AIR POLLUTION AND THE SITING
OF FOSSIL FUEL POWER PLANTS

ENVIRONMENTAL POLLUTANTS and the URBAN ECONOMY

Argonne National Laboratory's
Energy and Environmental Systems Division

The University of Chicago
Center for Urban Studies
The facilities of Argonne National Laboratory are owned by the United States Government. Under the terms of a contract (W-31-109-Eng-38) between the U.S. Energy Research and Development Administration, Argonne Universities Association and The University of Chicago, the University employs the staff and operates the Laboratory in accordance with policies and programs formulated, approved and reviewed by the Association.

MEMBERS OF ARGONNE UNIVERSITIES ASSOCIATION

The University of Arizona
Carnegie-Mellor University
Case Western Reserve University
The University of Chicago
University of Cincinnati
Illinois Institute of Technology
University of Illinois
Indiana University
Iowa State University
The University of Iowa
Kansas State University
The University of Kansas
Loyola University
Marquette University
Michigan State University
The University of Michigan
University of Minnesota
University of Missouri
Northwestern University
University of Notre Dame

The Ohio State University
Ohio University
The Pennsylvania State University
Purdue University
Saint Louis University
Southern Illinois University
The University of Texas at Austin
Washington University
Wayne State University
The University of Wisconsin

NOTICE

This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the United States Energy Research and Development Administration, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately-owned rights. Mention of commercial products, their manufacturers, or their suppliers in this publication does not imply or connote approval or disapproval of the product by Argonne National Laboratory or the U.S. Energy Research and Development Administration.
AIR POLLUTION AND THE SITING
OF FOSSIL FUEL POWER PLANTS

by
Gideon Fishelson, Gordon C. Rausser, and
Alan S. Cohen

July 1976

ENVIRONMENTAL POLLUTANTS and the URBAN ECONOMY

The University of Chicago Argonne National Laboratory
Center for Urban Studies Energy and Environmental Systems Division

This work was partially supported by the National Science Foundation, Research Applied to National Needs (RANN), Contract Nos. AG-352 and GI 32989A2. However, any opinions, findings, conclusions, or recommendations expressed herein are those of the authors and do not necessarily reflect the views of NSF.
<table>
<thead>
<tr>
<th>Table of Contents</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>THE COSTS OF SITING DECISIONS</td>
<td>5</td>
</tr>
<tr>
<td>ANALYSIS OF SOCIAL COSTS</td>
<td>5</td>
</tr>
<tr>
<td>RESULTS OF THE ANALYSIS</td>
<td>8</td>
</tr>
<tr>
<td>SENSITIVITY OF THE RESULTS</td>
<td>10</td>
</tr>
<tr>
<td>POLICY IMPLICATIONS</td>
<td>10</td>
</tr>
</tbody>
</table>
AIR POLLUTION AND THE SITING OF FOSSIL FUEL POWER PLANTS

The Costs of Siting Decisions

The decision to locate a fossil fueled electrical power plant on a particular site involves trade-offs among the costs of: 1) land acquisition, 2) plant construction, operation, and maintenance, 3) power transmission, and 4) air pollution damage to humans, animals, plants and materials. The fourth of these, pollution costs, has been of great concern in recent years. But seldom, if ever, are the specific dollar trade-offs between the environmental and the other costs associated with site selection taken into account.

The sum of the costs of power generation (land, construction, operation, maintenance), power transmission, and air pollution damages (from sulfur dioxide, nitrogen oxides, and particulates) is the total social cost of a fossil fuel plant; this total cost will generally vary by site. This paper presents an analysis of the total social cost, and the trade-offs between generation/transmission and air pollution costs, for various types of fossil plants at different sites in northern Illinois. The analysis identifies the combinations of site, fossil fuel, and sulfur dioxide (SO$_2$) control technology that minimize total social costs.

Analysis of Social Costs

The attempt to select the best locations for different types of power plants was based upon the costs associated with generating and transmitting electricity. A complete systems optimization would also require estimates of the social costs of mining (or extracting) and transporting fuels and consuming electricity. Nevertheless, this analysis provides a useful evaluation of the social cost of electricity generation and transmission that is consistent with both the regional focus of air pollution control programs throughout the country and the present scope of power plant siting review procedures.

