
m. V23W

AN ALGORITHM FOR THE PLA EQUIVALENCE PROBLEM

DISSERTATION

Presented to the Graduate Council of the

University of North Texas in Partial

Fulfillment of the Requirements

For the Degree of

DOCTOR OF PHILOSOPHY

By

Gyo Sik Moon, B.E., M.S.

Denton, Texas

December, 1995

m. V23W

AN ALGORITHM FOR THE PLA EQUIVALENCE PROBLEM

DISSERTATION

Presented to the Graduate Council of the

University of North Texas in Partial

Fulfillment of the Requirements

For the Degree of

DOCTOR OF PHILOSOPHY

By

Gyo Sik Moon, B.E., M.S.

Denton, Texas

December, 1995

Moon, Gyo Sik, An Algorithm for the PLA Equivalence Problem. Doctor of

Philosophy (Computer Science), December, 1995, 118 pp., 24 tables, references, 157

titles.

The Programmable Logic Array (PLA) has been widely used in the design of

VLSI circuits and systems because of its regularity, flexibility, and simplicity. The

equivalence problem is typically to verify that the final description of a circuit is

functionally equivalent to its initial description. Verifying the functional equivalence

of two descriptions is equivalent to proving their logical equivalence. This problem of

pure logic is essential to circuit design. The most widely used technique to solve the

problem is based on Binary Decision Diagram or BDD, proposed by Bryant in 1986.

Unfortunately, BDD requires too much time and space to represent moderately large

circuits for equivalence testing.

We design and implement a new algorithm called the Cover-Merge Algorithm for

the equivalence problem based on a divide-and-conquer strategy using the concept of

cover and a derivational method. We prove that the algorithm is sound and complete.

Because of the NP-completeness of the problem, we emphasize simplifications to re-

duce the search space or to avoid redundant computations. Simplification techniques

are incorporated into the algorithm as an essential part to speed up the the derivation

process. Two different sets of heuristics are developed for two opposite goals: one for

the proof of equivalence and the other for its disproof. Experiments on a large scale

of data have shown that big speed-ups can be achieved by prioritizing the heuristics

and by choosing the most favorable one at each iteration of the Algorithm.

Results are compared with those for BDD on standard benchmark problems as

well as on random PL As to perform an unbiased way of testing algorithms. It has

been shown that the Cover-Merge Algorithm outperforms BDD in nearly all problem

instances in terms of time and space. The algorithm has demonstrated fairly stabilized

and practical performances especially for big PL As under a wide range of conditions,

while BDD shows poor performance because of its memory greedy representation

scheme without adequate simplification.

ACKNOWLEDGMENTS

I would like to thank my advisor, Frank Vlach, for his advice, encouragement

and support during my years at the University of North Texas. He motivated me to

look at research topics in logic and verification area. Without his patient guidance

and advice, this work would not have been possible.

I also thank my other committee members, Chao-Chih Yang, Roy Thomas Jacob,

and Benedict Wong, for their comments and suggestions.

I am very grateful to my wife, Young-Sook, for her endurance. My deepest

gratitude goes to my mother in Korea who always has given me love and support

sacrificially, and to my father in memory.

111

TABLE OF CONTENTS

Page

ACKNOWLEDGMENTS iii

LIST OF TABLES vi

Chapter

1 INTRODUCTION 1

1.1 Preliminary 1
1.2 Outline of the Dissertation 3

2 THE EQUIVALENCE PROBLEM AND RELATED WORK 11

2.1 Introduction 11
2.2 Satisfiability Problems 13
2.3 Satisfiability (Tautology) Checker 16
2.4 Backtracking 24
2.5 Simplification Techniques 28

3 THE DERIVATIONAL METHOD 32

3.1 Introduction 32
3.2 The Merge Rule and Derivation 35
3.3 Operations 38
3.4 Minimal Cover 39
3.5 Uniqueness 41
3.6 Mergeability 44
3.7 Losslessness 48

4 THE COVER-MERGE ALGORITHM 52

4.1 The Merge-Loop and Proof 53
4.1.1 The Merge-Loop 57

4.2 Heuristics for the Merge-Loop 63
4.3 Falsification 66

iv

4.4 Simplifications during the Merge-Loop 74
4.5 The Merge_Loop_2 76
4.6 Algorithm Cover-Merge 79

5 RANDOM MODELS 83

5.1 Constructing Random PL As 84
5.2 Probabilistic Properties of Random PLAs 87

5.2.1 Probabilistic Analysis of Active Terms 89

6 EXPERIMENTAL RESULTS 99

7 CONCLUSION 107

BIBLIOGRAPHY 109

LIST OF TABLES

1 Truth-Functional Logical Connectives 1
2 The Merge Rule 36
3 The Intersection Rule 38
4 Trace of the Algorithm-F for Example 3.8 47
5 Types of Merges for Example 4.1 55
6 Trace of the Merge_Loop_l for Example 4.3 60
7 Sequence of Essential Merges for the Derivation of Example 4.3 62
8 Derivation Sequence using Heuristics for Example 4.4 .66
9 Trace of Falsify.l for Example 4.5 69

10 Trace of Falsify_2 for Example 4.7 73
11 Trace of the Merge_Loop_2 for Example 4.9 78
12 Trace of the Merge_Loop_2 for Example 4.10 82
13 Generating an Equivalent PLA for Example 5.1 92
14 Probabilistic Analysis of Random PLAs 93
15 Experimental Results for Random PLAs 94
16 Probabilistic Analysis of Active Terms 95
17 Experimental Results for Active Terms 96
18 Empirical Results for W 97
19 Empirical Results for L 98
20 Empirical Results for (1) Density and (2) Upper Bound for p 98
21 Implementation of Algorithms and Heuristics 103
22 Equivalence Testing of Benchmark Problems 104
23 Equivalence Testing of Two Random PLAs (Mode 1) 105
24 Equivalence Testing of Two Random PLAs (Mode 2) 106

VI

CHAPTER 1

INTRODUCTION

1.1 Preliminary

We define terminologies and notations which will be used throughout this dis-

sertation.

We use truth-functional propositional connectives as usual (Table 1):

Connectives Symbols

logical-and 'A' or a dot or the absence of a connective

logical-or V or '+'

logical-not or a prime or a bar

exclusive-or 'exorJ or 'xor' or

logical-implication or

logical-equivalence or

Table 1: Truth-Functional Logical Connectives

Logical-and (logical-or, logical-not, logical-implication) is also called conjunction

(disjunction, negation, material implication), respectively. The first three connectives

are adequate for expressing any truth function over the Boolean logic.1 However, other

connectives are useful in describing logical statements succinctly. Boolean expressions

can be described by standard form in the propositional logic or LISP expression form.

For example, the Boolean expression (<j> A rp) V (4>Atp) can also be expressed in a LISP
1Other sets of connectives are also adequate. For example, the set {~, =>} is adequate for

expressing any truth function [70].

1

form (or (and 4> tp) (and (not <f>) rp)).

Truth and falsity are called truth values and nothing else is a truth value. 'T'

or 'True' or 'true' denotes the truth value truth. 'F' or 'False' or 'false' denotes

the truth value falsity. Sometimes we use '0' for falsity and '1' for truth. We define

individual variables as X\, • • •, xn each of which value is either true or false. A literal is

a variable or the negation of a variable. A clause (term) is a disjunction (conjunction)

of literals. A formula (or expression) F is said to be in a conjunctive normal form

(CNF) (disjunctive normal form (DNF)) if and only if F has the form F\ A • • • A Fm

(F\ V • • • V Fm), m > 1, where each of Fi, • • •, Fm is a disjunction (conjunction) of

literals. A maxterm (minterm) is a disjunction (conjunction) of n variables with each

variable being negated or non-negated.

Hereafter we abbreviate 'if and only if' to 'iff'.

A formula (or Boolean expression) is said to be a tautology iff it is true under all

its interpretations. A formula is said to be a nontautology iff it is not a tautology. A

formula is said to be unsatisfiable iff it is false under all its interpretations. A formula

is said to be satisjiable iff it is not unsatisfiable. Two formulas F and G are said to

be equivalent, denoted by F = G or F G, iff the truth values of F and G are the

same under every interpretation of F and G.

A programmable logic array (PLA) [48, 66, 101] is a class of two-level logic

circuit, which provides an efficient way of synthesizing arbitrary combinational as

well as sequential logic circuits. Because of their regularity, flexibility, and simplicity,

PLAs have been extensively used in the design of VLSI circuits and systems. A PLA

typically consists of AND and OR planes which are initially fabricated with links

among them. The physical structure of a PLA is a two-dimensional array of simple

switching elements. Specific Boolean functions can be realized in sum of products

3

form by appropriately connecting the switching elements. Major disadvantage of

PL As is that most PL As use only small portion of switching elements and leave the

rest unused, resulting in a significant waste of silicon area. So, reducing the area

complexity of PLAs is a challenging research area. Recently, different types of PLAs

have been proposed to enhance testability and area complexity of PLAs [13, 127, 130].

The cofactor of a function / with respect to a variable x is the function resulting

from replacing z by a constant b, denoted by f\(x=by Then, for variables x\, • • • ,xn,

f\(xi=b)(xi, • • •, xn) = f(xi, • • •, Xi-1, 6, £j+i, • • •, xn). The Shannon expansion [129] of

a function around variable X{ is given by: / = Xi-f\(x.=1)+Xi-f\(x.-0y The composition

of two functions / and g is the function resulting from replacing Xi of / by g, denoted

f\(xi=g)• That is, f\^x,_g^[x\, • * •, a?n) f (x \ , • • •, #j—i, g(xii • • • ? 2-t+i•>'''•> xn^).

1.2 Outline of the Dissertation

Verification is an essential part of any logic design domain such as logic mini-

mization, synthesis, etc [13, 71, 121, 128, 150, 156]. The main purpose of verification

is to certify the logical equivalence of two logic circuits. Verification for a logic design

is typically used to prove that the final description of a circuit is logically equivalent

to its initial description. It also may take place at any stage of the design process

to make sure that any structural changes, mainly caused by a logic minimizer or

synthesizer, have not altered the meaning of the initial description.

Simulation [12, 17, 16, 74] has been extensively used as the standard method

for verification of logic circuits. As the size of the computer logic grows bigger, the

technique experiences severe drawbacks. Obviously, the number of tests required

to perform a satisfactory coverage grows exponentially with the number of input

variables. Research is still going on in this area to get a better coverage of tests using

cost-effective simulation techniques. However, formal methods [42, 79, 100, 138, 154]

as opposed to simulation are getting more attention from the community.

In Chapter 2, we formally describe the equivalence problem and review related

works that have been developed in this area so far. The equivalence testing of two

PLAs is to ascertain that the two are logically equivalent. To do that, the traditional

and most widely used approach is to prove that either

(1) <j) = ip or

(2) <f> © = false

is a tautology for any two Boolean expressions <j> and tp in disjunctive normal form

or DNF. Thus, the equivalence problem is now translated into a tautology checking

problem, which is a well-known NP-complete problem [60]. Almost all algorithms for

equivalence testing use the same interpretation as stated above, taking both 4> and tp

as input to a tautology checker.

In Chapter 3, we introduce a new approach based on a divide-and-conquer strat-

egy using the concept of cover and a derivational method for the equivalence problem

and investigate its theoretical aspects. Instead of taking whole expressions into con-

sideration, we divide the problem into as many smaller problems as the number of

terms of each expression by translating the notion of logical equivalence into the no-

tion of cover (Definition 3.3):

Define a PLA as the set of terms occurred in a Boolean expression in DNF.

Let <f> and ^ be two PLAs (|^|, \tp\ > 1). <j> covers ip, denoted by ?/> (Ec 4>,

iff for each term fl € any assignment that satisfies f3 also satisfies a

disjunction of some terms of <f>. •

The concept of cover is the theoretical basis for the divide-and-conquer strategy for

the equivalence problem:

<f) = i>

5

iff 0 €c 4> and <j> 6C ^

iff each term a G 4> is covered by some terms of xl> and each term 0 € ^ is covered

by some terms of <j>. •

The above statement is justified by Theorem 3.1. Thus, the original problem is

transformed into a series of relatively small cover testing problems. Because of the

difficulty of the problem, we emphasize simplification techniques in order to reduce

the search space or problem size. This simple divide-and-conquer strategy would

enable more simplifications than the other approach, resulting in more reduction of

the search space. The overall performance of equivalence testing is directly determined

by the efficiency of each individual cover testing, which might be a hard problem in

general although each subproblem would be smaller than the original.

Let <f> be a PLA as defined in Definition 3.3 and 0 be a term. Then, the cover

testing problem is to decide whether or not 0 <f>. Simplifications can be achieved

by removing each term disjoint (Definition 3.4) with 0 from <p, preserving the notion

of cover:

If = cj> — {a | a € 4>, ol is disjoint with 0},

then 0 £ c <j> iff 0 £c $ i . •

The above simplification is computationally cheap and justified by Theorem 4.4.

The problem size may be further reduced by performing the projection operation on

4>i. The projection operation is defined as follows:

Let a and 0 be two terms.

Let a[i] be the value of a variable Xi such that

1 : Xi occurs in a

0 : xi occurs in a

d : neither z, nor X{ occurs in a .

The projection of a with respect to 0, denoted by a:n|^, is a n[;] |^ = a[i],

q:[z] (1 < f < n) =

where i is the j t h position of 0 whose value is d.

The projection of a set of terms T with respect to 0, denoted by r n | 5 , is

the set of projections • • •, oc^|^}, where is the projection of ct{

with respect to 0 for each a,-(^ 0) € I\ We abbreviate 0n\/3 to 0n. •

And it is shown that can be extracted from in 0(mn) time, where m = |$i | ,

n is the number of input variables. By performing simplification based on projection,

a simplified set <&2 may be obtained from $ i , which is justified by Theorems 3.3 and

4.4:

Let $ 2 be $5%.

Then, 0 £ c iff 0n €° <E>2. •

The concepts of minimal cover (Definition 3.10) and uniqueness (Definition 3.12)

are the theoretical basis for simplification based on projection. The efficiency of pro-

jection reduction is directly determined by the number of literals of 0. So, the more

literals in 0, the more simplifications would take place. Obviously, the operation

always simplifies because 0 normally contains at least one literal. Since simplifi-

cation based on projection is performed throughout the whole input set of terms, it

often leads to big simplifications. The cover testing problem has now been reduced

to the problem of testing whether or not 0n €° $2-

We also investigate the theoretical aspects which can be observed from the

derivational method: minimal cover, uniqueness, mergeability, and losslessness. Min-

imal cover and uniqueness essentially concern redundancies regarding a cover and

essentiality of terms as well as minterms with respect to a cover. Mergeability shows

the sufficient condition for the existence of merges for a set of terms. Losslessness ad-

dresses the issues of the side-effects caused by the derivation process concerning lost

minterms and their recovery. We establish interrelationships among these concepts

and develop simplification techniques based on these properties. Theorems developed

7

in Chapter 3 are used to prove the correctness of the equivalence testing algorithm

described in Chapter 4.

In Chapter 4, we present the Algorithm Cover-Merge which is the top level

algorithm realizing the divide-and-conquer method for equivalence testing described

in Theorem 3.1. Theorem 4.5 shows the validity of the Algorithm Cover-Merge. The

top level algorithm performs a series of subproblems each of which is to solve a cover

testing problem. Cover testing is performed by the Algorithm Cover which essentially

invokes the Algorithm Merge-Loop for each cover testing. The Algorithm Cover is

validated by Theorem 4.4.

The purpose of the Merge-Loop is to prove 7 Gc T for a PLA T and a term 7,

using the derivational method (Definition 3.8):

A is called a derivation of a term 7 from a set of terms F iff

(1) A is a finite sequence of terms.

(2) the last term in A is 7.

(3) each term of A is either a member of T or an immediate

consequence (Definition 3.6) by the Merge Rule (Definition 3.5) of two

terms preceding it in the sequence. •

Let r h) denote a derivation of 7 from F. T 7 denotes that it is not the case

that T 7. The Algorithm Merge_Loop_l realizes the paradigm of the Merge-Loop,

which is proved to be sound and complete (Theorem 4.1):

Let T be a PLA and 7 be a term. For any two terms a and /?, /? is said

to be a generalization of a iff 0 is the result of replacing zero or more O's

and l 's in a by efs.

There is a derivation of 7 from T by the Merge_Loop_l iff 7 E° T, where

7 is a generalization of 7. •

Thus, we establish,

8

/?n €c $2 iff the Merge_Loop_l returns True. •

Although the Merge_Loop_l is logically bound to give correct answers, it may

contain many redundancies and unnecessary operations. So, it would not be prac-

tical unless simplifications take place adequately in order to remove such redun-

dancies so that a combinatorial explosion could be avoided as much as possible.

Because of the NP-completeness of the problem, we do not expect that this al-

gorithm or any algorithm can always avoid such an explosion in terms of time or

space (or both) on every instance of cover testing problems. This strongly indicates

that simplification techniques or whatever methods that can reduce the search space

should be extensively used as an essential part of the Merge-Loop. The Algorithm

Merge_Loop_2 implements simplification techniques and heuristics developed in this

direction. The Merge_Loop_2 greatly improves the performance of the Merge-Loop

in terms of the length of derivation of /3n from $2 by incorporating simplification

techniques and heuristics into the algorithm. Theorem 4.3 substantiates the validity

of the Merge_Loop_2:

(3n £ c $2 iff the Merge_Loop_2 returns True. •

Simplification is the most important part of the algorithm as far as running

time is concerned. Three different types of simplifications are extensively used for the

Merge_Loop_2: covered term reduction, nonessential term reduction, and nonmerge

reduction. Simplifications during the Merge-Loop can be done by excluding degen-

erating merges (Definition 4.2), justified by Theorem 4.1, and by removing covered

terms due to forward merges (Definition 4.1). Nonessential term reduction removes

nonessential terms with respect to a nonredundant derivation (Definition 4.4), justi-

fied by Theorem 4.2. Removal of nonmergeable terms is justified by Theorem 3.6.

These simplification rules preserve the notion of cover.

9

Heuristics based on types of merges are developed to speed up the derivation

process by allowing simplifications or by eliminating unnecessary operations. They

are ordered by priorities so that the most favorable heuristic might be selected at

each iteration of the algorithm. Heuristics are designed and implemented such that

they can be performed within a reasonable amount of time. Experiments show that

these heuristics are the main cause of big speed-ups.

Suppose f3n $2 for a term Because the basic structure of the algorithm

is designed to prove /?n Ec $2 by showing the existence of a derivation $2 0 n , the

Merge-Loop will do an exhaustive search for 0 n until every possibility is exhausted. It

may not be always possible to avoid this undesirable situation because of the nature

of the derivation process. However, the situation may be improved considerably by

introducing a heuristic which is specially designated to dynamically predict the out-

come of a derivation, based on the following observation: A nonredundant derivation

of /3n can be viewed as the process of replacing O's or l 's by oPs (i.e. reducing the

number of literals) of merges along the sequence of a derivation. However, a certain

type of merges called backward merges (Definition 4.1) always increases the number

of literals along a derivation sequence as the result of performing such merges. The

heuristic H7 (Section 4.2) says that if only backward merges are possible for a set of

terms $ 2 , then it is most likely that 0 n $2- If the condition for the heuristic is met,

then [3n <E>2 is assumed and falsification heuristics are initiated to search a minterm

of (3U which would not be covered by $2- Prediction is made at each iteration of the

Merge-Loop so that better chances of detection can be obtained. Experiments show

that almost all cases have been successfully detected within a few iterations of the

Merge-Loop.

Since the problem of proving that ,8n Ec $2 and the problem of disproving it

10

are equally hard in general, any technique for disproof is not expected to be complete

because otherwise it might spend too much time on some unfavorable cases. Instead,

we invent falsification heuristics which run in 0(nm2) time, where n is the number of

variables and m is the number of terms of $2- The main objective of the heuristics is

to produce a counterexample by constructing a minterm of /3n which is not covered

by $2- These heuristics are based on greedy methods which would seek to maximize

the number of terms falsified by the assignment made at each step of the falsification

process. Empirical results show that nearly all cases have been successfully falsified

by the heuristics.

In Chapter 5, we prepare and test a wide variety of parameterized random sets of

problem instances to give an unbiased way of testing the algorithms and techniques

developed so far. We address various issues of constructing randomized problem

instances and analyze their probabilistic properties.

Experimental results follow in Chapter 6. Experimental results on a wide variety

of circuits show that the heuristics and techniques presented in Chapter 4 are found

to be quite effective in simplification and reduction of proof procedures, achieving

big speed-ups in most cases. In comparison with the most widely used technique

called Binary Decision Diagram or BDD, the algorithm proposed outperforms BDD

in nearly all cases of input circuits including standard benchmark problems. Finally,

concluding remarks are found in Chapter 7.

CHAPTER 2

THE EQUIVALENCE PROBLEM AND RELATED WORK

In this chapter, we first discuss the equivalence problem in more precise terms

and then we take other closely related problems into consideration. A review of

related works points out important concepts and features that have been developed

so far.

2.1 Introduction

The main purpose of the equivalence problem is to verify that two Boolean

expressions have the same functionality. In other words, the problem is to decide,

given two Boolean expressions 4>\ and </>2, whether <f)\ and <j>2 are logically equivalent.

The meaning of the problem is to check whether or not each set of assignments which

satisfies <j>\ also satisfies fa and vice versa. Exhaustive search by enumerating all such

satisfying instances cannot be a solution because it always requires an exponential

computing time in general as the number of variables increases. The difficulty arises

from the fact that the problem involves Boolean satisfiability problems or tautology

checking problems which are known to be NP-complete [60].

Much of the work on the equivalence problem has concentrated on applications

in the verification of Boolean circuits. Circuit designers are mostly concerned about

the correctness of logic minimizers (or logic optimizers) during the process of circuit

design. The correctness of each design level requires that the minimized (or optimized)

version has not changed the original meaning of the circuit (i.e., for the same set of

11

12

input values, the two circuits must produce the same output). So, a verification

process is an essential part of circuit design. Other application domains can be

found in artificial intelligence, databases, etc., where information or knowledge can

be described in Boolean expressions and searching (or matching) is involved.

It is obvious that the inherent nature of the equivalence problem is closely re-

lated to the satisfiability problem because both problems rely on the existence of a

satisfying instance: Testing tautologyhood of a circuit and testing satisfiability are

dual because ^ is a tautology is unsatisfiable, where <j> is the negation of <f>. So, a

tautology checker and a satisfiability checker are essentially doing the same task. An-

other related problem that we can think of is the problem of testing whether certain

properties are realized in a Boolean circuit <f>, which can be solved by first expressing

the properties in a Boolean expression, and then testing the implication <f> ip.

The implication can be tested by checking its tautologyhood.

The equivalence problem has been treated in many different ways. However, we

can categorize them into a few groups depending on the type of algorithms used. Here

is the list of groupings of algorithms which have contributed significantly to the area.

