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In the last twelve years there has been considerable 

research interest in mathematical programming approaches to 

the statistical classification problem, primarily because 

they are not based on the assumptions of the parametric 

methods (Fisher's linear discriminant function, Smith's 

quadratic discriminant function) for optimality. This 

dissertation focuses on the development of mathematical 

programming models for the three-group classification 

problem and examines the computational efficiency and 

classificatory performance of proposed and existing models. 

The classificatory performance of these models is compared 

with that of Fisher's linear discriminant function and 

Smith's quadratic discriminant function. Additionally, this 

dissertation investigates theoretical characteristics of 

mathematical programming models for the classification 

problem with three or more groups. 

A computationally efficient model for the three-group 

classification problem is developed. This model minimizes 

directly the number of misclassifications in the training 

sample. Furthermore, the classificatory performance of the 



proposed model is enhanced by the introduction of a two-

phase algorithm. The same algorithm can be used to improve 

the classificatory performance of any interval-based 

mathematical programming model for the classification 

problem with three or more groups. A modification to 

improve the computational efficiency of an existing model is 

also proposed. In addition, a multiple-group extension of a 

mathematical programming model for the two-group 

classification problem is introduced. 

A simulation study on classificatory performance 

reveals that the proposed models yield lower 

misclassification rates than Fisher's linear discriminant 

function and Smith's quadratic discriminant function under 

certain data configurations. Data configurations, where the 

parametric methods outperform the proposed models, are also 

identified. 

A number of theoretical characteristics of mathematical 

programming models for the classification problem are 

identified. These include conditions for the existence of 

feasible solutions, as well as conditions for the avoidance 

of degenerate solutions. Additionally, conditions are 

identified that guarantee the classificatory non-inferiority 

of one model over another in the training sample. 
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CHAPTER I 

INTRODUCTION 

Overview of the Classification Problem 

The problem of classifying an observation into one of 

two or more mutually exclusive groups is encountered in a 

variety of business situations. A loan officer may wish to 

assess if a loan applicant is a "good risk" (creditworthy) 

or a "bad risk" (not creditworthy) based on certain 

applicant characteristics. Similarly, a manufacturer of 

consumer products may wish to classify consumers in terms of 

the frequency of their use of rebates. Jolson, Wiener and 

Rosecky (1987) used discriminant analysis to classify 

consumers into three groups in terms of their rebate 

proneness. They used variables like effort/value 

relationship, brand requirements, shopping efficiency and 

price awareness, together with demographic characteristics 

to classify consumers as frequent users, light users or non-

users of rebate offers. 

Discriminant analysis helps the decision maker by 

classifying a new observation into one of two or more 

groups. The most commonly used discriminant analysis 

procedures have been Fisher's (1936) linear discriminant 

function and Smith's (1947) quadratic discriminant function. 

Fisher's linear discriminant function (FLDF) performs 

1 



optimally when the distributions of the groups are 

multivariate normal and all covariance structures are equal. 

Smith's quadratic discriminant function (SQDF) assumes 

multivariate normality with unequal covariance structure for 

optimality. 

In the last twelve years a large number of articles on 

mathematical programming approaches to the discriminant 

analysis problem have appeared in the Management Science 

literature (Joachimsthaler and Stam, 1990; Erenguc and 

Koehler, 1990). Such models have attracted much attention 

because they do not require the parametric assumptions for 

optimality. At first, the proposed mathematical programming 

models were rather simplistic and were designed to handle 

only two-group classification problems (Freed and Glover, 

1981a). However, later more complex and sophisticated 

models were proposed for the two-group problem (Glover, 

Keene and Duea, 1988), as well as models for the 

classification problem with three or more groups (Gehrlein, 

1986). 

The classificatory performance of mathematical 

programming models relative to that of the FLDF method and 

the SQDF method was investigated in a number of journal 

articles, and some of these models perform very 

competitively under certain data configurations. In the 

last few years, emphasis has been placed on the 

identification and remedy of anomalies that have plagued 



some of these mathematical programming models (Koehler, 

1989a; Koehler, 1991). 

This dissertation focuses on mathematical programming 

approaches for the three-group classification problem. In 

the following section, an example of a three-group 

classification problem is presented, together with the 

solutions given by the FLDF method, the SQDF method, as well 

as the general single function classification (GSFC) model. 

The GSFC model is one of the mathematical programming models 

that have appeared in the literature for classification 

problems with more than two groups (Gehrlein, 1986). 

An Application Comparing Different Classification Rules 

Johnson and Wichern (1992) presented an example on the 

use of discriminant analysis in order to classify MBA 

applicants into three categories (admitted, not admitted and 

borderline). GPA and GMAT scores were the two criteria used 

to determine the admissibility of each applicant. In the 

presented example, out of 85 applicants for admission to an 

MBA program, 31 were admitted, 28 were not admitted and the 

remaining 26 were considered as borderline cases as shown in 

Data Set l (Appendix B) and exhibited in Figure l.l 

(Appendix C). 

If the FLDF method is used on this example, 7 out of 

the 85 applicants will be classified incorrectly as 

exhibited in Figure 1.2 (Appendix C). Specifically, four 



admitted applicants will be classified as borderline, two 

applicants who were not admitted will be classified as 

borderline as well, and finally a borderline applicant will 

be classified as admitted. If the SQDF method is used, then 

3 out of the 85 applicants will be misclassified as 

exhibited in Figure 1.3 (Appendix C). Specifically, one 

admitted applicant will be classified as borderline and one 

applicant who was not admitted will be classified as 

borderline, whereas a borderline applicant will be 

classified as admitted. If one mathematical programming 

model, say the GSFC model, is used then only one of the 85 

applicants will be misclassif ied as exhibited in Figure 1.4 

(Appendix C). Specifically, one borderline applicant will 

be classified as admitted. It is interesting to note that 

the applicant who is misclassified by the GSFC model is also 

misclassified by both parametric procedures and the two 

additional applicants who are misclassified by the SQDF 

method are also misclassified by the FLDF method. 

The GSFC model identifies weights to be assigned to the 

two criteria, say aj for the GPA and a2 for the GMAT score. 

Thus, for every applicant a composite score 

a0 + aj(GPA) + a2(GMAT) is calculated where a0 is a shifting 

constant. Applicant admissibility is determined by the 

identification of cutoff values for each of the three groups 



of applicants. In this example, the GSFC model generated 

the following values: a0 = 39.527052, a, = 11.835800 and 

a2 = .024720. Applicants with composite scores higher than 

88.3837 are admitted, those with scores between 83.3633 and 

88.3837 are considered borderline, while applicants with 

composite scores below 83.3633 are not admitted. Now 

suppose that a new application is received with GPA = 3.1 

and GMAT = 470. Should this applicant be admitted? As 

39.527052 + (3.1)(11.8358) + (470)(.02472) = 87.836, the 

applicant is considered borderline. If his GPA had been 

3.2, then his composite score would have been 39.527052 + 

(3.2)(11.8358) + (470)(.02472) = 89.020 and he would have 

been admitted. Thus, this mathematical programming model 

identifies a rule that can be used in order to determine the 

admissibility of future applicants. A similar example on 

the use of mathematical programming models for the 

determination of admissibility of students in the MBA 

program at Simon Fraser University was presented in Choo and 

Wedley (1985). 

Purpose, Problem and Significance 

This dissertation proposes modifications to existing 

mathematical programming models for the three-group 

classification problem, introduces new models and compares 

the computational efficiency of different models. 

Furthermore, the classificatory performance of the proposed 



models is compared with that of existing models as well as 

that of the parametric methods (Fisher's linear discriminant 

function, Smith's quadratic discriminant function). Also 

certain theoretical characteristics and properties of 

mathematical programming models are identified. 

The appeal of the mathematical programming approaches 

to the statistical classification problem stems from the 

absence of the assumptions made for parametric procedures. 

In real life problems, the assumptions of the FLDF and SQDF 

methods may be violated, and the degree of such violation 

affects the classificatory performance of these approaches. 

One drawback of the mathematical programming approaches to 

the classification problem, especially the mixed integer 

programming models, is their computational intensity. The 

goal of this dissertation is to develop computationally 

efficient models with high classificatory accuracy. 

A number of anomalies have plagued several mathematical 

programming models for the two-group classification problem 

(Koehler, 1989a; Koehler, 1991). This dissertation 

investigates theoretical characteristics of existing and 

proposed mathematical programming models for the three-group 

classification problem and identifies conditions under which 

such anomalies cannot occur. 

When the assumptions of the parametric methods are 

violated, the classificatory accuracy of these methods may 



be low (Johnson and Wichern, 1992). The proposed 

mathematical programming models aim at providing the 

decision maker with accurate classification instruments, 

useful when the assumptions of the parametric methods are 

violated. 



CHAPTER II 

LITERATURE REVIEW 

Overview 

A considerable number of articles have appeared in the 

Management Science literature over the last twelve years on 

mathematical programming approaches to the statistical 

classification problem (Joachimsthaler and Stam, 1990; 

Erenguc and Koehler, 1990). The majority of these articles 

have focused on the presentation of new mathematical 

programming models for solving the statistical 

classification problem, while other articles in this area 

have addressed issues of classificatory performance of these 

proposed models relative to that of existing methods. 

Several articles have dealt with certain anomalies that have 

plagued mathematical programming models for the two-group 

classification problem (Koehler, 1989a; Koehler, 1991). Of 

the articles proposing new models, most have presented 

linear programming or mixed-integer programming models with 

single or multiple objectives, while a small number of 

articles have focused on heuristics (Banks and Abad, 1991; 

Abad and Banks, 1992) and non-linear programming approaches 

(Stam and Joachimsthaler, 1989). 



Major Mathematical Programming Models for Two Groups 

Major interest in mathematical programming models for 

the statistical classification problem was triggered by 

Freed and Glover (1981a, 1981b). One of the first proposed 

models was the MMD (maximize the minimum deviation) model 

(Freed and Glover, 1981a). This model assigns a weight ak 

to each attribute variable Xk (k = 1, 2, ..., p) and thus 

p 

identifies a linear discriminant score of the form akxik , 
k=l 

where x^ is the value of variable Xk for each observation 

i ( i = l , 2, ..., n k = l , 2, p). The aim of the 

model is to identify weights ak (k = 1, 2, ..., p) that will 

maximize the deviation between an arbitrary cutoff value c 

and the discriminant score that is closest to c. The MMD 

model is presented below. It should be noted that the 

symbol V denotes "for every" in all the formulations in this 

dissertation. 

Notation: 

Xfr is the value of variable Xk for observation i 

ak is the weight assigned to variable Xk 

d is the minimum deviation between a discriminant 

score and the cutoff value 

c is an arbitrarily chosen cutoff value between the 

two groups 
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Formulation: 

max d 

s.t. 

p 
Y, + d < c VieG, 
k=l 

P 

5^ akxik ~ - c VieG. 
k=l 

2 

d, ak sign-unrestricted variables (k = 1, 2, p) 

In this model a positive value of d signifies the 

absence of any misclassified observations whereas a negative 

value of d implies that at least one observation is 

misclassified. It is possible to obtain max d=0 when there 

are no misclassifications and there exist observations ieGj 

p p 
and j €G2 such that akxik = c =

 akxjk* 
k-l k«l 

In an attempt to improve upon the classificatory 

performance of the MMD model, Freed and Glover (1981a) also 

presented a variation of the above model by considering a 

variable d; for each observation i which measures the 
p 

deviation of the discriminant score akxik of observation 
k=l 

i from an arbitrarily chosen cutoff value c. This model is 

known by the acronym MSD (maximize sum of deviations) and is 

presented below: 
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Notation: 

Xfc is the value of variable Xk for observation 

i i ~ 1/ 2, • • • ̂  n k = 1 f 2, • • • g p] 

ak is the weight assigned to variable Xk 

dj is the deviation of the discriminant score for 

observation i from the cutoff value c 

c is an arbitrarily chosen cutoff value between the 

two groups 

Formulation: 

n 

max d i 
i=i 

s. t. 

p 

^ < c VieGj 
k=l 

P 

£ akxik - di > c VieG2 
k=l 

ak, dj sign-unrestricted variables 

~ -̂/ 2, •••/ p i = 1 f 2, •••/ n) 

Several variations of the MMD model have appeared in the 

Management Science literature. Freed and Glover (1986a) 

proposed a model that minimizes the maximum deviation and is 

also referred to as MMD. Freed and Glover (1986b) also 

proposed a modification of the MMD model that minimizes the 

maximum deviation. The cutoff value c is treated as an 
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unrestricted variable and the normalization ak + c = N is 
k=l 

introduced to eliminate the trivial solution 

a1=a2=.. .=ap=0. It should be noted that N is a non-zero 

constant. 

Bajgier and Hill (1982) introduced a model that 

minimizes the sum of misclassification deviations and 

maximizes the sum of the deviations of correctly classified 

observations from a cutoff value c. Their OSD (optimize the 

sum of distances) model is presented below: 

Notation: 

ak is the weight assigned to variable Xk 

Xfc is the value of variable k for observation i 

d;
+ = 

p 
53 akxik~c i f observation i is classified correctly 
k=l 
0 if observation i is misclassified 

df 
0 if observation i is classified correctly 

]C akxik~c observation i is misclassif ied 

c is an arbitrary cutoff value(constant) 

n is the number of observations 

p is the number of variables 

Pj is the weight assigned to the goal minimizing the 

sum of misclassification deviations 
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P2 is the weight assigned to the goal of maximizing 

the sum of the deviations of correctly classified 

observations from the cutoff value c. 

Formulation: 

min P d f - P 2 £ df 
i=l i=l 

S. t. 

P 

E akxik + di+ ~ di" " c VieG, 
k*l 

P 

E akxik - df + di" = c VieG2 
k-l 

ak sign-unrestricted variables (k = 1, 2, ..., p) 

di, d;" > 0 (i = 1, 2, ..., n) 

Bajgier and Hill (1982) also proposed a mixed-integer 

programming model which is an extension to the OSD model. 

It includes the goal of minimizing the number of 

misclassifications in addition to the two goals of the OSD 

model. 

Notation: 

_ J1 if observation i is misclassified 

[0 if observation i is correctly classified 

M is a constant that limits the maximum 

misclassification deviation 

Pj is the weight assigned to the goal of minimizing 

the number of misclassifications 
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P2 is the weight assigned to the goal of minimizing 

the sum of misclassification deviations 

P3 is the weight assigned to the goal of maximizing 

the sum of the deviations of correctly classified 

observations from the cutoff value c 

Formulation: 

in piE Ti + p2£
 df " PJE < 

i=l i-1 i=l 

S.t. 

P 
ak% + df - di" • c VieGj 

k-1 

P 

52 â Xfc - d- + df = c VieG2 
k-l 

MIj > df (i - l, 2, , n) 

ak sign-unrestricted variables (k = 1, 2, ..., p) 

d,+ / df ̂  0 (i = 1, 2, ..., n) 

Glover (1988) and Glover, Keene and Duea (1988) also 

proposed a model with several goals in the objective 

function just as Bajgier and Hill (1982) did. These goals 

are the minimization of the maximum exterior deviation, the 

minimization of the weighted sum of exterior deviations, the 

maximization of the minimum interior deviation and the 

maximization of the weighted sum of interior deviations. 

This model is known as the hybrid model. 
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For the two-group classification problem, several 

authors have presented mixed-integer programming models with 

the single objective of minimizing the number of 

misclassifications in the training sample. These models are 

modifications of the general single function classification 

model for three or more groups, presented in Gehrlein 

(1986). A two-group version of this model is presented 

below: 

Notation: 

{1 if observation i is misclassified . 

0 if observation i is correctly classified 

M is a constant that limits the maximum 

misclassification deviation 

e is a small constant denoting half the width of the 

gap between the two groups 

Formulation: 

n 

min £ Ij 

i»l 

S. t. 

P 

i 
k=l 

£ a ^ - MIj < c - e WieGl 

P 

£ akxik + MIj > c + e vieG. 
k=l 

2 

The above model identifies a small gap of width 2s in order 

to generate increased separation between the two groups• 
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Mathematical Programming Models for More than Two Groups 

All the models presented in the above section can only 

be used for a classification problem with two groups. For 

the classification problem with more than two groups, Freed 

and Glover (1981b) proposed the decomposition of the m-group 

classification problem (m > 3) into mC2 two-group problems, 

where mC2 represents the number of combinations of two 

digits taken from m objects. Then, ^ pairwise comparisons 

are performed using any of the above models to classify each 

observation. Obviously, the number of pairwise comparisons 

can be quite large for the multiple group case with many 

groups. Gehrlein (1986) proposed the first mathematical 

programming model (which was not a pairwise procedure) 

specifically designed for the classification problem with 

more than two groups. The general single function 

classification (GSFC) model projects the data onto a line 

which is partitioned into intervals, one for each group in 

such a way that the number of misclassifications is 

minimized. 

