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In this dissertation, we study fractal sets and their properties, especially 

the open set condition, Hausdorff dimensions and Hausdorff measures for certain 

fractal constructions. We begin by introducing some known results of self-similar 

sets and give a short summary of each chapter in Chapter 1. In Chapter 2, we 

discuss the existence and uniqueness of a graph directed self-similar measure list 

and extend Schief's result concerning the open set condition for self-similar sets to 

graph directed self-similar sets. 

In Chapter 3, we introduce certain ratio self-similar fractals with overlaps 

and show that these kinds of fractals have positive HausdorfF measures with re-

spect to the corresponding similarity dimensions. We prove in Chapter 4 that the 

strong open set condition is equivalent to the conformal measure being zero on the 

boundary of a set U satisfying the open set condition. 

Statistically self-similar fractals and their properties are studied in Chapter 

5. We extend Graf's ^-condition to a weak ^-condition. Furthermore, we show 

that for certain statistically self-similar fractals in Rd , if Graf's ^-condition is not 

satisfied, their Hausdorff measures will be zero almost surely. 

Finally in Chapter 6, we study linear cellular automata. We show that linear 

cellular automata can be generated by graph-directed constructions. Therefore their 

Hausdorff dimensions and measures can be calculated by applying the results for 

graph directed constructions. 
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C H A P T E R I 

INTRODUCTION 

This dissertation is divided into five parts. Although each part is self-contained 

and can be read without referring to the others, they do share a basic framework and 

are studies of fractals using Hausdorff measure, Hausdorff dimension and Hausdorff 

metric. We gather these basics together in this chapter. 

In 1919, Felix Hausdorff [Ha] published his theory of measure and dimension. 

He paid tribute to Caratheodory who in 1914 gave a new treatment of Lebesgue 

measure. Based on Caratheodory's theory, Hausdorff established the entire the-

ory of measure and 'fractional' dimension, which is known today as the Hausdorff 

dimension. 

Hausdorff Measure and Hausdorff Dimension. 

Let (X, d) be a metric space and s > 0 be a fixed real number. For every 6 > 0 

and E C X, we define 

OO 

HS
S{E) = inf{^(diam*7;) s : E C diamC/; < 8}, 

i= 1 

and 

H'(E) = Hm WJ(JB) = sup HS
S(E), (1.1) 

6-s-0 5>o 

where Tis{E) is called the s-dimensional Hausdorff measure of E. It is clear that 

HS(E) relates to the local geometric structure of E. The set function 7is is a Borel 

regular measure [Ro], but is normally not finite on bounded sets. If / : X —• X 

is Lipschitz, then Hs(f(A)) < (Lip f)sHa(A). If S : X —> X is a similarity map, 



i.e. there is a constant r such that \S(x) — S^y)! = r\x — y| for all x,y in X, then 

ns(S(A)) = rsHs(A). 

For each E C X, there is a unique real number s, called the Hausdorff dimen-

sion of E, denoted by dim# E, such that 

. s f oo if t < s: 
H\E) = 

\ 0 if s < t. 

The ^-parallel body of E is the set of points within distance 8 of E, that is, 

E$ — {x G X : inf d(x,y) < £}. 
y£E 

The Hausdorff metric dn is defined on the collection of all nonempty compact 

subsets of X by dn{E, F) = inf{6 : E C F& and F C Eg}. A simple check shows 

that djj is a metric. 

The term "fractal" was introduced by Mandelbrot (1975) [Ma] for sets with a 

highly irregular structure to which the methods of classical calculus can not be 

applied. Fractal geometry provides a general tool for the study of irregular sets. 

One reason for studying them arises from the fact that irregular sets provide a 

much better representation of many natural phenomena. For instance, they can be 

used to model the Brownian motion of particles, turbulence in fluids, the growth of 

plants, geographical coastlines and surfaces, the dynamics of discrete variables in 

discrete space and time, (see [Fal] [Fe] [Ma] [Schr]). 

In general, we can characterize a fractal set F as follows [Fal]: 

(1) F has a fine structure, i.e., detail on arbitrarily small scales. 

(2) F is too irregular to be described in traditional geometrical language, both 

locally and globally. 

(3) Often F has some form of self-similarity, perhaps approximate or statistical. 



(4) Usually the Hausdorff dimension of F is greater than its topological dimen-

sion. 

(5) In most cases of interest, F is defined in some very simple recursive manner. 

Among the fractal sets, those with the additional property of being self-similar 

are particularly interesting. A theory of strictly self-similar compact sets has been 

developed by Moran [Mo] in 1946, and later extended by Hutchinson [Hu] in 1981. 

The main results of Moran and Hutchinson can be described as follows: 

(a) Let X — (X,d) be a complete metric space and S = {Si, . . . , -Sn} be 

a finite set of contraction maps on X. Then there exists a compact set 

K such that K — Uf_15i(A"). Furthermore, if ^f(A) = U-Lj Si(A), and 

= \fr(\E,fc~1(.4)), then for any nonempty closed and bounded set A, 

}&k(A) —> K in Hausdorff metric. 

The compact set I( is called the invariant set w.r.t. S or the limit set of the 

iterated function system of S = {Si, 5*2, • • •, •SVJ. 

(b) In addition to the hypothesis of (a), suppose there is a probability vector 

(pi,..., pn) such that YTi=i Pi = 1* Then there exists a unique Borel prob-

ability measure p, on X such that /i = X/f=i ° ^T"1' an(^ suPPor^ °f 

fj, is K. The measure jj, is called the invariant measure w.r.t. (<S, (pi))-

(c) As a special case of (a) and (b), if X = and Si G S are similarity 

maps with similarity ratios ri < 1, then the invariant set K = [J^=1Si(K) is 

called the self-similar set w.r.t. S. Moreover Moran and Hutchinson gave a 

criterion that guarantees that the sets Si(K), i — 1, • • • ,n, do not overlap 

too much, namely the open set condition. The open set condition (OSC) 

says that there is an open set U ^ 0, such that 

(i) ur=i Si(U) C U, 



(n) SiiinnsiWttm?}. 
If S satisfies the OSC, then the Hausdorff dimension of K is s, where 5 

satisfies X/iLi ri = an-d is called the similarity dimension of S. Also 

the Hausdorff measure of K is positive and finite, i.e. 0 < HS(K) < oo. In 

addition, if we let pi = r;?, i = 1 , 2 , . . . , n, be the probability vector, then the 

invariant measure /J, w.r.t. (<S,(r?)) is called the self-similar measure, and 

it is, up to a constant, the same as the restricted Hausdorff measure 7is [K, 

i.e. 

H= —i—HS\K. 
r HS{K) L 

As an illustration, let K be the Sierpinski gasket (see Figure 1.1) generated by 

Si,S2,S3 : R2 —> R2 where Si(x,y) - ^(x,y), S2(x,y) = \{x,y) + ( | ,0) and 

Ss(x, y) = |(a:, y) + ( | , ^ ) . Then Si(K), S2(K) and Sz(K) are just the left, right 

and up 'halves' of K, so that K = S\(K) U S2(K) U S3(K). Thus K is invariant for 

mappings Si, S2 and S3, which represent the fundamental self-similarities of the 

Sierpinski gasket. The Hausdorff dimension of K is ^ - | . 

Since 1991, the theory of self-similar set has been further developed. For instance, 

given a self-similar set K generated by similarity maps S — (5*1,5*2, • • • , Sn), Schief 

[Sch] proved that the following conditions are equivalent. 

(i) 7is(K) > 0, where s satisfies 1 rt = 1-

(ii) S satisfies the open set condition (OSC). 

(iii) S satisfies the strong open set condition (SOSC), i.e. there is an open set 

U satisfying the OSC and U 0 K ^ 0. 

Remark. We are more interested in the set U satisfying the SOSC, since UC\K ^ 0. 

There are examples where an open set U satisfies the OSC, but U f)K = 0. However, 
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FIGURE 1 . 1 CONSTRUCTION OF THE SIERPINSKI GASKET 

using Schief's result, if 7is(K) > 0, then we know that there exists an open set U 

satisfying the SOSC. 

During the 1980s, Moran and Hutchinson's results were extended to variety 

of general cases. Graph directed self-similar sets were introduced and studied by 

Mauldin & Williams [MW1]. Random self-similar constructions were investigated 

by Falconer [Fa2], Mauldin and williams [MW2], and Graf [Gr]. Recently, infinite 

conformal iterated function systems are undergoing investigation by Mauldin and 

Urbanski [MUj. This dissertation is a collection of studies of these fractal sets and 

their geometric properties. 

In Chapter 2, we will give a basic definition of graph directed self-similar sets, 

then extend Moran and Hutchinson's result to the graph directed case, i.e., we 

will prove that there exists a unique invariant measure list (fiu)u€V w.r.t. prob-

abilities (pi)i£E- We will also extend Schief's results to strongly connected graph 

directed constructions. 



In Chapter 3, we will attempt to answer a question asked by Mauldin (in a 

private communication) whether a fractal set K with overlapping construction can 

still have positive Hausdorff measure w.r.t. its Hausdorff dimension. Such a fractal 

set F can be constructed by a certain ratio self-similar construction. Furthermore, 

we will show that the fractal set F constructed is also a fractal set in the sense of 

Taylor's definition, i.e. the Hausdorff dimension and the packing dimension of F 

are equal. The packing dimension a,nd packing measure are defined as follows: 

Let s > 0 be a fixed real number, for any 6 > 0 and E C define 

CO 

VS
6{E) = s u p { ^ ( 2 n ) s : XI G E,RI < 8,B(XI,RI) disjoint}, 

i = 1 

and 

V0(E) = lim PHE), 
6—+0 

where B(x,r) denotes the closed ball with center x and radius r. 

The set function VQ fails to be countable subadditive (cf. [TT]), so a further 

stage of the definition is needed, 

OO 

V\E) = INF{J>0
a(£0 : E G U ^ } . (1.2) 

i= 1 

The set function VS is a Borel measure introduced by Taylor & Tricot [TT] and is 

called ^-dimensional packing measure. Recall the definition of Hausdorff measure by 

(1.1). We have (cf. [RT]) for all s > 0, and E C 

0 < HS(E) < VS(E) < oo. (1.3) 

Both Hausdorff measure and packing measure relate to the local geometric structure 

of E C Rd: 7~LS uses economical covers by sets of small diameter; and VS uses efficient 

packings by small balls centered in E. 



The packing dimension 5 of E denoted by dimp(E) is defined by 

V\E) = t N | oo if t < s; 

^ 0 if s < t. 

Taylor defines a set E to be a fractal set if 

dim H(E) = dimp(£/). (1-4) 

In Chapter 4, the notion of conformal iterated function system (c.i.f.s) is intro-

duced. We will extend the result in the self-similar case and show that, for a c.i.f.s, 

the SOSC is equivalent to the conformal measure being zero on the boundary of an 

open set U satisfying the OSC. 

In Chapter 5, we will study the geometric properties of random statistically self-

similar sets. In particular, we are interested in the so called ^-condition introduced 

by Graf, which gives a sufficient condition for the Hausdorff measure of a statistically 

self-similar fractal set I\ to be positive almost surely. We will show that for certain 

random fractals K, if the ^-condition is not satisfied, then the Hausdorff measure of 

K is zero almost surely. An example in M2 is provided. Moreover, in Section 5.3, we 

will give a weak ^-condition and show that the ^-condition and the weak ^-condition 

are equivalent. 

Finally in Chapter 6, fractal sets generated by linear cellular automata are stud-

ied. We will associate a fractal set generated by a p-state cellular automaton with 

a graph directed construction, where p is a prime number. Therefore, by applying 

the results for graph directed construction, we can calculate the Hausdorff dimen-

sion and Hausdorff measure for a fractal set generated by a p-state cellular automa-

ton. 



C H A P T E R II 

T H E OPEN SET CONDITION FOR 

GRAPH DIRECTED SELF-SIMILAR SETS 

As we mentioned in Chapter 1, Moran and Hutchinson have studied self-similar 

sets and developed some basic theorems. The concept and theory of self-similar 

sets were then extended to graph directed self-similar sets by Manldin and Williams 

[MW1] between 1985 and 1988. This extension provides a way to study a larger class 

of sets. For example, in Chapter 6, we will apply this theory to cellular automata. In 

this chapter, we will give the basic definitions of graph directed self-similar sets and 

establish some propositions and theorems, which extend the theory of self-similar 

sets. In particular, we will show that the OSC and the SOSC are equivalent for 

certain graph directed self-similar sets. 

2 . 1 DEFINITIONS AND NOTATIONS OF GRAPH DIRECTED SELF-SIMILAR SETS 

Graph directed self-similar sets are defined and constructed as follows (cf. also 

[Edg]): 

Let (V, E) be a directed graph, where V is the set of vertices and E is the set 

of edges, such that for each u G V, there are some edges e g £ coming from u. If 

u, v € V are vertices and e € E is an edge, then we denote the set of edges with 

initial vertex u by E„ - the set of edges from u to v by Euv, the initial vertex of e 

by i(e), and the terminal vertex of e by t(e). 

A list ((V,E), (Xu)u€V, {Se)e€E, ( r e ) e e E ) where: 

(1) (V,E) is a directed graph. 



(2) Xu is a compact metric space. 

(3) Se : Xv ^ Xu is a similarity map, where e £ Euv. 

(4) r e is the similarity ratio of Se such that, for each cycle a = [ei e2 . . . eq : 

t(eq) = t(ei)], ra = r e i r e 2 . . . re? < 1 . 

is called, a Mauldin-Williams graph (MW-graph). 

Remark. By using rescaling (cf. [Edg] p 116), we can, without loss of generality, 

assume re < 1 for all e € E. 

If G = ((V,E), ( X u ) u e v , (Se) e gs , (^e)e6^) i s a MW-graph, there exists a unique 

invariant list (KU)U£V, where each A"„ is a nonempty compact subset of Xu, satis-

fying 

Kn = U Se(Kt(e) ) for all u G V. 

Moreover, according to [MW1], the sets (K u ) u ^v can be constructed by the follow-

ing recursive process: 

For each u E.V, choose a nonempty closed subset Ju of Xu and construct recur-

sively for each u € V a sequence {KUjn)n<zn of nonempty compact subsets of Xu as 

follows: 

(1) Let 

(2) Let 

(3) Let 

&u,l — ( J Set{Jt(e i))-
ei Q.E/U 

K . , 2 = ( J s e i ( j r , 
€:EU 

= y u ( s „ o s j ^ i ) -
ei&Eu «'2€£!t(e1) 

K . , 1 = U 
el 
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= ( J U ( s e i 0 s e , ) ( i r , ( e 2 w ) 
ei£EU e2€-Et(et) 

= U U U ( A . o S e . o ^ . X J . M ) . 
e\£Eu e2€-Et(e1)

 e3G^t(e2) 

Continuing this process, we obtain a sequence of nonempty compact sets 

K U j n : = |^J ••• ( S e i o ^ 2 o • • • 0 Sen)(Jt(en)) 

eiGEu e2€Bt(ei)
 e»€£t(e„_1) , n g N 

It is known that KUin converges to Ku w.r.t. the Hausdorff metric as n —> oo 

(cf. Mauldin and Williams [MW1]). The sets (KU)U£V are called graph directed 

self-similar sets (or a invariant list) associated with G, and the set K = \Ju^yKu is 

called the graph directed construction object. In the original case studied by Moran 

and Hutchinson, the graph (V, E) has only one vertex, u, and the set K = Ku is 

called a self-similar set. 

Definition 2.1.1. Let G — ((V,jE), (Xu)uev, (Se)eeE, (re)eeE) be a MW-graph 

such that, for each u 6 V, Xu is a compact subset of RA We say G satisfies the 

open set condition (OSC) if and only if there exists a list (UU)U£V of sets, where 

Uu is a nonempty, open and bounded subset of Xu, satisfying 

U Se(Ut(e))cUu foralluev, 

Sc(Ut(e))f]Se 
'(Ut(e')) = 0 f°r all u G V and e, e' E Eu with e ^ e'. 

Furthermore, if Uu fl Ku ^ 0 for all u (E V, then we say G satisfies the strong OSC 

(SOSC). 

