TI. is the task "add A(J) + B(J) to produce C(J), and terminate the

problem if C(J)>100."

Just as with ADDTWO, there are no row or column constraints in the simplex.

The macro call to gs 2 is done via gs 2(1,00,00,00,00).

The user-supplied values to both the gs 2var and the gs 2init 2 macros are

exactly the same as in ADDTWO. Thus the user-supplied values to the gs 2var

macro are as follows:

RB11 = 1

RB12 = 2

CB11 = 1

CB12 = 1000

RB21 = 1

RB22 = 2

CB21 = 1

CB22 = 1

Similarly, the user-supplied values to the gs2i7nit2 macro are

MNRV1 = 1

MXRV1 = 1

MNCV1 = 1

MXCV1 = N

- 39-

LFBDY1(1) = 1

R7'BDY1(1) = N

UPBDY1(J) = 1 for 1 JsN.

Termination in the event of the condition C(J)>100 being satisfied is

accomplished via the "end of complex" macro cmplxend. This macro sets vari-

ables that are internal to the gs 2 macro monitor so that no new subscript pairs

will be handed out . Then once a process completes a component sum and

returns to the gs2 monitor, it enters into a windup processing stage of the prob-

lem. Furthermore, cmplxend will set the variable EXHST to 0, indicating that the

possibility of exhausting all the tasks in the problem without finding one for

which the sum C(J) exceeds 100 has been ruled out.

To deal with a sequence of such problems, we utilize the barrier macro in a

manner virtually identical to the way the Overbeek-Lusk barrier macro is used

in their tutorial (in their "Shell sort" program). This same method is used in our

version of the "Shell sort"; this is one of the subsequent examples below. As

noted there, when using our barrier macro to enable the repeated execution ci
the gs 2 macro in a given program, it should be called by the macro call bcr-

rier(1), and the statement after it should be labeled 3001.

6.3. GETDUPS

A and B are two vectors with the same number N of elements. N is assumed

to be less than or equal to 1000. A and B are to be added to produce C, i.e.,

C(J) = A(J)+B(J), for 1sTsN.

The N additions are all independent of each other. For each J, 2 CsN, D() is

set equal to 0 if C(J) and C(J-1) duplicate each other, i.e., if

C(J) = C(J-1),

and is set equal to 1 otherwise. D(1) is set equal to 1.

The parallelization structure may be described as a simplex whose underly-

ing region has 2 rows and N columns. More specifically, S is the 2xN integer rec-

tangle depicted below for the representative case N = 5:

1,1 1,2 1,3 1,4 1,5

2,1 2,2 2,3 2,4 2,5

-40-

For each (1,J), T 1 is the task

add A(J)+B(J) produce C(J).

For (2,1), T21 is the task

set D(1) = 1.

For 2sJsN, T2 j is the task

set D(J) = 0 if C(J) = C(J-1) and set D(J) = 1 otherwise.

The parallelizaiion structure here has one constraint, i.e., the column con-

straint C with skew factor 0. This constraint requires that

b 2J'e 1J for 1 JsN,

i.e., that for all J, T'2 cannot begin until after T1j ends.

The fact that in a simplex each row is traversed from left to right, i.e., that

bU<bIK whenever J <K,

enables the constraint to be formulated this easily. Let us see how the column

constraint C, together with left to right row traversal work together here. Sup-

pose, for example, that the next task to begin is T2 3 . Then we know that T22 has

already begun; since the column constraint must have been satisfied for (2,2),

T 12 must have completed, i.e. C(2) has already been computed. Once the

column constraint is satisfied for (2,3), then T13 has completed, i.e. C(3) has

been computed. Since C(2) and C(3) have already been computed, T23 , which

determines whether or not they are equal, may then begin.

Since there is a column constraint C in this structure, the gs 2 macro

should be called by gs 2(1, Co, 00,00,00).

User-supplied values to the gs2uar macro are as follows:

RB11 = 1

RB12 = 3

CB11 = 1

CB12= 1000.

User-supplied values to the gs2init2 macro are as follows:

MNRV1 = 1

MXRV1 = 2

MNCV1 = 1

MXCV1 = N

-41-

LFBDY1(1) = 1

LFBDY1(2) = 1

RTBDY1(1) = N

RTBDY1(2) = N

UPBDY1(J) = 1 for 1s sN.

A picture of the synchronization pattern for N = 5 is given by

. . . 0 .

1 I I I 1

It is instructive to examine now some variants of the parallelization struc-

ture described above in connection with the same problem.

First, suppose that all the D(J) are initialized to 1. Then task T1, which is

"set D(1) equal to 1," is redundant. We may then redefine T2 1 to be the "empty

task" p and write

T21=cp.

Notice that the column constraint C remains in full force, so that T2 1 cannot

begin execution until T11 , i.e.,

C(1) = A(1)+B(1)

completes.

Although T2 1 is the null task, we cannot completely remove it from the

parallelization structure. If this were attempted by redefining LFBDY1(2) to be 2

(we assume that N~t2), then T2 would only be constrained to start after T12

(C(2) = A(2)+B(2)) ends. Thus it would be possible for T22 to start before T11

ended, i.e., before C(1) was computed to be A(1) + B(1). But this would thwart

the purpose of T22, which is to compare C(1) and C(2).

Note that with the initializaton of all D(J) to 1, we may simplify the task Ts

for 2<J N to

set D(J) = 0 if C(J-1) = C(J).

There is no need to specify what happens otherwise, since D(J) is already equal

to 1 when T2 1 begins execution.

Thus, by modifying the parallelization structure used in this example, we

have introduced the concept of a "null task." Further modifications will illustrate

-42-

the concept of "skew factor" and of "jagged boundary."

Let us remove T21 (whether it be "set D(1) = 1" or the null task gp) and then

shift the remaining tasks in the second row one unit to the left.

In other words, we define a new task function T1 by the rules

T iJ = T1 for 1sJ N,

and

T2J = T2(+i1) for 1sJ N-1.

Define the region S1 to be

S1 = 1 (1,J): 1sJsN U (2,J): is sN-1 .

Then the simplex (S1 ,T1 -U1) also models the "getdups" example, so long as U1 ,

which indicates the constraints on the simplex, indicates the column constraint

C with skew factor 1.

S1 now has a jagged right boundary; although RTBDY1(1) is still N, now
RTBDY1(2) is N-1. The synchronization pattern may now be depicted (again for

N = 5) as

The user-supplied values must also be modified. Now CB12 = 1001, since the

skew factor of 1 must be taken into account.

An equivalent formulation would be to extend S1 (restoring the straight

right boundary) and to define T&j to be the null task gp. The skew factor is still 1,

and CB12 is still N+1. But now once again the user-supplied value RFBDY1(2) is

N. The synchronization pattern for N = 5 may now be drawn as

" " 0 0 0

1 1 0 1 0 f 0 r

Since there is no N+1'st column in S1, TTN is constrained only by TIN.

-43-

6.4. GETADUP

This modification of example 2 provides an instructive, elementary example

of a parallelization 2-complex.

As in example 2, A and B are two vectors with the same number N of ele-

ments. N is assumed to be less than or equal to 1000. A and B are to be added to

produce C via

C(J) = A(J)+B(J), for 1s sN.

The N component additions are all mutually independent.

We wish to determine if any successive C(J)'s duplicate each other, i.e., if

there is some J such that

2s ,sN and C(J-1) = C(J).

All we care about is whether there are any such duplicates. Therefore, if we find

one duplicate pair, we can terminate the computation.

We initialize D(J) to be 1 for 1s/sN. For 2 sJN, D(J) is set equal to 0 if

C(J-1) = C(J). A certain bit (actually, a Fortran INTEGER variable named

EXHST) is initialized to 1. If some D(J) is set to 0, then this bit is set to 0 and the

computation for this problem is terminated in an orderly manner, including

perhaps printing out the result that there is a duplicate. If no D(J) is set to 0,

this bit remains at 1. Thus, after all the D(J) are determined, termination pro-

cessing may include printing out the result that there are no duplicates.

The parallelization structure may be described as a 2-complex whose two

simplexes are (S', T', U'), which is simplex 1, and (S2 , T2 , U2), which is simplex 2.

As is always the case with our priority convention for 2-complexes, simplex 1 has

higher priority than simplex 2. This implies that when a process executes the

gs 2 macro searching for a subscript pair ready to begin execution from among

the current pair in simplex 1 and the current pair in simplex 2, it tilts its search

in favor of simplex 1 by examining that current pair first.

Here S2 is the 1xN integer rectangle (drawn for N = 5)

1,1 1,2 1,3 1,4 1,5

and for each (1,J) such that 1sJ N, Tip is the task

"add A(J) to B(J) to produce C(J)."

S' is (for N = 5) the integer rectangle

. . . .

2,1 2,2 2,3 2,4 2,5

- 44 -

T2 1 is the null task Sp. For 2sTsN, Tj1 is the task

if C(J-1) = C(J), then set D(J) = 0, begin no new computational tasks and

instead do windup processing, and clear a bit (EXHST) indicating that the

computation has been terminated by the finding of a duplicate pair, rather

than by performing all the T,) and finding no duplicates.

Since there are no internal constraints within the individual simplexes, U

and U2 are empty. However (as is always the case with a 2-complex according to

the definition here), there is a cross constraint. Simplex 2 column constrains

simplex 1, i.e., XC21 holds. This means that

Tj1 cannot begin until T1J has ended,

when 1 sJN.

The synchronization pattern may be drawn as

. . . . 0

1x 11 1x lx Ix

Points in simplex 1 lie on the top line, while points in simplex 2 lie on the

bottom line. As indicated earlier, simplex 1 points take priority over simplex 2

points.

The fact that computation can be terminated because of a condition being

satisfied for some Tj 1 is not part of the synchronization pattern. It enters into

the program through the use of the macro cmplzend.

Note that this method of structuring the problem offers the advantage that

if a duplicate pair is discovered early enough, many of the simplex 2 additions

may not be done, because they are superfluous and their superfluity was

discovered in time.

Since the only constraint is the cross-column constraint XC21, the gs 2

macro call is given by gs 2(2, OX, 00, 00, 00).

User-supplied values for simplex 1 to the gs2uazr macro are as follows:

RB11 = 2

RB12 = 3

CB11 = 1

CB12 = N.

User-supplied values for simplex 2 to the gs2uar macro are as follows:

-45-

RB21 = 1

RB22 = 2

CB21 = 1

CB22 = N.

User-supplied values for simplex 1 to the gs2init2 macro are as follows:

MNRV1 = 2

MXRV1 = 2

MNCV1 = 1

MXCV1 = N

LFBDY1(2) = 1

RTBDY1(2) = N

UPBDY1(.J) = 2 for 1sJ N

LWBDY1(J) = 2 for 1sJ N.