• Algorithms based on divide-and-conquer and backtracking: Traditionally, this

technique has been used most widely in this area. To prove <f> = ip, one has to

prove either (1) (j) = tp is a tautology or (2) <j> 0 ip = false is a tautology. So,

the equivalence problem is interpreted directly as a tautology checking prob-

lem. And then a divide-and-conquer type algorithm along with backtracking

is invoked to prove the tautologyhood. A variety of algorithms have been de

signed along this line, sharing a similar paradigm, with different strategies of

backtracking and branching techniques.

• Graph-based algorithms: Algorithms based on binary decision diagram (BDD)

proposed by Bryant [18] in 1986 are essentially different from divide-and-conquer

13

type tautology checkers in many respects and have become standard methods

for Boolean function verifications. The central part of graph-based algorithms is

to construct directed-acyclic graphs (DAGs) which represent a Boolean expres-

sion, without ambiguity, without duplication, and in a consistent, and system-

atic manner. After construction of such graphs, most of the Boolean operations

including equivalence testing can be performed by simply using appropriate

graph algorithms already developed.

• Algorithms based on logic programming: Simonis and others [27, 43, 131] pro-

posed a new algorithm to solve Boolean circuit verification problems using an

extended logic programming language named CHIP. Boolean satisfiability is

tested by performing Boolean unification, which would show a set of variable

bindings if a Boolean circuit is satisfiable.

• Algorithms based on counting: Iwama [73] computes the total number of dis-

tinct solutions for a Boolean expression by excluding overlapped solutions for

each clause.

None of these works efficiently for every problem instance because of the difficulty

of the problem. However, each algorithm can demonstrate a good performance un-

der certain restrictions and problem characteristics. We will discuss the merits and

demerits for some of the important works in later sections.

2.2 Satisfiability Problems

We briefly discuss satisfiability problems as well as their variations and classifi-

cations. We then review some of the important works done in the area. Finally, we

examine some of the algorithms which play important roles in solving the problems.

This section concentrates on describing Boolean satisfiability problems, and the

14

approaches that have been presented to solve the problems. Various types of ap-

proaches are reviewed, analyzed and compared with each other. The most popular

type of algorithm is backtracking. State-of-the-art techniques in backtracking for sat-

isfiability problems are discussed and analyzed in later sections.

A Boolean expression has been the standard representation for describing any

decision problem with discrete variables. A typical satisfiability problem for an ex-

pression could be to obtain a set of assignments which satisfies the expression or to

test its tautologyhood. Problems of this type can be found in many important appli-

cation areas such as circuit testing, tautology checking, combinatorial problems, etc.

Unfortunately, most of these problems are NP-complete.

' The satisfiability problem or SAT is to determine if a Boolean formula is true for

some assignment of truth values to the variables. CNF-Satisfiability is the satisfiability

problem for CNF formulas. Also, this problem is known as a Constraint Satisfaction

Problem (CSP). The problem is to find an assignment for the variables that satisfies all

of the constraints or to determine that the problem is unsatisfiable. The requirement

is that all the constraints must be satisfied at once. So, an approximation technique

is of little help because of the nature of the problem.

Traditional approaches were to develop algorithms for particular domain of ap-

plications in which domain specific knowledge can be built into the algorithms to

exploit structural characteristics. The result is that an algorithm may work well on

one type of problem, but badly on other types of problems. This type of ad-hoc

approach to each individual problem has advantages and disadvantages. The disad-

vantages are the following: (1) Algorithms used for solving one type of problem might

not be easily adapted to solve other problems. (2) It is very hard to combine them

with other techniques used for different types of problems to design a more efficient.

15

algorithm for solving more general type of problems. (3) It is usually not easy to an-

alyze such an algorithm. So, researchers have tried to find algorithms that can work

well under a wide range of conditions. So far, the results have not been satisfactory in

the sense that no generally applicable algorithms have been designed, although much

progress have been reported in this area.

Parallelization for this area is quite new. Cook and Chen [31, 33] recently pre-

sented efficient parallel algorithms for solving Parallel 2-CNF problem in logarithmic

time on a concurrent-read concurrent-write parallel random access machine (CRCW

PRAM) which can be solved in linear time by a serial algorithm [45].

Intractable Problems

The satisfiability problem or SAT is the standard NP-complete problem, proved

by Cook in 1971 [35], which draw much attention from theoretical computer scientists.

Since the monumental work done by Cook, an enormous amount of research has been

done on intractable problems.

3SAT or 3-CNF is the same as the satisfiability problem (S A T) except each

clause has exactly three distinct literals. This type of problem is known to be NP-

complete. Other satisfiability-related problems which have been proved to be NP-

complete can be found in the famous book on intractable problems published by

Garey and Johnson [60] in 1979.

Tractable Problems

Since satisfiability problems are hard in general, it became important to identify

specific classes of problems which admit tractable solution techniques. Researchers

have found some classes of satisfiability problems which can be solved in linear or

polynomial time. These tractable classes can also be used to assist in the solution of

more general problems.

16

The following are some of the problems that can be solved in linear or polyno-

mial time.

• Dowling and Gallier [44] showed that SAT restricted to Horn clauses can be

solved in linear time.

• Even et al. [45] showed that SAT restricted to binary clauses (2-CNF) can be

solved in linear time.

• Yamasaki and Doshita [157] defined a class H2, that strictly includes Horn

clauses, for which Arvind and Biswas [3] proved that SAT can be solved in

quadratic time.

• Gallo and Scutella [59] have built a hierarchy, T = To,ri , • • •, of classes, where

To consists of only Horn clauses and Fi is H2, such that for each Fk, SAT can

be solved in 0(nmk) time, where n is the input size, and m is the number of

atomic propositions.

2.3 Satisfiability (Tautology) Checker

In this section, we summarize state-of-the-art technologies in the area of Satis-

fiability (Tautology) Checking. Since so many techniques and algorithms have been

developed, it is not helpful to put everything down here. Instead we take some of

the significant works into consideration so that we can categorize them into a few or

more groups of ideas from which many techniques can be designed.

We also review some of the important algorithms developed for tautology check-

ers, which have been widely used and have become standard in the area. Yet some

techniques can be recognized as radically different from others in many respects.

Interesting results have been reported in the area of satisfiability checking using tech-

niques different from backtracking. Algorithms based on non-backtracking work in-

dependently and are hard to combine them with other techniques while algorithms

17

based on backtracking are relatively ?asy to combine so that more powerful algorithms

can be devised by mixing and adapting various techniques. Performances of several

algorithms have been measured on random predicates with parameters: v (the num-

ber of variables), t (the number of clauses), and p (the probability that each literal

appears in a clause).

Tautology Checkers based on Binary Decision Diagram

Bryant [15, 18] proposed a graph-based representation of Boolean functions

called binary decision diagrams (BDDs). Earlier graphical representations [1, 49,

92, 104, 108] similar to BDD lack in the abilities for practical applications to ma-

nipulate Boolean functions systematically and to represent many Boolean functions

with reasonable size of graphs. BDD was presented as an improvement on the earlier

works and has demonstrated nice properties and advantages over previous approaches.

BDD follows the principle of representation based on directed acyclic graphs origi-

nated from Lee [92] and Akers [1]. As far as graphical representation is concerned,

BDD is the most advanced representation and it has become the standard method

for Boolean function manipulations.

Research has been done to improve the performance of BDD in many respects.

Most efforts have been made to reduce the size of the graphs by putting various

restrictions on their construction such as variable ordering [54, 55, 56]. Some have

introduced new functionalities and features into the manipulation functions of BDD,

while many other researchers have proposed variations of the diagram [4, 7, 26, 85,

94, 102, 152].

Two major contributions of BDD are:

• A canonical representation for a Boolean function can be realized as the result

of constructing a directed-acyclic graph for the function, given a total ordering

of input variables.

18

• Algorithms for combining two functions with a binary operator and for com-

posing two functions are embodied in the system so that the construction of a

graph can be done in a consistent and systematic way, which are the central

part of BDD.

The most elegant feature of BDD is without doubt the canonicity, which was first

observed by Fortune et al [49]. The canonicity means that there exists a unique

graphical representation for any Boolean expression and BDD guarantees to produce

such a graph for a Boolean function as the result of performing the construction

process on the input graph. The cost of constructing a canonical graph is reasonable

in terms of time and space for many widely used circuits. Experimental results show

that BDD can construct a canonical form in nearly linear time proportional to the

size of an input graph for a wide variety of circuits.

The canonicity provides a theoretical basis for solving tasks of interest such as

testing for equivalence and testing for satisfiability as follows:

1. Testing for equivalence of two Boolean circuits is equivalent to testing whether

the two graphs representing the circuits match exactly.

2. The problem of testing for satisfiability involves a depth first traversal of a graph

with backtracking in order to search a terminal vertex having value 1 (or true).

Testing for tautology can be done similarly.

3. The problem of testing whether certain properties are embodied in a Boolean

function can be solved by testing the satisfiability of the graph resulting from

applying the Boolean product of the original graph which is the canonical rep-

resentation of the original function and the other graph which represents the

properties in terms of a Boolean function in a canonical form.

Graph algorithms already known can directly be utilized to solve these problems and

most of the problems have time complexity proportional to the size of the graphs. So,

19

the algorithms based on BDD could be quite efficient provided that the graphs can

be constructed in a reasonable amount of time and the size of the graphs is not big.

Because of the strict ordering of input variables, BDD acquires the ability to

produce a unique canonical structure for a Boolean function. However, the same

fixed ordering scheme may require too much space when the initial ordering is not

good. In other words, the size of the final canonical graph for a Boolean function is

highly sensitive to the ordering of input variables, which is the major drawback of

BDD. That is, a poor choice of ordering may cause the system to require too much

computing resources.

Example 2.1 For a Boolean function (a A b) V (c A d) V (e A /) , the system

requires 8 vertices with an ordering a<b<c<d<e< f but 16 vertices with an

ordering a < d < b < e < c < f . In general, the function (xi A x2) V • • • V (x2n-i A x2n)

can be realized by a graph of 2n + 2 vertices with the ordering x\ < x2 < • • • < x2n

but 2n+1 vertices with the ordering x\ < xn+1 < x2 < xn+2 < • • • < xn < x2n• D

For a simple circuit, it may not be hard to obtain a good ordering either manually

or algorithmically, but it may become quite difficult as the size of input grows. In

fact, an optimal ordering for a Boolean circuit for constructing a canonical graph

with minimum number of vertices is known, to be co-NP. Many algorithms have been

designed to get a good ordering although it may not give an optimal solution. Some

of the results show nice performances on a wide range of Boolean functions [54, 55, 56,

75, 96]. Yet we believe that no polynomial algorithm for computing such an ordering

in general is feasible because of the NP-completeness of the problem. An optimal

ordering can be extremely hard to obtain especially when the input circuit shows

little symmetry or little hierarchy but much randomness.

There are some Boolean functions which are inherently hard to be represented

20

with BDD graphs regardless of the ordering of variables. For example, integer mul-

tipliers cannot be represented in BDD as the number of vertices of the graph grows

exponentially [18], while others report practical performances without using graphical

representations [132, 147, 148].

Tautology Checkers based on Divide-and-Conquer

Algorithms based on divide-and-conquer are popular in this area and a variety of

algorithms have been designed and implemented. However, there are some concepts

which are shared by most of the algorithms. Yet we still can point out other distinctive

techniques exclusively used in some algorithms, which have shown their merits.

The theoretical basis for divide-and-conquer algorithms is Shannon's expansion

principle [129]. The order of variables involved in the expansion directly controls the

behavior of such algorithms and severely affects the performance. Most of the tau-

tology checkers of this kind emphasize choosing the best variable and simplifying so

that the length of the proof or the size of the subproblems could be minimized. Since

algorithms for finding an optimal ordering are costly, most algorithms use heuristics

to choose a good variable which is likely to lead to smaller subproblems or big sim-

plifications. It is natural to take advantage of the characteristics of problem domains

for designing efficient heuristics [7, 136, 54, 90, 136, 149].

The first multilevel tautology tester was VERIFY, developed by Roth [125, 123],

which is a specialization of consistency of the D-algorithm [126]. VERIFY seeks a

counterexample that shows a discrepancy of two logic designs, starting with an output

pair. If the program fails to find one, then the two designs are equivalent.

Smith et al. [136] developed a hardware design verification methodology for

the IBM 3081 project in 1982. Boolean comparison was incorporated in the system

to verify that two design representations — hardware flowcharts and the detailed

21

hardware logic design — are logically equivalent. The algorithm uses domain-specific

heuristics to choose one variable for reduction of the Boolean expression at the current

branch point by Shannon expansion. A manual intervention is carried out to select a

variable in case the heuristics fail. A simple backtracking scheme is used.

Haralick and Wu [65] developed a divide-and-conquer type theorem prover, as

an improvement of resolution theorem proving programs and Wang's technique [151],

not based on Shannon expansion but based on a set of divide-rules which divides

a material implication into two subexpressions, preserving logical equivalence. The

program uses fairly simple heuristics to choose the next expression to be divided.

Gelder [61] developed a divide-and-conquer satisfiability checker which has simi-

lar characteristics with previous ones. But it shows many superior qualities comparing

with earlier systems in the sense that it emphasizes simplification rules and branch-

ing techniques. An initial transformation is required such that only leaf nodes in

the search tree may contain negations, which is called an AND-OR tree. And by

putting a few more restrictions an AND-OR tree can be transformed into a succinct

AND-OR tree. The succinctness allows the system to use simplification rules based

on dominance to collapse variables and other techniques to remove literals, preserving

satisfiability. Simplification rules preserving satisfiability would give more cha,nces to

reduce the search space than those preserving logical equivalence. Another contribu-

tion is that the system employs heuristics for branching techniques depending on the

number of occurrences and the type (mixed or symmetric) of a variable.

INSTEP, presented by Vlach [147, 148, 149], is a multilevel satisfiability checker

designed for a verification of a commercial VLSI chip manufactured by Texas Instru-

ments. Results on IFIP and ISCAS benchmarks are overall competitive with those for

the widely used methods based on binary decision diagrams ox BDDs. One of the ma-

22

jor contributions of INSTEP is for the first time it shows the solution in polynomial

time of certain benchmarks involving combinational multipliers, while any program

based on BDDs runs in exponential time.

INSTEP has unique features in simplification strategies and backtracking tech-

niques. The main focalization of the program is simplification which takes place in

the beginning of a verification process before a backtracking procedure is initiated.

Non-equivalence preserving rules are extensively used depending on the polarity and

the number of occurrences of a variable. A special type of backtracking algorithm

called dependency-directed backtracking (DDB) is designed for INSTEP. Experimental

evidence shows that DDB reduces the search space substantially by keeping track of

good branch expressions and by eliminating nonessential ones so that the procedure

can find a short path to a contradiction.

The introduction of higher-level operators and nonstandard operators such as

i f3+ , i f4+, adder, half-adder, etc. is unique and proved to be very effective in

verification. INSTEP shows that simplification alone is enough for many benchmarks

without even having to call the backtracking procedure. The system will work most

efficiently when a Boolean circuit demonstrates certain characteristics described as

follows: (1) Hierarchical structures in terms of input and output (2) Sparsity of

occurrence of variables (3) Repetition of similar elements (4) Occurrences of specific

configurations such as half-adder, adder, etc.

Algorithms based on divide-and-conquer have the following advantages: (1) It

is relatively easy to combine them with other techniques developed for simplification

and backtracking. (2) It is also easy to apply various types of simplification rules

at different places of algorithms. (3) Characteristics of each problem domain can be

encoded in the system so that the performance might be maximized.

23

In conclusion, divide-and-conquer algorithms are widely used in the area and

work quite efficiently in many cases. Their performance is heavily depended upon the

effectiveness of simplification rules and backtracking techniques. Since most of the

systems naturally incorporate domain-specific knowledge into the rules and heuristics,

they may not work well for other problem domains.

Logic Programming

Using an extended logic programming language CHIP, developed by Dincbas et

al. [43], whose main objective is to solve search problems with constraints in areas

like Operations Research, financial planning or digital circuit design. Simonis et al.

[27, 43, 131, 134, 135] presented a new method to solve Boolean satisfiability problems

using Boolean unification. The program would show a set of variable bindings as the

result of unification process if a Boolean circuit is satisfiable. Experimental results

show that the program works efficiently on a number of benchmark circuits.

The major difference between CHIP and other ordinary logic programming lan-

guages lies in its internal representation of Boolean terms which holds the same char-

acteristics of the canonicity of binary decision diagram (BDD). Performing circuit

verifications using logic programming languages is an interesting approach and it

should receive more attention from the community.

Counting Algorithm

The algorithm proposed by Iwama in 1989 [73] computes the number of solutions

for each clause and then count the number of solutions for each pair of clauses that

depend on different variables, and continue for triples, etc. For each step overlapping

solutions are discarded by using the inclusion-exclusion principle. The efficiency of

this algorithm clearly depends on the number of overlaps, which can be exponentially

large in general.

24

Iwama's algorithm runs in polynomial time when p > y —. This algorithm is

quite efficient when p is large. That is, the more literals in a clause, the more chances

the algorithm works efficiently. The major advantage of this algorithm is that it

works efficiently where backtracking algorithms work less efficiently because the more

literals in a clause, the more branch points would occur in backtracking. So, the

algorithm can work as complementary to backtracking, but how to combine the two

schemes to design a better algorithm is not clear, since counting and backtracking are

totally different schemes in nature. Later, Tanaka in 1991 [142] reported preliminary

results on a refinement of Iwama's algorithm.

Algorithms for Better Upper Bounds

The BSAT algorithm, proposed by Monien and Speckenmeyer [103] in 1985, is

based on branching techniques which can solve the 3SAT in less than 2" steps (1.62™,

where n is the number of variables), which establishes a better upper bound, although

not much significance for practical purpose is expected. A general solution can be

found in the paper for k-SAT, k > 3.

For non-clausal Boolean expressions, Gelder in 1988 [61] proved that satisfiability

testing in the propositional calculus can be done with an upper bound of 2(°-25+e)L

for any positive e, where L is the length of the input expression. According to his

algorithm, the number of input variables is not an essential part of the complexity

consideration.

2.4 Backtracking

A divide-and-conquer type tautology checker typically selects a variable to sim-

plify input problems by assigning a truth value, which in turn generates two smaller

1v, t, and p are defined on page 17.

25

problems each of which is solved by employing the same assigning and simplifying

technique recursively. A backtracking process will be invoked whenever there is no

hope of reaching a solution from the current branch point and it repeats the pro-

cess until every possibility is exhausted. The fundamental idea behind backtracking

methods is Shannon cofactoring [129], which is a theoretical basis for many divide-

and-conquer tautology checkers and has become a standard technique in the area.

The performance of such an algorithm heavily depends on strategies to select

a variable to be assigned and to decide its truth value. In other words, an efficient

algorithm should find a variable which can lead to a big simplification or to a short

path to a solution (or a contradiction). Also, the algorithm should show the ability

to choose the right truth value for the variable selected so that the best result can

be achieved. Designing such an algorithm for all instances of problems may not be

feasible. However, it is possible that algorithms can be designed so that they can

run in polynomial average time within certain restricted ranges of control parameters

[23, 62, 73, 111]. Unfortunately, none of these have a practical range of parameters

in which algorithms may demonstrate a polynomial average time behavior.

Simple Backtracking

This scheme selects the variables in a fixed order. However, the algorithm does

not provide any clue to how we order the variables to reduce the number of steps to

reach a solution. The range of control parameters in which simple backtracking runs

in polynomial average time is not practical at all [110].

Unit Clause Backtracking

This method [112, 113] basically concerns the choice of the next variable to

simplify a propositional formula. The basic idea of choosing the next variable is the

following: If some clause depends on only one of the unset variables, then select that

26

variable, otherwise select the first unset variable and continue as in backtracking.

The theory behind this idea is the concept of intermediate predicate PA defined

over sets ACS, where S is the set of all variables. The intermediate predicate must

have the values true for any assignment of values to the variables in A that can be

extended to solution to P. When PA = 0 (or false), there is no hope of extending

the partial setting PA to a solution. So, the tenet is to extend partial solutions

unless the values of partial predicates are false. Subproblems can be reduced as early

as possible by excluding those partial settings which would never give solutions to

P. When there is no satisfying assignment of variables to a problem, the algorithm

would backtrack until every possibility is exhausted. This algorithm is considered to

be superior to simple backtracking because there is a region where simple backtracking

takes exponential time while unit clause backtracking takes polynomial time.

Clause Order Backtracking

The algorithm [23] selects the first clause that is not always true. For the first

variable that affects the value of this clause, each possible value is plugged in, the

predicate simplified, and the resulting subproblem is solved by recursive application

of the algorithm. Each solution of the subproblem (along with the partial assignments

of values that lead to the subproblem) gives a solution to the original problem. If

the original problem has no nontrivial clauses, then every assignment of values to the

remaining variables results in a solution.

The average time for clause order backtracking is always less than that for simple

backtracking. It leads to polynomial time under many conditions where simple back-

tracking uses exponential average time. Clause order backtracking runs in polynomial

average time when

p < j-, and p > Inf+ ln v

27

Also it is empirically shown that clause order backtracking with the unit clause rule

is better than plain clause order backtracking.

Pure Literal Rule Algorithm

This algorithm [62] uses the basic idea of the Davis-Putnam procedure, which is a

powerful technique for solving the satisfiability problem. The algorithm first searches

for a unit clause and sets the variable belonged to the clause so that the clause is true

and simplify the original predicate using the assignment. If any variable appears only

negated or unnegated, set the truth value of it so that its literals are true. Simplify the

original predicate based on that assignment. Then, the original predicate is satisfiable

if the simplified predicate is. If no pure literal can be found in input predicate, apply

the Shannon Cofactoring, which forms two predicates by setting the variable to each

value and simplifying the resulting predicates. The original predicate is satisfiable if

at least one of the simplified predicates is satisfiable. If each subpredicate happens

to be simplified much, then the algorithm would be left with less search space. But

for some types of predicates, we may not be able to simplify much and we would end

up with fast growing number of subpredicates. This algorithm uses polynomial time

when

t < ^ and p > e or

*P S e\/¥.

where e is any fixed small number [111].

Dependency-Directed Backtracking

Whenever the current set of expressions is found to be inconsistent, INSTEP

[148] initiates the directed backtracking algorithm. The major part of backtracking

in INSTEP is Dependency Directed Backtracking (DDB), which keeps track of which

branch expressions (i.e., expressions on which branching is done) are involved in the

28

derivation of a contradiction. Such branch expressions are recognized as essential

branch expressions. When a backtracking starts, nonessential branch expressions are

excluded so that unnecessary branches cannot be generated subsequently. This would

reduce the number of branch points exponentially. Experiments show that DDB

reduces the search space substantially by removing nonessential branch expressions.

To efficiently detect essential branch expressions, INSTEP embodies the follow-

ing observations:

• Branch expressions that immediately resulted in the contradiction are essential.

• Branch expressions that resulted in big simplifications of the current set of ex-

pressions are most likely essential.

• Branch expressions that led quickly to a contradiction previously are likely to

be essential to the current derivation of the contradiction.

These potentially essential expressions will most likely be involved in the derivation

of the contradiction. Based on these information, INSTEP assigns an appropriate

priority to each branch expression. INSTEP achieves a very large speed-up in back-

tracking by removing nonessential expressions and by reordering branch expressions

according to the priorities associated with branch expressions.