Recall in Chapter 1, for a self-similar set K generated by similarity maps S — 

(Si, S2, • • • ,5n), if S satisfies the OSC, then the Hausdorff dimension of K is s 

where s satisfies Yu7=irt = anc^ ^ measure is positive i.e. 7is(K) > 0. 
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Moreover, both OSC and SOSC are equivalent to 1-LS{K) > 0. However, the situa-

tion for a graph directed construction G is more complicated. Mauldin and Williams 

calculated the Hausdorff dimension when G satisfies the OSC. The Hausdorff di-

mension s is determined by $(s) = 1, where $(5) is the spectral radius of the matrix 

= (Se€®«« re)M v€y If i n addition, the graph G is strongly connected, i.e. for 

each pair of vertices u and v, there is a directed path from u to u, then the Hs 

measure of K is positive and finite i.e. 0 < H3(K) < 00. However, do we still 

have the equivalencies among the OSC, the SOSC and the Hs measure of K being 

positive? We will investigate it in Section 2.2. 

We provide here some notations which will be used in Sections 2.2. Given a 

MW-graph G, we define E*v for the set of all finite paths a with initial vertex u 

and terminal vertex v. We will also say that such a path goes from u to or it 

connects u and v. The number of edges in a path is its length, written by |«|. We 

will write for the set of all paths from u to v of length n; and for the set 

of all paths of length n with initial vertex u; and for the set of all paths of 

length n. The empty set convention will work out best if we say (by convention) 

that for each u G V, the set E^'J has only one element, which is the empty path 

from u to itself. Of course we may identify E with E^ and Euv with E^J. We 

define E* to be the set of all finite paths, and E* the set of all finite paths in the 

graph starting from vertex u. Note that E* is a disjoint union of E* for all u € V. 

If a G E*, then we denote the initial vertex of a by i(ot) and the terminal vertex 

by t(a). Also if the strings a, f3 represent paths, and the terminal vertex of a is 

equal to the initial vertex of /?, i.e. t(a) = i(/3), then the concatenated string a/3 

represents a path as well. A path a with i(a) = t(a) is called a cycle. 

We will consider infinite paths as well. An infinite string u> corresponds to an 
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infinite path if the terminal vertex for each edge matches the initial vertex for the 

next edge. We write for the set of all infinite paths for the MW-graph G, and 

call it the string space. If u € V is a vertex, then we write for the set of all 

infinite paths starting at u. If a 6 E*, then we write [a] = {<7 € E^ : a cr} 

and call it the cylinder set generated by a. Thus, [a] is the set of all infinite paths 

that begin with the path a. 

The following abbreviations are important. 

If a = (ei, e2, • . . , en) € E*, we write 

— ».5ei 0 'S'ej 0 • • • 0 Sen 

= Set (-̂ -<(<*)) 

ra =reire2...rtn. 

Furthermore, set 

rm a x = max {re : e € E} 

rmm = min {re : e 6 E} . 

Definition 2.1.2. Let G be a MW-graph, A projection map ir from E^ to X — 

is defined by 

7T : E{w) -> X 

a (ele2 • • • ) * (-̂ t(<7|fe))) 

where a\k = (eie2 . . . efc). 

Definition 2.1.3. Let G be a MW-graph, we define t ie construction matrix by 

A - = ( ] > > « ) . 

\e€Euv / U j„ey 

where s > 0 satisfies $(5) = 1 and <J>(s) is the spectral radius of As. The number s 

is call the dimension of graph G. 
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Remark. If G is strongly connected, then As is irreducible. 

2 . 2 THEOREMS AND PROOFS 

This section contains five propositions and a theorem. Proposition 2.2.1 shows 

that there exists a "natural" probability measure fx* on the string space such 

that the left-shift map T on E^ is ergodic w.r.t. fx*. By using the projection 

map 7r : 

^ X = Uu€V Xu, we get a pull down measure fx — /j* o 7r 1 on 

X. The measure /i* is natural in that (i is equivalent to the Hausdorff measure 

7is [K. Proposition 2.2.2 shows that the Hausdorff measure of the intersection 

K , r \ K * is zero for e ^ e'. This proposition is very useful in the proofs of the 

rest of propositions. Next, we introduce the notion of a graph directed self-similar 

measure list (fxu)u£V on (Xu)u^v for a given MW-graph G. Then we provide the 

existence and uniqueness of the graph directed self-similar measure list (fiu)uev 

in Proposition 2.2.3. In Proposition 2.2.4, we show that, up to a constant, the 

restricted Hausdorff measure Hs\KU is the same as Proposition 2.2.5 presents 

two properties of the self-similar measure list (fJ.u)uev> which are used in the proof 

of Theorem 2.2.6. Finally, we prove Theorem 2.2.6 that both the OSC and the 

SOSC are equivalent to 7{S(K) > 0 for strongly connected MW-graphs. 

Proposition 2.2.1. Let G be a strongly connected MW-graph satisfying the OSC. 

Then there exists a unique ergodic T-invariant probability measure jj,* on the string 

space E^ such that the image measure fi* o 7r_1 and the restricted Hausdorff 

measure 7is [A' are equivalent. 

Proof of Proposition 2.2.1. We first define a measure (.i* on the string space E^\ 

then we show that it is ergodic w.r.t. the left-shift map T. 

Let A3 = ( Yle£Euv
 re)u v£V construction matrix of G. Since the graph 
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G is strongly connected, As is irreducible. The Perron-Frobenius Theorem [Wal] 

tells us that there exists a left eigenvector p = (p3
u)U£V and a right eigenvector 

q = (ql)v£V such that 

pA = p i.e. 5 3 5 3 Purl = Pi a n d Pu > 0 for all 11 £ V; (2.1) 
u£V e£Euv 

and 

Aq = q i.e. 5 3 5 3 Kit = Qu a n ( i Qu > 0 for all u € V. (2.2) 
v$zV e£.Euv 

We can normalize p, q such that 

X > i « l = 1- (2-3) 

uev 

In view of (2.1) and (2.2), one can define a Borel probability measure (i*n on Cn, by 

putting = Pi(a)raQt(a)i w h e r e Cn is the algebra generated by the cylinder 

sets of the form [a], where a € E ^ n \ Using (2.1) and (2.2), we have the following 

equalities: 

53 53 W = E E (Pureqv)s 

e£Euv u,v£V e£Euv 

= 53 53 53 (re^)s 

m € V v£.V eGEuv 

= ^^{PuQu) 

•uGV 

= 1. 

Since [a] = Ueg^fae], where a; 6 , we have 

v'eV e£Evv, 

= 53 53 
e€J5„„( 
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= cPUR aY 5 3 (RZQV'Y 
v'eV e£Evv, 

— (.Pu^ aQv) 

= /*»([«])• 

Using Kolmogorov's Existence Theorem, there exists a unique probability measure 

FT* on Esuch that /M*([a]) = ^ ( [ c n ] ) for all a G E*. Using (2.1) again, we get 

A'n+l (Uti'GV [eQ;]) ^ y ^ y Mrt ([eCk:]) 
v'eV e£Eviu 

= Y1 ^2 (P®'rer«9«(a))* 
v'£V e€Eviu 

^2 (P" ,r«)a ] (r«9*(«))* 
Kv'€Ve£Ev,a ) 

(P«(a)^o??t(or)) 

=< ( m ) . 

This tells us that the left-shift map T : E^ —• E^ by T((eie2 • • • )) = (E2EZ • • • ) 

is yu*-measure preserving. 

Now we will show that JJ,* is ergodic. Let A be a Borel set in E^ with FI*(A) > 0, 

there exists U G V such that /J,*(AU) > 0 where AU = AC) E^\ Since the nested 

family of sets {[a] : a G E^} generates the Borel <7-algebra on E ^ \ for every n > 0 

and every A G U , we can find a subfamily B of E* consisting of mutually 

incomparable finite strings and such that AU C {[/?] : FI G B} and YLPEB ^(WP]) = 

/x*(U{[or/3] : /? G B}) < AFI*(AA U ) , where AAU = {ACO : LO G Am}, and A > 1. Then 

fj,*(T-n(A)n[a\) = fj,*(aA) 

> t £ " " ( M ) 
^ PEB 

" l E PSI(A)RARS0T(L3) 
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= \ p k a f 3
a Y l r h m 

vt(a) V - psm 

X1 

1 
— \ P*(<x) a

 as 2-^ ns P$KP) 
imax ft£B ^ m a x 

= y?max-Pmax/A[«D ^ P*(\P]) 

P&B 

> T l Z , P Z ^ * ( W ( u m : fl € B}) 
X 

> jan*([a])[i*(Au), 

where a = qmtxpmtx. 

Therefore, we have 

/1*(T-"(E<"'\A„) n [«]) = /,* ( H \ ( T - ( A . ) n [a])) 

= ^ ( [ a l ) - ^ ( T - " ( A „ ) n [ a ] ) 

< (1 - io/i*(A„j)/j*([a]). 

Hence, for every Borel set A C E^ with ft* (A) < 1, for every n > 0 and for every 

a G we get 

(T~n(A) fl [a]) = n*(T~n(Au) fl [a]), where u = t(a) 

< (1 - i a ^ - ( B M \ A . ) ) , < > ( W ) . (2.4) 

In order to complete the proof of ergodicity of T, suppose that T~*A = A 

and 0 < fi*(A) < 1, this implies 0 < fJ,*(Au) < f . i * ( E f o r each u £ V. Let 

d(A) = rom{ii*(Eiu)\Au) : u € V } , then 0 < d(A) < 1. We can set 7 = 1 ~{ad(A). 

Note that 0 < 7 < 1. In view of (2.4), for every a G E*, we get 

v"(A n H ) = f ( T - W ( A ) n [a]) < W * ( H ) . 

Now, take rj > 1 such that 777 < 1, and choose a subfamily i? of E* consisting 

of mutually incomparable finite strings and such that A C U{[ck] : a e R} and 
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^(U{[a] : a € R}) < W*{A). Then p.*(A) = £aeilA»*(An[a]) < E « e * 7 ^ ( [ « D = 

7//*({[«] : a G R}) < 7?7^*(A). This contradiction completes the proof of ergodicity 

of T. 

Now let's look at the measure fi* on the subspace for each u £ V. 

Since 

m ' ( 4 " ) ) = E E ' A M ) 
v£V e£Euv 

= / C (P^qvY 
vtzV e£Euv 

= P « E E 
v£V e€:Euv 

s s 
PuQu 5 

we have /i"(E'^'') = p ^ . and /i'(E"">) = E„ci ' / ' ' fE . ' " ' I = E . f i ' i ' ,* = 1 by 

(2.3) 

By using the projection map 7T : —> X = UMgvXM, we get a pull down 

measure fi* o 7r_1 on X such that if A C X 

fl* 0 7T_1(A) = /U*(7T_1(A)). (2-5) 

Since G satisfies the OSC, it follows that the pull down measure jx* 0 7r-1 is, up to a 

constant, the same as the restricted Hausdorff measure 7is [K. This can be verified 

by a similar argument by Mauldin and Williams [MW1] (cf. also [Edg] p 172). • 

Remark . In Proposition 2.2.1, if we do not assume G satisfying the OSC, we can 

still get 

H'[K 

by a similar argument as in [Edg]. 
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Proposition 2.2.2. Let G be a strongly connected MW-graph and K = U U £ y K n 

be the graph directed self-similar object of G, ifHs{K) > 0, then 

Hs(se(Kv)nse<(Kv,)) = o 

for all e G Euv, e! G Euv> with e ^ e'. 

Proof of Proposition 2.2.2. We will prove the proposition by contradiction. 

Let D = Se(Kv) fl Se>(Kvi), suppose HS(D) > 0, then fj,*(7t~1(D)) > 0 since 

H s [Ar < / / * OTT-1. 

Let Be = {cr G E^ : <r(l) = e, 7r(cr) G -D}, then ) > 0 for at least one e £ E 

say et. Clearly 

X (E^\Bei) = K„, (2.6) 

since if x G D, then x has at least two preimages cr, a' such that cr(l) ^ cr'(l). We 

can choose one, say cr, such that cr(l) ^ e;, then cr G \ -Be; and 7r(cr) = x. 

Clearly \Bei)< p j g j = /i 'fJSi"'). 

Let Fu = {cr G E^ : a = (eie2 • • •) with infinitely many ej such that t(ej) = u}. 

Claim: fJ.*(Fu) = 1 

Proof of Claim: 

Let F® = {a G E^ : cr = (eie2 • • • ) t{cj) ^ u for all j}, and let e G E such that 

t(e) = it, then [e] 0 ^ = 0. Hence f/,*(F®) < 1. 

Since 

\ f ° ) C E{w)\F°, 

ergodicity of T implies fi*{F^) = 0. 

Since 

E^\Fu = Un>0T-n(F°), 

we obtain /x*(E^ \ Fu) = 0 i.e. fi*Fu = 1. 
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Let Bu = {[ck] : a <E E*u}. Clearly Bu induces the same cr-algebra on fl Fu 

as {[a] : a € E*} does. Since (Eu^ \ Bei) n Fu is open in fl Fu, there exist 

pairwise disjoint cylinder sets [«fc] (E Bu such that (yE^\Bei) C\FU = Ujfefatfc]. Hence 

/.*(£<"> \ Bu) = f ((£<"' \ Bei) n F.) 

= £ " * ( M ) 
k 

k 

= pWU Y 
k 

<PK-

The last inequality is because fi*(E^ \ Bei) < H*E— p^q^- So there is some 

0 < A < 1 such that rak = A < 1. 

Let K'u = 7T((E{
u
w) \ Bei) n Fu). Then HS(KU \K'U) = 0 by (2.6) and the Claim. 

Since (E^\Bei) DFU = Uk[ak], we can cover K'u by the sets Sah(K'u), k = 1,2, . . . 

and also by the smaller sets Sakx,ak2,...,akm where ki, &2,. • •, km G {1,2,.. . } for 

each TO. Hence, HS(K'U) = 0 follows from 

/ 15 rotk1 ,ak2,...)otkm 
| K, 

fci,fc2 j • • •} km k\,k2 )**•? kfyi 

= \K\ ' \ m 

—+ 0 as m —• oo. 

Consequently, we have HS{KU) = 0. This contradicts HS{KU) > 0. • 

Recall in Chapter 1, for a self-similar set K w.r.t. similarity maps S = (Si, S2, • • • ,Sn), 

there exists a unique self-similar measure fi w.r.t. (<S,(r;)) such that 

Here we extent this result to graph directed self-similar constructions. 
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Definition 2.2.1. A MW-graph with probabilities is a list 

S = ((V,E), (Xu)uev, (Se)e<EE, 0 " e ) e € V , {Pe)eGE) 

where 

(1) G = ((V,E), (Xu)uev, (Se)eeE, (re)e<=E) is a MW-graph, 

(2) Yhe£Eu J°e = 1 for each u £ V and 0 < pe < 1. 

Definition 2.2.2. A graph directed self-similar measure list (/J,u)u&v associated 

with a MW-graph G with probabilities is a list of Borel probability measures (/J.u)uev 

on which satisfies, for each u € V 

P* = S P^tie) o S ' 1 . (2.7) 

In order to investigate the existence and uniqueness of such a measure list, we 

need the following definitions and notations. 

We define M(X„) to be the set of probability measures on Xu, and M(X) = 

Iluey M(Xm) to be the product space of M(X„). 

Let C{XU) = {/ : Xu —> R. : / i s continuous} equipped with the oo-norm. 

Recall that Xu is a compact metric space for each u € V, so / is continuous implies 

that / is uniformly continuous. 

For fi G M(X t t), / € C(XU), we define: 

K f ) = / fdp. 

Using the Riesz Representation Theorem, M(X„) can be identified with a convex 

subset of the unit ball in C(XU)*. This allows us to get a topology on M(X„) from 

the weak* topology on C(XU)*. 
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Definition 2.2.3. The weak topology on M(X„) is the smallest topology making 

each of the maps: [j, —» Jx f d f j , (/ £ C(XU)) continuous. 

Remark. M(Xm) is compact and metrizable in the weak topology [Wal. Theorem 

6.5]. In fact, a compatible metric is given by [Wal], However, for our purpose, a 

new compatible metric has to be defined. 

Definition 2.2.4. For each pair /j,,v £ M(X„), let 

Lu(fi, v) = sup 11 j f d f i - J fdu |: feC(Xu) and L i p / < l | . 

It is clear that Lu is a metric on M(Xtt). Moreover, the Lu metric topology and 

the weak topology coincide on M(XU), as indicated in Lemma 2.2.3. 

Lemma 2.2.3. The Lu metric topology and the weak topology coincide on M ( X M ) . 

Proof of Lemma 2.2.3. 

(i) {lJjn} converging to /i in Lu metric topology implies {/in} converging to /i in 

weak topology, because the set of Lipschitz functions on Xu is dense in C(XU). 

(ii) Let {fin} converges to /i in the weak topology, then Theorem 6.8 in [Par] implies 

that 

l i m s u p | / fdnn - / fdp\ = 0 
n^°°f£A J J 

for every family A C C(XU) which is equicontinuous at all the points x G Xu and 

uniformly bounded. 