Four decision variables, resulting in four design choices to be made for each power plant, were used in the analysis: site, stack height, boiler fuel, and sulfur dioxide emission control method. The site options consisted of 52 hypothetical power plant locations, spaced about 15 miles apart, in the rural and urban fringe areas of northern Illinois. Each plant was assumed to transmit its electricity to one of three fixed-location consumption centers (see Fig. 1). Stack heights were varied between 500 and 1000 ft. The fuel and sulfur dioxide control technology choices were:

- high sulfur Illinois coal (no SO$_2$ control),
- low sulfur Western coal (no SO$_2$ control),
- high sulfur Illinois coal with an SO$_2$ scrubber,
- high sulfur oil (no SO$_2$ control),
- low Btu gas obtained from an adjacent coal gasification plant,
- low sulfur oil (no SO$_2$ control), and
- high sulfur oil with an SO$_2$ scrubber.
Electrostatic precipitators for controlling particulate emissions with operating efficiencies of 99% for Illinois coal, 98% for Western coal, and 94% for oil were assumed to be used. Also, power plants were presumed to be of a given unit size; thus, potential economies of scale of the unit size or of more than one unit within a plant were not considered. The assumed values for various plant and fuel parameters are listed in Table 1.

Air pollution damages from sulfur dioxide, suspended particulate matter, and nitrogen oxides were calculated using population forecasts for 1980 and damage factors of $1.25, $2.50 and $1.00/µg/m³/person/year, respectively. The damage factors for SO₂ and particulates are about the mid-range figures reported by Cohen et al.,* adjusted for the 1974 price level; the nitrogen oxides factor was calculated using the proportionality factor to sulfur dioxide as reported by Babcock and Nagda.** These damage factors reflect human mortality and morbidity, and material corrosion and soiling effects of these pollutants. The magnitude of vegetation and animal damages in the study area was insignificant, relative to the human and material damages; therefore, these damages were not explicitly considered.

The use of constant damage factors precludes the need to consider time-varying pollution concentrations. Therefore, these air pollution damage factors applied to annual average pollution estimates are sufficient for predicting total annual damages. The use of non-linear damage functions could alter the analysis' results.

The costs of air pollution were calculated by multiplying an estimated pollutant level by the population exposed to that level by the appropriate damage factor. Estimates of the SO$_2$ and particulate levels were obtained using the Air Quality Display Model (AQDM). Nitrogen oxides were assumed to disperse like sulfur dioxide. Meteorological data from Chicago, Peoria, and Rockford, Illinois, were used to obtain spatial variations in meteorological conditions for the different power plant sites.

Because hypothetical rather than actual sites were analyzed, the land, labor, construction, fuel, operating, and maintenance costs for each type of fossil fuel plant were assumed to be the same for all locations. Therefore, only transmission-related costs and air pollution damages were location dependent. The costs of transmission line investment, maintenance, and operation; electricity losses from the lines; and transmission line reliability were assumed to be proportional to the distance between the plant site and one of the three consumption centers. The analysis identifies the maximum regulated distance from population centers that can be economically justified for reduction of air pollution damages. (If the costs assumed constant do vary systematically with distance this maximum distance could be revised accordingly.) Beyond this maximum distance, the additional transmission costs would exceed any savings gained from reduced pollution damages.

TABLE I. Power Plant and Fuel Parameters

<table>
<thead>
<tr>
<th></th>
<th>Illinois Coal</th>
<th>Western Coal</th>
<th>Illinois Coal and Scrubber</th>
<th>High Sulfur Oil</th>
<th>Coal Gasification</th>
<th>Low Sulfur Oil</th>
<th>High Sulfur Oil and Scrubber</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Generating Units</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>5</td>
<td>3</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Total Capacity (MW)</td>
<td>2400</td>
<td>2400</td>
<td>2400</td>
<td>2500</td>
<td>2400</td>
<td>2500</td>
<td>2500</td>
</tr>
<tr>
<td>Annual Utilization Rate/Unit (%)</td>
<td>65</td>
<td>65</td>
<td>65</td>
<td>65</td>
<td>65</td>
<td>65</td>
<td>65</td>
</tr>
<tr>
<td>Heat Rate (Btu/kWh)</td>
<td>8900</td>
<td>9350</td>
<td>9800</td>
<td>8830</td>
<td>10.700</td>
<td>8830</td>
<td>9700</td>
</tr>
<tr>
<td>Fuel Price* ($/10^4 Bru)</td>
<td>0.60</td>
<td>0.90</td>
<td>0.60</td>
<td>1.25</td>
<td>0.60**</td>
<td>1.50</td>
<td>1.25</td>
</tr>
</tbody>
</table>

*Prices reflect the post embargo (beginning 1974) fuel market in northern Illinois.