User-supplied values for simplex 2 to the gs2init2 macro are as follows:

MNRV2 = 1

MXRV2 = 1

MNCV2 = 1

MXCV2 = N

LFBDY2(1) = 1

RTBDY2(1) = N

UPBDY2(J) = 1 for 1sJ N

LWBDY2(J) = 1 for 1sJ N.

The macro civ.plzend is used to handle termination in the case when a

duplicate is found, just as in example CHECKTWO above. In particular, it will then

set the variable EXHST to 0.

6.5. MATSULT

Let A and B be matrices, where A has M rows and N columns, and B has N

rows and P columns. M, N, and P are all assumed to be less than or equal to 300.

A and B are to be multiplied together by matrix multiplication to produce the

MxP matrix C. If A(I,J), B(J,K) and C(I,K) denote, respectively, the (I,J)'th ele-

nient of A, the (J,K)'th element of B, and the (I,K)'th element of C, then we can

-46-

write the formula for matrix multiplication as

C(I,K) = ; A(I,J)xB(J,K)
/=1

for all I,K where 1IM and 1 K P.

The MP distinct computations of the C(I,K) are all independent. A substan-

tial amount of the parallelization potential in this matrix multiplication may be

obtained fairly simply. To do this, we use a simplex whose underlying region S

has M rows and N columns. More specifically, S is the MxP integer rectangle dep-

icted below for the case M = 4 and P = 6.

"

1,1 1,2 1,3 1,4 1,5 1,6

" S " 0 . .

2,1 2,2 2,3 2,4 2,5 2,6

" 0 0 . . .

3,1 3,2 3,3 3,4 3,5 3,6

" 0 0 0 . 0.

4,1 4,2 4,3 4,4 4,5 4,6

For each (I,K) in S, Tg is the task

compute C(I,K) via the formula

C(IK) = y'A(I,J)xB(J,K)
J=1

Since all the tasks T(I,K) are independent, this parallelization structure has

no constraints; therefore, since no constraints need be indicated on the syn-

chronization pattern, the picture of the synchronization pattern coincides with

the above integer rectangle.

Also, since there are no constraints, the gs2 macro may be called via

gs 2(1,00,00,00,00).

User-supplied values to the gs2uacr macro are as follows:

RB11 = 1

RB12 = 301

-47-

CB11 = 1

CB12 = 300.

User supplied values to the gs2init2 macro are as follows:

MNRV1 = 1

MXRV1 = M

MNCV1 = 1

MXCV1 = P

LFBDY1(I) = 1 for 1sIsM

RTBDY1(I) = P for 1sIsM

UPBDY1(J) = 1 for 1s JP.

This is a basic example of a two-dimensional parallelization structure whose

underlying region is an integer rectangle with sides of arbitrary length and

which has no constraints imposed.

6.6. SORT

Three Shell sorts are to be performed in this example: the first on a vector

of 100 elements, the second on a vector of 1000 elements, and the third on a

vector of 10000 elements. We are going to set, in the gs2 context, the exact same

Shell sort example dealt with in Overbeek and Lusk [2], on pages 13-20.

This example will illustrate, among other things, how in the gs2 setting

regions with jagged boundaries occur, how the internal row constraint R arises,

how the (internal) row-constraint synchronization pattern is depicted, and ho-:r

multiple instances of the same problem are handled within one program (e.g.,

three Shell sorts on arrays of different lengths within one program).

In connection with the last question, recall that the program structure util-

ized here will always have a main program, a subroutine SLAVE, and a subroutine

WORK. The program will employ NPROCS processes. One of these processes will

begin executing the main program. At some time during the execution of the

main program, it will create the remaining NPROCS-1 processes, each of which

will begin executing a copy of SLAVE. All subroutine SLAVE does is to call subrou-

tine WORK. The main program will also call WORK. No parameters will be passed

when the main program creates a copy of SLAVE.

If our program is to deal only with one instance of one problem, then no

parameters are passed when WORK is called, either by the main program or by a

copy of SLAVE.

-48-

However, if multiple instances of one problem are contemplated, then one

parameter will be passed whenever WORK is called; it will be received in WORK by

the rummy integer variable WHO. When the main program calls WORK, it will

pass the value 0; but when a SLAVE calls WORK, it will pass the value 1. Thus a

copy of WORK will be able to use the variable WHO to determine whether its

immediate ancestor is the main program or a SLAVE and thus to where, after a

particular instance of the problem has been completed, control should be

transferred. The use of the variable WHO in this way is illustrated in the

Overbeek-Lusk tutorial (in particular, see p. 20, note 4, as well as the preceding

code). It should also be clear from an examination of the (more structured) ver-

sion of the Shell sort presented here.

We will return later in this example to the question of dealing with the mul-

tiple instances of a Shell sort. But for now, let us turn to the question of dealing

with one Shell sort.

We begin by giving, for completeness, a somewhat formal summary presen-

tation of the Shell sort to be used here. If the reader would like a more intuitive

exposition, he should consult the Overbeek-Lusk tutorial at pages 13-20.

First an overview of our presentation. To sort a sequence

means to rearrange the values z; while keeping the subscripts

il, i2, '.-.- , K

so that the rearranged sequence

is monotone increasing, i.e.,

We assume here, of course, that the sequence of integer indices is strictly mono-

tone increasing, i.e., that

The "insertion to the left" (IL) sert sorts the zg by first sorting the first

(leftmost) two zih, then the first three, then the first four, and so on, until all the

z are sorted.

IL is the function composition of the IL1 (insert the J'th element to the left)

sorts. For 2s sK IL, sorts the first J zI if the first J-1 ze are already sorted.

- 49 -

In formula,

IL =ILK-ILK-1.-....IL3 -IL2

where - is used o denote function composition. Thus to apply IL to a sequence,

first apply IL2 , then IL3 , and so on until ILK.

The action of the I may be defined recursively. IL2 sorts a sequence

y1 , yi by doing nothing if the two values are in the right order and otherwise

interchanging the two values, producing a sorted sequencee ztZ~i-'

IL3 sorts a sequence

y1t , y i,

where it is assumed that the sequence yi 1 , y 2 is already sorted, as follows: if yt

and y are in the right order, then IL3 does nothing. Otherwise it interchanges

the values of y and y, producing the output sequence

z1, Z.2 , Zg.

Now IL2 is applied to the sequence zt , zit to produce a sorted result

u~l 2,wia

In general, IL sorts the sequence

where it is assumed that the sequence

is already sorted, as follows: if yiJ_1 and y, are in the right order, then IL does

nothing. Otherwise it interchanges the values of yr_1 and yr, producing the out-

put sequence

, zi , --- , z

Now IL 1-l is applied to the subsequence

Zi , ., - . , z.

to produce the sorted result

The Shell sort sorts a sequence of distinct integers

z , z2e,.- - , ZN.

- 50-

It takes as given a suitable decreasing sequence of integers

G1 >G2 > -..- >G,

where 1 = Gy and G1 < 3. The G are called "gaps," and G1 is called the j'th

gap.

Within the framework of this example, the gaps G1, together with the

number of gaps M, will be defined by the relations

G1 = 1,

G = 3G1 +1 + 1 for 1sIsM-1,

3Gi + 1 <N,

and

3(3G 1 + 1) + 1:z N.

The Shell sort is done in M iterations, one for each gap G1 . The j'th itera-

tion begins by decomposing its input sequence

Z 1,9Z ,''', ZN

into G3 separate, disjoint subsequences, each of which is of the form

Zq, Zq+Gj, Zq+2Cy, - ,Zq+HGiu

where

and H is the largest integer such that

q + HG1 s N.

(Note that successive indices in the above sequence of z's differ by G; thus the

term "gap" for the G.)

The j'th iteration continues by applying IL to sort each of the G1 separate,

disjoint subsequences. Then these sorted subsequences are reassembled into a

sequence

W 1 , W 2 , , WN

This sequence is the output (result) of the j'th iteration and becomes the input

sequence to the (j+1)'st iteration if j s M. The result of the M'th iteration is the

result (output) of the Shell sort and is completely sorted.

Now that the summary presentation of the Shell sort is done, we turn to set-

ting up the relevant Fortran program and parallelization structure. Let A be an

- 51 -

array with N elements, where N is assumed to be less than or equal to 10000.

A(1), A(2),-.- , A(N)

is the sequence to be sorted by the Shell sort. The sort will be done in M itera-

tions, with gaps

GAP(1), GAP(2), --. , GAP(M).

The gaps and M will be obtained by first constructing a sequence

XGAP(1), XGAP(2), -"-"-", XGAP(K)

by setting

XGAP(1) = 1,

XGAP(L) = 3XGAP(L-1) + 1 for L z 2

and letting K be the smallest integer such that

XGAP(K) N

where N is the number of integers to be sorted. Then we set

M = K-2,

and

GAP(I) = XGAP(M+ 1-I) for 1sIsM.

Thus the sequence of GAP's from 1 to M is simply the sequence of XGAP's from 1

to M, but taken in reverse order.

The parallelization structure is a simplex whose underlying region has M

rows and N columns, where N is the number of elements to be sorted and M is

the number of iterations to be performed. More specifically, S is the region in

the Cartesian integer plane consisting of all integer pairs (,J) such that

1sIsM, and 1 s.sGAP(I).

A representative picture of S for the case when M = 3 is presented below.

The relevant gaps then are

GAP(1) = 13, GAP(2) = 4, and GAP(1) = 1.

" 0 0 0 0 0 0 0 . 0 0 0

1,1 1,2 1,3 1,4 1,5 1,6 1,7 1,8 1,9 1,10 1,11 1,12 1,13

2,1 2,2 2,3 2,4

0

3,1

-52-

Thus, the Shell sort exhibits a simplex with a jagged right boundary.

For each (I,J) in S, T is the task

apply the "insertion to the left sort" IL to the subsequence of A obtained by

considering only those values A(I) whose indices I belong to the sequence

J, J+GAP(I), J+2GAP(I),"--- , J+QGAP(I),

where Q is the largest integer such that

J + QGAP(I) s N.

For a fixed I, where 1sIsM, the computational tasks in the I'th row, i.e.

(Ty : 1 s J sGAP(I)1,

provide the tasks for the I'th iteration of the Shell sort. The set of all computa-

tional tasks, i.e.,

STy 1:s IsM, 1 <J= GAP(I)],

provide the tasks for one full Shell sort.

It is natural here to impose the constraint that the (I-1)'st iteration be com-

pleted before the I'th iteration begins, i.e., to impose the row constraint R on

our simplex. When R is the internal constraint of a simplex, all the parallelism to

be obtained is contained within the individual rows of tasks; we are effectively

doing a serial DO loop of individual rows. (Within each row all the tasks may be

performed in parallel, subject only to the implied begin constraint that the tasks

within a row begin in order of their column subscripts.)

The row constraint R is represented on the picture of the underlying region

S by an arrow (with an "R") pointing down from the leftmost element of each

(but the last) row to the leftmost point in the next row.