Notation: 

1 if observation i is misclassified 

0 if observation i is correctly classified 

ak is the weight assigned to variable Xk 

(k — 1, 2, ..., p) 
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© X, 

u „ 

e 

e 

n 

m 

^ = 

M 

is a shifting constant 

is the value of variable k for observation i 

(i =1, 2, n k = l , 2, ..., p) 

is the upper endpoint of the interval assigned to 

group Gh 

is the lower endpoint of the interval assigned to 

group G„ 

is the minimum gap between intervals 

is the minimum width of an interval assigned to a 

group 

is the number of observations 

is the number of groups 

1 if group Gg precedes group Gh 

0 otherwise 

is a constant limiting the maximum deviation of a 

misclassified observation from its group, as well 

as the maximum deviation between the lower 

endpoint of the leftmost interval and the upper 

endpoint of the rightmost interval 

Formulation: 

min £ I; 
i=l 
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s.t. 

ao + E a r f " Mli < Uh 
k=l 

«o + Ea kX® * MI, a L„ 
k-1 

VieGh 

(h = 1, 2, ..., m) 

Uh - I* *6 

Lg - Uh + MJ^ £ e 

Lh - Ug + MJ^ > e 

Jgh + J* - 1 

(h = 1, 2, ..., m) 

VGg, VGh 

(g,h = 1,2, ..., m g?*h) 

I, binary variables ( i = l , 2, n) 

J*h binary variables (g,h = 1, 2, ..., m cp4i) 

a0, ak sign-unrestricted variables (k = 1, 2, p) 

Lfc, Uh sign-unrestricted variables (h = 1, 2, ..., m) 

The above model identifies a linear discriminant score 
p 

ao + E akx® f o r every observation ieGh (h = 1, 2, ..., m) 
k-l 

and then checks if such score falls within the interval 

[L^iy. This is accomplished by the first two constraints. 
P 

If the discriminant score a0 +
 akXt f o r falls 
k*l 

outside the interval [L^UJ, then observation i is 

misclassified. The third constraint guarantees that each 

group will be assigned an interval of width & or more. The 

last three constraints guarantee that there is no overlap 

between group intervals. 
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Gehrlein (1986) also proposed the general multiple 

function classification (GMFC) model which is presented 

below. 

Notation: 

(1 if observation i is misclassified 

0 if observation i is correctly classified 

agk is the weight assigned to variable Xk in group Gg 

(k = 1, 2, ..., p g = 1, 2, m) 

ag0 is a shifting constant for group Gg 

(g = 1, 2, ..., m) 

n is the number of observations 

m is the number of groups 

Formulation: 

n 
m i n E Ii 

i=i 

s.t. 

a„o + Y a^xf-ah0-V a^xf +MI>e , . , ^ i e G* 
h (g/h = l, 2, — ,m g A ) 

In the GMFC model the number of binary variables is n 

whereas the number of continuous variables is m(p+l). The 

number of constraints is n(m-l). In the GSFC model the 

number of binary variables is n+m(m-l) whereas the number of 

continuous variables is p+l+2m. The number of constraints 

3 

l s + 2n* Thus, for a large number of groups and 

attribute variables, the GSFC model has fewer constraints 
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and continuous variables. This may be desirable from a 

computational standpoint. 

Motivation for Research Question 1 

A number of parameters have to be assigned values in 

the GSFC model. These are the minimum length of each 

interval (§), the minimum gap size (e) and the maximum 

deviation (M) of a misclassified observation from the 

nearest endpoint of the interval assigned to its group. The 

parameter M also limits the maximum deviation between the 

lower endpoint of the leftmost interval and the upper 

endpoint of the rightmost interval to Mj - e. Gehrlein 

(1986) used M = 100, 6 = 5 and e = .01 and pointed out the 

following: 

Using larger M or smaller e and 6 values resulted in 
scaling problems with the program used. Improper 
scaling refers to the situation where the range of 
values used for coefficients in a linear programming 
formulation is too large. The result of this problem 
is that greater rounding errors result. (Gehrlein 
1986, p. 303) 

Referring to the issue of selecting appropriate values for 

the minimum gap size and the maximum misclassification 

deviation in the two-group mixed-integer programming model, 

Erenguc and Koehler (1990) state: 

The choice of the values to be assigned to these 
parameters is both a theoretical and computational 
issue. (Erenguc and Koehler 1990, p. 221) 
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Stam and Jones (1990), referring to the maximum 

misclassification deviation in the two-group mixed-integer 

programming model, state: 

The parameter M is an arbitrary, sufficiently large 
real-valued constant. (Stam and Jones 1990, p. 245) 

Introducing a two-goal extension to the two-group 

mixed-integer programming model, Rubin (1990a) used 

parameters Mi and M2 to denote the maximum deviations from 

their groups of misclassified observations that belong to 

group Gj and group G2 respectively. He noted that, 

Although any adequately large Mt and M2 would do, it is 
desirable to select them as small as it is possible... 
(Rubin 1990a, p. 257) 

Koehler and Erenguc (1990) point out that the gap size 

(.5e, according to their notation) has to be small relative 

to M and note: 

In practice we know of no a priori method for 
choosing e and M ... We rely on the standard maxim in 
mixed integer programming to choose M large enough and 
8 small enough. (Koehler and Erenguc 1990, p. 71) 

The parameter M is often encountered in linear 

programming problems when one of two mutually exclusive 

constraints must hold. The standard practice is to 

introduce a binary variable I and then the term MI (that is, 

M multiplied by I) is added to the right hand side of the 

first constraint, while the term M(l-I) is added to the 

right hand side of the second constraint. 



22 

Markland and Sweigart (1987) and Turban and Meredith (1988) 

recommend assigning an arbitrarily large positive value to 

M. In their discussion on how large M should be to force 

artificial variables out of the basis in a linear 

programming problem, Bazaraa and Jarvis (1977) state: 

Without solving the linear program it is difficult to 
determine how large M should be to ensure that the 
artificial variables are driven out of the basis, ... A 
large value of M will completely dominate other cost 
coefficients and may result in serious round-off error 
problems in a computer. (Bazaraa and Jarvis 1977, p. 
163) 

This uncertainty about the choice of parameter values raises 

the following research question: 

Research Question l: 

How does the choice of parameter values affect the 

computational efficiency of the GSFC model for the 

three-group classification problem? What pattern in 

computational efficiency can be identified for various 

selections of distinct parameters for the maximum 

misclassification deviation and the maximum deviation 

between the lower endpoint of the leftmost interval and 

the upper endpoint of the rightmost interval? 

Motivation for Research Question 2 

In the presentation of their three-goal mixed integer 

programming model for the two-group classification problem, 

Bajgier and Hill (1982) noted: 

As would be expected for any zero-one formulation of 
this type, computational time was significant. The MIP 
formulation with 30 estimation sample cases required 
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approximately 5 seconds per problem on a CDC CYBER 173. 
Computation time grows very rapidly with the number of 
zero-one variables. (Bajgier and Hill 1982, p. 610) 

Koehler (1990) voiced concerns about the computational 

effort required in mixed-integer approaches where the number 

of binary variables is at least as large as the number of 

observations, noting that real-world problems usually have a 

large number of observations and a small number of 

attributes. 

Since the GSFC model considers six group orderings for 

the three-group classification problem, it requires six 

binary variables for the identification of the different 

orderings. However, three of the possible six group 

orderings are mirror images of the remaining orderings. For 

example, the ordering (Gx, G2, G3) is the mirror image of the 

ordering (G3, G2, Gt) . If three orderings were to be 

considered, then only two binary variables would be required 

for identification of the order of the three groups. Mixed-

integer programming (MIP) models are unpredictable in terms 

of CPU times and number integer iterations required. 

However, reducing the number of binary variables may improve 

the computational efficiency of the model. Schrage (1986) 

points out: 

As the number of integer variables is increased the 
solution time may increase dramatically. (Schrage 
1986, p. 186) 
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A further advantage would be that the optimization package 

will have to consider only three possible group orderings 

instead of six. This leads to the following research 

question: 

Research Question 2: 

As three of the possible six group orderings in the 

three-group GSFC model are mirror images of the 

remaining orderings, can this fact be used in the 

construction of a computationally more efficient model 

with fewer binary variables? 

Motivation for Research Question 3 

Gehrlein (1986) used Fisher's (1936) iris data to 

compare the classificatory performance of the general single 

function classifications (GSFC) model and that of the 

general multiple function classification (GMFC) model. Both 

models misclassified one out of the 150 observations of the 

iris data. However, the classificatory performance of these 

models on a holdout sample was not tested, neither was their 

classificatory performance compared to that of the 

parametric methods (FLDF and SQDF). No article to date has 

performed a Monte Carlo simulation study to compare the 

classificatory performance of mathematical programming 

models for three or more groups with that of the FLDF or 

SQDF methods. This raises the following research question: 
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Research Question 3; 

What is the classificatory performance of the 

mathematical programming models for the three-group 

classification problem relative to that of the FLDF or 

SQDF methods? 

Motivation for Research Question 4 

Gehrlein (1986) states below that the GMFC model will 

generally outperform the GSFC model on the training sample: 

While the example problem results in both the single 
and multiple function schemes producing the same number 
of improper classifications, the multiple function 
scheme must generally be expected to produce fewer 
improper classifications. (Gehrlein 1986, p. 303) 

However, Gehrlein (1986) does not provide a proof that the 

GSFC model cannot outperform the GMFC model in the training 

sample. This raises the following research question: 

Research Question 4: 

Can it be proved that the number of misclassifications 

yielded by the GMFC model in the training sample will 

not exceed the number of misclassifications yielded by 

the GSFC model? 

Motivation for Research Question 5 

The GSFC model identifies three intervals for the 

three-group classification problem and assigns each of the 

groups to one of these intervals. If an observation falls 

outside the interval assigned to its group, then it is 

misclassified. If an interval-based mathematical 

programming model is used to solve a three-group 
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classification problem (phase 1), and then the same model is 

used to resolve the same problem with the additional 

constraint that the sample covariance of the discriminant 

scores is zero (phase 2), then the data will be spread out 

in a different direction from the original one. This 

approach is similar to that of the second discriminant in 

parametric discriminant analysis (Johnson and Wichern, 

1992). Using the interval cutoff values generated in phases 

1 and 2 one can construct a grid consisting of 9 cells. 

Then each cell can be assigned to the three groups. Such 

approach will allow greater flexibility in the assignment of 

groups and may improve classificatory performance. This 

raises the following research question: 

Research Question 5: 

Can a two-phase method be identified that can improve 

the classificatory performance of the mathematical 

programming models? 

Published Simulation Studies 

Freed and Glover (1986a) compared the classificatory 

performance of the MMD (minimize the maximum deviation), the 

MSID (maximize the sum of the interior deviations), the MSD 

(minimize the sum of the deviations) and the FLDF method. 

All three mathematical programming models included the 

p 

normalization c + ak = N. The data were generated from 
k=l 

normal populations and various degrees of group separation 
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were considered. The holdout classificatory performance of 

the MSD model was superior to that of the other three 

models. The FLDF method outperformed the MMD and the MSID. 

Markowski and Markowski (1987) compared the estimation 

sample classificatory performance of the MMD (maximize the 

minimum distance) model with that of the FLDF method in the 

presence of qualitative variables. In this study there were 

two normally distributed variables, one binary and one tri-

valued variable. The FLDF method was found to be superior 

to the MMD for such data configuration. 

The MSD model, the FLDF method, the SQDF method and the 

logistic discriminant model were considered in a study by 

Joachimsthaler and Stam (1988) using simulated data from 

normal and certain non-normal symmetric distributions. The 

study was limited to evaluating the classificatory 

performance on the generated training sample only and not on 

holdout samples. None of the four methods yielded 

significantly lower misclassifications rates. 

Rubin (1990b) carried out a simulation study comparing 

the holdout classificatory performance of the FLDF method 

and the SQDF method with that of fourteen mathematical 

programming models for the two-group classification problem. 

The MSD, the OSD as well as several variants of the MMD and 

the hybrid model were included in this study which was 

restricted to normally distributed data. The SQDF method 
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outperformed the FLDF method and all the mathematical 

programming models tested. 

Stam and Joachimsthaler (1990) compared the 

classificatory performance of the MSD model, the MIP model 

presented in Koehler and Erenguc (1990), the FLDF method and 

the SQDF method. On a set of real data from non-normal 

populations, the MIP model outperformed the other three 

methods. A simulation study was carried out using data from 

normal populations with equal variances, continuous uniform 

populations with equal variances and discrete uniform 

populations with equal and unequal variances. The 

classificatory performance of the MIP model in the 

estimation training sample was superior to that of the other 

methods in the first three configurations. When data from 

discrete uniform populations with unequal variances were 

used, then the SQDF method outperformed the other methods in 

the training sample. In terms of holdout classificatory 

performance the MIP model outperformed the other methods 

when the data used were from discrete uniform distributions 

with equal variances. The MSD model outperformed the other 

methods for data from continuous uniform distributions with 

equal variances. 

The MSD model, the MIP model, the FLDF method and the 

SQDF method were considered in a simulation study by Stam 

and Jones (1990). The data were generated from normal, 

continuous uniform and discrete uniform distributions with 
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equal and unequal variances. The sample sizes ranged from 

10 to 50 per group and only equal group sizes were 

considered. The holdout classificatory performance of the 

MIP model was superior to that of the other three methods 

for data from normal populations with unequal variances when 

n; > 40 (i = 1, 2) . This was also true for data from 

discrete uniform populations with equal variances when 

nj > 30 (i = 1, 2). The MSD model outperformed the other 

methods when the data were generated from normal populations 

with unequal variances and n; < 3 0 (i = 1, 2), discrete 

uniform populations with equal variances and n; < 20 

(i = 1, 2) or continuous uniform populations with equal 

variances for n; = 10 or n; £ 40 (i = 1, 2) . 

Motivation for Research Question 6 

The classification performance of the MSD model for the 

two-group classification model was found to be competitive 

in all of the above simulation studies except the one by 

Rubin (1990b). However, no article has considered extending 

the MSD model so that it can be used in classification 

problems with more than two groups. This raises the 

following research question: 

Research Question 6: 

Can the MSD model be extended for use in classification 

problems with more than two groups and how will its 



30 

classificatory performance compare with that of the 

parametric methods? 

Anomalies of Mathematical Programming Models for Two Groups 

Various anomalies have plagued several of the 

mathematical programming approaches for the two-group 

classification problem. Markowski and Markowski (1985) 

identified problems that can arise when the MMD (maximize 

the minimum deviation) or the OSD model are applied to 

certain types of data structures. They proved that both 

models can yield unacceptable solutions. An unacceptable 

solution is one where a|=a2=... =ap=0. The presence of 

observations in the interior of all four quadrants was found 

to be a sufficient (but not necessary) condition for the 

existence of an unacceptable solution when p=2. They also 

showed that if all observations are in the first quadrant, 

then an unacceptable solution cannot be obtained. Koehler 

(1989a) and Rubin (1989) identified necessary and sufficient 

conditions for the existence of unacceptable solutions in 

the MMD (maximize the minimum deviation) model. Koehler 

(1989a) also showed that if the MMD (maximize the minimum 

deviation) model yields an unacceptable solution for c = c% 

then the MMD (minimize the maximum deviations) model may 

yield an unacceptable solution for c = -c*. He also showed 

that the inclusion of a normalization of the form 
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p 

ak + c = N in the MMD (minimize the maximum deviation) 
k=l 

model does not eliminate unacceptable solutions. 

Furthermore, Koehler (1989a) proved that the MSD and MSID 

models can yield unacceptable solutions. Koehler (1989b) 

showed that the hybrid model is not immune to unacceptable 

solutions, while Koehler (1991) showed that the inclusion of 

a normalization in a model may lead to the elimination of 

potentially optimal solutions. 

Motivation for Research Question 7 

Because of the various anomalies that have plagued 

several of the mathematical programming models for the two-

group classification problem, the following research 

question is raised: 

Research Question 7: 

What anomalies, if any, are present in the mathematical 

programming models for the three-group classification 

problem? 



CHAPTER III 

PROPOSED MODELS 

The Modified GSFC Model 

A modified version of the GSFC model will be presented 

in this section. First an explanation will be given as to 

the motivation of using this modified version of Gehrlein's 

model. This motivation can be understood by examining the 

role that the M parameter plays. The general single 

function classification (GSFC) model, presented in Chapter 

II, uses an arbitrarily large number M which is multiplied 

by the binary variables Ij (i = 1, 2, ..., n) and by the 

binary variables Jgh (g = 1, 2, ..., m h = 1, 2, ..., m 

gj4i) in the appropriate constraints to allow for 

misclassified observations and to maintain certain 

requirements on the structure of the intervals. Gehrlein 

(1986) selected the value of 100 for M in an application of 

the GSFC model on a celebrated set of data. 

The relationship of the size of M to the CPU times and 

the number of integer iterations can be illustrated by 

examining the results of the following simulation. Samples 

of size 25 were generated from each of three multivariate 

normal populations with the following specifications: 

32 
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M-3 = 
3 
3 

Sx = I S2 = I S3 = I 

It should be noted that, in the above specifications, I 

denotes the 2x2 identity matrix. This configuration was 

selected because the assumptions for optimality for Fisher's 

linear discriminant function (FLDF) are satisfied and 

because the group means are collinear. 

In this simulation, 25 replications of the data were 

taken and the parameter M was assigned the values 25, 50, 

75, 100, 200 and 500. The package SAS/OR (version 6.07) was 

used on a Solbourne 5E/902 computer operating under UNIX. 

The average number of misclassifications generated by the 

GSFC model over the 25 runs, the average CPU times and the 

average number of integer iterations are given in Table 1 

(Appendix A) and exhibited in Figure 2.1 through Figure 2.3 

(Appendix C). The results presented in Table 1 show that 

there is a strictly monotonic increase in both the average 

CPU times and the average number of integer iterations as M 

increases. Clearly CPU times can be prohibitive for large 

values of M. 