Pick any xq £ X, since the set 

A) = {/ £ C(XU) : f(x0) = 0 and Lip/ < 1} 

is equicontinuous at all the points of Xu and uniformly bounded, so we have 

l im s u p | / fdpn - / fdp\ = 0. 

n-*o° / e > 4 q J J 
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Now using the fact that, for any / G C(XU) with Lip / < 1, 

J fdlin ~ J = J(f ~ f(x0))dHn - J ( f ~ f(xQ))d(i, 

we have jJLn -» /i in metric topology. • 

Hence the compactness of M(X«) in the weak topology implies that Lu is also 

complete. 

Definition 2.2.5. For (fj.u)uev, (^U)UGV G M(X) = ^ 

L([Hu)u(zVi ( ' /t)a£v) — Slip LU((XU, Vu)-
u£V 

It is clear that L is a metric on M(X) and induces the product topology of the 

weak topologies, by Lemma 2.2.3. Therefore the compactness of M(X) allows us 

to use the Banach Contraction Mapping Principle. 

Definition 2.2.6. Let & : M(JT) -> M(X) be the map, defined by: 

&{{lJ'u)u£V) — ( ^ ] Pe^t{e) 0 

\e(zEu > 

Remark. Comparing Definitions 2.2.6 and 2.2.2, we conclude: a graph directed 

self-similar measure list (JJ,u)u&V is a fixed point of <?. Therefore, we can also call a 

graph directed self-similar measure list an invariant measure list. 

Proposition 2.2.3. Let 

S = ((V,.E7), (-X"n)u€Vj (,Se)e£Ey ('"eJeSYi (Pe)e€£) 

be a MW-graph with probabilities. Then we have the following: 

(i) & : M(X) —*• M(X) is a contraction map in the L metric. 



23 

(ii) There exists a unique (/jlU)u€V G M(X) ? such that 

^ l^u — ^ ^ Peftt(e) ̂  $e e&ch U £ V. 
eG-Êu 

Moreover, if (vu)uev € M(X), tiien {^ f c((^)«ev)}it converges to (/<u)a €v 

in the L metric, and therefore in the product topology of weak topologies. 

Proof of Proposition 2.2.S. Assertion (ii) follows immediately from (i) since ( M ( X ) , L) 

is a complete metric space. 

To establish (i), suppose / G C(XU) with Lip / < 1 and let r = m a x E ^ r e < 1. 

Then for (pu)uev, {vu)u£V € M(X), and for each it € V, 

Pe^t(e) 0 S; *(/) - ^ W ( e ) 0 >?e *(/) 
Eu efzEu 

£ / » « ( w 5 r 1 ( / ) - " . ( « ) ' > s r 1 ( / ) ) 
e€zEu 

X > ( / /° S^tie) ~ f 0 Sedvt(e) J 
e£Eu ^ J J 

< ^ p e r J r - 1 / ° Sednt(e) ~ J r'1 f 0 S, 
e G£/ u 

^ ^ Pe.r^Jt(e.)i,lJ't{e)ivt{e)) 

't(e) 

e€Eu 

— )m€V̂ ) ("tOuGv)-

The last two inequalities follow from L i p ( r - 1 / o S^) < r _ 1 • 1 • re < 1, YleeEu Pe = 1 

and the definition of Z. 

Hence 

L(<Pr((//M)„ey), !^((^)«6v)) < rL((fj,u)uev, (vu)u&v) • 

R e m a r k . The graph G in Proposition 2.2.3 is not required to be strongly con-

nected. 
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Corollary of Proposition 2.2.3. Let G be a strongly connected MW-graph and 

pe = q~fyrlq^ey where (qu)uev is the same as in (2.2). Then there exists a unique 

graph directed invariant measure list (fJ,u)uev such that for each u £ V, 

= S ^«Sre9<%)^(e) O'S'e-1-
e€i $u 

Proof of the Corollary. In order to apply Proposition 2.2.3, We only need to check 

that 

^SrUt(e) = 1 f o r e a c h U e V ' 
e£Eu 

However, this follows immediately from (2.2) • 

The following proposition tells us the relation between the invariant measure list 

{(xu)u£V and the restricted Hausdorff measure list ( H s \ K u ) u ^ v -

Proposition 2.2.4. Let G be a strongly connected MW-graph, (fJ,u)uev be the 

self-similar measure list associated with pe = qY(t)rtlt(e) an<^ > 0- Then for 

each u € V, we have 

pv = (H'(Ku))-
1H'lKu. 

Proof of Proposition 2.2.4- By uniqueness of the graph directed self-similar measure 

list (nu)u€V, we only need to show that the measure list (('HS(KU))~1/H8\KU)u£V 

is also a graph directed self-similar measure list associated with pe = q ^ K l ^ e ) -

We will need the following two equalities. 

= W*(U.€E.S.(JT<(e))) = E E W ( K ' ) > <2 '8) 
v£V e£Euv 

w | s , ( / f „ ) = K (w* LJT.) o s r 1 . (2.9) 

The first equality follows from Proposition 2.2.2; the second equality can be shown 

as follows: 

ns
 LSE(KV)(E) = ns(sE(KV) n E) 
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= Ha (Se((Kv) n 571(£?))) 

= n s;\E)) 

= rl(H'[K,)oS:\E). 

We divide the proof of Proposition 2.2.4 into two claims. 

Claim 1. There is a constant A > 0 such that 7{a(Ku) = A f o r each u £ V. 

Proof of Claim 1. By (2.8), we have 

E E <H-(Kv) = W(K„). 
v^lV e£Euv 

Therefore, the vector (Hs(Ku))uev is a right eigenvector of the matrix 

A = ( X } re)v,v€V 
c £ En v 

with eigenvalue 1. Since A is irreducible with spectral radius 1, and the vector 

{qs
u)U£V is also a right eigenvector with eigenvalue 1, by (2.2). The Perron-Frobenius 

Theorem implies that there is a constant A > 0 such that 

7is{Ku) = A f o r each u (E V. 

Hence \KU = A_1g~s ,Ws [Ku. 

Claim 2. ((7is(Ku))~'l7{s [Ku)u^y is an invariant measure list associated with pe = 

That is 

v£V e£Euv 

Proof of Claim 2. 

The right hand side of (2.10) = S l K v ) 0 S ' 1 

e€zEuv 
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= £ E ° • f f r 1 

v$zV e£.Euv 

= r ' c E E H ' l s - ( K ' ) 

v£V e£Euv 

= X-1q-'H'[K. 

-- the left hand, side of (2.10), 

where the third equality follows from (2.9) and the fourth equality follows from 

Proposition 2.2.2 and (2.8), using the fact that Ku = U e < = E u S e ( K t ( e ) ) - This com-

pletes the proof of Claim 2. 

Hence by uniqueness of the invariant measure list, we get fiu = (Hs ( K u ) ) ~ l H3 \KU 

for each u € V. • 

Proposition 2.2.5. Let G be a strongly connected MW-graph and HS(K) > 0, 

then the graph directed self-similar measure list (fJ,u)uev associated with pe — 

q~(l)rl<l3
t(e) has the following properties: 

(i) For e G Euv, e' € Euv>, with e / e', 

f x u { S e { K v ) n Se'(AV)) = 0. (2.11) 

(ii) For e € Eu, we have 

^u(Se(A)) = q-srlqt{R)fxt(e){A). (2.12) 

Proof of Proposition 2.2.5. 

(i) Follows from Propositions 2.2.2 and 2.2.4. 

To prove (ii), we first consider A = Kv. Since for e £ Euv, 

/J"u{Se(Kv)) = 1uS're'<lt(e')lJ't(^) 0 re(lt(e)i 

e'€Eu 
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therefore Ku = UeeEuSe(Kt(e)) together with (2.11) implies that 

1 = ftui&u) = ^ ^ ~ ^ ^ re#t(e) ~~ 

Hence 

Now for any A C e € Euv, since 

^ ( ^ ( A ) ) = 9m Sre'<Zt(e')^l(e') ° ^e'* ( ^ ( A ) ) > <ZM
 re^t(e)f1v(A), (2.13) 

e' (z.Eu 

and 

9« a*1<rf(e) = /*«(&(*«)) = VU(Sr(A)) + fiu(Se{Kv \ A)) 

> < l u + VZ'rtit(e)Vv(Kv \ A) 

= <lu3rSe1St(e)> 

where the inequality follows from (2.13), we obtain fj,u(Se(A)) = qu
s'rt(lt(e)f

J'v(A). D 

Theorem 2.2.6. Let G be a strongly connected MW-graph, then the following 

conditions are equivalent. 

(i) The OSC 

(ii) TheSOSC 

(iii) HS{K) > 0. 

Proof of Theorem 2.2.6. It is clear that: the SOSC =>• the OSC => HS{K) > 0. 

Therefore, we need only to prove that 'HS(K) > 0 implies the SOSC. We will divide 

the proof into four steps. 

Recall that d f j denotes the Hausdorff metric defined on the collection of all 

nonempty compact subsets of Rd. We will denote by dist the Euclidean metric on 
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Rd and N(E,e) the set of points y such that dist(y,E) < e, i.e. N(E,e) is the e 

Euclidean neighborhood of E. 

Step 1. Let x > 0, we will show that there exists 6U > 0 for each u (E V such that 

for all a, f3 € E*v with 

rp > xra, (2-14) 

we have 

dfj(Sa(I\.i ^ 8vVa. 

Proof. For each u G V, choose open sets U*, , • • •, of Xu such that Ku C 

Uu := UiU-1 and < (1 + x8)tin(Ku), where (fJ,u)uev is the same as in 

Proposition 2.2.5. Let 8V = dist(Kv, C { 7 „ ) , suppose dH(Sa(Kv), Sp(Kv)) < Svra, 

since 

dist(Sa(Kv), ZSa(Uv)) = dist(Sa(Kv),Sa(ZUv)) 

= radist(Kv,ZUv) 

= ra8V) 

so Sp{Kv) C SQ(UV). This implies 

* ra9«(1 + x") = VuSra<lv + <luSrWvxS 

< lu'ralt + (2-14) 

= Hu{Sa(Kv)) + nu(Sp(Kv)) by Proposition 2.2.5 (ii) 

= f J - u ( S a { K v ) U Sp(Kv)) by Propos i t ion 2.2.5 (i) 

< ^ 2 ^ ( S a ( U y ) ) since Sa(Kv)\JSfi(Kv)c\JiSa(U?) 

i 

i 

< + X8)fiv(Kv) 
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= + xs). 

This is a contradiction, since quSrs
aq

s
v{ 1 + ®s) ^ ®(1 + a;S)-

Step 2. Given 0 < d < 1, we set 

1% = {a E E* : ra < d < r i } for all u G V, 
a v " Of M cy | — 1 

i r = {« G Kv •ra<d< ^ a | for all u,v, G V. 

Clearly I% = U a n c ^ K* = Recall A"Q. = Sa(Kt(a))- Let 0 < e < 

fix u G V and £ € E*. Let = N(K^er^) be the er^ Euclidean neighborhood 

of Kt = S ^ K m ) . Set 

I u v ( 0 = {« € I r 7 : K „ C \ G e ^ 0}, 

I u ( 0 = { a e i : ( : A ' a n G ^ 0 } . 

Clearly /"(£) = UveVIuv(0-

Claim 2. yu = sup^g#. {#/"(£)} < °°-

Proo/ o/ Claim 2. Clearly it is enough to show juv = sup^g#. {#IUV(()} < °° f ° r 

each v G V. Let z G A"w denote Bu — B(z, 3|A'„|) the closed ball center at z with 

the Euclidean radius 3 | i f u | . Fix £ G E*, denote c? = . For a,/? € Iuv(£), we have 

ra < d < r | =>• V* min 
< drmin , 

a 11 a: | — 1 
rp <d < ^rmin < Tp. 

So r a r m i n < rp. Now we can apply Step 1 for x = rmin to get Sv and 

dlj(Sat(I\.v)i ^ fiv^cx ^ Svdrmin = 

for arbitrary a,j3 G Hence for each pair of or , /? G Iuv(£), the preimages of 

S a (K„) and Sp(Kv) under are compact subsets of Bu and 

dH(S^(Sa(Kv)),S^(Sp(Kv))) > 8vrmin. 
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From the Blaschke Selection Theorem and the total boundedness of the compact 

set, we known that there is a bound 7 on the possible cardinality of a collection of 

closed subsets of Bu, which are at least 6»rmin apart in the Hausdorff metric. So 

juv - sup {#IUV(£)} < 7 < 00. 

Step 3. For each u G V", choose £u G E* such that #IU(£U) = "fu• 

Claim 3. For each u G V and a G E*u, we have 

r(aC) = {ap'.fie IU(C)}-

Proof of Claim 3. 

(1) "D". Let a f l G RHS, then rp < r^u < 1
 an(A Kp I"1 @£u 

Hence 0 ^ Sa(Kp n G£«) = Kap D C?^", a n d r<*p < ra£M < 

Thus a 13 g r ( « C ) . 

(2) "C Since #Iu(a£u) < # ! " ( £ " ) , therefore Iw(a£u) C {a{3 : j3 G Iu(£w)}-

Step 4. For each u G V, define Wu = , where G* = | e rv ) . 

Claim 4• The open set list (WU)U£V satisfies the SOSC. 

Proof of Claim 4-

i. Since C G^u C Wu, so Ku H Wu ^ 0, for each u G V. 

ii. For each e G Evu, 

SC(W.) = s . ( u „ 6 E ; G * ( t ( 0 ) ) = UaeE.Gla,,M C w„. 

iii. For each e G Evu, e' G Evu> with e ^ e ' , 

s e ( w « ) n 5 e ' ( w „ o = 0. 
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Since if not, there exist a € E*, (3 6 E*,, such that 

Glae(«) n ^ and rea$H") ^ r< •I $(*(.?)• 

If y is an element of this intersection, there exist y\ € Kea^t(a), and y2 € 

such that 

dist(y,yi) < ^erea£t(«) 

dist(y, j/2) < Jere,^t(/3), 

so dist(y1,y2) < dist(yx,y) + dist(y,y2) < ere^ t(a ) , hence 

If w = t(a), Step 3 implies that = ecta for some a € Iv(£v). We get 

contradiction, since e ^ e\ If u / <(a), we can find w £ Et(a)v, since the directed 

graph G is strongly connected. Clearly, we have ue'f3£ t(-^ e It<-a\Loea^a')). Step 

3 implies u e ' ^ ) = wearer, for some a € /<(")(£<(«)). This is a contradiction as 

well. • 

2 . 3 A COUNTER EXAMPLE FOR A GENERAL M W - G R A P H G 

In this section we give an example of a MW-gragh G which satisfies the OSC but 

not the SOSC. 

Let G = ((V,E), (XU)U£E, (Se)e£E, (re)eg£:) be the MW-graph, where V = { 

A,B,C,D,F} and E = {AB,BA,AA,BB,CD,DC,CC,DD,FA,FB,FC,FD} 

(see Figure 2.1). 
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The compact metric spaces are defined as follows (see Figure 2.2): for a fixed 

0 < e < f , 

XA = [o, i ] X [ - € , | ] , XB = [ | , 1 ] X [ - £ , i ] , 

Xc = [ 0 , x [ | , 1 + e], X D = [ | , l ] x [ | , l + 4 

^ = ( [ 0 , i ] x [ 4 , i ] ) u ( [ | . l ] x [ 4 i ] ) . 

For each u € V, Xu is equipped with Euclidean metric. We denote by Bxu{z,S) 

the open ball in Xu with center at 2 and radius 6. 

The similarity maps are defined as follows: 

SAB • : X B • - > X A (x,y) -

SAA: • XA- ^ X A (x,y) - • ^ ( ® » y ) . 