Thus the synchronization pattern for this example when M = 3 may be

drawn as

* * 0 00

R

0

- 53-

Since the parallelization structure is that of a simplex with the row con-

straint R, the call to the gs2 macro is given by gs2(1, 00, R0, 00,00).

User-supplied values to the gs2uar macro are as follows:

RB11 = 1

RB12 = 20

CB11 = 1

CB12 = 10000.

User-supplied values to the gs2rnit2 macro are as follows:

MNRV1 = 1

MXRV1 = M

MNCV1 = 1

MXCV1 = GAP(1)

LFBDY1(I) = 1 for 1 I M

RTBDY1(I) = GAP(I) for 1I M

UPBDY1(J) = 1 for 1ssGAP(I).

To supply these values, the user must first compute M and

GAP(1),-.- , GAP(M).

As we remarked earlier, in this example we will do not only one Shell sort

but three. Performing more than one Shell sort, i.e., executing the simplex more

than once, involves a use of the barrier macro virtually identical to the use Over-

beek and Lusk give their barrier macro (at p.19, line 189, of the tutorial) in their

Shell sort program. Although there are certain differences between our barrier

macro and the one used by Overbeek and Lusk, for purposes of this paper the

reader need only note that the call to our barrier macro when it is used to sup-

port multiple complex executions is given by "barrier(1)" and that the Fortran

statement which follows the call "barrier(1)" should be labeled 3000.

Each time a new Shell sort is done, the user-supplied values to the gs2init2

macro that have changed need to be recomputed. In this example, where three

Shell sorts are done on vectors with differing numbers of elements, we will find it

simplest to recompute before each Shell sort all the user-supplied values to the

gs2init2 macro.

To accomplish this, we must also recompute M and GAP(1), - -. , GAP(M).

(This recomputation could be simplified considerably if the order of the vectors

to be sorted was reversed, i.e., if the 10000 element vector was sorted first, then

the 1000 element vector, and last the 100 element vector. But it is more

- 54 -

instructive to consider the case that requires more recomputation.)

Once the user-supplied 'variables to gs2init2 are recomputed, then a call to

that macro (in the form "gs2init2(1, OO,RO, 00, 00)") will provide certain appropri-

ate initializations needed for the particular problem (i.e., Shell sort) under con-

sideration. Immediately following the "problem initialization" performed by

gs2Wnit2 should be the call to subroutine WORK.

6.7. GRID

We now consider an example that is a discrete model of the Dirichlet prob-

lem for a cube in Euclidean three-dimensional space. In that problem, one is

given a continuous function f defined on the boundary of the cube and must

extend f to a continuous function g defined on the whole cube such that g is har-

monic on the interior of the cube, i.e., g satisfies the Laplace equation

ga + gy = 0.

Here we are given a "discrete cube" (i.e., a three-dimensional cubic grid)

and a function f defined on the boundary of the grid. We are to produce a three-

dimensional Fortran array whose indices are the coordinates of the grid, whose

values at grid boundary points are the same as the values of f, and which is in

some sense a discrete analogue of a harmonic function.

A harmonic function satisfies the property that its value at a point is the

average of its values in a neighborhood of that point. We obtain our array by

using a discrete analogue of this averaging property.

We employ two 3-dimensional Fortran arrays A and B. The indices of A, as

well as the indices of B consist of the points of the pubic grid under considera-

tion. The values of A and B for indices which correspond to grid boundary points

are always identical to the function values of f at those points. The values of A at

interior grid points are initially set to 0.

A fixed number of iterations is set in advance. In an odd iteration, the inte-

rior values of B are computed by averaging neighboring values of A. In an even

iteration, the roles of A and B are reversed. A column constraint, with skew fac-

tor 1, provides for the necessary synchronization.

After the given number of iterations has been completed, the last array to

be computed (A if the number of iterations is even, B if it is odd) provides the

desired discrete analogue of an approximate solution of the Dirichlet problem.

Now we focus in more sharply on the details. Let DIM be a positive integer

such that 2sDIMs20. Let A and B be 20x20x20 three-dimensional real arrays.

For purposes of this problem we will focus on those elements A(I,J,K) of A and on

those elements B(I,J,K) of B whose coordinates I, J, and K all are less than or

-55-

equal to DIM. With this restriction in focus, A and B both represent real-valued

functions defined on the three-dimensional integer cubic grid

D = [1,DIM]x[1,DIM]x[1,DIM].

The boundary of D, denoted by dD, is defined as the union of the 6 sets

[1]x[1,DIM]x[1,DIM]

[DIM]x[1. YDIM]x[1,ZDIM]

[1,DIM]x[1]x[1,DIM]

[1,DIM]x[DIM]x [1,DIM]

[1,DIM]x[1,DIM]x[1]

[1,DIM]x[1,DIM]x [DIM].

The interior of D, denoted by int D , is defined as D-dD, i.e., the set of

points of D that are not on the boundary of D. It can be represented as a Carte-

sian product by

int D = [2,DIM-1]x[2,DIM-1]x[2,DIM-1].

We are given a function f defined on dD. We will exhibit a method of extend-

ing it to a function g defined on all of D.

Define, for all (I,J,K) in dD,

A(I,J,K) = f (I,J,K) and B(I, J,K) = f (I,J,K).

Throughout the computation the values of A(I,J,K) and B(I,J,K) for (I,J,K) in dD

will remain unchanged.

Initialize

A(I,J,K) = 0 f or all (I,J,K) in int D.

A specific positive number M of iterations is given. Assume M to be less than or

equal to 1000.

The parallelization structure may be described by a simplex whose underly-

ing region S has M rows and DIM-2 columns. More specifically, S is the

Mx(DIM -2) integer rectangle drawn for the representative case M = 5 and DIM =

8 below.

- 56-

"

1,2 1,3 1,4 1,5 1,6 1,7

" 0 " . 0.

2,2 2,3 2,4 2,5 2,6 2,7

* 0 S . 0. .
3,2 3,3 3,4 3,5 3,6 3,7

. " . . .
4,2 4,3 4,4 4,5 4,6 4,7

. 0 " . . .

5,2 5,3 5,4 5,5 5,6 5,7

T12 is the task

compute all the B(2,J,K), where (2,J,K) is in the interior of D, by setting

B(2,J,K) equal to the average of the A values at the six neighboring points of

(2,J,K).

Those six neighboring points are

(1,J,K), (3,J,K\ (2, J-1,K), (2,J+1,K), (2, J,K-1) and (2,f,K+1).

T12 may be thought of as updating the values of the A function on the interior

grid slice I = 2 by computing B values there, each of which is the average of the

six neighboring A values.

More generally, for 2sLsDIM-1, T1L is the task

compute all the B(L,J,K), where (L,J,K) is in the interior of D, by setting

B(L,J,K) equal to the average of the A values at the six neighboring points of

(L,J,K).

T1L can be thought of as updating the A values on the interior grid slice I = L

(here, I denotes an integer variable ranging over the first coordinate in three-

dimensional space) by averaging, just as in the particular case L=2 described

above.

We have now described the first row of tasks T1L of the parallelization sim-
plex. We will now define the remaining rows of tasks. If I is an odd integer, and
1 I<M, then whenever 2sLsM-1 TIL has exactly the same definition as does

T1L. TIL is the task

-57-

compute all B(L,J,K), where (L,J,K) is in the interior of D, by setting B(L,J,K)

equal to the average of the A values at the six neighboring points of (L,J,K).

TIL can be thought of as updating the values of the A function on the interior

grid slice I = L by averaging, just the same as T1L. These updated values are

used as the new values of the B function.

If I is even, TIL has the same definition as T1L, except that the roles of A and

B are reversed. Now TL is the task

compute all A(L,J,K), where (L,J,K) is in the interior of D, by setting A(L,J,K)

equal to the average of the B values at the six neighboring points of (L,J,X).

For I even, TIL can be thought of as updating the values of the B function on the

interior grid sliceI = L by averaging. These updated values are used as the new

values of the A function.

The simplex here has one constraint, namely, the column constraint C with

skew factor 1. This constraint says that

bIJte ty_1)J whenever 2sI M and 2 J DIM-1,

and

bIJme (I_1)(J+1) whenever 2 I M and 2J5 DIM -2.

To summarize, A starts off with the given values f on dD and the value 0 on

int D. During the first iteration B (as it always does) assumes the given values f

on dD. However, at each point of int D, B takes on the value obtained by averag-

ing the six values of A at "neighbors" of that point. This iteration "updates" the

values of A on D; the updated values are those of B on D.

During the second iteration the roles of A and B are reversed. As always, A

assumes the values of f on dD. However, on int D, at each point A takes on the

average of the six neighboring values of B. (These values of B are those obtained

during the first iteration.) The column constraint C, with skew factor 1, ensures

that a second iteration task T2J will not begin until the first iteration tasks

Ti(j_1), T1j and T1 (j+i) have all ended. Once these tasks have ended, B has all

those needed updated values produced by the first iteration which serve as

inputs to T2 1.

Note that if T2J is ready to begin, i.e., T2 1 is the current task in the simplex

and the constraints imposed on T2J by the column constraint with skew factor 1

are satisfied, then T1J and T1(/+1) have completed, by the definition of the

column constraint with skew factor 1. But if J>2, then T2(j- 1) must have already

begun, since T2J is the current task, and a row in a simplex is traversed in order

of column subscripts. Thus T1(J-1) must also have ended, since its end was a

prerequisite (via the column constraint) to the beginning of T2 (J 1_).

-58-

The odd iterations all are identical to the first, except that each time

through the values of B are computed using the values of A obtained during the

previous iteration. Similarly the even iterations are all identical to the second,

with the roles of A and B interchanged from what they were with regard to odd

iterations.

The L'th task of the N'th iteration computes the updated values on the slice

of int D consisting of all points of int D whose first coordinate is L.

The values computed during the last (M'th) iteration are taken to be the

final result. Thus, these are the values of A on D if M is even, and the values of D

on D if M is odd.

The column constraint C, with skew factor 1, always ensures that the

correct inputs to the task Tj are in place before that task can begin. Since the

simplex has the column constraint C, the macro call to gs2 is exactly the same

as that used in the GETDUPS example, namely, gs2(1,CO, 00,O0,00). Note that

the skew factor does not affect the parameters in the macro call.

User-supplied values to the gs2uar macro are as follows:

RB11 = 1

RB12 = 1001

CB11 = 2

CB12 = 20.

User-supplied values to the gs2imnit2 macro are as follows:

MNRV1 = 1

MXRV1 = M

MNCV1 = 2

MXCV1 = DIM-1

LFBDY1(I) = 2 for 1<I M

RTBDY1(I) = DIM-1 for 1sI M

UPBDY1(J) = 1 for 2 f DIM-1

SKW1 = 1.

Note that the skew factor 1 is introduced here as a user-supplied value via

the variable SKW1.

A picture of the synchronization pattern is given by

-59-

L i l/I t /1 1/I

1I 1 I / I / I / i t/

0 0 0 0 0

6.8. QR

The formulation of this problem is essentially taken from Overbeek and

Lusk [1, p. 26].