A modified version of the GSFC model is considered to 

make the model less computationally intensive. In the GSFC 

model, when the parameter M is multiplied by the binary 

variable Iif it identifies the maximum deviation of a 
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misclassified observation from the interval assigned to its 

group. When the parameter M is multiplied by the binary 

variable J*, it limits the maximum deviation between the 

lower endpoint of the leftmost interval and the upper 

endpoint of the rightmost interval to H - e. The proposed 

modification to the GSFC model involves the introduction of 

two parameters Mj and to replace M. The parameter M1 

identifies the maximum deviation of a misclassified 

observation from its group. The parameter M2 limits the 

maximum deviation between the lower endpoint of the leftmost 

interval and the upper endpoint of the rightmost interval to 

M2 - e. Such modification allows more flexibility in the 

specification of parameter values. It will be shown in 

Chapter IV that this modified version of the GSFC model with 

Mx and Mj can be more computationally efficient than the 

original version of the GSFC model. The new model, referred 

to as the modified GSFC, is presented below: 

Notation: 

1 if observation i is misclassified * I1
 1 

[0 i " . . . . 

if observation l is correctly classified 

ak is the weight assigned to variable Xk 

(k = 1, 2, ...p) 

a0 is a shifting constant 

Mj is the maximum deviation of a misclassified 

observation from its group 
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X® 

UK 

e 

e 

is the value of variable k for observation i 

(1 = 1^ 2^ «••f n k = 1, 2, •• • r p) 

is the upper endpoint of the interval assigned to 

group Gh (h = 1, 2, ..., m) 

is the lower endpoint of the interval assigned to 

group Gh (h = 1, 2, m) 

is the minimum gap between intervals 

is the minimum width of an interval assigned to a 

group 

1 if the interval associated with group Gg 

precedes the interval associated with group Gh 

0 otherwise 

is a constant limiting the maximum deviation 

between the lower endpoint of the leftmost 

interval and the upper endpoint of the rightmost 

interval to ^ - e 

Formulation: 

= 

min £ I{ 
i*l 

s. t. 

+ E a A ® " MiIi * Uh 
k=l 

*o + Ea tX» + Mjlj 2; Ljj 
k-1 

Vi£Gh 

(h = 1, 2, — , m) 
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U„ - XJJ, ̂  e (h = 1, 2, • • • ( m) 

Lg - Uh + MjJgh > e 

L, - Ug + M, > e 

Jgh + JH - 1 

VGg, VGh 

(g,h = 1, 2, ..., m g?4i) 

Ij binary variables (i = 1, 2, n) 

Jg,, binary variables (g,h =1, 2, m g?3i) 

a0, ak sign-unrestricted variables (k = 1, 2, p) 

Lh, Uh sign-unrestricted variables (h = 1, 2, . . . , m) 

MIP3G: A Mixed Integer Programming Model 

for the Three-Group Problem 

A new mixed integer programming formulation is 

presented in this section for the three-group discriminant 

problem and is motivated by the need to further reduce the 

computational effort used by the modified GSFC model. For 

the three-group discriminant problem, the GSFC model has to 

consider six different orderings of the groups assigned to 

those intervals. The model proposed in this section 

eliminates group orderings which are mirror images of other 

group orderings and can be generated by the multiplication 

of certain constraints by -1. For example, if the ordering 

(G2, GU G3) is considered, then the ordering (G3/ Gt, G2) is 

eliminated from further consideration. This proposed model 

can be used only for three groups and is presented below. 

As in the case of the GSFC model, the objective of the MIP3G 
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model is to minimize the number of misclassifications in the 

training sample. 

Notation: 

ak is the weight assigned to variable Xk 

X® is the value of variable k for observation i 

a0 is a shifting constant 

6 is the width of the middle interval 

e is the width of the gap between adjacent intervals 

H is a constant that limits the maximum possible 

distance of a misclassified observation from its 

group 

Mj is a constant that limits the maximum possible 

distance of a correctly classified observation 

that belongs to either the leftmost or the 

rightmost group from -e or e + § respectively 

1 if observation i is misclassified f i i 

1 = 1° -
I: = 

if observation i is correctly classified 

*2 = 
1 if group G2 is assigned to the interval on the left 

0 if group G2 is assigned to the interval in the middle 

*3 -
1 if group G3 is assigned to the interval on the right 

0 if group G3 is assigned to the interval in the middle 

Formulation: 

min I. 
i=l 
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s. t. 

ao + E a k X ® - " (e+^)K2 + (M^eJKj < K, 
k'i 

P 
ao + + Ml1! - (M2+e)K2 + (e+6)K3 ̂  6 - Mj 

k=l 

Vi€Gx 

y 
ao + S ak xk } " + (e+^)K2 < £ 

k=l 
p 

a0 + J> kX® + Mjlj + (M^ejKj > 0 
k=l 

VieG, 

a0 + J> kX® " ~ (M2+e)K3 * 6 
k«l 

ao + £®tX® + Mjli - (e+§) K3 > 0 
k=l 

VieG, 

k2 + K3 > 1 

11/ *2/ "•> IBf K2f k3 binary variables 

ao/ ai# •••/ aP sign-unrestricted variables 

The above formulation identifies three intervals 

[-Mj-e, -e], [0, e] and [e+6, e+i+Mj] and assigns one of the 

following group orderings to these three intervals: 

(Gi/ s2/ G3), (G2, g1# G3) and (G2, g3/ gx) . The remaining 

three orderings are just mirror images of these three 

orderings, as illustrated in the following example. Suppose 

that observation i is correctly assigned to the leftmost 

interval, observation j is correctly assigned to the middle 

interval and observation r is correctly assigned to the 
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rightmost interval. The six constraints of this model are 

then equivalent to the following set of equations: 

-Mj - e < a0 + 5> kxf < -e 
k=l 

o < a0 + £ akX® < e 
k=l 

P 

and e + § < a0 + 52akXk
r) < e+6+Mj 

k-l 

Multiplying each constraint by -1, we obtain: 

e £ -a0 - J> kX® <; M, + e 
k=l 

-e < ~a0 ~ E
 akx® * 0 

k=l 

P 

and -e - 6 - < -a0 - 52
 akXk} £ -e - 6 

k=l 

Now if we add the term 6 (width of the middle interval) to 

every side of each inequality, we obtain: 

P 

e + e < e - a 0 - JT ^ ̂  + e + 6 
k=l 

P 

0 < § - ao ~ ^ 6 
k=l 

P 

and - e - M 2 < e - a 0 - ^ ak
xkf) ̂  ~e 

k=l 

Thus, observation i has moved from the leftmost interval to 

the rightmost interval, whereas observation r has moved from 

the rightmost interval to the leftmost interval. 

Observation j has remained in the middle interval. In the 
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above formulation, Gt has been chosen as the group that can 

be assigned to any of the three intervals. However, such 

choice was arbitrary and does not affect the optimal 

solution in any way. 

The MIP3G model has four fewer binary variables than 

the GSFC or the modified GSFC models as it uses only two 

binary variables to maintain the requirements of the line 

partition. Furthermore, the MIP3G model has six fewer 

continuous variables and eleven fewer constraints than the 

other two models. 

MSDMG: A Model for the Minimization of the Sum of 

Deviations in the Multiple-Group Problem 

The GSFC model has as an objective the minimization of 

the number of misclassifications. If the objective is 

changed to the minimization of the sum of misclassification 

deviations, then each binary variable I£ (i = 1, 2, ..., n) 

will be replaced by a pair of continuous non-negative 

variables d̂ , and dit. Thus the computational intensity of 

the model will be reduced substantially. This model is 

presented below and will be referred to as the MSDMG. 

Notation: 

ak is the weight assigned to variable Xk 

a0 is a shifting constant 
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r ® 

uh 

e 

6 

n 

-

is the value of variable k for observation i 

{i — 1/ 2f • • •; n k = 1, 2f • f p) 

is the lower endpoint of the interval 

assigned to group Gh (h = 1, 2, ..., m) 

is the upper endpoint of the interval 

assigned to group Gh (h = 1, 2, ..., m) 

is the minimum gap between intervals 

is the minimum width of an interval 

assigned to a group 

is the number of observations 

1 if group Gg precedes group Gh 

0 otherwise 

dj, is the deviation from Uh of an observation i€Gb 

that is misclassified to the right of 

Uh (h lr 2f • • •; m) 

di< is the deviation from Lh of an observation ieGh 

that is misclassified to the left of 

Lh (h = 1, 2, ..., m) 

Formulation; 

n 

® i n E <dm + di*) 
i * l 
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s. t. 

* E » r f " S 
k=l 

a o + E a r f + d« ^ Lh 
t=i 

uh - Lt >e 

VieGh 

(h = 1, 2, ..., m) 

h = 1, 2, ..., m 

L,, - Ug + MJ^ > § 

Lg - Uh + MJ^ £ 6 

Jgh + Jhg - 1 

VGg, VGh 

(g,h = 1/ 2f . • • , in g?̂ h) 

binary variables (g,h = 1, 2, ..., m g?*h) 

ak, Lh, Uh sign-unrestricted variables 

1# 2, • • • , p h — 2/ • • • , III) 

«̂iI ^ 0 i/ 2f • • • ( n) 

A Two-Goal Extension to the MIP3G Model 

Both the modified GSFC and the MIP3G models directly 

minimize the number of misclassifications in the training 

sample. One characteristic of these models is that they 

generate alternate optimal solutions and each of these 

alternate optimal solutions may give a different holdout 

misclassification rate. According to Rubin (1990a), 

Having a secondary criterion is important, since 
there may be many solutions with the same 
(minimal) misclassification rate on the training 
data, not all of which will be equally efficacious 
on future observations. (Rubin 1990a, p. 257) 
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One of the aims of some classification models is to 

"spread out" the data as much as possible (Johnson and 

Wichern, 1992). This can be accomplished by the inclusion 

of a secondary goal maximizing the deviation between the 

projected mean of the group assigned to the leftmost 

interval and the projected mean of the group assigned to the 

rightmost interval. The MIP3G model is extended to include 

this secondary goal in the following formulation: 

Notation: 

ak is the weight assigned to variable Xk 

X® is the value of variable k for observation i 

a0 is a shifting constant 

6 is the width of the middle interval 

e is the width of the gap between adjacent intervals 

Mt is a constant that limits the maximum possible 

deviation of a misclassified observation from the 

nearest endpoint of the interval assigned to its 

group 

M2 is a constant that limits the maximum possible 

deviation of a correctly classified observation 

that belongs to either the leftmost or the 

rightmost group from -e or e + 6 respectively 

j , 1 if observation i is misclassified f 1 j 

H i if observation i is correctly classified 
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*2 = 

Kj 

1 if group G2 is assigned to the interval on the left 

0 if group G2 is assigned to the interval in the middle 

1 if group G3 is assigned to the interval on the right 

0 if group G3 is assigned to the interval in the middle 

Xh is the projected mean of the group Gh (h-1, 2, 3) 

S is the deviation between the projected mean of the 

group assigned to the leftmost interval and the 

projected mean of the group assigned to the 

rightmost interval 

Px is the weight assigned to the goal of minimizing 

the number of misclassifications 

P2 is the weight assigned to the goal of maximizing 

the deviation between the projected mean of the 

group assigned to the leftmost interval and the 

projected mean of the group assigned to the 

rightmost interval 

nh is the number of observations in group 

(h = 1, 2, 3) 

Formulation: 

m i n PiE Ii " p25 
i=l 
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s. t. 

ao + E a A ® - M1Ii - (e+S)!^ + (Mj+eJKj < M2 
k=l 

P 

a0 + J^akxf + - (Mj+e)!^ + (e+e)Kj > e - 1^ 
k«l 

k VieGx 

ao + E a k * f - + (e+£)K2 < § 
k«l 

P 
ao + E a k X ® + KiJi + (Mz+e)^ * 0 

k«l 

VieGo 

a0 + E a t X ® " Ml1! - (M2+e) K3 * 6 
k*l 

ao + E a
k x f + - (e+6) K3 5: 0 

k»l 

VicG, 

Xt + MjKJ - X2 + R j f l - K j ) £ S 

X3 + M^l-Kj) - Xj + MjKJ > 5 

X3 + ̂ (l-Kj) - X2 + ̂ (l-Kj) > 5 

S is a non-negative variable 

E E "Af 
and Xh = a0 +

 k*0 ieqt 
nu 

(h = 1, 2, 3) 

The last three constraints guarantee that the deviation 

between the projected mean of the group assigned to the 

leftmost interval and the projected mean of the group 

assigned to the rightmost interval will be greater than or 
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equal to S. Suppose that K2 = 0 and K3 = 1, i.e. the 

ordering of the three groups is (Glf G2, G3). Then: 

^ - X2 + M2> 6 

X3 - Xj > S 

X3 - \ + M, > S 

and therefore, the deviation between the projected mean of 

the group assigned to the leftmost interval (GJ and the 

projected mean of the group assigned to the rightmost 

interval (G3) is at least S. 

To understand what value of PI and P2 will make the 

first goal preemptive over the second goal, consider the 

following. The deviation between the lower endpoint of the 

leftmost interval and the upper endpoint of the rightmost 

interval is (Mj + e) + (e + 6 + Mj) = 2Mj + 2e + £. 

Furthermore, the maximum deviation of a misclassified 

observation from its group is Mt. Thus, if 

P, > P2(2Mx + 2M2 + 2e + §), the first goal is preemptive over 

the second goal. This follows since the first goal consists 

of binary variables. 

The Grid Algorithm 

The grid algorithm is a proposed two-phase procedure. 

In the first phase a three-group problem is handled using 

either the MIP3G or the modified GSFC model. In the second 

phase the problem is solved again using the same model but 

with the additional constraint that the sample covariance of 
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the discriminant scores obtained in the two phases is equal 

to zero. A pair of scores is thus obtained for each 

observation and plotted with the discriminant score obtained 

for each observation being on the vertical axis. Horizontal 

lines are then drawn at levels corresponding to the 

midpoints of the gaps obtained in the first phase. Vertical 

lines are also drawn at levels corresponding to the 

midpoints of the gaps obtained in the second phase. Thus we 

get nine cells containing a total of n observations. Then 

each cell will be assigned to a group. As will be seen in 

the formal presentation of the algorithm, a cell will be 

assigned to a specific group, if the number of observations 

from that group exceeds the number of observations from each 

of the other two groups. A rule is also proposed to handle 

cases of ties in the number of observations correctly 

classified by each group. The steps of the Grid algorithm 

are given below: 

Step 1 

Solve the three-group classification problem using 

either the MIP3G or the modified GSFC. Let ax*, a 2*, ..., ap* 

be the optimal solution values of a„ a2, ..., ap and let 
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= 

It should be noted that consists of the values of the 

weights of the variables Xk (k = 1, 2, p) and does not 

include a0 (shifting constant). 

Step 2 

Let Xi be the column vector of observation i, that is 

X: = 

r ® 

r ® 

X, 

Let X = 

X® 

where Xk = — n 

(k = l, 2, ..., p) 
(G = Gj U G 2 U G3) 
(n = nx +112 + 113) 

Set ij (Xj-X) =gi VieG 

Step 3 

Resolve the above problem with the following additional 

constraint ^ ]jTg^Xi-X) =0 VieG. This constraint means 
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that the sample covariance cov(£iXi# llx{) = 0, where 

*2 = 

_ * a, 

and Sli , a2*, • • • / &P* are the optimal solution values of 

al7 ai, ... , and ap respectively, when the problem is 

resolved. Thus the second discriminant will tend to spread 

the data in a different direction from the direction that 

the first discriminant spread the data. 

Step 4 

Calculate £?Xj and and plot (ijfXj, £*xi) VieG. 

Step 5 

Draw horizontal and vertical lines at levels - — and § + — 
2 2 

as the below diagram indicates if the MIP3G model is used. 
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e 
"2 

6 + 

If the modified GSFC model is used instead, and, say for 

example, the first discriminant group ordering is (Gj, Gj, 

Gk) for some i, j, k = 1, 2, 3 and i?£j, j;*k, and i^k, while 

the second discriminant ordering is (Gk, Gif Gj) for some 

i, j, k = 1, 2, 3 and i^j, j?9c, and i;*k, then horizontal 

lines are drawn at levels ^ and Similarly, 
2 2 

vertical lines are drawn at levels ^ and Ei. 
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Thus, the following grid is generated: 

I* - Uj 

L- - U. 
J i 

L. - II L. - U-
*"1 k -"j wi 

Step 6 

Let q® (i = 1, 2, 3 and j = 1, 2, 9) be the number of 

observations from G; that fall into cell j. 

Let C®, = max [q0'] (j =1, 2, ..., 9) . 
i*l,2,3 

*(j)i 

3 
Let C® = £Cj® (j - 1, 2, 9). 

i=l 

Then the total number of misclassified observations is 

E r c ( i ) -
j=i 

The above procedure assigns the 9 cells to the three 

groups. Group Gj will be assigned to the cells in which the 

number of observations from that group exceeds the number of 

observations from each of the other two groups. So the 
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total number of observations from the other two groups in 

that cell will give the number of misclassifications for the 

cell. In case of a tie, that is C®^ = Cj® = for 

i,k = 1, 2, 3, and iŷ k, the assignment of a group to a cell 

by the first discriminant prevails (j = 1, 2, 9). 

Similarly, if a cell does not have any observations, the 

assignment by the first discriminant will be used for 

holdout testing. 

The classificatory performance of the Grid algorithm 

will, at worst, be identical to that of the first 

discriminant in the training sample. The Grid algorithm was 

not used in the simulation study in Chapter IV for 

comparison of the classificatory performance of the 

different models when the data were generated from uniform 

and normal populations with collinear means. This is 

because, in several runs, the model failed to yield a 

solution when the data were generated from normal or 

continuous uniform populations with collinear means. The 

same problem was also observed in some preliminary 

simulation runs using the Grid algorithm, when the number of 

misclassifications, yielded in Step 1, was zero. 

Intuitively one can reason that for collinear data from 

uniform or normal populations the MIP3G method should be 

optimal and that the Grid algorithm should not be able to 

provide additional classificatory power with the second 

discriminant. 



