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Wang, JingLing, Topics in Fractal Geometry. Doctor of philosophy (mathe-

matics), August, 1994, 98 pp., 11 illustrations, References, 40 titles.

In this dissertation, we study fractal sets and their properties, especially
the open set condition, Hausdorff dimensions and Hausdorff measures for certain
fractal constructions. We begin by introducing some known results of self-similar
sets and give a short summary of each chapter in Chapter 1. In Chapter 2, we
discuss the existence and uniqueness of a graph directed self-similar measure list
and extend Schief’s result concerning the open set condition for self-similar sets to
graph directed self-similar sets.

In Chapter 3, we introduce certain ratio self-similar fractals with overlaps
and show that these kinds of fractals have positive Hausdorfl measures with re-
spect to the corresponding similarity dimensions. We prove in Chapter 4 that the
strong open set condition is equivalent to the conformal measure being zero on the
boundary of a set U satisfying the open set condition.

Statistically self-similar fractals and their properties are studied in Chapter
5. We extend Graf’s é-condition to a weak é-condition. Furthermore, we show
that for certain statistically self-similar fractals in R%, if Graf’s é-condition is not
satisfied, their Hausdorff measures will be zero almost surely.

Finally in Chapter 6, we study linear cellular automata. We show that linear
cellular automata can be generated by graph-directed constructions. Therefore their
Hausdorff dimensions and measures can be calculated by applying the results for

graph directed constructions.
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CHAPTER I
INTRODUCTION

This dissertation is divided into five parts. Although each part is self-contained
and can be read without referring to the others, they do share a basic framework and
are studies of fractals using Hausdorfl measure, Hausdorff dimension and Hausdorff
metric. We gather these basics together in this chapter.

In 1919, Felix Hausdorff [Ha] published his theory of measure and dimension.
He paid tribute to Caratheodory who in 1914 gave a new treatment of Lebesgue
measure. Based on Caratheodory’s theory, Hausdorff established the entire the-
ory of measure and ‘fractional’ dimension, which is known today as the Hausdorff

dimension.
Hausdorff Measure and Hausdor{f Dimension.

Let (X, d) be a metric space and s > 0 be a fixed real number. For every § > 0

and £ C X, we define
H3(E) = inf{) (diamUy)* : B C UR, Uy, diam U; < 6},
=1

and

HY(E) = lim H(E) = sup H{(E), (1.1)
6§—0 520

where H*(E) is called the s-dimensional Hausdorff measwre of E. It is clear that
H*(E) relates to the local geometric structure of E. The set function H* is a Borel
regular measure [Ro], but is normally not finite on bounded sets. If f : X — X

is Lipschitz, then H*(f{A4)) < (Lip f*H*(4). If §: X — X is a similarity map,
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i.e. there is a constant r such that [S(z) — S(y)| = r|z — y| for all z,y in X, then
HE(S(A)) = r*H°(A).

For each E C X, there is a unique real number s, called the Hausdorff dimen-
sion of F, denoted by dimpy F, such that

o0 ift < s
0 if s < t.

The é-parallel body of E is the set of points within distance § of E, that is,
Es={zc X : inf d(z,y) < é}.
yer

The Hausdorff metric dy is defined on the collection of all nonempty compact
subsets of X by dg(E,F) =inf{§: EC Fs and F C Es}. A simple check shows
that dg 1s a metric.

The term “fractal” was introduced by Mandelbrot (1975) [Ma] for sets with a
highly irregular structure to which the methods of classical calculus can not be
applied. Fractal geometry provides a general tool for the study of irregular sets.
One reason for studying them arises from the fact that irregular sets provide a
much better representation of many natural phenomena. For instance, they can be
used to model the Brownian motion of particles, turbulence in fluids, the growth of
plants, geographical coastlines and surfaces, the dynamics of discrete variables in
discrete space and time, (see {Fal] [Fe] [Ma] [Schr]).

In general, we can characterize a fractal set F as follows [Fal]:

(1) F has a fine structure, i.¢., detail on arbitrarily small scales.
(2) F is too irregular to be described in traditional geometrical language, both
locally and globally.

(3) Often F' has some form of self-similarity, perhaps approximate or statistical.



(4)

(5)

Usually the Hausdorff dimension of F is greater than its topological dimen-
sion.

In most cases of interest, F' is defined in some very simple recursive manner.

Among the fractal sets, those with the additional property of being self-similar

are particularly interesting. A theory of strictly sclf-similar compact sets has been

developed by Moran [Mo] in 1946, and later extended by Hutchinson [Hu] in 1981,

The main results of Moran and Hutchinson can be described as follows:

(a)

Let X = (X,d) be a complete metric space and § = {51,5;,...,5.} be
a finite set of contraction maps on X. Then there exists a compact set
K such that K = U%,S;(K). Furthermore, if ¥(A) = UL ,S5:(4), and
TF(A) = ¥(¥*~1(A)), then for any nonempty closed and bounded set A,

U*(A) - K in Hausdorff metric.

The compact set K is called the invariant set w.r.t. § or the limit set of the
iterated function system of & = {51, 52,..., 5}
In addition to the hypothesis of (a), suppose there is a probability vector
(p1,..,pn) such that > . p; = 1. Then there exists a unique Borel prob-
ability measure yt on X such that g = 3, p;u 0 S;', and the support of
w is K. The measure u is called the invariant measure w.r.t. (S, (pi)).
As a special case of (a) and (b), if X = R? and $; € § are similarity
maps with similarity ratios r; < 1, then the invariant set X = U Si(K) is
called the self-similar set w.r.t. §. Moreover Moran and Hutchinson gave a
criterion that guarantees that the sets S;(K), ¢ = 1,--- ,n, do not overlap
too much, namely the open set condition. The open set condition (OSC)
says that there is an open set U # {, such that

(i) Uiz, S«(U) C U,



(ii) SiU)NS;(U) #0if i # 5.
If § satisfies the OSC, then the Hausdorff dimension of K is s, where s

satisfies o 77 = 1, and is called the similarity dimension of §. Also

the Hausdorff measure of K is positive and finite, i.e. 0 < H*(K) < oc. In
addition, if welet p; = rf, ¢ = 1,2,...,n, be the probability vector, then the

&

invariant measure g w.r.t. (S, (r]

#)) is called the self-similar measure, and

it is, up to a constant, the same as the restricted Hausdorff measure H?* | K,

i.€.

f:"{' HS(}' )H l.

As an illustration, let K be the Sierpinski gasket (see Figure 1.1) generated by
S1,52,9; : R — R? where Si(z,y) = 3(z,y), Salz,y) = 3(z9) + (%,0) and
Sy(z,y) = 3(z,¥) + (3, ?) Then S$1(K), S2(K) and S3(K) are just the left, right
and up ‘halves’ of &, so that K = S1(K)U S3(K)U S3(K). Thus K is invariant for

mappings Sy, S2 and S;, which represent the fundamental self-similarities of the

0 3

Sierpinski gasket. The Hausdorff dimension of K is 252 TogZ"

Since 1991, the theory of self-similar set has been further developed. For instance,
given a self-similar set K generated by similarity maps & = (51,52, , Sn), Schief

[Sch] proved that the following conditions are equivalent.

(i) H*(K) > 0, where s satisfies .., 77 = 1.
(ii) S satisfies the open set condition (OSC).
(ii1) S satisfies the strong open set condition (SOSC), t.e. there is an open set

U satisfying the OSC and U N K # 0.

Remark. We are more interested in the set U satisfying the SOSC, since UNK # 0.

There are examples where an open sct U satisfies the OSC, but UNK = . However,
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FIGURE 1.1 CONSTRUCTION OF THE SIERPINSKI (GASKET

using Schief’s result, if H*(K) > 0, then we know that there exists an open set U

satisfying the SOSC.

During the 1980s, Moran and Hutchinson’s results were extended to variety
of general cases. Graph directed self-similar sets were introduced and studied by
Mauldin & Williams [MW1]. Random self-similar constructions were investigated
by Falconer [Fa2], Mauldin and williams [MW2], and Graf [Gr]. Recently, infinite
conformal iterated function systems are undergoing investigation by Mauldin and
Urbanski [MU]. This dissertation is a collection of studies of these fractal sets and

their geometric properties.

In Chapter 2, we will give a basic definition of graph directed self-similar sets,
then extend Moran and Hutchinson’s result to the graph directed case, i.e., we
will prove that there exists a unique invariant measure list (14 )uev w.r.t. prob-
abilities (p;)icr. We will also extend Schief’s results to strongly connected graph

directed constructions.



In Chapter 3, we will attempt to answer a question asked by Mauldin (in a
private communication) whether a fractal set K with overlapping construction can
still have positive Hausdorff measure w.r.t. its Hausdorff dimension. Such a fractal
set F can be constructed by a certain ratio self-similar construction. Furthermore,
we will show that the fractal set F constructed is also a fractal set in the sense of
Taylor’s definition, 7.e. the Hausdorff dimension and the packing dimension of F
are equal. The packing dimension and packing measure are defined as follows:

Let s > 0 be a fixed real number, for any § > 0 and E C R?, define
Pi(E) = sup{Z:(2:r',;)3 2; € B, r; < 6, B{x;,r;)disjoint},
=1
and
P(E) = }inﬁ P(E),

where B(z,r) denotes the closed ball with center & and radius r.
The set function P§ fails to be countable subadditive {cf. [TT]), so a further

stage of the definition is needed,
P(E) =inf{) Pi(Ei): E € U2, E;}. (1.2)
=1

The set function P* is a Borel measure introduced by Taylor & Tricot [TT] and is
called s-dimensional packing measure. Recall the definition of Hausdorff measure by

(1.1). We have (cf. [RT]) for all s > 0, and E C RY,
0 <HYE) L PYE) < oo. (1.3)

Both Hausdorff measure and packing measure relate to the local geometric structure
of E ¢ R%: H*® uscs economical covers by sets of small diameter; and P* uses efficient

packings by small balls centered in F.



The packing dimension s of E denoted by dimp(F) is defined by

00 if ¢ < s;
0 if s < 1.

PUE) = {
Taylor defines a set E to be a fractal set if
dimp(E) = dimp(E). (1.4)

In Chapter 4, the notion of conformal iterated function system (c.i.f.s} is intro-
duced. We will extend the result in the self-similar case and show that, for a c.i.f.s,
the SOSC 14 equivalent to the conformal measure being zero on the boundary of an
open set U satisfying the OSC.

In Chapter 5, we will study the geometric properties of random statistically self-
similar scts. In particular, we are interested in the so called §-condition introduced
by Graf, which gives a sufficient condition for the Hausdorfl measure of a statistically
self-similar fractal set K to be positive almost surely. We will show that for certain
random fractals K, if the é-condition 1s not satisfied, then the Hausdorff measure of
K is zero almost surely. An example in R? is provided. Moreover, in Section 5.3, we
will give a weak é-condition and show that the é-condition and the weak é-condition
are equivalent.

Finally in Chapter 6, fractal sets generated by linear cellular automata are stud-
ied. We will associate a fractal set generated by a p-state cellular automaton with
a graph directed construction, where p 1s a prime number. Therefore, by applying
the results for graph directed construction, we can calculate the Hausdorff dimen-
sion and Hausdorff measure for a fractal set generated by a p-state cellular automa-

ton.



CHAPTER II

THE OPEN SET CONDITION FOR
GRAPH DIRECTED SELF-SIMILAR SETS

As we mentioned in Chapter 1, Moran and Hutchinson have studied self-similar
sets and developed some basic theorems. The concept and theory of self-similar
sets were then extended to graph directed self-similar sets by Mauldin and Williams
[MW1] between 1985 and 1988. This extension provides a way to study a larger class
of sets. For example, in Chapter 6, we will apply this theory to cellular automata. In
this chapter, we will give the basic definitions of graph directed self-similar sets and
establish some propositions and theorems, which extend the theory of self-similar
sets. In particular, we will show that the OSC and the SOSC are equivalent for

certain graph directed self-similar sets.

2.1 DEFINITIONS AND NOTATIONS OF GRAPH DIRECTED SELF-SIMILAR SETS

Graph directed self-similar sets are defined and constructed as follows (cf. also
[Edg]):

Let (V, E) be a directed graph, where V is the set of vertices and E is the set
of edges, such that for each u € V| there are some edges ¢ € E coming from u. If
u, v € V are vertices and e € E is an edge, then we denote the set of edges with
initial vertex u by E., the set of edges from u to v by E,,, the initial vertex of ¢
by i(e), and the terminal vertex of e by #(e).

A list (V,E), (Xu)uev, (Se)ecr, (7e)ccg) where:

(1} (V, E} is a directed graph.



(2) X, is a compact metric space.

(3) Se: Xy — Xy is a similarity map, where e € E,,.

(4) 7, is the similarity ratio of S, such that, for each cycle @ = {e1e3 ... ¢4 :
tleg) =i(e1)], ra = e Tey v Te, < 1.

is called a Mauldin-Williams graph (MW-graph}.

Remark. By using rescaling (cf. [Edg] p 116), we can, without loss of generality,

assume r, < 1 for alle € E.

G =((V,E), (Xu)uev, (Se)ecE, (re)ecr) 1s a MW-graph, there exists a unique
invariant list (K, )ucv, where each K, is a nonempty compact subset of X, satis-
fying

K, = U Se(Kyey) forallu € V.
eeEFE,

Moreover, according to [MW1], the sets (K, ),ev can be constructed by the follow-
ing recursive process:
For each u € V', choose a noncmpty closed subset J, of X, and construct recur-

sively for each u € V a sequence (K, »)nen of nonempty compact subsets of X, as

follows:
(1} Let
Ku,] = U Sel(!}t(el])-
EIGEH
(2) Let
U Sej(Kt(el),l)
E‘.-[EE
= U U SaoSe)Uuen)
e1€Fy 2 €E (o)
(3) Let

K‘u,:}: U SBI(I{t(€1),2)

e EF,
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= U U 5oSe)Kigena)

e1€EE, BQGEs(e-l )

= U U U (Se1 0 8e, 0 Se He(es))-

e1C€Ey e2€E (., ea€E, (.,)

Continuing this process, we obtain a sequence of nonempty compact sets

K= |J U U SaoSqo08,)(e)

e1€EE, e2€ () en€Bile, 1) nEN

It is known that K, , converges to K, w.r.t. the Hausdorff metric as n — oo
(c¢f. Mauldin and Williams {MW1]). The sets (Ky)ucy arc called graph directed
self-similar sets (or a invariant list) associated with &, and the set K = Uy,ev K, is
called the graph directed construction object. In the original case studied by Moran
and Hutchinson, the graph (V, E) has only one vertex, u, and the set K’ = K, is

called a self-similar set.

Definition 2.1.1. Let G = (V. E), (Xu)uev, (Se)ecr, (re)ece) be a MW-graph
such that, for each u € V, X, is a compact subset of RY. We say G satisfies the
open set condition (OSC) if and only if there exists a list (U, )y,ev of sets, where
U, is a nonempty, open and bounded subset of X,,, satisfying

| Se(Use)) C U foraliueV,

e€EE,

Se(Ut(e})ﬂSer(Ut(e:)) =@ forallueV ande,e' € E, withe #¢'.

Furthermore, if Uy, N K, # 0 for all v € V, then we say G satisfies the strong OSC
(SOSC).

