Attenuation of Escherichia Coli Aspartate Transcarbamoylase Expressed in Pseudomonas Aeruginosa Mutant and Wild Type Strains

PDF Version Also Available for Download.

Description

No apparent repression of pyr gene expression in Pseudomonas aeruginosa is observed upon addition of exogenous pyrimidines to the growth medium. Upon introduction of the subcloned Escherichia coli pyrBI genes for aspartate transcarbamoylase (ATCase) into a P. aeruginosa pyrB mutant strain, repression was observed in response to exogenously fed pyrimidine compounds. The results proved that it is possible to bring about changes in pyrimidine nucleotide pool levels and changes in transcriptional regulation of gene expression as a result. Thus, the lack of regulatory control in P. aeruginosa pyr gene expression is not due to an inability to take up and ... continued below

Physical Description

viii, 85 leaves : ill.

Creation Information

Liu, Haiyan, 1966- December 1994.

Context

This thesis is part of the collection entitled: UNT Theses and Dissertations and was provided by UNT Libraries to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 147 times , with 4 in the last month . More information about this thesis can be viewed below.

Who

People and organizations associated with either the creation of this thesis or its content.

Chair

Committee Members

Publisher

Rights Holder

For guidance see Citations, Rights, Re-Use.

  • Liu, Haiyan, 1966-

Provided By

UNT Libraries

The UNT Libraries serve the university and community by providing access to physical and online collections, fostering information literacy, supporting academic research, and much, much more.

Contact Us

What

Descriptive information to help identify this thesis. Follow the links below to find similar items on the Digital Library.

Degree Information

Description

No apparent repression of pyr gene expression in Pseudomonas aeruginosa is observed upon addition of exogenous pyrimidines to the growth medium. Upon introduction of the subcloned Escherichia coli pyrBI genes for aspartate transcarbamoylase (ATCase) into a P. aeruginosa pyrB mutant strain, repression was observed in response to exogenously fed pyrimidine compounds. The results proved that it is possible to bring about changes in pyrimidine nucleotide pool levels and changes in transcriptional regulation of gene expression as a result. Thus, the lack of regulatory control in P. aeruginosa pyr gene expression is not due to an inability to take up and incorporate pyrimidine compounds into metabolic pools, or to an inability of the RNA polymerase to respond to regulatory sequences in the DNA but is probably due to a lack of specific regulatory signals in the promoter of the genes themselves.

Physical Description

viii, 85 leaves : ill.

Language

Identifier

Unique identifying numbers for this thesis in the Digital Library or other systems.

Collections

This thesis is part of the following collection of related materials.

UNT Theses and Dissertations

Theses and dissertations represent a wealth of scholarly and artistic content created by masters and doctoral students in the degree-seeking process. Some ETDs in this collection are restricted to use by the UNT community.

What responsibilities do I have when using this thesis?

When

Dates and time periods associated with this thesis.

Creation Date

  • December 1994

Added to The UNT Digital Library

  • March 26, 2014, 9:30 a.m.

Description Last Updated

  • June 19, 2014, 9:53 a.m.

Usage Statistics

When was this thesis last used?

Yesterday: 0
Past 30 days: 4
Total Uses: 147

Interact With This Thesis

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Liu, Haiyan, 1966-. Attenuation of Escherichia Coli Aspartate Transcarbamoylase Expressed in Pseudomonas Aeruginosa Mutant and Wild Type Strains, thesis, December 1994; Denton, Texas. (digital.library.unt.edu/ark:/67531/metadc279106/: accessed December 9, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; .