CHAPTER IV 

COMPUTATIONAL EFFICIENCY AND CLASSIFICATORY PERFORMANCE 

Computational Efficiency of the Modified GSFC Model 

Relative to the GSFC Model 

A simulation study was conducted to assess the 

computational efficiency of the modified GSFC model in 

comparison to the Gehrlein's GSFC model for the three group 

classification problem. There are numerous configurations 

and distributions that could be used in performing this 

simulation study. However, as multivariate normal 

populations with equal or unequal covariance structures have 

been used in many Monte Carlo simulation studies (Rubin, 

1990b; Joachimsthaler and Stam, 1988; Freed and Glover, 

1986a), data were generated from three multivariate normal 

populations using the following two configurations: 

Configuration 1 

Hi o] M, - [1] |i, - [: 

Configuration 2 

•*1 = [3 .4641] ^ = [ 0] 3̂ = [0] 

In both configurations, juh denotes the mean of group 

53 
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Gh (h = 1, 2, 3). It should be noted that in configuration 

1 the means of the three groups lie on a straight line, 

whereas, in configuration 2 the means of the three groups 

fall on the vertices of an equilateral triangle. The 

following two covariance structures were considered with I 

representing the 2x2 identity matrix: 

Covariance Structure 1: 

21 = I S2 = I S3 = I 

Covariance Structure 2: 

= I 23 2 = 1.441 S3 = .641 

Sample sizes were n1=n2=n3=25 and the generated data for 

each of the three groups were replicated 25 times to 

estimate the computational characteristics of the modified 

GSFC model under certain parameter settings. The average 

number of misclassifications, the average CPU times and the 

average number of integer iterations for configuration 1 

with covariance structure 1 are reported in Table 2 

(Appendix A) and exhibited in Figures 3.1 through 3.3 

(Appendix C). The same computational characteristics for 

configuration 1 with covariance structure 2, configuration 2 

with covariance structure 1 and configuration 2 with 

covariance structure 2 are reported in Tables 3 through 5 of 

Appendix A respectively and exhibited in Figures 4.1 through 

6.3 (Appendix C). These computational characteristics were 

generated by setting the values of Mj, e and e equal to 100, 
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5 and .01 respectively. The parameter Mt was assigned the 

values 3, 5, 10, 15, 25, 50, 75, 100 and 1000. 

For each of the four combinations of configurations and 

covariance structures, Tables 2 through 5 (Appendix A) show 

that the average CPU times and the average number of integer 

iterations monotonically increase as Mj increases. 

Furthermore, the computational efficiency of the modified 

GSFC model is by far superior to that of Gehrlein's GSFC 

model. In 25 replications of the data using configuration 1 

with covariance structure 1, the average CPU time for the 

GSFC model with M = 100 (ie. Mx = 100 and M2 = 100) is 580.00 

seconds. For the modified GSFC model with = 10 and 

M2 = 100 the average CPU time is 115.12 seconds. For the 

GSFC model with M = 100, the average number of integer 

iterations is 4980.28 whereas for the modified GSFC model, 

with Mx = 10 and M2 = 100, the average number of integer 

iterations is 1024.60. It should be noted that the average 

number of misclassifications generated by the modified GSFC 

model with VLt = 10 and = 100 is identical to that of 

Gehrlein's GSFC model with M = 100 as seen in Table 2 

(Appendix A) and exhibited in Figure 3.1 (Appendix C). 

In 25 replications of the data using configuration 1 

with covariance structure 2, the average CPU time for the 

GSFC model with M = 100 (ie. Mt = 100 and Mj = 100) is 683.16 

seconds and the average number of integer iterations is 
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6040.40 as seen in Table 3 (Appendix A). For the modified 

GSFC model with Mt = 10 and M2 = 100 the average CPU time is 

142.28 seconds and the average number of integer iterations 

is 1248.88. Again, for the above parameter values, both 

models yielded identical numbers of misclassifications. 

For configuration 2 with covariance structure 1, the 

average CPU time for the GSFC model with M = 100 

(ie. Mt = 100 and = 100) is 393.72 seconds and the average 

number of integer iterations is 4650.48. For the modified 

GSFC model with Mx = 10 and Mj = 100 the average CPU time is 

195.52 seconds and the average number of integer iterations 

is 2135.28. The average number of misclassifications is 

9.04 (ie. 12.05%) for both models as seen in Table 4 

(Appendix A). 

For configuration 2 with covariance structure 2 the 

average CPU time for the GSFC model with M = 100 is 346.40 

seconds and the average number of integer iterations is 

3925.72. These results are presented in Table 5 (Appendix 

A). The average CPU time for the modified GSFC model with 

Mi = 10 and M2 = 100 is 162.04 seconds and the average number 

of integer iterations is 1869.36. Again, for the above 

parameter values, both models yielded identical numbers of 

misclassifications. 

The computational characteristics presented in Tables 2 

through 5 (Appendix A) show that the computational 
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efficiency of the modified GSFC model increases as the value 

of Mi is decreased. However, if the value of M, is very 

small, the minimum number of misclassifications in the 

training sample may not be obtained. Thus, for example, 

when the data are generated using configuration 1 with 

covariance structure 1, the average number of 

misclassif ications for Mx = 3 is 13.40. For = 5, the 

average number of misclassifications reduces to 10.92, 

whereas for Mj > 10 the average number of misclassifications 

is 10.60. 

The effect of varying the value of parameter M2 on the 

average number of misclassifications, average CPU times and 

average number of integer iterations was investigated in a 

simulation study using samples of size nt=n2=n3=25 generated 

from multivariate normal populations with configuration 2 

and covariance structure 2. The experiment was replicated 

25 times and was assigned the values 20, 40, 75, 100, 250 

and 400. As before, the parameter was assigned the 

values 3, 5, 10, 15, 25, 50, 75, 100 and 1000. The values 

of the other parameters were 6 = 5 and e = .01. The results 

of this experiment are presented in Tables 6 through 8 

(Appendix A). There are several interesting observations 

that can be made from these tables. For example, the 

average number of misclassifications was not affected by the 

magnitude of for M2 > 40. However, the average number of 
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misclassifications for Mj = 20 exceeded the corresponding 

averages for Mj > 40 regardless of the value assigned to the 

parameter Mt. Furthermore for M2 t 40, the average CPU times 

and the average number of integer iterations were not 

affected by the magnitude of Mj. For M2 = 20 the average CPU 

times and average number of integer iterations were higher 

than those for M2 > 40. 

Data generated from normal populations with 

configuration 2 and covariance structure 2 were also used to 

assess the effect of the magnitude of 6, the minimum width 

of an interval, on the average number of misclassifications, 

the average CPU times and the average number of integer 

iterations. The parameter 6 was assigned the values 5, 2.5, 

1 and .5. As before, the parameter Mx was assigned the 

values 3, 5, 10, 15, 25, 50, 75 and 100. The values of the 

other parameters were = 100 and e = .01. These results 

are presented in Tables 9 through 11 (Appendix A). 

Several important observations should be noted from the 

results in Tables 9 through 11. For example, when >» 3, 

the average number of misclassifications for 6 = 5 and 

§ = 2.5 exceeded the corresponding averages for e = 1 and 

£ = .5. When Mt = 5, the average number of 

misclassifications for 6 = 5 exceeded the corresponding 

averages for 2.5, 6 = l and § = .5. When Mx £ 10, the 

magnitude of § did not affect the average number of 
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misclassifications. Another observation to note from Tables 

9 through 11 is that the average CPU times were a decreasing 

function of 6 for M! < 100. For Mx = 1000 the average CPU 

times appeared to be unaffected by the magnitude of e. The 

average number of integer iterations decreased as the value 

of § was increased. This was true for any value of Mx, 

however, the decreases in the average number of integer 

iterations were more striking for small values of Mt. 

The same data used for assessing the role of 4 were 

also used to assess the effect of the magnitude of e, which 

is the minimum gap size, on the average number of 

misclassifications, average CPU times and average number of 

integer iterations. The parameter e was assigned the values 

1, .5, .1, .01, .001 and 0. As before the parameter Mi was 

assigned the values 3, 5, 10, 15, 25, 50, 75 and 100. The 

values of the other parameters were Mj = 100 and 6 = 5. 

These results are presented in Tables 12 through 14 

(Appendix A). It should be noted that for e = 1 and Mx = 3 

there was no feasible solution in 5 out of the 25 runs. For 

6=5, the feasibility conditions identified in Theorem 1 

(Chapter V) were not satisfied. The minimum number of 

misclassifications was not attained for e = l, e = .5 or 

e - .1 even for very large values of Mt. There were very 

small differences in the average CPU times for e = .01, 
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e = .001 and e - 0. The same is also true for the average 

number of integer iterations. 

Computational Efficiency of the Modified GSFC Model 

Relative to the MIP3G Model 

The same two configurations and covariance structures 

that were used to assess the computational efficiency of the 

modified GSFC model for various parameter settings, were 

also used to assess its computational efficiency relative to 

that of the MIP3G for various values of Mx. In this study, 

§ and e are selected to be equal to 5 and .01, respectively, 

in both models. The parameter M2 is assigned the value of 

100 in the modified GSFC model and 47.485 in the M1P3G 

model. The parameter M2 is assigned this value in the MIP3G 

because it identifies the width of the leftmost and the 

rightmost interval. Thus, the deviation between the lower 

endpoint of the leftmost interval and the upper endpoint of 

the rightmost interval is 2M2 + 6 + 2e. In the three—group 

modified GSFC model, this deviation is equal to Mj - e. 

Therefore, 99.99 - 2Mj + 5.02 and thus = 47.485. 

In the simulation study to assess the computational 

efficiency of the MIP3G relative to the modified GSFC, the 

sizes of the samples were ^=1^3=25 and the parameter Mt was 

assigned the values 3, 5, 10, 15, 25, 50, 75, 100 and 1000. 

The reported averages were computed from 25 replications of 

the generated data. The average number of 
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misclassifications yielded by the two models for the 

different values assigned to the parameter Mi when the data 

are generated using configuration 1 with covariance 

structure 1 are reported in Table 15 (Appendix A). This 

table shows that the average number of misclassifications is 

not affected by the magnitude of Mt for > 10 in both 

models. However, the modified GSFC model yields a slightly 

lower average number of misclassifications that the MIP3G. 

The average CPU times and average number of integer 

iterations for configuration 1 with covariance structure 1 

are reported in Table 16 and Table 17 (Appendix A), 

respectively. The results in these tables show that the 

monotonic increase in the average CPU times and the average 

number of integer iterations, as increases, is a 

characteristic of the MIP3G model as well. However, the 

average CPU times and the average number of integer 

iterations for the MIP3G model are substantially lower than 

those of the modified GSFC model. In particular for 

> 75, the average CPU times and the average number of 

integer iterations for the modified GSFC model were about 

double those of the MIP3G model. 

For configuration 1 with covariance structure 2, the 

average number of misclassifications, the average CPU times 

and average number of integer iterations are reported in 

Table 18, Table 19 and Table 20 (Appendix A), respectively. 
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The choice of the model used did not affect the average 

number of misclassifications and both models did not yield 

the minimum average number of misclassifications for Mi £ 5. 

Again, the average CPU times and the average number of 

integer iterations for the MIP3G model were substantially 

lower than the same measures for the modified GSFC model for 

every value of Mt. For Mt > 50 the average CPU times and the 

average number of integer iterations for the modified GSFC 

model were more than double those of the MIP3G model. 

For configuration 2 with covariance structure 1, the 

average number of misclassifications, the average CPU times 

and the average number of integer iterations are reported in 

Table 21, Table 22 and Table 23 (Appendix A), respectively. 

Again the number of misclassifications was not affected by 

the choice of the model used. For Mt < 5, the two models 

did not yield the minimum average number of 

misclassifications. The average CPU times and the average 

number of integer iterations for the MIP3G model were less 

than half those for the modified GSFC model regardless of 

the value assigned to the parameter Mt. 

For configuration 2 with covariance structure 2, the 

average number of misclassifications, the average CPU times 

and the average number of integer iterations are reported in 

Table 24, Table 25 and Table 26 (Appendix A), respectively. 

Both models yielded non-optimal average number of 
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misclassifications for Ht < 5. For M1 > 10, the modified 

GSFC model yielded a slightly lower average number of 

misclassifications than the HIP3G model. Again, the average 

CPU times and the average number of integer iterations for 

the HIP3G model were less than half those for the modified 

GSFC model regardless of the value assigned to the parameter 

Mt. 

As mentioned above, the MIP3G model is computationally 

more efficient than the modified GSFC model. Theorems 4 and 

5 in Chapter V will establish conditions for the parameter 

settings which characterize the classificatory equivalency 

of the two models on the training sample. Because of their 

classificatory equivalence in the training sample and their 

difference in computational efficiency, the modified GSFC 

model was not considered in the simulation study for 

comparison of classificatory performance. 

Classificatory Performance 

The classificatory performance of six methods in the 

training sample and the holdout sample was evaluated in this 

study. The following methods were included: 

1. Gehrlein's general multiple function classification 

(GMFC) model 

2. Two-goal MIP3G 

3. Grid algorithm 

4. MSDMG 
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5. Fisher's linear discriminant function (FLDF) 

6. Smith's quadratic discriminant function (SQDF) 

The normal distribution was included in this simulation 

study because it had been used in a number of published 

simulation studies on the classificatory performance of 

mathematical programming models (Rubin, 1990b; 

Joachimsthaler and Stam, 1988; Freed and Glover, 1986). 

Four distinct cases were identified: collinear means with 

equal or unequal covariance structures and equilateral 

(equidistant) means with equal or unequal covariance 

structures. As outliers are a common characteristic of data 

sets and the contamination fraction (p) is usually in the 

range from .001 to .10 (Hampel, 1974), a case with normal 

populations and outlier observations was considered. The 

uniform distribution was also included because it was used 

in published simulation studies (Stam and Joachimsthaler, 

1990; Stam and Jones, 1990). Four distinct cases were 

identified: collinear means with equal or unequal covariance 

structures and equilateral (equidistant) means with equal or 

unequal covariance structures. As two groups may be clearly 

defined but the third group may have a combinations of 

shapes, a case was identified with two normal groups and one 

group consisting of three non-overlapping uniform 

distributions. The last case considered was motivated by 

the L-distribution (Bradley, 1982). 
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Case 1: Multivariate normal populations with collinear 

means and equal variances 

- [o] f2 • [1] 1*3 = [3. 

Sx = I S2 = I S3 = I 

Case 2: Multivariate normal populations with collinear 

means and unequal variances 

Hi 1,2 " [2. 1*3 " 

Sx = .641 S2 = .811 S3 = 1.211 

Case 3: Multivariate normal populations with equilateral 

(equidistant) means and equal variances 

= [173.205] 2̂ = [ 10o 

Sx = 56251 

.3 - n 

S2 = 56251 S3 = 56251 

Case 4: Multivariate normal populations with equilateral 

(equidistant) means and unequal variances 

N-iwS.aos] - • riosi " 3 - n 

Sx = 64001 S2 = 56251 S3 = 49001 

Case 5: Multivariate normal with a proportion p=.l0 of 

outlier observations in the leftmost and rightmost 

population where all five means are collinear 
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fi - [ 

Si - 1 

13 
13 ^ = fill ^ - Hi 

S2 = I s3 - I 

ll(0) = PI 
^ 0 

L[0) =91 

H3 
(0) 

[io] 

. (0) _ = 91 

where Hi0) and S|0) denote the mean and covariance matrix of 

the outlier of population i. 

Case 6: Continuous uniform populations with collinear means 

and equal variances 

Ui (x, y; 0, 10, 0, 10) 

U2 (x, y; 6, 16, 0, 10) 

U3 ( X , y; 14, 24, 0, 10) 

where Uj (x, y; a, b, c, d) denotes a population i with 

variable X having a uniform distribution over the interval 

[a,b], variable Y having a uniform distribution over the 

interval [c,d], and variables X and Y are independently 

distributed. 

Case 7: Continuous uniform populations with collinear means 

and unequal variances 

Ui (x, y; 0, 10, 0, 10) 

U2 ( X , y; 8, 16, -4, 14) 

U3 (x, y; 14, 19, -6, 16) 
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Case 8: Continuous uniform populations with equilateral 

(equidistant) means and equal variances 

Ut (x, y; 0, 10, 0, 10) 

U2 (x, y; 8, 18, 0, 10) 

U3 (X, y; 4, 14, 6.928, 16.928) 

Case 9: Continuous uniform populations with equilateral 

(equidistant) means and unequal variances 

Ui (x, y; 0, 10, 0, 10) 

U2 (x, y; 6, 24, 4, 6) 

U3 (X, y; 8, 12, 6.66, 20.66) 

Case 10: 

Group 1: Multivariate normal population with 

= 3.25 
0 and 2^ = 1.21 

Group 2: Multivariate normal population with 

Ms'o75] and E2 = 1.21 

Group 3: Consists of three uniform populations 

Ux (x, y; 2.3, 11.5, 3.5, 4) 

u2 (x, y; 2.3, 11.5, -A, -3.5) 

U3 (x, y; -.5, .5, -2.5, 2.5) 

where the proportions of observations in Ux, U2, and U3 

are .275, .275 and .45, respectively. 

Case 11: Consists of three rectangles (one for each group) 

in the shape of an H. The density function for the 
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horizontal rectangle, Group 1, is uniform in the Y direction 

over the interval [-.5,.5] and U-shaped in the X direction 

as specified below: 

f (x) ={ 
3x2 

-4 £ x S 4 128 
0 otherwise 

The density function for the left vertical rectangle, Group 

2, is uniform in the X direction over the interval [-4,-3] 

and U-shaped in the Y direction as specified below: 

f (y) = 
3v ̂  
-=^— -4 £ y s 4 
128 
0 otherwise 

The density function for the right vertical rectangle, Group 

3, is uniform in the X direction over the interval [3,4] and 

U-shaped in the Y direction as specified below: 

f (y) = 
3v 2 

-4 s y i 4 128 
0 otherwise 

Samples of size n1=n2=n3=25 were used to estimate 

classificatory performance in the training sample. Samples 

of size n,=n2=n3=3 0 were used to estimate classif icatory 

performance in the holdout sample. There were 25 

replications for each configuration. Replications were 

limited to this number because of the computational 

intensity of the MIP procedures. 