Recall in Chapter 1, for a self-similar set K generated by similarity maps & =
(81,82, ,8%), if S satisfies the OSC, then the Hausdorff dimension of K is s

where s satisfies Y .., r! = 1, and the H* measure is positive i.e. H*(K) > 0.
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Moreover, both OSC and SOSC are equivalent to H*(K) > 0. However, the situa-
tion for a graph directed construction G is more complicated. Mauldin and Williams
calculated the Hausdorff dimension when G satisfies the OSC. The Hausdorff di-
mension s is determined by ®(s) = 1, where ®(s) is the spectral radius of the matrix
A = (ZeeEw Ti)n,vev' If in addition, the graph G is strongly connected, i.e. for
each pair of vertices u and v, there is a directed path from u to v, then the H*
measure of K is positive and finite i.e. 0 < H*(K)} < oc. However, do we still
have the equivalencies among the OSC, the SOSC and the H* measure of K being

positive? We will investigate it in Section 2.2.

We provide here some notations which will be used in Sections 2.2. Given a
MW-graph G, we define E  for the set of all finite paths « with initial vertex u
and terminal vertex v. We will also say that such a path goes from u to v, or it
connects ¢ and v. The number of edges in a path is its length, written by |a|. We
will write ES% for the set of all paths from u to v of length n; and E™ for the set
of all paths of length n with initial vertex u; and E™) for the set of all paths of
length n. The empty set convention will work out best if we say (by convention)
that for each u € V, the set ESR has only one element, which is the empty path
from u to itself. Of course we may identify E with F(1) and E,, with E,a]v). We
define E* to be the set of all finite paths, and E? the set of all finite paths in the
graph starting from vertex u. Note that E* is a disjoint union of E* for all u € V.
If a € E*, then we denote the initial vertex of @ by i(«) and the terminal vertex
by #{«). Also if the strings «, 3 represent paths, and the terminal vertex of « is
equal to the initial vertex of 3, 1.e. t(a) = i(3), then the concatenated string «f

represents a path as well. A path o with i(a) = t(«) is called a cycle.

We will consider infinite paths as well. An infinite string w corresponds to an
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infinite path if the terminal vertex for each edge matches the initial vertex for the
next edge. We write E(“) for the set of all infinite paths for the MW-graph G, and
call it the string space. If v € V is a vertex, then we write EY for the set of all
infinite paths starting at . If o« € E*, then we write [a] = {0 € E™) : o < 5}
and call it the cylinder set generated by «. Thus, [«] is the set of all infinite paths
that begin with the path «.

The following abbreviations are important.

o= (61!621 .- '1en) € E*, we write

Sa=5.,05,0--08

I{a = So, (I{t(a))

?‘u - ?,cl?‘ez e T'Bn'

Furthermore, set

I

zmax {r. : e € E}

rmax

=min{r. : e € E}.

Tmin

Definition 2.1.2. Let G be a MW-graph, A projection map 7 from E“ to X =

Uyev Xy is defined by
r: B o X
o =(erea...) = ML 5o (X)) ):
where ol = (e1€2 ... €ex).

Definition 2.1.3. Let G be a MW-graph, we define the construction matrix by

A, = ( Z r:) ;
e€lyy u, eV

where s > 0 satisfics ®(s) = 1 and ®(s) is the spectral radius of A,. The number s

is call the dimension of graph G.
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Remark. If G is strongly connected, then A, is irreducible,

2.2 THEOREMS AND PROOFS

This section contains five propositions and a theorem. Proposition 2.2.1 shows
that there exists a “natural” probability measure g* on the string space E(“), such
that the left-shift map T on E™) is ergodic w.r.t. u*. By using the projection
map 7 : B - X = Uwey Xu, we get a pull down measure g = p* o n~! on
X. The measure u* is natural in that f 1s equivalent to the Hausdorfl measure
H?| K. Proposition 2.2.2 shows that the Hausdorff measure of the intersection
K. (K¢ is zero for e # ¢'. This proposition is very useful in the proofs of the
rest of propositions. Next, we introduce the notion of a graph directed self-similar
measure st (pu Juev on (X )uev for a given MW-graph G. Then we provide the
existence and uniqueness of the graph directed self-similar measure list (py )uecv
in Proposition 2.2.3. In Proposition 2.2.4, we show that, up to a constant, the
restricted Hausdorff measure H*®| K, is the same as y,. Proposition 2.2.5 presents
two properties of the self-similar measure list iy )uey, which are used in the proof
of Theorem 2.2.6. Finally, we prove Theorem 2.2.6 that both the OSC and the

SOSC are equivalent to H*(K) > 0 for strongly connected MW-graphs.

Proposition 2.2.1. Let G be a strongly connected MW-graph satisfying the OSC.
Then there exists a unique ergodic T-invariant probability measure u* on the string
space E\“) such that the image measure p* o 71 and the restricted Hausdorff

measure H* | K are equivalent,

Proof of Proposition 2.2.1. We first define a measure p* on the string space E(*),
then we show that it is ergodic w.r.t. the left-shift map T.

Let Ay = (Y ,cp.. Tg)u,vEV be the construction matrix of G. Since the graph



14

G is strongly connected, A, is irreducible. The Perron-Frobenius Theorem [Wall
tells us that there exists a left eigenvector p = (p2)uev and a right eigenvector

g = (g3)yey such that

pA=p te Z Z pyr. =py and p, >0 forallueV; (2.1)
wEV e€E,,
and
Ag=gq e Z Z rogy =¢q, and g, >0 forallueV. (2.2)
vEV e€Ey,

We can normalize p, ¢ such that
S pigi =1, (2.3)
veV
In view of (2.1) and (2.2), one can define a Borel probability measure g}, on C,, by
putting pux{[a]) = Pi(a)"altq), Where Cy is the algebra generated by the cylinder
sets of the form {o], where o € E(™. Using (2.1) and (2.2), we have the following

equalities:

Z E #‘I[B]: Z Z (pu'-"eﬁ'v)s

u,v€V e€Fy. u,v€V eCFE .,

= Zf’i Z Z (rego)’

wglV vEV ecEyuy

= Z(pu%a)s

I =1"4
= 1.

Since [@] = Ueeg, [e€], where a € Eq(,fj), we have

prgr (Ueen, [ael) = 37 3 pingqlae]

v EV eCE

= Z E (p'urrxreqw)s

vEV eEE



= (pn?"(x)s Z Z (Ter’)s

vEV e€E, v

= (pura QU)’

= pin(lo]).
Using Kolmogorov’s Existence Theorem, there exists a unique probability measure
p* on E®) such that p*([e]) = ;;Tal([a]) for all @ € E*. Using (2.1) again, we get

pner (Uerev Ueer,, [ea]) = Z Z 1% ([ea])

vEVe€E r,

=2, D (boreragya)’

veEVeeE

= Z Z (Porre)” | (Pae(m)’

veVeel s,

= (Pi(a)Talt(a))’
= pin{[a])-

This tells us that the left-shift map T': B — E(@) by T((81 €3 ... )) = (ezez...)
18 @*-measure preserving. |

Now we will show that * is ergodic. Let A be a Borel set in E(“) with p*(4) > 0,
there exists u € V such that p*(A,) > 0 where 4, = AN E&w). Since the nested
family of sets {{a] : a € E*} generates the Borel o-algebra on E:&u), for every n > 0
and every « € U,,.GVE,(,.E), we can find a subfamily B of E¥ consisting of mutually
incomparable finite strings and such that A, C {[8]: 8 € B} and 3, p p*([af]) =
p*(U{[af]: B € B}) < Ap*(aAy), wherc ad, = {aw: w € Ay}, and A > 1. Then

ut (T7(A) 1 [a]) = p*(ad)

> = 3 i (laf)

pepB

1 o
=3 D Pita)Tar5%is)
fAeB
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1 L3 y
= 1 Pie)a Y rhae
pfepb

1 g Q?[a) p:(ﬂ) § 8
3 Pile Ta s g rad,
A (e) Imax % Pmax AE)

v

= <amtepnieis([0]) 3 W)

BeB
Smtepmant* (D" (U (6] : 8 € BY)

S (o (Au),

AY4

Y]

— a8 —3
Where’ a = Qma‘xpmax‘

Therefore, we have

(T EP\A) N al) = 1 ([0 (T"(A44) N [a])
= i (fol) — 4 (T~"(44) 1 [a])
1 * *
< (1= Tap*(40)*([a)).
Hence, for every Borel set A C E®) with u*(A) < 1, for every n > 0 and for every
a € EM we get
W (T7A) N [a]) = (T ™(A.) O [a]), where # = t{a)
1 * W *
< (1-sap (EyN\ALD) e ([a)). (2.4)
In order to complete the proof of ergodicity of T, suppose that T714 = 4
and 0 < p*(A) < 1, this implies 0 < p*(44) < #*(ng)) for each v € V. Let
d(4) = min{u"(ES”\A,) : v € V), then 0 < d(4) < 1. We can set 7 = 1— Lad(A).
Note that 0 < ~ < 1. In view of (2.4), for every a € E*, we get

pr(Aniel) = p*(T7"(4) n[a]) < vi’([a]).

Now, take # > 1 such that yn < 1, and choose a subfamily R of E* consisting

of mutually incomparable finite strings and such that A C U{la] : & € R} and
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w*(Ulla] : @ € B)) < 7u*(A). Then w*(4) = Socp i (Anlal) < e p st (la]) =
yur({[e] : « € R}) < ynu*(A). This contradiction completes the proof of ergodicity
of T

Now let’s look at the measure u* on the subspace EY for each u € V.

Since

pHEEY =3T3 pr(le)

vEV e€E,.;

= Z Z (PuTegn)’

vEV e€E,,

= Pu Z Z (regu)’

vEV e€E,,
= Pif};a
we have p*(EL”) = pigi, and p*(E®) = ¥, w*(B”) = Loy pigs = 1 by
(23)
By using the projection map = : EW 5 X = UyevX,, we get a pull down

measure u* o m~! on X such that if A C X
prorH(A) = ¥ (x7H(A)). (2.5)

Since G satisfies the OSC, it follows that the pull down measure p*or~! is, up to a
constant, the same as the restricted Hausdorff measure H* K. This can be verified

by a similar argument by Mauldin and Williams [MW1] (cf. also [Edg| p 172). O

Remark. In Proposition 2.2.1, if we do not assume G satisfying the OSC, we can

still get

HK <« pfom !,

by a similar argument as in [Edg].
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Proposition 2.2.2. Let GG be a strongly connected MW-graph and K = Uyev K,
be the graph directed self-similar object of G, if H*(K) > 0, then

HE(So(Kp) N S (Ky)) =0

foralle € Eyy, € € Eyy withe # €.

Proof of Proposition 2.2.2. We will prove the proposition by contradiction.
Let D = S.(K,) N Se(Ky), suppose H*(D) > 0, then p*(z~1(D)) > 0 since
He|K <« p*oml.
Let B, = {0 € B . o(1) = e, #{o) € D}, then p*(B,) > 0 for at least one e € E
say e;. Clearly
BN\ B,,) = Ku, (2.6)

since if z € D, then « has at least two preimages o, o' such that o(1) # ¢'(1). We
can choose one, say &, such that #{1) # e;, then ¢ € EY) \ B,; and ={0) = .
Clearly p*(ES \ Be;) < play = p*(BL).

Let Fy = {0 € EW . g = (ereg - - - } with infinitely many e; such that t(e;} = u}.
Claim: p*(Fy) =1

Proof of Clavm:

Let FO = {c € B 0 =(e1e2--) tle;) #u for all j}, and let e € E such that
t(e) = u, then [¢] N F{ = 0. Hence p*(F)) < 1.

Since

THE“\F)yc E“\ F},

ergodicity of T implies u*(F?) = 0.
Since

EWN\ Fy = UnzoT7(F),

we obtain p*(E“ \ F,) =0 i.e. u*F, = 1.
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Let By = {[o] : « € EL,}. Clearly B, induces the same o-algebra on E¥ nF,
as {[a] : « € E}} does. Since ( () \ B;;) N F, is open in EY) N F,, there exist

pairwise disjoint cylinder scts {ax] € By such that (Ei(,w) \Be‘.) NF, = Ug[ak]. Hence
p(EW\ B) = ((BS\ Be) 0 F)
=Y p*([ax])
k
=Y purt, g
k
= Pugs D The

k
< Pudu-
The last inequality is because ;,L*(E&w) \ B,) < u*ng) = piq;. So there is some
0 < A< 1suchthat ) .5, =A<l
Let K! = n((E\”)\ B,,)N F,). Then H*(K, \ K.) = 0 by (2.6) and the Claim.
Since (ES)\ B, ) N\ Fy = Ug[a), we can cover K7, by the sets So, (K, ), k=1,2,...

and also by the smaller sets Sa;, ax,,..,ar,, Where k1, ks,... kn € {1,2,...} for

m

each m. Hence, H*(K}) = 0 follows from

D [San o K= D0 T e, K

kl:k2s“'1km kl!k2|---:k7n
_ MEERY)

— () as m — oo.

Consequently, we have H*(K,) = 0. This contradicts H*(K,) > 0. O

Recall in Chapter 1, for a self-similar set K w.r.t. similarity maps S = (51,52,
there exists a unique self-similar measure p w.r.t. (S, (r;)) such that

1
= *| K.
= Sy L

Here we extent this result to graph directed self-similar constructions.

b S‘ﬂ,)j
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Definition 2.2.1. A MW-graph with probabilities is a list

S= ((V, E)} (Xu)uEVa (SE)EEEa ('T'e)r:EVa (Pe)eEE)

where

(1) € = (V.B), (Xu)uev: (Sodeck: (re)ecr) is a MW graph,
(2) EeGEu pe=1foreachu eV and 0 <p, <1,

Definition 2.2.2. A graph directed self-similar measure list (ft,)uey associated
with a MW-graph G with probabilities is a list of Borel probability measures (fiy Juev

on ( Xy )yev, which satisfies, for each u € V

Hau = Z Pelti(e) © Sc_l- (2.7)

e€E,

In order to investigate the existence and uniqueness of such a measure list, we
need the following definitions and notations.

We define M(X,) to be the set of probability measures on X,, and M(X) =
[I.cv M(X.) to be the product space of M(X,).

Let C(Xy.) = {f: Xu — R : fis continuous} equipped with the oco-norm.
Recall that X, is a compact metric space for each u € V, so f is continuous implies

that f is uniformly continuous.

For p € M(X,), f € C(Xy), we define:

u(f) = ]fd#-

Using the Riesz Representation Theorem, M(X,) can be identified with a convex
subset of the unit ball in C(X,)*. This allows us to get a topology on M(X, ) from

the weak* topology on C{X,)*.
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Definition 2.2.3. The weak topology on M(X,,) is the smallest topology making
each of the maps: p — [, fdu (f € C(X.)) continmous.

Remark. M(X,) is compact and metrizable in the weak topology [Wal. Theorem
6.5]. In fact, a compatible metric is given by [Wal]. However, for our purpose, a

new compatible metric has to be defined.

Definition 2.2.4. For each pair y,v € M(X,), let

L, (e, u)=sup{‘/fdp—/fdv‘: feC(X,) and Lipfgl}.