We study a parallelization structure involved in performing the QR factoriza-

tion of a matrix, more specifically, in performing Householder's algorithm. It is

not necessary to understand what the algorithm does; it is necessary to under-

stand the following synchronization requirements.

1. The first step in performing Householder's algorithm on an NxN matrix is to

"create the reflection for column 1." This reflection can then be applied to

all remaining columns.

2. A reflection will be created for each column J. The reflection for column J

can be created only after

a.

b.

all reflections for columns L, where L<J, have been created, and

for all L<J, the reflection for column L has been applied to the J'th

column.

3. The reflection for column K can be applied to all columns f, where K<J.

However, for a given column K, these "applies" must take place in order.

More specifically, the application of the reflection for column K to column

.J, if J>1, cannot begin until the reflection for column K has been applied to

column J-1.

We can reformulate these synchronization requirements as follows:

(A) For each J, 1s sN, there is a task C(J) "create the reflection for column

J."

-60-

(B) For each J,K, 1sJ<KsN, there is a task A(J,K) "apply the reflection for
column J to column K."

(C) C(J) cannot begin until all A(L,.J) have ended, where 1sL<J.

(D) A(J,K) cannot begin until A(J-1,K) has ended, if Jz2.

And of course, since a reflection cannot be applied until it has been created, we

have

(E) Whenever 1sJ<KsN, A(J,K) cannot begin until C(J) has ended.

Note that the requirement

"C(J) cannot begin until C(L) has ended, for L<J"

need not be included, since it follows from (C) and (E).

Note further that (C) may be replaced by the weaker condition

(C') Whenever Jz2, C(J) cannot begin until A(J-1,J) has ended.

This is because (C) follows from (C') and (D).

Thus we have a "minimal" set of synchronization requirements (A), (B), (C'),

(D), and (E) upon which we can base our parallelization structure.

The parallelization structure may be described by a 2-complex

((S', T1, U1), (S2, T2, U2), V).

The underlying region S' of simplex 1 is the set of all points in the integer Carte-

sian plane that have coordinates (J,J), where 1s sN. In other words, S' is the

integer line segment from (1,1) to (N,N). A picture of S when N = 6 is dra vn

below.

1,1

"

3,3

0

4,4

,

5,5

,

6,6

-61-

For each (J,J) in Si, Tkz is the task C(J), "create the reflection for column J."

The underlying region S2 of simplex 2 is the set of all points (J,K) in the

integer Cartesian plane such that 15J<KSN. In other words, S2 is the integer

triangle whose "boundaries" are the three integer line segments

J+1 = K, for 1s/sN-1,

J = 1, for 2sKsN,

K = N, for 1s/sN-1.

S2 (for N = 6) is the integer triangle drawn below.

. .0. " 0

1,2 1,3 1,4 1,5 1,6

. 0 0 0

2,3 2,4 2,5 2,6

" .

3,4 3,5 3,6

" "

4,5 4,6

"

5,6

In accordance with the convention in force here, the I coordinate (the first

coordinate) will be on the vertical axis, with lower points corresponding to larger

values of J, and the K coordinate (the second coordinate) will be on the horizon-

tal axis, with points to the right corresponding to larger values of K.

For each (J,K) in S2, TYK is the task A(J,K) "apply the reflection for column I

to column K.

The underlying region S of the 2-complex, which is the union of S1 and S2,

is therefore the integer triangle whose "boundaries" are the three integer line

segments

J = K, for 1sTsN

I = 1, for 1sK N

K = N, for 1sJN.

S (for N = 6) is the integer triangle drawn below.

- 62

" 0 . ,
1,1 1,2 1.3 1,4 1,5 1,6

0 0 ." .
2,2 2,3 2,4 2,5 2,6

3,3 3,4 3,5 3,6

4,4 4,5 4,6

" .

5,5 5,6

6,6

The line separates the two underlying regions S1 and S2. Points in S1 lie below

the line, while points in S2 lie above. .

To find the constraints associated with the 2-complex, we interpret the syn-

chronization requirements (C'), (D) and (E) given above.

Condition (C') requires that for Ja2, C(J) cannot begin until A(J-1,J) has

ended. This translates into requiring that TJ. cannot begin until TF&-1)j has

ended, i.e., that

bJzetg...1);for J2.

But this states that simplex 2 constrains simplex 1, i.e., that the cross-column

constraint XC21 holds.

Condition (D) requires that for Jz2, A(J,K) cannot begin until A(J,K-1)

has ended, i.e., that TYk cannot begin until T(K-1) has ended. This is precisely

the condition

bJKfeJ(K-1)

when J22, and (J,K) and (J,K-1) are in S2. But this states that simplex 2 is

column constrained, i.e., that the constraint C2 (with skew factor 0) holds.

-63-

Finally, Condition (E) requires that whenever 1sT<KN, A(J,K) cannot

begin until C(J) has ended, i.e. that Tfk cannot begin until T}k has ended. This is

precisely the condition

when 1Js<K&N.

But this is equivalent to the condition that simplex 1 cross row constrains sim-

plex 2, i.e., that the constraint XR12 holds.

Therefore, the parallel structure used here is the 2-complex

((Si, T, U), (S2, T, U2), V),

where S', S2, T1, and T2 are as described above. U', the set of internal con-

straints on simplex 1, is empty. U2 , the set of internal constraints on simplex 2,

consists of the column constraint C2 with skew factor 0. V, the set of cross con-

straints, contains the cross-column constraint XC21 and the cross-row con-

straint XR12.

Therefore, for this example, the gs 2 macro call is gs 2(2,0X,00, CO,OX).

User-supplied values for simplex 1 to the gs2uar macro are as follows (we

assume that N, the size of the square matrix, is less than or equal to 300):

RB11 = 1

RB12 = 301

CB11 = 1

CB12 = 300.

User-supplied values for simplex 2 to the gs2uar macro are as follows:

RB21 = 1

RB22 = 300

CB21 = 2

CB22 = 300.

User-supplied values for simplex 1 to the gs2Lnit2 macro are as follows:

MNRV1 = 1

MXRV1 = N

MNCV1 = 1

MXCV1 = N

LFBDY1(I) = I for 1sI N

- 64 -

RTBDY1(I) = I for 1sIsN

UPBDY1(J) = J for 1sJsN

LWBDY1(J) = J for 1sJsN.

User-supplied values for simplex 2 to the gs2init2 macro are as follows:

MNRV2 = 1

MXRV2 = N-1

MNCV2 = 2

MXCV2 = N

LFBDY2(I) = 1+1 for 1sIsN-1

RTBDY2(I) = N for 1sI N-1

UPBDY2(J) = 1 for 2J N.

LWBDY2(J) = J-1 for 2JsN.

Note: The formulation of this problem in Overbeek and Lusk [1, p. 28] deals

with the performance of the Householder algorithm for several matrices, rather

than for just one. This use of the gs 2 macro for multiple problems is handled by

the use of the barrier macro, called in the form bcrrier(1), just. as in the SORT
and CHECKTWO problems dealt with earlier. Prior to the time a new Householder

algorithm computation is begun, and the problem initializer gs2init2 is exe-

cuted, the user-supplied values that have changed must be resupplied by the

user. Thus, for example, if the dimension of the matrix is changed, then MXRV1,

MXRV2, MXRV2, MXCV2, as well as all the underlying region boundaries

(LFBDY1, LFBDY2, RTBDY1, RTBDY2, LWBDY1, LWBDY2, UPBDY1, and

UPBDY2) should be recomputed before the relevant use of gs 2init 2 in the main

program.

As is always the case (by convention) with a 2-complex, simplex 1 hold

priority over simplex 2. This implies that if the current task in simplex 1 and the

current task in simplex 2 are both ready to begin a process begins executing

gs2 searching for a task to perform, then that process will select the current

task in simplex 1.

Thus, here the "creates" take priority over the "applies." This scheme has

the advantage that once a "create" is completed, it can remove a direct row end

constraint on a whole row of "applies" (the XR12 constraint), while a completed

"apply" can remove a direct column end contraint only on the task directly

beneath it. (the C2 or XC21 constraint). (Strictly speaking, one might say that a

completed "apply" removes, on the average, a constraint on half a row of

"applies," with reference to the row below that of the completed "apply.") Of

-65-

course, if one wished, one could give the "applies" priority by switching the

indices on the two simplexes of the complex.

Let us examine another perspective on the advantage obtained by giving

"creates" priority over "applies." As the applies T,P complete for K suitably near

N, they free up processes that cannot begin a new task until the "create"

TTj+1)(.r+1) completes. To avoid having these processes have significant periods of
unnecessary inactivity, the "create" T?:+1)(J+1) should begin before tasks TYk for

K near N whenever possible. Assigning priority to "creates" accomplishes this.

The synchronization pattern given by this complex is drawn below (for the

representative case N = 6).

0 -I "

i1 I I I I

0 - 0

lx I 1 I

Ix 1I

.X I

. - .0

ix

0

The horizontal arrows represent the XR12 constraint. The (plain) vertical
arrows represent the C2 constraint. The vertical arrows with an "X" represent

the XC21 constraint.

-66-

Referen

1. J. Clausing, R. Hagstrom, E. Lusk, and R. A. Overbeek, "A Technique for
Achieving Portability Among Multiprocessors: Implementation on the
Lemur," PdrraUel Computing, 1985. (to appear)

2. Harry F. Jordan, Parallel Programming an the HEP Multiple Instruction

Stream Computer, August 20, 1981.

3. E. Lusk and R. A. Overbeek, "Use of monitors in FORTRAN: a tutorial on the
barrier, self-scheduling DO-loop, and askfor monitors," ANL-84-51, Argonne

National Laboratory, July 1984.

4. Ewing L. Lusk and Ross A. Overbeek, "Implementation of Monitors with Mac-

ros: A Programming Aid for the HEP and Other Parallel Processors," Tech-

nical Report ANL-83-97, Argonne National Laboratory, Argonne, Illinois,

December 1983.

5. E. L. Lusk and R. A. Overbeek, "Use of Monitors in FORTRAN: a Tutorial on

the Barrier, Self-Scheduling Do-Loop, and Askfor Monitors," in Parallel

MIMD Computation: The HEP Supercomputer and its Applications, ed. J. S.

Kowalik, The MIT Press, 1985.