According to the results of the simulation study, the 

GMFC model has the lowest misclassification rates in the 
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training sample among the methods tested, when the data are 

generated from normal or uniform populations. This is true 

regardless of the configurations or the covariance structure 

used, as it can be seen in Tables 27 through 36 (Appendix 

A). But, the GMFC model does not always have the lowest 

misclassification rate in the holdout samples. 

When the data are generated from multivariate normal 

populations with collinear means and equal or unequal 

variances, then the FLDF method has the lowest 

misclassification rate in the holdout sample. It should be 

noted that the difference between the misclassification rate 

of the FLDF method and that of the SQDF method is very 

small. It is also noteworthy that the misclassification 

rates of the GMFC, the MIP3G and the MSDMG in the holdout 

sample are not much higher than those of the parametric 

methods, as it can be seen in Table 27 and Table 28 

(Appendix A) and exhibited in Figures 7.1 and 7.2 (Appendix 

C). When the data are generated from multivariate normal 

populations with equilateral (equidistant) means and equal 

variances, then the FLDF method and the SQDF method clearly 

outperform the three proposed models (MIP3G, Grid and 

MSDMG). The simulation study also shows that the 

misclassification rate of the GMFC model in the holdout 

sample is not much higher than those of the parametric 

methods, as can be seen in Table 29 (Appendix A) and 

exhibited in Figure 7.3 (Appendix C). It should be noted 



70 

that the Grid algorithm reduces the misclassification rate 

of the MIP3G model by more than 34 percent in the holdout 

sample. 

According to the results of the simulation study, when 

the data are generated from multivariate normal populations 

with eguilateral (equidistant) means and unequal variances, 

then the differences in misclassification rates between the 

FLDF method, the SQDF method and the GMFC model are very 

small. These three methods clearly outperform the MIP3G and 

the MSDMG models, as well as the Grid algorithm. It is 

noteworthy that the Grid algorithm reduces the 

misclassification rate of the MIP3G model by more than 31 

percent in the holdout sample. These results are shown in 

Table 30 (Appendix A) and exhibited in Figure 7.4 of 

Appendix C. 

When the data include outlier observations, then the 

necessary assumptions for the optimality of the parametric 

methods are violated. In order to evaluate the 

classificatory performance of the different methods in the 

presence of outlier observations, data are generated from 

multivariate normal populations with a proportion p=.10 of 

outlier observations in the leftmost and the rightmost 

populations. The outliers of the leftmost population fall 

to the left of it and are normally distributed. The 

outliers of the rightmost population fall to the right of it 

and are also normally distributed. All five means are 
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collinear and the variances of the three populations are 

equal. The variances of the outliers are equal to each 

other and are nine times bigger than the variances of the 

three populations. The MSDMG model has the lowest holdout 

misclassification rate in this case. The SQDF method 

clearly outperforms the FLDF method, but still the 

misclassifications rate of the SQDF method is more than 50 

percent higher than that of the MSDMG model. The GMFC model 

and the MIP3G model also outperform the parametric methods 

as shown in Table 31 (Appendix A) and exhibited in Figure 

7.5 (Appendix C). 

When the data are generated from continuous uniform 

distributions with collinear means and equal variances, the 

SQDF method has the lowest misclassification rate in the 

holdout sample. Among the mathematical programming models, 

the GMFC has the lowest misclassification rate, as shown in 

Table 32 (Appendix A) and exhibited in Figure 7.6 (Appendix 

C). 

According to the simulation study, when the data are 

generated from continuous uniform distributions with 

collinear means and unequal variances, the SQDF method has 

the lowest misclassification rate. However, it should be 

noted that the differences in misclassification rates among 

the methods tested are very small. These results are 

presented in Table 33 (Appendix A) and exhibited in Figure 

'•7 (Appendix C). When the data are generated from 
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continuous uniform distributions with equilateral 

(equidistant) means and equal variances, then the SQDF has 

the lowest misclassification rate in the holdout sample. 

The misclassification rates of the MIP3G, the Grid and the 

MSDMG models are substantially higher than those of the 

parametric methods. It should be noted that the Grid 

algorithm reduced the misclassification rate of the MIP3G 

model by more than 33 percent as shown in Table 34 (Appendix 

A) and exhibited in Figure 7.8 (Appendix C). 

According to the simulation study, when the data are 

generated from continuous uniform distributions with 

equilateral (equidistant) means and unequal variances, then 

the SQDF method outperforms all other methods in the holdout 

sample. The GMFC model has a lower misclassification rate 

than that of the FLDF method, while the three proposed 

models (MIP3G, Grid and MSDMG) have substantially higher 

misclassification rates (Table 35, Appendix A). The same 

results are also exhibited in Figure 7.9 (Appendix C). 

When the data are generated as specified in Case 10, 

then the Grid algorithm has the lowest misclassification 

rate (17.69%) in the holdout sample, while the SQDF method 

has the second lowest misclassification rate (18.80%). The 

MSDMG model and the FLDF method have the highest 

misclassification rates, 52.98% and 40.71%, respectively, as 

shown in Table 36 (Appendix A) and exhibited in Figure 7.10 

(Appendix C). 
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When the data are generated as specified in Case 11, 

then the Grid algorithm clearly outperforms all the other 

methods. The SQDF model has the second lowest 

misclassification rate (16.09%) which is about three times 

that of the Grid algorithm (5.51%). The MSDMG model and the 

FLDF method have the highest misclassification rates, 32.67% 

and 30.71%, respectively, as shown in Table 37 (Appendix A) 

and exhibited in Figure 7.11 (Appendix C). 



CHAPTER V 

THEORETICAL CHARACTERISTICS 

OF MATHEMATICAL PROGRAMMING MODELS 

Overview 

A number of theoretical results are presented in this 

chapter. These results identify certain characteristics and 

properties of the mathematical programming approaches to the 

multiple group classification problem. Theorem 1 identifies 

a sufficient condition on the range of values of the 

parameter M u and a necessary and sufficient condition on 

the range of values of the parameter M2 so that the modified 

GSFC model will always yield feasible solutions. Lemma 1 

and Lemma 2 identify an upper bound on the number of 

misclassifications possible that can be yielded by the GSFC 

and the GMFC models respectively. It is also shown that if 

this upper bound on the number of misclassifications is 

reached, then the solution may be unacceptable. Lemma 3 

identifies the maximum number of misclassifications that can 

be yielded by either the GSFC model or the modified GSFC 

model when the minimum gap size is assigned the value of 

zero. Lemma 4 identifies the conditions under which the 

GSFC model will always yield an acceptable solution. 

Theorem 2 identifies conditions under which, adding a 

74 



75 

positive constant C, to the values of all the observations, 

will force the GSFC model to yield an acceptable solution 

with the number of misclassifications not exceeding a 

certain limit. Theorem 3 and Corollary 1 identify the 
n 

maximum value possible of the objective function min ̂  I; 
i=l 

under certain conditions. Theorem 4 shows that if the MSDMG 

model yields a degenerate solution in the three-group 

classification model, then the shifting constant a0 does not 

fall strictly within a gap. The same theorem also gives the 

number of misclassifications in such case and computes an 

upper bound on the value of the objective function. Theorem 

5 identifies the value of the shifting constant a0 when the 

three—group MSDMG model yields a degenerate (unacceptable) 

solution and all group sizes are unequal. It also 

identifies a range of values for a0 when not all group sizes 

are unequal and the MSDMG model yields a degenerate 

solution. Theorem 6 identifies the conditions under which 

the modified GSFC model will yield a solution with a minimum 

number of misclassifications not exceeding the minimum 

number of misclassifications yielded by the MIP3G model. 

Theorem 7 identifies the conditions under which the MIP3G 

model will yield a solution with a minimum number of 

misclassifications not exceeding the minimum number of 

misclassifications yielded by the modified GSFC model. 

Theorem 8 proves that, for appropriately chosen parameter 
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values, the number of misclassifications yielded in the 

training sample by the GMFC model cannot exceed the number 

of misclassifications yielded by the GSFC model. 

Theorems, Lemmas and Corollaries 

Theorem 1: 

If Mi > [(m-2)6 + (m-l)e]/2 and M2 > m(§+e), then the 

modified GSFC model will always have a feasible solution. 

Proof: 

Let the leftmost interval have lower endpoint 0 and 

upper endpoint &. Let its adjacent interval have lower 

endpoint 6 + e and upper endpoint 26 + e. Continuing in the 

pattern, the rightmost interval will have lower endpoint 

(m-1)(£+e) and upper endpoint m§ + (m-l)e. Let 

at=a2=.. .=ap=0. Then each observation will be classified 

into the group that contains a0. For a0 = [me + (m-l)e]/2, 

the maximum misclassification deviation is 

a0 - § = [m£ + (m-1)e]/2 - 6 - [(m-2)6 + (m-l)e]/2. Suppose 

that Gh is assigned the leftmost interval and Gg is assigned 

the rightmost interval. Thus, - l and I* - Ug + Mj £ e 

iff -m6 - (m-l)e + M2 ̂  e iff M2 > m(6+e) . This condition on 

the values of the parameter Mj is necessary and sufficient. 

However, the condition on the values of the parameter Mj, 

i.e., M! ̂  [(m-2)6 + (m-l)e]/2 is only sufficient. It is 

not a necessary condition since, for example, a data set 
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with completely separable groups may yield a solution with 

zero misclassifications when = 0. 

Lemma 1: 

The maximum number of misclassifications possible in 

the GSFC model is equal to n - max{nlf n2/ .n,,,} where 

n - E ni* 
i=l 

Proof: 

Let a1=a2=.. .=ap=0 (degenerate solution). Thus, every 

r ® 

P 

P 

composite score a0 + ]£akxf becomes equal to a0 and every 
k=l 

observation is classified to the same group. So the number 

of misclassifications will be minimized when a0 e [L^ty 

where % = max{n1, n2, ..., rv} is the size of group Gj,. 
n 

Thus, min = n - max{n1# î , ..., nm}. In Data Set 2 
i=l 

(Appendix B), nx=20, n2=5 and n3=4. Both the GSFC model and 

the modified GSFC model yield solutions with al=a2=0 and 
29 

min xi " 9 for this set of data. Thus the value 
i*l 

n - max{n!, n2f ..., n,,,} is the maximum number of 

misclassifications, not just an upper bound on the number of 

misclassifications. 

Lemma 2: 

The maximum number of misclassifications possible in 

the GMFC model is equal to n - max{ni, n2, ..., n,,,} where 

m n = E ni-
i«l 
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Proof: 

In the GMFC model, let = 0 for j = l# 2, ..., m and 

k = 1, 2, ..., p (degenerate solution). Also let 

nh = max{nlf n2, ..., n,,,}. 

Then min I^n-max {nlf n2, n,,,} for ah0 - a^ > e 
i=l 

(h,j = 1, 2, ..., m j?*h) . In Data Set 2 (Appendix B) , 

nx = 20, n2 = 5 and n3 = 4. The GMFC model yields a 
29 

solution with min £ It = 9 for this set of data. Thus, 
i-l 

n - max{nx, n2, ..., n,,,} is the maximum number of 

misclassifications, not just an upper bound on the number of 

misclassifications. 

Lemma 3: 

If the parameter e(minimum gap size) is assigned the 

value 0 in the GSFC model or the modified GSFC model, then 

the maximum number of misclassifications possible is 

n - max{T|T = + nh, g,h = 1, 2, ..., m g*h}. 

Proof: 

Let Gg and Gh be the groups with the largest and second 

largest number of misclassifications. If a1=a2=.. .=ap=0, 

then Gg and Gi, will be assigned to adjacent intervals and a0 

will be equal to the value of the endpoint that the two 

groups have in common. Thus, all the observations in Gg and 

G,, will be correctly classified, whereas all the remaining 

observations will be misclassified. Thus, 
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n 

min 52 Ij = n - max {T|T =ng + nh, g, h = 1, 2, ..., m gp̂ i}. In 
i=l 

Data Set 2 (Appendix B), nx = 20, n2 = 5 and n3 = 4. For 

e = 0, the GSFC model yields a solution with min I; = 4 
i=l 

for this set of data. Thus, n - max{T|T = n̂  + nh, 

g,h = 1, 2, . m g?*h} is the maximum number of 

misclassifications for e = 0, not just an upper bound on the 

number of misclassifications. 

Lemma 4: 

The GSFC model will always yield an acceptable solution 

provided that a0 - 0, I* £ BL for all h (h = 1, 2, . . . , m) 

where BL is a positive constant, and the value of the 

parameter M is chosen to be sufficiently large. 

Proof: 

Since 1% > Bl for h (h = 1, 2, ..., m) and a0, if 

II 

ai=a2=.. .=ap=0, then Ij = n. However, the value of M can 
i=l 

always be chosen large enough so that an acceptable solution 
n 

yields Is <, n - 1. Thus, an unacceptable solution will 
i-X 

not occur unless xj® = 0 for all values of i and k 

1/ 2, ..., n k = l, 2, ..., p). 

Theorem 2: 

If a0 = 0 and 1̂  £ Bl for every h (h = l, 2, ..., m) 

where BL > 0, then there exists a value of the parameter M 

and a positive constant C such that adding C to each of the 



80 

observed xf (i = 1, 2, — , n k = 1, 2, p) in the 

GSFC model will result in an acceptable solution with 

n m 

min £ Ii < n - max{ nt, n2, ..., nm} where n = n£. 
i=l i=l 

Proof: 

If a0 and L,, £ BL for every h (h = 1, 2, ...,111) where 

BL > 0, then the solution generated by the GSFC model is 

always acceptable according to Lemma 4. If a constant C is 

chosen so that xf = X^ + C > 0 for all i and k 

( i = l f 2, n k = 1, 2, ..., p), then positive 

coefficients ak can be found such that all transformed 

observations are classified into a positive interval 

provided that the value of the parameter M is chosen to be 
n 

sufficiently large. Thus, min £ l{ < n - max{ nx, n2, ..., nm}. 
i=l 

Theorem 3: 

Let z be equal to the minimum number of 

misclassifications resulting from a GSFC model with minimum 

P 

gap size e > 0 and assume that at 0. If in the GSFC 
k = l 

model the minimum gap size is changed to 0, the constant a0 

is assigned the value of 0, and each Lj is bounded below by 

a positive constant, then there exists a positive constant C 

such that adding C to each of the observed Xj®'s in this 

model will result in a solution with the minimum number of 

misclassifxcations no larger than z. 
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Proof: 

Let ax, a2, ..., and Llf 1̂ , ..., L,„ and 

Uj, U2, • • •, Um be values given by the original GSFC model 

p 
with minimum gap size e > 0. If ak < 0, then there exists 

k-l 
p 

and alternative solution to the GSFC model with E at > 0. 
k-l 

P 

Without loss of generality, assume that ^ ak > 0. Let BL 
t=x 

represent a positive lower bound for Lx, Lj, ..., 1̂ ,. Now, 

p 
let C be chosen such that akC > s + BL - (L? - a0) for each 

k-l 

group Gg, where s is the maximum gap length between adjacent 

intervals in the solution to the GSFC model. Now for each 

correctly classified observation i, say in group Gg, in the 
p 

GSFC model, we have Lg < a0 + £ akxf < Ug. this implies that 
k-l 

h ~ ao + E akc * E ak + c> * u8 -
 a<>+ E a*c-

k-l k-l k-l 

Let 

h = 

if group Gg is associated with 
p the leftmost interval 

L* + E akc ~ ao 
if there exists a group Gh such 
that L > Uh and the interval h + uh + E akc ~ ao a s s o ci a t e d with Gk is adjacent to 

i—i f-hA 1 n f - 1 accnni tj-I 4-K 2 k-i the interval associated with 
group G„ 
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and let 

U * = 

if group Gg is associated with 
p the rightmost interval 

u« + E a*c - ao 
if there exists a group Gh such 
that K. > U_ and the interval 

P • • 

k=l 

T 4- TT P • * . 
3 + a c - a associated with Gh is adjacent to 2 i£x k ° the interval associated with 

group Gg 

Note that for xf = xf + C, we have Lg < ]jT
 a
kX® <, Ug for each 

observation i that was correctly classified in the original 

model. 

Note that 

h * h ~ I + E a*C - ao 
^ k-1 

£ a,C + L - a0 - | 
k*l * 

^ BL + s - ® L 2 

* bl 

Thus the solution ax, a2, . a p , L,, L,, . L m , 

Uif %r ••• / Um, to the GSFC model with a gap size of 0, 

a0 = 0, and each bounded by a positive constant will yield 

no more than the number of misclassifications resulting from 

the original GSFC model with minimum gap size e > 0. Since 

the difference between discriminant scores does not change, 

there is no need to change the value of the constant M to 

have a solution with the number of misclassifications no 

larger than z. 
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Corollary Is 

Theorem 3 also holds if the assumption ^ ak & 0 is 
p 

E 
k»l 

replaced by ^ ak = 0 and at least one ak ̂  0 for 
k=l 

k = 1, 2, ..., p. 

Proof s 

p 

In the proof of Theorem 3, replace ^ akC by a^C where 
k=l 

V ® Vvir V ® i f 1r 1r aii/l V ® W i r V ® a ^ O and also replace by Xk if k & ICQ and by X^ + C. 
p 

Instead of assuming that ak > 0, assume ak > 0. Thus the 
k=l 

result of the corollary follows. 

Theorem 4s 

If the MSDMG model yields a degenerate solution in the 

three-group classification problem, then the constant a0 

does not fall strictly within a gap and the number of 

misclassifications is equal to n - max{n1/ n2/ n3>. In this 

model, the value of the objective function does not exceed 

e[n - max{nlf n2, n3}] + 6 min{nlf n2, n3} where 6 is the 

minimum interval length and e is the minimum gap size. 