It is clear that L, is a metric on M(X,). Moreover, the L, metric topology and

the weak topology coincide on M(X),), as indicated in Lemma 2.2.3.
Lemma 2.2.3. The L, metric topology and the weak topology coincide on M(X,,).

Proof of Lemma 2.2.3.

(1) {pn} converging to z in L, metric topology implies {u,} converging to g in
weak topology, because the set of Lipschitz functions on X, is dense in C(X,,).
(ii) Let {gtn} converges to  in the weak topology, then Theorem 6.8 in [Par] implies

that

i sup | [ fdpn = [ fdu) =0
N0 e 4

for every family A C C(X,) which is equicontinuous at all the points z € X, and
uniformiy bounded.

Pick any zy € X, since the set
Ao={feC(Xy): f(z0) =0 and Lipf <1}
1s equicontinuous at all the points of X, and uniformly bounded, so we have

lim sup | | fdin wffd;L[ =0.

RTEOO fed,
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Now using the fact that, for any f € C(X,) with Lip f <1,

[ s = [ san= [t = sz~ [ (5 = siao)in
we have g, — u in L, metric topology. O

Hence the compactness of M(X,) in the weak topology implies that L, is also

complete.

Definition 2.2.5. For (fy)uev, (Vu)uev € M(X) = [[,ev M(X4), let

L{(pn)uev, (Vu)ueV) = 525 Lu(#u: V).

It is clear that L is a metric on M(X) and induces the product topology of the
weak topologies, by Lemma 2.2.3. Therefore the compactness of M{X) allows us

to use the Banach Contraction Mapping Principle.

Definition 2.2.6. Let ¥ : M(X) — M(X) be the map, defined by:

U((pu)uey) = ( Y petaey © 53_]) :
nev

e€l,

Remark. Comparing Definitions 2.2.6 and 2.2.2, we conclude: a graph directed
self-similar measure list (1, }uev 15 a fixed point of ¥. Thercfore, we can also call a

graph directed self-similar measure list an invariant measure list.

Proposition 2.2.3. Let

S = ((VaE)} (Xu)u.EV: (Sﬂ)ﬁeEa (T3)6€V3 (.-OC)EGE)

be a MW-graph with probabilities. Then we have the following:

(i) ¥ : M(X) —» M(X) is a contraction map in the L metric.
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(ii) There exists a unique {fty Jucy € M(X), such that
V((pu)uev) = (tu)uey  he plu = Z Pefhi(e) © S foreachu € V.
e€E,

Moreover, if (v, uey € M(X), then {T*({(va)ucv)}x converges to {pu)ucv

in the L metric, and therefore in the product topology of weak topologies.

Proof of Proposition 2.2.9. Assertion (ii) follows immediately from (i) since (M(X), L)
is a complete metric space.
To establish (1), suppose f € C(X,) with Lip f <1 and let r = maxeepre < 1.

Then for (pty)uecv, (Vu)uev € M(X), and for each u € V,

N ety 0 STHE) = D peviiey 0 SH(S) |

eCH, eCE,
=1 > pelpege) 0 ST (F) — vy 0 S7(H)) ‘
ecFE,

> ( [ £ o Suduey — f fosedvt(e)) l

eEl,
/T_lf o Sed#t(e) . ]’T'ulf 0 Sedl/t(e)

<3 o
< Z perLt(e)(:u’t(e)avt(e))

e€E,
eckE,

< TL((fﬁu)uGV: (Vﬂ)ﬁev)'

The last two inequalities follow from Lip(r ' fo§.) <v71- 1.7 <1, 3, cp. pe =1
and the definition of L.

Hence

L(Q}((ﬂu)ue‘l’)s @((VH)HEV)) < 7"["((#%)&61/: (Vu)uGV) O

Remark. The graph G in Proposition 2.2.3 is not required to be strongly con-

nected.
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Corollary of Proposition 2.2.3. Let G be a strongly connected MW-graph aund
Pe = Qi oy Telt(e) where (qy Juev is the same as in (2.2). Then there exists a unique
graph directed invariant measure list ({14 Juev such that for eachu €'V,
Ba= D 43 Tig ey bue) © St
eCE,
Proaf of the Corollary. In order to apply Proposition 2.2.3, We only need to check

that

Z Gy 'Tediey =1 foreachueV.
eck,

However, this follows immediately from (2.2) O
The following proposition tells us the relation between the invariant measure list

(ttx )uecv and the restricted Hausdorff measure list (H? | Ky )uev.

Proposition 2.2.4. Let G be a strongly connected MW-graph, (ptu)uwev be the
self-similar measure list associated with p. = ¢;;\reqy,) and H*(K') > 0. Then for
each u € V, we have

pw = (H () H (K.

Proof of Proposition 2.2.4. By uniqueness of the graph directed self-similar measure
list (4 )uev; we only need to show that the measure list (H*(Ku))"'H? [I(ﬂ)uev
is also a graph directed self-similar measure list associated with p. = qi"(:) Tedi(e):
We will need the following two equalities.

H(Ku) = H (Urep, Se(Kue)) = Y, Y reH(Ky), (2.8)

veV e€lt,.,

HES(K,) =3 (H° | Ky) 0 S (2.9)

The first equality follows from Proposition 2.2.2; the second equality can be shown

as follows:

HUSA K )E) = H (S (K,) N E)
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= H* (S.((K.,)n S;N(E)))
=riH*(K, N S;Y(E))

=7 (H*|K,) o STHE).

We divide the proof of Proposition 2.2.4 into two claims.
Claim . There is a constant A > 0 such that H*(K,) = Aqy foreach u € V.
Proof of Claim 1. By (2.8), we have

30 rHU(KL) = H (K.

vEV e€E .
Therefore, the vector (H*(K,))xev is a right eigenvector of the matrix

A=( ) rDupev
e€l,,

with eigenvalue 1. Since A is irreducible with spectral radius 1, and the vector

(g3 )uev is also aright eigenvector with eigenvalue 1, by (2.2). The Perron-Frobenius

Theorem implies that there is a constant A > 0 such that
H(Ky)=MNg, foreach uweV.

Hence (H*(K,)) VH* | Ky = A ¢, *H* | K

Claim 2. ((H*(Ky))"'H* LI{“)HEV is an invariant measure list associated with p. =

qi(e) 2 d5(e)- Lhat is

(HYE)) M (K =Y ) g regs(H°(Ky) T He | KL) ST (2.10)

vEV e€E,,

Proof of Claim 2.

The right hand side of (2.10) = Z Z g T gyt (HPK,) 0 S

VEV e€ Ko
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= Z Z q;Sr:)\_l ('Hs LKU) o Sc_l

vEV e€ By,

=270 ) Y HSH(K)

vEV e€EE,,
-1 — -
= A" q, "H | K,

= the left hand side of (2.10),

where the third equality follows from (2.9) and the fourth equality follows from
Proposition 2.2.2 and (2.8), using the fact that K, = Uccg, Se(K¢(.)). This com-
pletes the proof of Claim 2.

Hence by uniqueness of the invariant measure list, we get gy, = (H*(Ky)) ™ H* | Ky

forcachuw e V. O

Proposition 2.2.5. Let G be a strongly connected MW-graph and H*(K) > 0,

then the graph directed self-similar measure list (fty)ucv associated with pe =

qt(:]r:qf{e) has the following properties:

(i) Fore € Eyy, € € Eyyr, with e # e,
puf{S{K,) N Se( Ky )) = 0. (2.11)
(i) For e € E,, we have

pa(Se(A)) = 02 re @iy a(e) (A)- (2.12)

Proof of Proposition 2.2.5.
(1) Follows from Propositions 2.2.2 and 2.2.4.
To prove (ii), we first consider A = K. Since for e € E.,,

pu(Se(Ko) = D @ 1o gy tiaen © S (Se(K)) = 442 g5
e'€E,



27

therefore K, = Ucc g, Se(Ky(e)) together with (2.11) implies that
= ,uu(ffu) = Z ,U«n(se(Kt(c) Z 9y Srsq; =
e€E, e€E,

Hence
1u(Se(Kv)) = 44 e iy
Now for any A C K,, € € Ey,, since
tu{Se(4)) = Z 00 T @ (e © Sa (Se(4)) 2 43 riqyyo(4),  (2.13)
eleln,

and

47" T8 q5 e = Pl Se(Ko)) = pu(Se(A)) + pu(Se (Ko \ A))
> 4y Tediey o A) F 60 rigi e by (K \ A)

= qgsr:q‘:{e}a
where the inequality follows from (2.13), we obtain . (Se(A)) = ¢5 ' regy oyho(A). O

Theorem 2.2.6. Let G be a strongly connected MW-graph, then the following

conditions arc equivalent,

(i) The OSC
(it) The SOSC
(iit) H*(K) > 0.

Proof of Theorem 2.2.6. 1t is clear that: the SOSC = the OSC = H*(K) > 0.
Therefore, we need only to prove that H*(K) > 0 implies the SOSC. We will divide
the proof into four steps.

Recall that dy denotes the Hausdorff metric defined on the collection of all

nonempty compact subsets of R4 We will denote by dist the Euclidean metric on
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R? and N(E,¢€) the set of points y such that dist(y,E) < ¢, t.e. N(E,¢) is the ¢
Euclidean neighborhood of E.

Step 1. Let 2 > 0, we will show that there exists §, > 0 for each « € V such that
for all o, 8 € £, with

rg > TTy, (2-14)

we have

dH(Sc,(.Kﬂ), S}@(I{U)) > 0pTa.

Proof. For each u € V., choose open sets Uy, Uy, ... ,U::(u) of X, such that K, C
Uy := U;UF and 3, po (UF) < (14 2°)po (Ko ), where (pn)uev is the same as in
Proposition 2.2.5. Let 8, = dist(KU,EU,,), suppose dp(So(K,), S(Ky)) < byra,

since

dist(Sa(K,), 0Sa(U,)) = dist(Sa(Ks), Sa(CUL))
= rodist(K,,0U,)

= raév:

so Sg(Ky) C So(Uy). This implies

—8.8 8,8

0 Tadn(14+2°) = ¢, roqy + 470 gp®
<4, 'roty + 4. a9y by (2.14)
= pu(Sa(Ko)) + jtu(Sa(Ky)) by Proposition 2.2.5 (ii)
= pu{Sa{Ky) U Sa(Ky)) by Proposition 2.2.5 (i)

<Y bu(Sa(UF)) since  So(Ky) U Ss(Ky) C UiSa(UY)

= qrianU)
H

< g ra gy (1 + 27 )uo (Ky)
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=gy Tat(1+2°)

This is a contradiction, since g7 7% q3(1 + 2°) £ ¢ °roqs(1 + z°).

Step 2. Given 0 < d <1, we set
Ij={a€Ej:ira<d< rﬂ‘lﬁflﬁ} for all w € V|

IV ={a€ B}, :ra <d< Ta||a|—1} for all u,v,€ V.

Clearly I} = UyevI}®, and K, = UQE;;J(Q.. Recall K, = So(fj(ay) Let 0 < e <
5 fix u € Vand £ € Ej. Let G¢ = N(K¢, ere) be the erg Euclidean neighborhood
of K¢ = S{:(f\'rt(e)). Set

") ={a el KNG # 0},

I€) ={ac I}, : Ka NG £ 0}.

Clearly I*(£) = Uvev I**(£).

Claim 2. 7u = supgep; (#I(€)} < oo.

Proof of Clasm 2. Clearly it is enough to show vy = supgeps {#I1"*({)} < oo for
each v € V. Let z € K, denote B, = B(z, 3|Ky|) the closed ball center at 2 with

the Euclidean radius 3|K,|. Fix £ € B}, denote d = r¢. For a, 7 € I**(£), we have

ro <d<r

x

= TaTmin < drmina

ol -1

rg <d<r =  drpm < rg.

8lis1-1
S0 roTmin < rg. Now we can apply Step 1 for 2 = rnia to get §, and
da(So(Ky), Sp(Ky)) > byra 2 64drmin = duTminTse,

for arbitrary «, 8 € I**(£). Hence for each pair of «, 3 € I**(£), the preimages of

So(K,) and Sg(K,) under S¢ are compact subsets of B, and

du (S (SalKe)), Sgt (Sp(K0))) 2 Surmin-
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From the Blaschke Selection Theorem and the total boundedness of the compact
set, we known that there is a bound + on the possible cardinality of a collection of
closed subsets of B, which are at least §,rnia apart in the Hausdorff metric. So

Yuv = SUpP {#IW(O} <y <o
(EES

Step 3. For each u € V, choose £* € E} such that #I1*(£%) = ~,.

Claim 8. For each v € V and o« € E* . we have

uu?

I"(a€®) = {af : f € I"(E")}.

Proof of Claim 3.

(1) “2”. Let af € RHS, then rg <ree <7 and Kz N Gee # 0.

8l181-1

Hence § # So{Kg N Geo) = Kug N Gogn, and rag < rgee < Tﬂﬁlhﬁi—l'
Thus a3 € I"(«f").

(2) “C 7. Since #I"(af") < #I*(£*), therefore I*(at®) C {aB: f € I*(€*)}.

Step 4. For each u € V, define Wy, = Upe & , where G = N(K,, %e‘rg).

gt ()
Claim 4. The open set list (W), },ev satisfies the SOSC.

Proof of Clawm 4.

i. Since Kgu C GY C Wy, 80 Ky NW, # 0, foreachu e V.

ii. ¥or each e € E,,,
Se(Wu) - Se(UaEE: G;$t(a]) - UQGE; G:aet(o) C I’Vv
iii. For each € € By, €' € B,y with e # ¢/,

Se(Wn.) N Se‘(Wu’) = @
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Since if not, there exist a € EY, 5 € E*,, such that
:agf-(a) 0 G:fﬁgt(ﬁ) #0, and Toagtla) 2 Terget(a)

If y is an element of this intersection, there exist 4, € Kopgetar; and yo € Koigees)

such that

: 1
dist(y, 1) < 3T eagr)

) 1
dist(y,y2) < 5 €Terpe),
so dist(yy, y2) < dist{yy,y) + dist(y, y2) < €T qet(a), hence
e'BEU ¢ I’(eat' @),

If v = t(a), Step 3 implies that e'3¢*%) = eao for some o € I*(£Y). We get
contradiction, since e # ¢'. If v # #{a), we can find w € FEy(a)e, since the directed
graph G is strongly connected. Clearly, we have we’ 8¢ ¢ T4 (weat¥®)), Step
3 implies we'BEHP) = weao, for some o € TH™)(£4®)). This is a contradiction as

well. O

2.3 A COUNTER EXAMPLE FOR A GENERAL MW-GRAPH G

In this section we give an example of a MW-gragh G which satisfies the OSC but
not the SOSC.

Let G = ((V, E), (Xu)ueE, (Se)ecr, (Te)eer) be the MW-graph, where V = {
A,B,C,D,F} and E = {AB,BA,AA BB,CD,DC,CC,DD,FA,FB,FC,FD}
(see Figure 2.1).



32

The compact metric spaces are defined as follows (see Figure 2.2): for a fixed

0<e<s,

Xp =

(0,51 %1-

2 1
XB = g,l] X [—E, g],
2 2
XD - [gal] X [:-3':1+5]:

JU (Baxe3.3)-

For each u € V, X, is equipped with Euclidean metric. We denote by Bx, (z,8)

the open ball in X, with center at z and radius 4.