- 67-

Appendix A
The ADDTWO Example

define (RB11, 1)
define(RB12, 2)
define (CB11, 1)
define(CB12, 1000)
define (RB21, 1)
define (RB22, 2)
define(CB21, 1)
define (CB22, 1)

PROGRAM ADDTWO
newproc(SLAVE)

*

* COMMON AREA VARIABLES
*

INTEGER A(1000), B(1000), C(1000)
INTEGER NPROCS, N
COMMON /MAINC/ A, B, C, N, NPROCS

*

*** ***** * :* *

*

* DECLARE THE VARIABLES AND COMMON TO SUPPORT THE MONI TOR
*

x*a* *** * ::,:::;

*

gs2var
*

INTEGER I,TS,TE
*

a*** :::**

*

* INITIALIZE THE SELF-SCHEDULING DO-LOOP MONITOR
*

********************* *******************a************a** * aa:k*******:;:;::

*

gs2initl(1,00,00,00,00)
*

a****;:a ::;::

*

* READ IN THE NUMBER OF PROCESSES TO RUN IN PARALLEL
*

***:;::3:a

*

READ (5,10) NPROCS
10 FORMAT(I4)

WRITE(6,20) NPROCS
20 FORMAT(' NPROCS = ',I4)
*

* *** * *** ** ****** ** ***** *** ** * * * ****** *** ********** ** **** * * * * :::; ;:

- 68 -

*

* READ IN THE TWO INPUT VECTORS
*

*

READ (5,10) N
READ (5,10) (A(I), I = 1,N)
READ (5,10) (B(I), I = 1,N)

*

MNRV1 = 1
MXRV1 = 1
MNCV1 = 1
MXCV1 = N
LFBDY1(1) = 1
RTBDY1(1) = N
DO 17 I=1,N
UPBDY1(I) = 1

17 CONTINUE
gs2init2(1,00,00,00,00)

*

*************************************,**************** *********a* * *

*

* CREATE THE SLAVE PROCESSES
*

** **** * w *

*

clock(TS)
*

DO 30 I=1,NPROCS-1
create (SLAVE)

30 CONTINUE
*

CALL WORK
*

clock(TE)
TE = TE - TS
WRITE(6,40) TE

40 FORMAT(' TOTAL TIME= ',16)
*

WRITE (6,10) (C(I), I = 1,N)
STOP
END

*

*************** ******* ************************************ ********'* *:::

*

* THE SLAVE PROCESSES JUST CALL THE WORK SUBROUT INE TO ADD UP
* ELEMENTS UNTIL THE END OF THE VECTOR IS REACHED. THE PROCESS
* THEN EX I T (WHICH IS ASSUMED TO DESTROY THEM).

*

*

SUBROUT I NE SLAVE
*

CALL WORK

- 69 -

RETURN
END

*

"** * *** *

*

* THE WORK SUBROUT INE JUST CAUSES A PROCESS TO GRAB AVAI LABLE
* SUBSCRIPTS UNTIL ALL OF THE WORK HAS BEEN COMPLETED. AT THAT
* POINT THE SUBROUTINE EXITS. NOTE THAT IF THERE IS A SINGLE
* PROCESS (I.E., NO SLAVES), THE ALGORITHM STILL WORKS JUST
* FINE.

*

***:.:':: :::::a:.

*

SUBROUT INE WORK
*

* COMMON AREA VARIABLES
s

INTEGER A(1000), B(1000), C(1000)
INTEGER NPROCS, N
COMMON /MA INC/ A, B, C, N, NPROCS

*

gs2var
*

INTEGER I
*

10 CONTINUE
*

******* ****** * ***** **** * ******* ******* ** *** *** ******* * *****~**** * * a' : *a

*

* CLAIM THE NEXT AVAILABLE SUBSCRIPT (RETURNED IN I)
*

******************************** ** ******* ***** **** * * * r * .:;:::::: :*

gs2(1,00, 00,00,00)
*

1000 CONTINUE
*

C(J) = A(J) + B(J)
GO TO 10

*

3000 CONTINUE
RETURN
TND

- 70-

Appendix B
The CHECKTWO Example

define (RB11, 1)
define (RB12, 2)
define(CB11, 1)
deflne(CB12, 1000)
define (RB21, 1)
define(RB22, 2)
define(CB21, 1)
define (CB22, 1)

*** ,:.*.:

PROGRAM CHKTWO
* newproc(SLAVE)
* COMMON AREA VARIABLES
*

*

INTEGER A(1000), B(1000), C(1000)
INTEGER NPROCS, N
INTEGER I
COMMON /MAINC/ A, B, C, N, NPROCS

*

gs2var
*

gs2initl(1,00,00,00,00)
*

READ (5,10) NPROCS
10 FORMAT(I4)

WRITE(6,20) NPROCS
20 FORMAT('NPROCS = ',I4)

*

*

*

**********a**********a** ::: : ;:::

*

* READ IN THE TWO INPUT VECTORS
*

*** ***,*** -

*

READ(5, 11) N
READ(5,11)(A(I), I = 1,N)
READ(5,11)(B(I), I = 1,N)

*

DO 42 JJ = 1,N
C(JJ) = -1

42 CONTINUE
*

MNRV1 = 1
MXRV1 = 1
MNCV1 = 1

- 71 -

MXCV1 = N

DO 43 II = MNRV1,IMXRV1
LFBDY1(II) = 1
RTBDY1(II) = N

43 CONTINUE
*

DO 44 JJ = MNCV1,IMXCV1
UPBDY1(JJ) = 1
LWBDY1(JJ) = 1

44 CONTINUE
*

gs2init2(1,00,00,00,00)
*

DO 30 I=1,NPROCS-1
create(SLAVE)

30 CONTINUE
*

*

CALL WORK
*

IF(EXHST .EQ. 1) THEN
WRITE(6, 77)

ELSE
WRITE(6, 78)

END IF
77 FORMAT(' ', ' THERE IS NO VALUE GREATER THAN 100')
78 FORMAT(' ', ' THERE IS A VALUE GREATER THAN 100')

WRITE(6, 40)
40 FORMAT(' THE VALUES IN THE C VECTOR ARE AS FOLLOWS: ')

WRITE(6,12)(C(I), I=1,N)
11 FORMAT(I4)
12 FORMAT('',I4)

STOP
END

*

**

*

SUBROUT INE SLAVE
*

CALL WORK
RETURN
END

*

*

**

*

SUBROUT I NE WORK
*

INTEGER I
INTEGER A(1000), B(1000), C(1000)
INTEGER NPROCS, N
COMMON /MAINC/ A, B, C, N, NPROCS

- 72 -

gs2var

10 CONTINUE

gs2(1, 00, 00, 00.00)

1000 CONTINUE
*

C(J) = A(J) + B(J)
IF(C(J).GT.100) THEN

crnplxend(1, 00,00,00,00)
END IF

end1(1,00,00,00,00)
GO TO 10

3000 CONTINUE
RETURN
END

-73-

Appendix C
The GETDUPS1Eample

define (RB11, 1)
define(RB12, 3)
define (CB11, 1)
deflne(CB12, 1000)
define (RB21, 1)
define (RB22, 2)
define(CB21, 1)
define (CB22, 1)

******************************:************************************ :::;:**

* C = A + B. THEN D IS CREATED AS A VECTOR IN WHICH EACH ELEMENT
* IS SET AS FOLLOWS: D(I) = 0 IFF (C(I) = C(I-1). THOSE ELEMENTS
* OF D WHICH ARE NOT SET TO 0 ARE SET TO 1. D(1) IS ALWAYS SET
* TO 1.
*

*** ** :

PROGRAM GETDUP
newproc(SLAVE)

*

* COMMON AREA VARIABLES
*

INTEGER A(1000), B(1000), C(1000), D(1000)
INTEGER NPROCS, N
COMMON /MAINC/ A, B, C, D, N, NPROCS

*

gs2var
*

INTEGER I
*

*

************'*** *::,:::::: :

*

* INITIALIZE THE MONITORS
*

**************************;**************************** * ******,*** 't*

*

gs2initl(1,CO,00,00,00)
*

READ (5,10) NPROCS
10 FORMAT(14)

WRITE(6,20) NPROCS
20 FORMAT(' NPROCS = ',14)
*

*******************a**:"::- *

*

* READ IN THE TWO INPUT VECTORS
*

- 74

*

READ (5,10) N
READ (5,10) (A(I), I = 1,N)
READ (5, 10) (B(I), I = 1,N)

*

MNRV1 = 1
MXRV1 = 2
MNCV1 = 1
MXCV1 = N
LFBDY1(1) = 1
LFBDY1(2) = 1
RTBDY1(1) = N
RTBDY1(2) = N

DO 25 I=1,N
UPBDY1(I) = 1

25 CONTINUE

gs2init2(1, CO00, 00,00)

DO 30 I=1,NPROCS-1
create(SLAVE)

CONTINUE

CALL WORK
*

WRITE (6,40)
40 FORMAT(' THE

WRITE (6,10)
WRITE (6,50)

50 FORMAT(' THE
WRITE (6,10)
STOP
END

*

VALUES
(C(I),

IN THE C VECTOR ARE AS FOLLOWS: ')
I = 1,N)

VALUES IN THE D VECTOR ARE AS FOLLOWS:')
(D(I), I = 1,N)

THE SLAVE PROCESSES JUST CALL THE WORK SUBROUTINE TO ADD UP
ELEMENTS UNTIL THE END OF THE VECTOR IS REACHED. THE PROCESSES
THEN EXIT (WHICH IS ASSUMED TO DESTROY THEM).

* *** *** **** ********* ********* ** *** ******************** :* ******* ** *

*

SUBROUT I NE SLAVE
*

CALL WORK
RETURN
END

*

******** ***********************************#****************** * x3 * *i

*

* THE WORK SUBROUTINE PERFORMS A 2-STAGE COMPUTATION. FIRST,
* C = A + B IS COMPUTED. THE SECOND STAGE CALCULATES D.