SBA '• ••XA- —•• XB 0 , y ) - * ^ ( ® , y ) + ( | > ° ) » 

SBB :XB ^ X b (x,y) - * ^ 0 , y ) + ( ^ , o ) , 

SCD :XD -+XC (x,y) - * ^ 0 > y ) + ( ° > ^ ) > 

SEC ••Xc ^ X C ( ® , y ) - + £ ( ® > y ) + ( ° » | ) > 

SDC ••XC ^ X D (x,y) -
+ 5 ( x ' y ) + ( I ' I ) ' 

SDD : XD — » • XD {x,y) -4(x,!/)+(y)' 
SFA ••XA -> xF ( ® , y ) - 0 , y ) > 

SFB : X b -> XF ( ® , y ) -•* {x,y), 

SFC :XC -+ XF ( ® » y ) -•* (x,y) + (o? - 1 ) ) 

SFD -.XD - * X F ( ® , y ) --+ ( x , y ) + ( 0 , - 1 ) . 
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FIGURE 2 . 1 GRAPH OF THE EXAMPLE 

1—7 % 

n 

3 

- 1 
J 

£ 
± 2 
3 CJ 

Xr 

"7* 

FIGURE 2 . 2 STRUCTURE OF THE FRACTAL 

Note that the last four maps are not contractions, however, by using rescaling 

(see [Edg] p. 116), we can make the maps become contractions. Moreover, G is not 

strongly connected. If we let K = C x {0} where C is the standard Cantor set, then 
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the limit sets (KU)U£V are: 

K A = \ K , JfB = ^ + ( | , 0 ) , 

A-C = i j f + (0,1), x D = i j f + ( | , l ) , 

KF = K. 

Note that: 

T h e o r e m . 

SFA(KA) = SFC{KC)I SFB(KB) — SFD(KD)-

(i) G satisfies the OSC. 

(ii) G does not satisfy the SOSC. 

Proof. 

(i) Choose the list of open sets ( U A , U B , U C , U D , U F ) as follows: 

^ = ( 0 , i ) x ( 0 , i ) , C B = ( j , l ) x ( 0 , i ) , 

Cc = ( 0 , i ) x ( ? , l ) , PD = ( | , 1 ) X ( | , 1 ) , 

UF = SFA(UA) U SFB{UB) U SFC{UC) U SFD(UD)-

It is easily seen that the list (UAIUB, Uc, UD, UF) satisfies the OSC. 

(ii) We prove the assertion by contradiction. Suppose the list (OA, OB, OC, OD, OF) 

satisfies the SOSC. Let z £ OA H KA, then 

SFA{Z) £ SFA(KA) = SFC(KC) C SFC(OC)- (2.15) 

On the other hand, the SOSC 
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Since z € OA, there exists 0 < S < e, such that BxA(z,6) C OA• Hence, using the 

fact that the map SFA is the identity map, we have 

BXf(Sfa{Z),6) = SFA{BXa{Z,8)) C SFA(OA)-

Also, since SFA{Z) € SFC(OC) by (2.15), there exists a sequence {ZN} C Oc, such 

that 

Spc{zn) —*• Sfa{z) as n —• oo. 

Hence, for n big enough, we have SVc^n) € BXf(SFA(z)^ S). This implies 

SFC(OC) n SFA(OA) ~F~ 0 . 

In view of (2.16), we get a contradiction. • 



C H A P T E R III 

T H E H A U S D O R F F MEASURES OF 

SOME RATIO SELF-SIMILAR SETS W I T H O V E R L A P S 

For self-similar sets and strongly connected graph directed self-similar sets, we 

know that the OSC is equivalent to the Hausdorff measure being positive on the limit 

set (cf. [Sch] and Chapter 2). This means if the limit set has positive Hausdorff 

measure, then the pieces {Sa(Kt(a))} aeE(.*) which make up the limit set cannot 

overlap too much. However, what will happen if we allow some overlaps? Certainly 

the nonempty compact limit set exists even if the OSC is not satisfied (cf. [Hu] 

and [Mo]). It is reasonable to assume that the dimension of this limit set might be 

smaller than otherwise would be expected, since the Hausdorff measure would be 

zero if the OSC is not satisfied. Falconer[Fa3] studied the Hausdorff dimension of 

some self-similar sets with overlaps. He proved that even if the OSC does not hold 

for any set U, the Hausdorff dimension of the limit set is "usually" the same as its 

similarity dimension (cf. Theorem 1 of [Fa3]). 

There is another interesting question: are there any fractal sets defined by over-

lapping constructions, having positive Hausdorff measure w.r.t. its Hausdorff di-

mension? From Schief's result and our result in Chapter 2, we conclude that if 

there is such a fractal set with overlaps, it can not be a self-similar set or strongly 

connected graph directed self-similar set. Nevertheless, we will give an example of 

a fractal set in this chapter, defined by an overlapping construction and yet having 

positive and finite Hausdorff measure w.r.t. its Hausdorff dimension. The exam-

ple is based on a ratio self-similar construction. In Section 3.1, we will introduce 

36 
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the notion of a ratio self-similar construction; and prove the main theorem and. 

give an example of overlapping construction having positive and finite Hausdorff 

dimension in Section 3.2. 

3 . 1 A RATIO SELF-SIMILAR CONSTRUCTION 

In this section we give the definition of a ratio self-similar construction and its 

properties. 

Let J ^ 0 be a compact subset of R with J = int J , and let 0 < n < 1, i € 

I = {1,2, • • • n} where n > 1. A ratio self-similar construction based on a seed set 

J and a set of similarity ratios S = {n : i € 1} is a family, 

3 = (J(a)) a£D* 

where D* = Ik = {1,2,. . . ,n}fc and 10 = 0, such that 

(1) m = J 
(2) For each a £ D* and i (E {1,2, . . . , n.}, the set J (m) is a subset of J(a) 

(3) For each a € D* and i €E {1,2, . . . , n}, the set J(ai) is similar to J (a) with 

\J(ai)\/\J(a)\ = n. 

The ratio self-similar set F constructed by J is 

CO 

f=nu 
k=0 \a\ = k 

R e m a r k . The term "ratio self-similar set" is introduced by Moran [Mo]. However 

the definition here is a little bit different from his, since we don't require { J(od)}f=1 

to be non-overlapping. Also note that the self-similar set is a particular type of a 

ratio self-similar set, in which the similarity maps are specified and are the same at 

each level. 
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Let D = {1,2 , . . . , n}N, and define n : D —> F by 

CX> 

{7r(w)} = P | J(u\k) where u\k = (wi,w2,. • • ,Uk) € D*• 
k=1 

Since 0 < n < 1, 7r maps D continuously onto JF7. Moreover, if the sets {J(a) : 

|a | = k] are disjoint for each k, then 7r is a homeomorphism [Mo]. 

Definition 3.1.1. The similarity dimension s of a ratio self-similar construction is 

the unique number which satisfies 

£ > ; = i . (3.i) 
i— 1 

The equation (3.1) is called the redistribution of mass equation. Let /t be the 

infinite product measure on D determined by the probability vector: (rf, r | , • • • , rs
n\ 

i.e., the measure of a cylinder set is given by 

/}([«]) = r* (recall that ra = raira2 ... r a | a | ) . 

In view of (3.1), there is an unique probability measure /} defined on the Borel 

cr-algebra in D which extends ft. 

Definition 3.1.2. Let p be the image measure of /t under ix, i.e. 

H ( A ) = /i(7r_1(A)). 

Then fj, is a probability measure and fJ.(F) = 1. fx is the restriction of mass measure 

on F. 

For a ratio self-similar set F, we are interested in its Hausdorff dimension and 

Hausdorff measure. 
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Remark. If for each a € D*, the sets {J(ai)}^=l are non-overlapping subsets of 

J (a), then we have 0 < 7is(F) < oo, where the s is the similarity dimension. Hence 

dimff(F) = s [Mo]. If { J(m)}£_j overlap too much, the Hausdorff dimension may 

be less than the similarity dimension (cf. [Ban]). 

In the next section, we will give a condition on the amount of overlap guaranteeing 

that the Hausdorff dimension of F equals the similarity dimension. Furthermore, 

the Hausdorff measure of F is positive and finite w.r.t. the similarity dimension. 

We will use the following properties. 

Mass Distribution Principle. Let n be a mass distribution on F, and suppose 

that for some s there are numbers c > 0 and 8 > 0 such that 

MV) < c\u\• 

for all Borel sets U with \U\ < 8. Then 7is(F) > n(F)/c. 

Remark. Our version of the Mass Distribution Principle differs from [Fal, The-

orem 4.2], since we require the sets U to be Borel sets. However, the result still 

holds, since Hausdorff measure can be computed by using open covers (cf. [Ro]). 

Definition 3.1.3. Let U be a subset of K.d. We define C(U) as follows 

C(U) = {aeD*-. \J(a)\ < \U\ < I J H w - i ) | , U n F ± 0 } . ( 3 . 2 ) 

Clearly if a, {3 (E C(U), then a -ft and (3 -f^ a. 

We denote by Cd the Lebesgue measure in and B(0,1) the unit ball in RA 

For any set U, the Isodiametric Inequality (cf. [EG] p 69 ) implies that 

^(V)< 0 p ) £J(B(0,1)). (3.3) 

Also, since J (a) is similar to J , 

£"(int( J (a))) = ( ^ ) " C (int(J)). (3.4) 
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3 .2 THE THEOREM AND AN EXAMPLE 

In this section, we will first state the main theorem and give an example. Finally 

we will provide the proof. 

Theorem 3.2.1. Let F be a ratio self-similar set based on a seed set J and a set 

of similarity ratios S = {r̂  : i £ I = {1,2, • • • , n}}. Choose 0 < r < rmin, where 

rmin = min{ri i r2, • • • ,rn}, and I > 0 such that 

ldCd(B{0,1)) < Cd(int(J)). (3.5) 

Suppose that 

(i) There is a constant K such that for any ex. (E Ik with k > K, 

| int(J(ai) P| J(aj)) |< lrk+1\J\ for i ^ j (3-6) 

(ii) If a, a' G Ik and a ^ a' then 

int ^ J ( ai ) N < 7 O ' J ) ) = 0 FOR i,j e {1,2,...,n}. (3.7) 

Then we have 0 < 7is(F) < Vs(F) < oo where s is the similarity dimension of F, 

and consequently dimn(F) = dirnp(F) = s. 

Remark 1. The conditions (i) and (ii) are the so called controlled overlapping 

conditions (see Figure 3.1). 

Remark 2. Since our construction is a ratio self-similar construction, unlike self-

similar sets, the set F can not in general be constructed as a limit set of an iterated 

function system. At each level k, we usually choose similarity maps 5^, S^,. • •, Sn^ 

according to the £xed ratio list r} ,r2,... ,rn and conditions (i) and (ii). Therefore 

it is not appropriate to discuss the OSC. However, from our definition, it is clear 

that the construction allows certain degree of overlapping. 
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FIGURE 3 . 1 RATIO CONSTRUCTION WITH CONTROLLED OVERLAPS. 

Example. Let J = [0,1] be the unit interval in K.1, and ri = T2 = 1/3 be the ratio 

list. Let I = 1/2, then 0,1)) = C1( J). Let r = 1/4, then r < rmm = 1/3. We 

will define a binary ratio self-similar construction by the following recursion (see 

Figure 3.2). 

J(l) 

J ( i i ) J(12) 

J(2) 

J(21) J(22) 

FIGURE 3 . 2 A BINARY RATIO SELF-SIMILAR CONSTRUCTION. 
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1. The start of the induction: 

Put J(0) = J , J ( l ) = [0,1/3], and J(2) = [1/3 - 1/2C1/4)1, 2/3 - 1/2C1/4)1]; 

2. The inductive step: 

If a € D* and J (a) = [a, 6] has been constructed, then define J ( m ) as follows, 

a) if a ( | a | ) = 1, then 

J(ofl) = [a, a + ^ ( 6 - a ) ] 

J(a2) = [a + i ( 6 - a) - j ) M + 1 , « + | ( 6 " a) - | ( | ) l " l + 1 ] 

b) if a ( | a | ) = 2 then 

J ( a l ) = [6 - | ( 1 - a) + , 6 - | ( f e - o ) + \ ( 

J(a2) = [ 6 - i ( 4 - a ) , 6], 

This construction satisfies 

(1) | J (*) | = ( i ) H = r a | J | 

(2) | J ( a l ) n J (a 2)| = § ( i ) H + 1 = / r l a l+ 1 

In order to show the construction also satisfies the condition (ii) in the Theorem 

3.2.1 (see the Figure 3.3), we only need to verify that 

(J{a 11) U J(al2)) f ) (J(a21) U J(<*22)) = 0. 

Since 

| J (a 11) U J ( a l 2 ) | + | J(a21) U J (a 22) | 

= _ I ( I ) M + 2 _|_ ( I ) M + 2 _ I ( I ) M + 2 

3 2 4 3 2 4 

= 2 ( i ) H + 2 - ( j ) M + 2 , 
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a) a(|a|)=l 

J(«) 

J(«L) J(A2) 

J ( o l l ) J ( g l 2 ) J ( a 2 1 ) j ( g 2 2 ) 

b) o ( | a | ) = 2 

m 
J(«L) J(A2) 

and 

then 

J(«ll) J(«12) i(«21) J(q22) 

FIGURE 3 . 3 THE RECURSIVE CONSTRUCTION PROCESS. 

IJ(al) U J(a2)| = - i ( = 3(i)W+* - 2 ( j )W + J , 

\J(al) U J(a2)\ > | J (all) U J (a 12)| + | J(a21) U J (a 22)|. 

Hence 

( J (all) U J (a 12)) p | (J(a21) U J(a22)) = 0. 

Since the construction satisfies all the conditions in Theorem 3.2.1, the ratio self-

similar set F = U^0 n|a|=& J(a) has the following property 

0 < HS(F) < Vs(F) < oo, where s = ^ is the similarity dimension 
log 3 

and d im H (F) = dimp(F) = 

To prove the theorem, we need the following lemmas. 

Lemma 3.2.2. There is a positive integer N such that if k > N and a. € Ik, then 

< 2 ( n - l ) ( i | J | ) ' i ' ( 3 '8 > 
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Proof of Lemma 3.2.2. Since 0 < r < rmin , for any a £ Ik, we have 

rk rk / T \ & 
— < —r— = I ] —• 0 as k —*• oo. 
rQ

 rmin \ ^min / 

This implies 

rk\ 
— I —> 0 as k —» oo. 
r„ / 

Therefore we can choose N large enough so that (3.8) holds. • 

L e m m a 3.2.3. There exists a constant 0 < A < oo and 8 > 0 such that for any 

set U with U n F ± 0, if \U\ < 8 then #C(U) < A. 

Proof of Lemma 3.2.3. Let K\ = m&x(K,N), where K is the same as in (3.6) and 

N is the same as in Lemma 3.2.2. Let 8 = |J|min{rQ. : a IKl}. Clearly 8 > 0. 

Let U be a set with U fl F ^ 0 and |?7| < 8. Note that this implies that for any 

a € C(U), we have |a| > K\. 

Let xeUHF, and B = B(x,2\U\), we have 

{J(a) : aeC(U)} C B. 

This implies 

& ( B ) > J 2 ( £ ' ( m t ( J W ) ) - E J(a||<,|_i«))) 
a£C(U) y i^a(\a\) 

^ E ( ( 1 T # ) ' ' - C ( i n t ( J ) ) - E ( ^ r H m ) ' £ ' ( B ( 0 , l ) ) 
oi£C(U) \ i^a(\a\) 

by (3.4) and (3.3) 

> E ( 4 £ ' ' ( m t ( J ) ) - ( « - l ) ( i r l " l | 7 | ) ' ' £ ' ! ( m t J ) S ) by (3.5) 
a£C(U) ^ ' 

= £<(intj) £ ( » • « l ) ( i r ' " l | J - | ) ' 1 ) 

aeC(U) 
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= Cd(mtJ) Y , ^ - ( " - I K s U I ) ^ ^ ) ' ) 
Zi I rv 

a£C(U) 

> ^Cd(intJ) rt by (3-8) 
a€C(U) 

> ^ ( i n t J ) £ ( ! ^ ) ' by (3.2). 
a€C(U) 

Since £d(B) = £d(B(x, 2|17|)) = (2\U\)d£d{B(0,1)), we have 

2d\U\dCd(B(0,1)) > ^£d(mtJ)\U\dC-^-)d#C(U) 

2(2d)£d(B(0,l))\J\d 

* C i U ) ~ fmt J ) ' ° 

L e m m a 3.2.4. For any set U with U fl F ^ 0, we have 

n - ^ u n F ) c | J { M : <* € C(E7)}. 

Proof of Lemma 3.2.4• Suppose a £ 7r_1(Z7 fl F), then 7r(<r) = x 6 U D .F. Since 

| J(cr|p)| —> 0 as p —> oo, there is a smallest positive integer A; such that | J(o"|p)| < 

jC71. Then a = <r\k € C(U) and a € [ct]. • 

Proof of Theorem 3.2.1. By using the fact 7is(F) < VS(F), see (1.3) in Chapter 1, 

we only need to show 0 < 7is(F) and Vs(F) < oo. 

Claim 1. HS(F) > 0. 