The similarity maps are defined as follows:

SAB
Saa
SBa
Spr

Scp

Xy — Xa
Xa4— X4
X4 — Xp
Xp— Xp
:Xp — Xc
X = X
Xe— Xp
Xp—=Xp

:XA-—>XF

:Xg —= XF

:Xc —)XF‘

:XD ——-rXF

(5,9)  3.9)
(,y) — %(rﬂ,y)a

(@.9) = 329 + (5,0)
(2,9) = 3(5,9) + (5,0),

(;E, y) - zl);(y?y) + ([}1 %):

2

(r::,y) - %(a:,y) + (Ua g)i

(@9) = 3@0) + G 3,

2 2
),

(e) = 5@ + G

3
(‘an) - (xsy)v
(w,y) - (Ji,y)}
(z,y) — (z,y) +(0,-1),

(z,y) — (z,y) + (0,~1).
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FIGURE 2.1 GRAPH OF THE EXAMPLE
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FIGURE 2.2 STRUCTURE OF THE FRACTAL

Note that the last four maps are not contractions, however, by using rescaling
(see [Edg] p.116), we can make the maps become contractions. Moreover, G 1s not

strongly connected. If welet K = C x {0} where C is the standard Cantor set, then



the limit sets (K, )uey are:

o1
Ka=3K,

1
Ko = K +(0,),

Krp=K.
Note that:
Sra(Ka) = Src(Ke),

Theorem.

(i} G satisfies the OSC.
(ii) G does not satisfy the SOSC.

Proof.

d4

1 2
Kp=-K+(=,0
B 3 +(3? )J
1 2
Kp = §K+ ('3_:1):

Sre(Kp) = Srp(Kbp).

{1) Choose the list of open sets (Ua,Up,Uc,Up,Ur) as follows:

2 1
T - —
Us (3,1)X(0,3),
2 2
UD (g:l)x(gal):

Up = Spa(Ua)U Spp(U)U Src(Uc)U Srp(Up).

It is easily seen that the list (Ua,Up,Uq, Up,Uy) satisfies the OSC.

(ii) We prove the assertion by contradiction. Suppose the list (O4,0p5,0¢,0p,0F)

satisfies the SOSC. Let z € O4 N K4, then

Sra(z) € Spa(Ka) = Src{Kc) € Src(Oo).

On the other hand, the SOSC

(2.15)
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Since z € Oy, there exists 0 < & < ¢, such that Bx,(z,6) C O4. Hence, using the

fact that the map Sr4 is the identity map, we have

Bx(Sra(2),8) = Sra(Bx,(2,6)) C Sra(0a4).

Also, since Spa(z) € Spc(ﬁc) by (2.15), there exists a sequence {z,} C O¢, such
that

Src(zn) — Sra(z) as n — .

Hence, for n big enough, we have Spc(z,) € Bx,(Sra(2),¢). This implies
Src(Oc) N Spa(Oa) # 0.

In view of (2.16), we get a contradiction. O



CHAPTER III

THE HAUSDORFF MEASURES OF
SOME RATIO SELF-SIMILAR SETS WITH OVERLAPS

For self-similar sets and strongly connected graph directed self-similar sets, we
know that the OSC is equivalent to the Hausdorff measure being positive on the limit
set (ef. [Sch] and Chapter 2). This means if the limit set has positive Hausdorff
measure, then the pieces {Sq(l’ft(a})}uedﬂ) which make up the limit set cannot
overlap too much. However, what will happen if we allow some overlaps? Certainly
the nonempty compact limit set exists even if the OSC is not satisfied (cf. [Hu]
and [Mo]). It is reasonable to assume that the dimension of this limit set might be
smaller than otherwise would be expected, since the Hausdorff measure would be
zero if the OSC is not satisfied. Falconer[Fa3] studicd the Hausdorff dimension of
some self-similar sets with overlaps. He proved that even if the OSC does not hold
for any set U, the Hausdorff dimension of the limit set is “usually” the same as its
similarity dimension (cf. Theorem 1 of [Fa3]).

There is another interesting question: are there any fractal sets defined by over-
lapping constructions, having positive Hausdorff measure w.r.t. its Hausdorff di-
rmaension? From Schief’s result and our result in Chapter 2, we conclude that if
there is such a fractal set with overlaps, it can not be a self-similar set or strongly
connected graph directed self-similar set. Nevertheless, we will give an example of
a fractal set in this chapter, defined by an overlapping construction and yet having
positive and finite Hausdorff measure w.r.t. its Hausdorff dimension. The exam-

ple is based on a ratio self-similar construction. In Section 3.1, we will introduce

36
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the notion of a ratio self-similar construction; and prove the main theorem and
give an example of overlapping construction having positive and finite Hausdorff

dimension 1n Section 3.2.

3.1 A RATIO SELF-SIMILAR CONSTRUCTION

In this section we give the definition of a ratio self-similar construction and its
properties.

Let J # @ be a compact subset of R with J = intJ, andlet 0 < r; < 1,7 €
I={1,2,---n} where n > 1. A ratio self-similar construction based on a seed set

J and a set of similarity ratios § = {r; : ¢ € I} is a family,

T = (J(@)) yepe

where D* = UL T¥ I* = {1,2,...,n}* and I° = 0, such that
(1) J(0)=1J
(2) For each a € D* and i € {1,2,...,n}, the set J(wi) is a subset of J{a)
(3) For each a € D* and @ € {1,2,...,n}, the set J(az) is similar to J(a) with
|7 (ai)|/1J(a}] = 7.

The ratio self-similar set F constructed by J is

F= | 7«

k=0 |a|=k

Remark. The term “ratio self-similar set” is introduced by Moran [Mo]. However
the definition here is a little bit different from his, since we don’t require { J{«i)},
to be non-overlapping. Also note that the self-similar set is a particular type of a
ratio self-similar set, in which the similarity maps are specified and are the same at

each level.



Let D = {1,2,...,n}Y, and define r: D — F by
{r(w)} = ﬂ J(wl|x) where w|x = (wi,wsq,...,wr) € D*.
k=1

Since 0 < r; < 1, 7 maps D continuously onto F. Moreover, if the sets {J(a) :

|&| = k} are disjoint for each k, then 7 is a homeomorphism [Mo].

Definition 3.1.1. The similarity dimension s of a ratio self-similar construction is

the unique number which satisfics

Y org=1. (3.1)

The equation (3.1) is called the redistribution of mass equation. Let ji be the
infinite product measure on D determined by the probability vector: {r{,r$,--- ,r5).

i.e., the measure of a cylinder set is given by
i{la]) = 7% (recall that 7y, = ra,ra, "'T0’|0|)'

In view of (3.1}, there is an unique probability measure & defined on the Borel

o-algebra in D which extends /.

Definition 3.1.2. Let u be the image measure of i under =, i.e.

k(4) = i(x ' (4)).

Then p is a probability measure and u(F) = 1. i is the restriction of mass measure

on F.

For a ratio self-similar set F, we are interested in its Hausdorff dimension and

Hausdorff measure.
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Remark. If for each « € D*, the sets {J(or)}?, are non-overlapping subsets of
J(a), then we have 0 < H*(F) < oo, where the s 1s the similarity dimension. Hence
dimg(F) = s [Mo]. If {J(a2)}?, overlap too much, the Hausdorff dimension may
be less than the similarity dimension (cf. [Ban]).

In the next section, we will give a condition on the amount of overlap guaranteeing
that the Hausdorff dimension of F' equals the similarity dimension. Furthermore,

the Hausdorft measure of F' is positive and finite w.r.t. the similarity dimension.

We will use the following properties.

Mass Distribution Principle. Let g be a mass distribution on F, and suppose
that for some s there arc numbers ¢ > 0 and 6 > 0 such that
wU) < U
for all Borel sets U with U] < §. Then H*(F) > u(F)/ec.
Remark. Our version of the Mass Distribution Principle differs from (Fal, The-

orem 4.2], since we require the sets U to be Borel sets. However, the result still

holds, since Hausdorff measure can be computed by using open covers (cf. [Ro]).
Definition 3.1.3. Let U be a subset of RY. We define C(U) as follows

€)= {a e D" : (@) < U] < Wala-)l UNF £0}.  (32)
Clearly if a,3 € C(U), then a A 8 and 8 £ «.

We denote by £ the Lebesgue measure in RY and B(0,1) the unit ball in R¢.

For any set U, the Isodiametric Inequality (cf. [EG] p 69 ) implies that

d
LYY < (’—{;L) £4(B(0,1)). (3.3)

Also, since J(«) is similar to .J,

" _ (@I ap
L (mt(J(a)))-( 7] ) L4 (int(.1)). (3.4)
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3.2 THE THEOREM AND AN EXAMPLE

In this section, we will first state the main theorem and give an example. Finally

we will provide the proof.

Theorem 3.2.1. Let F be a ratio self-similar set based on a seed set J and a set
of similarity ratios § = {r;: : € I ={1,2,--- ,n}}. Choose 0 < r < ryi., where

Tmin = min{ri,r2,...,"a}, and [ > 0 such that
1LNB(0,1)) < L4 nt(J)). (8.5)

Suppose that

(1) There is a constant K such that for any « € I* with k > K,

| int(J(ad)[ ) J(af)) [S WFTHT| for i (3.6)

(i) If o, € I*¥ and a # o' then
int (J(ai)ﬂJ(a’j)) —0 for i,j€{1,2,...,n). (3.7)

Then we have 0 < H*(F) < P¥(F) < oo where s is the similarity dimension of F,

and consequently dimpy(F'} = dimp(F) = s.

Remark 1. The conditions (i) and (ii) are the so called controlled overlapping

conditions (see Figure 3.1).

Remark 2. Since our construction is a ratio self-similar construction, unlike self-

similar sets, the set F' can not in general he constructed as a limit set of an iterated

function system. At each level k, we usually choose similarity maps Sﬁk), Sék), S

according to the fixed ratio list ry,r9,...,r, and conditions (i) and (ii). Therefore
it 1s not appropriate to discuss the OSC. However, from our definition, it is clear

that the construction allows certain degree of overlapping.



41

21

12

11

FiGURE 3.1 RAaTiO CONSTRUCTION WITH CONTROLLED OVERLAPS.

Example. Let J = [0, 1] be the unit interval in R!, and r; = 7y = 1/3 be the ratio
list. Let [ = 1/2, then ILY(B(0,1)) = L£1(J). Let r = 1/4, then r < rpi, = 1/3. We
will define a binary ratio self-similar construction by the following recursion (sce

Figure 3.2).

)
J(1) | 1(2)
J(11) 5(12) J(21) J(22)

FIGURE 3.2 A BINARY RATIO SELF-SIMILAR CONSTRUCTION.
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1. The start of the induction:
Put J(0) = J, J(1) = [0,1/3], and J(2) = [1/3 — 1/2(1/4)", 2/3 — 1/2(1/4)'];
2. The inductive step:

If « € D* and J(«) = [a, b] has been constructed, then define J{oz) as follows,

a) if af|a|) = 1, then

J(al)=1a, a+ %(b—a)]

J(a2) = [g+%(5_a)~_l L jal+1 2 L

b) if afla|) = 2 then

1

1 1.1
ylel+t oy 2oy —(=)lel+1

2 1
J{al) = [b— —g(b—a)+ 5(4

J(a2) = [b— %(b —a), b.

This construction satisfies

(1) 17 = (3 = ralJ]
(2) (1) N J(@2)] = §(D)leH = ek

In order to show the construction also satisfies the condition (ii) in the Theorem

3.2.1 (see the Figure 3.3), we only need to verify that
(J(al1) U T(a12))[)(J(e21) U J(a22)) = 0.
Since

| J(al1) U J(al2) | + | J(@21) U J(a22) |

1 ; 1.1 1 1.1,
— (hlel+2 _ o 2ylal+2 LTS A Sl -1 2
1 1
— of ylal+2 _ Zhlal+2
2(3) (2
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a) afla)=1
Ja)
J{a1) J(a2)
H(ea11) Ho12) i(a21)3(a22)
b) aflal)=2
3a)
Ia1) I(o2)
Hall) J(a12) ¥a21) H(a22)

FIGURE 3.3 THE RECURSIVE CONSTRUCTION PROCESS.

and
N T T S NN E P N FE s AP ae
IJ(al)U-f(a2)|—(3) ik 2(4) i —3(3) + 2(4) 2
then
|J(al) U J(a2)] > [J(all) U J(al2)| + |J{a21) U J(a22)|.
Hence

(J(a11)U J(a12))[ ) (J{a21) U J(a22)) = 6.

Since the construction satisfies all the conditions in Theorem 3.2.1, the ratio self-
similar set F' = UFZ g Njqj=¢ J(2) has the following property

log2
0 < H(F)<PHF)< oo, where s= og3 is the similarity dimension

and dimy(F) = dimp(F) = :%E%.

To prove the theorem, we need the following lemmas.

Lemma 3.2.2. There is a positive integer N such that if k > N and a € I*, then
d

rlad 1
(“?::) < 2(n ~ D)(3|J))4 (3.8)




44

Proof of Lemma $.2.2. Since 0 < r < rpiy, for any o € I¥, we have

rk r* r \*
—<—-——=( ) —0 ask — oo.

Tmin

This implies

rk d
(—) — 0 ask — oc.
?ﬂ(l

Therefore we can choose N large enough so that (3.8) holds. O

Lemma 3.2.3. There exists a constant 0 < A < oo and é > 0 such that for any

set U with UNF #£0, if |U| <6 then #C(U) < A

Proof of Lemma 3.2.3. Let K, = max(K,N), where A is the same as in (3.6) and
N is the same as in Lemma 3.2.2. Let § = |J|min{r, : a € I%1}. Clearly § > 0.
Let U be a set with U N F # § and |U| < §. Note that this implies that for any
a € C(U}, we have |a| > Kj.
Let z ¢ U N F, and B = B(z,2|U|), we have

{J{a}): « € C(U)} C B.

This implies

LYBy> (ﬂ“(im('f(a)))m Y. ﬁd(int(.f(amJ(aham))))
)

aEC(U o o)

> Y ((Bfﬁl)dsd(intun 5 (%Jr'“'l«fl)“ﬂ“(ﬂ(ﬂ,l)))
)

aEC(U iadjal)
by (3.4) and (3.3)

>y (w'iﬁd(int(J))ﬂ(n-1)(%r|“|lJ|)d£d(intJ)> by (3.5)

eeC{l)}

= L%nt]) Y (rd—(n- 1)(%rfﬂ|l,]|)d)
acC(U)



plol
L (intJ) Z 41— (n— 1)(%|J|)d(q){£)

a€C(U)

1 d: d
> §L' (intJ) Z re, by (3.8)
«EC(U)

z%ﬁd(mtj) > (|U|1;,Ti“) by (3.2).

aeC(l)

Since L4 B) = L4 B(z,2|U|)) = (2|U])*L4(B(0,1)), we have

UL BO,1) 2 S () W)
224)£4(B(O, )]’

#U) S = e

a

Lemma 3.2.4. For any set U with U N F # §), we have

7 (UNF) | J{la]: aecU))}.

Proof of Lemma 3.2.4. Suppose ¢ € 7~ 1{(UN F), then n(c) =z € UN F. Since
|7(o|p)] — 0 as p — oc, there is a smallest positive integer £ such that |J{g|,)| <

IU|. Then « = ol € C(U) and ¢ € [a]. O

Proof of Theorem 8.2.1. By using the fact H*(F) < P*(F), see (1.3) in Chapter 1,
we only need to show 0 < H*(F') and P*(F) < co.