Proof s 

As the objective of the MSDHG model is the minimization 

of the sum of misclassification deviations, if the model 

yields a degenerate optimal solution, then the group with 

the largest number of observations will be assigned to the 

middle interval and the width of that interval will be 6. 

Furthermore, each of the gaps separating the intervals will 
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be assigned a width of e. If the constant a0 were to fall 

within a gap, it would fall within the gap between the two 

largest groups. Let dt be the distance of a„ from the 

nearest endpoint of the middle interval. Then the value of 

the objective function is: 

Zt = (e-dx)[n - max {nlf %, r̂ } - min{nx/ r̂ , 113}] 

+ d^ax {n1# 113}+ (d^S+e) min {nlt %, nj 

= e[n - max{nlf n2, n3}] + §min{nx, n2, n3} 

+ d1[2max{n1, 1̂ , nj + 2min{nlf r̂ , nj - n] 

minZj = e[n - max{nx/ 1̂ , n3}] + Sniin^, r̂ , 113} 

for dj = 0, i.e. a0 does not fall strictly within a gap. 

Therefore, for dj = 0 all the observations in the 

largest group will be correctly classified and the number of 

misclassifications will be n - max{nlf rij, n3>. In such 

case, the value of the objective function will be 

e [ n - max{nlf n2, n3}-min{n1, r̂ , nj] + (e+^min^, r̂ , 

= e[n - max{nt, rij, nj] + imin{nt, r̂ , 113}. 

n 

Thus max [min 52 (diu
+d«> ] = e[n - maxf^, r̂ , 113}] + emin{nlf rij, 113}] 

i=l 

Theorem 5: 

If the MSDMG model yields a degenerate solution in the 

three-group classification problem and all group sizes are 

unequal, then the constant a0 falls on the endpoint of the 

middle interval that is closest to the interval assigned to 
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the group with the second largest number of observations. 

If n - max{n1/ n2, n3> = amin^, n2/ n3> or if n!=n2=n3/ then 

ao e [1̂ , Uh] where Gh is the group assigned to the middle 

interval. 

Proof: 

According to Theorem 4, a0 will not fall strictly 

within a gap. Then a„ will fall into the middle interval 

because the largest group is assigned to that interval. Let 

dj + e be the distance between a0 and the nearest endpoint of 

the interval assigned to the group with the second largest 

number of observations. Thus 0 < d2 <£ 6 and the value of 

the objective function is: 

Z2 = (e+dj) [n - max {nu rij} - min{nH n2, n3}] 

+ (6-d2 + e)min {nt, n2, r̂ } 

= e[n - max{nlf + 6min{nlf r̂ } 

+ d2[n - max{nt, nj- 2min{n1/ n2/ n3}] 

minZ2 = e[n - maxf^, 1̂ , nj] + §min{nlf r̂ , iij} 

for d2 = 0 if 

nt3x{iijr 1X21 1̂ 3}̂  n - max{nx, iij, iij} - xtiin{nj, n2/ min{nlf n2fnj} 

Therefore a0 falls on the endpoint of the middle interval 

that is closest to the interval assigned to the group with 

the second largest number of observations. If 

n - max{n1; n2/ n3} = 2min{nlf n2, n3}, or if n!=n2=n3, then 
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d2[n - max{rij, n2/ n3} - 2min{nlr n2, n3>] = 0, regardless of 

the value of d2 (d2<6). Therefore a0 e [1̂ ,, Uh], where Gh is 

the group assigned to the middle interval. 

Theorem 6: 

Any optimal solution of the MIP3G model is a feasible 

solution of the modified GSFC model if the values of the 

parameters e, £ and M, are the same for both models and 

^ 2 + 3e + where M2* and are the values of the 

parameter Mj used in the modified GSFC model and the MIP3G 

model, respectively. 

Proof: 

Suppose that 1 ^ = 1 and K3 = 0 in the MIP3G model. 

Then Gx is the group assigned to the rightmost interval, G2 

is the group assigned to the leftmost interval and G3 is 

assigned to the middle interval. Thus, 

a0 + J akX® - M1Ii < M2
b + e + e 

k«l 

a0 +
 + Mixi ̂  6 + e 

k-l 

VieG, 

a0
 + E akx® ~ * e 

k=l 

ao + £ akx® + Mixi > -Mj" - e 
k=l 

VieG, 
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a0
 + E a*x® ~ Mixi * 6 

k*l 

a0 + £
 akx® + * 0 
k-1 

VieG, 

In the three-group modified GSFC model, let 

Lj = e + e, Uj = M2
b + e + e, L2 = -M2

b - e, U2 = -e, Lj«o and U3=&. 

Then the first two constraints of the modified GSFC model 

become identical to the above constraints. Furthermore, the 

constraints Uh - Lj, > e are satisfied for the above values of 

Lh and Uh (h = 1, 2, 3). As K2=l and K3=0, then J12=J13=J32=o 

and J2|
=J3j—J23

=l* Thus, 

Lt ~ U2 ̂  e 

L, - U3 > e 

L3 - U2 > e 

L, - U, + M2
a > e 

I<2 - U3 + M2 > e 

L3 - U, + M2 > e 

The first three of the above six constraints are satisfied 

for Lj=e + e, Uj=M2
b + e + e, L2 = -M2

b - e, U2 = -e, L3 = 0 and U3=e. 

1>2 ~ Uj + M2 >e iff 

M2>e + M
b + e + M2

b + e + e iff 

M2 > 2M
b + 3e + e 
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Lj - U3 + M2>e iff 

M^>e + + e + e iff 

VLZ>V$ + 2e + e 

L3 - Ux + M2>e iff 

M2£e + M2
b + e + § iff 

M2>M2
b + 2e + 6 

Therefore the last three of the above six constraints are 

satisfied for M/ > 2M2
b + 3e + 6. In a similar fashion it 

can be shown that the constraints of the modified GSFC model 

hold when K2 = 1 and K3 = 1. Thus, in the training sample, 

the number of misclassifications yielded by the modified 

GSFC model will never exceed the number of 

misclassifications yielded by the MIP3G model. 

Theorem 7: 

If e = 0 and the values assigned to parameters M! and § 

are the same in both the modified GSFC model and the MIP3G 

model, then any optimal solution of the modified GSFC model 

is a feasible solution of the MIP3G model if M2 > M2 - 26. 

Proof: 

Without loss of generality, one may consider only three 

group orderings of the modified GSFC model, say (Gt, G2, G3) , 

(G2, Glf G3) and (G2, G3, GJ , as the remaining three group 

orderings are mirror images of these orderings. Consider 
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an optimal solution of the modified GSFC model where the 

ordering of the three intervals is (Gx, G2, G3). Let 

Lh*, Uh* (h = 1, 2, 3), a0* and ak (k = 1, 2, ..., p) be the 

optimal solution values of L,,, Uh, a0 and ak respectively in 

the modified GSFC model. All the constraints of the 

modified GSFC model will still hold if L,,*, Uh* and ak are 

replaced by L„ = Lh"§/ (U2* - 1^) , Uh = Uh*§/ (U2* - L/) , 

a0 = a0*e/ (U2* - L/) and ak = ak*e/ (U2* - L/) for 

(h = 1, 2, 3 k = 1, 2, ..., p). Similarly, the constraints 

of the modified GSFC model will still hold if L,,, Uh/ S0/ ak 

are replaced by L,, = uh = Uh - U2, a0 = S0 - L2 and 

ak = for h = 1, 2, 3 and k = 1, 2, p. Now the 

middle interval [1̂ , U2] in the modified GSFC model has width 

%. and 1*1 — 0. Hence the values a0, a u ap will provide a 

feasible solution to the MIP3G model for e = 0, k2 = 0 and 

k3 = 1 provided that M2
b is sufficiently large. Since the 

length of the widest possible interval in the modified GSFC 

model is M2
a - 2§, setting M2

b * M2
a - 26, in the MIP3G model 

guarantees that the leftmost and rightmost intervals of the 

MIP3G will be long enough for a feasible solution. 

Therefore, the theorem holds when the ordering of the three 

intervals is (Gt, G2, G3) . In a similar fashion, it can be 

shown that the theorem holds when the ordering of the three 

intervals is either (G2, Glf G3) or (G2, G3, Gt) . 
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Theorem 8: 

Values for the constants M and e in the GMFC model can 

always be found such that the number of misclassifications 

for the GMFC model will be less than or equal to the number 

of misclassifications of the GSFC model with nonzero minimum 

gap size. 

Proof: 

Assume that we have a solution to the GSFC model. 

Furthermore, assume that U! < U2 < ... < Um. We can always 

relabel the groups so that this will be true. Also, without 

loss of generality, assume that gap L,, - Un.x for 

n = 2 , 3, ..., mis equal to the minimum possible gap, say 

e0. An alternate solution can always be found such that 

p 

each gap is equal. Now define f(x) = a0 + ajXj where 
i«i 

x = (xlf x2, ..., Xp) and the a/s are from the solution of 

the GSFC model. Let e be some small positive value to be 

used in the GMFC model for e. Now define 

Mf(x)) = (e/e„) [Uj + e0 - f(x)]. Note that for 

f(x) < Ux + e0, hi(f(x)) £ 0 and for f(x) > jjt + e0, 

hi(f (x)) < 0. Define h2(f(x)) = (e/e0) (f (x) - UJ . Note that 

for f (x) £ u u h2(f (x)) < o and for f(x) > ux, h2(f(x)) > 0. 

Now define hjffx)) - ba [f(x) - un.x] for n - 3, 4, ..., m 

where b„ = (b,̂  [Un.j - Un.2 + e0] + e)/e0 with b2 = e/e0. Note 

that for n - 2, 3, 4, m, we have for f(x) ^ u^, 

h»(f(x)) ̂  o and for f(x) > U^, h„(f(x)) > o. Therefore it 
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is easy to see that if n2 > nt and f(x„) is contained in the 

interval [Ln, U^] then for nt > 1, we have 

(x0)) -h^CffXo)) ̂ ^(ftx,,)) 

= b„[f(x) -D..J 

* V u - i + eo " Un.J 

£ e 

If nj = 1, then we have 

hjffxo)) -hjffx,,)) fch^ffx,,)) 

• (®/eo) tui + eo - f (x) ] 

> (e/e0) (e0) 

= e 

Now we also want to show that the following statement is 

true: for % < nx and f(x„) in the interval [Ln, Un ], we have 
l l 

hnt(
f(xo)) "*\(f(x<))) 2; e. For n, = 2, this statement follows 

because h1(f(x0)) < 0 and h2(f(Xo)) > e for f(Xo) e [I*, U2]. 

Next we show that for f(x0) e [L,,, Un] and n > 3, 

hn(f (Xo)) - t^.^ffx,,)) 

- bn(f(X<>) ~ ̂ n-l) ~ ~ ̂ -2) 

= (K ~ b„-i) ( f ( x 0 ) ) " b„Un-i
 + b„-iUn.2 

£ (*>„ " K-i) (Un-i
 + eo) " ¥.-i + bn-iU„-2 

= bn-i (U,.2 - U,.,) + e0 (bn - b^) 

~ bn-l (̂ n-2 ~ ̂ n-l) + bn-l (̂ n-1 ~~ ̂ n_2) + e 

= e 
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Since bn > b,̂  for n £ 3, it follows that for nx > n £ 3 with 

f(x<>) e [L%, Ua] that h„(f(Xo)) - h^ffx,,)) > e. Also, we 

have for nx S: n £ 3 with f(Xo) e [Ln, U ] that 

h^ffx,,)) £ tV^f (XQ) ) . This implies that for nx > n2 with 

f(Xo) € [Lv Un], that h^ff (x0)) £ h^ff (x„)) . Hence for 

nx > n2 and f(Xo) e [Ln , Un ], we have the statement 

\(f(*o>) -^(ffXo)) ̂  \+i(f (*o)) ~\(f(Xo)) > e. Now the at 

coefficients for the linear discriminant function used for 

the jfc group in the GMFC model can be taken to be the 

coefficients of the function hj(x) . The e value can be used 

for e and a large M can be taken so as to make the 

constraints feasible for the misclassified observations. 

Thus the number of misclassifications for the GMFC model 

will be less than or equal to the number of 

misclassifications for the GSFC model for suitably chosen 

constants. 



CHAPTER VI 

CONCLUSIONS 

Research Questions Addressed 

This dissertation addresses a number of research 

questions regarding the use of mathematical programming 

models for the three-group classification problem. 

Research Question 1: 

How does the choice of parameter values affect the 

computational efficiency of the GSFC model for the 

three-group classification problem? What patterns in 

computational efficiency can be identified for various 

selections of distinct parameters for the maximum 

misclassification deviation and the maximum deviation 

between the lower endpoint of the leftmost interval and 

the upper endpoint of the rightmost interval? 

In a simulation study, it was shown that the parameter M has 

a major effect on the CPU times and the number of integer 

iterations in the original three-group GSFC model. 

Specifically, it was shown that there is a strictly 

monotonic increase in the CPU times and in the number of 

integer iterations as M increases on generated normal data. 

Furthermore, it was shown that the computational efficiency 

of the GSFC model is improved by modifying this model to 

93 
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include distinct parameters for the maximum 

misclassification deviation and the maximum deviation 

between the lower endpoint of the leftmost interval and the 

upper endpoint of the rightmost interval. The magnitude of 

the parameter that limits the maximum deviation between the 

lower endpoint of the leftmost interval and the upper 

endpoint of the rightmost interval has minor effect on the 

CPU times and the number of integer iterations. However, 

the magnitude of the parameter denoting the maximum 

misclassification deviation has a major effect on the CPU 

times and the number of integer iterations. 

Research Question 2: 

As three of the possible six group orderings in the 

three-group GSFC model are mirror images of the 

remaining orderings, can this fact be used in the 

construction of a computationally more efficient model 

with fewer binary variables? 

A new model, the MIP3G, was proposed which considers only 

group orderings that are not mirror images of other 

considered group orderings. As a result, only three out of 

the six possible orderings are considered by the MIP3G 

model. Furthermore, the proposed model requires only two 

binary variables for the identification of group orderings, 

whereas both the GSFC and the modified GSFC model need six 

variables for group ordering identification. As shown in 

Chapter IV, the computational efficiency of the MIP3G is 
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superior to that of the GSFC or the modified GSFC model. 

Theorem 6, in Chapter V, identifies the conditions under 

which the MIP3G model cannot yield a lower number of 

misclassifications than the modified GSFC model in the 

training sample. Theorem 7, in Chapter V, identifies the 

conditions under which the modified GSFC model cannot yield 

a lower number of misclassifications than the MIP3G model in 

the training sample. 

Research Question 3: 

What is the classificatory performance of the 

mathematical programming models for the three-group 

classification problem relative to that of Fisher's 

linear discriminant function or Smith's quadratic 

discriminant function? 

The simulation study presented in Chapter IV shows that 

proposed models have lower misclassification rates than the 

parametric methods in the holdout sample for certain 

distributions and configurations. However, when the 

population means are equidistant, the FLDF and the SQDF 

method outperform all the mathematical programming models 

tested. 

Research Question 4: 

Can it be proved that the number of misclassifications 

yielded by the GMFC model in the training sample will 

not exceed the number of misclassifications yielded by 

the GSFC model? 
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Theorem 8 in Chapter V proves that the number of 

misclassifications yielded by the GMFC model in the training 

sample cannot exceed the number of misclassifications 

yielded by the GSFC model. 

Research Question 5; 

Can a Two-phase method be identified that can improve 

the classificatory performance of the mathematical 

programming models? 

The proposed Grid algorithm is a two-phase method. In the 

performed simulation, the Grid algorithm was shown to 

improve the classificatory performance of the MIP3G model in 

the holdout sample. Furthermore, it was shown that for 

certain configurations, the algorithm yielded lower 

misclassification rates than any of the other methods 

tested. Specifically, when data are generated as described 

in Case 10 and Case 11, the Grid algorithm outperforms the 

other methods in terms of classificatory accuracy on the 

holdout sample. 

Research Question 6; 

Can the MSD model be extended for use in classification 

problems with more than two groups and how will its 

classificatory performance compare with that of the 

parametric methods? 

The proposed MSDMG model is an extension of the MSD model 

that can be used for classificatory problems with more than 

two groups. The classificatory performance of the MSDMG 
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model was found to be better than that of all the other 

methods tested when there are outlier observations in the 

leftmost and rightmost groups and all means are collinear. 

However, when the population means are equidistant or when 

the data are described in Case 10 and Case 11, the MSDMG 

model has much higher misclassification rates than the other 

methods. 

Research Question 7: 

What anomalies, if any, are present in the mathematical 

programming models for the three-group classification 

problem? 

Theorem 1, in Chapter V, identifies the conditions under 

which the GSFC model will always yield a feasible solution. 

In Lemma 1 and Lemma 2, in Chapter V, it is shown that a 

solution yielded by the GSFC model or the GMFC model may be 

unacceptable. Lemma 4 identifies the conditions under which 

the GSFC model cannot yield an unacceptable solution. 

Limitations of this Study 

The simulation results, presented in Chapter IV, show 

that the proposed mathematical programming models yield 

lower misclassification rates in the holdout sample for 

certain distributions and configurations. However, in 

several other configurations, the parametric procedures 

still appear to be robust to certain forms of non—normal 
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data and thus the parametric procedures can outperform the 

mathematical programming models in those situations. 

The MIP3G model has limitations on its usage. This 

model can only be used in a three-group classification 

problem. It cannot be easily extended for usage in problems 

with more than three groups like the MSDMG model or the 

modified GSFC model. 