2.5 Simplification Techniques

Since a divide-and-conquer type algorithm for Boolean function manipulations

requires binary tree traversal in depth-first, the search would soon be victimized by

combinatorial explosion unless an efficient algorithm to reduce the search space is

used. Many types of simplifications have been proposed and evolved since the birth

of the mechanical theorem proving. In this section, we discuss and analyze some of

the significant ones to outline its development and current techniques.

29

Almost all tautology checkers employ truth functional simplifications which pre-

serve logical equivalence, introduced in [118]. Yet others adopt satisfiability preserving

rules to allow more simplifications in addition to the truth functional simplifications.

The idea of applying such rules to reduce the search space is due to Davis and Put-

nam [40]. They presented four simplification rules which preserve satisfiability. These

are the tautology rule, one-literal rule, pure-literal rule and splitting rule, which have

been extensively used and proved to be very effective in mechanical theorem proving.

Researchers in verification area have embodied the rules in their systems with exten-

sions and generalizations [14, 61, 65, 147]. Gelder [61] generalized the pure-literal rule

of Davis-Putnam procedure to non-clausal expressions. A set of new simplifications

of this kind (Non-Equivalence Preserving or NEP rules) depending on the polarity of

variables is introduced in INSTEP [147]. The NEP simplifications are justified by the

Image Theorem and they can achieve more reductions than the truth functional ones

in many cases. The extensive use of such rules is the primary cause for INSTEP's

ability to verify the multipliers in the IFIP benchmarks in polynomial time.

Extended Shannon cofactoring [61, 65, 125, 147] takes cases on complex formulas

as well as variables, which provide a means to allow more simplifications. For example,

Boolean expressions like (or <j) i>) or (iff 4> i/>), where <j> and t/> may be complex

formulas, can be branched into two sub-expressions by taking cases on the truth

value of <j)•

Example 2.2 Let T be a set of formulas and A, B be formulas.

T U {(iff A B)} is satisfiable

iff either T U {A, (iff T B)} or T U {(not A), (iff F B)} is satisfiable

iff either T U {A,B} or T U {(not A), (not B)} is satisfiable. •

Nonstandard higher-level Boolean operators, as opposed to the standard Boolean

30

operators such as and, or, not, etc., are effectively incorporated in INSTEP so that

more simplified and succinct representation of circuit elements can be achieved, ex-

pressing the same truth values. Thus, the formula (or (and <f> ij>) (and (not <j>) ip))

now can be equivalently described in a simple form:

(if3 <f> <0 x),

which defines a three-place if-then-else expression. For further simplifications IN-

STEP introduces a set of new higher-level operators such as i f3+ , i f4+. For example,

the definitions of i f 3 + and i f4+ are given as follows:

(iff (i f3+ <f> tp x) (if3 <t> (or ip x) (n ° t </>)))•

(iff (i f4+ <i> ip x 0 (if3 <t> (and tp (or x 0) (o r (n o t 0) (n o t £))))•

Some higher-level operators depict circuit elements at functional level rather

than gate level. For example, adder and half-adder are defined by the following

expressions:

(iff (adder <j> ip x (C) (and (iff <P (al2 \ i 0) (even ip xi C)))-

(iff (half-adder 4> if) x 0 (and (iff <f> (and x 0) (even ifi x €)))•

A formula beginning with al2 is true when at least two of its arguments are true. A

formula beginning with even is true when even number of its arguments are true. <j>

and ip of adder and half-adder represent carry and sum outputs, respectively. The

remaining signals represent the inputs. These special operators are especially benefi-

cial in the verification of a particular type of circuits in which they are components

of the circuits and hierarchically structured. Tautology checking for some circuits

becomes quite easy when higher-level operators are used in a simplification process.

Such an example can be found in Vlach [147] for a parity checker:

(iff (odd A B C D) (xor (xor A B) (xor C D))).

INSTEP simplifies it to true in linear time for this type of circuit while a divide-and-

31

conquer tautology checker without simplification may involve combinatorial search.

The notions of control and dominance [61, 147] enable the system to allow sim-

plifications that can easily be identified such that the actual reduction process is

computationally cheap.

CHAPTER 3

THE DERIVATIONAL METHOD

In this chapter, we first introduce basic terminologies and concepts regarding

the derivational method. Next, we introduce the notion of cover for the equivalence

problem and outline briefly how the concept can be used to solve the equivalence

problem. The Merge Rule and other operations are also introduced. We propose a

new deductive apparatus for formal verification: a derivational approach using the

Merge Rule as the rule of inference.

Next, the concept of minimal cover is investigated in order to remove redun-

dancies from input expressions, and also to provide a means of proof of the theorems

essential to equivalence testing. The uniqueness property enables us to perform sim-

plification based on projection reduction, which is extensively used in verification.

Mergeability accounts for the condition of the existence of a merge and also for sim-

plification based on nonmerge reduction.

Finally, we introduce the concept of losslessness, which deals with the conse-

quences of merges and addresses those issues that a merge can cause. Our interest in

losslessness is to study the effects of different types of merges as to what can be lost

as the result of merges and how lost information can be recovered, etc.

3.1 Introduction

We assume that ®i, • • •, xn are input variables and also assume that both Xi and

Xi do not occur in a term. The symbols 1, 0, and d indicate True, False, and don't-

32

at (1 < i < n) = <

33

care, respectively. A term (or and-term) can be represented by a string of symbols:

a,\a,2 • • • on,

1 : Xi occurs in the term

0 : Xi occurs in the term

d : neither xt- nor Xi occurs in the term.

For example, X2X3X5 is represented by dOldO, when n = 5. A string composed

of {0, 1 ,cT} is to be regarded as a term or a disjunction of minterms for the term

depending on the context (for example, dOldO can be treated as a disjunction of

four minterms: 00100 + 00110 + 10100 + 10110). We use a[i\ to represent a,-. Note

that the above representation is conceptual, but for the actual implementation the

symbol d can be omitted by using a linked list storing only literals and their positional

information.

We define two special types of terms: unit term and complete term.

Definition 3.1 A unit term is a term which contains a single literal in it. A

complete term with n variables consists only of n occurrences of the symbol d, denoted

by on . a n is often used to represent a tautology. •

Unit terms are valuable for simplifications where the average number of literals

in a term is very small (best if it is close to one).

Definition 3.2 The cardinality of a term a is the number of literals in it,

denoted by |a | or Lit(a). The cardinality of a set of terms </> is the number of terms

in it, denoted by \(j)\. •

Definition 3.3 Define a PLA as the set of terms occurred in a Boolean ex-

pression in DNF. Let <f>\,</>2 be two PLAs (|<^i|, |̂ >2i ^ 1)- <j>\ covers <j>2, denoted by

4>2 £ c </>i, iff for each term fi (z (f>2, any assignment that satisfies f3 also satisfies a

disjunction of some terms of <f>\. •

34

We can rewrite it using the definition of cover.

<p\ covers (f>2 iff each term (3 € <t>2 is covered by ip C <j>x.

A term can be treated as the set of minterms covered by the term. Likewise, a

PLA can be treated as the set of minterms covered by the PLA. Therefore, we can

rewrite the definition as follows:

(/>! covers <j)2 iff (j>\, considered as a set of minterms, is a superset of <̂ 2-

Testing cover between two terms can be done easily by comparing literal values

at each position without enumerating minterms. Formally, a covers 0 iff for each

position i such that a[i] — 0 or 1, f3[i] = a[i]. For example, dOldO covers <10110, but

not ddll0.

' We state the notion of equivalence in terms of cover, which basically divides the

original problem into two subproblems.

Theorem 3.1 (Equivalence between two PLAs) 4>\ is equivalent to (f>2

iff cj)i covers (j)2 and <j)2 covers (j>\. •

Example 3.1 Let 4>i = x4 + X2X3 + X1X4 + X\X2 + x2x4 and (f>2 = x2x4 + X1X4 +

X3X4 + xix2x3x4 + X3X4 + X3X4. Then, <f>\ and <f)2 are equivalent because <j)2 6C <j>\ and

</>i Gc (f>2• G

Note that each of the two subproblems of the same kind can in turn be divided

into many smaller problems of deciding whether or not a set of terms in one side covers

a single term in the other side. This simple divide-and-conquer strategy increases the

probability of getting more simplifications.

The following terminologies are frequently used in this thesis in order to describe

the relationship between two terms.

Definition 3.4 Let a , 0 be any arbitrary terms.

(1) Complementary: The position j of a,f3 is called a complementary position

35

if a[j] ^ d,ft\j] ± d, and a[j] = 1 - ft\j] (or, ft[j] - 1 - a[j]). a and ft are called

complementary terms if there is a complementary position j and for any other position

k, a[k] — f3[k}. (e.g. Odld and OdOd are complementary.)

(2) Disjoint: a, ft are called disjoint terms if there is a position j such that a[j]

and ft\j] are complementary. We define the distance of two disjoint terms as the

number of complementary positions, (e.g. Odld and 110c? are disjoint with distance

= 2.)

(3) Identical: The position j of a, ft is called an identical position if a[j] = ft\j).

a and ft are called identical terms if a[j\ is identical to ft[j] for each position j.

(4) Inclusive: The position j of a, ft is called an inclusive position if either (a)

a[j] = d, ft[j] = 0 or 1 or (b) a[j] = 0 or 1, ft[j] = d. a and ft are called inclusive if

one is covered by the other. I (a, ft) denotes the number of inclusive positions between

the two terms a, ft. (e.g. Odld and 011c? are inclusive.)

(5) Shared: a and ft are called shared if a and ft are not disjoint, (e.g. Odld

and 01e?0 are shared.)

(6) Common Literal Position: A common literal position of two terms a and ft

is a position j in which a[j\ = ft[j] ^ d. •

3.2 The Merge Rule and Derivation

The Quine-McCluskey method [99, 117] was the first algebraic approach to pro-

duce a simplified expression for a Boolean function. The method is based on tabu-

lation which overcomes many drawbacks of the earlier method called the Karnaugh

map [81]. The tabulation method starts from the list of minterms that specify a

Boolean function and simplifies by combining two complementary terms. It repeats

the process until no new simplification is possible. This method works efficiently for

36

minimizing Boolean expressions of up to 10 variables. The Merge-Rule introduced in

this section has similar idea of combining two terms. But two terms need not be com-

plementary to be merged. So, the Merge-Rule can be considered as a generalization

of the previous work.

The Merge Rule is the only inference rule employed for the derivation procedure.

Later, we will show that the derivational method using the Merge Rule as its sole rule

of inference is sound and complete in deciding whether or not a PLA covers a term.

Definition 3.5 A merge 7 of two terms a and ft is a term such that (1) a and

ft have exactly one complementary position and (2) for each position i, 7[i] is defined

by the Merge Rule shown in Table 2. The resulting 7 is called the merged term or

merge of a and ft. •

a[i\ 0 0 0 1 1 1 d d d

m 0 1 d 0 1 d 0 1 d

7 [i] 0 d 0 d 1 1 0 1 d

Table 2: The Merge Rule

Definition 3.6 7 is called an immediate consequence of two terms a and ft

if 7[i] is the result of applying the Merge Rule to a[«] and ft[i] for each position i,

denoted by {a, ft} 1—• 7. A merge position (MP) for {a, ft} 1—> 7 is the position j in

which a[j] and ft[j] are complementary and 7(7] = d, denoted by MP(«, ft). There is

only one merge position for any merge. •

We observe the following simple facts which will be used in later sections for

proving theorems.

Observation 3.1

1. If {a, ft} 1 • 71 then a + ft covers 7 (because a U ft is a superset of 7).

37

2. If {«,/?} i-* 7, then (a) a and 7 are either inclusive or shared and (b) so are 3

and 7 . •

There are two special types of merges: unit merge and simple merge. They are

considered to be quite useful for simplification.

Definition 3.7 7 is said to be a unit merge of two terms a;,/? iff a , 0 are

mergeable and at least one of them is a unit term. 7 is said to be a simple merge of

two terms a, 0 iff a, 0 are complementary. •

Definition 3.8 A is called a derivation of a term 7 from a set of terms T iff

(1) A is a finite sequence of terms.

(2) the last term in A is 7.

(3) each term of A is either a member of F or an immediate consequence by the

Merge Rule of two terms preceding it in the sequence. •

r 1—• 7 denotes a derivation of a term 7 from a set of terms r . T ^ 7 denotes that

it is not the case that T 1—• 7. In Section 4.1, we show how the derivational method

can be used for cover testing. Since the derivation process may contain redundancies,

it is crucial to exclude them for efficient derivation, which is discussed in Section 4.2.

The following theorem, a generalization of Observation 3.1 (1), says that a

merged term is always covered by the base set of terms from which it is derived.

Theorem 3.2 If {a1? • • •, am} 7 then {a\, • • •, a m } covers 7.

Proof: Let s = 6x, • * *, s r be any sequence of derivation of 7 from T = {o?i, • • •, a m } ,

where sr = 7. When r = 1, there exists a merge: {eti,aj} 7, sr = 7. Then, it

is obvious that {a,-, ay} covers 7. Assume that the theorem holds for r < k(> 1).

Suppose r = k + 1. If sr € {ax, • • •, a m } , then {<*1, • • •, aTO} immediately covers sr.

Otherwise, sr must be an immediate consequence of merging two terms sp and sq

preceding sr in the sequence, where p,q < k. Then, by the hypothesis, {o;x, • • •, am}

covers sp and {c*i, • • •, a m } covers sq. So, {ctx, • • •, am} covers sp U sq. But sp U sq

38

covers sr. Hence, {«!,-•• , a m } covers sr. •

3.3 Operations

We define union, intersection, difference, and projection operations on terms,

which will be frequently used in subsequent algorithms as basic functions. Operations

on terms and operations on sets are essentially same except projection if we interpret

a term as the set of minterms covered by it. Computing union, intersection and

projection on terms is cheap, but computing difference is much more costly.

Definition 3.9 (1) Union: The union of two terms a and /?, denoted by aU 3,

is {t 11 is a minterm such that t a or t (Ec 0}.

(2) Intersection: The intersection of two terms a and /3, denoted by a fl /?,

is {t 11 is a minterm such that t (Ec a, t (Ec /?}. The intersection 7 of a, 0 can be

computed as follows:

(i) If a and fl are disjoint, then 7 = 0.

(ii) Otherwise, for each position i, 7[i] is defined by the Intersection Rule shown

in Table 3.

(3) Difference: The difference of two terms a, 0 or relative complement of /? with

respect to a, denoted by a © /?, is {t \ t is a minterm such that t ec a, t /?}.

(4) Projection, Complementary Projection: We define a new operation called

«[*] 0 0 1 1 d d | d

m 0 d 1 d 0
i i

1 d

7[»] 0 0 1 1 0 1 d

Table 3: The Intersection Rule

39

projection whose main purpose is to extract some portion of terms and rearrange

their components. The projection is extensively used to prove some theorems as well

as to simplify the verification process. Let a, ft be two terms of I \ The projection of

a with respect to ft, denoted by ota\f3, is = ar[i], where i is the j t h position

of ft whose value is d. The projection of T with respect to ft, denoted by is the

set of projections where o^\ 0 is the projection of a,- with respect

to ft for each a t ' (^ ft) € T. We abbreviate ft^p to ftn which is equivalent to a r ,

where r = n — \ft\. The complementary projection of a with respect to ft, denoted

by o; - n 1̂ , is exactly like except that i is the jth position of ft whose value is

not d. Similarly, we define r - 1 1 ^ and ft~n. We abbreviate ctn|^, r n | ^ ,

to d n , Vn,a~n, r ~ n , respectively if there is no ambiguity. •

Example 3.2 Let T = {dddll,ldddl,d00ld,0dldl,100dd} and/? = dOdld. By

applying the projection rule, we obtain, ftn = ddd and T n = {ddl, ldl, dOd, Oil, 10c?}.

For complementary projections, ft~u = 01 and r - 1 1 ^ = {dl,dd,01,dd,0d}. •

The following facts are immediately understood on the above operations:

Observation 3.2

1. Let T, A be sets of terms. If T i-» 7, then T U A 7.

2. If T is not a cover for a term ft, then there is a set A such that T U A is a cover

for ft.

3. Two terms, a and ft, are disjoint iff a D ft = 0.

4. Let i be a minterm. If t fi a ^ 0 and t fl ft ^ 0, then a fl ft ^ 0. •

3.4 Minimal Cover

In this section, we introduce the concept of minimal cover. Suppose a set of

terms T covers a term ft. Then, it is possible that some terms of T may not be

40

essential to the cover. We will show that removing this type of redundancy not only

gives a means for simplification, but provides, more importantly, some of the crucial

properties for the proofs of the main theorems for our equivalence testing algorithm.

Definition 3.10 A set of terms T is said to be a minimal cover for a single

term /? iff

(1) T covers 0 and

(2) no proper subset of T covers (3. •

The following facts are observed regarding minimal cover (trivial proofs by con-

tradiction).

Observation 3.3

1. If T is a minimal cover for /?, then each term of T contains at least one minterm

of f3.

2. If T is a minimal cover for /?, then there is no term a G T such that a is disjoint

with /3. •

We now show that there exists a subset of T which is a minimal cover for a term

(3, provided that F covers /3.

Theorem 3.3 (Existence of a minimal cover) If T covers /?, then there

exists a subset T of T such that T' is a minimal cover for /?.

Proof: Let T0 = T be the set of terms {«!,••• , a m } . Define a recursion as

follows:

for j = 1 to m,

if (P - 1 — {aj}) covers /?,

then P = P _ 1 — {a,};

else P = P 1 ;

end.for;

The theorem follows immediately from a trivial proof by contradiction. •

41

Example 3.3 Let 0 = dOdl and T = {dOOd,Oddl,Odld,lOdd}. Then, I\ =

{dOOd, Odld, 10dd} covers 0 and Ti is a subset of T. However, any subset of Ti does

not cover 0. So, Tj is a minimal cover for 0. •

A minimal cover is not necessarily optimal in terms of cardinality.

Definition 3.11 Let T = {o^, • • • , a m } cover 0. Fopt is said to be an optimal

cover for 0 if

(1) rop< is a cover for 0 and

(2) any other cover has at least as many members as Topt has. •

For example, 1^ = {Oddl, 10dd} is an optimal cover for the previous example. It

is obvious that an optimal cover is a minimal cover by the definition of optimal cover,

but not vice versa. The actual computation of optimal cover seems too costly to be

practical, even though it has some theoretical importance.

3.5 Uniqueness

The idea of minimal cover emerges from the observation that some terms of T

may be redundant with respect to a cover. Likewise, we observe that some minterms

of a term may not be essential to a cover. In this section, we introduce the concept of

uniqueness, which tells about the essentiality of a minterm as well as a term. Next, we

investigate the properties associated with uniqueness and establish the relationship

between the two concepts: uniqueness and minimal cover. Later, we further study

how the concepts of uniqueness, minimal cover, and merge are interrelated.

Definition 3.12 A minterm t of a term a is said to be unique with respect to

a set of terms T (or simply, t of a is unique when V is assumed) iff t €c a and there

is no 0 e T — {a} such that 0 covers t. •

Example 3.4 Let V = {d0dd,ddld,dd00,dldl}. Then, t - 0001 € dOdd is

42

unique with respect to T. But 0000 is not. •

U(a) denotes the set of all minterms of a that are unique with respect to T. For

example, U(dOdd) = {0001,1001} = dOOl for the previous example.

We show the sufficient condition for the existence of a unique minterm for each

term of T, which will be used in subsequent theorems.

Lemma 3.1 If T is a minimal cover for a term /3, then each member of T has

at least one unique minterm of (3.

Proof: Suppose not. Then, there exists a term a such that T — {a} covers (3.

Hence, T is not minimal. •

Example 3.5 We use the Example 3.4. T is a minimal cover for <74. And dOdd

(ddld, ddOO, dldl) has a unique minterm 0001 (0110, 0100, 0101, resp.). •

The concept of uniqueness can be extended to a term. Also we can define

redundancy of a term in terms of the uniqueness.

Definition 3.13 A term a € T is called unique with respect to T iff it contains

a unique minterm. A term a € T is called redundant with respect to T iff it is not

unique. •

Example 3.6 In Example 3.4, every term of T is unique with respect to F. •

The following theorem justifies simplification based on projection called projec-

tion reduction, preserving the notion of minimal cover. The performance of projection

reduction largely depends on the cardinality of (3 (The larger |/3|, the more simplifi-

cations would take place). It reduces the number of input variables for a particular

testing, which exponentially reduces the search space and would lead to a big simpli-

fication.

Theorem 3.4 (Projection Reduction) If T = {(*i, • • • ,ctTO} is a minimal

cover for (3, then T11^ = • • •, a minimal cover for /3n.

43

Proof: We first show that T11 covers f3n.

By the definition of minimal cover, we have,

(1) VA[A is a proper subset of T —* 3t[t Gc f3,t A]], and

(2) \/t\t £c /3 —> 3o[fv (E F, t Ec o;]].

Using the definition of projection and complementary projection, we get

(3) \/t[t (zc fl —> t~n = /H1,*11 €c /5n] and

(4) \/ct[a € T —+ [an € rn,Vi[i Gc a an ,£~n €c af"n]]j.

(2) and (4) implies that,

(5) \/t[t €c 0 —* 3a n [a n € r n , 2 n €c «n]].

From (3) and (5), we derive,

Vt[t ec 0 -* tn €c f3n, 3an[an € Tn, *n €c a11]], which implies *n ec /3n - • *n €c

o;n for some

a n g r n , provided that t Gc /?.

Hence,

(6) covers /3n.

Next, we show that no proper subset of Tn covers 0U.

Let A = {&!,•••, £p} be any proper subset of T. Let An = {<5̂ , • • •, 5"}. Then, by

the universal instantiation, (1) can be rewritten as
(7) /?, t\ ^i, • • •, <y.

Observation 3.3 (2) implies that for any S € A, 6 is not disjoint with (3. Then, £ - n is

not disjoint with (3~n, which further implies that
(8) r n e c ^ r n , - - - , r n e c £ - n .

From (3) and (8), we get,

(9) vt[< ec (3->tn ec / ? n , r n e c ^ n , - - - , r n e c t f-n] .

(7) and (9) implies that 6° (3n,t" • • • , ^ ^].

That is,

44

(10) for any proper subset A n of Tn , 3 i i [^ Gc /3n , tf $.c An].

From (6), (10), and the definition of minimal cover, we conclude,

r n = { a f , • • •, } is a minimal cover for f3n. •

E x a m p l e 3 . 7 Let T = {dddll, lddOl, dOOdl, OdlOl, d\00d} and 0 = ddddl.

Then, T is a minimal cover for 0. By applying the projection reduction, we obtain,

0n = (T4, r n = {dddl, IddO, dOOd, OdlO, c?100} and r n is a minimal cover for 0n. •

3.6 Mergeability

In this section, we establish the relationship between two concepts: merge and

cover, concerning the existence of a merge. Next, we show a stronger result regarding

the existence of a merge by taking the notion of minimal cover into consideration.

This directly leads to a practical application to a special type of simplification called

nonmerge reduction. This type of simplification would take place more often in a

circuit design before minimization than in a minimized version.