30
*

*

*

*

*

*

- 75 -

***** **
*

SUB1ROUTINE WORK

* COMMON AREA VARIABLES

INTEGER A(1000), B(1000), C(1000),. D(1000)
INTEGER NPROCS, N
COMMON /MAINC/ A, B, C, D, N, NPROCS

gs2var

INTEGER I

CONT INUE

gs2(1,C0,00,00,00)
CONTINUE

IF (I .EQ. 1) THEN
C(J) = A(J) + B(J)
ELSE
IF (J .GE. 2) THEN

IF (C(J) .EQ. C(J-1)) THEN
D(J) = 0
ELSE
D(J) = 1
ENDIF

ELSE
D(1) = 1

ENDIF
END IF

endl(1,CO,00,00,00)
GO TO 10

CONT INUE

RETURN
END

10

1000

3000

76 -

Appendix D
The GETADUP Example

define (RB11, 2)
deflne(RB12, 3)
define(CB11, 1)
define(CB12, 1000)
define (RB21, 1)
defne(RB22, 2)
define(CB21, 1)
define(CB22, 1000)

PROGRAM GETADP
* newproc(SLAVE)
* COMMON AREA VARIABLES
*

*

INTEGER A(1000), B(1000), C(1000), D(1000)
INTEGER NPROCS,N
INTEGER I
COMMON /MAINC/ A, B, C,D, N, NPROCS

*

gs2var
*

gs2initl(2,oX,00,00,00)
*

READ (5,10) NPROCS
10 FORMAT(14)

WRITE(6,20) NPROCS
20 FORMAT('NPROCS = ',I4)

*

*

*

* READ IN THE TWO INPUT VECTORS

*

*

READ(5, 11) N
READ(5,11)(A(I), I = 1,N)
READ(5,11)(B(I), I = 1,N)

DO 42 JJ = 1,N
C(JJ) = -1
D(JJ) = -1

42 CONTINUE
*

MNRV1 = 2
MXRV1 = 2

- 77 -

MNCV1 = 1
MXCV1 = N

DO 43 II = MNRV1,MXRV1
LFBDY1(I I) = 1
RTBDY1(II) = N

43 CONTINUE
*

DO 44 JJ = MNCV1,MXCV1
UPBDY1(JJ) = 2
LWBDY1(JJ) = 2

44 CONTINUE
*

MNRV2 = 1
MXRV2 = 1
MNCV2 = 1
MXCV2 = N

*

DO 45 II = MNRV2,MXRV2
LFBDY2(II) = 1
RTBDY2(II) = N

45 CONTINUE
*

DO 46 JJ = MNCV2,MXCV2
UPBDY2(JJ) = 1
LWBDY2(JJ) = 1

46 CONTINUE
*

gs2init2(2,OX,00,00,00)
*

DO 30 I=1,NPROCS-1
creat e (SLAVE)

30 CONTINUE
*

CALL WORK
*

IF(EXHST .EQ. 1) THEN
WRITE(6, 77)

ELSE
WRITE(6, 78)

ENDIF
77 FORMAT(' ', ' THERE ARE NO DUPLICATES')
78 FORMAT(' ', ' THERE IS A DUPLICATE')

WRITE(6,40)
40 FORMAT(' THE VALUES IN THE C VECTOR ARE AS FOLLOWS: ')

WRITE(6,12)(C(I), I=1,N)
WRITE(6, 50)

50 FORMAT(' THE VALUES IN THE D VECTOR ARE AS FOLLOWS: ')
WRITE(6,12)(D(I), I=1,N)

11 FORMAT(14)
12 FORMAT(' ',14)

STOP
END

- 78 -

* ********* ******* ** **** *********************** ********** ****** *** **** **

SUBROUT INE SLAVE
*

CALL WORK
RETURN
END

*

* *** *** * ** * *** * **** ** ** ** *** **s* ** **** *** ** **** ** ************* ****::.:

*

SUBROUT INE WORK
*

INTEGER I
INTEGER A(1000), B(1000), C(1000), D(1000)
INTEGER NPROCS, N
COMMON /MAINC/ A, B, C, D, N, NPROCS

*

*

gs2var

10 CONTINUE

gs2(2,OX,00,00,00)

1000 CONTINUE

IF(J. GT. 1) THEN
IF(C(J). EQ. C(J -1)) THEN

D(J) = 0
crrplxend(2, OX, 00,00,00)

ENDIF
END IF

endl(2,OX,00,00,00)
GO TO 10

2000 CONTINUE
C(J) = A(J) + B(J)
end2(2, OX, 00,00,00)
GO TO 10

3000 CONTINUE
RETURN
END

- 79 -

Appendix E
The MATMULT Example

define(RB11, 1)
defne(RB12, 301)
define(CB11, 1)
define(CB12, 300)
define(RB21, 1)
define (RB22, 2)
define(CB21, 1)
define (CB:E2, 1)

********************************** * * *************************** * **:t s

*

* THIS PROGRAM READS IN TWO MATRICIES AND COMPUTES THEIR PRODUCT.
*

4* *:::

PROGRAM MATMUL
newproc(SLAVE)

*

* COMMON AREA VARIABLES
*

INTEGER A(20,20), B(20,20), C(20,20)
INTEGER NPROCS, Al, AJ, BJ
COMMON-/MAINC/ A, B, C, NPROCS, AI, AJ, BJ

*

gs2var
*

*

***::;

*

* INITIALIZE THE MONITOR
*

*+**** *************************;***** * **** ********a********:::: .. ::::

*

gs2initi(1,00,00,00,00)
*

READ (5,10) NPROCS
10 FORMAT(I4)

WRITE(6,20) NPROCS
20 FORMAT(' NPROCS = ',I4)
*

**************************** *a********************************* * z* .:

*

* READ IN THE TWO INPUT MATRICIES
*

*****************a***********:******************,*************** *:::::::::

*

READ (5,10) AI
READ (5,10) AJ

- 80 -

READ (5,10) BJ

DO 2 I = 1,AI
DO 1 J = 1,AJ

READ (5,10) A(I,J)
1 CONTINUE
2 CONTINUE

DO 4 I = 1, AJ
DO 3 J = 1,BJ

READ (5,10) B(I,J)
3 CONTINUE
4 CONTINUE

*

MNRV1 = 1
MXRV1 = Al
MNCV1 = 1
MXCV1 = BJ

DO 5 I = 1, AI
LFBDY1(I) = 1

5 CONTINUE

DO 6 I = 1,AI
RTBDY1(I) = BJ

6 CONTINUE

DO 7 I = 1,BJ
UPBDY1(I) = 1

7 CONTINUE

DO 8 I = 1,BJ
LWBDY1(I) = AI

8 CONTINUE

gs2init2(1,00,00,00,00)

DO 30 I=1,NPROCS-1
create(SLAVE)

30 CONTINUE

CALL WORK
*

WRITE (6,40)
40 FORMAT(' THE VALUES IN C ARE AS FOLLOWS:')

DO 41 I = 1,AI
DO 42 J = 1,BJ

WRITE(6,43) I,J,C(I,J)
42 CONTINUE
41 CONTINUE
43 FORMvAT(' ,12, ,12,' ',18)

STOP
END

- 81 -

**

*

* TE SLAVE PROCESSES JUST CALL THE WORK SUBROUTINE
* WHERE THEY CLAIM TASKS TO WORK ON.

*

*** :; ,*

*

SUBROUT I NE SLAVE
*

CALL WORK
RETURN
END

*

** ****

*

* THE WORK SUBROUTINE CONTAINS THE CODE TO CLAIM A TASK,
* PERFORM THE TASK, AND GO BACK TO GET ANOTHER TASK TO WORK ON.
*

***;::;*..

*

SUBROUT INE WORK
*

* COMMON AREA VARIABLES
*

INTEGER A(20,20), B(20,20), C(20,20)
INTEGER NPROCS, Al, AJ, BJ
COMMON /MAINC/ A, B, C, NPROCS, AI, AJ, BJ

*

gs2var
*

INTEGER K
*

10 CONTINUE

gs2(1,00,00,00,00)
1000 CONTINUE

*

C(I,J) = 0
DO 1001 K = 1,AJ
C(I,J) = C(I,J) + (A(I,K) * B(K,J))

1001 CONT INUE

endl(1,00,00,00,00)
GO TO 10

*

3000 CONTINUE
*

RETURN
END

-82-

Appendix F
The SORT Example

define(RB11, 1)
deflne(RB12, 20)
define(CB11, 1)
deflne(CB12, 10000)
define (RB21, 1)
define (RB22, 2)
define (CB21, 1)
defne(CB22, 1)

* ** ** ** *** * *** * **** * ** ** ***** *** * * *** ** ** ** **** *** ** ***** ** ** *** ** :****

*

* THIS PROGRAM DEMONSTRATES THE "BARRIER" AND "SELF-SCHEDULING DO-LOOP"
* SYNCHRONIZATION PRIMITIVES. IT FILLS IN A VECTOR (A) WITH VALUES IN
* DESCENDING ORDER. THEN IT USES A SHELL SORT (SEE KNUTH'S 3RD VOLUME
* ON SORTING AND SEARCHING ALGORITHMS) TO SORT THE VALUES INTO
* ASCENDING ORDER. TIMES ARE ACQUIRED FOR TABLE SIZES OF 100, 10-u', AND
* 10000.
*

;********:::::::::

PROGRAM SRTPGM
* newproc(SLAVE)
* COMMON AREA VARIABLES
*

*

INTEGER A(10000)
INTEGER NPROCS, M, N, GAP(20), NDONE, XGAP(20)
INTEGER I,J,K
COMMON /MAINC/ GAP, A, M, N, NPROCS, NDONE

*

gs2var
*

gs2initl(1,00,RO, 00, 00)
*

*

*

*** *

*

* INITIALIZE THE BARRIER AND SELF-SCHEDULING DO-LOOP MONITORS
*

*************************** ********************************,*** *.:*

*

*

* NDONE = 0
READ (5,10) NPROCS

10 FORMAT(I4)
WRITE(6,20) NPROCS

20 FORMAT('NPROCS = ',I4)

- 83 -

DO 30 I=1.NPROCS-1
create(SLAVE)

30 CONTINUE
*

..** *** * * ** * *** ******* ** *** **** ***** * **** **** ** **** **** * * ** * :.:w

*

* READ IN THE NUMBER OF PROCESSES TO RUN IN PARALLIEL
*

*******************s**********************************~*:***** .:: :;: :::::::.:::.:w

*

* ** * *** **** ** ** * *** * *a**aas* ** ** * ** ********** * ***** * ** * a * * * ** * * a:'::::

*

* THE MAIN LOGIC JUST FILLS IN THE TABLE AND SORTS IT.
* TIMINGS ARE TAKEN FOR TABLES OF 100, 1000, AND 10000.

*

* ** *** ********* *** *** * **** ********* ****** ** ** *:** ** ***:* **** * * ::,::::::*

*

N = 10
DO 50 I=1,3

N = 10 * N
*

DO 35 K = 1,N
A(K) = (N-K) + 1

35 CONTINUE

XGAP(1) = 1
DO 36 K = 2,20
XGAP(K) = 3*XGAP(K-1) + 1
IF(XGAP(K).GE.N) GO TO 37

36 CONTINUE
37 M = K-2
*

DO 38 K = 1,M
GAP(K) = XGAP(M+1-K)

38 CONTINUE
*

MNRV1 = 1
MXRV1 = M
MNCV1 = 1
MXCV1 = GAP(1)

DO 45 II =
LFBDY1(II)
RTBDY1(II)
CONTINUE

MNRV1,MXRV1
= 1
= GAP(II)

DO 46 JJ = MNCV1,MXCV1
UPBDY1(JJ) = 1
CONTINUE

gs2init2(1, 00,R0,00,00)

45

46

- 84 -

WRITE(6,776) (A(LL), LL = 1,N)
776 FORMAT(' ',10I5)

CALL LOOP(0)
*

WRITE(6,777) (A(KK), KK = 1,N)
777 FORMAT(' ',10I5)

50 CONTINUE
*

4* :;:

*

* ONE LAST CALL TO LOOP IS REQUIRED TO FREE THE OTHER PROCESSES
* FROM THE BARRIER (SO THEY CAN EXIT).
*

********************************** ********************* **** ** * *** *. : '..:

*

* NDONE = 1
* CALL LOOP(0)

STOP
END

*

*

* *** *** ** * *** * ******* **** ** **** * *** ** **** * ***** ***: * *** ** ********* -

*

* THE SLAVE PROCESSES JUST HANG ON THE BARRIER IN THE "LOOP"
* AND HELP WHEN A TABLE IS TO BE SORTED.
*

* ** **** ********* **** ************** ********* **.********** ****** : ... ::::::y.