Another limitation of MIP models, in general, is the 

computational intensive nature of these models. For 

example, the CPU times for the modified GSFC model, and even 

the computationally more efficient MIP3G model, can be 

excessive, especially when the sample sizes are large. The 

same is true when the value assigned to the parameter 

limiting the maximum misclassification deviation is large. 

When the Grid algorithm is used, the discriminant problem is 

solved twice using either the modified GSFC model or the 

MIP3G model and thus the Grid may be impractical for some 

problems because of its computational intensity. 

The Grid algorithm may fail to yield a solution when 

the data are generated from populations with collinear 

means. Furthermore, if the Grid algorithm is used with data 

for which the modified GSFC model or the MIP3G model yield 

zero misclassifications, then this algorithm may not provide 

any additional information for holdout classification. 

The results on classificatory performance, presented in 

Chapter IV, are valid for the specific distributions and 
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configurations used in the simulations. Results may be 

different for other distributions. Furthermore, it should 

be noted that, for a three-group problem, numerous 

configurations are possible. 

Proposals for Further Study 

The findings of this dissertation can be expanded by 

the investigation of a number of related research issues. 

1. The simulation study performed in this dissertation was 

restricted to a limited number of distributions and 

configurations. The classificatory performance of the 

proposed mathematical programming models on holdout 

samples can be evaluated using other non-normal 

distributions and different orientations of the 

conf igurations. 

2. This study was restricted to the classification problem 

with three groups. The classificatory performance of 

the modified GSFC model, the MSDMG model and the Grid 

algorithm can be compared to that of the parametric 

methods for classification problems with more than 

three groups. 

3. In Chapter IV, the effect of the magnitude of parameter 

values on the computational efficiency of mathematical 

programming approaches was investigated. A study may 

be conducted to assess the effect of the choice of 

parameter values on the classificatory performance of 
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the proposed models in the holdout sample, particularly 

for small values of the M parameters. 

4. This dissertation identified the secondary goal of 

maximizing the deviation between the projected means of 

the groups assigned to the leftmost and rightmost 

intervals. Other secondary goals may be identified and 

their effect on the classificatory performance of the 

modified GSFC and MIP3G models could be assessed. 

5. Heuristics have been proposed by Banks and Abad (1991), 

Abad and Banks (1992), Rubin (1990a) and Koehler and 

Erenguc (1990) for improvement of the computational 

efficiency of models for the two-group classification 

problem. Heuristics may be proposed for the three-

group problem and their classificatory performance 

compared with that of exact models. 

6. Freed and Glover (1981b) proposed a pairwise 

comparisons approach for the classification problem 

with more than two groups. However, no simulation 

studies have been published on the classificatory 

performance of this method. Its classificatory 

performance should be compared with that of the 

parametric methods. 

7. In the proposed Grid algorithm, the assignment role of 

the first discriminant prevails in case of a tie. 

Other methods for resolving ties may be identified that 
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will improve the classificatory performance of the 

algorithm. 

Contribution to Managerial Decision-Making 

Discriminant analysis is used in a variety of business 

problems like credit granting, assessment of rebate 

proneness etc. Typically, the decision makers have relied 

mainly on Fisher's linear discriminant function or Smith's 

quadratic discriminant function in order to classify 

observations into groups when faced with a three-group 

classification problem. The decision makers can easily 

implement the mathematical programming models in this 

dissertation by using one of the popular optimization 

packages such as SAS/OR, LINDO, MPSX, etc. The models and 

results in this dissertation will allow the decision makers 

to have greater flexibility in choosing an appropriate 

discriminant procedure, particularly when violations of the 

parametric assumptions are readily apparent. 

This dissertation shows that when the data have certain 

shapes the proposed mathematical programming models have 

higher classificatory accuracy than their parametric 

counterparts. Furthermore, managers may find the 

classification process using the proposed mathematical 

programming models computationally more efficient than 

previous models. For example, the MIP3G model is much more 

practical from a computational standpoint than the 
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originally proposed GSFC model. The experimental results in 

this dissertation can assist the decision maker in assessing 

the usefulness of the proposed mathematical programming 

models as alternative classification methods in situations 

where the parametric models do not perform optimally. 
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Table 1 

Effect of varying M on the average number of 

misclassifications, average CPU times(sees) and average 

number of integer iterations in the GSFC model for samples of 

size n,=n2=n3=25 generated from multivariate normal 

populations with 

Hi = 1*2 •I = 

Si - I S2 - I S3 - I 

M 
n 

min ]in Ii 
i=l 

CPU 
(sees) 

Integer 
Iterations 

25 10.72 270.76 2300.48 

50 10.64 417.84 3445.80 

75 10.60 511.44 4275.44 

100 10.60 580.00 4990.28 

200 10.60 701.64 6531.76 

500 10.60 834.32 7705.44 
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Table 2 

Effect of varying Mj in the modified GSFC model on the 

average number of misclassifications, average CPU times(sees) 

and average number of integer iterations for samples of size 

ni=n2=
n3=25 generated from multivariate normal populations 

with 

- IS] 
2, - I S 2 - 1 S3 = I 

M, 
n 

min ^2 Ii 
i-l 

CPU 
(sees) 

Integer 
Iterations 

3 13.40 33.20 383.80 

5 10.92 57.40 604.80 

10 10.60 115.12 1024.60 

15 10.60 167.64 1397.56 

25 10.60 265.00 2122.92 

50 10.60 417.96 3441.96 

75 10.60 523.56 4325.88 

100 10.60 580.00 4980.28 

1000 10. 60 925.12 8575.40 
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Table 3 

Effect of varying Mj in the modified GSFC model on the 

average number of misclassifications, average CPU times(sees) 

and average number of integer iterations for sample size 

n1=n2=n3=25 generated from multivariate normal populations 

with 

Pi [2] V-2 •E 

Sj, = I S2 = 1.441 S3 = .641 

Mi 
n 

min £ Ii 
i=l 

CPU 
(sees) 

Integer 
Iterations 

3 1 2 . 9 6 4 3 . 1 6 5 1 0 . 3 2 

5 1 1 . 3 2 7 1 . 2 0 7 7 2 . 1 6 

10 1 1 . 0 8 1 4 2 . 2 8 1 2 4 8 . 8 8 

15 1 1 . 0 8 2 0 1 . 8 8 1 7 2 3 . 2 4 

25 1 1 . 0 8 3 0 7 . 6 0 2 6 2 1 . 9 6 

50 1 1 . 0 8 4 8 5 . 1 6 4 2 4 7 . 5 6 

75 1 1 . 0 8 5 9 6 . 0 4 5 2 8 2 . 0 0 

100 1 1 . 0 8 6 8 3 . 1 6 6 0 4 0 . 4 0 

1000 1 1 . 0 8 1 0 5 2 . 8 0 1 0 1 2 1 . 5 2 
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Table 4 

Effect of varying Mi in the modified GSFC model on the 

average number of misclassifications, average CPU times(sees) 

and average number of integer iterations for samples of size 

n1=n2=n3=25 generated from multivariate normal populations 

with 

f1! [3.4641 

E-L = I 

^2 = 

S2 - I 

= 

S3 = I 

M, 
n 

min ^2 
i«l 

CPU 
(sees) 

Integer 
Iterations 

3 10.36 45.92 565.48 

5 9.20 103.48 1184.40 

10 9.04 195.52 2227.92 

15 9.04 245.24 2805.96 

25 9.04 295.64 3457.20 

50 9.04 350.60 4131.40 

75 9.04 373.64 4452.00 

100 9.04 393.72 4650.48 

1000 9.04 517.76 5771.72 
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Table 5 

Effect of varying M, in the modified GSFC model on the 

average number of misclassifications, average CPU times(sees) 

and average number of integer iterations for samples of size 

ni=n2=n3=25 generated from multivariate normal populations 

with 

0 
3 .4641 2̂ = 

-2 
0 3̂ 

Sx = I E2 = 1.441 S3 = .641 

M, 
n 

min ]|P I A 

CPU 
(sees) 

Integer 
Iterations 

3 1 0 . 0 4 4 5 . 6 4 5 6 0 . 6 8 

5 9 . 0 0 9 5 . 0 8 1 1 2 9 . 0 8 

1 0 8 . 6 4 1 6 2 . 0 4 1 8 6 9 . 3 6 

1 5 

I ! 
^ 

* 

CO 2 0 4 . 0 4 2 3 4 8 . 0 4 

2 5 8 . 6 4 2 4 8 . 0 4 2 8 8 5 . 6 4 

5 0 8 . 6 4 3 0 2 . 4 8 3 4 9 9 . 2 4 

7 5 00
 

# G
\ 

3 2 5 . 1 6 3 7 6 6 . 5 2 

1 0 0 8 . 6 4 3 4 6 . 4 0 3 9 2 5 . 7 2 

1 0 0 0 8 . 6 4 4 3 6 . 7 2 4 8 4 7 . 0 8 
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Table 6 

Effect of varying the value assigned to the parameter M2 in 

the modified GSFC model on the average number of 

misclassifications for samples of size n1=n2=n3=25 generated 

from multivariate normal populations with 

V-i = 
0 
3.4641 

Si - 1 

- 2 

E2 = 1.441 

"*3 = [o 

S3 = .641 

Mi II to
 

o
 M2=40 M2=75 M2=100 M2=250 M2=400 

3 10.44 10.04 10.04 10.04 10.04 10.04 

5 9.40 9.00 9.00 9.00 9.00 9.00 

10 9.28 8.64 8. 64 8.64 8. 64 8.64 

15 9.28 8.64 8.64 8.64 8.64 8.64 

25 9.28 8.64 8.64 8.64 8.64 8.64 

50 9.28 8.64 8.64 8.64 8.64 8.64 

75 9.28 8.64 8.64 8.64 8.64 8.64 

100 9.28 8.64 8.64 8.64 8.64 8.64 

1000 9.28 8.64 8.64 8.64 8.64 8.64 
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Table 7 

Effect of varying the value assigned to the parameter M2 in 

the modified GSFC model on the average CPU times(sees) for 

samples of size nj=n2=n3=25 generated from multivariate normal 

populations with 

[0 
3.4641 ^2 = "2ol ^3 = 

E2 = 1.441 S 3 = .641 

M, M2=20 £
 11 4*
 

O
 

M2=75 M2=100 M2=2 5 0 M2=400 

3 49.76 43.28 44.08 45.64 46.96 43.60 

5 99.84 94.32 92.76 95.08 100.72 95.20 

10 192.04 156.68 158.16 162.04 170.12 160.16 

15 242.96 197.36 195.24 204.04 214.68 200.40 

25 301.80 242.84 244.20 248.04 264.80 251.64 

50 384.64 298.44 291.04 302.48 321.12 302.52 

75 436.68 319.32 312.32 325.16 340.20 319.72 

100 462.96 339.00 319.36 346.40 364.76 365.28 

1000 659.92 467.88 427.88 436.72 430.40 455.84 
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Table 8 

Effect of varying the value assigned to the parameter M2 in 

the modified GSFC model on the average number of integer 

iterations for samples of size ni=n2=n3=25 generated from 

multivariate normal populations with 

= 0 1 3.4641 V-2 " 

r - 2 i 
0 ^ - [o 

= I E2 = 1.441 E3 = .641 

M, M2=20 II O
 

£
 II -4
 

<J1
 

M2=100 M2=250 M2=4 0 0 

3 626.84 560.92 570.60 560.68 545.60 561.36 

5 1160.28 1124.12 1131.36 1129.08 1112.16 1124.84 

10 2102.68 1844.88 1864.68 1869.36 1846.44 1860.20 

15 2626.80 2314.24 2345.28 2348.04 2319.04 2337.56 

25 3216.20 2826.84 2890.92 2885.64 2854.60 2870.92 

50 3992.00 3423.40 3485.36 3499.24 3465.48 3497.04 

75 4457.08 3685.84 3722.48 3766.52 3736.16 3756.08 

100 4701.40 3890.96 3880.12 3925.72 3905.60 3923.72 

1000 6594.16 5103.96 4861.56 4847.08 4724.76 4776.68 
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Table 9 

Effect of varying the value assigned to the parameter e in 

the modified GSFC model on the average number of 

misclassifications for samples of size n1=n2=n3=25 generated 

from multivariate normal populations with 

[3.464l] 

S, = I 

^2 

S 2 = 1.441 

1̂3 = 

S3 = .641 

M, e=5 e=2.5 e=l e=. 5 

3 10.04 8.72 8.68 8.68 

5 9.00 8.68 8.68 8.68 

10 8.64 8.64 8.64 8.64 

15 8.64 8.64 8.64 8.64 

25 8.64 8.64 8.64 8.64 

50 8.64 8.64 8.64 8.64 

75 8.64 8.64 8.64 8.64 

100 8.64 8.64 8.64 8.64 

1000 8.64 8.64 8.64 8.64 
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Table 10 

Effect of varying the value assigned to the parameter § in 

the modified GSFC model on the average CPU times(sees) for 

samples of size ni=n2=n3=25 generated from multivariate normal 

populations with 

Hi = 0 1 3 .4641 V-2 "[I] Ha 

2, = I S 2 = 1.441 S3 = .641 

M, e=5 e=2.5 e=l e=. 5 

3 45.64 111.04 198.12 262.72 

5 95.08 162.24 253.68 298.40 

10 162.04 230.48 296.88 338.24 

15 204.04 262.92 320.16 358.08 

25 248.04 296.08 352.76 375.08 

50 302.48 339.56 379.32 393.88 

75 325.16 354.80 392.60 402.32 

100 346.40 365.44 407.72 409.08 

1000 436.72 442.20 434.52 435.92 
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Table 11 

Effect of varying the value assigned to the parameter e in 

the modified GSFC model on the average number of integer 

iterations for samples of size ^=^=^=25 generated from 

multivariate normal populations with 

l*i = 
0 1 3 . 4 6 4 l J ^2 = 

-2 
0 ^3 • E 

Si - 1 S 2 = 1.441 S 3 = .641 

M, e=5 e = 2 . 5 e = l e = . 5 

3 5 6 0 . 6 8 1 2 7 1 . 4 0 2 2 8 5 . 3 6 3 0 4 6 . 0 0 

5 1 1 2 9 . 0 8 1 8 8 3 . 2 8 2 8 7 3 . 0 4 3 4 9 5 . 0 8 

10 1 8 6 9 . 3 6 2 6 6 4 . 0 0 3 4 5 3 . 8 8 3 9 0 9 . 4 8 

15 2 3 4 8 . 0 4 3 0 6 6 . 0 4 3 7 2 0 . 3 2 4 1 3 0 . 7 6 

25 2 8 8 5 . 6 4 3 4 9 5 . 8 0 4 0 3 1 . 3 2 4 3 5 6 . 3 6 

50 3 4 9 9 . 2 4 3 9 4 2 . 9 6 4 3 3 7 . 4 4 4 6 0 4 . 5 2 

75 3 7 6 6 . 5 2 4 1 4 3 . 6 8 4 4 8 9 . 6 8 4 7 2 3 . 1 2 

100 3 9 2 5 . 7 2 4 2 7 8 . 9 6 4 5 8 1 . 4 4 4 7 9 1 . 6 8 

1000 4 8 4 7 . 0 8 4 9 5 1 . 3 6 4 9 8 3 . 7 6 5 0 4 3 . 8 4 
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Table 12 

Effect of varying the value assigned to the parameter e in 

the modified GSFC model on the average number of 

misclassifications for samples of size nj=n2=n3=25 generated 

from multivariate normal populations with 

Hi 3 .464l] 

E1 - I 

^ = [~o] 1*3 = [o 

S2 = 1.441 2, ,641 

Mi 

H
 It <D e=. 5 e=. 1 e=. 01 e=.001 e=0 

3 16.85* 13.92 10.60 10.04 10.04 10.04 

5 12.00 10.20 9.20 9.00 8.96 8.96 

10 10.16 9.40 8.80 8.64 8.64 8.64 

15 9.56 9.16 8.76 8.64 8. 64 8.64 

25 9.40 9.04 8.76 8.64 8.64 8.64 

50 9.36 9.04 8.76 8.64 8.64 8.64 

75 9.36 9.04 8.76 8.64 8.64 8.64 

100 9.36 9.04 8.76 8.64 8.64 8.64 

1000 9.36 9.04 8.76 8.64 8.64 8.64 

Average in 20 runs. Problem was infeasible in the 

remaining 5 runs for Mj=3, M2=100, e=l and §=5. The 

feasibility conditions identified in Theorem 1 are not 

satisfied for such parameter values. 
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Table 13 

Effect of varying the value assigned to the parameter e in 

the modified GSFC model on the average CPU times(sees) for 

samples of size n!=n2=n3=25 generated from multivariate normal 

populations with 

m = 0 3.4641 

Si = I 

^2 = 

E2 = 1.441 

3̂ = 

E3 = .641 

Mi e=l e=. 5 e=. 1 e=. 01 e=.001 

o
 1! (!) 