To prove that T does not cover <rn, it is enough to find a minterm such that it

cannot be covered by each term of T. To do that, we design a falsification algorithm

named Algorithm-F which seeks a counterexample by constructing such a falsifying

minterm. Also we show the validity of Algorithm-F. The result obtained from the

algorithm tells us the sufficient condition for a merge, using the concept of cover,

which will be later extended to a stronger result in Theorem 3.5.

Lemma 3.2 Let T be a set of terms.

If (1) for each term a € I \ a ^ crn, and

(2) for each pair of terms a , 0 £ T, a and 0 are not mergeable,

then r does not cover crn.

Proof: Construct a minterm t which is disjoint with each member of P as fol-

lows:

45

Algorithm-F:

Input: Ao = T, satisfying the antecedent.

Output: a minterm t which is disjoint with each member of T.

Procedure:

£[l..n] <—0; { initialize t}

k <— 0; {k is a position of t}

while Afc is not empty do

k *— k -f~ 1 j

A i— {cx | a € A / t - i , a\k\ = 1};

if A is not empty, then i[k] <— 0;

else A *- {a | a £ Afc_i, a[k] = 0};

t[k] <— 1;

<— Afc_i — A;

end.while;

return f;

end.procedure;

Correctness of the Algorithm-F:

The algorithm removes each member of A from Afc_i at each iteration whenever

A ^ 0. Thus as long as A 0, A k - i will be reduced to Afc whose cardinality

is less than that of A/t_i. Then, it is possible that A^ becomes 0 at fcth iteration

(1 < k < n). Hence, the algorithm terminates and returns t. If A = 0 at A:th iteration

(1 < k < n) (i.e. a[k] — d for each member a G T at kth iteration.), then we proceed

k to the next position (i.e., k+ i).

Suppose we have just reached the last iteration, where k = n. Then, it is

46

sufficient to show that A n = 0. Suppose A n is not empty. Then, there exists a term

a G An . Then, we conclude:

(1) There is no j < n such that a[j\ = 1 because otherwise a (£ Aj (a would be

excluded at step j).

(2) There is some j < n such that «[;'] = 0 because otherwise a = crn, which is

impossible.

So, let j be the last j < n such that a[j] = 0. Then, there is a term 0 G Aj_i

such that fl\j] = 1. For all k < j, 0[j] ^ 1, otherwise /3 ^ Aj_i because 0 would be

excluded earlier. For all j <k<n, a[k] - d. So, a[j] = 1 - 0\j] and there is no other

complementary positions except j. Then, a and 0 are mergeable. A contradiction.
•

Example 3.8 Let T = {dOddldOld, lddOdlOll, ddQOlddld, ddOOdddll,

IddOllddd, ldddddOll, OddllddlO, OllldOlcW}. Table 4 shows the trace of Algorithm-

F on T for constructing the falsifying minterm t. •

We now prove the next two Lemmas as preliminaries to Theorem 3.5, which

establishes the existence of a merge for each term of T.

Lemma 3.3 If T is a cover for <xn and <rn T, then there exists 7 such that

for some a , 0 G T, {a, 0} 7.

Proof: Directly from Lemma 3.2. •

Lemma 3.4 Let a be a term of T.

If (1) a is not mergeable with any 0 G T, and

(2) there is a minterm t G° U(a), and

(3) there is a minterm t and a position / such that a[l] ^ d, t[l] = 1 - t[l] and for

each position p(^ I), t[p} = t[p],

then t T.

47

k 1 2 3 4 5

A lctaOdlOll OllldOlcM ddOOlddld OddllddlO dOddldOld

IddOllddd ddOOdddll

IdddddOll

t[k] 0 0 1 0 0

dOddldOld dOddldOld dOddldOld dOddldOld 0

ddOOlddld ddWlddld OddllddlO

ddOOdddll ddOOdddll

OddllddlQ OddllddlO

OUldOldd

Table 4: Trace of the Algorithm-F for Example 3.8

Proof: From (1), one of the following relationships between a and f3 must be

true:

• (3 and a are disjoint with distance > 2.

• (3 and a are shared.

From (2) and (3), we obtain,

for each a) € I \ t /3 and t a.

There are two cases to be considered as stated above:

Case 1. For each term (3(^ a) G I \ /? and a are disjoint with distance > 2.

Then, t (3 because t and t are different at exactly one position, while t and (3

are disjoint with distance > 2.

Case 2. For each term /3(^ a) € T, f3 and a are shared.

Recall that I is the only position in which t[l] and t[l] are complementary. Then,

t[l] and a[/] are complementary because a[l] = t[l], j3[l] = d or a[l] because [3 and a

are shared.

48

Let k be a position where t[k] and ft[k] are complementary.

If ft[l] = a[l], then t[l] and ft[l\ are complementary because t[l] and a[/] are comple-

mentary. Then, t ft. If ft[l] = d, then, k ^ /, and t[k] = t[k}. Then, t[k] and /3[k]

are complementary because t[k] and ft[k] are complementary. Then, t ft. Hence,

t ft for each ft € T. This completes the proof. •

Theorem 3.5 (Existence of a Merge) If T is a minimal cover for <7n and

crn ^ T, then Va[a € T —> 3ft[ft € I \ ft ^ a , a and ft are mergeable]].

Proof: Suppose that there exists a term a G T such that, for each ft a) € I\

a and ft are not mergeable. Since T is a minimal cover for a n , there exists a minterm

t ec U(a).

Let t be the minterm resulting from taking the negation of t[l] where I is any

arbitrary position of a such that a[l] is either 0 or 1. Then, it immediately follows

from Lemma 3.4 that t T. Then, T is not a cover for a n . A contradiction. •

Directly from Theorem 3.5, we obtain the following simplification rule called

nonmerge reduction.

Theorem 3.6 (Nonmerge Reduction) Let f — T — N, where N is the

set of all nonmergeable terms. Then, crn £ c T iff crn £
c f \

Proof: (=£•) &n £c r implies that there exists a subset T' of T such that T'

is a minimal cover for crn (Theorem 3.3). Then, for each a € T', there exists a term

ft € r ' such that a and ft are mergeable (Theorem 3.5). But, T' C f . Then, it follows

that <7n G
c f .

(•£=) Obvious. •

3.7 Losslessness

In this section, we consider the effects of the merge operation which might lose

49

unique minterms of the base set of terms from which a merge can be derived. We

also consider how a lost minterm can be recovered.

A lossless merge is a special kind of merge which covers every unique minterm

of the base set of terms, defined as follows:

Definition 3.14 7 is said to be a lossless merge iff for some a, 0 G I\ (1)

{a,/?} I-* 7, and (2) 7 contains U(a) U U(0). (i.e. No unique minterm of a or 0 is

lost as the result of the merge operation.) 7 is lossy if it is not lossless . •

Example 3.9 (1) dddO is the merge of two terms ddld and ddOO in Example

3.4. Then, the merged term is lossless because U(ddld) = {0110,1110}, U(dd00) =

{0100,1100}.

" (2) Let T = {ddll, dddO, 00c?l, 01 dd, IdOd}. Then, {ddll, dddO) (-*• ddld. The

merged term is lossy because 0000 is lost because of the merge. •

A simple merge, by its definition, always covers the original set of base terms.

Thus, a simple merge 7 of a and 0 is lossless because a U 0 = 7, but not vice versa.

Because of this favorable characteristic, a simple merge has higher priority than any

other types of merge so that it will be performed before any other merges except unit

merges.

The following Lemma shows that replacing a, 0 by 7 preserves the notion of

cover when {<*, 0} 1—> 7 is lossless.

Lemma 3.5 Let T be a minimal cover for an and for some a, 0 6 T, {a, 0} 7.

Let r ' = T — {a, 0} + {7}. Then, 7 is lossless iff T' is a minimal cover for crn.

Proof: The lemma may be proved by a trivial contradiction. •

In case of a lossy merge, we first need to decide whether or not lost information

can be reclaimed. And then, if it is possible, we want to figure out how lost minterms

can be recovered. Theorem 3.7 addresses these issues with the help of supporting

50

Lemmas 3.6 and 3.7.

Lemma 3.6 Let a, j3 be two terms in a set of terms I\ If a minterm t Ec a is lost

in {a, /?} 7, then, there is a position k such that a[k] = d and j3[k] = 7[&] = 1 — t[k].

Proof: Since t 7, there is a position k such that 7[fc] is the negation of t[k\.

The fact that t is a minterm of a implies,

For each position p, t[p] (Ec Oi\p). That is, a[p] = t[p] or d.

However, a[k] ^ t[k\ because 7[fc] ^ 1 — a[k]. So, a[k] = d. Then, it follows immedi-

ately from the Merge Rule that f3[k] = 7[fc]. •

In the next lemma, we show that a minterm lost as the result of a lossy merge

can always be recovered by another merge involving the term which contains the lost

minterm.

Lemma 3.7 If (1) T be a cover for <rn, and

(2) every merge for any two mergeable terms of T is lossy, and

(3) a, (3 are mergeable terms of T and t Gc a is a unique minterm, which is lost in

the merge of a and /?,

then there is another term /3) G T such that {a,£} 7 and t £° 7.

Proof: Assume the hypothesis and the negation of the conclusion. Let A be

the set of all terms of T each of which member is mergeable with a . Let 0 be

{7 I {«>£} 7> £ € A}. Then, by the negation of the conclusion, t 7 for each

7 G 0 . Let <rn) be the minterm just like t except that i[p] = 1 — t\p], where p is

the merge position of a and /3. Then, t a, since t\p] = 1 - a[p]. From Lemma 3.4,

it immediately follows that

(a) i r (r - A).

Now, we show that for each £ 6 A, i (. For each 0) € A, by the definition of

A, there is a merge 7 such that {<*, £} 1—• 7. And, by the assumption, t ^ c 7.

51

Then, by Lemma 3.6, there is a position k such that a[k] = e?, £[&] = *y[k] = 1 — t[k],

but i[k] = t[k] because k ^ p. So, ([k] = 1 — t[k]. Then,

(b) i i.

From (a) and (b), we conclude that t T, but this contradicts the hypothesis. •

Theorem 3.7 is a natural extension to the previous lemma, which extends to the

recovery of each lost minterm caused by lossy merges.

Theorem 3.7 (Recovery) Let T be a minimal cover for crn. Let 7i, • • •, 7y be

all possible distinct merges in one step from I\ If each merge is lossy, then {71, • • •, 7y}

covers U(ai) U • • • U(am).

Proof: From Theorem 3.5, for each term a G T, there is a mergeable term with

a. Since each merge is lossy, there is a unique minterm lost in each merge. Then,

from Lemma 3.7, any unique minterm lost is recovered by {71, • • •, 7^}. •

The significance of the above theorem is not actual implementation of the recov-

ery because it might lead to an exhaustive search, in general, for right merges which

would recover lost minterms, but the validity of the derivational method which will

eventually recover every lost minterm. In Chapter 4, we propose an algorithm along

with a set of heuristics which obviates the recovery process and yet achieves the goal

efficiently.

CHAPTER 4

THE COVER-MERGE ALGORITHM

We introduce the Merge-Loop which is a realization of the derivational approach

discussed in Chapter 3. The significance of the algorithm lies in the establishment

of the equivalence of the two concepts: cover and derivation. Although the deriva-

tional method is valid, it may contain many redundancies and unnecessary operations.

Hence, we devise a set of heuristics and simplification rules which would shorten proof

procedures in most cases. Heuristics are mainly focused on how potentially favorable

merges can be identified and how they can be chosen for next merge operation. Pri-

orities are imposed on each of the heuristics so that most favorable heuristic can be

selected, and consequently, a shorter proof can be obtained.

Suppose Tj T for a term 77 and a set of terms T. To test whether or not T

covers 77, the Merge-Loop would try to continually search for rj (or a generalization

of TJ) until no more merges can newly be generated because the basic structure of the

algorithm is designed to prove rj Ec F by showing the existence of a derivation F i—• rj.

This indicates that exhaustive searches are unavoidable if the problem is to disprove

r/ Ec T. However, we improve the situation significantly by employing a cost-effective

heuristic which would predict the outcome of a cover test and initiate falsification

heuristics to try to disprove it if a certain condition for the heuristic is met. We will

discuss and analyze these heuristics in this chapter.

Simplification is the most important aspect of equivalence testing as far as run-

ning time is concerned. Three different types of simplifications are extensively used

for the Merge-Loop: covered term reduction, nonessential term reduction, and non-

52

53

and nonmerge reduction. Most of the simplifications during the Merge-Loop are

performed by removing covered terms due to forward merges. Other types of sim-

plifications are introduced to strengthen simplification process so that simplifications

take place in a wider range of conditions and situations.

We propose the final version of the Merge-Loop incorporating heuristics and

simplification rules developed so far. Finally, the top level algorithm Cover-Merge for

the equivalence problem is presented and discussed.

4.1 The Merge-Loop and Proof

This section contains the Merge-Loop and its proof which establishes the equiva-

lence of the two concepts: cover and derivation. The main purpose of the Merge-Loop

is to decide whether or not i] Gc T for a term i] and a set of terms I\ In case of 77 T,

it may return a counterexample which disproves t) €c T (Merge_Loop_2 in Section

4.5). The Merge-Loop is invoked by the Algorithm Cover, which is in turn invoked

by the top level Cover-Merge Algorithm. The relationship between the Algorithm

Cover and the Merge-Loop will be discussed in later sections.

Any method involving exhaustive search cannot be a solution for this algorithm

because it would never give us a result within a reasonable amount of time, although

the method is theoretically valid. Therefore, we first present a valid (or sound and

complete) method for the cover testing problem and then we propose a set of heuristics

in order to allow more simplifications and speed up the process.

Since the number of possible merges in a set of terms T can be quite big (0(m2),

where m = |T|), it is crucial to generate only those merges that can be useful in the

derivation process. It is not a trivial problem, in general, to determine which merge

would be good and which would be bad for future use. Such a test should be fast

54

because it should be made for each merge generated. Even if an exact prediction may

not be possible, a good estimate can guide the merge process much efficiently. First,

we define two types of merges: forward and backward merges.

Definition 4.1 A merge, {«,/?} 7, is called

(1) a forward merge if 7 covers a or f3 (or both).

(2) a backward merge if it is not forward and I(a,(3) > 3.1 •

Obviously, a forward merge can be viewed as a simplification. So, it should be

given a higher priority than backward merges. There are some merges which are nei-

ther forward nor backward. Fortunately, this does not happen very often, compared

with backward merges. Thus, storing these merges for future use may not cause much

ovefhead to a derivation process and in many cases it allows the production of new

favorable merges in subsequent steps. Backward merges are usually considered as

not helpful in a derivation. Some backward merges are useful for subsequent merges.

However, there are many cases where backward merges are immediately useless, which

are recognized as degenerating.

Example 4.1 Let T = {q,r,s,u,v,w,x,y,z}, where q(r,s,u,v,w,x,y,z) is

dOdOl (IdOll, dlldl, 01 ddd, dddOO, OdOld, lddlO, dOlld, dldOd, resp.). Table 5 illus-

trates the set of all possible forward and backward merges from T in one step. Most

of the merges generated are found to be backward, which is a typical phenomenon for

most PL As. Some merges are neither forward nor backward. In this example, they

a r e {?>y},{s,2/},{u;,a;}, and {w,y}. •

Definition 4.2 A merge 7 of two terms from T is said to be a nondegenerating

merge if 7 is not covered by any term of I\ Otherwise, 7 is called a degenerating

merge. •

[I(a,/3) denotes the number of inclusive positions of a and (3 (Definition 3.4).

55

Types of Merges Merges

backward {<7, * } , { g , u } , { 9 , w } , { r , s } ,

{r, u}, {r, y}, {r, z}, {s, u}, {s, u;},

{s, x}, {u, x}, {u, y}, {u, u;}, {v, y},

{w,z},{x,z}

forward {<?,i>}, {q,z},{r,w}, {r, x}, {u, x}

Table 5: Types of Merges for Example 4.1

Example 4.2 Merges {3, t;}, {5, to}, and {iy, zj are degenerating in Example

4.1. •

If a merge is found to be degenerating, then it is immediately useless for the

verification. The Merge-Loop ignores each degenerating merge occurred during a

derivation, justified by the following observation which shows that (1) if a term a is

degenerating and there is a term t] such that {a,rj} 1—• 7, then 7 is always covered

by another term or merge, and (2) if there exists no mergeable term 77, then, by the

nonmerge reduction (Theorem 3.6), a must be eliminated immediately.

Observation 4.1 A covered term or a degenerating merge is redundant for an

efficient merge process.

Proof: Let a, (3 be two terms and a Gc /3. Suppose there exists a term 77 such

that {oc,rj} t—> •j1. There are two cases to be considered:

Case 1. 77 and f3 are not mergeable.

Let p be an inclusive position such that a\p) ^ d,fi\p] = d. Let q be a common

literal position of a and /?. Let r be a position where a[r] = (3{r] = d, if any. Then,

for each position w, if (3[w\ ^ d, then a[u;] = (3[w] because a £ c /?. Obviously,

56

MP(a, rj) cannot be a common literal position of a and 0.2 Then, MP(a, rj) must be

an inclusive position of a and 0. Let pi = MP(a, t/) Then,

(a) 7i[Pi] = P\P\] = d-

(b) \/w[w 7̂ pi, a[u;] ^ d =>• 7i[tw] = a[iw]].

(c) Vr[a[r] = 0[r\ = d =$• 71 [r] = 7/[r].

(d) If there is another inclusive position of a and 8, p2, other than p\ such that

a\p2] ^ d,0\p2] = d, then 71 [p2] = vM-

From (a), (b), (c) and (d), we observe,

vi[[7i[i] = d=> (3[j] = d\ and [71 [j] ^ d => f3[j] = d or 71 [j]]]-

Hence, 71 Gc 0.

Case 2. 77 and 0 are mergeable.

Let {0,r)} h-» 72 and x be the merge position. Then, 0[x] = 1 — rj[x] d, which

implies that A[x] = 0[x\ because A £ c 0. Let y be MP(a, TJ). Suppose x ^ y. Then,

a[x] = 1 — r)[x\ ^ d. Then, a and r) cannot be merged, which is a contradiction.

Hence, x = y. Then, obviously, a €c 0 =>- 71 €c 72. a

So, there is no point holding degenerating merges or covered terms for the Merge-

Loop. We now define the basic structure of the Merge-Loop whose current merge set

is defined recursively by its previous set.

Definition 4.3 Let T0 be a set of terms. Let Mk+1 = {7 | {«,/?} 7,

a , 0 6 rfc, 7 ^ 7 is a nondegenerating merge} and (J Mk+1, for k > 0.

AP is called the j t h merge set from F°, which is the set of all new merges from T° at

the j t h merge step.

We define the closure of merges from T0 as follows:

M* = M° U M1 U • • • U Mj, where Mj+l = 0. •

2MP(<x,f3) denotes the merge position of a, /3. Definitions of inclusive position, common literal

position, and merge position are found in Definition 3.4.

• } (

Suppose we have a derivation of a term 7 from a set of terms. Then, we observe

that many nondegenerating merges from the set are redundant with respect to the

derivation. Definition 4.4 clarifies this observation.

Definition 4.4 Let A be a successful derivation of a term 7 from a set of

terms F. Then, there exists a finite sequence of merges whose last merge is 7. The

nonredundant derivation of 7, denoted by A', is a derivation such that

(1) the last term in A' is 7, and

(2) If {a, 0} i—* T] for some a , /? in A and 77 in A', then both a and 0 are included

in A' and they appear before r) in the sequence.

(3) Nothing is in A' unless it follows from (1) and (2).

If a term a in A appears in A', then a is said to be essential to A'. Otherwise, a is

nonessential to A'. •

The essentiality of a merge is relative to a nonredundant derivation. In other

words, a merge can be essential to one derivation, but at the same time it could be

nonessential to another because there can be many nonredundant derivations for a

given goal term.

Definition 4.5 f3 is a generalization of a iff /3 is the result of replacing zero

or more O's or l 's in a by d's iff for each position p, /3[p] = a[p] or j5\p] = d.

A term a is said to be derivable from a set of terms T iff there is a derivation of a

generalization of a from T. •

4.1.1 The Merge-Loop

In this section, we propose the Merge_Loop_l and provide its proof. The main

purpose of this section is to establish the relationship:

r\ £ c T •$=$• r 1—> 17, for any term r/ (0 < |^| < n, f j is a generalization of 77).

58

We will refine the Merge_Loop_l and produce a better version, Merge_Loop_'2, by

removing redundancies and employing heuristics to shorten the merge process.

Algorithm Merge_Loop_l;

Input: a set, T, of terms and a term r].

Output: True if T covers ?/. False, otherwise.

Procedure:

Let r° = r.

k <— 0;

while rj (rj is a generalization of T)) do

Let jh be a nondegenerating merge of two terms from

if is not found, return False;

Let Tfc+1 = (Tk — {term(s) covered by 7fc})U{7fc}-

k i— k 1;

end.while;

return True;

end.procedure;

It is obvious that the Merge_Loop_l terminates because

(i) only nondegenerating merges can be added to the system,

(ii) a nondegenerating merge cannot be added more than once because of (i),

and

(iii) the set of nondegenerating merges is finite.

Theorem 4.1 (Merge_Loop_l) The Merge_Loop_l returns True iff t] €c P.

Proof:

Part A. Soundness Proof:

If rj is derivable from T0 by the Merge.LoopA, then T° covers rj.

We prove the following theorem by induction on the length I of a derivation of fj from

59

r° , where 17 is a generalization of Tj:

If there is a derivation of f j from T0, then T0 covers rj.

If I = 0, then the theorem immediately follows from rj 6 T0. Suppose the

theorem holds for I = k — 1 (k > I). If I = k and {x, y} 1-* f j , then, by the hypothesis,

T° covers both x and y. Then, by Observation 3.1 (1), T0 covers f j .

Part B. Completeness Proof:

If r° covers rj, then rj is derivable from T0 by the Merge.LoopA.

We prove the following theorem by induction on / (the number of d's in rj):

If rj contains exactly I d's, and T0 covers rj, then rj is derivable from T0, (rj ^

r°,o < I < n).

1. Basis: I = 0. Then, there is an immediate derivation T0 1—> fj, where f j is a

generalization of rj.

2. Hypothesis: If rj contains exactly (/ — l)d's and T0 covers rj, then rj is derivable

from r° .

3. Induction Step: Let r\, • • •, r; be the positions where d appears in rj. Consider

two terms /? and a such that they are exactly like rj except fi[rj] = 1 — <*[rj] / d for

any 1 < j < I. Then, by the hypothesis, /? (a) is derivable from T0 if rj €c T0. Let /3

(a) be a generalization of /3 (a), derived from T0. Then, if (3 or a is a generalization

of ij, then the theorem immediately follows. If not, (3[rj] = 1 — a[rj\ ^ d. Then,

{f3, o;} 1—• f j and rj is a generalization of rj. •

The theorem shows that cover testing can be performed by applying the Merge-

Loop algorithm using the derivational method. But we want to point out that rj can

be any term including a complete term. If 77 is a complete term, then the Merge-Loop

conducts a special type of cover testing, namely tautology checking. In reality, rj is

indeed a complete term particularly for our cover testing problem because rj is the

60

result of performing projection operation on a term 0 for cover testing. Because of

that , we now assume, without loss of generality, that an input term to the Merge-

Loop for a cover testing is a complete term. And we often use a ''goal term'' or '<7/ to

refer to a complete term for cover testing.