Proof of Claim 1. We will use the Mass Distribution Principle. Let A and 6 be 

the same as in Lemma 3.2.3, and c = 

For any Borel set U with \U\ < 6, the following holds, 

1) if U C\ F = fJ,(U) = 0, since fj, is supported on F. Consequently 

H(U) < c\U\s. (3.9) 
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2) if U n F £ 0, then 

n(U) = p(u n F) = A(7r-1(tr n F)). 

Lemma 3.2.4 therefore implies that 

v(U) < A(M)-
a£C(U) 

Since 

|J(a)|- \U\ 
w H ) = r « = i , , , £ 

s 

I J \ -

then 

M P ) < # c ( u ) j j f £ a ] 7 ] 7 = (3-10) 

Now (3.9), (3.10) and the Mass Distribution Principle yield 

HS(F) > - f i ( F ) > 0. • 
C 

Claim, 2. V S ( F ) < o o . 

Proof of Claim 2. Let x = 7r(u>) G F, u € D and 0 < 6 < \ J\. Also let k > 0 be the 

smallest k such that Jw\k C B(x, 6), then 

7r~1B(x,S) D 7r~1Jur\k D M*]. 

This implies 

f i ( B ( x , 8 ) ) = jxo'K-l{B{x,8)) > jx[u\k] = r* j f e . (3.11) 

By the minimality of k, we conclude that Jw\k_1 is not contained in B(x, S). 

Thus 

* < I ^ U J = M 
I m i n 
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This implies 

r«U > "-"T8- (3-1 2) 

Hence (3.11) and (3.12) imply that 

^ ( M ) > ( ^ f ) V . 
J 

Therefore, by applying Theorem 1.1 (b) of [RT] or Theorem 6.11 of [Mat], we get 

VS(F) < oo. 

From above Claim 1 and Claim 2, we conclude 

0 < HS(F) < VS(F) < oo. 

Consequently, we obtain dim//(ip) = dimpfi71) = s. • 



CHAPTER IV 

THE OPEN SET CONDITION FOR INFINITE 

CONFORMAL ITERATED FUNCTION SYSTEMS 

Finite iterated function systems, their limit sets and open set conditions (OSC) 

have been carefully studied by many people in the past. Given a self-similar set K 

generated by a finite number of contracting similarity maps $ = (Si, • • • , Sn) on Rd, 

if s is the similarity dimension of S and /i is the corresponding self-similar measure, 

Schief [Sch], Lau and Wang [LW] proved that the following four conditions: 

(i) OSC 

(ii) Ha{K) > 0 

(iii) SOSC 

(iv) n(dU) = 0 for certain set U satisfies the OSC, 

are equivalent. 

However, it is unknown whether these equivalencies still hold for a self-conformal 

set J generated by countable families of conformal contractions. In this chapter, 

we will show that for an iterated function system with an infinite set of generators 

consisting of conformal maps, if m is the unique conformal measure, then the 

SOSC is equivalent to m(dU) = 0 for certain set U satisfying the OSC; but whether 

the OSC and SOSC are equivalent is still unknown. We will first introduce the 

notions of infinite conformal iterated function systems (c.i.f.s.), self-conformal sets 

and conformal measures. Then we will study the open set conditions (OSC) for the 

self-conformal sets. 

48 



49 

4 . 1 D E F I N I T I O N S A N D N O T A T I O N S 

The definitions and notations of conformal iterated function systems can be found 

in [MU]. In general, our notation is as in that paper. 

Let (X, p) be a nonempty compact metric space, and J be a countable set with 

at least two elements. Also let S = {<f>i : X —• X : i € 1} be a collection of injective 

contractions from X to X for which there exists 0 < A < 1 such that 

p ( M x ) > M y ) ) < Xp(x>v), t 4 - 1 ) 

for every j £ I and every pair of points x,y 6 X. Such a collection S is called an 

iterated function system, frequently abbreviated as i.f.s. 

Let I* = U n > i / n , for where n > 1, define 

= 0 O ' " • 0 <f>uin • 

If to € I* U J°°, and k > 1 does not exceed the length of u , we denote by a; |& the string 

u>iu>2 • • -Wfc. One can see that, given a? € I°°, the compact sets <f>u\h(X), k > 1, are 

decreasing and their diameters converge to zero. In fact, by (4.1), we have, 

diam(<^a)|j. (X)) < Afediam(X). (4-2) 

This implies that the set 
OO 

T M = f | • " ! . « (4-3) 
k= 1 

is a singleton. Therefore ( 4 . 3 ) defines a map TT : I°° —* X which, in view of ( 4 . 2 ) , is 

continuous. 

Let a : I°° —>• J°° denote the left shift map on J°°, that is ct(lo) = u>2u>3 • • • . We 

will frequently use the following obvious relation 

7T O A ( W ) = 0 F ( W ) . ( 4 . 4 ) 
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The main object of our study is the set J = 7r(J°°), called the limit set associated 

to the system S = {4>i : X -+ X, i € /}• Since for every i € / , we have &(7r(w)) = 

7r(iu>), rewriting (4.4) in the form 7r(w) = (7r(cr(w))), we obtain 

J = l j (4-5) 
i£l 

Note that if I is finite, then J is compact. If the system S = {<f>i : X —> X : i 6 1} 

is pointwise finite (meaning that each element of X belongs to a finite number of 

elements of <j>i(X)), then the family {<f)u(X) : u 6 In} is pointwise finite for every 

n > 1, and therefore 
OO 

u w*)- (4-6) 
n=1 u;£ln 

Thus J is a Fff$ subset of X. 

An iterated function system S = {(f>i : X —> X : t € I}, is said to satisfy the 

Open Set Condition (OSC), if there exists a nonempty open set U C X (in the 

topology of X ) such that <f>%(U) C U for every i € / , and <f>i(U) Pi <f>j(U) = 0 for 

every pair ^ j. It satisfies the strong open set condition (SOSC) if in 

addition J f\U =£0. 

An iterated function system S satisfying OSC, is said to be conformal (c.i.f.s.) if 

the following conditions are satisfied: 

(1) X is a regular connected subset of an Euclidean space E.d, that is I n t ^ ( X ) = 

X. We could and will assume that U = IntK<j(X). 

(2) There exist a, I > 0 such that for every x £ dX C Rrf, there exists an 

open cone Con(a;,o;,/) C Int(X) with vertex x, angle a (i.e. the Lebesgue 

measure on the unit sphere 5 ' d - 1 ) , and altitude I. 

(3) There exists an open connected set X C V C such that all maps <f>i, i € J, 

extend to C1+e diffeomorphisms on V, and are conformal on V. 
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(4) Bounded Distortion Property (BDP). There exists K > 1 such that \4>'w(y)\ < 

K\<f>'u(x)\ for every u> G I* and every pair of points x, y € V. 

Remark. A self-similar i.f.s. is a special case of a c.i.f.s., where all the maps are 

similarity maps. 

Definition. The limit set J = associated to a c.i.f.s.S, is called the self-

conformal set. 

Definition. Given t > 0, a Borel probability measure m is said to be t-conformal 

provided m(J) = 1, and for every Borel set A C X, 

m(<j>i(A)) = f \<f>'i\tdm for every i € I, (4.7) 
J A 

and 

m(<f>i(X) n 4>j(X)) = 0 for every pair i,j G I, i ^ j. (4.8) 

It is easy to show that for every Borel set A G X and every pair cj, t £ I* such 

that w / r , T / w , w e have, 

Y , / WJdm = 1 (4-9) 
"EI" 

(MA)) = [ (4-10) 
J A 

m(<i>u(x) n M x ) ) = 0- ( 4 - n ) 

Remark. In the self-similar case, the conformal measure m becomes the self-similar 

measure pL = ° where Si is similarity map and r; is the similarity 

ratio of Si. 

Mauldin and Urbanski gave a sufficient and necessary condition for the existence 

of an unique ^-conformal measure associated with a c.i.f.s. (cf. [MU], Chapter 3), 

u>e/n 

m 
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where 6 is the unique number such that 

lim - l o g V | | ^ | | f i = 0. 
n—>oo n • 

wgj" 

They defined a c.i.f.s. S to be regular, if S admits a ^-conformal measure. Fur-

thermore, they showed that for a regular c.i.f.s. S, there exists an unique ergodic 

cr-invariant probability measure (/,* on I°°. Its image measure m* = p* o 7r-1 is 

equivalent to the conformal measure m (cf. [MU] Theorem 3.8 and Remark 3.12). 

4 . 2 THEOREMS AND PROOFS 

We will study the geometric properties of the regular c.i.f.s.S in this section. In 

particular, we will show that the SOSC is equivalent to m(dU) = 0 for certain set 

U satisfying the OSC. 

Theorem 4.2.1. Let S be a regular c.i.f.s., and m be the unique 6-conformal 

measure, then the SOSC is equivalent to m(dU) = 0 for certain set U satisfying the 

OSC. 

In order to prove Theorem 4.2.1, we need the following lemmas. 

Lemma 4.2.2. Let U be a set satisfying the OSC, then m(U) = m(Ui£i<f>i(U)). 

Remark. Lemma 4.2.2 becomes trivial in the self-similar case, since in this case 

we have Yliel ri = &nr^ ^his implies 

fi(Ui eiSi(U)) = Y,nSi(U) = £ r°ti(U) = y(V). 
i£l i£l 

Proof of Lemma 4-2.2. Let m* — fj,* o 7r_1, where ji* is the unique ergodic cr-

invariant probability measure on I°° (cf. [MU] p.16). Let J be the self-conformal 

set generated by S, we define 

J* = {x € J : 7T—1 (a;) is unique}, 
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and define T : J* —> J* by 

T(x) = <f>u*(x) where x = 7r(u;). 

Then the following diagram commutes, and the projection map is one to one. 

J O O a
 ) J O O 

J* —£—• J* 

(4.12) 

By Theorem 3.8 and Remark 3.12 in [MU], we have m*(J \ J*) = 0 and TO* is 

equivalent to m. These imply that TO* (J*) = 1. 

Therefore, we have, 

m*(u) = m*(u n J*) = n*ir\u n J*) 

= /x^cr-1 (̂ 7r 1 (?7 fl </*)) since a is jj,* invariant 

= /u*7r_1T_1(J7 fl J*) since the diagram (4.12) commutes 

= MUOJ*)) 

= m ' ( U i € , 

= m*(\Ji€l<f>i(U)) since m*(Ui€j<^( J*)) = 1. 

Hence, we get 

m*{U) = m\\JieIcf>i{U)). 

The equivalency between TO* and m implies 

m(U) = m(\Ji£i<f>i(U)). • 
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Lemma 4.2.3. Let F = dU\J (Uwg/* <j>u(dU)), then m(F) = 0 or 1. 

Proof of Lemma 4-2.3. Since T is ergodic w.r.t. m*, we only need to show 

T - 1 ( F ) C F. 

Since 

T-\F) = U iaMF) = 

= ( u i e / <f>i(dU)) | J (U i e / Uu€J.MdU)) 

c F, 

by the ergodicity of T, we have m*(F) = 0 or 1. The equivalency between m* and 

m implies m(F) = 0 or 1. • 

Lemma 4.2.4. m(dU) = 0 or 1. 

Proof of Lemma 4-2.4- In view of Lemma 4.2.3, we only need to show 

m(dU) = m(F). 

Since 

m(dU) + m(U) = m(U) 

= 1 

= S / \^\Sdm by (4-9) 

= m ( ^ ( ^ ) ) by (4.10) 
w£ln 

= J ] (m(^(c>C7)) + m(^(?7))) 
we/n 

= m(Uu,^u,ej»(9£/')) + m(Uu,€/n<^w(t7)) by (4.8) 
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we get 

Also, since 

= m(iju)(f>u,£in(du)) + m(U) by Lemma 4.2.2, 

m(dU) = m(Uwg/»^w(cW7)) for all n. (4-13) 

m(dU) = m(dU n J) 

= m(du n (u u€i»<f>w(u))) 

= m(dU r\{UueI» MdU))), (4.14) 

in view of (4.13) and (4.14), we get 

m [(Uw£in<f>u(dU)) \ dU] = 0 for all n > 1. (4-15) 

Furthermore, because 

f = » U ( = dU U ( U~=1 M d V ) ) , (4.16) 

combining (4.15) and (4.16), we get 

m(F \ dU) = m ([U^! Uuej» <j>u(dU)\ \ dU) 

= m (U~ 1 [ ( U „ € j . ^ „ ( W ) ) \ 917]) 
oo 

<Y,m[{\JueIn<l>u(dU))\dU] 
n= 1 

= o, 

therefore, 

m(F) = m(dU). • 

Now that we proved required Lemmas, we can proceed to prove the Theorem 

4.2.1. 
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Proof of theorem J^.2.1. 

"•£=" Since m(dU) = 0, we have 

1 = m( J) = m(U) = m(dU) + m{U) = m{U). 

Hence m(U) = 1. Because m is supported on J , we get 

un J 

Therefore the set U also satisfies the SOSC. 

"=4>" Suppose SOSC holds for certain open set U, then U Pi J ^ 0-

Since \<j>u{J)\ —* 0 as |u>| —• oo, there exists u> I*, such that C U. 

Therefore 

m(U) > m(<f>w(J)) = J \<f)'J\6dm > 0. 

Hence 

m(U) > 0. (4-17) 

Since 

m(dU) + m(U) = 1, 

(4.17) implies m(dU) < 1. 

Using Lemma 4.2.4, we get m(dU) = 0. • 



CHAPTER V 

THE ^-CONDITION FOR STATISTICALLY 

SELF-SIMILAR FRACTALS 

So far, we have studied fractals which are deterministic. In this chapter, we will 

study random fractals, in particular, statistically self-similar fractals. 

The general concepts of random recursive constructions have been introduced 

and investigated by Falconer [Fa4], Mauldin and Williams [MW2] and Graf [Gr]. 

They showed that Moran and Hutchinson's result, as discussed in Chapter 1, has a 

probabilistic counterpart in the random case. In this chapter, we are interested in a 

^-condition introduced by Graf, which gives a sufficient condition for the Hausdorff 

measure of a statistically self-similar fractal set K to be positive almost surely. It 

is not known whether the ^-condition is necessary. This chapter is a study of this 

condition. In particular, we generalize Example 6.8 given by Graf, Mauldin and 

Williams [GMW], and show that for certain statistically fractal sets in R.d, if the 

^-condition is not satisfied, then their Hausdorff measures are zero almost surely. 

5 . 1 DEFINITIONS AND NOTATIONS 

This section contains the basic definitions, notations and properties of statisti-

cally self-similar constructions, which will be used in the rest of the chapter. 

We fix an Euclidean space K.d and a nonempty compact subset J of such that 

J = Int(J). By Sim(J) we denote the set of all similarities S : J —* J , such that 

the similarity ratio r of S is less than 1. The space Sim(J) is equipped with the 

topology of pointwise convergence. Since Sim(J) can be written as the countable 

57 
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union of completely metrizable subsets, it is a Souslin space ( cf. [Sc] or [Ku]). 

We denote the Borel field of Sim(J) by TQ. Let C( J) be the space of all nonempty 

compact subsets of J with the Hausdorff metric d j j , then (C(J), d j j ) is a complete 

separable metric space. 

We denote by N the positive integers, and N0 = NU {0} the nonnegative integers. 

For n € N, let 

CO 

D* = [ J {!>"• >n}fe where {1 , . . . ,n}° = {0}. 

k=0 

i.e. D* is the set of all finite sequences in {1 , . . . , n}. Clearly D* is countable. 

If we let 

then 

D* = (J Dk. 
k=0 

Moreover, if cr = (<ti, . . . ,<r3), r = ( r i , . . . ,rp) € D*, then we denote |<r| = q and 

<7T ((Tj , . . . , (TQJ T\ , . . . , Tp). 

We denote by D = { l , . . . , n } N the set of infinite strings equipped with the 

product topology of the discrete topology on {1 , . . . , n}. 

For a € D* U D and k € No, where k < |<r|, if a G -D*, let cr\k = (<ti, . . . , ffc). We 

define a partial order in D* U D by 

<T -< T <=$• 7"|i^i = cr. 

A subset A C D* is called an antichain if, for each pair of cr, r 6 A, we have 

cr tK T and r / ff, i.e. a and r are incomparable. A subset A C D* is called a 

maximal antichain if A is an antichain and covers D, i.e. for each r} G D, there is 

k £ No such that r]\k £ A. 
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For a fixed n € N, we define 

ft = ((Sim( J ) ) n ) D 

to be the product space equipped with the product topology denoted by T. Since 

D* is countable and (Sim( J))n is a Souslin space, therefore, 12 is a metrizable Souslin 

space. It follows from the properties of Souslin space (cf. [Sc] or [Ku]), that the 

product of the Borel field of Sim(J) n is equal to the Borel field of ft, and for a given 

Borel probability measure fi on (Sim(./))", there exists a corresponding product 

measure on ft denoted by P = f iD . Hence (fi, T , P ) becomes a probability space. 