Claim 1. H*(F)>0

Proof of Claim 1. We will use the Mass Distribution Principle. Let A and 4 be
the same as in Lemma 3.2.3, and ¢ = lf;\t

For any Borel set U with |U} < &, the following holds,

D ifUNF =0, 5(U) =0, since p is supported on F'. Conscquently

u(U) < c|UJ". (3.9)
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2) f UNF #0, then
wU)=u(UNF) =iz (UNF))
Lemma 3.2.4 therefore implies that

wU)< D ifad).

w€C(1)
Sinece
. J{e)* _ U]
lal) = ro = S S
then
w(U) < #C(U) ||[:;||“ < ,\% = c|U]". (3.10)

Now (3.9), (3.10) and the Mass Distribution Principle yield

H(F) > ~u(F) > 0. O
Claim 2. P*(F) < .

Proof of Claim 2. Let z = 7(w) € F,w € D and 0 < é§ < |J|. Also let £ > 0 be the
smallest k such that J,, C B(x,¢), then

7 B(z,8) Dn Ty, D [wlk]-

This implies
w(B(z,6)) = pon ' (B(z,6)) = flwle] =75, (3.11)

By the minimality of k, we conclude that J,,_, is not contained in B(z,8).

Thus

8 < Jupeo ) = Pupyr 1] < =21 ],

min

wlp-1
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This implies

Fule > T“} s. (3.12)

Hence (3.11) and (3.12}) imply that

Therefore, by applying Theorem 1.1 (b) of [RT] or Theorem 6.11 of [Mat], we get
PF) < oc.

From above Claim 1 and Claim 2, we conclude

0 < HY(F) < P(F) < cc.

Consequently, we obtain dimy(F) = dimp(F) =s. [



CHAPTER IV

THE OPEN SET CONDITION FOR INFINITE
CONFORMAL ITERATED FUNCTION SYSTEMS

Finite iterated function systems, their limit sets and open set conditions (OSC)
have been carefully studied by many people in the past. Given a self-similar set &
generated by a finite number of contracting similarity maps § = (S1,-++ ,S,) on R?,
if 5 is the similarity dimension of & and g is the corresponding self-similar measure,
Schief [Sch], Lau and Wang [LW] proved that the following four conditions:

(i) OSC
(il) H*(K) >0
(ii1) SOSC
(iv) p(0U) =0 for certain set U satisfies the OSC,
are equivalent.

However, it is unknown whether these equivalencies still hold for a self-conformal
set J generated by countable families of conformal contractions. In this chapter,
we will show that for an iterated function system with an infinite set of generators
consisting of conformal maps, if m is the unique conformal measure, then the
SOSC is equivalent to m(9U) = 0 for certain set U satisfying the OSC; but whether
the OSC and SOSC are equivalent is still unknown. We will first introduce the
notions of infinite conformal iterated function systems (c.i.f.s.), self-conformal sets

and conformal measures. Then we will study the open set conditions (OSC) for the

self-conformal sets.

48
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4.1 DEFINITIONS AND NOTATIONS

The definitions and notations of conformal iterated function systems can be found
in [MU]. In general, our notation is as in that paper.

Let (X, p) be a nonempty compact metric space, and I be a countable set with
at least two elements. Alsolet S = {¢;: X — X .1 € I} be a collection of injective

contractions from X to X for which there exists 0 < A < 1 such that

p(di(z), ¢:(y)) < Aplz,y), (4.1)

for every ¢ € I and every pair of points z,y € X. Such a collection S is called an
iterated function system, frequently abbreviated as 1.1.s.

Let I = Uy I™, for w € I™ where n > 1, define

b = By © by 00 b,

Hw e I"UI®, and k > 1 does not exceed the length of w, we denote by w| the string
wywy ... wk. One can see that, given w € I*°, the compact sets ¢, (X), k> 1, are

decreasing and their diameters converge to zero. In fact, by (4.1), we have,
diam(g,,, (X)) < A* diam(X). (4.2)

This implies that the set

7w} =[] bulu(X) (4.3)
k=1

is a singleton. Therefore (4.3) defines a map 7 : I*° — X which, in view of (4.2), is
continuous.
Let o : I — I*° denote the left shift map on I°°, that is o(w) = wpws - . We

will frequently use the following obvious relation

lo m(w). (4.4)

Too(w)=¢



The main object of our study is the set J = 7(I°°), called the limit set associated
to the system S = {¢; : X = X, i € I}. Since for every i € I, we have ¢;(7(w)) =
7(iw), rewriting (4.4) in the form m{w) = ¢u, (7(o(w))), we obtain

J = ¢i(J). (4.5)

et
Note that if I is finite, then J is compact. If the system S ={¢; : X = X : ¢ € I}
is pointwise finite {meaning that each element of X belongs to a finite number of
elements of ¢;(X)), then the family {¢.(X) : w € I"™} is pointwise finite for every

n > 1, and therefore

7= ) U #ulx) (45)

n=1wel®
Thus J is a Fys subset of X.

An iterated function system S = {¢; : X — X : 1 € I}, is said to satisfy the
Open Set Condition (OSC), if there exists a nonempty open set U C X (in the
topology of X} such that ¢;(T) C U for every ¢ € I, and ¢;(U) N ¢;(U) = B for
every pair 1,7 € I, 1 # j. It satisfies the strong open set condition (SOSC) if in
addition JNT # §.

An iterated function system S satisfying OSC, is said to be conformal (ci.f.s.}) if

the following conditions are satisfied:

(1) X is a regular connected subset of an Euclidean space R?, that is Intge(X) =
X. We could and will assume that U = Intge(X).

(2) There exist «,! > 0 such that for every z € 8X C RY, there exists an
open cone Con(z,a,!) C Int(X) with vertex z, angle a (i.e. the Lebesgue
measure on the unit sphere $4°1), and altitude I.

(3) There exists an open connected set X C V' C R? such that all maps ¢;, 1 € I,

extend to C'T¢ diffeomorphisms on V, and are conformal on V.



(4) Bounded Distortion Property (BDP). There exists K > 1such that |¢{y)] <

K|¢' (x)| for every w € I* and every pair of points z,y € V.

Remark. A self-similar 1.f.5. is a special case of a c.i.f.s., where all the maps are

similarity maps.

Definition. The limit set J = w(I®), associated to a c.i.f.s.5, is called the self-

conformal set.

Definition. Given t > 0, a Borel probability measure m is said to be t-conformal

provided m{J) = 1, and for every Borel set A C X,

m($i(A)) = / |pt|*dm  for every i€l (4.7)

and

m(¢i(X)Nd;(X)y=0 foreverypair i,j €I, 1#]. (4.8)

It is easy to show that for every Borel set A C X and every pair w, 7 € I* such

that w £ 7,7 £ w, we have,

j |6, tdm = 1 (4.9)

weln

)—f|¢ |‘dm (4.10)
m{¢.(X) Né-(X)) = 0. (4.11)

Remark. In the self-similar case, the conformal measure m becomes the self-similar

measure p = Zzef tpo ST !, where S; is similarity map and r; is the similarity

ratio of S;.

Mauldin and Urbanski gave a sufficient and necessary condition for the existence

of an unique §-conformal measure associated with a c.if.s. (cf. [MU], Chapter 3},
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where § is the unique number such that

1
lim = log E ll$L|1° = 0.
n—0o0 71
weln

They defined a c.ifs. S to be regular, if S admits a é-conformal measure. Fur-
thermore, they showed that for a regular c.ifs. S, there exists an unique ergodic
o-invariant probability measure p* on I®. Its image measure m* = p* o 7! is

equivalent to the conformal measure m {(cf. [MU] Theorem 3.8 and Remark 3.12).

4.2 THEOREMS AND PROOFS

We will study the geometric properties of the regular c.i.f.s.5 in this section. In
particular, we will show that the SOSC is equivalent to m{dU) = 0 for certain set

U satisfying the OSC.

Theorem 4.2.1. Let 5 be a regular c.i.fs., and m be the unigue é-conformal
measure, then the SOSC is equivalent to m{0U) = 0 for certain set U satisfying the
OSC.

In order to prove Theorem 4.2.1, we need the following lemmas.
Lemma 4.2.2. Let U be a set satisfying the OSC, then m(U) = m(U;c16:(U)).

Remark. Lemma 4.2.2 becomes trivial in the self-similar case, since in this case

we have ) . ; ré = 1, and this implies

#UierSiU) = ) uSiU) =y _riu(U) = p(U).
el i
Proof of Lemma 4.2.2. Let m* = p* o 77!, where u* is the unique ergodic o-
invariant probability measure on I {(cf. [MU] p.16). Let J be the self-conformal

set generated by S, we define

J* = {z € J: 77!(z) is unique},
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and define T : J* — J* by

T(z) = ¢ (z) where = m(w).

uh

Then the following diagram commutes, and the projection map is one to one.

1o 2 [

ﬂl lﬂ (4.12)

J* T J*

By Theorem 3.8 and Remark 3.12 in [MU], we have m*(J \ J*) = 0 and m* is
equivalent to m. These imply that m*(J*) = 1.

Therefore, we have,

m*(U) = m*(U 0 J*) = "=~ (U N J*)
= p o~ (x7 (U NJ*)) since o is p* invariant
== I TH(UNJ*) since the diagram (4.12) commutes
= p*r 7 (UVier ¢(U N TY))
=m*(Uier $i(U)[ | Vierdi( J*))

= m*(Uic1$i(U)) since m*(Uierd:(J*)) = 1.

Hence, we get

m*(U) = m*(Uicréi(U)).

The equivalency between m* and m implies

m(U) = m{Uierd(U)). O
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Lemma 4.2.3. Let F = 0U |J (Uuei~ ¢.(0U)), then m{F) =0 or 1.

Proof of Lemma 4.2.3. Since T is ergodic w.r.t. m*, we only need to show
TYF)CF
Since

T™YF) = Uic1¢i( F) = Uic1:(OU U Uswe - $,{0U))
= (Uier 6:(00) | (Vier Vuerr 4 (30))
C F,

by the ergodicity of T, we have m*(F) = 0 or 1. The equivalency between m* and

m implies m(F)=0or 1. O

Lemma 4.2.4. m{9U)=0or 1.

Proof of Lemma 4.2.4. In view of Lemma 4.2.3, we only need to show
m(0U) = m(F).
Since

m(8U) + m(U) = m(U)

=1

— E f|¢w[5dm by (4.9)

welin

= Y m(¢u(U)) by (4.10)

wej’u

= Y (m(¢.(00)) + m(.,(V)))

weln
= m(UwéwGI”(aU)) + m(Uw‘ET“ éw(U)) by (48)
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= m{Uudwer»(0U)) +m(U) by Lemma 4.2.2,

we get

m(OU) = m(Upern ¢u(0U)) for all n. (4.13)

Also, since

m(8U) = m(8U N J)
= m (U N (Vuern ¢ (U)))

= m{0U N (Uuer $.(00))), (4.14)
in view of (4.13) and (4.14), we get
m [(Uuern ¢ (8U))\ U] =0 for all n > 1. (4.15)
Furthermore, because
F =0 J (Uuer $,(80)) = 0U | J (UL, Userr$4(80)), (4.16)
combining (4.15) and (4.16), we get

m(F\ 0U) = m([U;Z, Userr u,(8U)]\ OU)

(U2 [(Unern 9o (80)) \ 0U])

Il

s

m [(UwEI“ bu(BU)) \ 6U]

1

i
o3

therefore,

m(F) = m(dU). O

Now that we proved required Lemmas, we can proceed to prove the Theorem

4.2.1.
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Proof of theorem 4.2.1.

“e" Since m(0U) = 0, we have
1 = m(J) = m(T) = m(U) + m(U) = m{V).
Hence m(U') = 1. Because m is supported on J, we get
Und#4.

Therefore the set U also satisfies the SOSC.
“=” Suppose SOSC holds for certain open set U,. then U N J # §.

Since [¢w(J)| — 0 as |w| — oo, there exists w € I*, such that ¢.{(J) C U.

Therefore
m(l) 2 m(éo(D)) = [ 16.)5m >0
Hence
m{U} > 0. (4.17)
Since

m(OU) +m(U) = 1,

(4.17) implies m{(8U) < 1.

Using Lemma 4.2.4, we get m(0U) = 0. O



CHAPTER V

THE $-CONDITION FOR STATISTICALLY
SELF-SIMILAR FRACTALS

So far, we have studied fractals which are deterministic. In this chapter, we will
study random fractals, in particular, statistically self-similar fractals.

The general concepts of random recursive constructions have been introduced
and investigated by Falconer [Fa4], Mauldin and Williams [MW2] and Graf {Gr].
They showed that Moran and Hutchinson's result, as discussed in Chapter 1, has a
probabilistic counterpart in the random case. In this chapter, we are interested in a
é-condition introduced by Graf, which gives a sufficient condition for the Hausdorff
measure of a statistically self-similar fractal set K to be positive almost surely. It
is not known whether the é-condition is necessary. This chapter is a study of this
condition. In particular, we generalize Example 6.8 given by Graf, Mauldin and
Williams [GMW], and show that for certain statistically fractal sets in R?, if the

8-condition is not satisfied, then their Hausdorfl measures are zero almost surely.

5.1 DEFINITIONS AND NOTATIONS

This section contains the basic defimtions, notations and properties of statisti-
cally self-similar constructions, which will be used in the rest of the chapter.

We fix an Euclidean space R? and a nonempty compact subset J of R? such that
J = Int(J). By Sim(J) we denote the set of all similarities S : J — J, such that
the similarity ratio r of S is less than 1. The space Sim(J) is equipped with the

topology of pointwise convergence. Since Sim(J) can be written as the countable
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union of completely metrizable subsets, it is a Souslin space ( cf. [Sc] or [Kul).
We denote the Borel field of Sim(J) by Fy. Let C(J) be the space of all nonempty
compact subsets of J with the Hausdorff metric dg, then (C(J), dyy) is a complete
separable metric space.

We denote by N the positive integers, and Ny = NU {0} the nonnegative integers.

Forn € N, let
D = U{l,...,n]k where {1,...,n}" = {0}.
k=0
i.e. D* is the set of all finite sequences in {1,...,n}. Clearly D* is countable.
If we let
Dy = {l,...,n}k,
then
D* = | J D:.
k=0
Moreover, if 0 = (01,...,04), T = (11,...,7p) € D¥*, then we denote |¢| = ¢ and
o7 =(01,...,0¢,T1,---,Tp)-

We denote by D = {1,...,n}Y the set of infinite strings equipped with the
product topology of the discrete topology on {1,...,n}.
Foroc € D*UD and k € Ny, where k <|o|, if 0 € D*, let ol = (01,...,0%). We

define a partial order in D* U D by
a=<X7T = T =0

A subset A C D* is called an antichain if, for each pair of ¢,7 € A, we have
o A 7and 7 £ g, t.e. o and 7 are incomparable. A subset A C D* is called a
maximal antichain if A is an antichain and covers D, i.c. for each n € D, there is

k € Ny such that 5| € A.
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For a fixed n € N, we define

Q= ((Sim(1))")"
to be the product space equipped with the product topology denoted by F. Since
D* is countable and (Sim(J))" is a Souslin space, therefore, £ is a metrizable Souslin
space. It follows from the properties of Souslin space (¢f. [Sc] or [Ku]), that the
product of the Borel field of Sim(J)™ is equal to the Borel field of €2, and for a given
Borel probability measure ¢ on (Sim(J))", there exists a corresponding product
measure on § denoted by P = ;P . Hence (2, F, P) becomes a probability space.