E x a m p l e 4 .3 Let T0 = {5, u, v, w, x, y, z}, where s (u, u, w, x, y, z) is dlldl

(01 ddd, dddOO, OdOld, ddOdl, dOldd, IddlO, resp.). Trace of Merge_Loop_l for the

derivation of cr5 is shown below (Table 6). Direct application of the algorithm requires

34 steps to complete the process, while Merge_Loop_2 (Section 4.5) employing a set

of heuristics to shorten the length of derivation takes only 11 steps (Table 7). •

k Tk ik Covered Terms

0 {s,u,v,w,x,y,z} {5, v} i->- 70 (dllOd) 0

1 r° u{7 0} {s, x} t-* 71 (dlddl) 5

2 (r1 - { s » u {7 1} {u, y} 72 (Odldd) 0

3 r2 u{7
2} {u, z} i-» 7 3 (efldlO) 0

4 r3 u{7
3} {v, w} 1 • 7 4 (OdOrfO) 0

5 r4 u{7
4} {u,x} i-> 75 (ddOOd) 0

6 r5 u{75} {v, z} t-+ 76 (IdddO) z

7 (r6 - {z}) u {7
6} T1} ̂ 77 (dldOd) 7°

8 (r7 - {7°» U {77} {w,73}1 • 7 8 (dlddO) 7 3

9 (r8 - {7
3}) u {7

8} {w,y}1 • 7 9 (OOdld) 0

10 r9 u {79} {w,7 2} 7 1 0 (Oddld) w , 7 9

11 (r10-{w,7
9})u{710} {x,y}' ^711 (dOddl) 0

12 r11 u {7 1 1} {x,7 2} 7 1 2 (Odddl) 0

13 r12 u {7
12} {x,7 4} t-» 7 1 3 (OdOdd) 7 4

14 (r13-{7
4})u{7

13} {x,7 6} 1—>• 7 1 4 (ldOdd) 0

61

15 r 1 4 u {714} { a ; , 7 8 } ' 7 1 5 (dlOdd) 0

16 r 1 5 u { 7
1 5 } {y,71} 716 (ddldl) 0

17 r 1 6 u { 7 1 6 } {Vif5} l-> 717 (dOdOd) 0

18 r 1 7 u { 7 1 7 } { ? / , 7 7 } ^ 7 1 8 (ddlOd) 0

19 r 1 8 u { 7 1 8 } {Vi 78} ^ 719 (ddldO) 0

2 0 r 1 9 u { 7 1 9 } {2/? 713} ^ 720 (00ddd) 0

2 1 r 2 0 u { 7
2 0 } {Vi 714} 721 (10ddd) 0

2 2 r 2 1 u { 7
2 1 } { 7 1 , 7 6 } *-* 7 2 2 (1 1 ddd) 0

2 3 r 2 2 u { 7
2 2 } {717 78} 723 (dlddd) U , 7 \ 7

7 , 7 8 , 7 1 5 ,

22
7

2 4 (r 2 3 - { u , 7 \ 7 T , 7 8 , 7 1 5 , 7 2 2 })

U { 7
2 3 }

{ 7 2 » 7 5 } •""* 7 2 4 (OddOd) 0

2 5 r 2 4 u { 7
2 4 } { 7 2 , 7 1 3 } ' ^ 7 2 5 (0dddd) -,2 ^10 ^12 ^13

I > / ? / W 7

7 2 ° , 7 2 4

2 6 (r 2 5 — { 7
2 , 7 1 0 , 7 1 2 , 7 1 3 , 7 2 0 ,

7 2 4 }) U { 7
2 5 }

(7 5 , 7 1 6 } ^ 7 2 6 (d t M O l) 0

2 7 r 2 6 u { 7
2 6 } { 7 5 > 7 1 8 } ^ I27 (dddOd) V , 7 5 , 7 1 7 , 7 1 8 , 7 2 6

2 8 (T 2 7 — { ^ , 7 5 , 7 1 7 , 7 1 8 , 7 2 6 })

U { 7 2 7 }

{ 7 6 , 7 1 6 } ^ 7 2 8 (l d l < M) 0

2 9 r 2 8 u { 7
2 8 } { 7

6 , 7 2 5 } ^ 7 2 9 (ddddO) 7 6 , 7 1 9

3 0 (r 2 9 - { 7
6 , 7 1 9 }) U { 7 2 9 } { 7 X 1 , 7 2 3 } '->• 7 3 0 (ddddl) a : , 7 n , 7 1 6

3 1 (r 3 0 - { x , 7 U , 7 1 6 }) u { 7 3 0 } { 7 1 4 > 7 2 5 } ^ 7 3 1 (ddOdd) 7 1 4

3 2 (r 3 1 _ { 7 1 4 }) u { 7 3 1 } { T
2 1 , 7 2 3 } 7 3 2 (1 dddd) 7 2 1 , 7 2 8

3 3 (r 3 2 - { 7
2 1 , 7 2 8 }) U { 7 3 2 } { 7 2 5 , 7 3 2 } 7 3 3 (ddddd) r 3 3

Table 6: Trace of the Merge_Loop_l for Example 4.3

62

The bottleneck of the Merge_Loop_l is the merge process which blindly gen-

erates all nondegenerating merges without knowing the efficacy of such merges for

subsequent merges toward a goal term. It is interesting to observe that only 13

merges are essential to the derivation of <r5 in the above example, indicating many

redundancies are involved. Table 7 illustrates the sequence of essential merges. Re-

moving redundant merges is essential to speed up the derivation process especially for

big PLAs. The focalization of next section will be mainly on how these redundancies

can be eliminated.

No. Merge

1 {s,ty} i—* 71 (= dlddl)

2 {u,y} I—• 72 (= Odldd)

3 {u, z} i-» 7 3 (= dldlO)

4 {v, w} >-> 74 (= OdOdO)

5 {v,z} 76 (= ldddO)

6

^3
r-H

00 1
CO

7 {x , 74} 71 3 (= OdOdd)

8 { a ; , 7 6 } 7 1 4 (= IdOdd)

9 { j / , 7 1 4 } i->- 7 2 1 (= 1 0 d d d)

1 0 {7
1,7

8} ^ 7
23 (= dlddd)

11 {72 ,71 3} •-> 72 5 (= 0dddd)

12 { 7 2 \ 7 2 3 } 732 (= 1 dddd)

13 {72 5 ,73 2} ^ 73 3 (= ddddd)

Table 7: Sequence of Essential Merges for the Derivation of Example 4.3

63

4.2 Heuristics for the Merge-Loop

Although the Merge_Loop_l guarantees correct answers, it might contain redun-

dant merges and unnecessary operations, which would lead to poor performance. To

enhance the algorithm, we propose a set of prioritized heuristics which can signifi-

cantly reduce redundant computations in most cases. Since the order of merges in

a derivation greatly affects the performance of the merge process, the prioritization

of these heuristics may provide a speed-up of the merge process and more simplifica-

tions. In this section, we use 'oy', a complete term with r d's, to denote a goal term

for our cover testing problem.

Heuristics from HI to H6 are incorporated into the algorithm to speed up the

Merge-Loop approaching ay, while H7 is to disprove the existence of a derivation of oy

by calling fast falsification heuristics to produce a counterexample if the input seems

to be a nontautology. Heuristics are ordered by priorities in which HI has the highest

priority and H7 has the least. Each heuristic is tested in this order whether or not its

condition is met at each iteration of the Merge-Loop. If so, we put the heuristic into

action. When a heuristic has already been in action and yet another decision has to

be made regarding the selection of a heuristic, the algorithm will recursively apply

the priority rule until a choice is made.

HI. Perform unit merges before any other merges are tried. If a unit term is

found, unit merges are performed throughout the input. Since a unit merge always

reduces the number of literals of the terms involved, it is treated as a simplification

called unit-merge reduction. Another strong point is that a unit term can easily be

identified.

H2. Perform simple merges. A simple merge is generally considered as a sim-

plification that can immediately eliminate its base terms. We name this type of

64

simplification as simple-merge reduction. It also would lead to big simplifications in

many cases.

H3. Experiments on a large scale of data show that terms which have partic-

ipated in forward merges are more likely to trigger off other forward merges than

terms involved in other types of merges. A forward merge must be exploited to gen-

erate as many forward merges as possible because it is highly likely that a cascade

of new forward merges can be subsequently generated and big simplifications can be

achieved. Since a forward merge always simplifies at least one of its base terms, it is

considered as a simplification called forward-merge reduction. If two or more forward

merges are found, apply H4 to choose the best one.

H4. If 71 and 72 are both forward merges such that {a, (3} 1—• 71, {a, 77} 1—• 72,

and I(oc,(3) < I(a,r)), then choose 71. before 72.

H5. Merge terms a and /3 before (and 7] if Lit(a) + Lit(f3) < Lit(() + Lit(rj).

Terms containing small number of literals are more likely to produce big merges which

would allow more simplifications than terms with large number of literals.

H6. Postpone backward merges, if possible. Since backward merges increase the

number of literals as the result of the operation, they are less likely to be involved in

a successful derivation as essential merges. However, there are some cases in which

backward merges are essential to a derivation sequence.

H7. If only backward merges are possible in for any k > 0, then it is likely

that <rr r f c . The heuristic is based on the fact that if {a, /?} i—• 7 is a backward

merge, then (1) 7 realizes only a portion of a U /? and (2) Lit(7) is increased as the

result of the merge. Note that any successful sequence of merges which can lead to a r

can be recognized as the process of replacing literals by cTs until no more replacement

is possible. We can also observe that merges along a successful sequence of derivation

65

are most likely to reduce the number of literals of terms along the sequence. Since

backward merges can only increase the number of literals along a merge sequence, we

need to avoid them if they are redundant (Experiments show that they are redundant

indeed in most cases). We propose two heuristic approaches to implement H7 in

Section 4.3, based on falsification procedures.

Unit merges are extremely valuable for simplification, but they rarely occur at

the initial stage of a derivation unless input is very sparse, especially for random

PLAs. As the process approaches a goal term in a successful derivation, more and

more simplifications would take place and input gets very sparse. So, we very often

observe lots of unit merges near the end of successful derivations. Also, simple merges

and forward merges are rarely found at the initial stage, but they are likely to occur

as the process approaches a goal term in a successful derivation. The heuristic H5

is most frequently found at the initial stage and usually generates more favorable

merges in subsequent steps.

Heuristics presented in this section are incorporated into the Merge-Loop and

tested successfully. Experimental results on standard benchmark problems as well as

on random PLAs are shown and discussed in Chapter 6.

Example 4.4 Table 8 demonstrates some of the heuristics on the same input

for Example 4.3. Note that the first few heuristics help the process to quickly reach

a unit term which would start a series of unit merges. Also note that HI is heavily

used in this example. This is a typical phenomenon which can be found near the

end of every successful derivation because merged terms become quite sparse as the

derivation approaches near crr and unit terms would appear more frequently near the

end of a successful derivation of a r than any other stages of the derivation. Because

of the heuristics used, we are able to shorten the length of the derivation from 34 to

66

11. The reduction rate increases considerably as the input size grows. Nevertheless,

the solution is not optimal (8 is the smallest). However, we are confident that these

heuristics work efficiently in many cases. •

No. Merge Heuristics Used

1 {u,y} 7° (= Odldd) H5

2 {to, 7°} 71 (= Oddld) H3, H4

3 {z, 7 1 } t — 7 2 (= dddlO) H3, H4

4 { v , 7 2 } 7 3 (= ddddO) H2

5 { s , 7 3 } 1—> 7 4 (= dlldd) HI

6 {a ; , 7 3 } 7 5 (= ddOdd) HI

7 { 5 , 7 s } h->. 7 6 (= dlddl) HI

8 { x , 7 5 } 1—> 7 7 (= dOddd) HI

9 {7°?75} 78 0dddd) HI

10 { 7 4 , 7 5 } (—• 7 9 (= dlddd) HI

11 {l7179} ^ 7 1 0 (= ddddd) HI, H2

Table 8: Derivation Sequence using Heuristics for Example 4.4

4.3 Falsification

Since the problem of disproving a tautology is as hard as the problem of proving

it, we need to devise fast heuristics which can be used repeatedly at each step of

the Merge-Loop, although they may not be complete (but sound, nevertheless). Two

separate heuristics based on greedy methods are designed for the purpose: Falsify.l

and Falsify_2. Falsify_1 uses a greedy method which tries to find an assignment as

67

a counterexample, seeking to maximize the number of terms falsified by the partial

assignment made at each step of choosing a variable and its truth value. This can be

done by choosing a variable with the most occurrences and assigning the negation of

the truth value which takes place most frequently for the variable.

Procedure Falsify_l;

Input: a set of terms, Ffc from which only backward merges can be derived.

Output: (1) returns a falsifying minterm t if it is found.

(2) returns 'Fail', otherwise.

Procedure:

PI. Let xi, • • •, xn be the variables.

f[l..ra] <— 0;

Let Ni(w) be the number of occurrences in of Xi (1 < i < n)

having the value w (0 or 1).

repeat P2, P3, and P4 until no more reductions are possible.

P2. for each unit term a £

i[j] 1 - «[j] ; where a[j] ^ d]

Perform reductions on using t[j].

end.for;

if rfc is empty, then return t\

P3. Compute Ni(w), • • •, Nn(w) for Tk.

Compute the index j and the value w such that

w) is the largest among N\{w), • • •, Nn(w).

i \ j] <- 1 - «>;

P4• Perform reductions on using f[;'] as follows:

for each term a €

68

if a[j] = t[j], then a[j] *- d;

else if a[j] = 1 — t[j], then Tk <— Tk — {a};

if Lit(a) = 0, then return 'Fail

if is empty, then return

end.for;

end. procedure;

If T is not a tautology, then Tk(k > 0) at kth merge step would most likely

show the characteristic of H7. The falsifying heuristic Falsify_1 is called from the

Merge-Loop every time Tk at kth step shows the characteristic of H7. The procedure

Falsify_l works efficiently for many cases, even though it sometimes fails to generate

a falsifying assignment for nontautological expressions. Whenever the first procedure

(Falsify_l) fails, we try the second procedure (Falsify^) again on the same input

to construct a falsifying minterm with different and better approaches, but more

complicated.

In this manner we may have more chances of getting a falsification. At worst

case, the falsification process could merely add computational burdens to the Merge-

Loop, failing at each invocation. Fortunately, this rarely happens in practice.

Example 4.5 Let Tk = {«, v, w, x, y, z}, where u (v, w, x, y, z) is dlddl

(Olddd, dddOO, ddOdl, dOldd, IdddO, resp.). Table 9 shows the trace of Falsify_l for

the construction of t. Falsify_1 needs to have all five iterations for five variables to

obtain t = 00010 for this example. However, for many cases the procedure only tests

some portion of the variables to complete the falsification. We show that for the same

example Falsify_2 needs three assignments to falsify the set in Example 4.7. •

Example 4.6 Let Tfc = {5, u, v, w, x, y, z}, where s (u, v, w, x, y, z) is IdOdl

(Oldll, dOlld, (flOOd, Odldd, lldOl, ddldO, resp.). Then, is reduced to 0 because

69

Iter. r k t Reductions

1 {u,v,w,x,y,z} t[2] = 0 remove u, v from Tk h y[2] = d.

2 {w,x,y,z} <[3] = 0 remove y from Tk & a: [3] = d.

3 {w,x,z} O
r II o remove x from Tk k, z[5] = d.

4 {w,z} i[l] = 0 remove z from Ffc.

5 {w} ([4] = 1 remove w from

6 0

Table 9: Trace of Falsify.l for Example 4.5

of the reductions taken place in Falsify_1, using the following sequential assignments:

t[2] = 0, t[3] = 0 and t[1] = 0.

This example shows that three out of five variables are required to be assigned by

zeroes. But, Falsify_2 for the same input can disprove the set by having only two

assignments in Example 4.8. •

The second heuristic has more computing power than the first one in the sense

that it can falsify more nontautological expressions than Falsify_1 does. Falsify_2 uti-

lizes information on the number of literals as in Falsify_l as well as information on

the merges occurred at each merge step. Experimental results show that both proce-

dures work efficiently for most cases, consuming a reasonable amount of computing

resources.

Procedure Falsify_2;

Input, Output: same as in Falsify.l.

Procedure:

PI. Let S = {(a, /?)|a, /3 € a and /3 merge backwardly }

< - 0 ;

70

£[l..n] = d;

P2. for each unit term a in a pair of 5,

i[j) 1 ~ «[;], where a[j] / d;

Perform reductions on S using t[j].

end.for;

if rfc is empty, then return t;

PS. Let j be the position at which merge positions take place most frequently

for all pairs in S.

Compute Ni(w), • • •, Nn(w) as in Falsify_1.

if Nj(0) > JVj(l), then t[j] «- 1;

else t[j] <— 0;

P4• Perform reductions on the set of pairs S using t[j] as follows:

for each term a of each pair in S,

if a[j] = t[j], then a[j] = d;

if a[j] = 1 — t[j], then remove a from its pair;

end.for;

for each member s of S,

if s contains a single term 77,

then S <— S - {s}; i? <— Z?U{a};

end.for;

Remove each member of R from R if it appears in a pair of S.

Perform reductions on the set R using t[j] as follows:

for each term a £ R,

if a[j] = t[j], then a[j] = d;

if Q;[j] = 1 — t[ji], then remove a from R]

71

end.for;

if S is empty, go to P5;

else if S contains a contradictory pair, return 'Fail

else go to P2.

P5. { Call Algorithm-F of Lemma 3.2 }

Let 11%= {a%\ a £ R}.

Call Algorithm-F for constructing a minterm t* which falsifies Rn.

for each position j of t*,

t[l] <— t*[j], where I is the jth position of t whose value is d.

return t;

end.procedure;

The goal of a falsifying procedure is to find a minterm t which falsifies

A falsifying procedure is said to be consistent if the decision of t[j] for a position

j will remain unchanged throughout the falsifying process. It is obvious that both

heuristics are consistent and sound. A pair of terms in S of Falsify_2 is said to

be contradictory if it contains two complementary unit terms. We show that the

existence of a contradictory pair is the necessary and sufficient condition for the

failure of constructing the minterm t.

Observation 4.2 If two complementary unit terms are generated by the pro-

cedure Falsify-!, then the two terms must be paired in S.

Proof: If they are not paired, then they are not mergeable. Then, there must

be another disjoint position j, where both literals on j must have been reduced to d's

by the procedure, which is impossible. •

Upon completion of P4, if R is empty, then we conclude that t falsifies S. Oth-

erwise, R contains those terms that have not yet been falsified by the procedure. We

72

then perform the next part of falsification.

Right before P5 is to be executed, the following facts are understood:

Observation 4.3 For each term a € R,

(1) OC 7^ <7n,

(2) Vp[i[p] 7̂ d =$• a\p] = d\, and

(3) there exists a position p such that t\p] = d and a\p] ^ d. •

Observation 4.4 The remaining terms of the set R are not mergeable with

each other.

Proof: Suppose there are two remaining terms ot , ft' and they are mergeable.

Let a (0) be the original term for ot (0).

Case 1. a and /? are mergeable.

Then, the pair (a, (3) would be removed from S by a reduction at P\. So, at

least one of a , d' would be removed from R.

Case 2. a and (3 are not mergeable.

If a and /? have no complementary position, then a and d' are not mergeable.

If a and /3 have two or more complementary positions, there are two cases to be

considered:

(i) If there is a complementary position p such that t[p] / d, then one of a and

0 would be removed from R.

(ii) If, for each complementary position p, t[p] = d, then a and ,8 are not

mergeable. •

Then, at P5, We observe:

1. For each a n | j E an | (- is not a complete minterm.

2. Each pair of terms of Ru |(- is not mergeable.

Then, by Algorithm-F of Lemma 3.2, there must be a minterm t* which falsifies

73

Rn\t- Now, by assigning new values of t* to the corresponding positions of t, t falsifies

the original set S.

To demonstrate the true capacity of Falsify_2, we need to show which is

not falsified by Falsify_1 but falsified by Falsify_2. We have many such cases in

experimental results for big PLAs, but it is quite hard to get a small example showing

the quality because almost all small PLAs which are nontautological can be falsified

by Falsify_1 alone. Because of that, same examples shown in Examples 4.5 and 4.6

are used as examples for Falsify_2.

Example 4.7 We use the same input Tk of Example 4.5. Using information

on merges in addition to the information used in Falsify_1, Falsify_2 can reduce the

number of iterations for the construction of t. Table 10 shows the trace of Falsify_2

on r fc. The procedure falsifies the set by making three assignments of truth values to

f, while Falsify_1 needs to have five in Example 4.5. •

Iter. S R t Reductions

1 {(u,w),(u,y),(u,z),(v,y),

(v,z),(w,x),(x,y),(x,z)}

0

o II
icT

<-»o remove {(u, w), (u, y), (u, z),

(w, x), (x, y), (x, z)j from S

R = {w}

2 {(vty),(v,z)} M i[i] = o remove {(v, z)} from S

3 {(«,»)} M t[2] = 0 remove {(f,j/)} from S

4 0 M

Table 10: Trace of Falsify_2 for Example 4.7

Example 4.8 On the same input of Example 4.6, Falsify_2 can falsify the

set by having only two assignments: i[3] = 0 and f[5] = 0. One more assignment is

necessary to falsify the set R = {iu} in order to return t. This can be done by running

74

the Algorithm-F, which completes the falsification. •

A falsifying procedure (or algorithm) is said to be complete if a set of terms, T,

does not cover <rn, then the procedure guarantees to construct a falsifying minterm

t. We believe that both heuristics are not complete because the problem of designing

a complete falsification algorithm is as hard as the original problem of checking the

tautologyhood, while the time complexity of Falsify_2 is only 0(nm2), where n is the

number of variables and m is the number of terms of T. So, 'Fail' returned from the

procedures does not necessarily imply crn 6° However, both heuristics are sound

because if such a minterm i can be constructed, then obviously T does not cover the

minterm.

4.4 Simplifications during the Merge-Loop

Without simplification, the Merge-Loop would soon be overwhelmed by enor-

mous search space for even a small size input. Therefore, we need to incorporate

various types of simplification techniques into the Merge-Loop so that

• it would not produce useless merges, and

• it would produce good merges which cover other terms, and

• it would shorten the length of the verification by choosing most favorable merge

for next merge step.

Simplifications can be done within the Merge-Loop in different ways as follows:

(1) Covered Term reduction:

Simplifications during the Merge-Loop are mostly done by removing covered

terms due to forward merges. Unit-merge reduction and simple-merge reduction tend

to reduce greatly and cause the process to quickly approach a goal. As the derivation

approaches near a goal term, the average cardinality of merges is likely to become

75

small, which means more simplifications can be expected.