Tl D* 
The element of ft = ((Sim( J ) ) ) will be denoted by u> = (ov)<r€£>* where 

u<T = (S<ri(u>), S<r2(u), • • •, S^oj)) € (Sim( J))n . 

Note that for each element u € ft, we construct an n-ary tree as follows: The nodes 

of the tree are identified with the finite strings a € D*, and each node a has n 

branches labeled by 5^2 (td), • • • ,5<r„(u;)) € (Sim(J))n (see Figure 5.1). 

FIGURE 5 . 1 A RANDOM n-ARY T R E E . 
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Definition 5.1.1. A statistically self-similar construction modeled on J is the 

probability space ( f i , P) together with a family of random subsets of R. 

J = { : <r € D*} 

having the following properties: 

(1) J9(u) = J for almost all u <E ft. For every a £ D* and for almost alI w € ft, 

if J<x(u;) is nonempty, then 

J,(u) = s H » o S , | , M o o S „ | „ | M ( 7 ) . 

(2) For almost every oj and for every a £ D*, 

IntJvi P | IntJcrj = 0 for i, j = 1,2,..., n with i ± j. 

(3) The random vectors t„ = • • • ,»V») cr £ D* are i.i.d., where r f f i is 

the similarity ratio of Sai(u) € Sim(J). (For convenience, let r0 = diamJ.J 

We call such a system J an n-ary statistically self-similar construction. We define 

the random set K by 

OO OO 

K ( U J ) = f ] U U ^ | l ( W ) ° 5 ' ^ | 2 ( a ; ) 0 - , - 0 5 , ^ k | ( a ; ) ( J ) ' 

{j£Dk k—1 irtzDk 

and we call such a set K{lo) a statistically self-similar fractal. 

Remark. Property (2) is regarded as the OSC in the random case. 

For an n-ary statistically self-similar construction J based on a probability space 

(ft, F, P), we have: 

(i) Theorem 5.1.1. (cf. Theorem 7.6 in [Gr]) The Hausdorff dimension of 

K(co) is s almost surely, where s > 0 satisfies 

£ ( £ r?) = 1. 
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Remark. This theorem is a special case of Mauldin Sz Williams [MW2] 

Theorem 1.1. The existence of s is due to the fact that the map : /3 —> 

£ ( X i r ? ) is continuous and decreasing, where 

n n 

£ ( £ > ? ) > 1 and lim E ( X > ? ) = 0. 
1 1 

(ii) Theorem 5.1.2. (cf. Theorem 7.8 in [Gr]) Assume that the following 

conditions (a) and (b) are satisfied: 

(a) E?r? = 1 for ^a-s- (S1,S2,...,Sn)e(Sim(J))
n. 

(b) There exists a 8 > 0, such that ri > 8 for i = 1 , 2 , n and fx- a.s. 

(SuS2,...,Sn)e(Sim(J))
n. 

Then, we have 0 < 7is(K(a;)) < oo P-a.s.. 

Remark. We call condition (b) the ^-condition. 

(iii) Theorem 5.1.3. (cf. Theorem 7.7 in [Gr]) If condition (a) in Theorem 5.1.2 

is not satisfied, i.e. if (a') P ( ^ 2 i r t 7̂  1) > 0) then 1-Ls(K{u>)) = 0 P-a.s.. 

(iv) In addition, Graf, Mauldin and Williams provided an example in R1 (see 

[GMW] Example 6.8), which satisfies condition (a) in Theorem 5.1.2 but 

not the ^-condition. Yet Hs(K(u)) = 0 P-a.s.. 

We will show in this chapter that for certain statistically self-similar fractal sets 

K in Rd, if the ^-conditions are not satisfied, then the Hausdorff measures of K are 

zero almost surely. In addition, an example in R2 is provided. Furthermore, we will 

extend the ^-condition to a weak ^-condition, and show that they are equivalent. 

In order to investigate the Hausdorff dimension and Hausdorff measure of the 

random set K(cv), Mauldin and Williams ([MW2], p 334) introduced the random 

construction measure on the Borel sets of Rd associated with J . In [GMW], a 

random measure fi.^ was defined on the Borel sets of D, and the close relation be-

tween the two measures fxu and was discussed. Moreover, a probability measure 
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Q was given on the Borel sets of the product space D x 0,. The basic definitions, 

notations and properties of these three measures vu, and Q are provided here. 

For detailed discussion, we refer to [MW2] and [GMW]. Furthermore, since what 

we study here is a special case of the random recursive construction in [MW2] and 

[GMW], all three measures can be applied. 

Definitions 5.1.2. For each LO £ and a £ D*, we denote 

M 
/^(w) = diam J ^ w ) = J J ^ ( w ) , (5.1) 

k=i 

where r(T|J.(a;) is the similarity ratio of and 

= diam J. (5-2) 

It follows from [MW2], that 

limsupA._,00{lcr : cr £ Dk} = 0 P-a.s. u>. (5.3) 

Define the random variables 

= £ ' » • 

tr€Dk 

Recall that s > 0 satisfies E(%2\ ri) = 1- The Martingale Convergence Theorem 

yields that the sequence (Ss,k)km converges P-a.s. to a random variable X(U>) with 

E(X(UJ)) = (diam J)S. (see [MW2], Theorem 2.1 for details). 

For each a £ D*, we define the random variable XA{UJ) by 

x - w = E n 
k=l 

By i.i.d. (see Definition 5.1.1 (3)), each X a is distributed as (diam J ) 
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Remark. If the condition 

n 

^ r * = l for fj,-a.s. (Si, S2, • • •, Sn) G Sim(J)n (5.3) 
1 

is satisfied, then we have: 

X(u) = (diam J)s P-a.s., (5-4) 

and for each a G D*, 

X9{u) = 1 P-a.s.. (5.5) 

For each 10 G ft, define a Borel measure on D (see [GMW] p. 4 ) such that 

[J,# satisfies 

M M ) = (5-6) 

where [cr\ = {rj G D : a -< r/}. The map u> -> /^ (A) is measurable for every clopen 

set Ac D. 

For each a; G ft, we define a bounded countable additive measure on the Borel 

sets of satisfying (see [MW2] p. 334 for details): 

(1) vu has total mass X(u>) 

(2) uu(K(u>)) = X(u>), 

(3) If A is a compact subset of Rrf, then ([MW2] Theorem 3.2) 

Vu(A) = lim V (5-7) 
k—too z ' 

cr£Dk, J<rnA^0 

The two measures fiw and vw are related, which can be seen later. 

We denote by B the Borel field of D. Recall that T is the Borel field of ft. For 

B G B ® T and u> G ft, let = {77 G D : G B}. We define a probability 

measure on B ® T by (cf. [GMW] p. 5 ) 

Q(B) — (diam J)~s f iiu(Bw)dP(u}). (5-8) 
Jn 
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The expected value of random variables with respect to Q will be denoted by EQ. 

Note that for Q-a.s. (t/, w), there is a unique point in C\f=1Jv\k(u;), denoted by rj(u). 

One of the useful properties of measure Q is that for Q-a.s. ( ) , r)(u>) does exist 

and satisfies 

Q(D x {u : K(w) # 0}) = 1. 

Therefore, a natural random map fu exists with random domain of definition Dw 

such that fuiv) = 5?(w) an(* 

vu = nuof~1. (5.9) 

5 . 2 THEOREMS AND PROOFS 

Theorem 5.2.1. Let J be an n-ary statistically self-similar construction based on 

a probability space (ft, T, P) and a seed set J ofRd. Suppose that 

(i) £ ( £ > ? ) > ! 

(ii) Yhi r i ~ 1 f° r M"a-S- (^i > • • •' &*) e ( ^ m ( ^ ) ) n • 

(iii) For each e > 0, there exists a maximal antichain V = V(e) such that 

P(diamU<TgD Jcr < ediam J) > 0. 

Then Hs(K(u)) = 0 for P-a.s. u>. 

Remark. The method used to prove Theorem 5.2.1 is similar to that in Example 

6.8 of [GMW]. However, since we are dealing with a more general case, other theo-

rems such as Vitali Covering Theorem are also used. We provide here an example 

in R2, in which Theorem 5.2.1 can be applied. 

Example. Choose 0 < s < 1, let A = {(ti,<2) £ [0, ( | ) a ] x [( |)a > 1] : + t% — 1) 

be a subset of R2 and A be the normalized Lebesgue measure on A. Let J be an 
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initial unit equilateral triangle with left vertex at origin, define a random ternary 

construction J modeled on J as the following recursion: If Ja is an equilateral 

triangle with up vertex (a i ,6i ) , left vertex (02, 62) and right vertex ( 0 3 , 6 3 ) , choose 

( < i , < 2 ) from A at random, and set (see Figure 5 . 2 ) : 

Ja 1 = — (a2, ^2)) + (02,^2), 

Jtt2 = — ("2, ^2)) + («2 + ^l(fll —
 0,2), 62 + tx(bi — 62)), 

Jer3 = hiJcr ~ ( « 2 , b2)) + (A 2 + ^1(^3 ~ «2)J &2 + ^1 (63 — 6 2 ) ) . 

F I G U R E 5 . 2 A R A N D O M T E R N A R Y C O N S T R U C T I O N . 

Then the corresponding random set is K = UG.€{],2,3}fc J<r- To see whether 

it satisfies the three conditions in Theorem 5 . 2 . 1 , let 

o(<lii2) c('li42) . T T 
>̂1 , 02 > J 3 • J —> J 

be defined by: 

S [ t l , t 2 ) ( x , y ) = h ( x , y ) , 
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S ^ l M \ x , y ) = <1 (®,y) + ( ^ 1 , 

5r(<l,*2)(a,? y ) _ t 2 ^ y) + (t2? 0). 

Then the similarity ratios are n = t\, r2 = ti and r3 = ^2- Let /j, be the image of 

normalized Lebesgue measure on A w.r.t. the map 

A -* Sim(J)3 : (<i,i2) - • 

Hence we have r j + r | + r | = = 1 for j x - a . s . (5i, S2, S3) € Sim(<7)3, and 

| |r31 |oo = 1- Therefore the conditions (i) and (ii) in Theorem 5.2.1 are satisfied. 

According to Theorem 5.1.1, the Hausdorff dimension of K is s P-a.s.. 

To see this example also satisfies condition (iii) in Theorem 5.2.1, for each j , let 

V j denote the maximal antichain in {1,2,3}* consisting of 2j + 1 sequences: 

Vj = {(1), (2), (31), (32), • • • , (3 • • • 31), (3 • • • 32), (3 • • • 33)}. 

Clearly, Ug-gPj J<r is a subset of the equilateral triangle with left vertex (0,0) and 

right vertex (£*€©,-,«,(|„|)*2 E l ' ! r*\<> °)> a n d t h e diameter of U^Vj J* is 

M 
' (T\. diam U J < r = ^ I I r° 

cr£Vj ,cr( |cr|)^2 ̂ =1 

Now, by a similar argument as in ( [GMW] p. 100), we have, for each e, 

P(diam UaeVj J& < e) > 0. 

Applying Theorem 5.2.1, we get HS(K) = 0 P-a.s.. 

Now we will give two lemmas used in the proof of Theorem 5.2.1. The hypothesis 

of the lemmas are the same as in Theorem 5.2.1. and their proofs will be provided 

at the end of Section 5.2. 

Lemma 5.2.2. Let T> be a maximal antichain, then for each a € D* and e > 0, 

we have 

P(diamU re:p > eZCT) = P(diamUrg2> JT > ediam J) . 
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Lemma 5.2.3. For P-a.s. u>, Hs |_jK{ui) <C vw. 

Proof of Theorem 5.2.1. Given e > 0, let T> = V(e) be a maximal antichain with 

P(diam UcrgD </cr < ediam J) > 0. (5.10) 

Define a sequence {Cn}^L0 of maximal antichains by 

C0 = {0}, C!=V, C2=V*V, 

and in general, for each k, 

Cfc+i = CK * = {(T\(T2 '. <J\ € Cfc, o"2 £ 22}. 

For each k > 1, set 

Ze,k{w) = 5 3 K{U>)^A(u)(cr)i 
v€Ch 

where 

A{uj) = {<T G D* : Vj,Vr} £CJ [ if r] ^ A then diam(UTgi> J,, r) > dv ] }. 

Claim 1. limjt-^oo E(Z€tk) = 0. 

Proof of Claim 1. 

%e,k+ l(w) = ^(w)l A(w)(0") 

= E E Cr( w ) l i4(«) (^) 
(TGCfe r€I> 

M 
= s ^ n r ^ ( r i < ) i ^ M ( c r ) i ^ ) ( < T r ) 

erEC*. i=l 

since lA(w)(crr) = IA(W)(V)IA(U>)(°"T) 

M . 

= 5 3 5 3 n ^ r l i ) 1 ^ ) ^ ) 
f GCfc rE£> i=l 
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M 

^ ^ ^^^(^(^^(cliani Urgx> Jar ̂ e^<r) ^ 
<r€Cfc r€©i=l 

= ^ ^ ^crlj4(u')(<7)l(cliam Urgx> J,rr>ei<7-)-

vECk 

The last two equalities follow from 1 A(u)( a r) = ^A(w)(aT') f ° r every r , r ' € X>, 

rf = 1 /u-a.s. and X> is a maximal antichain. 

Hence, by independence, 

E(Zt)k+1) = P(diamU rgD Jcrr ^ 

= P ( d i a m U T e p J T > ediam J)E{Zt,h) by lemma 5.2.2. 

By induction and 10 = diam J , we have 

E(Z e , f c + i) = P(diamUr€x> JCT > ediam J) f c + 1 (diam J ) s . 

Hypothesis (ii) of Theorem implies that 

P(diamU rgi>J (7 > ediam J ) < 1. 

Consequently, we obtain 

E(Zetk+i) —> 0 as k -+ 00. 

Claim 2. For each M > 0, for Q-a.s. (r/,w), there are infinitely many fc, such that 

(u<rei>^(r/|jb)0'(a;)) — "^S ( d i a m U ( r g i > , (5.11) 

where T> = P ( ^ ) . 

Proof of Claim 2. In view of (5.7) and (5.5), we have 

Vu (UcrGX>«7(j?|*.)<r(w)) ^ r̂/1 j,-̂ "»7 U (W ) — 
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Hence to show (5.11), it is enough to show that for Q-a.s. (r),u>) 

> M diam (U^g-p J(^|fe)<r(w)) for infinitely many k. (5.12) 

Let B C D x Q, be the set such that (5.12) is not satisfied. We want to show that 

Q{B) = 0. 

Since B = where 

Brn = {(r},u>) : for every k > m, lv\k < Mdiamine© J{n\k)<r} , 

clearly B\ C B2 C . . . is an increasing sequence, hence 

Q(B) = lim Q(Bm). (5.13) 
m—>00 

Set 

a = E (pLw({r]: Vfc < M diam(U t r ep Jv\ha)})) • (5-14) 

For each k, we have 

a < E(fiu({rj : if cr G Ck and a -<rj then a G A(w)})). 

Hence, 

a < E ( Y , i'aaW)x') = E ( E 
\<r€Ch / Vo-GCjfe J 

This follows from the definition of \iw and X&{u>) = 1 P-a.s.. 

Therefore, we have a < E(Zj_k) for every k. Claim 1 implies 

a = 0. (5.15) 

Since for each m > 1, we have 

Q(Bm) = E (//w({»7 : Vfc > m lv\k < M diam(U0-e® Jn\h,)})) 
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= E | ^ '• Vk lm\k < Mdiam(U0-€x»</7JJ|feCT)}) 
\ 7 €Dm 

= E | ^2 & : V& l^r)|fc) < M diam(U0-ei) m ) J , 

yjEDm 

where T m is the cr-field generated by the maps 

u (r(<r|i)l5 • • • )r(T|,-)n) « = 1 , 2 , . . . , m - 1, a € L>m, 

hence, by scaling of //w, 

Q(Bm) = E | E : Vfc /7^|fe < Mdiam(U ( rg-p J-y^|fc0-)})|^m) 

•1J. since: /* is ^ measurable 

= j E ( (/*«({»?: Vfc lJV\k < Mdiam^^vJ^a)})]^) 
\y£Dm 

JJ, by independence 

= E \ S l y E ( ^ ( { ^ : ^ I ^ M d i a m ^ J , , ^ ) } ) ) 

-IJ, by independence 

= £ I Y1 l y E : y k l»\" < M d i a m ( u * e i > ^ U < T ) » ) 
\76Ora 

= -E J ^ a ) by (5.14) 

\yeDm J 

= 0. by (5.15) 

Therefore Q{Bm) = 0 for every m > 1. In view of (5.13), we have 

Q(B) = lim Q(Bm) = 0. 
ra—*oo 

This implies tha t (5.12) holds for Q-a.s. (77, w). 
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Claim S. For each M > 0 and P-a.s. o>, there is a set Em(v) C such t ha t 

VU(EM(W)) = X(U) a n d HS(EM(U)) < " ^ T -

Proof of Claim S. F o r e a c h ui, le t 

FM{w) = {v G D : such tha t (5.11) holds for infinitely many k }. 