**Price of Illinois coal fuel input.
Results of the Analysis

The estimated air pollution damages that would be caused by each of the seven alternative power plant types located at 15 of the 52 sites considered in the analysis are shown in Table 2. Among the 15 representative locations selected for inclusion in this table are those with the most significant—i.e., maximum, minimum, optimum—pollution costs and total social costs. The maximum air pollution cost (Illinois coal at site 11), which is less than 2.0 mills/kWh, is about 15\% of the total social cost of generating electricity with Illinois coal at site 11. Comparison of Table 2 with Figure 1 shows that damages fall quite rapidly as the plant locations shift westward into areas having relatively low population densities. For example, for Illinois coal the damage is 1.91 mills/kWh at site 11, but only 0.19 mills/kWh at site 15.

The figures in Table 2 were combined with estimates of the generation/transmission and stack construction costs to identify the optimal location (i.e., lowest sum of generation/transmission, stack construction, and pollution costs) for supplying electricity to each of the consumption centers A, B, and C. These

<table>
<thead>
<tr>
<th>Location</th>
<th>Illinois Coal</th>
<th>Western Coal</th>
<th>Illinois Coal and Scrubber</th>
<th>High Sulfur Oil</th>
<th>Coal Gasification</th>
<th>Low Sulfur Oil</th>
<th>High Sulfur Oil and Scrubber</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.96</td>
<td>0.54</td>
<td>0.62</td>
<td>0.34</td>
<td>0.29</td>
<td>0.16</td>
<td>0.21</td>
</tr>
<tr>
<td>4</td>
<td>0.43</td>
<td>0.24</td>
<td>0.28</td>
<td>0.15</td>
<td>0.13</td>
<td>0.07</td>
<td>0.09</td>
</tr>
<tr>
<td>6</td>
<td>1.39</td>
<td>0.79</td>
<td>0.89</td>
<td>0.49</td>
<td>0.43</td>
<td>0.23</td>
<td>0.30</td>
</tr>
<tr>
<td>11</td>
<td>1.91</td>
<td>1.08</td>
<td>1.23</td>
<td>0.67</td>
<td>0.59</td>
<td>0.32</td>
<td>0.41</td>
</tr>
<tr>
<td>15</td>
<td>0.19</td>
<td>0.11</td>
<td>0.12</td>
<td>0.07</td>
<td>0.06</td>
<td>0.03</td>
<td>0.04</td>
</tr>
<tr>
<td>16</td>
<td>1.82</td>
<td>1.03</td>
<td>1.17</td>
<td>0.64</td>
<td>0.56</td>
<td>0.31</td>
<td>0.39</td>
</tr>
<tr>
<td>20</td>
<td>0.16</td>
<td>0.09</td>
<td>0.11</td>
<td>0.06</td>
<td>0.05</td>
<td>0.03</td>
<td>0.04</td>
</tr>
<tr>
<td>21</td>
<td>1.65</td>
<td>0.93</td>
<td>1.45</td>
<td>0.58</td>
<td>0.50</td>
<td>0.28</td>
<td>0.35</td>
</tr>
<tr>
<td>22</td>
<td>1.59</td>
<td>0.90</td>
<td>1.02</td>
<td>0.56</td>
<td>0.49</td>
<td>0.27</td>
<td>0.34</td>
</tr>
<tr>
<td>31</td>
<td>0.17</td>
<td>0.10</td>
<td>0.11</td>
<td>0.06</td>
<td>0.05</td>
<td>0.03</td>
<td>0.04</td>
</tr>
<tr>
<td>35</td>
<td>0.27</td>
<td>0.16</td>
<td>0.18</td>
<td>0.10</td>
<td>0.08</td>
<td>0.05</td>
<td>0.06</td>
</tr>
<tr>
<td>40</td>
<td>0.11</td>
<td>0.06</td>
<td>0.07</td>
<td>0.04</td>
<td>0.03</td>
<td>0.02</td>
<td>0.02</td>
</tr>
<tr>
<td>41</td>
<td>0.16</td>
<td>0.09</td>
<td>0.10</td>
<td>0.06</td>
<td>0.05</td>
<td>0.03</td>
<td>0.03</td>
</tr>
<tr>
<td>44</td>
<td>0.11</td>
<td>0.06</td>
<td>0.07</td>
<td>0.04</td>
<td>0.03</td>
<td>0.02</td>
<td>0.02</td>
</tr>
<tr>
<td>52</td>
<td>0.10</td>
<td>0.05</td>
<td>0.06</td>
<td>0.03</td>
<td>0.03</td>
<td>0.02</td>
<td>0.02</td>
</tr>
</tbody>
</table>