(2) Nonessential Term Reduction:

Another possibility is that some terms may never be participated as essential

elements in a derivation of a goal term. Removing them will reduce the number of

merges at current merge step as well as subsequent steps. The reduction is justified

by the following theorem:

Theorem 4.2 (Nonessential Term Reduction) Let A be a derivation of

<rn from T. If there is a position j and a term a such that a[j] ^ d and a[j] ^ 1 - /?[;]

for each term a) € T, then a is nonessential to A.

Proof: Let 7 be a merge of a and TJ. Since rj[j] ^ 1 — <*[;'], the position j

cannot be the merge position. So, *f[j] = a[j] d. And any merge using 7 cannot

produce d at position j for the same reason. The theorem follows directly from a

simple induction on |A|. •

The reduction can take place in the entire range of the Merge-Loop. Although

the reduction rate is not as big as the first one, it certainly contributes to the simpli-

fication of the merge process to some extent.

(3) Nonmerge Reduction:

By Theorem 3.6, nonmerge terms are removed from the input. The situation

can be found mostly in a sparse circuit where many redundancies are involved.

Nonessential term reduction and nonmerge reduction are found to be effective in

many experimental cases. We want to compare the two reduction schemes in detail.

First of all, a nonessential term may or may not be mergeable with other terms,

while a nonmerge term cannot be merged with any term at all as the name suggests.

Second, a positional testing is enough for detecting nonessential terms, but a test for

each pair of terms is required for recognizing nonmerge terms. Clearly, we can observe

76

that testing nonmerge reduction is more costly than the other case. Therefore, it is

natural to put the nonessential term test before the nonmerge test.

4.5 The Merge_Loop_2

We now present the final version of the Merge-Loop, the Merge_Loop_2 as an

improvement over the Merge_Loop_l, which is an implementation of heuristics, falsi-

fication procedures and simplification rules proposed in previous sections.

Algorithm Merge_Loop_2;

Input, Output: same as in the Merge_Loop_l

Procedure:

PI. Let r° = r.
k <— 0;

P2. while f j ̂ Tfc (f j is a generalization of 7J) do

Choose the first heuristic from HI to H6.

Perform a merge process, using the heuristic chosen.

Perform reductions according to Section 4.4.

if only backward merges are possible in Tk for generating a new merge,

then Perform Falsify_l on Tk.

if Falsify_1 returns a falsifying minterm t, then return t;

else Perform Falsify_2 on

if Falsify_2 returns a falsifying minterm t, then return

Let 7^ be a nondegenerating merge of two terms from

if 7fc is not found, return False.

Let Tk+1 = (Tk — {term(s) covered by 7fc}) U{7fc}-

k <— k -)- 15

77

end.while;

return True;

end.procedure;

We show that the above procedure is valid.

Theorem 4.3 (Merge_Loop_2) The Merge_Loop_2 returns True iff 77 (Ec F.

Proof: Immediately from the following:

(1) The procedure terminates because (i) only nondegenerating merges can be

added to the system as the result of using heuristics, and (ii) the Merge_Loop_l

terminates.

(2) The Merge_Loop_l is sound and complete (Theorem 4.1).

(3) Reduction rules employed in the Merge_Loop_2 preserves the tautologyhood.

•

Example 4.9 shows when and how Falsify_l is performed and Example 4.10

demonstrates how heuristics for accelerating the Merge-Loop are selected and how

various reductions can be made in order to quickly approach the goal.

Example 4.9 Let T° = {q, r, s, t, u, v, w, x, y, z}, where q (r, s, t, u, v, w, x,

y, z) is OlOOldO (dddddl1, OOldldd, IddOdOO, dlllOOl, lOdddlO, dOdlOld, llddddO,

ddlddOd, 0001 (Ml, resp.). The sequence of merges derived from T0 is 70 • • •

which represents IddddlO, Iddddld, ldldddd, dOldldd, lddOddO, c/1001c/0, ddldddl,

QOdlddl, respectively in the same order. Table 11 shows the trace of Merge_Loop_2.

When k = 8, no nonbackward merge is attainable for generating a new merge. The

procedure now calls Falsify_1 to find a counterexample for the set T8. Falsify_1 returns

a minterm t after making five assignments: t[2] = 1, f[6] = 1, f[7] = 0, f[l] = 0,

f[3] = 1. •

Example 4.10 Let T0 = {o, p, q, r, s, t, u, v, w, x, y, z}, where o (p, q, r, s,

78

k pA: lk Heuristics Used Reductions

0 {q,r,s,t,u,v, w, x, y, z} {?;, x} i~> 7 0 H 4 v.CV

1 {q,r,s,t,u,w,x,y,z, 70} { T ° , 7*} ^ T 1 H 3 , H 4 , H 5 7 ° : C V

2 {q,r,s,t,u,w,x,y,z,~f1} { T 1 , 2 / } ^ T 2 H 3 , H 5 , H 6 0

3 {q,r,s,t,u,w,x,y,z,yl,y2} { 7 2 , s } 7 3 H 4 s : C V

4 {q, r , t, u, w, x, y, z, 7 1 , y2,73} { T 1 ^ } ^ 7 4 H 4 t : C V ,

7 2 : N M

5 {q,r,u,w,x,y,z,y1,y:i,<y4} { 7 4 , g } h * 7 5 H 3 , H 4 q: C V

6 {r, u, w,x,y, z, 7 1 , 7 3 , f4,75} { r , 2 / } ^ 7 6 H 5 0

7 {r , u, w, x, y, z, 7 1 , j3, f4,7s, 7 s } { 7 6 , ^ } 7 7 H 4 z : C V

8 { r , u,w,x, y, z, 7 1 , 7 3 , 7 4 , 7 s , 7 s , 7 7 }

CV: covered term reduction, NM: nonmerge reduction

Table 11: Trace of the Merge_Loop_2 for Example 4.9

t, u, v, w, X, y, z) is dldlO (OlOdl, Qddld, lOddl, d0\0d, l l ldO, ddOld, dOddO, 0<M)1,

c?100J, dlldl, OdlOO, resp.). The sequence of merges derived from T0 is 70 • • • 714 ,

which represents dddlO, OdldO, dlldO, dlldd, ddlOd, dldOd, lOddd, Odddl, Odldd,

dldld, dlddd, ddddO, 0dddd , dOddd, ddddd, respectively in the same order. Table 12

shows the trace of Merge_Loop_2 on T0, illustrating how cr5 can be reached. •

In summary, the major improvements made in the Merge_Loop_2 are

• The addition of reduction rules in order to reduce the search space.

• The implementation of heuristics for speed-up of the merge process.

• The implementation of the falsification procedures for seemingly nontautolog-

79

ical expressions.

4.6 Algorithm Cover-Merge

In this section, we present the top level algorithm Cover-Merge, which calls the

Algorithm Cover to test whether or not a PLA (f> covers a term (3 of the other PLA. We

first show how the Algorithm Cover works and then provide a proof that establishes

the relationship between cover testing and tautology testing. Next, we describe the

Algorithm Cover-Merge which basically implements the divide-and-conquer method,

described in Theorem 3.1.

Algorithm Cover;

Input: a PLA 4> and a term /3.

Output: returns 'Yes'if 4> covers 0. 'No', otherwise.

Procedure:

PI. Let To be the set of all terms of (j).

if any term of To covers /?, then return 'Fes';

Let Ti be {a | a € r 0 , a is not disjoint with j3}.

L e t r = r ! \

P2. Call the Merge-Loop to test the tautologyhood of T.

if r is found to be a tautology,

then return 'Fes';

else return Wo';

end.procedure;

Theorem 4.4 (The Algorithm Cover) The Algorithm Cover returns

'Fes'iff 13 ec <{>.

Proof: The proof of P2 is shown in Theorem 4.3. It is sufficient to prove that

80

Gc r 0 iff <Jb €c r , where b is the number of cTs in /?.

Part A: Suppose (3 6C T0. Then, (3 ec Fu directly from Theorem 3.3 and Obser-

vation 3.3. Then, crb e c T, justified by the projection reduction (Theorem 3.4).

Part B: Conversely, suppose crb e
c T. Let $ = p~n\\f3n and f x = { a ^ l K ,

•••' amnHam} according to the definition of p - n , 0 n , a ~ n and a n from projection

operation (Definition 3.4), where r \ = and 0U = <rb (x\\y denotes the

concatenation of two strings x and y). Recall that each term a € I \ is not disjoint

with 0. Then,

(1) for each position i, oc[i\ and Q[i] are not complementary, and

(2) for each position i, (3~n[i] ^ d, by the definition of f3~u.

From l̂ l) and (2), there are only two cases to be considered:

. 0-n[j] = a - n ^ = o o r L

• {3~n[i] = 0 or 1, and = d.

Then, it follows that f3~n e c a~ n . That is, (3~n e c aj~n, • • •, p~n e c a~n. Then,

clearly, {^-n | |o;n, • . . , ^ _ n | |o ;^} covers /?_n | |/3n, which implies that,

{ « r n II a:", lie*"} covers /?~n||/?n. So, /5 €c I \ . Hence, /3 e c IV There-

fore, /? (Ec To because To is a superset of Tj. •

The Algorithm Cover-Merge is the top level equivalence checker realizing the

divide-and-conquer strategy of Theorem 3.1.

Algorithm Cover-Merge;

Input: two PLAs fa and fa.

Output: returns 'Yes'if <j) = fa. 'No', otherwise.

Procedure:

for each a £ fa,

Call Algorithm Cover to test whether a <EC fa.

81

if a <j>2, then return Wo';

end.for;

for each (3 £ fa,

Call Algorithm Cover to test whether (3 Ec 4>\-

if (3 <f>i, then return Wo';

end.for;

return 'Yes)

end.procedure;

Theorem 4.5 (The Cover-Merge Algorithm) The Algorithm Cover-

Merge returns 'Yes'iff <t>i = <f>2-

Proof: Directly from Theorems 4.4 and 3.1. •

82

k Tk jk Heuristics Reductions

0 {o,p,q,r,s,t,u,v,w,x,y,z} {o,v} >-+ 7 0 H 4 , H 5 0: C V

1 {p,q,r,s,t,u,v,w,x,y,z, 70} (7 V) - 7 1 H 3 0 : C V

2 { p , q, r , s, t , u, v, w, x , y, 7 0 , 7 1 } { 7 ! ^ } 7 2 H 3 t: C V

3 { p , g , r , s , u , u , w , a; , 2/, 7 0 , 7 1 , 7 2 } { 7 2 , 2 / } ~ 7 3 H 3 , H 2 V, 7 2 ; C V

4 { p , r , s , u, v, w , Z , 7 0 , 7 1 , 7 3 } { 7 3 ^ } ^ 7 4 H 3 , H 5 s : C V

5 { p , q, r , u , v , w , x, 7 0 , 7 1 , 7 3 , 7 4 } { 7 4 , X } H-> 7 5 H 3 , H 4 x : C V

6 { p , g , r , u, v, w, 7 0 , 7 1 , 7 3 , -y4,75} { r , t ?} h-> 7 6 H 4 , H 5 r : C V

7 { P , v, w , 7 0 , 7 1 , 7 3 , 7 4 , 7 s , 7 6 } { t f , ™ } ^ 7 7 H 4 , H 5 p , w : C V

8 {<2S t>, 7 ° , 7 1 , 7 3 , 7 4 , 7 5 > 7 6 , 7 7 } { 7 ? , 7 1 } ^ 7 8 H 3 7 X : C V

9 , u , v, 7 0 , 7 3 , 7 4 , 7 5 , 7 6 , 7 7 , 7 s } { 7
3 , - U } 7

9 H 5 0

1 0 { g , u, v, 7 0 , 7 3 , 7 4 , 7 5 , 7 6 , 7 7 , 7
8 , T

9 } { 7 9 , 7 5 } ^ 7 1 0 H 3 , H 2 7 3 , 7 5 , 7 9 : C V

1 1 { q , u , w , 7 0 , 7 4 , 7 6 , 7 7 , 7 s , 7 1 0 } { 7 1 0 , v} i—• 7 1 1 H I v , 7 ° : C V

1 2 { ? > 7 4 » 7 6 5 1 7 1 l8i 7 1 0 > 7 1 1 } {711 ,77} ^ 712
H I , H 3

S
g

00 ^
2"

s

*-
£r

1 3 { 7 6 , 7 l ° , 7 1 2 } (7 1 2 , 7 6 } - 7 1 3 H I 7 6 : C V ,

7 1 2 : N E

1 4 { 7 1 0 , 7 1 3 } { 7 1 3 , 7 1 0 } - 7 1 4 H I 7 1 0 , 7 l 3 : C V

1 5 0

CV: covered term reduction, NM: nonmerge reduction, NE: nonessential reduction

Table 12: Trace of the Merge_Loop_2 for Example 4.10

CHAPTER 5

RANDOM MODELS

Many approaches to solve satisfiability-related problems have been made to

achieve good performances on specific problem domains. Using domain-specific knowl-

edges and built-in information, one can devise an efficient algorithm under particular

conditions. (An example for a circuit testing problem: some types of circuits might

have the symmetric property which can be found very effective for designing a testing

algorithm.) Although algorithms like that could run well on special types of data

sets which contain domain-specific knowledge, it may not be the case that the same

algorithms could run also well on other types of data sets. So, parameterized random

sets of problems have gained much attention from research people on this area in

order to give an unbiased way of testing algorithms [24, 25, 50, 109].

Thus, randomized problem instances do not include any built-in knowledge on

specific domain of problems. But this does not mean that devising an algorithm

which embodies domain-specific knowledge for a particular type of problems is not

important. The paradigm of this is that algorithms that do well on random problems

would do also well on specific problems too [23].

There are various types of random satisfiability models that have been proposed

by researchers. Even though there is no standard random model, we do have the

popular model which has been used most prevalently by researchers. There is no

name for the model, but most people call it the popular model [24, 25, 109, 55]. Let

us first define the control parameters:

• t : the number of clauses to be generated.

83

84

• v : the number of variables.

• p : the probability that each literal appears in a clause.

The popular model assumes that each literal has the same probability p to be

selected for a clause and each clause is independently generated. With this scheme, a

clause can contain both a variable x and its negation, which becomes a tautological

clause. In that case, the truth value of such clause is true regardless of truth values

of other variables that are in the clause. Also, it is possible that a clause can contain

no literals at all (i.e. a null clause).

In the following sections, we first describe how random PLAs can be generated

using the popular model. To obtain two equivalent random PLAs, we introduce a set

of transformation rules which derives a logically equivalent set of terms from a random

PLA. Next, a probabilistic analysis for random PLAs is stated and experimental

results for various parametric values show the probabilistic properties of random

PLAs. We further study the properties of random PLAs consisting only of active

terms.

5.1 Constructing Random PLAs

We use the popular model to define our random PLAs so that each term is ran-

domly generated according to the paradigm of the popular model. Thus, a random

PLA can be generated with parameters:

• v : the number of variables.

• t : the number of terms.

• p : the probability that each literal appears in a term.

A term is generated randomly by independently selecting the 2v literals with proba-

bility p. A random PLA is generated randomly by independently forming t terms.

85

Because of the way we build random PLAs, we can expect the following phe-

nomena:

• Some terms may be empty (null terms).

• Some terms may consist of both Xi and Xi (contradictory, treated as false).

• Some terms may be duplicates of others.

• Some variables may not occur at all in a random PLA.

The probability that each of these occurs depends on the values of the parameters,

which will be shown in next section. However, we need to remove the first two oc-

currences from the resulting PLAs because they cannot be considered as meaningful

terms for our purpose.

A pair of random PLAs can be generated in two different modes for the equiva-

lence problem:

(1) Mode 1 : Two random PLAs are generated independently.

(2) Mode 2 : A PLA, < l̂7 is generated randomly and then another PLA, </>2, is

derived from <j>i using transformation rules which preserve the logical equivalence.

This method guarantees to produce two equivalent random PLAs.

The first one is straightforward but the second mode depends on the transfor-

mation rules which need to be explained in detail. The overall objective of the second

mode is to obtain a PLA <j>2 which is quite different from <f> 1 in terms of its syntactic

structures, but nevertheless preserves the logical equivalence.

First, we propose the transformation rules and define their functionalities. Let

4> 1 be a random PLA. Define the following transformation rules:

1. Combine: The combine operation is to replace two complementary terms

oc, /? € <f>\ by 7, where 7 is the merge of a and /?.

2. Divide: The divide operation is the reverse of combine. If a variable x does

86

not occur in a term a E. <f> 1, then replace a by a • x + a • x.

3. Remove-Intersection: This function removes the intersection of two terms

a,/? 6 ^i- A subexpression a+ /9 of 4>i is replaced by at + (f3Q(ar\0)) or aQ(aC\(3) +

For example, xix2x5xe + X2X4X5 is replaced by xxx^x^x^ + X1X2X4X5 + X1X2X4X5XQ

or X\X2X^X^XQ + X2X4X5.

The divide operation is always possible on any term except a minterm and it

should take a term of 4> 1 as its argument. The operation first selects a term randomly

and then a variable to be divided randomly. However, this transformation will be used

only when other rules are not applicable because otherwise <j>2 would show a structural

resemblance to (j>\ and equivalence testing can be trivially done by performing a

sequence of simple merges. To mitigate that problem, we test each of the divided

terms for further transformations except dividing.

The probability of applying combine rule is relatively low in comparison with that

of remove-intersection. Special care must be taken not to combine two terms which

have been previously divided and vice versa. To do that, a special data structure is

maintained to keep track of the changes made by the divide or combine rule. The

chance of getting remove-intersection rule depends on the number of nondisjoint pairs

of <j) 1 which might be dynamically changed by applying other rules.

The combine and remove-intersection operations ought to take at least a term

of <j> 1 or a divided term as its argument. The transformation process ends after each

term of <j>\ has been replaced. Example 5.1 shows how the transformation rules are

used to derive a new PLA from an existing one.

Example 5.1 Let (j>i = u + v + w + x + y + z, where u (u, w, x, y, z) is

OIgWI (dOdld, ddlld, c?01c?l, ldldd, IdOlO, respectively). Table 13 shows that after

8 transformations we obtain a new set of terms <f>2 from 4>\\

87

4>2 = in + r2 + r3 + r4 + re + r7 + r8 + r13 + r J 4 + r15),

where r j (r2, r$, r4, r6, r7, r§, 7"i3iri45
ri5) is IdlQd (l r f l l l , OOdld, 1011c£, 001 o?l, 10111,

OdllO, lldlO, OldOl, Oldll). •

The resulting PLA tends to be bigger than the original because of the transforma-

tion rules. The actual number of terms of <f>2 depends on the types of transformation

rules used, the order of the rules applied and their arguments too.

5.2 Probabilistic Properties of Random PLAs

In this section, we study various probabilistic properties of the random model.

Let x = x\ • • • X{ • • • xv be a term. Let P(:rt- = 1) and P(xi = 0) be the probability

that Xi = 1 and Xi = 0, respectively.

Pl. P{xi = 1) = P(Xi = 0) = p.

The probability that both Xi and occur is:

P2. P(xi = l,a;; = 0) = p2.

The probability that neither Xi nor x; occur is:

P3. -iP(xi = 1, X{ = 0) = 1 — jo2.

The probability that a term is not contradictory is:

P4- P(cont) = (1 — p2)v.

The probability that a term is contradictory :

P5. P(cont) = 1 — (1 —p2)v.

The probability that Xi does not occur is:

P6. P(xi = d) = ->P(xi = 1)k~^P(xi = 0) = (1 — p)2.

The probability that a term is null is:

P7. P(null) = (1 — p)2v.

The probability that a term is useless is:

P8. P(useless) = P(cont) or P(null) = 1 — (1— p2)" + (l — p)2v.

The probability that a term is active is:

P9. P(active) — 1 — P(useless) = (1 — p2)v — (1 — p)2v.

Let L be the number of literals of a term and W be the number of active terms of a

random PL A.

The expected number of literals of a term is:

P10. E(L) = 2 pv.

The expected number of active terms of a random PLA is:

PH. E(W) = t[(l - p2f - - pf%

Define density as D = ^ for a term. The expected density of a random PLA is:

PIS. E(D) =

Table 14 shows some of the probabilistic results for v = 10,30,50 and p = 0.001

to 0.5. We observe the following results:

(1) when p > 0.4, it is hardly likely to obtain a term without a contradiction

except for small v.

(2) when p > 0.3 and v is large, it will be hard to obtain an active term.

(3) when p < 0.001, almost all terms will be null.

(4) when p < 0.01, the expected number of literals in a term is too small (less

than two).

So, for a practical purpose, a feasible range of p would be [0.1,0.2]. Also, we point out

that E(L) gets close to v as p approaches 0.5. This happens because contradictory

terms are not excluded from random PLAs. Experimental results (Table 15) show a

close resemblance to Table 14.

89

5.2.1 Probabilistic Analysis of Active Terms

Because of the way we construct random PLAs using the popular model, useless

terms such as contradictory and null terms may be included. To get a more meaningful

random model, it is necessary to remove any nonsensical terms from a random PLA

so that only active terms should remain.

Let x and y be two active terms. Then, X{ and can be one of three values —

0,1 and d with the following probabilities:

P(xi = 0) = P(x{ = 1) = •

P(xi = d) =

The probability that Xi and j/t- are disjoint is:

PIS. P{xi,yi disjoint) = P(xi = 0,tn = 1) + P{xi = l,y< = 0) = 2(j^)2.

The expected number of literals in an active term x is:

PH. E(L) = t, - vP(Xi = d) = v- v

The probability that two terms x,y are shared is:

P15. P(shared) = [1 — P(xi,yi:disjoint)]v = [1 —)2]v-

The probability that two terms x, y are disjoint is:

P16. P(disjoint) = 1 — P(shared) = 1 — [1 — 2()2]^-

The probability that two terms x,y are mergeable is:

PI7. P(merge) = vP{x^yi:disjoint) -iP(xi,yi:disjoint)v~l = 2u(yq^2)2(l —

2 (T ^) 2 r x -

Example 5.2 Let x, y be any two active terms. Then, P(shared) = 0.267

(when, v = 30,p = 0.15) and 0.108 (when v = 50,p = 0.15). •

Table 16 shows the probabilistic results for W(number of active terms), ^(number

90

of literals in a term), P(disjoint) and P(merge). Table 17 shows the results from ran-

dom PL As. We observe that the probabilistic analysis and the actual results exhibit

a close resemblance.

From the the statistics gathered, we observe the following facts:

1. Let Sp = (1 — p2)v — (1 — p)2v (P9). Then, obviously, 6P > 0 for 0 < p < 1.

The popular model always produce active terms for 0 < p < 1 and v > 0. However,

It is possible that Sp can be so small that t should be very big to obtain an active

term, which is considered to be impractical in most cases.

2. At p = 0.1, W is maximum for v < 50 and decreases sharply as p deviates

from 0.1. For 50 < v < 100, W is maximized at p = 0.01 because £o.oi > ^o.i-

3. For the same value of p (> 0.1), W decreases as v increases. For p < 0.01

and v < 100, W increases as v increases because L < 2.

4. As p approaches 0.5, W quickly diminishes to zero for v > 10.

5. The larger the value of v is, the faster W approaches zero. For example, if

v > 50, p is expected to be no greater than 0.2 to obtain any active terms.

6. For small v (for instance, v < 10), it is always possible for p < 0.5 that active

terms can be obtained.