Let 

GM = {U : HU>(FM(U)) = X(U) a n d l i m s u p f c _ > o o { k ( w ) : | c | = A:} = 0 } . 

It follows f rom Claim 2 and (5.3) tha t P(GM) = 1- Recall t he r andom m a p fw • 

D u —> R d given by 
OO 

fu,(r)) = rj{u) = p| Jn|,(w). 
k=l 

Let 

EM(U>) = UFM{W)). 

Suppose tO G GM, then (5.9) implies tha t 

Vu(EM(W)) = ^(/J^-^M^))) = M-FM(W)) = X{LO). 

Now, to complete the proof of Claim 3, we only need to show tha t 7is (£/m(^)) 5: 

by using the Vitali Covering Theorem. 

First , note tha t EM(U) is HS-measurable, because the complement of EM{^>) 

has vu measure zero, and Lemma 5.2.3 implies K(U)\EM(W) has HS-measure zero. 

Hence Em{w) is H s -measurable . 

Now we form a Vitali cover for EM(U>). For any £ > 0, choose kg > 0 such t ha t 

if M > kg, then < 8. For each rj G FM(w), there exists the smallest integer 

ks(il) > kg such t ha t (5.11) holds. 
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Define 

Isiv) — U 

The collection of sets Ww = { I s ( i ] ) '• $ > 0, r} € Fm(&) } is a Vitali class for EM(w)-

The Vitali Covering Theorem (cf. [Fa] p . l l ) implies that for any given e > 0, we 

may select a (finite or countable) disjoint sequence {Ui} from W such that 

Hs(Em(w)) < + £• (5.16) 

Since each set Ui has the form I s { v ) f° r s o m e ^ > 0 and rj e Fm{w), (5.11) and 

(5.16) imply that 

Hs(EM{U)) < ^2 |J7»|" + e 
i 

MS 

I 

< - ^ j v u ( U i U i ) + e by disjointness 

< —^—X(UJ) + e since VU has total mass X(LO). 
- MS W 

By letting e —»• 0, we get 

Hs{EM{U)) < D 

Claim 4. Hs{K{OJ)) = 0 for P-a.s. u>. 

Proof of claim 4• Let 

AM = \UJ . 3 EM(U) C K(U) such that Vu(EM(U)) = -X"(w) 

X ( w ) ' 
a n d HS{EM{U)) < 

MS 

Claim 3 implies P(AM) = 1 f° r every M > 0. 
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Let 

A — {u> : 3 E(u>) C K(to) such that uW(E(uj)) = X(u>) and HS(E(u>)) = 0} . 

Then A = 

Since A\ D A2 D ..., we have 

P(A) = lim P(AM) = 1-
V ' M—t-oo 

Hence for P-a.s. u>, there exists a set E(w) such that 

VU{E(U)) = X(U>) and HS{E(LO)) = 0. (5-17) 

Applying HS\K(UJ) C again, we get 

H\K{07) \ £?(w)) < uu(K(u) \ E(W)) 

= vu(K(io)) - vu(E(u)) 

= X(u)-X(u) by (5.17) 

= 0. 

So 

HS(K(U)) = HS(E(U>)) = 0. 

This completes the proof of Theorem 5.2.1. • 

Now we provide the proofs of Lemmas 5.2.2 and 5.2.3. 

Proof of Lemma 5.2.2. Since 

Jtrr(w) = <5^(0;) O ••• O 5ct|, . (w) o 5{r(r|1) O • • • O 5,
<T(r||T|)(c<;)( J), 
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then 

[ J o • • • o 5CT|k|(a;) ^Urei>5'(T(r|1) o • • • o 5,
<T(T||T|)(a;)(J)^ , 

T£V 

and 

diam J<TT{U) = rV|i(a;) • • • r°\\<,\ diam ^Urgu5(r(r|1) o • • • o 5 (T( r | lT |)(w)(J)j • 

(5.18) 

Moreover, since 

J^U)) = ^ ( w ) 0 • • • O 5<r||<r|(w)(J), 

and 

diam JA(U)) = R^ (w)... rv|M (u>) diam( J), (5.19) 

these imply that 

{cj : diam J f f r(w) > 6 diam J& } 

= (w : diam o • • • o SA{T\ )(w)(J)) > e diam J } . 
^ V J } (5.20) 

By i.i.d. (see Definition 5.1 (3)), and that V is an maximal antichain, 

Ur€i)5
,
CT(r|1) o ••• o 5r

<r(r|lT|)(a;)(J) and U r e p ST]I O • • • o S r | | r |(w)(J) 

are identically distributed for each A 6 V. Therefore (5.20) implies that 

P ( diam J<TT(v) > e diam Jo- ) = P ( diamJ r(w) > e diam J ). • 

Proof of lemma 5.2.3. Let O0 C ft be such that 

£20 = {u '• limsupfe_i.oo0(r : cr G D*} = 0} . 
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(5.3) implies that P(f2o) = 1-

Let u> G fto and E C K(u>) be a Borel set. In view of (5.7) and (5.5), we have 

ME) = lim Y , = l i m E 
K • ̂  CO ft —̂  CO 

crZzDk , Jo-nJ5^0 crGDfc, Jo-nE^0 

Therefore, for any e > 0, there exists a K > 0 such that if k > K 

MB) > Y, ' » - e - (5-21) 
<T £ D k i J < r ( ~ \ E ^ 0 

Since cj G Oo, by definition of Oo we have, for every 8 > 0, there exists a kg > K 

such that 

sup la < 8. 
cr£Dhe 

Moreover, since 

U J -
cr$zDks 

is a 6-cover of E, (5.21) implies that 

HUE) < Y, ' » < "»(B) + £-
crDks, Ja- nE^t 

By letting 8 —> 0, we get 

W{E) < vw{E) + e. 

By letting e —* 0, we get 

ns(E) < VU(E). 

Finally, the regularity of 7is leads to 

W ' [ % ) < i / w . • 
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5 . 3 A WEAK ^-CONDITION 

In this section, we will modify the ^-condition to a weak ^-condition and show 

that they are equivalent. Therefore Graf's result (see Theorem 5.1.2 in Section 5.1) 

is true under the weak ^-condition. 

1. Definitions. 

(1) Recall the ^-condition : 

There exists a 8 > 0 such that r* > S for i = 1 , . . . , n and /x-a.s. ( S \ , . . . , Sn) £ 

(Sim(J))n, where is the ratio of Si. 

(2) The weak ^-condition : 

For P-a.s. u £ Q, = (Sim(J)n)° , there exists £(<*>) > 0 such that info-gjr)*r^(w) > 

6(cj), where r(T(u>) is the similarity ratio of ) £ Sim(J). 

Remark. If we define 

>[0,1] such that = inf »v(w), 
cr£D* 

then the S-condition means that there exists a S > 0 such that 

P(co : ^(w) > S) = 1, (5.22) 

whereas the weak S-condition asserts that 

P(u : <f>(u) > 0) = 1. (5.23) 

2. Theorem 5.3.1. The S-condition and the weak S-condition are equivalent. 

Proof. In view of (5.22) and (5.23), the ^-condition implies the weak ^-condition. 

Therefore all we need to show is that the weak condition implies <$-condition. We 

will show this by contradiction. 
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Suppose that the weak ^-condition is satisfied, and the <$-condition is not. For 

each TO G N, let Am = {(<$!?• • • ,Sn) '• min^n < then (J,{Am) > 0. 

Let C = {w G fi : info-go* r9{u) = 0}, then 

C = G : inf rv(w) < —} 
i o-eD* m 

— n°° 
— I 

where C m = {w G r<r(w) < ^ } . 

Clearly 

Ci D C2 D 

Therefore 

P{C) = lim P{Cm). 
m—+ 00 

Since C ro = { w € 0 : inf^gD* rv(u>) < ^ } , we have 

CCm = {to G 0 : V<7 G -D* rCT > } 
rn 

— C\(T£D* G 0 : (Sal , . . . , Scm) gCA 

m } • 

By independence 

p (CC m ) = I ] P ( { w e f i : ( S f f l l . . . ? *Scrn) G CAm}) 
<T€D* 

= J J jxiZAm) 
<t£D* 

= 0, 
where the last equality is due to the fact that pt,{Am) > 0, i.e. /x (CAm) < 1. 

Hence 

P{Cm) = 1, 
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so 

i.e. 

This implies that 

i.e. 

P(C) = lim P(Cm) = 1 

P ( u € : inf r<,(u>) = 0 = 1 . 
V <?£D* J 

P (uj € ^ : inf rv(u>) > 0 ) = 0 
\ <t€D* J 

P (u; £ : <KW) > 0) = 0. 

This contradicts the weak ^-condition. • 



CHAPTER VI 

THE STUDIES OF LINEAR CELLULAR 

AUTOMATA USING MW-GRAPHS 

The phenomena of Cellular Automata were discovered very early in the history 

of science. Pascal (1623 -1662)'s triangle, shown in Figure 6.1, was once considered 

the first example of Cellular Automata [PJS]. However, long before that, a similar 

Chinese arithmetic triangle had appeared in an ancient science journal around 1303 

[PJS], as shown in Figure 6.2. Nevertheless, it was not until 1940s that considerable 

developments were achieved by Konrad Zuse, Stanislaw Ulam and John von Neu-

mann [TM] to simulate the behavior of complex and spatially extended structures. 

During the 1970s and 80s, cellular automata received a great revival through the 

works of Stephen Wolfram [Wol], who edited an anthology surveying the current re-

search work of cellular automata. Since cellular automata have discrete structures, 

which allow exact computation, and show considerable richness of behavior, they 

can be used to model chaotic phenomena. Today cellular automata have become 

common mathematical models of dynamics of discrete variables in discrete space 

and time, with applications in physics, chemistry, population dynamics and parallel 

computing. 

General cellular automata can simulate universal structure, yet their long term 

behavior can be very hard to characterize at same time. By contrast, a special 

class of cellular automata, linear cellular automata, shows additional structures 

and permits a much more detailed theoretical analysis. These special linear cellular 

automata and their properties will be discussed in this chapter. 
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IK 
I 1 ] 0 ( J J 0000 

00000 000000 

FIGURE 6 . 1 PASCAL'S TRIANGLE. 

«V8? 

FIGURE 6 . 2 A CHINESE ARITHMETRIC TRIANGLE. 

6 . 1 INTRODUCTION AND EXAMPLE 

Cellular automata can be generally described, in terms of two concepts: configu-



81 

ration, and transition rule, defined as follows: 

(1) A p-state configuration is a pattern in which each cell of an n- dimensional 

lattice contains one of the integers: 0,1, • • • ,p — 1. We use a symbol lo to 

denote a configuration. Thus, LO : Zn —> {0,1, • • • ,p — 1}. 

(2) A transition rule is a map F which transfers a configuration w to a new 

configuration F(u>). 

Cellular automata come in one, two, or many dimensions. The following is an 

example of one-dimensional cellular automata. 

A one-dimensional cellular automaton consists of a row of cells, each containing 

an initial number, and the transition rule specifying how these numbers change at 

each time unit. Assuming in the initial state of the automation, all cells are filled 

with 0's except a single one with a number 1, such as: 

•••010000000 

The transition rule F is that the number in each cell is to be replaced by the sum of 

itself and its left neighbor. Therefore, after one time unit (meaning one application 

of F), the state of the automation will become as the following: 

-011000000-•• . 

Another time unit later, the state will be: 

• • • 0 1 2 1 0 0 0 0 0 . . . , 

and followed by: 

•••013310000 

•• • 014641000 . . . , 
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and so on. 

In this example, the cellular automaton is in fact a computer which calculates 

the coefficients of the powers of binomials, such as: 

(a + b)4 = a4 + 4a3 6 + 6a262 + 4ab3 + b4. 

6 . 2 DEFINITIONS OF LINEAR CELLULAR AUTOMATA ( L C A ) 

AND NOTATIONS 

Linear cellular automata (LCA) have been studied by Wolfram [Wo2,Wo3], Will-

son [Wil] and Haeseler et al. [HPSlj. Willson has given the definitions and termi-

nology for LCA in case of p = 2. We will expand it to the general cases where p is 

any positive integer greater than or equal to 2. 

1. Definition of LCA. 

Let p > 2 be an integer. By Zp[x], we denote the ring of polynomials with 

coefficients in the field Zp. 

In this chapter, we only deal with two-dimensional p-state configurations, i.e. 

each cell can be occupied only by a number in "Lp. A convenient way to describe a 

two-dimensional configuration u> is given as the following: 

A configuration to is written as a Laurent series in 2 variables, where the first 

variable s corresponds to space and the second t to time, respectively. The Laurent 

series expression for u> contains one term for each cell (i,j) occupied by a 

positive integer aij. The configuration u> can be written then as a sum 

Y l o,ijSltJ. (6.1) 
aij >0 

For example, the configuration u> with a i j = 0 except a _ = 2, ao,o = 1, and 

02,-1 = 5 can be written as: 

(v = 2 s^t1 + s°t° + 5 s2t~l = 2 s - 1 t 1 + 1 + 5 s 2 t _ 1 . 
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Suppose a polynomial r(s) £ %p[s] is given, one can define an additive transition 

rule L by giving the Laurent series of L(U>): 

L(OJ) = r(s)u mod p, (6-2) 

where the multiplication is performed in the usual manner except coefficients are 

obtained with modulo p. 

For example, if u> = 1 + 2s2 and r(s) = 2 + s + s3 € Zs[s], then 

L(U>) = (1 + 2S2)(2 + s + S3) 

= 2 -f" <s "I- s2 -)- 2 m o d 3. 

We call L additive because it satisfies 

L{U> + r) = L(U>) + L(T) mod p, 

although modulo p prevents it from having ordinary linearity. 

The graph construction F induced by r and L shows the evolution of LK{U>) in 

space-time. The process consists of placing a copy of L(U>) above a copy of U, a 

copy of L2(UJ) above of L(UI), etc. We can write F as: 

F(U>) = (1 + tr(s))u>. (6-3) 

Thus, if a; is a one-dimensional configuration in variable s, its global construction 

will be: 

F(IO) = w + tL(u>) 

F2(u>) = u> + tL(u) + t2L2( u>) 
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Fk(u) = u> + tL(u>) + t2L2{u>) -| + tkLk(u)) 

(6.4) 

One can see that Fk{u) demonstrates the evolution w, L(u),..., Lk(u>) with re-

spect to time k. The coefficient of tk is Lk(u>), which permits us to study the pattern 

at time k. Figure 6.3 shows a graph construction F induced by r(s) = 1 + s + s2 

mod 2 with initial configuration u> =• 1, where k = 13. 

0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 1 0 0 
0 1 1 0 1 0 1 1 0 1 1 0 1 0 1 1 0 1 1 0 1 0 1 1 0 0 0 0 
0 1 0 1 0 1 0 0 0 1 0 1 0 1 0 0 0 1 0 1 0 1 0 0 0 0 0 0 
0 1 1 1 0 0 0 0 0 1 1 1 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 
0 1 1 0 1 1 0 1 1 1 0 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 
0 1 0 1 0 0 0 1 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 1 1 1 0 1 1 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 1 1 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Figure 6.3 A Graph Construction F Induced by r(s) = 1 + s + s2 mod 2. 

In conclusion, it is clear that, given a polynomial r(s) € Zp[.s], one can induce a 

cellular automaton using (6.2) and (6.3). We call this cellular automaton a linear 

cellular automaton (LCA) and denote it by F(r). 

2. m-Blocks and Induced p x p Matrices. 

Here we intend to establish the concepts of m-blocks and induced p x p matrices 

which will allow us to relate a LCA with a MW-graph. 