D

The element of Q = ((Sim(J))n) " will be denoted by w = (w4 )eecp+- where

wWe = (Se1(w), Sez(w),. .., Sen(w)) € (Sim(J))".

Note that for each element w € §2, we construct an n-ary tree as follows: The nodes
of the tree are identified with the finite strings ¢ € D*, and each node ¢ has n

branches labeled by (Sy1(w), So2(w), - - , Sen(w)) € (Sim{J))* (see Figure 5.1).

FIGURE 5.1 A RANDOM n-ARY TREE.
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Definition 5.1.1. A statistically self-similar construction modeled on J is the

probability space (Q, F, P) together with a family of random subsets of R?
J={J,: 0D}

having the following properties:
(1) Jy(w) = J for almost all w € Q. For every o € D* and for almost all w € §,

if Jo(w) is nonempty, then
Jo(w) = So|,(w) 0 Sop(w)o-o0 Sﬂhcl(w)(J)’
(2) For almost every w and for every o € D*,
Intdpi( \Intly; =0 for 4,j=12,...,nwithi#j.
(3) The random vectors to = (To1,Ta2;- - ,Ton) 0 € D* arc iid., where rq; Is
the similarity ratio of Sei(w) € Sim(J). (For convenience, let ry = diam J.)

We call such a system J an n-ary statistically self-similar construction. We define

the random set K by

K(w) = ﬂ U Jow) =1 U Sol(@)e Sep{w)o---0Sq, (@)),

k=10€ED) k=1c€Dy

and we call such a set K{w) a statistically self-similar fractal.

Remark. Property (2) is regarded as the OSC in the random case.

For an n-ary statistically self-similar construction J based on a probability space
(Q, F, P), we have:
(i) Theorem 5.1.1. (cf. Theorem 7.6 in [Gr]) The Hausdorff dimension of

K(w) is s almost surely, where s > 0 satisfies
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Remark. This theorem is a special case of Mauldin & Williams [MW2]
Theorem 1.1. The existence of s is due to the fact that the map : 8 —

BT rf) is continuous and decreasing, where

n

E O~ 1 and lim EB(Y #)=0.
(;m il (Z i)

1

(i) Theorem 5.1.2. (cf. Theorem 7.8 in [Gr]) Assume that the following
conditions (a) and (b) are satisfied:
(a) 3.7 72 =1for pras. (51,5:,...,8.) € (Sim(J))".
(b) There exists a § > 0, such that r; > é for : = 1,2,...,n and p-a.s.
(81,59,...,5,) € (Sim(J))".
Then, we have 0 < H*(K{(w)) < o0 P-as..
Remark. We call condition (b) the é-condition.
(iii) Theorem 5.1.3. (cf. Theorem 7.7 in [Gr]) If condition (a) in Theorem 5.1.2
is not satisfied, i.e. if (a’) P37 rf #1) > 0, then H*(K(w)) =0 P-as..
(iv) In addition, Graf, Mauldin and Williams provided an example in R' (see
[GMW] Example 6.8), which satisfies condition (a) in Theorem 5.1.2 but

not the §-condition. Yet H*(K(w)) =0 P-as..

We will show in this chapter that for certain statistically self-similar fractal sets
K in R?, if the §-conditions are not satisfied, then the Hausdorff measures of K are
zero almost surely. In addition, an example in R? is provided. Furthermore, we will

extend the §-condition to a weak §-condition, and show that they are equivalent.

In order to investigate the Hausdorff dimension and Hausdorff measure of the
random set K{w), Mauldin and Williams ([MW2], p 334) introduced the random
construction measure v, on the Borel sets of R? associated with 7. In [GMW], a
random measure p,, was defined on the Borel sets of D, and the close relation be-

tween the two measures y,, and v, was discussed. Moreover, a probability measure
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@ was given on the Borel sets of the product space D x §2. The basic definitions,
notations and properties of these three measures v, g, and @ arc provided here.
For detailed discussion, we refer to [MW2]| and [GMW]. Furthermore, since what
we study here is a special case of the random recursive construction in [MW2] and

[GMW], all three measures can be applied.
Definitions 5.1.2, For each w € 2 and ¢ € D*, we denote
|o|
lo(w) = diam J,(w) = [] oy, (@), (5.1)

k=1

where r,|, (w) is the similarity ratio of S,, (w) and
Ig(w) = diam J. (5.2)
It follows from [MW2], that
limsupg . {lo : 0 € D} =0 P-as. w. (5.3)

Define the random variables

Sep(w) = > B(w).

O"ED;C

Recall that s > 0 satisfies E()_} r{) = 1. The Martingale Convergence Theorem

vields that the sequence (S & )ren converges P-a.s. to a random variable X (w) with
E(X{w)) = (diam J)*. (see [MW2], Theorem 2.1 for details).

For each 0 € D*, we define the random variable X,(w) by

(7]

TED k=1

By 1.1.d. (see Definition 5.1.1 (3}), each X, is distributed as (diam J)~*X(w).
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Remark. If the condition

k44

er——-l for p-a.s. {S1,52,...,5) € Sim(J)" (5.3)

1

is satisfied, then we have:
X(w) = (diam J)* P-a.s., (5.4)

and for each o € D*,
Xs(w)=1 P-as. (5.5)
For each w € §, define a Borel measure y,, on D (see [GMW] p. 4 } such that
i, satisfics
pu(lo]) = 5 ()Xo (w), (5.6)

where [0] = {# € D : ¢ < n}. The map w — p1,(A) is measurable for every clopen
set AC D.

For each w € Q, we define a bounded countable additive measure v, on the Borel

sets of R? satisfying (see [MW2] p. 334 for details):
(1) v, has total mass X(w)
(2) vu(K(w)) = X(w),
(3) If A is a compact subset of R, then ([MW2] Theorem 3.2)

vu(4) = lim 3 Bw)Xe(w). (5.7)

v€Dy, JoNAFD

The two measures pt,, and v, are related, which can be seen later.

We denote by B the Borel field of D. Recall that F is the Borel field of . For
BeBgFandwe Qlet B, ={y €D : (g,w) € B}. We define a probability
measure on B @ F by (cf. {GMW]p. 5)

QB) = (diam 7)™ [ ol B)APw) (5.8)



64

The expected value of random variables with respect to @ will be denoted by Eq.
Note that for Q-a.s. (77, w), there is a unique point in N2, Jy, (w), denoted by H{w).
One of the useful properties of measure @ is that for Q-a.s. (n,w), f{w) does exist

and satisfies
Q(D x {w: K(w)#9}) =1
Therefore, a natural random map f, exists with random domain of definition D,

such that f,(n) = f(w) and

v = pw 0 f1. (5.9)

5.2 THEOREMS AND PROOTIS

Theorem 5.2.1. Let J be an n-ary statistically self-similar construction based on

a probability space (Q, F, P) and a seed set J of R%. Suppose that
6) B ) > 1
(i) o778 =1 for p-as. (S1,...,5.) € (Sim(J)}".

(i) For each € > 0, there exists a maximal antichain D = D(€) such that

P(diamUgyepd, < ediam J) > 0.

Then H*(K(w)) = 0 for P-a.s. w.

Remark. The method used to prove Theorem 5.2.1 is similar to that in Example
6.8 of [GMW]. However, since we arc dealing with a more general case, other theo-
rems such as Vitali Covering Theorem are also used. We provide here an example

in R?, in which Theorem 5.2.1 can be applied.

Example. Choose 0 < s < 1,let A = {(#1,%2) € [0,(%)%] X [(15)%, 1] 2t5 +t5 =1}

be a subset of R? and ) be the normalized Lebesgue measure on A. Let J be an



65

initial unit equilateral triangle with left vertex at origin, define a random ternary
construction J modeled on J as the following recursion: If J, is an equilateral
triangle with up vertex (a1, b;), left vertex (as, b;) and right vertex (as, b3), choose

(t1,12) from A at random, and set (see Figure 5.2}:

Jo1 = tl(Jd - (”’23 bg)) + (021 b?)a
Joo = t1(Ja — (ay,b2)) + (a2 + t1(a1 — ag), by + t1(by — b2)),

Joz = t2(Jo — (az,b2)) + (ag + t1{as — ag), by + t1(b3 — b2)).

FIGURE 5.2 A RANDOM TERNARY CONSTRUCTION.

Then the corresponding random set 1s K = O;Z; Uyeqy,2,3)% Jo. To see whether

it satisfies the three conditions in Theorem 5.2.1, let
S{h,fz),Séh,fz}js‘gfhfz) N
be defined by:

Sitl,tz)(:ﬂjy) = t] (‘T".I y)’
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s 1 3
S8 (a,4) = ta(w9) + (311, 5 0)

S50 (2, y) = ta(w,y) + (2,0).
Then the similarity ratios are ry = #;, r, = #; and r3 = t;. Let p be the image of

normalized Lebesgue measure on A w.r.t. the map
A = Sim(J) : (ty, £y) — (S{4D) 5{t08) gliveady,

Hence we have r{ + 75 +rj = 2t] +t5 = 1 for p-a.s. (51,5,53) € Sim(_J)g, and
lirs||]so = 1. Therefore the conditions (i) and (ii) in Theorem 5.2.1 are satisfied.
According to Theorem 5.1.1, the Hausdorff dimension of K is s P-a.s..

To see this example also satisfies condition (ii1) in Theorem 5.2.1, for each 7, let

D, denote the maximal antichain in {1,2,3}* consisting of 2j + 1 sequences:

Clearly, Ugep; Jo is a subset of the equilateral triangle with left vertex (0,0) and

right vertex (Eae’D,f o(loh#2 HLC;'] Tol;» 0), and the diameter of Ugep; J5 15

|o|

diam Ugep; Jo = Z Hrgk.

c€D; o(|o|)#2 i=1

Now, by a similar argument as in ( {GMW] p. 100), we have, for each ¢,
P(diam Ugep,; Jo <€) > 0.
Applying Theorem 5.2.1, we get H*(K) =0 P-as..
Now we will give two lemmas used in the proof of Theorem 5.2.1. The hypothesis

of the lemmas are the same as in Theorem 5.2.1. and their proofs will be provided

at the end of Section 5.2.

Lemma 5.2.2. Let D be a maximal antichain, then for each o € D* and ¢ > 0,

we have

P(diamU,ep Jyr > €lp) = P{diamU,epJr > ediam J).
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Lemma 5.2.3. For P-a.5. w, H’ | K(w) <€ v,,.

Proof of Theorem 5.2.1. Given € > 0, let D = D(¢) be a maximal antichain with
P(diamUyepJ, < ediam .J) > 0. (5.10)
Define a sequence {C,}52, of maximal antichains by
Co= {0}, C1 =D, C =D=D,
and in general, for each &,
Crs1 =Cr * D ={0109: 01 €Cy, o2 € D}.

For each k£ > 1, set
Zep(w)= Y 15(w)law)(o
aeCr

where
Alw)={c e D*: Vj,YpeC; [if n X o then diam(U,epJy,) > €l ] }.

Clavm 1. limg oo E(Z g} = 0.
Proof of Claim 1.

Zepnr(w)= Y B{w)law(o)

oC€Cx 41

Z Z zcr*r ]’A(u)) JT)

o€l 7ED

7
= Z ZljHrj,(rii)lA{w)(G)]A(w)(UT)

o€l TED =1
since 1 4(,{07) = Lawy(0)1 4¢)(o7)
b

= Z z;lA(w)(O’) Z Hrﬁ-(ﬂ‘-)lA(w}(UT)

aely 7ED =1
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|

= Z Zle{w)(J)l(diam Urep Jor 2els) Z HT;:'(Th)

o EC reP1=1

= Z IilA(w)(o')l(diam Urep Jor 2els)-
aECy

The last two equalities follow from 14¢)(07) = 14(wy(o7') for every r, 7 € D,
S rf =1 p-as. and D is a maximal antichain.

Hence, by independence,

E(Zﬁgk'l'l) = P(diamUTE’DJar > EID')E(ZE,’C)

= P(diamU,epJ, > ediam J)E(Z, ) by lemma 5.2.2.
By induction and l§ = diam J, we have
E(Z. g11) = P(diamU,epJ, > ediam J ) (diam ).
Hypothesis (i) of Theorem implies that
P(diamU,epJs > ediam J) < 1.
Consequently, we obtain

E(Zcg41) — 0 as k& — oo.

Claim 2. For each M > 0, for Q-a.s. (n,w), there are infinitely many k, such that

Vi (Ugepf(mk)a(w)) > M (diangepJ(q|k)g(w))s , (5.11)

where D = D( 7).
Proof of Claim 2. In view of (5.7) and (5.5), we have

Yw (UUEDJ(n]k)a(W)) 2 1 Xl (w) = If;;k(w)-
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Hence to show (5.11), it is enough to show that for Q-a.s. (n,w)
Ly (w) > M diam (Usep Jy))0(w))  for infinitely many &. {(5.12)

Let B C D x § be the set such that (5.12) is not satisfied. We want to show that
Q(B) =0

Since B = U%_, B;;, where

B = {(n,w): for every k> m,l, < M diamUsep (g0} s

clearly By C By C ... is an increasing sequence, hence
Q(B) = lim Q(B.). (5.13)
Set
a=F (pw ({n Yk, <M diam(UgepJnlw)})) . (5.14)

For each k, we have
a < E(po({n: if 0 €Cy and o < 5 then ¢ € A(w)})).

Hence,

a< FE (Z I‘;lﬂ(w)(o)XU) =FE (Z Eﬁ.lA(w)(O')) .

oECk gEC
This follows from the definition of g, and X,(w) =1 P-a.s..

Thercfore, we have a < E(Zlv,k) for every k. Claim 1 implies
Since for each m > 1, we have

Q(Bm) =F (,Lbu({?}‘ Vi > m l,ﬂk < Mdiam(UaE’DJﬂhﬂ)}))
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=F ( Z Juw({']”? Yk l’rﬂh <M diam(Uge'D J'Wﬂk")}))

vED

"{eDm

=F ( Z E (p.w({fm Yk lypl) < M diam(Uo-E'pJ.},(nma)})[fm)) s

where Fy, is the o-field generated by the maps
w — (’.i”(ﬂ,.lt.)lj N ,?‘(gh)n) 1=1,2,....m—1, 0 € D,

hence, by scaling of g,

Q(Bm)=E ( N E(Epul{n:Vh Ly, <M diam(ugep.f,,,,,lw)})|fm))

€D

{ since: I is Fy, measurable

- E ( 3T BE(po({n: Yk Ly, < Mdiam(ugep-f-miw)})fm))

YEDm

|l by independence

4€D,

=F ( Z E (,uw({?} YRk Ly, < Mdiam(Uggq)J,mhg)})))

| by independcence

YEDm

= F ( Y BE(po({n:VE L, <M diam(Uae'DJﬂka)})))

=E ( > z;a) by (5.14)

YEDwm
=0. by (5.15)

Therefore Q(B,,) = 0 for every m > 1. In view of (5.13), we have
Q(B) = limm @Q(Bn)=0.