7. The value of L increases as the probability p grows for p < 0.5 until W = 0.

Table 18 and 19 shows the behavior of W and L, respectively, for a wider range of v

(10 < v < 800), based on the empirical results collected from the random construc-

tion of PLAs.

8. Maximum density for different values of v and p decreases as v grows. For

example, D = 0.68 (0.58,0.34) when v = 10 (20,30, respectively). In other words,

the random PLAs tend to be sparser as v gets bigger, which is shown in Table 20

(Density).

91

9. The range of p for W > 0 shrinks quickly for v < 50 and then gets narrower

slowly as v increases, which is shown in Table 20 (Upper Bound).

10. P(disjoint) increases as p increases until W = 0. However, P(merge) de-

creases sharply as p increases after p shows peak values. This is because the number

of complementary positions of two active terms would increase as p increases.

11. If active terms exist (W > 2), almost always P(merge) > 0.

12. Maximum value of P(merge) decreases as v increases.

We have seen that random PL As using the popular model have intrinsic prop-

erties determined by the setting of the control parameters. Even though random

models may not exhibit any particular structural characteristics such as symmetry

and'hierarchy, it certainly convey some probabilistic properties acquired from control

parameters for constructing random PLAs. Given the values of the parameters, one

could expect the type of random PLAs to be created. (For example, the expected

number of active terms, the density, etc.)

Therefore, we should not restrict the parameters to a certain range of values

because, if we do, random PLAs created under a restricted range might represent

a particular type of PLAs having similar probabilistic properties. By appropriately

setting the control parameters, we might be able to see different types of random

PLAs.

92

Iter. <t>2 Transformations Rules Used

1 u+v+w+x+y+z replace w + y by w + rx + r2

ri = lo?10d, r2 = l d l l l

R

2 u + v + w-\-x + z + rx~\-r2 replace v + 2 by z + r3 + r4 + r$

r3 = OOdld, r4 = 1011c?,

r s = 100<fl

R

3 u + w + x + z + ri + r2 + r3

+r4 + r5

replace x + r\ by r\ + r§ + r7

r6 = 001dl, r7 = 10111

R

4 u + w + z + r-i + r2 + r3 + r4

+r 5 + r6 + r7

replace w + r4 by r4 + r8 + r9

r8 = OdllO, r9 = lldlO

R

5 u + z + r\ + r2 + r3 + r4 + r5

+re + r7 + r8 + r9

replace 2 by rio + rn

r10 = 10010, r n = 11010

D

6 u + ri + r2 + r3 + r4 + r5 + r6

+ r 7 + r8 + r9 + rio + r xi

replace r5 + r10 by r12

r12 = 1001c?

C

7 u + rx + r2 + r3 + r4 + r6 + r7

+r 8 + r9 + r n + n 2

replace r9 + r n by r1 3

r i 3 = lldlO

C

8 u + ri + r2 + r3 + r4 + r6 + r7

+r 8 + 1̂2 + r13

replace u by ri4 + r i 5

r14 = 01d01, r15 = 01dll

D

9 r i + r2 + + r4 + re + r7 + r8

+ru + f 13 + r14 + r15

R: remove-intersection, C: combine, D: divide

Table 13: Generating an Equivalent PLA for Example 5.1

93

Probabilistic Results for v = 10,30,50 and t = 1000

p
P(cont) (%) P(null) (%) P(act) (%) E(L)

p
10 30 50 10 30 50 10 30 50 10 30 50

0.001 0.0 0.0 0.0 98.0 94.1 90.4 1.9 5.8 9.5 0.0 0.0 0.1

0.01 0.1 0.3 0.4 81.7 54.7 36.6 18.1 44.9 62.8 0.2 0.6 1.0

0.1 9.5 26.0 39.4 12.1 0.1 0.0 78.2 73.7 60.4 2.0 6.0 10.0

0.15 20.3 49.4 67.9 3.8 0.0 0.0 75.7 50.5 32.0 3.0 9.0 15.0

0.2 33.5 70.6 87.0 1.1 0.0 0.0 65.3 29.3 12.9 4.0 12.0 20.0

0.3 61.0 94.0 99.1 0.0 0.0 0.0 38.8 5.9 0.8 6.0 18.0 30.0

0.4 82.5 99.4 99.9 0.0 0.0 0.0 17.4 0.5 0.0 8.0 24.0 40.0

0.5 94.3 99.9 100.0 0.0 0.0 0.0 5.6 0.0 0.0 10.0 30.0 50.0

P(cont) : probability that a term is contradictory.

P(null) ; probability that a term is null.

P(act) : probability that a term is active.

E(L) ; expected number of literals in a term.

Table 14: Probabilistic Analysis of Random PLAs

94

Empirical Results for v = 10,30,50 and t = 1000

p
Contradictory (%) Null (%) Active (%) L

p
10 30 50 10 30 50 10 30 50 10 30 50

0.001 0.0 0.0 0.0 97.8 94.8 92.0 2.2 5.2 8.0 1.0 1.0 1.1

0.01 0.0 0.1 0.5 84.0 60.2 39.7 16.0 39.7 60.2 1.1 1.2 1.5

0.1 9.1 27.3 38.9 13.2 0.3 0.0 79.2 72.4 61.1 2.2 5.3 9.1

0.15 19.4 48.8 67.4 6.2 0.1 0.0 76.0 51.1 32.6 2.8 7.9 13.2

0.2 32.2 69.6 86.8 1.9 0.0 0.0 66.8 30.1 13.2 3.4 10.2 16.6

0.3 59.9 94.1 99.1 0.7 0.0 0.0 40.1 5.9 0.9 4.7 13.5 24.2

0.4 81.0 99.8 99.8 0.1 0.0 0.0 19.0 0.2 0.2 5.9 18.0 31.0

0.5 95.4 99.9 100.0 0.0 0.0 0.0 4.6 0.1 0.0 6.5 25.0 42.7

Contradictory (%) : percentage of contradictory terms.

Null (%) : percentage of null terms.

Active (%) : percentage of active terms.

L : number of literals in a term.

Table 15: Experimental Results for Random PLAs

95

Probabilistic Results for v • = 10,30,50 and t = 1000

E(W) E(L) P(disjoint) (%) P(merge)
p

10 30 50 10 30 50 10 30 50 10 30 50

0.001 20 58 95 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0

0.01 181 450 629 0.2 0.6 1.0 0.2 0.6 1.0 0.2 0.6 1.0

0.1 783 738 605 2.0 5.9 9.9 18.0 44.8 62.8 16.4 33.1 37.2

0.15 758 505 321 2.9

00

00 14.7 35.6 73.3 88.9 29.0 36.1 24.9

0.2 653 294 130 3.8 11.5 19.2 53.6 90.0 97.9 37.0 23.9 8.6

0.3 389 59 9 5.5 16.5 27.5 80.7 99.3 100.0 34.5 3.9 0.2

0.4 175 5 5 6.9 20.7 20.7 93.4 100.0 100.0 20.6 0.3 0.3

0.5 56 0 0 8.0 0.0 0.0 97.9 0.0 0.0 9.9 0.0 0.0

E(W) : expected number of active terms.

E(L) : expected number of literals in a term.

P(disjoint) : probability that a pair of active terms is disjoint.

P(merge) : probability that two active terms are mergeable.

Table 16: Probabilistic Analysis of Active Terms

96

Empirical Results for v = 10,30,50 and t = 1000

W L P(disjoint) (%) P(merge)
p

10 30 50 10 30 50 10 30 50 10 30 50

0.001 15 47 92 1.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0

0.01 181 406 582 1.0 1.3 1.6 5.3 2.6 2.4 5.3 2.6 2.4

0-.1 795 735 588 2.1 5.5 8.9 21.0 39.9 55.1 19.5 31.1 36.2

0.15 758 497 297 2.6 7.8 13.0 30.3 64.4 82.0 26.1 37.1 31.0

0.2 648 299 120 3.4 9.9 17.1 44.5 81.8 95.3 34.1 32.2 15.6

0.3 396 58 8 4.7 13.7 22.8 68.7 96.2 100.0 38.9 12.4 3.6

0.4 178 8 0 5.8 17.4 0.0 83.5 100.0 0.0 32.4 0.0 0.0

0.5 71 0 0 6.8 0.0 0.0 92.9 0.0 0.0 21.1 0.0 0.0

W : number of active terras.

L : number of literals in a term.

P(disjoint) : probability that a pair of active terms is disjoint.

P(merge) : probability that two active terms are mergeable.

Table 17: Experimental Results for Active Terms

97

The values of W for v = [10,800] and t = 1000

p
W

p
10 50 100 200 300 400 500 600 700 800

0.001 15 92 185 351 466 545 650 709 737 798

0.01 181 582 822 955 977 977 966 952 950 950

0.1 795 588 343 131 45 16 2 1 0 0

0.15 758 297 91 12 3 0 0 0 0 0

0.2 648 120 13 0 0 0 0 0 0 0

0.3 396 8 0 0 0 0 0 0 0 0

0.4 178 0 0 0 0 0 0 0 0 0

0.5 71 0 0 0 0 0 0 0 0 0

W : number of active terms.

Table 18: Empirical Results for W

98

The values of L for v = [10,800] and t = 1000

L
p

10 50 100 200 300 400 500 600 700 800

0.001 1.0 1.0 1.1 1.2 1.3 1.4 1.6 1.8 1.8 2.0

0.01 1.0 1.6 2.2 3.7 5.4 7.1 8.8 10.7 12.5 14.5

0.1 2.1 8.9 18.0 36.8 54.8 70.6 93.0 0.0 0.0 0.0

0.15 2.6 13.0 25.8 52.8 81.0 0.0 0.0 0.0 0.0 0.0

0.2 3.3 17.1 33.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.3 4.7 23.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.4 5.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.5 6.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

L : average number of literals of a term.

Table 19: Empirical Results for L

Results
V

Results
10 50 100 200 300 400 500 600 700 800

(1) Density (%) 76.0 47.8 33.5 26.4 27.0 17.6 18.6 1.7 1.7 1.8

(2) Upper Bound for p 0.6 0.3 0.2 0.15 0.15 0.1 0.1 0.01 0.01 0.01

Density : largest ^ for different values of p.

Upper Bound for p : Largest possible value of p satisfying W > 0

Table 20: Empirical Results for (1) Density and (2) Upper Bound for p

CHAPTER 6

EXPERIMENTAL RESULTS

In this chapter, we discuss the experimental results for the equivalence problem.

A program was written in C on a Sequent Symmetry, implementing the algorithms and

heuristics presented in the previous chapters. We present the results on the standard

benchmark problems as well as on various types of PLAs constructed randomly as

described in Chapter 5. Algorithms and heuristics implemented in the program will

be discussed and analyzed as to how particular techniques are effectively used in the

program. Also, the results are compared with the most widely used Boolean function

manipulator called Binary Decision Diagrams or BDDs (see Section 2.4).

It is not easy to accurately compare the performance of verification methods.

However, CPU time required for verification is generally accepted as a good indicator

of performance because it would show the asymptotic behavior of running time as

the size of input grows. We measure CPU times for both programs (ours and BDD)

in 10 milliseconds on the same Sequent machine. The results show that the Cover-

Merge Algorithm combining with heuristics works very efficiently for most cases in

comparison with BDD, especially for big PLAs where BDD shows no hope of com-

pleting the verification because of memory shortage caused by its memory greedy

representational scheme.

We prepare four separate programs (CV-A, CV-B, CV-C and CV-D) each of

which implements a different set of techniques such that comparison of their perfor-

mances can be easily made. All four programs implement the same base algorithms:

the Algorithm Cover-Merge, the Algorithm Cover and the Merge-Loop. However,

99

100

they use different techniques in different places and in different ways. Most heuristics

are used for simplification of input terms at each iteration of the Merge-Loop, and

some are for cutting down the length of proofs. These heuristics are incorporated in

various stages of the programs as follows:

1. Before the Algorithm Cover-Merge.

2. Before the Merge-Loop.

3. Inside the Merge-Loop.

Table 21 shows when and where each of the techniques is used for the programs.

The program CV-A is the simplest version which implements the base algorithms

with a few essential simplification rules. The program CV-B is essentially same as

CV-A except two more reduction rules are added. The program CV-C uses a few more

heuristics in addition to those used in CV-B. Since the heuristics used in CV-C are

not prioritized, it is possible that a heuristic can be fired even though more promising

heuristics are available. The program CV-D is the final version of the Algorithm

Cover-Merge, which implements techniques mentioned in the previous chapters. In

addition to a few more heuristics added to CV-C, the program CV-D improves its

performance significantly by employing the prioritized heuristics and the falsification

heuristics.

Benchmark Results

We ran the program CV-D on the benchmarks in the PLASCO1 group of IFIP.

The results show that the program has successfully verified the benchmarks:

1. The outputs cst2 and casl have non-equivalent expressions in the werner.be.

2. The outputs h, j, k, m and n are non-equivalent in d3.be.

All the benchmarks have been run in less than a few seconds of CPU of the

1 PLASCO consists of a group of standard benchmark problems for equivalence testing

101

same Sequent computer. Table 22 shows the comparison of running time of BDD and

CV-D. Both programs demonstrate practical performances. However, the benchmark

problems are not big enough to demonstrate the true capacity of algorithms.

Results on Random PL As

Table 23 and 24 show the comparison of the programs run on different sizes of

random PLAs in two different modes stated in Chapter 5.

We observe the following results based on the above experiments:

1. Both CV-C and CV-D outperform BDD.

2. CV-D shows the best performance and it does not indicate any steep rise in

execution time in the range v < 50 and it is fairly stabilized within the range.

3. CV-A and CV-B show almost same performance on the first mode and CV-A

outperforms CV-B on the second mode of experiments, which suggests that the

two rules added to CV-A only creates computational overheads to CV-B. How-

ever, those rules are often found to be effective in simplification for many cases

when they work in conjunction with other rules and heuristics.

4. The program CV-C outperforms the previous programs for all cases except the

case where v = 20 on the second mode (see Table 24). This is because simplifi-

cation rules and heuristics are extensively used at each step of the Merge-Loop

and big simplifications occur because of the techniques used.

CV-D improves its performance considerably by employing two important techniques:

the prioritization of heuristics and the falsification procedures. The former repeat-

edly seeks in depth-first the most favorable merge utilizing previous history so that

big simplifications take place as many as possible. Speed-ups of the merge process

have been achieved because of that. The latter works efficiently in detecting the

nontautologyhood of a PLA and in disproving it in most cases.

102

Experiments on different values of the control parameters might show differ-

ent performances. CV-D will eventually show an exponential running time with a

wider range of v, t, and different values of p because of the NP-completeness of the

equivalence problem.

103

Techniques Used CV-A CV-B cv-c CV-D

1. Before the Cover-Merge

covered term reduction V y/ V y j

simple-merge reduction y j y j V y j

unit-merge reduction y j V y j

2. Before the Merge-Loop

projection reduction y j y j V y/

3. Inside the Merge-Loop

covered term reduction y j y j V y j

simple-merge reduction V y/

nonessential term reduction V y/

nonmerge reduction y j V y j

prioritized heuristics J

heuristic HI V y/

heuristic H2 y j y j

heuristic H3 V y j

heuristic H4 V

heuristic H5 V

heuristic H6 V V

heuristic H7 y j

falsification heuristics y j

Heuristics HI through rI7 can be found in Section 4-2.

Table 21: Implementation of Algorithms and Heuristics

104

Benchmarks
CPU Time

Benchmarks
BDD CV-D

counter.be 7 7

d3.be 93 31

inl.be 1238 206

hostintl.be 6 4

mul.be 7 5

pitch.be 335 52

table.be 64 23

werner.be 1 1

Measured in 10 milliseconds

Table 22: Equivalence Testing of Benchmark Problems: The outputs cst2 and casl

have non-equivalent expressions in the werner.be. In d3.be, h, j, k, m and n are

non-equivalent.

105

V

CPU Time Measurements in 10 milliseconds
V

BDD CV-A CV-B cv-c CV-D

10 104 8 65 1 3

15 301 30 80 2 3

20 1982 801 92 2 3

25 36152 oo oo 2867 2693

30 oo oo oo oo 3592

35 oo oo oo oo 5024

40 oo oo oo oo 4820

45 oo oo oo oo 5839

50 oo oo oo oo 7481

Table 23: Equivalence Testing of Two Random PL As (Mode 1) : T = 2000, p =

0.15. (Mode 1: two independently generated random PLAs, (see Section 5.1 for

construction), T: total number of input terms, p: the probability that a literal appears

in a term) 'oo' indicates that jobs are terminated manually after about six hours of

execution on the Sequent.

Note: BDD spends 1308.61 seconds for v = 30 and T = 1200, while CV-D takes 28.31

seconds.

106

V

CPU Time Measurements in 10 milliseconds
V

BDD CV-A CV-B CV-C CV-D

10 191 143 74 21 7

15 495 34 92 4 2

20 2522 13524 146 1263 396

25 44392 46478 oo 10408 9709

30 oo oo oo 15551 10828

35 oo oo oo 20241 7658

40 oo oo oo 19053 9939

45 oo oo oo 19714 8595

50 oo oo oo 16554 8973

Table 24: Equivalence Testing of Two Random PLAs (Mode 2) : T = 2000, p = 0.15.

(Mode 2: two equivalent random PLAs (see Section 5.1 for construction), T: total

number of input terms, p: the probability that a literal appears in a term) 'oo'

indicates that jobs are terminated manually after about six hours of execution on the

Sequent.

Note: BDD spends 1217.87 seconds for v = 30 and T = 1600, while CV-D takes 72.77

seconds.

CHAPTER 7

CONCLUSION

In this dissertation, we have presented a new algorithm based on a divide-and-

conquer strategy using the concept of cover and a derivational method to solve the

equivalence problem. We have proved the correctness of the algorithm and developed

heuristics which have been implemented and tested successfully on a large scale of

data. We have shown that it is an improvement over the state-of-the-art technology

in this area in terms of performance.

Any algorithm for solving this type of problem must incorporate a wide variety

of simplification techniques, and perform simplifications as much as possible at every

stage of the algorithm. Most big PL As require an enormous amount of space for

representation regardless of representational methodologies, which indicates simpli-

fication is essential to the verification process. The algorithm Cover-Merge employs

various types of simplification techniques as its essential part. A set of prioritized

heuristics is employed to choose the most favorable heuristic which would most likely

ensure more simplifications or shorter paths to a goal than any other choices. The

falsification heuristics have been empirically found to be quite effective in detecting a

nontautology and finding out a counterexample of it. Big speed-ups has been achieved

by extensively using these heuristics.

Good representational methods can express properties and characteristics of in-

put circuits in a succinct way and enable efficient logic function manipulations in

many applications. However, experimental results show that the issue of simplifica-

tion is far more important than that of representation for solving this type of problem.

107

108

Although a simplified version may lose some of structural information inherent in orig-

inal circuits, simplification techniques must be incorporated into a verification process

as an essential part so that combinatorial explosion would less likely occur. More re-

search on simplification techniques for an economical representation expressing as

much structural information as possible would be anticipated in this area.

The algorithm presented in this thesis is widely different from other methods

popular on the subject. It is not clear how the algorithm can be combined with

other methods such as BDDs. However, this algorithm can be used as an alternative

approach where algorithms based on representational schemes such as BDDs expe-

rience difficulties in manipulating big PLAs. For future research, we would like to

investigate the effectiveness of using Logic Programming to formalize simplification

rules and heuristics for Boolean logic verification.

BIBLIOGRAPHY

[1] Akers, S.B., Binary decision diagrams, IEEE Trans, on computers C-27 (6)
(1978) 509-516.

[2] Angluin. D., and Valiant, L.G., Fast probabilistic algorithms for Hamiltonian
circuits and matchings. J. Comput. Syst. 19 (1979) 155-193.

[3] Arvind, V., and Biswas, S., An 0(n2) algorithms for the satisfiability problem
of a subset of propositional sentences in CNF that includes all Horn sentences,
Inform. Process. Lett. 24 (1987) 67-69.

[4] Ashar, P., Devadas, S., and Ghosh, A., Boolean satisfiability and equivalence
checking using general binary decision diagrams, The International Conference
on Computer Design, (Cambridge, Mass., IEEE, New York, 1991) 259-264.

[5] Aspvall, B., Plass, M.F., and Tarjan, R.E., A linear-time algorithm for testing
the truth of certain quantified Boolean formulas, Information Processing Letters
8 (3) (1979) 121-123.

[6] Azuma, K., Weighted sums of certain dependent variables, Tohoku Math. J. 3
(1967) 357-367.

[7] Bayol, C., and Paillet, J., Using TACHE for proving circuits, IMEC-IFIP
International Workshop on Applied Formal Methods for Correct VLSI Desiqn
2 (1989) 13-16.

[8] Bitner, J., and Reingold, E., Backtrack Programming Techniques, Comm. ACM
18 (1975) 651-655.

[9] Bledsoe, W.W., Non-resolution theorem proving, Artificial Intelligence 9 (1977)
1-35.

[10] Bledsoe, W.W., Splitting and reduction heuristics in automatic theorem prov-
ing, Artificial Intelligence 2 (1971) 55-57.

[11] Boole, G., An investigation of the laws of thought, (Reprint, Dover Publications,
1854).

[12] Brand, D., Exhaustive simulation need not require an exponential number of
tests, IEEE Trans, on Computer-Aided Design 12 (11) (1993).

[13] Brand, D., and Sasao, T., Minimization of AND-EXOR expressions using
rewrite rules, IEEE Trans, on Computers 42 (5) (1993).

109

110

[14] Brayton, R.K., Hachtel, G.D., McMullen, C.T., and Sangiovanni-Vincentelli,
A., Logic minimization algorithms for VLSI synthesis, (Kluwer Academic Pub-
lishers, Boston, 1984).

[15] Bryant, R.E., Symbolic boolean manipulation with ordered binary-decision di-
agrams, ACM Computing Surveys 24 (3) (1992) 293-318.

[16] Bryant, R.E., A methodology for hardware verification based on logic simula-
tion, J. ACM (Apr, 1991).

[17] Bryant, R.E., Verifying a static RAM design by logic simulation, Advanced
Research in VLSI: Proc. Fifth MIT Conf. (Jonathan Allen and F.Thomson
Leighton, Eds, The MIT Press, Mar 1988).

[18] Bryant, R.E., Graph-based algorithms for boolean function manipulation, IEEE
Trans, on computers C-35 (8) (1986) 677-691.

[19] Bryant, R.E., Symbolic manipulation of boolean functions using a graphical
representation, IEEE 22nd Design Automation Conference, (1985).

[20] Brown, C., Finkelstein, L., and Purdom, P., Backtrack searching in the presence
of symmetry, AAECC-6 Conference Proceedings, Lecture Notes in Computer
Science 357 (Springer-Verlag, New York, 1989) 99-110.

[21] Brown, C., and Purdom, P., An empirical comparison of backtracking algo-
rithms, IEEE Tr. Pattern Anal. Machine Intelligence 4 (1982) 309-316.

[22] Brown, C., and Purdom, P., An average time analysis of backtracking, SIAM
J. Comput. 10 (1981) 583-593.