*For 1980 population and stack height of 500 feet.
locations were found to be sites 15, 31, and 35, which are 56.7, 45.2, and 44.6 miles from their respective consumption centers (see Fig. 1). The total social costs were estimated to be 14.79, 14.64, and 14.73 mills/kWh, respectively. This finding was based on a 65% annual utilization rate assumed for all fossil power plants. If the utilization rate is allowed to range between 55 and 75%, the social costs of these three optimal locations vary from 13.44 to 16.44 mills/kWh - the higher the utilization rate, the lower the social costs. Changing the utilization rate did not alter the optimal locations, stack heights, fuel, or SO₂ control choices.

Social costs also vary with changes in the four decision variables - site, stack height, fuel, SO₂ control method - used in the analysis. When Illinois coal (no scrubber) and a 500 ft stack are used, the maximum deviations of total social costs between all locations are 1.30, 1.48 and 1.59 mills/kWh, respectively, for consumption centers A, B, and C - a range that represents less than 11% of the total social cost of supplying electricity with Illinois coal. If, however, stack heights are allowed to vary, the difference in social costs among locations is even smaller: a maximum of 0.76 mills/kWh, or less than 6% of the social cost. The difference in social costs is reduced when stack heights are varied because the optimal stack height for Illinois coal plants increases as the sites move closer to population centers. The optimal stack height at site 11, for example, is 1,000 ft.

The variability in social costs for different fuel/sulfur dioxide control choices is significantly greater than for location and stack height changes. Table 3 shows the estimated difference in total social costs of the various plant types at those locations where the use of Illinois coal is the least attractive (most expensive), i.e., those sites closest to the Chicago metropolitan area. (A stack height of 500 ft was assumed for this table, which maximizes Illinois coal costs and minimizes the difference between

<table>
<thead>
<tr>
<th>Location</th>
<th>Illinois Coal</th>
<th>Western Coal</th>
<th>Illinois Coal and Scrubber</th>
<th>High Sulfur Coal</th>
<th>Gasification</th>
<th>Low Sulfur Oil</th>
<th>High Sulfur Oil and Scrubber</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Social Cost</td>
<td>Differential Social Cost</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>15.18</td>
<td>3.08(20%)</td>
<td>3.76(25%)</td>
<td>3.98(26%)</td>
<td>4.73(31%)</td>
<td>6.00(40%)</td>
<td>7.75(51%)</td>
</tr>
<tr>
<td>6</td>
<td>15.44</td>
<td>2.90(19%)</td>
<td>3.60(23%)</td>
<td>3.70(24%)</td>
<td>4.44(29%)</td>
<td>5.64(37%)</td>
<td>7.41(48%)</td>
</tr>
<tr>
<td>11</td>
<td>16.01</td>
<td>2.67(18%)</td>
<td>3.42(21%)</td>
<td>3.36(21%)</td>
<td>4.08(25%)</td>
<td>5.21(33%)</td>
<td>7.00(44%)</td>
</tr>
<tr>
<td>16</td>
<td>15.88</td>
<td>2.71(17%)</td>
<td>3.45(22%)</td>
<td>3.42(22%)</td>
<td>4.14(26%)</td>
<td>5.29(33%)</td>
<td>7.07(45%)</td>
</tr>
<tr>
<td>21</td>
<td>15.70</td>
<td>2.76(18%)</td>
<td>3.50(22%)</td>
<td>3.53(22%)</td>
<td>4.25(27%)</td>
<td>5.43(35%)</td>
<td>7.20(46%)</td>
</tr>
<tr>
<td>27</td>
<td>15.18</td>
<td>3.60(24%)</td>
<td>4.70(31%)</td>
<td>3.74(25%)</td>
<td>4.70(31%)</td>
<td>3.94(26%)</td>
<td>5.66(39%)</td>
</tr>
<tr>
<td>33</td>
<td>15.11</td>
<td>3.16(21%)</td>
<td>3.82(25%)</td>
<td>4.09(27%)</td>
<td>4.86(32%)</td>
<td>6.15(41%)</td>
<td>7.89(52%)</td>
</tr>
</tbody>
</table>