*

SUBROUT INE SLAVE
*

CALL LOOP(1)
RETURN
END

*

*

******** **

*

* THE SORT ROUTINE IS EXECUTED BY THE MASTER PROCESS. IT JUST
* CALCULATES THE RADIX FOR EACH PASS OF THE SHELL SORT, AND JOINS
* THE SLAVE PROCESSES WHEN WORKING ON EACH PASS.
* THE RADIX VALUES ARE HT, . . . H2, Hi: Hi1IS 1; HI IS (3*H(I-1) 1);

* H(T+2) >= N. SEE KNUTH FOR ARGUMENTS IN FAVOR OF THESE VAiLhUE.
*

***************************************a***************a *** ******* " :

*

* THE LOOP ROUTINE IS THE CODE REQUIRED TO COORDINATE THE NPROC>S
* PROCESSES AS THEY EXECUTE ONE PASS OF A SHELL SORT. NOTE THE
* BARRIER AT THE TOP, WHICH IS USED TO CAUSE THE PROCESSES 'I'O
* WAIT FOR THE VECTOR TO BE SET UP AND THE INCREMENT CHOSEN.
* THEN A SELF-SCHEDULI NC DO-1LOOP I S USED TO ALLOCATE SUISCRI 'S'.
* NOTE THAT THE MASTER PARTICIPATES IN THIS LCGIC, SO T1lE [CRUNI P SETO
* CAN BE RUN WI TH NPROCS SET TO 1.

- 85

*

*

SUBROUT I NE LOOP (WHO)
INTEGER WHO

*

INTEGER I, J , K, L
INTEGER A(10000),LT
INTEGER NPROCS, M, N, GAP(2 0) , NDONE
COMMON /MA INC/ GAP, A, M, N, NPROCS, NDONE

*

*

gs2var

10 CONTINUE
barrier(1)

3001 IF(NDONE.EQ.1) GO TO 4000

gs2(1,00,R0,00,00)
*

1000 DO 30 K = J+GAP(I) , N, GAP(I)
DO 40 L = K, J+GAP(I), -GAP(I)
IF(A(L-GAP(I)).GT.A(L)) THEN

T = A(L-GAP(I))
A(L-GAP(I)) = A(L)
A(L) = T

ELSE
GO TO 30

ENDIF
40 CONTINUE
30 CONTINUE

*

endi(1,00,RO,00,00)
*

GO TO 10
*

3000 CONTINUE
IF(WHO.EQ.1) GO TO 10

4000 CONTINUE
RETURN
END

- 86 -

Appendix G
The GRID Example

define(RB11. 1)
define(RB12, 1001)
define(CB11, 2)
deine (CB12, 20)
define(RB21, 1)
define(RB22, 2)
define(CB21, 1)
define (CB22, 1)

PROGRAM GRID
newproc(SLAVE)

*

*

* THE FUNCTION OF THIS PROGRAM IS TO APPROXIMATE THE VALUE OF A
* FUNCTION 'PHI' SATISFYING BOUNDARY CONDITIONS
*

* PHI(X.Y,Z) = X * X - Y * Y + X * Y * Z
*

* FOR (X,Y,Z) ON THE BOUNDARY OF THE GRID. THE VALUE AT AN INTE:
* POINT IS APPROXIMATED AS THE AVERAVE VALUE OF THE NEIGHBORING
* POINTS.
*

* COMMON AREA VARIABLES
*

REAL PHI,A(20,20,20),B(20,20,20)
INTEGER NNPROCS,XDIM,YDIM,ZDIM
COMMON /POOL/ A,B,N,NPROCS,XDIM,YDIM,ZDIM

*

* DECLARE THE VARIABLES AND COMMON TO SUPPORT THE MONITOR
*

gs2var
*

* DECLARE THE WORKING VARIABLES
*

INTEGER IJ,K,X,Y,Z,IS,IE, IT
*

*

* GET THE DIMENSIONS OF THE GRID
*

READ (5,20) XDIM,YDIM,ZDIM
20 FORMAT(3I4)

WRITE(6,21) XDIM,YDIM,ZDIM
21 FORMAT(' XDIM=',14,' YDIM=',14,' ZDIM=',I4)

* GET THE NUMBER OF ITERATIONS TO PERFORM
*

REAl) (5,80) N

- 87 -

80 FORMAT(14)

READ (5,100) NPROCS
100 FORMAT(I4)

WRITE(6o, 101) N,NPROCS
101 FORMAT(' N=',I4,' NPROCS=',I4)

gs2initl(1,CO,00,00,00)
MNRV1 = 1
MXRV1 = N
MNCV1 = 2
MXCV1 = XDIM - 1
DO 102 I=1,N
LFBDY1(I) = 2
RTBDY1(I) = XDIM - 1

102 CONTINUE
*

DO 103 I=2,XDIM-1
UPBDY1(I) = 1

103 CONTINUE
*

SKW1 = 1
*

gs2init2(1,CO,00,00,00)
*

* INITIALIZE THE INTERIOR OF THE GRID TO ZERO

DO 110 I=2,XDIM-1
DO 120 J=2,YDIM-1

DO 130 K=2,ZDIM-1
A(I,J,K) = 0

130 CONTINUE
120 CONTINUE
110 CONTINUE
*

* INITIALIZE THE BOUNDARY OF THE GRID
*

* THE FACES X = 1 ANDX = XDIM
*

DO 140 J=1,YDIM
DO 150 K=1,ZDIM

A(1,J,K) = PHI(1,J,K)
B(1,J,K) = A(1,J,K)
A(XDIM,J,K) = PHI(XDIM,J,K)
B(XDIM,J,K) = A(XDIM,J,K)

150 CONTINUE
140 CONTINUE

*

* THEFACES Y = 1 AND Y = YDIM
*

DO 160 I=1,XDIM
DO 170 K=1,ZDIM
A(I,1,K) = PHI(I,1,K)
B(I,1,K) = A(I,1,K)

- 88 -

A(IYDIMK) = PHI(I,YDIM,K)
B(I,YDIM,K) = A(I.YDIMK)

170 CONTINUE
160 CONTINUE

*

* THE FACES Z = 1 AND Z = ZDIM
*

DO 180 I=1,XDIM
DO 190 J=1,YDIM
A(I.J,1) = PHI(I.J,1)
B(IJ,1) = A(IJ,t)
A(I,J,ZDIM) = PHI(I,J,ZDIM)
B(I,JZDIM) = A(IJ,ZDIM)

190 CONTINUE
180 CONTINUE
*

clock(IS)
*

* CREATE THE SLAVE PROCESSES
*

DO 220 1 = 1,NPROCS-1
create(SLAVE)

220 CONTINUE
CALL WORK
clock(IE)
IT = IE - IS
WRITE(6,221) IT

221 FORMAT(' TOTAL TIME = ',112)

IF (MOD(N,2) .EQ. 0) THEN
CALL PRCUBE(A)

ELSE
CALL PRCUBE(B)

ENDIF
*

STOP
END

*

** **** :;g ,a* 4'

FUNCTION PHI(X,Y,Z)
INTEGER XYZ

PHI = (X * X) - (Y * Y) + (Z * Z)
* PHI = 1

RETURN
END

*

*** ** * ** ;* :*

- 89 -

*

* S L A V E P R O C E S S E S
*

***** ** ******** ***$

*

SUBROUT INE SLAVE
*

CALL WORK
RETURN
END

*

*

* W O R K S U B R O U T I N E
*

* *** * ** * ********** *** *** ** ** *** * ****** * ** * *** ********** ***** * * * * .': *

*

SUBROUT INE WORK
*

*

* COMMON AREA VARIABLES
*

REAL A(20,20,20),B(20,20,20)
INTEGER N,NPROCS,XDIMYDIM,ZDIM
COMMON /POOL/ A,BN,NPROCSXDIM,YDIM,ZDIM
gs2var
INTEGER IJ

*

*

* DECLARE THE VARIABLES AND COMMON TO SUPPORT THE MONITOR
*

*

10 CONTINUE
gs2(1,CO,00300,00)

*

1000 CONTINUE
I F (MOD(I , 2) .EQ. 1) THEN

CALL COMP(A,B,J)
ELSE

CALL COMP(BA,J)
END IF
endl(1,CO,00,00,00)

GO TO 10

3000 CONTINUE
RETURN
END

*

**** ***** ** ***** 5 * *** **** *** ** ****5******* * ** * **** * **** ** ** **** :': t

*

* COM P U TE S UBOU T IN E
*

** * **** *** ******** *** *** **:* * ** * **** ******* ** *** * ** * ** * * * ** ."4::*

- 90 -

SUBROUT INE COMP(PUQ,X)
*

REAL P(20,20,20),Q(20,20,20)
INTEGER X

* COMMON AREA VARIABLES
*

REAL A(20,20,20),B(20,20,20)
INTEGER NNPROCS,XDIM,YDIM,ZDIM
COMMON /POOL/ A,B,N,NPROCS,XDIM,YDIM,ZDIM

INTEGER I,J,K
*

DO 10 J=2,YDIM-1
DO 20 K=2,ZDIM-1

Q(XJ,K) = (P(X-1,J,K) + P(X+1,J,K) +
- P(X,J-1,K) + P(X,J+1,K) +

0 C(XEJ,K-1) + P(X,KJ,K+1)) / 6.0
20 CONT INUE

10 CONT INUE

*

RETURN
END

*

*

* S U B R O U T I N E P R C U B E
*

###*#**### *#####*#**** ** ** * ** * **** ** ** ***** **** ** ** ** * ** **** * *."'*

*

SUBROUT INE PRCUBE(M)
REAL M(20,20,20)

*

*

*

* COMMON AREA VARIABLES
*

REAL A(20,20,20),IB(20,20,20)
INTEGER N,NPROCS,XDIMYDIM,ZDIM
COMMON /POOL/ AB,N, NPROCS,XDIM,YDIM, ZD IM

INTEGER IJ,K
*

DO 10 I=1,XDIM
DO 20 J=1,YDIM

DO 30 K=1, ZDIM
WRITE (6,40) I,J,K,M(IJ,K)

40 FORMAT(' X= ',I4,' Y= ',I4,' Z= ',I4,' VALUE ',F10.5)
30 CONTINUE
20 CONTINUE
10 CONTINUE

RETURN
END

- 91 -

Appendix H
The QR-Factorization Example

deflne(RB 11,1)
define(RB 12,301)
define (CB 11,1)
den ne(CB 12,300)
define(RB21,1)
define(RB22,300)
define(CB21,2)
defnne(CB22,300)