This implies that (5.12) holds for Q-a.s. (7,w).
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Claim $. For each M > 0 and P-a.s. w, there is a set Ep(w) C K(w) such that

X{w)
Ms

vo(By(w)) = X(w) and H(Em(w)) <
Proof of Claim 3. For each w, let
Fyr(w) = {n € D: such that (5.11) holds for infinitely many & }.
Let
Gyt = {w: pu(Fu(w)) = X(w) and limsupy o {l-(w): |o] =k} =0}

It follows from Claim 2 and (5.3) that P(GM) = 1. Recall the random map f, :
D, — R¢ given by
Fuln)y =A(w) = [ Typu(w)-
k=1

Let
Ey(w) = fo(Fu(w)).

Suppose w € G, then (5.9) implies that
vo(En(w)) = po(f5(Em@))) = pu(Fu(w)) = X(w).

Now, to complete the proof of Claim 3, we only need to show that H° (Em(w)) <
5+ X (w) by using the Vitali Covering Theorem.

First, note that Ear(w) is H*-measurable, because the complement of En(w)
has v, measure zero, and Lemma 5.2.3 implies K(w)\ Ep{(w) has H*-measure zero.
Hence Ejf(w) is H®-measurable.

Now we form a Vitali cover for Ep{w). For any § > 0, choose ks > 0 such that
if o] > ks, then lo(w) < §. For each n € Fy(w), there exists the smallest integer

ks(n) > ks such that (5.11) holds.
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Define

Is(m) = |J Toali, e

oeD
The collection of sets W, = {Is(n): 6 >0, n € Far(w)}is a Vitali class for Epr(w).

The Vitali Covering Theorem (cf. [Fa] p.11) implies that for any given e > 0, we

may select a (finite or countable) disjoint sequence {U;} from W such that
H(Emw)) < U+ (5.16)

Since cach set U; has the form I5(n) for some § > 0 and 5 € Fy(w), (5.11) and

(5.16) imply that

1
< me(UiUi) + ¢ by disjointness
1
< s X(w)+ ¢ since v, has total mass X(w).

By letting € — 0, we get

HY(Em(w)) <

Clasm §. H(K(w)) =0 for P-as. w.
Proof of claim 4. Let

Ay = {w . 3 Ep(w) C K(w) such that v, (Enm(w)) = X{w)

and H*(Epm(w)) < X,‘f;"’)} .

Claim 3 implies P(Axr) = 1 for every M > 0.
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A= {w: 3 B(w) C K(w) such that v,(E(w)) = X(w) and H*(E(w)) = 0}.

Then A = NS5 AM.

Since 41 D Ay D ..., we have

P(A) = lim P(Apm)=1.

M—co

Hence for P-a.s. w, there exists a set E(w) such that

vo(E(w)) = X(w) and H’(E(w))=0.

Applying H* | K{(w} < v, again, we get

HK () \ B()) < vl K () \ Bw))
= v K(W)) — vo(B(w))
= X(w)~ X(w) by (5.17)
= 0.
Se
H(K(w)) = H(Ew)) =0.

This completes the proof of Theorem 5.2.1. U

Now we provide the proofs of Lemmas 5.2.2 and 5.2.3.

Proof of Lemma 5.2.2. Since

Jor(w) = S (w)o---05g,, (W) o So(rjy 0+ 0 Sa(fl|f|)(w)(J)!

(5.17)
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then

U Jg-f(w) = S,,h(w) Q--+0 S"llal(w) (UTEDSU(T|1) 0+++0 SU(""ITI)(w)(J)) N
€D

and

diom | Jor(@) = 101, (). 7o}, diam (UrenSyiriyy 0 -0 Setrlp @) -

T€ED
(5.18)
Moreover, since
J,,(UJ) = Srrh (w) Q.--0 SU|1E|(U‘?)('])?
and
diam Jo(w) = o, (W) . . - Tq|,,, (w) diam(J), (5.19)
these imply that
{w : diam Jyr(w) > ediam J, }
= {w : diam (Ure'DSn(rh](w) 0---0 Sﬁ(rhfl)(w)(.f)) > ediam J } .
(5.20)

By i.i.d. (see Definition 5.1 (3)), and that D is an maximal antichain,
Ure'psa.(,.h) 0+««+0 Sa(,.“fl)(w)(z}) and Urep Sr|1 g+ 0 S"'|Ifl (Lu)(J)
are identically distributed for each o € D. Therefore (5.20) implies that

P( diam J,,(w) > ediam J, ) = P ( diam J;(w) > ediam J ). O

Proof of lemma 5.2.3. Let Qo C Q2 be such that

Oy = {w : limsupg_,oo{lo : 0 € Dy} =0}.
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(5.3) implics that P() = 1.
Let w € Qg and E C K(w) be a Borel set. In view of (5.7) and (5.5), we have
vo(E) = lim Y Bw)X(w) = lim o )

k—00 k—o0

o€ Dy, JaNE#D €D, J.NEHD

Therefore, for any € > 0, there exists a K > 0 such that if £ > K

vo(E)> Y Bw)—e (5.21)

o €Dy, J, NE#D
Since w € {2y, by definition of {23 we have, for every § > 0, there exists a ks > K
such that

sup I, < 4.
g€ Dy,

Moreover, since

U 7

UED}:6 }JaﬁE?E@

1s a -cover of E, (5.21) implies that
HIE)< > Lw) < v(E) +e
O'Dg-,é., Jo NEZ£R
By letting 6 — 0, we get

H(E) < v (E) + e

By letting € — 0, we get
HAYE) < v (E).

Finally, the regularity of H® leads to

H K(w) < v, 0O
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5.3 A WEAK 4-CONDITION
In this section, we will modify the §-condition to a weak §-condition and show

that they are equivalent. Therefore GGraf’s result (see Theorem 5.1.2 in Section 5.1)

1s true under the weak §-condition.

1. Definitions.

(1) Reeall the §-condition :
There exists a é > O such that r; > §for: = 1,...,nand g-a.s. (S1,...,5,) €
(Sim(J))", where r; is the ratio of S;.

(2) The weak é-condition :
For P-a.s. w € } = (Sim(J)“’)D* , there exists §(w) > 0 such that infyeperqe(w) 2

é(w), where r (w) 1s the similarity ratio of S,(w) € Sim(.J).

Remark. If we define

$:Q —[0,1] suchthat ¢w)= ienlg“ ro(w),

then the é-condition means that there exists a & > 0 such that
Plw: ¢(w) > 8) =1, (5.22)
whereas the weak é-condition asserts that

Plw: ¢{w) >0} = 1. {5.23)

2. Theorem 5.3.1. The é§-condition and the weak é-condition are equivalent.

Proof. In view of (5.22) and (5.23), the §-condition implies the weak 6-condition.
Therefore all we need to show is that the weak é-condition implies é-condition. We

will show this by contradiction.
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Suppose that the weak §-condition is satisfied, and the é-condition is not. For
each m € N, let Ay, = {(S1,...,5,) : min;r; < 43, then p(Am) > 0.

Let ' = {w € Q: infrep- ro(w) = 0}, then

o . 1
C=nNy_1{wefl: Jlen[f;* re(w) < wn;}

= Nz Cm;

m=

where Om = {Ld € infgepv rg(w) < l}

m

Clearly

CioDCyD....

Therefore

P(C) = Lim P(Cp).

H— o0

Since Cn = {w € Q: infyeps To{w) < =}, we have

(Crn={we:YoeD* rg>—1—}

m

= pep* {w €Q: (Sa'l,- - :lson) S EAm}

By independence

P (UCm) = H P({w € (Sﬂ'la"'JSUTE) € B-Am})
acD*

= I #(CAw)

oeD*
=0,

where the last equality is due to the fact that p(A,) >0, 1.e. p (EA,R) < 1.

Hence

P(Cm) =1,
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50

P(C)= lim P(Cp)=1

nL— o
1.e.

1.

P (w € Q: inf ro(w)= O)
oceD*
This implies that

P(wEQ: inf r,(w)>{]) =0
o€ D*

1.e.

P{weQ:g(w)>0)=0.

This contradicts the weak é-condition. a



CHAPTER VI

THE STUDIES OF LINEAR CELLULAR
AUTOMATA USING MW-GRAPHS

The phenomena of Cellular Automata were discovered very early in the history
of science. Pascal (1623 -1662)’s triangle, shown in Figure 6.1, was once considered
the first example of Cellular Automata [PJS]. However, long before that, a similar
Chinese arithmetic triangle had appeared in an ancient science journal around 1303
[PJS], as shown in Figure 6.2. Nevertheless, it was not until 1940s that considerable
developments were achieved by Konrad Zuse, Stanislaw Ulam and John von Neu-
mann [TM] to simulate the behavior of complex and spatially extended structures.
During the 1970s and 80s, cellular automata received a great revival through the
works of Stephen Wolfram [Wol|, who edited an anthology surveying the current re-
search work of ccllular automata. Since cellular automata have discrete structures,
which allow exact computation, and show considerable richness of behavior, they
can be used to model chaotic phenomena. Today cellular automata have become
common mathematical models of dynamics of discrete variables in discrete space
and time, with applications in physics, chemistry, population dynamics and parallel
computing.

General cellular automata can simulate universal structure, yet their long term
behavior can be very hard to characterize at same time. By contrast, a special
class of cellular automata, linear cellular automata, shows additional structures
and permits a much more detailed theoretical analysis. These special linear cellular

automata and their properties will be discussed in this chapter.
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FIGURE 6.2 A CHINESE ARITHMETRIC TRIANGLE.

6.1 INTRODUCTION AND EXAMPLE

80

Cellular automata can be generally described in terms of two concepts: configu-
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ration, and transition rule, defined as follows:

(1) A pstate configuration is a pattern in which each cell of an n-dimensional
lattice contains one of the integers: 0,1,--- ,p — 1. We use a symbol w to
denote a configuration. Thus, w : Z* — {0,1,--- ,p — 1}.
(2) A transition rule is a map F which transfers a configuration w to a new
configuration F(w).
Cellular automata come in one, two, or many dimensions. The following is an
example of one-dimensional cellular automata.
A one-dimensional cellular automaton consists of a row of cells, each containing
an initial number, and the transition rule specifying how these numbers change at
each time unit. Assuming in the initial state of the automation, all cells are filled

with 0’s except a single one with a number 1, such as:
-+~ 010000000 - - - .

The transition rule F is that the number in each cell is to be replaced by the sum of
itself and its left neighbor. Therefore, after one time unit {meaning one application

of F), the state of the automation will become as the following:
-+-011000000 - - -
Another time unit later, the state will be:

---(112100000. . .,

and followed by:
---013310000- - -

---014641000. . .,
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and so on.

In this example, the cellular automaton is in fact a computer which calculates

the coefficients of the powers of binomials, such as:

(a+ b)4 = a + 4a3b + 6% 6° + 4ab® + b,

6.2 DEFINITIONS OF LINEAR CELLULAR AUTOMATA (LCA)

AND NOTATIONS

Linear cellular automata (LCA) have been studied by Wolfram [Wo2,Wo3|, Will-
son [Wil] and Haeseler et al. [HPS1}. Willson has given the definitions and termi-
nology for LCA in case of p = 2. We will expand it to the general cases where p is

any positive integer greater than or equal to 2.

1. Definition of LCA.

Let p > 2 be an integer. By Zp[z], we denote the ring of polynomials with
coefficients in the field Z,.

In this chapter, we only deal with two-dimensional p-state configurations, i.e.
each cell can be occupied only by a number in Z,. A convenient way to describe a
two-dimensional configuration w is given as the following:

A configuration w is written as a Laurent series in 2 variables, where the first
variable s corresponds to space and the seccond ¢ to time, respectively. The Laurent
series expression for w contains one term «;;s*t? for each cell (i,j) occupied by a

positive integer a;;. The configuration w can be written then as a sum

Z: af;j.sitj. (6.1)

;>0

For example, the configuration w with a;; =  except a_11 = 2, ap,p = 1, and

az,—) = 5 can be written as:

w =251 4 O 4 5527 = 257141 + 1+ 5s%¢71,
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Suppose a polynomial r(s) € Zp[s] 1s given, one can define an additive transition

rule L by giving the Laurent series of L{w):
L{w)=r(s)w mod p, (6.2)

where the multiplication is performed in the usual manner except coefficients are
obtained with modulo p.

For example, if w = 1 + 2s% and r(s) = 24 s + s* € Z3[s], then

Lw)=(1+ 232)(2 + s+ 53)

=24+ s5+524+25° mod 3.
We call L additive because it satisfies
Liw+7)=Lw)+ L{r) mod p,

although modulo p prevents it from having ordinary linearity.
The graph construction F' induced by r and L shows the evolution of L*(w) in
space-time. The process consists of placing a copy of L{w) above a copy of w, a

copy of L%(w) above of L(w), etc. We can write F' as:
Flw)=(1+tr(s)w. (6.3)

Thus, if w 1s a one-dimensional configuration in variable s, its global construction

will be:

Flw)=w+tL(w)

F(w) = w + tL(w) + t* L*(w)
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F*¥(w) = w+tL{w) + LA (w) + - - + t* L (w)

(6.4)

One can see that F¥(w) demonstrates the evolution w, L(w), ..., L¥(w) with re-
spect to time k. The coeficient of #* is L¥(w), which permits us to study the pattern
at time k. Figure 6.3 shows a graph construction F induced by r(s) = 1 + s + s?

mod 2 with initial configuration w = 1, where & = 13.

o1 0 0 010060 900O0OOGI1O0O0OO0OGOG OGO 1TO0TCO0GCO0T1TU00
11 01¢11011901%9011011011T0110 000
6 1 01 0100 0 101F061040¢010101¢00O00 00
6111000911100 000111000 0 000
o010 0 ¢ 00 ¢ ¢61 0000 O0O0OO0O0T1TUO0O0O0UO0OTUO0OUO0CO0O0O OGO
1101101110110 1110060UO0GO06 ¢ 00O 0000
¢ 1 01 0001 0001010600 0 0O0O0CO¢GCGO0 OO0 00
0111011101110 00400 0 0©O0O0CCGOC 00 GO0
610 ¢ 01 006 190 0 0 0 0 0 0 ¢ 0 00D O0CO0OO0OTUD0OOTO0O
110101 14¢ 0 ¢ 006 0 0O0OO0OO0OO0OO0ODO0O0OO0OGOGCDO0OO0OTUGGCGO
0101010 ¢¢ 000 00 00O0OUOGO0OCO QG 0 OG0 0 a¢oO0
o011 10 0 0090900 O0OCOGO0OTOGOCOO0OOG®OOOO0OODO0ODODO0O0
016 0 0 ¢ 0 00 O0 ¢ 00O G 00 O0O0O0OCO0OCO0OODOCOOO GO

Figure 6.3 A Graph Construction F' Induced by r(s) = 1 + s + 5% mod 2.
In conclusion, it is clear that, given a polynomial r(s) € Z,[s], one can induce a

cellular automaton using (6.2) and (6.3). We call this cellular automaton a linear

cellular automaton (LCA) and denote it by F(r).

2. m-Blocks and Induced pxp Matrices.

