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The Programmable Logic Array (PLA) has been widely used in the design of 

VLSI circuits and systems because of its regularity, flexibility, and simplicity. The 

equivalence problem is typically to verify that the final description of a circuit is 

functionally equivalent to its initial description. Verifying the functional equivalence 

of two descriptions is equivalent to proving their logical equivalence. This problem of 

pure logic is essential to circuit design. The most widely used technique to solve the 

problem is based on Binary Decision Diagram or BDD, proposed by Bryant in 1986. 

Unfortunately, BDD requires too much time and space to represent moderately large 

circuits for equivalence testing. 

We design and implement a new algorithm called the Cover-Merge Algorithm for 

the equivalence problem based on a divide-and-conquer strategy using the concept of 

cover and a derivational method. We prove that the algorithm is sound and complete. 

Because of the NP-completeness of the problem, we emphasize simplifications to re-

duce the search space or to avoid redundant computations. Simplification techniques 

are incorporated into the algorithm as an essential part to speed up the the derivation 

process. Two different sets of heuristics are developed for two opposite goals: one for 

the proof of equivalence and the other for its disproof. Experiments on a large scale 

of data have shown that big speed-ups can be achieved by prioritizing the heuristics 

and by choosing the most favorable one at each iteration of the Algorithm. 

Results are compared with those for BDD on standard benchmark problems as 

well as on random PL As to perform an unbiased way of testing algorithms. It has 



been shown that the Cover-Merge Algorithm outperforms BDD in nearly all problem 

instances in terms of time and space. The algorithm has demonstrated fairly stabilized 

and practical performances especially for big PL As under a wide range of conditions, 

while BDD shows poor performance because of its memory greedy representation 

scheme without adequate simplification. 
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CHAPTER 1 

INTRODUCTION 

1.1 Preliminary 

We define terminologies and notations which will be used throughout this dis-

sertation. 

We use truth-functional propositional connectives as usual (Table 1): 

Connectives Symbols 

logical-and 'A' or a dot or the absence of a connective 

logical-or V or '+' 

logical-not or a prime or a bar 

exclusive-or 'exorJ or 'xor' or 

logical-implication or 

logical-equivalence or 

Table 1: Truth-Functional Logical Connectives 

Logical-and (logical-or, logical-not, logical-implication) is also called conjunction 

(disjunction, negation, material implication), respectively. The first three connectives 

are adequate for expressing any truth function over the Boolean logic.1 However, other 

connectives are useful in describing logical statements succinctly. Boolean expressions 

can be described by standard form in the propositional logic or LISP expression form. 

For example, the Boolean expression (<j> A rp) V (4>Atp) can also be expressed in a LISP 
1Other sets of connectives are also adequate. For example, the set {~, =>} is adequate for 

expressing any truth function [70]. 

1 



form (or (and 4> tp) (and (not <f>) rp)). 

Truth and falsity are called truth values and nothing else is a truth value. 'T' 

or 'True' or 'true' denotes the truth value truth. 'F' or 'False' or 'false' denotes 

the truth value falsity. Sometimes we use '0' for falsity and '1' for truth. We define 

individual variables as X\, • • •, xn each of which value is either true or false. A literal is 

a variable or the negation of a variable. A clause (term) is a disjunction (conjunction) 

of literals. A formula (or expression) F is said to be in a conjunctive normal form 

(CNF) (disjunctive normal form (DNF)) if and only if F has the form F\ A • • • A Fm 

(F\ V • • • V Fm), m > 1, where each of Fi, • • •, Fm is a disjunction (conjunction) of 

literals. A maxterm (minterm) is a disjunction (conjunction) of n variables with each 

variable being negated or non-negated. 

Hereafter we abbreviate 'if and only if' to 'iff'. 

A formula (or Boolean expression) is said to be a tautology iff it is true under all 

its interpretations. A formula is said to be a nontautology iff it is not a tautology. A 

formula is said to be unsatisfiable iff it is false under all its interpretations. A formula 

is said to be satisjiable iff it is not unsatisfiable. Two formulas F and G are said to 

be equivalent, denoted by F = G or F G, iff the truth values of F and G are the 

same under every interpretation of F and G. 

A programmable logic array (PLA) [48, 66, 101] is a class of two-level logic 

circuit, which provides an efficient way of synthesizing arbitrary combinational as 

well as sequential logic circuits. Because of their regularity, flexibility, and simplicity, 

PLAs have been extensively used in the design of VLSI circuits and systems. A PLA 

typically consists of AND and OR planes which are initially fabricated with links 

among them. The physical structure of a PLA is a two-dimensional array of simple 

switching elements. Specific Boolean functions can be realized in sum of products 
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form by appropriately connecting the switching elements. Major disadvantage of 

PL As is that most PL As use only small portion of switching elements and leave the 

rest unused, resulting in a significant waste of silicon area. So, reducing the area 

complexity of PLAs is a challenging research area. Recently, different types of PLAs 

have been proposed to enhance testability and area complexity of PLAs [13, 127, 130]. 