[23] Bugrara, K., and Purdom, P., Average time analysis of clause order backtrack-
ing, Indiana University Tech. Rpt. 311 (1990).

[24] Bugrara, K., Pan, Y., and Purdom, P., Exponential average time for the pure
literal rule, SIAM J. Comput. 18 (1989) 409-418.

[25] Bugrara, K., and Cynthia, B., On the average case analysis of some satisfiability
model problems, Inform. Sciences 40 (1986) 21-38.

[26] Burch, J.R., Using BDDs to verify multipliers, Proceedings of the 28th ACM /
IEEE Design Automation Conference, (San Francisco, ACM, New York, 1991)
408-412.

[27] Buttner, W., and Simonis, H., Embedding Boolean expressions into logic pro-
gramming, Journal of Symbolic Computation 4 (1987) 191-205.

[28] Carter, L., Stockmeyer, L., and Wegman, M., The complexity of backtrack
searches, Proceedings of the 17th Annual ACM Symposium on Theory of Com-
puting. (ACM, New York, 1985) 449-457.

[29] Chakravarty, S., A characterization of binary decision diagrams, IEEE Trans,
on computers 42 (2) (1993) 129-137.

I l l

[30] Chang, C.L., and Lee, R.C.T., Symbolic Logic and Mechanical Theorem Prov-
ing, (Academic Press, New York, 1973).

[31] Chen, Z., A fast and efficient parallel algorithm for finding a satisfying truth
assignment to a 2-CNF formula, Information Processing Letters 43 (1992)
191-193.

[32] Chvatal, V., and Szemeredi, E., Many hard examples for resolution, J ACM 35
(1988) 759-768.

[33] Cook, S.A., and MAuby, M., A simple parallel algorithm for finding a satisfying
truth assignment to a 2-CNF formula, Information Processing Letters 27 (3)
(1988) 141-146.

[34] Cook, S., Dwork, C., and Reischuk, R., Upper and lower time bounds for parallel
random access machines without simultaneous writes, SIAM J. Comput. 15
(1986) 87-97.

[35] Cook, S., The complexity of theorem-proving procedures, Proc. 3rd ACM Symp.
on Theory of Computing (1971) 151-158.

[36] Coudert, O., Berthet, C., and Madre, J.C., Verification of sequential machines
using Boolean functional vectors, IMEC-IFIP International Workshop on Ap-
plied Formal Methods for Correct VLSI Design 2 (1989).

[37] Dalai, M., A hierarchy of tractable satisfiability problems, Information Process-
ing Letters 44 (1992) 173-180.

[38] Dalai, M., Tractable deduction in knowledge representation systems, Proc.
Third Internat. Conf. on Principles of Knowledge Representation and Reason-
ing KR '92 , (Boston, MA, 1992).

[39] Davis, M., Logeman, G., and Loveland, D., A machine program for theorem
proving, Comm. ACM. 5 (1962) 394-397.

[40] Davis, M., and Putnam, H., A computing procedure for quantification theory,
J. ACM 7 (1960) 201-215.

[41] Devadas, S., Ma, H.T., and Newton, A.R., On the verification of sequential
machines of differing levels of abstraction, IEEE Trans, on Computer-Aided
Design 7 (1988) 713-722.

[42] Deverchere, P., Madre, J.C., Guignet, J.B., and Currat, M., Functional abstrac-
tion and formal proof of digital circuits, Proc. European Design Automation
Conf. (Mar. 1992) 458-462.

[43] Dincbas, M., Hentenryck, P.V., Himonis, H., Aggoun, A., Graf, T., and
Berthier, F., The constraint logic programming language CHIP, Proceedings in
the International Conference on Fifth Generation Computer Systems FGCS-88
(Tokyo, Japan, 1988).

[44] Dowling, W., and Gallier, J., Linear-time algorithms for testing the satisfiability
of propositional Horn formulae, J. Logic Programming 3 (1984) 267-284.

112

[45] Even, S., Itai, A., and Shamir, A., On the complexity of timetable and multi-
commodity flow problems, SIAM J. Comput. 5 (4) (1976) 191-700.

[46] Finkel, R.A., and Manber, U., DIB - A distributed implementation of back-
tracking, ACM Trans. Prog. Lang. Syst. 9 (2) (1987) 235-256.

[47] Fisher, A.L., and Bryant, R.E., Performance of COSMOS on the IFIP workshop
benchmarks, IMEC-IFIP International Workshop on Applied Formal Methods
for Correct VLSI Design 2 (1989) 595-599.

[48] Fleisher, H, and Maissel, L.I., An introduction to array logic, IBM Journal of
Research and Development 19 (1975) 98-109.

[49] Fortune, S., Hopcroft, J., and Schmidt, E.M., The complexity of equivalence
and containment for free single variable program schemes, Automata, Languages
and Programming, Lecture Notes in Computer Science, vol. 62, G. Goos, H.
Hartmanis, Ausiello, and Boehm, Eds. (Springer-Verlag, Berlin, 1978) 227-240.

[50] Franco, J., Elimination of infrequent variables improves average case perfor-
mance of satisfiability algorithms, Indiana Univ. Tech. Rpt. 294 (1989).

[51] Franco, J., On the occurrence of null clauses in random instances of satisfiability,
Discrete Applied Mathematics, 41 (1993) 203-209.

[52] Franco, J., and Keutzer, K., Probabilistic analysis of algorithms for stuck-at
test generation in PLAs, Indiana University Tech. Rpt. 278 (1989).

[53] Franco, J., On the probabilistic performance of algorithms for the satisfiability
problem, Inform. Proc. Lett. 23 (1986) 103-106.

[54] Friedman, S.J., and Supowit, K.J., Finding the optimal variable ordering for bi-
nary decision diagrams, Proc. 24th ACM-IEEE Design Automation Conference,
Miami Beach (1987).

[55] Fujita, M., Fujisawa, H., and Matsunaga, Y., Variable ordering algorithms
for ordered binary decision diagrams and their evaluation, IEEE Trans, on
Computer-Aided Design of Integrated Circuits and Systems 12 (1) (1993) 6-12.

[56] Fujita, M., et al. Evaluation and improvements of Boolean comparison methods
based on binary decision diagrams, Proceedings ICCAD (1988) 2-5.

[57] Fujiwara, H., Logic testing and design for testability, (MIT Press, Cambridge
MA, 1895).

[58] Galil, Z., On the complexity of regular resolution and Davis-Putnam procedure,
Theoret. Comput. Sci. 4 (1977) 23-46.

[59] Gallo, G., and Scutella, M.G., Polynomially solvable satisfiability problems,
Inform. Process. Lett. 29 (5) (1988) 221-227.

[60] Garey, M.R., and Johnson, D.S., Computers and Intractability: A Guide to the
Theory of NP-completeness, (Freemann, San Francisco. 1979).

113

[61] Gelder, A.V., A Satisfiability tester for non-clausal propositional calculus, Pro-
ceedings of the 7th International Conference on Automated Deduction (Lecture
Notes in Computer Science) 170 (New York, Springer-Verlag, 1988).

[62] Goldberg, A., Purdom, P., and Brown, C., Average time analysis of simplified
Davis-Putnam procedures, Info. Proc. Lett. 15, 1982, 72-75. (Printer errors
corrected in 16 1983) 213.

[63] Goldberg, A., Average case complexity of the satisfiability problem, Proc.
Fourth Workshop on Automated Deduction (1979) 1-6.

[64] Hachtel, G.D., and Jacoby, R.M., Verification algorithms for VLSI synthesis,
IEEE Trans, on Computer-Aided Design 7 (1988) 616-640.

[65] Haralick, R.M., and Wu, S.-H., An approximate linear time propagate and
divide theorem prover for propositional logic, International J. Pattern Recogni-
tion, Artificial Intelligence 1 (1987) 141-155.

[66] Hayes, J.P., Computer architecture and organization, (McGraw-Hill Computer
Science Series, McGraw-Hill, 1988).

[67] Henschen, L. and Wos, L., Unit refutations and Horn sets, J. Assoc. Comput.
Mach. 21 (1974) 590-605.

[68] Hooker, J.N., Resolution vs. cutting plane solution of inference problems: Some
computational experience, Operations Research Letters 7 (1988) 1-7.

[69] Hunt, H.B. Ill and Stearns, R.E., The complexity of very simple boolean for-
mulas with applications, SIAM J. Comput. 19 (1) (1990) 44-70.

[70] Hunter, G., Metalogic : An introduction to the Metatheory of Standard First
Order Logic, University of California Press, Berkeley and Los Angeles, Califor-
nia (1971).

[71] Hwang, G-H., Shen, W-Z., Restructuring and logic minimization for testable
PLA, IEEE Trans, on Computer-Aided Desiqn of Inteqrated Circuits and Sys-
tems 12 (4) (1993).

[72] Itai, A., and Makowsky, J., On the complexity of Herbrand's theorem, Tech.
Rept. No. 243 Dept. of Computer Science, Israel Institute of Technology (1982).

[73] Iwama, K., CNF satisfiability test by counting and polynomial average time,
SIAM J. Comput. 18 (1989) 385-391.

[74] Jain, P., and Gopalakrishnan, G., Efficient symbolic simulation-based veri-
fication using the parametric form of Boolean expressions, IEEE Trans, on
Computer-Aided Design 13 (8) (1994) 1005-1015.

[75] Jeong, S.W., Plessier, B., Hachtel, G.D., and Somenzi, F., Variable ordering and
selection for FSM traversal, The International Conference on Computer-Aided
Design, (Santa Clara, Calif., IEEE, New York, 1991) 476-479.

[76] Jones, N.D., and Laaser, W.T., Complete problems for deterministic polynomial
time, Theoret. Comput. Sci. 3 (1976) 105-117.

14

[77] Joyner, W.H. Jr., Resolutions strategies and decision procedures, J. Assoc.
Comput. Mach. 23 (1976) 398-417.

[78] Kalish, D., Montague, R., and Mar, G., Logic Techniques of Formal Reasoning,
Harcourt Brace Jovanovich, Inc. N.Y. (1964).

[79] Kam, T., and Subrahmanyam, P.A., Comparing layouts with HDL models:
A formal verification technique, IEEE Trans, on Computer-Aided Design of
Integrated Circuits and Systems 14 (4) (1995) 503-509.

[80] Kamath, A.P., Karmarkar, N.K., Ramakrishman, K.G., and Resende, M.G.C.,
Computational experience with an interior point algorithm on the satisfiability
problem, (AT&T Bell Lab., Murray Hill, 1989).

[81] Karnaugh, M., A map method for synthesis of combinational logic circuit,
Trans. AIEE, Comm. and Electronics 72 (I) (1953) 593-599.

[82] Karp, R.M., and Zhang, Y., A randomized parallel branch-and-bound proce-
dure, Proceedings of the 20th Annual ACM Symposium on Theory of Comput-
ing. (Chicago, 111., May 2-4, ACM, New York, 1988) 290-300.

[83] Karp, R.M., and Wigderson, A., On a search problem related to branch-and-
bound procedures, Proceedings of the 27th Symposium on Foundations of Com-
puter Science. (IEEE, New York, 1986) 19-28.

[84] Karp, R.M., Reducibility among combinatorial problems, Complexity of Com-
puter Computations, (Plenum, New York, 1972) 85-103.

[85] Karplus, K., Using if-then-else DAGs for multi-level logic minimization, Ad-
vance Research in VLSI, (C. Seitz, Ed. MIT Press, Cambridge, Mass., 1989)
101-118.

[86] Knuth, D., Estimating the efficiency of backtracking programs, Math. Comput.
29 (1975) 121-236.

[87] Koutsoupias, E., and Papadimitrious, C.H., On the greedy algorithm for satis-
fiability, Information Processing Letters 43 (1992) 53-55.

[88] Kutylowski, M., Time complexity of boolean functions on CREW PRAMS,
SI AM J. Comput. 20 (5) (1991) 824-833.

[89] Lam, C.W.H., and Thiel, L., Backtrack search with isomorph rejection and
consistency check, Symbolic Comput. 7 (1989) 473-486.

[90] Lammens, P., Claesen, L., and Man, H.D., Tautology checking benchmarks: re-
sults with TC, IMEC-IFIP International Workshop on Applied Formal Methods
for Correct VLSI Design 2 (1989) 13-16.

[91] Lammens, P., TC: A tautology-checker, the kernel of a functional verification
system for combinational logic, (Internal Report IMEC, 1987).

[92] Lee, C.Y., Representation of switching circuits by binary-decision programs,
Bell. Syst. Tech. J. 38 (1959) 985-999.

115

[93] Mackworth, A.K., and Freuder, E.C., The complexity of constraint satisfaction
revisited, Artificial Intelligence 59 (1993) 57-62.

[94] Madre, J.C., Benchmarks for tautology checking - experimental results, IMEC-
IFIP International Workshop on Applied Formal Methods for Correct VLSI
Design 2 (1989) 13-16.

[95] Madre, J.C., and Billon, J.P., Proving circuit correctness using formal compar-
ison between expected and extracted behavior, 25th Design Automation Con-
ference, ACM/IEEE (1988) 205-210.

[96] Malik, S., Wang, A., Brayton, R.K., and Sangiovanni-Vincentelli, A., Logic
verification using binary decision diagrams in a logic synthesis environment,
Proceedings ICC AD (1988) 6-9.

[97] Man, H.D., et al., DIALOG: an expert debugging system for MOS VLSI design,
IEEE Trans, on CAD of int. circuits and systems CAD-4 (3) (1985) 303-311.

[98] McCluskey, E.J. Jr., Introduction to-the theory of switching circuit, (McGraw-
Hill, 1965).

[99] McCluskey, E.J.Jr., Minimization of Boolean functions, Bell System Tech. J.
35 (6) (1956) 1417-1444.

[100] McFarland, M.C., Formal verification of sequential hardware: A tutorial, IEEE
Trans, on Computer-Aided Design of Integrated Circuits and Systems 12 (5)
(1993) 633-654.

[101] Mead, C., and Conway, L., Introduction to VLSI Systems, (Addison-Wesley,
Reading, MA, 1980).

[102] Minato, S., Ishiura, N., and Yajima, S., Fast tautology checking using shared
binary decision diagram - Benchmark results, IMEC-IFIP International Work-
shop on Applied Formal Methods for Correct VLSI Design 2 (1989) 13-16.

[103] Monien, B., and Speckenmeyer, E., Solving satisfiability in less than 2n step,
Discrete Applied Mathematics 10 (1985) 287-295.

[104] Moret, B.M.E., Decision trees and diagrams, Computing Surveys 14 (4) (1982)
593-623.

[105] Nicol, D., Performance of backtracking, SIAM J. Comput. 17 (1980) 114-127.

[106] Oppacher, F., and Suen, E., HARP: A tableau-based theorem prover, Journal
of Automated Reasoning 4 (1988) 69-100.

[107] Parberry, I., and Yan, P.Y., Improved upper and lower time bounds for parallel
random access machines without simultaneous writes, SIAM J. Comput. 20
(1991) 88-99.

[108] Payne, R.W., Reticulation and other methods of reducing the size of printed
diagnostic keys, J. Gen. Microbiol. 98 (1977) 595-597.

116

109] Purdom, P., Random satisfiability problems, International Workshop on Dis-
crete Algorithms and Complexity, The Institute of Electronics, Information and
Communication Engineers, Tokyo, Japan (1989) 253-259.

1101 Purdom, P., and Brown, C., Polynomial average time satisfiability problems,
Information Sciences 41 (1987) 23-42.

I l l] Purdom, P., and Brown, C., The pure literal rule and polynomial average time,
SI AM J. Comput. 14 (1985) 943-953.

1121 Purdom, P., and Brown, C., An analysis of backtracking with search rearrange-
ment, SI AM J. Comput. 12 (1983) 717-733.

1131 Purdom, P., Search rearrangement backtracking and polynomial average time,
Artificial Intelligence 21 (1983) 117-133.

1141 Purdom, P., Brown, C., and Robertson, E., Backtracking with multi-level dy-
namic search rearrangement, Acta Informatica 15 (1981) 99-113.

1151 Purdom, P., Tree Size by Partial Backtracking, SIAM J. Comput. 7 (1978)
481-491.

1161 Purdom, P., Search Rearrangement backtracking and polynomial average time,
Artificial Intelligence 21 (1983) 117-133.

117] Quine, W.V., The problem of simplifying truth functions, Am. Math. Monthly
59 (8) (1952) 521-531.

118] Quine, W.V.O., Methods of logic, (Holt, Rinehart, Winston, New York, 1950).

119] Ranade, A., Optimal speedup for backtrack on a butterfly network, Proceedings
of the 3rd Annual ACM Symposium on Parallel Algorithms and Architectures.
(ACM, New York, 1991) 44-48.

120] Ranade, A., A simpler analysis of the Karp-Zhang parallel branch-and-bound
method, Tech. rep. No. 586. Computer Science Division, Univ. California at
Berkeley, Berkeley, Calif., (1990).

1211 Ravi, S.S., and Lloyd, E.L., Graph theoretic analysis of PLA folding heuristics,
Journal of Computer and System Sciences 46 (1993) 326-348.

122] Reischuk, R., Fast evaluation of boolean functions, (Wiley-Teubner Series in
Computer Science, John Wiley, New York, 1987).

1231 Roth, J.P., Computer Logic, Testing and Verification, (Computer Science Press,
Dotomac, Md, 1980).

124] Roth, J.P., Hardware Verification, IEEE Trans, on Computers C-26 (1977)
1292-1294.

125] Roth, J.P., VERIFY: An algorithm to verify a computer design, IBM Tech.
Disclosure Bull. 15 (1973) 2646-2648.

117

[126] Roth, J.P., Diagnosis of automata failures: A calculus and a method, IBM J.
Res. Develop. (1966).

[127] Sasao, T., EXMIN2: A simplification algorithm for exclusive-or-sum-of prod-
ucts expressions for multiple-valued-input two-valued-output functions, IEEE
Trans, on Computer-Aided Design of Integrated Circuits and Systems 12 (5)
(1993).

[128] Sentovich, K.S., Moon, C., Savoj, H., Brayton, R., and Sangiovanni-Vincentelli,
A., Sequential circuit design using synthesis and optimization, Proc. Int. Conf.
Computer Design (Oct. 1992) 328-333.

[129] Shannon, C.E., A symbolic analysis of relay and switching circuits, Trans. AIEE
57 (1938) 713-723.

[130] Shen, W-Z., Hwang, G-H, and Jan, Y-J., Design of pseudoexhaustive testable
PLA with low overhead, IEEE Trans, on Computers 42 (7) (1993).

[131] Simonis, H., and Provost, T.L., Circuit verification in CHIP: Benchmark results,
IMEC-IFIP International Workshop on Applied Formal Methods for Correct
VLSI Design 2 (1989) 13-16.

[132] Simonis, H., Formal verification of multipliers, IMEC-IFIP International Work-
shop on Applied Formal Methods for Correct VLSI Design 2 (1989) 13-16.

[133] Simonis, H., Test generation using the constraint logic programming language
CHIP, Proceedings of the 6th International Conference on Logic Programming
(Lisboa, Portugal, 1989).

[134] Simonis, H., Nguyen, H.N., and Dincbas, M., Verification of digital circuits us-
ing CHIP. Proceedings of the IFIP WG 10.2 International Working Conference
on the Fusion of Hardware Design and Verification, G.J. Milne, Ed (Glasgow,
Scotland, IFIP, North Holland, 1988).

[135] Simonis, H., and Dincbas, M., Using an extended Prolog for digital circuit
design, IEEE International Workshop on AI Applications to CAD Systems for
Electronics (Munich, W.Germany, 1987) 165-188.

[136] Smith, G.L., Bahnsen, R.J., and Halliwell, H., Boolean comparison of hardware
and flowcharts, IBM J. Res. Dev. 26 (1982) 106-116.

[137] Speckenmeyer, E., Monien, B., and Vornberger, 0. , Superlinear speedup for
parallel backtracking, Proc. of supercomputing 87, Lecture Notes in Computer
Science 297 (1987) 985-993.

[138] Stavridou, V., Formal methods and VLSI engineering practice, The computer
Journal 37 (2) (1994) 96-113.

[139] Stearns, R.E., and Hunt, H.B. Ill, On the complexity of the satisfiability prob-
lem and the structure of NP, State University of New York at Albany Technical
Report TR 86-21 (1986).

[140] Spencer, J., Ten Lectures on the Probabilistic Method, SIAM, (Philadelphia,
Pa., 1987). .

118

[141] Supowit, K.J., and Friedman, S.J., A new method for verifying sequential cir-
cuits, Proceedings of the 23rd Design Automation Conference (1986).

[142] Tanaka, Y., A dual algorithm for the satisfiability problem, Information Pro-
cessing Letters 37 (1991) 85-89.

[143] Tarnlund, S.A., Horn clause computability, BIT 17 (1977) 215-226.

[144] Thiel, L., Lam, C., and Swiercz, S., Using a Cray-1 to perform backtrack search,
Proc. of the second international conference on supercomputing 3 (1987) 92-99.

[145] Trier, U., Additive weights of a special class of nonuniformly distributed back-
track trees, Information Processing Letters 42 (1992) 67-76.

[146] Verkest, D., and Claesen, L., Special benchmark session on Tautology checking,
IMEC-IFIP International Workshop on Applied Formal Methods for Correct
VLSI Design 2 (1989) 13-16.

[147] Vlach, F., Simplification in a satisfiability checker for VLSI applications, Jour-
nal of Automated Reasoning 10 (1) (1993) 115-136.

[148] Vlach, F., A tautology checker for VLSI applications that uses rule-based sim-
plification and Directed backtracking, Technical Report N-90-0010, Department
of Computer Science, University of North Texas (1990).

[149] Vlach, F., A Note on the INSTEP Tautology checker and the IFIP and ISCAS
benchmarks, IMEC-IFIP International Workshop on Applied Formal Methods
for Correct VLSI Design 2 (1989) 13-16.

[150] Walker, R.A., The status of high-level synthesis, IEEE design & Test of Com-
puters (Winter, 1994) 42-54.

[151] Wang, H., Toward mechanical mathematics, IBM J. Research Dev. 4 (1960)
2-22.

[152] Wegener, I., On the complexity of branching programs and decision trees for
clique functions, J. ACM 35 (2) (1988) 461-471.

[153] Wei, R.-S., and Sangiovanni-Vincentelli, A., PROTEUS: A logic verification
system for combinational circuits, Proceedings 1986 IEEE International Con-
ference (1986) 350-358.

[154] Windley, P.J., Formal modeling and verification of microprocessors, IEEE
Trans, on Computers 44 (1) (1995) 54-72.

[155] Wolfram, D.A., Forward checking and intelligent backtracking, Information
Processing Letters 32 (1989) 85-87.

[156] Xu, Y., Abd-El-Barr, M., and McCrosky, C., Graph-based output phase as-
signment for PL A minimization, IEEE Trans, on Computer-Aided Design of
Integrated Circuits and Systems 14 (5) (1995).

[157] Yamasaki, S., and Doshita, S., The satisfiability problem for a class consisting
of Horn sentences and some non-Horn sentences in propositional logic, Inform,
and Control 59 (1-3) (1983) 1-12.

