Deterministic Brownian Motion

PDF Version Also Available for Download.

Description

The goal of this thesis is to contribute to the ambitious program of the foundation of developing statistical physics using chaos. We build a deterministic model of Brownian motion and provide a microscpoic derivation of the Fokker-Planck equation. Since the Brownian motion of a particle is the result of the competing processes of diffusion and dissipation, we create a model where both diffusion and dissipation originate from the same deterministic mechanism - the deterministic interaction of that particle with its environment. We show that standard diffusion which is the basis of the Fokker-Planck equation rests on the Central Limit Theorem, ... continued below

Physical Description

vii, 172 leaves : ill.

Creation Information

Trefán, György August 1993.

Context

This dissertation is part of the collection entitled: UNT Theses and Dissertations and was provided by UNT Libraries to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 90 times . More information about this dissertation can be viewed below.

Who

People and organizations associated with either the creation of this dissertation or its content.

Publisher

Rights Holder

For guidance see Citations, Rights, Re-Use.

  • Trefán, György

Provided By

UNT Libraries

The UNT Libraries serve the university and community by providing access to physical and online collections, fostering information literacy, supporting academic research, and much, much more.

Contact Us

What

Descriptive information to help identify this dissertation. Follow the links below to find similar items on the Digital Library.

Degree Information

Description

The goal of this thesis is to contribute to the ambitious program of the foundation of developing statistical physics using chaos. We build a deterministic model of Brownian motion and provide a microscpoic derivation of the Fokker-Planck equation. Since the Brownian motion of a particle is the result of the competing processes of diffusion and dissipation, we create a model where both diffusion and dissipation originate from the same deterministic mechanism - the deterministic interaction of that particle with its environment. We show that standard diffusion which is the basis of the Fokker-Planck equation rests on the Central Limit Theorem, and, consequently, on the possibility of deriving it from a deterministic process with a quickly decaying correlation function. The sensitive dependence on initial conditions, one of the defining properties of chaos insures this rapid decay. We carefully address the problem of deriving dissipation from the interaction of a particle with a fully deterministic nonlinear bath, that we term the booster. We show that the solution of this problem essentially rests on the linear response of a booster to an external perturbation. This raises a long-standing problem concerned with Kubo's Linear Response Theory and the strong criticism against it by van Kampen. Kubo's theory is based on a perturbation treatment of the Liouville equation, which, in turn, is expected to be totally equivalent to a first-order perturbation treatment of single trajectories. Since the boosters are chaotic, and chaos is essential to generate diffusion, the single trajectories are highly unstable and do not respond linearly to weak external perturbation. We adopt chaotic maps as boosters of a Brownian particle, and therefore address the problem of the response of a chaotic booster to an external perturbation. We notice that a fully chaotic map is characterized by an invariant measure which is a continuous function of the control parameters of the map. Consequently if the external perturbation is made to act on a control parameter of the map, we show that the booster distribution undergoes slight modifications as an effect of the weak external perturbation, thereby leading to a linear response of the mean value of the perturbed variable of the booster. This approach to linear response completely bypasses the criticism of van Kampen. The joint use of these two phenomena, diffusion and friction stemming from the interaction of the Brownian particle with the same booster, makes the microscopic derivation of a Fokker-Planck equation and Brownian motion, possible.

Physical Description

vii, 172 leaves : ill.

Language

Identifier

Unique identifying numbers for this dissertation in the Digital Library or other systems.

Collections

This dissertation is part of the following collection of related materials.

UNT Theses and Dissertations

Theses and dissertations represent a wealth of scholarly and artistic content created by masters and doctoral students in the degree-seeking process. Some ETDs in this collection are restricted to use by the UNT community.

What responsibilities do I have when using this dissertation?

When

Dates and time periods associated with this dissertation.

Creation Date

  • August 1993

Added to The UNT Digital Library

  • March 26, 2014, 9:30 a.m.

Description Last Updated

  • Jan. 21, 2015, 3:51 p.m.

Usage Statistics

When was this dissertation last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 90

Interact With This Dissertation

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Trefán, György. Deterministic Brownian Motion, dissertation, August 1993; Denton, Texas. (digital.library.unt.edu/ark:/67531/metadc279262/: accessed October 23, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; .