Here we intend to establish the concepts of m-blocks and induced p x p matrices
which will allow us to relate a LCA with a MW-graph.

From now on, we assume p > 2 and p is a prime number. Let #(r) be a LCA
induced by r(s) € Zp[s], and m be the degree of r{s). A m-block is a sequence
Tm—1,"" ,Zo of length m, where z; € {0,1,--- ,p — 1}. We denote by by the block

of zeros, t.e. bg =0, - ,0. A m-block is nontrivial if it is not the block of zeros.
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There are p™ — 1 nontrivial m-blocks, and we denote them by b;,82,- -+, bpm 1.
The i-th block b; is the m-tuple, which is the p-adic expansion of ¢ with initial zeroes

to make it into a sequence of length 2. Some nontrivial m-blocks are listed here:

bpm_1=p—1,p—1,---,p—1,p—1,p—1L

In order to define the induced p x p matrix, we need to study the properties of

coefficients for some specific configurations.
Definition. For a series ), a; ns', we call the finite string
Qiny Qitln, "y Qidtm,n

a part (or a portion) of the coefficients of 3 a,;,ns‘i? where : € Z and m € N are
arbitrary.

Moreover, for a finite string
Qiny Gitl,n; "y Qitm,n,
we say it forms a part (or a portion) of the coefficients of a series Y, b; ps* if
(bi,n; bz‘—l—l,ns Ty bi—i-m,n) = (a'i,n: Git1,ny 77 a‘i—l-m,n)-

Suppose w is an one-dimensional configuration with Laurent series > w;s* and

r(s) =Y. v, ais'. By (6.2), we have

L{w) = r(shw(s) = Y _ms', (6.5)
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where the i-th coefficient of L(w) is given by
T = Wi + Q1Wwi1 + Gaw;_2 + - F G-, mod p. (6.6)

Note from (6.5) and (6.6) that the entry in L{w) at the site  depends on the
coeflicients of w at the site ¢ and at the m sites to the left of 2.
Moreover, if we start with an initial (or “seed”) configuration w = 1, using (6.2},

we have

Lw)=r(s), Liw)=r(s), -, L*w)=r"(s).

Therefore, in order to study the pattern of the LCA, we should consider the orbit
{r™(s)}nen under the iteration of r.

We write r*(s) = E?iu ag,nsl, where a;, = 0 for { > nm. Using Fermat’s
Theorem r(s)? = r(s?) mod p (cf.{HW]), we have r?*(s) = 3,2 a1,,s*'. Hence the
coefficients of r?"(s) are defined by the coefficients of r"(s) as follows:

For each I > 0,
Gptpn = @n and dpipipn =0 for 1=1,---,p—1 (6.7}

Similarly, if »*H! (s) = E?io a;,n+ls", then the coefficients of 'rp(“"'])(s) arc defined

in the same manner, and we have the following scheme:

0+~ 0atp(i—1).pn4 )0+ 08p1,p(n41)0 -~ Otp(ig 1), p(ngr) 07+ 0 (6.8)

0 Otpietypn 0 Oapipn 0 0apqs1ypm 00, (6.9)

where (6.8) and (6.9) are portions of the coefficients of r*(s) and r**!(s}, respec-
tively.
What remains is to determine the coefficients of r?*+7(s) for j € {1,2,-- ,p —

1}. In view of (6.5) and (6.6), since rP**¥(s) = r(s)rP"+ti~1(s), for each pair of
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positive integers, the coeflicient ayit: pn+; is determined by ayiyi pny(j—1) and the

coeflicients at the m sites to the left of pi{ + ¢ as indicated in the following:

Apltizm,pnt(j—1) Gplti—mti,pat(j=1)> " bpli=1,pnt(i-1)> Gpltipnt(j-1):

Claim. All coefficients apiyi pnt; where t,5 € {0,--- ,p — 1} together with their

m — 1 left neighbors shown in the following scheme,

Gpl—(m—1),pnt(p-1) o Opl,pnt(p—1) T Gplt(p—1),pr-t(p—1)
""’pl—(m—l?mn+(x?—2) e %l,pnji-(p—Z} : “pf+(p—1)l,pn+(p—2) (6.10)
Opt—(m~1),pn o Upl.pn o Gpit+(p—~1),pn
are determined by the m-block
Alem41,ny; U-m42,n;" " % 0. (611)
Proof. Since (6.11) is a part of the coefficients of r™(s), then the following
0---0 Qp(l—m+1),pn g.--0 Ap(I—m+2),pn 0--0-- Up(t—1),pn 0 - 03 Qpl,pn 0: e

forms a part of the coefficients for rP*, where
Op(l—mti)pn = W—myin for 2=1,--- m using (6.9).

Using (6.5) and (6.6), we obtain part of coefficients for r?**1(s), as indicated in

the following:

Gp(l—m+1)—~(p—1)—m,pn+1 " Qp(i-1),pn+1 ' dplpnt+l " Qpl4{p—1),pn+1-

Repeating the process, we get a part of coefficients for rP**%(s). Continuing this

procedure, we get a part of coefficients for 'rP”HP_l](s) as follows

Apl—(m—-1),pn+(p—1) " Gplpnt(p—1) *~° Dpl+(p—~1),prt(p—1)
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Thus all coefficients are obtained. O
In terms of polynomials, our observation can be formulated in the following way:

For the m-block b = a1—m41,n,@—m+2,n," ,@1,n, We can consider the corre-

sponding polynomial
. -1
Tb(s) = Q—m+,n + A —m42,nS +- -+ a'l',n-sm .

Then the coeflicient api4; pn+; 18 given by:

[Tb(sp)’r(s)j} pm=1)+i"

which is the (p(m - 1)+ i)—th coefficient of the polynomial 74(s?)r(s)7.
We can now associate each nontrivial m-block b; = 2,1, ,20 witha p x p
matrix:

a(bi) :(wa.ﬁ)a,ﬂe{ﬂ,l,---,p—l} (6.12)

where w,g 1s a m-block defined by:

WaB = Ym~1, ** ,¥0o Where y = [r,,(s?)r(s)’] (6.13)

p{m—1)+oa—1"°

Remark. The set of matrices {o(b;) : ¢ = 1,--- ,p™ — 1} is regarded as matrix

substitution system induced by r (cf. [HPS1]).

6.3 LINEAR CELLULAR AUTOMATA AND MW-GRAPHS

As we mentioned before, many people have studied the evolution of LCA since
1980s. Wilson [Wi2] showed that LCA can be generated by fractal sets; Haeseler et
el. [HPS1] associated LCA with matrix substitution systems. Their research works

provide effective tools to explore many features of the pattern formation of LCA.
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In this section however, we will provide a different approach which associates each
LCA with a MW-graph directed system to study its evolution.

First of all, we will give geometric representations for LCA and introduce the no-
tion of rescaled evolution sets of LCA. Then we will associate the rescaled evolution
sets with MW-graph directed fractal sets. Finally we will calculate the Hausdorff

dimensions and measures for the rescaled evolution sets of LCA.

1. Geometric Representations and Rescaling Procedures.

We denote by (C(R?),dy) the space of nonempty compact subsets of R? equipped
with the Hausdorff metric.

Let w = Ea;;)ﬂ al-jsitj be a configuration as defined in (6.1). We associate w

with a subset A of R? such that

A= |J L; where I;=[0,1]"+(,3j).

@i >0

We call the set A a geometric representation of w.

Let F(r} be a LCA induced by r € Z,[s], and w be a one dimensional configura-

tion in variable s. In view of (6.2), (6.3) and (6.4), we have

Flw)=w
FYw) = w+tL(w)

Fz(w) =w+tl(w)+ tsz(w)

Fn_l(w) =W+ tL(W) -|— tsz(w) + . + tﬂ—an»—l(w)

Therefore, for each n we associate F*~!(w) with its geometric representation Y, =

U}‘;’é Ue;; >0 £ij. As we monitor the evolution for n = 1,2, -+, we see a pattern
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developing:

In addition, a limit set Z can be associated with Y by introducing sequences of
rescaled finite parts of ¥ as follows:
1 i 1
Z(n)= Y, = 390 U}U ~Lj,
for any n and any one dimensional configuration w.

The following theorem is proved by Willson [Wi2].

Theorem 6.3.1. Suppose F(r) is a LCA induced by r € Z,[z], and w is any one
dimensional configuration in variable s with a finite number of positive terms. Then
the sequence { Z(p*)} xen is a Cauchy sequence in C(R?,dg). Its limit is independent
of w and is denote by Z:

Z = Jim 20) (6.4

We call the set Z in (6.14) the rescaled evolution set induced by F(r).
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2. The Association of the Rescaled Evolution Set Z with MW-Graph
Directed Fractal Sets.

Let Fi(r) be a LCA induced by r € Z,[s] with degree of m. We define a m-block
b to be an accessible m-block, if (i) & # by, and (ii) b is a portion of the coefficients
of r¥(s) for some j > 0.

We then induce a MW-graph as follows:

Let V be the vertex set of all accessible m-blocks. For each v € V', we define a
complete metric space X, = I = [0,1]%. Recall that each m-block b; is associated
with a p x p matrix o(d;) as in (6.12) and (6.13). Using the matrix o(b;), we can
define the set of edges of V.

For each pair (u,v) € V X V, the set of edges from u to v is:

Euw ={(a,8): o(t)a,s =v} where o{(u)q,g is the aB-th entry of o(u).

Furthermore, £ = Uy,ev E,p is the set of edges associate with the vertex set V.

For each e € E,,, e = (a, ), define a similarity map f**: X, — X, such that

F2(z,y) = ("”" ta E_tﬁs’_) .

p P
Clearly f2® has similarity ratio é, = i for each e € E.

Hence G = ((V, E),(Xu)uev, (F2)ecr,Te = ]5 ) forms a MW-graph and satisfies
the OSC, since int f2?(X,) Nintf2* (Xp ) =0, for e # €',

Definition. The system (f}'”).cp corresponding to the MW-graph

G = ((Va E)}(Xu)ue‘/a(f:-,w)eeE;Te = % )

is called a p-adic hierarchical iterated function system.
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As indicated in Theorem 1 of [MW1], there cxists a unique invariant list (Ay Juev

of nonempty compact sets A, C X, such that:

Ac=1J U #2740

vEVe€el o
If we denote by C(X.) the set of all compact subsets of X, equipped with the

Hausdorff metric dy, and let £ = ([, ev C(Xu), doo), where do is the maximum

metric, defined by
doo(B,C) = maxyevdy(By,Cy) where B=(Bujuev C= (Cuev),

also define ® : X — K such that

2B =) U £B.).

veEV e€F,,,

Then @ is a contraction on ([], ey C(Xu), dao) and its fixed point is the invariant
list (Au)'uEV-
The following theorem is obtained by combining Theorem 4.4 and Proposition

3.2 in [HPS1].

Theorem 6.3.2. Let F(r) be a LCA induced by r of degree m, and Z be the
rescaled evolution set of the LCA. Also let (Ay)wev be the invariant list of the

MW-graph induced by F(r), then

1 ‘ j-th
Z = U (Aej+(j,0)), wheree; ={0---01 0---0) e V.
§=0
3. Dimensions and Measures of Rescaled Evolution Sets.

Let F(r) be a LCA induced by r of degree m and Z be the rescaled evolution set

of the LCA. In view of Theorem 6.3.2, in order to find the Hausdorff dimension of
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Z, we only need to find the Hausdorff dimension of the corresponding MW-graph
directed fractal sets (Ay Jucy.
Let G = ((V,E),(Xy)uev: (f¥)ecp, e = ;7) be the MW-graph induced by F(r).

We call the matrix
B = (tuyv)u,vev, Wwhere ty, =#{e:e€ B}

the accessible transition matrix of ¢. Since p is a prime number, it follows from
Corollary 2 of Theorem 4 in {HPS2], that G is strongly connected, which is equiva~
lent to the accessible transition matrix B being irreducible {cf. [BR]).

Using Theorem 3 of [MW1], the Hausdorff dimension « of A, satisfles ®(a) =1,
where ®(a) is the spectral radius of the construction matrix B, (see definition

2.1.3),
1., 1
Bo={ > (=) = :D;B. (6.5)
e€Eyy u,veV

Moreover, if A is the maximum eigenvalue of B3, then p%)\ is the maximum eigen-
value of B,, and #A = ®(«).

For ®(a) =1, we get
_log A
~ logp’

04

Hence the Hausdorff dimension of 4, is

log A

dimpg(A, )} = Togp’

By applying Theorem 6.3.2, we obtain:

log A
logp

dimy(Z) =
Also from Theorem 3 of [MW1], we have

0 < H*(Ay) < oo forall ueV.
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This implies
0 < H*(Z) < oo.

Finally, we will provide an example to calculate the Hausdorff dimension and
measure of a LCA using the techniques discussed in this chapter.

Let F(r) be a LCA induced by r(s) = 1+ s + s € Zg[s] with degree of 2, and
7 be the rescaled evolution set. In order to find the associated MW-graph G, we
have to find the corresponding vertex set V and the set of edges E induced by F(r).

Note that there are four 2-blocks
bu — 00 bl = 01 bg = 10 3)3 = 11,

and all nontrivial 2-blocks are accessible. Therefore we have the vertex set V =

(b1, bz, b3). Using (6.12) and (6.13), we get

a(b) = (21 gz)

o(by) = (gj zl)

Hence the sets of edges are as follows:
By ={(0,0),(0,1)} Exz = {(1,0}} By = {(1,1)}
En=10 Eny = {(1,1)} Eny ={(0,1)}
Es1 = {(0,0),(1,1)} Eaz = {(1,0),(0,1)} Ess=0.

The Hierarchical iterated function system (f¥¥). is then as follows:



f(lol,{}) :
fu 1) -
fio
f(?,l} :
f(zlz,l) .
f{u 1 -
f(nn :
f(311,1) :

32
fao:

oy

— Xi,
— Xl:
- Xl:'
—“”Xla
— X5,
“"’X?J
— X3,
— X3,
— X3,

— Xg’

(z.9) = (5:3)
(.0) = (5. 12)
@9 — (552
@)~ (3510
(z,v) +1 y;——l)
(m,ng,%h
(2,9) = (5. 5)
(2,1) z+1 y—;l
@)~ (255

¢ y+1

(xay) - (E) *2—)-

As the result, we obtain the accessible transition matrix

B =

=N
R —

1
L,
0

whose maximum eigenvalue 1s A = 1 + V5.

Hence the Hausdorff dimension « of Z 1s

o =

log A

_ log(1 + \/5)

log p N

log 2

Moreover, since matrix B is irreducible, we have

0 < HYZ) < .



CHAPTER VII

QUESTIONS

The following is a list of some of the questions that have arisen in my study.

(1) For a conformal iterated function system §, are the OSC and the SOSC

equivalent to each other?

(2) For an n-ary random self-similar construction J, suppose 22;1 ri =1 pas.
(1) Is then the § condition a necessary condition for H*(K(w)) > 0 P-a.s. 7
(i1) If H*{K(w)) = 0 P-as., does there exist a Hausdorff gauge function of

the form A{t) = t*L(t), where L(1) is a slowly varying function such that

0 < H"N(K(w)) < 0o P-as.?
(3) Can we associate a fractal set generated by a M-state linear cellular au-

tomaton with a graph directed construction, where M > 2 is an arbitrary

positive integer?
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