From now on, we assume p > 2 and p is a prime number. Let F(r) be a LCA 

induced by r(s) E Sp[s], and m be the degree of r(.s). A m-block is a sequence 

x m - i i * *' )®o of length m, where Xi £ {0,1, • • • ,p — 1}. We denote by &o the block 

of zeros, i.e. bo = 0, • • • ,0. A m-block is nontrivial if it is not the block of zeros. 
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There are pm — 1 nontrivial m-blocks, and we denote them by 61, 62, • • • , bpm_ 1. 

The i-th block bi is the ra-tuple, which is the p-adic expansion of i with initial zeroes 

to make it into a sequence of length m. Some nontrivial m-blocks are listed here: 

h =<) , • • • , 0 , 0 , 1 

= 0 , - - - , 0 , 0 , p - l 

bp = 0,--- ,0 ,1 ,0 

bp2 = 0,--- ,1 ,0 ,0 

bpm-1 = p - l , p - l , - - - , p - l , p - l , p - l . 

In order to define the induced p x p matrix, we need to study the properties of 

coefficients for some specific configurations. 

Defini t ion. For a series ai,nsl> we caii the finite string 

a part (or a portion) of the coefficients of ^ altHs\ where i € Z and m G N are 

arbitrary. 

Moreover, for a finite string 

®i,ni &i-fl,nj ? 

we say it forms a part (or a portion) of the coefficients of a series ^ bi^ns
% if 

{bi,ni ' ' ' 1 bi-\-m,n) = , ®i+m,n)-

Suppose uj is an one-dimensional configuration with Laurent series ^ UiS1 and 

r ( s ) = YaL 0 ais%• % ( 6 - 2 ) > w e h a v e 

L(u) = r(s)u>(s) = (6.5) 
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where the i-th coefficient of L(u) is given by 

T\ = a0^i + a\U>i-l + a,2U>i—2 + • • • + mod p. (6-6) 

Note from (6.5) and (6.6) that the entry in L(u>) at the site i depends on the 

coefficients of to at the site i and at the m sites to the left of i. 

Moreover, if we start with an initial (or "seed") configuration u> = 1, using (6.2), 

we have 

L(u) = r(s), L2(u>) = r2(s), • • • , = r » . 

Therefore, in order to study the pattern of the LCA, we should consider the orbit 

{rn(s)}ngN under the iteration of r. 

We write rn(s) = where a/.ra = 0 for I > nm. Using Fermat's 

Theorem r(s)p — r(sp) mod p (cf.[HW]), we have rpn{s) = ai,n$pl• Hence the 

coefficients of rpn(s) are defined by the coefficients of rn(s) as follows: 

For each I > 0, 

®pi,pn ~ ®i,n a n d o>pi-\-i,pn — 0 f o r i 1, )P 1. ( 6 . 7 ) 

Similarly, if r n + ] (s) = ai,n+isl, then the coefficients of rp(n+1)(<s) are defined 

in the same manner, and we have the following scheme: 

0 • • • • • Ootp^/_|_i^1) 0 • • • 0 (6-8) 

0 • 0 • 0 d p l t p n 0 • 0^(i-|-l),pra 0 • • • 0, (6.9) 

where (6.8) and (6.9) are portions of the coefficients of rn(s) and r n + 1 ( s ) , respec-

tively. 

What remains is to determine the coefficients of rpn+3(s) for j € {1,2, •• • , p — 

1}. In view of (6.5) and (6.6), since H"1"^^) = r(s)r J 5 n + J x(s), for each pair of 
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positive integers, the coefficient api+i ) p n+j is determined by and the 

coefficients at the m sites to the left of pi + i as indicated in the following: 

®pl-\-i — rn,pn+(j — 1)i — m+1 ,pn+(j — 1)i ' ' ' i®pl-\-i — l,pn+(j — l)i j —1) • 

Claim. All coefficients api+iipn+j where i,j € {0, ••• ,p — 1} together with their 

to — 1 left neighbors shown in the following scheme, 

(6.10) 

®pl—(m — 1) ,pn-\-(p — 1) ' * * ®pl,pri-{-(p—1) * * * 1) ,pn-\-(p — l ) 
apl—(m — l),pn-^(p—2) * * * apl,pn-\-(p —2) * * * apl-\-(p—1) ,pn-\~(p—2) 

®Jpl — {m — l))pn * * * Q>pl,pn * * * ®pl-{-(p--l) ,pn 

are determined by the m-block 

@>1—m+2,n? 5 (6.11) 

Proof, Since (6.11) is a part of the coefficients of rn(«s), then the following 

0 * * * 0 ^p(l—m+l),pn 0 * * * 0 Q>p(l—m-\-2),pn 0 * * * 0 * * * &p(l—1),pn 0 * * * 0, CLpl^pn 0, , 0 

forms a part of the coefficients for r p n , where 

^p(l — ipri — G>1—m+st,n for ^ — 1, * * * , TYl Using (6.9). 

Using (6.5) and (6.6), we obtain part of coefficients for r p n + 1 ( s ) , as indicated in 

the following: 

ap(l—m+1)— (p—l) — mypn-\-l *** ap(l—l),pn+l *** 1 *** apl+(p — 1),pn+l• 

Repeating the process, we get a part of coefficients for rpn~*~2(s). Continuing this 

procedure, we get a part of coefficients for r p n + ^ _ 1 ) ( s ) as follows 

apl — (m—l),pn-\-(p — 1) ' * * apl,pn+(p — 1) ' * * apl+(p—l),pn+(p~l)* 
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Thus all coefficients are obtained. • 

In terms of polynomials, our observation can be formulated in the following way: 

For the m-block b = a/_m+2,n) ' ' ' iai,ni we can consider the corre-

sponding polynomial 

= -f- ~f~ ' ' ' "4" &l,n3 

Then the coefficient api+i>pn+j is given by: 

Hsp)r{sY]p(m_1)+i, 

which is the [p(m — 1) + i)-th coefficient of the polynomial Tb(sp)r(sy. 

We can now associate each nontrivial m-block 6; = xm-y, • • • ,#o with a p x p 

matrix: 

cr(bi) = K ^ a ^ { 0 | 1 . . . i { , _ 1 } (6.12) 

where coap is a m-block defined by: 

= >yo where yi = [ r 6 , . ( ^ ) r ( 3 / ] p ( m _ 1 ) + a _ r (6.13) 

Remark. The set of matrices {<r(bi) : i = 1,- • • ,pm — 1} is regarded as matrix 

substitution system induced by r (cf. [.HPS1]). 

6 . 3 LINEAR CELLULAR AUTOMATA AND M W - G R A P H S 

As we mentioned before, many people have studied the evolution of LCA since 

1980s. Wilson [Wi2] showed that LCA can be generated by fractal sets; Haeseler et 

al. [HPSI] associated LCA with matrix substitution systems. Their research works 

provide effective tools to explore many features of the pattern formation of LCA. 
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In this section however, we will provide a different approach which associates each 

LCA with a MW-graph directed system to study its evolution. 

First of all, we will give geometric representations for LCA and introduce the no-

tion of rescaled evolution sets of LCA. Then we will associate the rescaled evolution 

sets with MW-graph directed fractal sets. Finally we will calculate the Hausdorff 

dimensions and measures for the rescaled evolution sets of LCA. 

1. Geometric Representations and Rescaling Procedures. 

We denote by (C(R2), djj) the space of nonempty compact subsets of R2 equipped 

with the Hausdorff metric. 

Let oj = ^2a.. >o be a configuration as defined in (6.1). We associate u> 

with a subset A of M2 such that 

A = U w h e r e = [ M ] 2 + (*> .?)• 
Ojj >0 

We call the set A a geometric representation of u>. 

Let F(r) be a LCA induced by r G Zp[a], and w be a one dimensional configura-

tion in variable s. In view of (6.2), (6.3) and (6.4), we have 

F°(w) = w 

F1 (u>) = to + tL{uj) 

F2(UI) = u> + tL(u) + t2L2(co) 

FN~1(OJ) = u + tL(u>) + t2L2{ u) + • • • + tn-lLn~l{u) 

Therefore, for each n we associate JF'n_1(tj) with its geometric representation Yn — 

U _0 Ua i j >o lij• As we monitor the evolution for n = 1,2, • • •, we see a pattern 
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developing: 

*"•= U *.« 
ai,o >0 

Y' = U U *> 
j=0 aij >0 

n — 1 
y » = u U T" 

j=0 aij >0 

As n —• oo, we denote the infinite evolution pattern by 

oo OO 
Y= U y » = U U '«• 

n—1 j=0 at-j >0 

In addition, a limit set Z can be associated with Y by introducing sequences of 

rescaled finite parts of Y as follows: 

n —1 

Z(n) = = U U hi, n ys w n 
3—0 aij >0 

for any n and any one dimensional configuration oo. 

The following theorem is proved by Willson [Wi2]. 

Theorem 6.3.1. Suppose F(r) is a LCA induced by r € Zp[x], and u> is any one 

dimensional configuration in variable s with a finite number of positive terms. Then 

the sequence {Z(pfc)}jtgN is a Cauchy sequencein C(R2, dn). Its limit is independent 

of u> and is denote by Z: 

Z = lim Z(pk). (6.14) 
k—^oo 

We call the set Z in (6.14) the rescaled evolution set induced by F(r). 
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2. The Association of the Rescaled Evolution Set Z with MW-Graph 

Directed Fractal Sets. 

Let F(r) be a LCA induced by r € Zp[s\ with degree of m. We define a m-block 

b to be an accessible m-block, if (i) 6 ̂  bo, and (ii) & is a portion of the coefficients 

of rJ(.s) for some j > 0. 

We then induce a MW-graph as follows: 

Let V be the vertex set of all accessible m-blocks. For each u & V, we define a 

complete metric space Xu = I = [0, l]2. Recall that each m-block bi is associated 

with a p x p matrix a(b{) as in (6.12) and (6.13). Using the matrix cr(fej), we can 

define the set of edges of V. 

For each pair («, v) € V x F , the set of edges from u to v is: 

EUv = '• c(u)a,p = where a(u)a^ is the a/3-th entry of cr(u). 

Furthermore, E = Uuv^vEuv is the set of edges associate with the vertex set V. 

For each e € Euv, e = (a, /3), define a similarity map : Xv —• Xu such that 

V p p / 

Clearly f*v has similarity ratio 8e == ̂  for each e € E. 

Hence G = ^(V, E),(Xu)U£v,(feV)e£E,'re = ^ ^ forms a MW-graph and satisfies 

the OSC, since intf^v(Xv) n i n t f y ' ( X v > ) = 0, for e ^ e'. 

Definition. The system (feV)eeE corresponding to the MW-graph 

G=((V,E),(Xu)ueV,(fy)e£E^ 
p 

is called a p-adic hierarchical iterated function system. 
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As indicated in Theorem 1 of [MW1], there exists a unique invariant list (Au)uev 

of nonempty compact sets Au C Xu such that: 

A . = y u 

v&V e£Euv 

If we denote by the set of all compact subsets of Xu equipped with, the 

Hausdorff metric <i#, and let K = (Hw^y C(XU), <ioo)? where doo is the maximum 

metric, defined by 

doo(-B, C) = m&Xu£vdH(Bu,Cu) where B = (Bu)ueV C = (CuGy), 

also define $ : K —> /C such that 

*(*). = U U 
v£V etzEuv 

Then $ is a contraction on (J[u£VC{Xu), doo) and its fixed point is the invariant 

list 

The following theorem is obtained by combining Theorem 4.4 and Proposition 

3.2 in [HPS1]. 

Theorem 6.3.2. Let F(r) be a LCA induced by r of degree m, and Z be the 

rescaled evolution set of the LCA. Also let (Au)uev be the invariant list of the 

MW-graph induced by F(r), then 

m~1 j- th 
Z = ( J (Aej + (j, 0)) , where ej = (0 • • • 0 1 0 • • • 0) € V. 

j=0 

3. Dimensions and Measures of Rescaled Evolution Sets. 

Let F(r) be a LCA induced by r of degree m and Z be the rescaled evolution set 

of the LCA. In view of Theorem 6.3.2, in order to find the Hausdorff dimension of 
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Z, we only need to find the Hausdorff dimension of the corresponding MW-graph 

directed fractal sets (An)U£v-

Let G = ((V,E),(Xn)U£v,(feV)e€.E,re = be the MW-graph induced by F(r). 

We call the matrix 

B — (tuv^)u,v<zV5 where tuv — • c £ E u v } 

the accessible transition matrix of G. Since p is a prime number, it follows from 

Corollary 2 of Theorem 4 in [HPS2], that G is strongly connected, which is equiva-

lent to the accessible transition matrix B being irreducible (cf. [BR]). 

Using Theorem 3 of [MW1], the Hausdorff dimension a of Au satisfies $(or) = 1, 

where $(a) is the spectral radius of the construction matrix Ba (see definition 

2.1.3), 

Br =^B- ( 6 - 6 ) 
P P 

\e€zh/uv / UjV£Y 

Moreover, if A is the maximum eigenvalue of B, then is the maximum eigen-

value of Ba, and —-A = $(a). 

For $(«) = 1, we get 

= log A 
log p' 

Hence the Hausdorff dimension of Au is 

dimjff(A«) = 
log p 

By applying Theorem 6.3.2, we obtain: 

dim H(Z) = 
log p 

Also from Theorem 3 of [MW1], we have 

0 < Ha{Au) < oo for all u € V. 



94 

This implies 

0 < Ha(Z) < oo. 

Finally, we will provide an example to calculate the Hausdorff dimension and 

measure of a LCA using the techniques discussed in this chapter. 

Let F(r) be a LCA induced by r(a) = 1 + s + s2 € Z2[s] with degree of 2, and 

Z be the rescaled evolution set. In order to find the associated MW-graph G, we 

have to find the corresponding vertex set V and the set of edges E induced by F(r). 

Note that there are four 2-blocks 

60 = 00 6i = 01 6 2 = 1 0 63 = 11, 

and all nontrivial 2-blocks are accessible. Therefore we have the vertex set V = 

(61, 62, 63). Using (6.12) and (6.13), we get 

<7(61) 

a (h) 

r(h) 

61 63 
61 62 

63 62 
60 60 

62 61 
61 62 

Hence the sets of edges are as follows: 

En = {(0,0), (0,1)} Eu = {(1,0)} E13 = {(1,1)} 

E 2 i = 0 E22 = {(1,1)} E23 = {(0,1)} 

£31 = {(0,0), (1,1)} E32 = {(1,0),(0,1)} £33 = 0. 

The Hierarchical iterated function system ( / " u ) e is then as follows: 
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/(,0,0) : 

f ( h ) :Xi-*Xi 

f\lo) : X 2 ^ X 1 

f i h ) = ^3 - X> 

f i l l ) ••X2->X2 

^ - *2 

/("o) : 

/(M) : * 

/(T,o) : 

f i l l ) • X2 

X, 

x3 

X: 

, (x y, 
x,y) -*• (2' 2} 

, , s y + 1. 
* , ! / ) -* ( j , — ) 

®>y) • 

®,y) • 
®>y) • 

®,y) 
®>y) 

x,y) 

x,y) 

x,y) 

( ) 

{x + l y, 
1 2 ' 2) 

,x + 1 y + lv 

^ 2 ' 2 ' 
x +1 y + 1 

2 ' 2 

V 2 j 

( - -) 
4 ' 2 j 

x + 1 y + 1. 
^ 2 ' 2 j 

x + 1 y, 
( - -) 

2 ' 2 

y + _ l \ 
2' 2 j' 

As the result, we obtain the accessible transition matrix 

2 2 0 
B = 

whose maximum eigenvalue is A = 1 + y/5. 

Hence the Hausdorff dimension a of Z is 

log A log(l + a/5) 
a = 

log p log 2 

Moreover, since matrix B is irreducible, we have 

0 < Ha(Z) < oo. 



CHAPTER VII 

QUESTIONS 

The following is a list of some of the questions that have arisen in my study. 

(1) For a conformal iterated function system S, are the OSC and the SOSC 

equivalent to each other? 

(2) For an n-ary random self-similar construction J, suppose r* = 1 /i-a.s. 

(i) Is then the 8 condition a necessary condition for 7{3(K(UJ)) > 0 P-a.s. ? 

(ii) If HA(K(UJ)) = 0 P-a.s., does there exist a HausdorfF gauge function of 

the form h(t) = tsL(t), where L(t) is a slowly varying function such that 

0 < HH{T){K(OO)) < oo P-a.s.? 

(3) Can we associate a fractal set generated by a M-state linear cellular au-

tomaton with a graph directed construction, where M > 2 is an arbitrary 

positive integer? 
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