*

*

* THE MAIN LOGIC
*

*

PROGRAM QRFAC
newproc(QSIAVE)
REAL A(301,300),AA(301, 300),B(301)
INTEGER WSIZE,NPROCS, M, N, I, NDONE
COMMON /MAINC/ A, B, N, M, NPROCS, NDONE

gs2var

gs2init 1(2,0X,00, CO, OX)

*

*

*

NDONE = 0
* NOW CREATE THE
*

READ (5,1111) NPROCS
1111 FORMAT(14)

WRITE(6, 1112) NPROCS
1112 FORMAT(' NPROCS=',I4)

DO 600 I = 1, NPROCS - 1
create(QSLAVE)

600 CONTINUE
*

*

C

WORKERS

WRITE(6, 40)
40 FORMAT(' QRFAX DECOMPOSITION TIMING')

DO 200 N = 10,50,10
MNRV1 = 1
MXRV1 = N
MNCV1 = 1
MXCV1 = N

- 92 -

MNRV2 = 1
MXRV2 = N-1
MNCV2 = 2
MXCV2 = N
DO 555 II = 1,N

LFBDY1(II) = II
RTBDY1(II) = II

555 CONTINUE

DO 556 JJ = 1,N
UPBDY1(JJ) = JJ
LWBDY1(JJ) = JJ

556 CONTINUE

DO 557 II = 1,N-1
LFBDY2(II) = II + 1
RTBDY2(II) = N

557 CONTINUE

DO 558 JJ = 2,N
UPBDY2(JJ) = 1
LWBDY2(JJ) = JJ - 1

558 CONTINUE

gs2init2(2, OX, 00, CO, OX)

DO 20 J = 1,N
DO 10 I = J,N

AA(I,J) = -I*J
AA(J,I) = 2*AA(I,J)

10 CONTINUE
AA(J,J) = 0.0

20 CONTINUE
WRITE(6,50)N

50 FORMAT(/' ORDER IS ',I5/)
DO 70 J = 1,N

DO 60 I = 1,N
A(I,J) = AA(I,J)

60 CONTINUE
70 CONTINUE

*

DO 103 J = 1,N
DO 102 I = 1,N

A(I,J) = AA(I,J)
102 CONTINUE
103 CONTINUE

WSIZE = 3
clock(I)
T1 = I

M=N
CALL WORK(0)

*

clock(I)

- 93-

T2 = I - T 1
WRITE(6, 110) T2

IF(N .LE. 50) WRITE(6,1000) (B(I),I = 1,N)
1000 FORMAT(5X,E12.5)
110 FORMAT(' MONITOR VERSION TIME = ',E12.3)

C
DO 113 J = 1,N

DO 112I= 1,N
A(I,J) = AA(I,J)

112 CONTINUE
113 CONTINUE
200 CONTINUE

NDONE = 1
CALL WORK(0)

12350 CONTINUE
STOP
END

*

* THE WORK SUBROUTINE
*

SUBROUTINE WORK(FLAG)
INTEGER FLAG

*

REAL A(301,300),B(301)
INTEGER NPROCS, M, N, NDONE
COMMON /MAINC/ A, B, N, M, NPROCS, NDONE

*

*

gs2var

INTEGER I

INTEGER L
*

*

* DECLARATIONS FOR CREF AND APREF
*

REAL ZERO,TAU
INTEGER NK,KM1
REAL ENORM
REAL THETA
DATA ZERO/0.0/

*

*

*

5 CONTINUE
barrier(1)

3001 IF(NDONE .EQ. 1) GO TO 4000
10 CONTINUE

gs2(2, 0X, 00, CO, OX)
*

- 94-

* N IS THE NUMBER OF COLUMNS IN THE MATRIX
*

* K IS SET TO THE COLUMN UPON WHICH A REFLECTION IS TO BE
* CREATED OR APPLIED
*

* L IS MEANINGFUL ONLY WITH AN RC OF 1 (APPLY A REFLECTION).
* IT THEN GIVES THE REFLECTION NUMBER TO APPLY
*

*

* CREATE THE REFLECTOR FOR THE K-TH COLUMN
*

C
1000 CONTINUE

KM1 = I - 1
NK= N - I+ 1

C
C NOW COMPUTE AND STORE THE K-TH REFLECTOR
C

TAU = ENORM(NK,A(I,I))
TAU = SIGN(TAU,A(I,I))
B(I) = -TAU
A(I,I) = A(I,I) + TAU

*

* NOW SIGNAL THAT THE REFLECTION HAS BEEN CREATED
*

********* ***** **** ************** **** ******** ****** **** ***** **

*

end1(2,OX,00,C0,oX)
*

* NOW GET THE NEXT TASK
*

GO TO 10

* APPLY THE NEXT REFLECTION (THE L-TH)
* TO THE K-TH COLUMN

*

************************************** *************?=* z*****

2000 CONTINUE
THETA = ZERO
DO 50 L = I,M

THETA = THETA + A(L,J)*A(L,I)
50 CONTINUE

THETA = THETA/(B(I)*A(I,I))
DO 60 L = I,M

A(L,J) = A(L,J) + THETA*A(L,I)
60 CONTINUE

*

*

end2(2, OX, 00,CO, OX)
*

- 95 -

GO TO 10
*

*

3000 CONTINUE
IF (FLAG.EQ. 1) GO TO 5

4000 CONTINUE
RETURN
END

*

*

* QSLAVE
*

*

SUBROUTINE QSLAVE
REAL A(301,300),B(301)
INTEGER NPROCS, M, N, NDONE
COMMON /MAINC/ A, B, N, M, NPROCS, NDONE

*

*

gs2var
*

CALL WORK(1)
RETURN
END
REAL FUNCTION ENORM(N,X)
INTEGER N
REAL X(N)

C **********

C
C FUNCTION ENORM
C
C GIVEN AN N-VECTOR X, THIS FUNCTION CALCULATES THE
C EUCLIDEAN NORM OF X.
C
C THE EUCLIDEAN NORM IS COMPUTED BY ACCUMULATING THE SUM OF
C SQUARES IN THREE DIFFERENT SUMS. THE SUMS OF SQUARES FOR THE
C SMALL AND LARGE COMPONENTS ARE SCALED SO THAT NO OVERFLOWS
C OCCUR. NON-DESTRUCTIVE UNDERFLOWS ARE PERMITTED. UNDERFLOWS
C AND OVERFLOWS DO NOT OCCUR IN THE COMPUTATION OF THE UNSCALED
C SUM OF SQUARES FOR THE INTERMEDIATE COMPONENTS.
C THE DEFINITIONS OF SMALL, INTERMEDIATE AND LARGE COMPONENTS
C DEPEND ON TWO CONSTANTS, RDWARF AND RGIANT. THE MAIN
C RESTRICTIONS ON THESE CONSTANTS ARE THAT RDWARF**2 NOT
C UNDERFLOW AND RGIANT**2 NOT OVERFLOW. THE CONSTANTS
C GIVEN HERE ARE SUITABLE FOR EVERY KNOWN COMPUTER.
C
C THE FUNCTION STATEMENT IS
C
C REAL FUNCTION ENORM(N,X)
C
C WHERE

- 96 -

C
C N IS A POSITIVE INTEGER INPUT VARIABLE.
C
C X IS AN INPUT ARRAY OF LENGTH N.
C
C SUBPROGRAMS CALLED
C
C FORTRAN-SUPPLIED ... ABS,SQRT
C
C ARGONNE NATIONAL LABORATORY. MINPACK PROJECT. MARCH 1980.
C BURTON S. GARBOW, KENNETH E. HILLSTROM, JORGE J. MORE
C
C *****

INTEGER I
REAL AGIANT,FLOATN, ONE, RDWARFIRGIANT, S1,S2, S3,XADS,
* X1MAX,X3MAXZERO
DATA ONE, ZERO, RDWARF, RGIANT / 1.OEO, 0.0E0, .294E-38,.17E39/
Si = ZERO
S2 = ZERO
S3 = ZERO
X1MAX = ZERO
X3MAX = ZERO
FLOATN = N
AGIANT = RGIANT/FLOATN
DO 90 I = 1, N

XABS = ABS(X(I))
IF (XABS .GT. RDWARF .AND. XABS .LT. AGIANT) GO TO 70

IF (XABS .LE. RDWARF) GO TO 30
C
C SUM FOR LARGE COMPONENTS.
C

IF (XABS.LE. X1MAX) GO TO 10
S1 = ONE + S1*(X1MAX/XABS)**2
X1MAX = XABS
GO TO 20

10 CONTINUE
Si = Si + (XABS/X1MAX)**2

20 CONTINUE
GO TO 60

30 CONTINUE
C
C SUM FOR SMALL COMPONENTS.
C

IF (XABS .LE. X3MAX) GO TO 40
S3 = ONE + S3*(X3MAX/XABS)**2
X3MAX = XABS
GO TO 50

40 CONTINUE
IF (XABS .NE. ZERO) S3 = S3 + (XABS/X3MAX)**2

50 CONTINUE
60 CONTINUE

GO TO 80
70 CONTINUE

C

- 97-

C SUM FOR INTERMEDIATE COMPONENTS.
C

S2 = S2 + XABS**2
80 CONTINUE
90 CONTINUE

C
C CALCULATION OF NORM.
C

IF (Si .EQ. ZERO) GO TO 100
ENORM = X1MAX*SQRT(S1+(S2/X1MAX)/X1MAX)
GO TO 130

100 CONTINUE
IF (S2 .EQ. ZERO) GO TO 110

IF (S2 .GE. X3MAX)
* ENORM = SQRT(S2*(ONE+(X3MAX/S2)*(X3MAX*S3)))

IF (S2 .LT. X3MAX)
* ENORM = SQRT(X3MAX*((S2/X3MAX)+(X3MAX*S3)))

GO TO 120
110 CONTINUE

ENORM = X3MAX*SQRT(S3)
120 CONTINUE
130 CONTINUE

RETURN
C
C LAST CARD OF FUNCTION ENORM.
C

END

-98-

Distribution for ANIr-85-70

Internal:

K. L. Kliewer
A. B. Krisciunas
P. C. Messina
R. A. Overbeek (40)
G. W. Pieper
D. M. Pool
T. M. Woods (2)

ANL Patent Department
ANL Contract File
ANL Libraries
TIS Files (6)

External:

DOE-TIC, for distribution per UC-32 (167)
Manager, Chicago Operations Office, DOE
Mathematics and Computer Science Division Review Committee:

J. L. Bona, U. Chicago
T. L. Brown, U. of Illinois, Urbana
S. Gerhart, MCC, Austin, TX
G. H. Golub, Stanford U.
W. C. Lynch, Xerox Corp., Palo Alto
J. A. Nohel, U. of Wisconsin, Madison
M. F. Wheeler, Rice U.

D. Austin, ER-DOE
J. Greenberg, ER-DOE
G. Michael, LLL
B. W. Glickfeld, Northern Illinois University (20)