3 49.75* 52.04 45.36 45.64 46.08 45.00 

5 114.40 103.68 98.00 95.08 95.80 93.16 

10 208.44 187.76 162.08 162.04 165.08 158.16 

15 218.24 218.64 214.72 204.04 204.80 199.68 

25 293.44 279.00 262.00 248.04 248.32 232.20 

50 410.76 355.36 324.84 302.48 295.92 282.92 

75 461.84 387.08 355.56 325.16 322.96 304.84 

100 494.56 408.64 366.04 346.40 339.12 319.64 

1000 646.76 537.40 494.48 436.72 434.64 404.80 

Average in 20 runs. Problem was infeasible in the 

remaining 5 runs for Mj=3, M2=100f e=l and 6=5. The 

feasibility conditions identified in Theorem 1 are not 

satisfied for such parameter values. 
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Table 14 

Effect of varying the value assigned to the parameter e in 

the modified GSFC model on the average number of integer 

iterations for samples of size n,=n2=n3=25 generated from 

multivariate normal populations with 

Hi = 
0 
3.4641 ] * • [1] 

2, = I 1.441 

Ha •I? 
S3 =• .641 

M, <D
 II e=. 5 e=. 1 e=. 01 e=.001 e=0 

3 557.80* 589.44 548.88 560.68 587.88 580.60 

5 1136.16 1066.44 1088.80 1129.08 1127.20 1122.80 

10 1872.20 1857.12 1770.28 1869.36 1875.20 1869.28 

15 2022.48 2207.92 2375.32 2348.04 2352.12 2339.60 

25 2820.36 2829.92 2958.04 2885.64 2894.76 2862.40 

50 4026.36 3697.60 3626.68 3499.24 3493.20 3453.68 

75 4582.52 4108.12 3951.32 3766.52 3769.44 3711.40 

100 4974.76 4335.44 4113.24 3925.72 3915.20 3875.08 

1000 6395.28 5516.64 5109.04 4847.08 4829.60 4778.96 

Average in 20 runs. Problem was infeasible in the 

remaining 5 runs for M,=3, M2=100, e=l and e=5. The 

feasibility conditions identified in Theorem 1 are not 

satisfied for such parameter values. 
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Table 15 

Average number of misclassifications yielded by the modified 

GSFC and the MIP3G when samples of size n1=n2=n3=25 are 

generated from multivariate normal populations with 

S 2 = I 

*1 - [S] " [l] ^3 = [3 

L1 = I S3 = I 

Mi Modified 
GSFC 

MIP3G 

3 13.40 13.40 

5 10.92 10.92 

10 10.60 10.64 

15 10.60 10.64 

25 10.60 10.64 

50 10.60 10.64 

75 10.60 10.64 

100 10.60 10.64 

1000 10.60 10.64 
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Table 16 

Average CPU times(sees) yielded by the modified GSFC and the 

MIP3G when samples of size n1=n2=n3=25 are generated from 

multivariate normal populations with 

^ = [o] ^ = [1] 3̂ = [ 

21 = I S 2 - I E3 = I 

Mx Modified 
GSFC 

MIP3G 

3 33.20 19.52 

5 57.40 33.20 

10 115.12 81.40 

15 167.64 102.36 

25 265.00 143.92 

50 417.96 216.60 

75 523.56 257.96 

100 580.00 290.04 

1000 925.12 447.32 
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Table 17 

Average number of integer iterations yielded by the modified 

GSFC and the MIP3G when samples of size n1=n2==n3=25 are 

generated from multivariate normal populations with 

14-isi * - m * = B 

S, - I S 2 = I S 3 = I 

M! Modified 
GSFC 

MIP3G 

3 383.80 197.64 

5 604.80 333.88 

10 1024.60 545.72 

15 1397.56 706.24 

25 2122.92 1039.56 

50 3441.96 1670.36 

75 4325.88 2068.16 

100 4990.28 2366.04 

1000 8575.40 4057.88 
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Table 18 

Average number of misclassifications yielded by the modified 

GSFC and the MIP3G when samples of size n1=n2=n3
:=25 are 

generated from multivariate normal populations with 

* • [o] 

Ei = I 

V-2 

E2 = 1.441 

1*3 = 

S 3 = .641 

M, Modified 
GSFC 

MIP3G 

3 12.96 12.96 

5 11.32 11.32 

10 11.08 11.08 

15 11.08 11.08 

25 11.08 11.08 

50 11.08 11.08 

75 11.08 11.08 

100 11.08 11.08 

1000 11.08 11.08 
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Table 19 

Average CPU times(sees) yielded by the modified GSFC and the 

MIP3G when samples of size n1=n2=n3=25 are generated from 

multivariate normal populations with 

^ = [SI V-2 1*3 = 

= I S2 = 1.441 S3 = .641 

M, Modified 
GSFC 

MIP3G 

3 43.16 28.32 

5 71.20 39.12 

10 142.28 86.80 

15 201.88 111.16 

25 307.60 157.44 

50 485.16 234.16 

75 596.04 282.16 

100 683.16 318.76 

1000 1052.80 473.20 
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Table 20 

Average number of integer iterations yielded by the modified 

GSFC and the MIP3G when samples of size n1=n2=n3=25 are 

generated from multivariate normal populations with 

= [o] 

2, = I 

Hz = 

S2 = 1.441 

Ha 1] 

2 3 = .641 

M, Modified 
GSFC 

MIP3G 

3 510.32 322.40 

5 772.16 413.52 

10 1248.88 635.88 

15 1723.24 842.00 

25 2621.96 1256.96 

50 4247.56 2004.32 

75 5282.00 2492.80 

100 6040.40 2861.24 

1000 10121.52 4679.80 
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Table 21 

Average number of misclassifications yielded by the modified 

GSFC and the MIP3G when samples of size ^=^2=^=25 are 

generated from multivariate normal populations with 

Hi = 
0 
3 .4641 *»" HI = 

S, = I S2 = I S3 = I 

M, Modified 
GSFC 

MIP3G 

3 10.36 10.36 

5 9.20 9.20 

10 9.04 9.04 

15 9.04 9.04 

25 9.04 9.04 

50 9.04 9.04 

75 9.04 9.04 

100 9.04 9.04 

1000 9.04 9.04 
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Table 22 

Average CPU times(sees) yielded by the modified GSFC and the 

MIP3G when samples of size n!=n2=n3=25 are generated from 

multivariate normal populations with 

[3.4641 

S, « I 

V-2 = [1] 
S 2 = I 

1*3 = 

S3 = I 

Modified 
GSFC 

MIP3G 

3 45.92 20.24 

5 103.48 45.00 

10 195.52 83.12 

15 245.24 104.12 

25 295.64 123.88 

50 350.60 150.40 

75 373.64 160.60 

100 393.72 168.08 

1000 517.76 206.92 
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Table 23 

Average number of integer iterations yielded by the modified 

GSFC and the MIP3G when samples of size n1=n2=n3=25 are 

generated from multivariate normal populations with 

" [3 .4641 

Si = I 

V-2 = 
-2 

0 

s 2 - I 

1*3 = 

S3 = I 

Mx Modified 
GSFC 

MIP3G 

3 3565.48 298.24 

5 1184.40 598.24 

10 2227.92 1109.96 

15 2805.96 1392.52 

25 3457.20 1701.92 

50 4131.40 2038.64 

75 4452.00 2185.36 

100 46^0.48 2274.24 

1000 5771.72 2754.72 
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Table 24 

Average number of misclassifications yielded by the modified 

GSFC and the MIP3G when samples of size nj=n2==n3=25 are 

generated from multivariate normal populations with 

" 11,4641 

S, = I 

»2 = 
- 2 
0 

S2 = 1.441 

= 

S3 = .641 

M, Modified 
GSFC 

MIP3G 

3 10.04 10.04 

5 9.00 9.00 

10 8.64 

00 
V

O
 • 

00 

15 8.64 

i 

00 
vo • 

C
O

 

25 8.64 00
 

c
s
 

00
 

50 8.64 

00 
vo 

00 

75 8.64 8.68 

100 8.64 

00 
vo 

i 

C
O

 

1000 8.64 

C
O

 
vo * 

C
O
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Table 25 

Average CPU times(sees) yielded by the modified GSFC and the 

MIP3G when samples of size ni=n2=n3=25 are generated from 

multivariate normal populations with 

" [3.464l] 2̂ ~ [ 0] 

S, = I E2 = 1.441 

^3 := 

S3 = .641 

M, Modified 
GSFC 

MIP3G 

3 45.64 21.04 

5 95.08 43.92 

10 162.04 73.16 

15 204.04 92.00 

25 248.04 109.84 

50 302.48 131.40 

75 325.16 143.60 

100 346.40 149.64 

1000 436.72 181.76 



129 

Table 26 

Average number of integer iterations yielded by the modified 

GSFC and the MIP3G when samples of size n1=n2=n3
s=25 are 

generated from multivariate normal populations with 

0 
3.4641 Hi = 

2, = I 

^2 = 
- 2 

0 1*3 = 

S2 = 1.441 S3 = .641 

Mi Modified 
GSFC 

MIP3G 

3 560.68 301.60 

5 1129.08 565.40 

10 1869.36 942.68 

15 2348.04 1184.32 

25 2885.64 1450.28 

50 3499.24 1741.00 

75 3766.52 1869.12 

100 3925.72 1951.48 

1000 4847.08 2350.48 
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Table 27 

Percentage misclassification rates in the training sample and 

the holdout sample for data generated from mxiltivariate 

normal populations with collinear means and equal variances 

= [o 

= I 

V-2 = 

s2 = I 

1*3 = 

S3 = I 

Case 1 

Method 
Training 
Sample 

Holdout 
Sample 

GMFC 13.493 24.400 

MIP3G 14.187 24.711 

MSDMG 18.613 23.244 

FLDF 19.147 21.822 

SQDF 18.933 22.533 
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Table 28 

Percentage misclassification rates in the training sample and 

the holdout sample for data generated from multivariate 

normal populations with collinear means and unequal variances 

= [o 

Si = .641 

= 3̂ = 

S2 = .811 S3 = 1.211 

Case 2 

Method 
Training 
Sample 

Holdout 
Sample 

GMFC 11.893 21.022 

MIP3G 12.373 21.644 

MSDMG 16.373 20.578 

FLDF 16.960 19.956 

SQDF 16.160 20.089 
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Table 29 

Percentage misclassification rates in the training sample and 

the holdout sample for data generated from multivariate 

normal populations with equilateral (equidistant) means and 

equal variances 

Hi = 173 .205 

Si = 56251 

> . - f l 0 S 

S2 = 56251 

["100 

L o, 

S3 = 56251 

Case 3 

Method 
Training 
Sample 

Holdout 
Sample 

GMFC 8.693 16.711 

MIP3G 23.093 36.444 

Grid 13.760 24.044 

MSDMG 32.213 39,244 

FLDF 13.973 14.711 

SQDF 13.440 15.156 
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Table 30 

Percentage misclassification rates in the training sample and 

the holdout sample for data generated from multivariate 

normal populations with equilateral (equidistant) means and 

unequal variances 

Hi = 
0 

173 .205 - p s h3 
100 

0 

Sx = 64001 S2 = 56251 S3 = 49001 

Case 4 

Method 
Training 
Sample 

Holdout 
Sample 

GMFC 8.160 15.867 

MIP3G 22.560 35.689 

Grid 13.973 24.533 

MSDMG 32.320 39.822 

FLDF 13.813 14.578 

SQDF 13.760 14.978 



134 

Table 31 

Percentage misclassification rates in the training sample and 

the holdout sample for data generated from multivariate 

normal populations with a proportion p=.10 of outlier 

observations in the leftmost and rightmost populations where 

all five means are collinear 

u =f13 
Hi 13 

Si = I 

* = [ii] >3 - u?] 

S2 = I S3 = I 

u
( ° ) 

1*1 [S] 
„(o) = [30 

[30 

Sl0) =91 S<0) 91 

Case 5 

Method 
Training 
Sample 

Holdout 
Sample 

GMFC 5.120 12.089 

MIP3G 7.787 12.044 

MSDMG 9.973 10.. 311 

FLDF 21.707 26.800 

SQDF 12.960 16.667 
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Table 32 

Percentage misclassification rates in the training sample and 

the holdout sample for data generated from continuous uniform 

populations with collinear means and equal variances 

Ut (x, y; 0, 10, 0, 10) 

U2 (x, y; 6, 10, 0, 10) 

U3 (x, y; 14, 24, 0, 10) 

Case 6 

Method 
Training 
Sample 

Holdout 
Sample 

GMFC 10.720 19.156 

MIP3G 14.507 24.311 

MSDMG 20.907 23.333 

FLDF 18.720 18.311 

SQDF 17.280 17.244 
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Table 33 

Percentage misclassification rates in the training sample and 

the holdout sample for data generated from continuous uniform 

populations with collinear means and unegual variances 

u, (x, y; 0, 10, 0, 10) 

U2 (x, y; 8, 16, -4, 14) 

U3 (x, y; 14, 19, -6, 16) 

Case 7 

Method 
Training 
Sample 

Holdout 
Sample 

GMFC 14.133 24.622 

MIP3G 15.040 24.000 

MSDMG 22.080 24.000 

FLDF 23.253 23.733 

SQDF 21.333 23.200 
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Table 34 

Percentage misclassification rates in the training sample and 

the holdout sample for data generated from continuous uniform 

populations with equilateral (equidistant) means and equal 

variances 

U, (x, y; 0, 10, 0, 10) 

U2 (x, y; 8, 18, 0, 10) 

U3 (X, y; 4, 14, 6.928, 16.928) 

Case 8 

Method 
Training 
Sample 

Holdout 
Sample 

GMFC 5.227 13.111 

MIP3G 19.307 31.733 

Grid 11.040 21.111 

MSDMG 26.400 32.533 

FLDF 12.373 12.356 

SQDF 10.187 11.689 
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Table 35 

Percentage misclassification rates in the training sample and 

the holdout sample for data generated from continuous uniform 

populations with equilateral (equidistant) means and unequal 

variances 

U, (x, y; 0, 10, 0, 10) 

U2 (x, y; 6, 24, 4, 6) 

u3 ( x r y ; 8 , 1 2 , 6 . 6 6 , 2 0 . 6 6 ) 

Case 9 

Method 
Training 
Sample 

Holdout 
Sample 

GMFC 7.147 14.622 

MIP3G 15.787 26.622 

Grid 11.893 21.867 

MSDMG 20.213 26.667 

FLDF 14.400 15.022 

SQDF 11.200 11.956 
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Table 36 

Percentage misclassification rates in the training sample and 

the holdout sample for data generated from the following: 

Group 1: Multivariate normal populations with 

Mi = 
3.25 
0 and 2̂  = 1.21 

Group 2: Multivariate normal population with 

H = 
9.75 
0 and 2, = 1.21 

Group 3: Consists of three uniform populations 

Ui (x, y; 2.3, 11.5, 3.5, 4) 

U2 (x, y; 2.3, 11.5, -4, -3.5) 

U3 (x, y; -.5, .5, -2.5, 2.5) 

where the proportions of observations in Uj, U2, and U3 
are .275, .275 and .45, respectively. 

Case 10 

Method 
Training 
Sample 

Holdout 
Sample 

GMFC 16.00 23.24 

MIP3G 17.33 22.18 

Grid 9.76 17.69 

MSDMG 46.83 52.98 

FLDF 35.68 40.71 

SQDF 12.43 18.80 
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Table 37 

Percentage misclassification rates in the training sample for 

data generated from the following: 

Group 1: Uniform in the Y direction over the interval 

[-.5,.5] and U-shaped in the X direction with 

f(x) « 
3x2 

128 
0 

-4 < X <4 

otherwise 

Group 2: Uniform in the X direction over the interval 

[-4,-3] and U-shaped in the Y direction with 

f(Y) - 1 
3y2 

128 
0 

-4 < y <4 

otherwise 

Group 3: Uniform in the X direction over th€5 interval 

[3,4] and U-shaped in the Y direction with 

f(y) = 
3y2 

128 
0 

-4 < y <4 

otherwise 

Case 11 

Method 
Training 
Sample 

Holdout 
Sample 

GMFC 18.88 24.27 

MIP3G 19.20 22.89 

Grid 2.88 5.. 51 

MSDMG 32.69 32.67 

FLDF 30.51 30.71 

SQDF 15.89 16.09 
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Data Set 1 

MBA Admissions Data 

Observation 
Number 

Admitted Not Admitted Borderline 
Observation 

Number GPA GMAT GPA GMAT GPA GMAT 

1 2.96 596 2.54 446 2.86 494 

2 3.14 473 2.43 425 2.85 496 

3 3.22 482 2.20 474 3.14 419 

4 3.29 527 2.36 531 3.28 371 

5 3.69 505 2.57 542 2.89 447 

6 3.46 693 2.35 406 3.15 313 

7 3.03 626 2.51 412 3.50 402 

8 3.19 663 2.51 458 2.89 485 

9 3.63 447 2.36 399 2.80 444 

10 3.59 588 2.36 482 3.13 416 

11 3.30 563 2.66 420 3.01 471 

12 3.40 553 2.68 414 2.79 490 

13 3.50 572 2.48 533 2.89 431 

14 3.78 591 2.46 509 2.91 446 

15 3.44 692 2.63 5CH 2.75 546 

16 3.48 528 2.44 336 2.73 467 

17 3.47 552 2.13 408 3.12 463 

18 3.35 520 2.41 469 3.08 440 

19 3.39 543 2.55 538 3.03 419 

20 3.28 523 2.31 505 3.00 509 

21 3.21 530 2.41 489 3.03 438 

22 3.58 564 2.19 411 3.05 399 

23 3.33 565 2.35 321 2.85 483 

24 3.40 431 2.60 394 3.01 453 

25 3.38 605 2.55 528 3.03 414 

26 3.26 664 2.72 399 3.04 446 

27 3.60 609 2.85 381 

28 3.37 559 2.90 384 

29 3.80 521 

30 3.76 646 

31 3.24 467 
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Observation 
Number 

Group 1 Group 2 Group 3 

1 (-5,-3) (21,22) (26,26) 

2 (8,7) (23,23) (26,27) 

3 (10,9) (23,23) (18,18) 

4 (15,14) (15,14) (8,7) 

5 (11,9) (16,15) 

6 (16,15) 

7 (17,16) 

8 (18,18) 

9 (15,13) 

10 (8,5) 

11 (18,17) 

12 (15,16) 

13 (17,15) 

14 (24,24) 

15 (24,25) 

16 (28,27) 

17 (40,40) 

18 (28,29) 

19 (30,34) 

20 (31,32) 
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