*The difference is the social cost of using the indicated technology less the social cost of using Illinois coal.
Illinois coal and competing fuel/SO$_2$ control options.) Table 3 indicates that the use of Illinois coal, without an SO$_2$ scrubber, results in the lowest total social cost at all locations. This is also true for the other 45 sites considered in the analysis but not included in the table. The use of Western coal, the next most attractive alternative, would result in a minimum increase in social costs of 17%.

Sensitivity of the Results

A number of parametric analyses were performed to test the sensitivity of the conclusion that the use of Illinois coal minimizes total social costs for all the locations considered in the study. To illustrate the types of parameter changes required to alter this conclusion, consider a plant with a 500 ft stack located at site 11. The air pollution damage factors would have to be more than four times as great as those used in the analysis before Illinois coal burned without SO$_2$ controls would not minimize social costs. In that case, Western coal would become the best option.

Without increasing the damage factors, the cost differences in mills/kWh between Illinois coal and Western coal, high sulfur oil, and low sulfur oil would have to be reduced by more than 88%, 58% and 65%, respectively, before the use of these fuels would result in total social costs less than those of Illinois coal.

The capital costs of a coal gasification plant would have to be reduced by more than 76% (to less than $40/kW), and its operating and maintenance costs reduced by more than 40% before coal gasification would become superior to Illinois coal.* The parametric changes required to make the scrubber option, regardless of fuel, economically justified are so extreme that it is unlikely that this option could ever be optimal in the Chicago area.

The above analyses indicate that the conclusion that Illinois coal, with no SO$_2$ controls, is the best boiler fuel to be used in rural and urban fringe power plants located in northern Illinois is robust. The result is further strengthened when one considers the fact that the above analyses are for a plant located relatively close to the Chicago metropolitan area with a relatively short stack. The superiority of Illinois coal increases for plants further from the populated area and/or for plants with taller stacks.

Policy Implications

The results of this analysis indicate that appropriate horizontal and vertical displacement of power plant emissions can minimize the local social costs of power generation and transmission in the northern Illinois area (assuming the particulate controls described on page 6). Furthermore, the environmental damage differential between alternative power plant sites in rural areas is a small percentage (less than 6%) of the total social costs of generating electricity. Forcing power plants to locate more than 60 miles from the boundaries of the Chicago metropolitan area in order to reduce air pollution damages also would most likely not be an economically desirable air pollution/land use policy, since at that point, the added transmission costs would exceed any pollution damage savings.

*Other combinations of changes in capital, operating and maintenance, and fuel penalty parameters could make the coal gasification option superior to the Illinois coal option, but a reduction in capital costs alone would be insufficient.
A few qualifications to the results should be emphasized. The advantages and limitations of spatial adaptation as a means of reducing air pollution damages cannot be stated precisely for regions other than the one studied. However, the Illinois results do indicate that there is a considerable advantage to this type of land use control and it should be given more consideration. Because only rural and urban fringe plant locations were analyzed, the conclusions should not be generalized to include power plants located within highly populated areas. Additionally, the analysis reflects only local air pollution damages. Although the potential damages from long distance transport of pollutants might affect the selection of the best technology, they would probably have little effect on the selection of the best locations within the study area.

Aesthetic damages from transmission lines and animal and vegetation damages were not included in the calculations. If included, they would tend to shift the optimal power plant locations closer to the heavily populated area, because the total cost of transmission (including aesthetic damages) would increase slightly and the difference in the air pollution damages as sites moved further from populated areas would decrease slightly. However, the optimal fuel and SO₂ technology choices probably would not be affected, since the health and material damages that were considered are significantly greater than the omitted ones, and at least a four-fold increase in the damage factors is required before the decision choices are altered.
For further information on the study described in this report, please contact:

Dr. A. S. Cohen
Argonne National Laboratory
Energy and Environmental Systems Division
9700 South Cass Avenue
Argonne, Illinois 60439

or

Prof. G. S. Tolley
The University of Chicago
Department of Economics
1126 East 59th Street
Chicago, Illinois 60637