The cofactor of a function / with respect to a variable x is the function resulting 

from replacing z by a constant b, denoted by f\(x=by Then, for variables x\, • • • ,xn, 

f\(xi=b)(xi, • • •, xn) = f(xi, • • •, Xi-1, 6, £j+i, • • •, xn). The Shannon expansion [129] of 

a function around variable X{ is given by: / = Xi-f\(x.=1)+Xi-f\(x.-0y The composition 

of two functions / and g is the function resulting from replacing Xi of / by g, denoted 

f\(xi=g)• That is, f\^x,_g^[x\, • * •, a?n) f (x \ , • • •, #j—i, g(xii • • • ? 2-t+i•>'''•> xn^). 

1.2 Outline of the Dissertation 

Verification is an essential part of any logic design domain such as logic mini-

mization, synthesis, etc [13, 71, 121, 128, 150, 156]. The main purpose of verification 

is to certify the logical equivalence of two logic circuits. Verification for a logic design 

is typically used to prove that the final description of a circuit is logically equivalent 

to its initial description. It also may take place at any stage of the design process 

to make sure that any structural changes, mainly caused by a logic minimizer or 

synthesizer, have not altered the meaning of the initial description. 

Simulation [12, 17, 16, 74] has been extensively used as the standard method 

for verification of logic circuits. As the size of the computer logic grows bigger, the 

technique experiences severe drawbacks. Obviously, the number of tests required 

to perform a satisfactory coverage grows exponentially with the number of input 

variables. Research is still going on in this area to get a better coverage of tests using 



cost-effective simulation techniques. However, formal methods [42, 79, 100, 138, 154] 

as opposed to simulation are getting more attention from the community. 

In Chapter 2, we formally describe the equivalence problem and review related 

works that have been developed in this area so far. The equivalence testing of two 

PLAs is to ascertain that the two are logically equivalent. To do that, the traditional 

and most widely used approach is to prove that either 

(1) <j) = ip or 

(2) <f> © = false 

is a tautology for any two Boolean expressions <j> and tp in disjunctive normal form 

or DNF. Thus, the equivalence problem is now translated into a tautology checking 

problem, which is a well-known NP-complete problem [60]. Almost all algorithms for 

equivalence testing use the same interpretation as stated above, taking both 4> and tp 

as input to a tautology checker. 

In Chapter 3, we introduce a new approach based on a divide-and-conquer strat-

egy using the concept of cover and a derivational method for the equivalence problem 

and investigate its theoretical aspects. Instead of taking whole expressions into con-

sideration, we divide the problem into as many smaller problems as the number of 

terms of each expression by translating the notion of logical equivalence into the no-

tion of cover (Definition 3.3): 

Define a PLA as the set of terms occurred in a Boolean expression in DNF. 

Let <f> and ^ be two PLAs (|^|, \tp\ > 1). <j> covers ip, denoted by ?/> (Ec 4>, 

iff for each term fl € any assignment that satisfies f3 also satisfies a 

disjunction of some terms of <f>. • 

The concept of cover is the theoretical basis for the divide-and-conquer strategy for 

the equivalence problem: 

<f) = i> 
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iff 0 €c 4> and <j> 6C ^ 

iff each term a G 4> is covered by some terms of xl> and each term 0 € ^ is covered 

by some terms of <j>. • 

The above statement is justified by Theorem 3.1. Thus, the original problem is 

transformed into a series of relatively small cover testing problems. Because of the 

difficulty of the problem, we emphasize simplification techniques in order to reduce 

the search space or problem size. This simple divide-and-conquer strategy would 

enable more simplifications than the other approach, resulting in more reduction of 

the search space. The overall performance of equivalence testing is directly determined 

by the efficiency of each individual cover testing, which might be a hard problem in 

general although each subproblem would be smaller than the original. 

Let <f> be a PLA as defined in Definition 3.3 and 0 be a term. Then, the cover 

testing problem is to decide whether or not 0 <f>. Simplifications can be achieved 

by removing each term disjoint (Definition 3.4) with 0 from <p, preserving the notion 

of cover: 

If = cj> — {a | a € 4>, ol is disjoint with 0}, 

then 0 £ c <j> iff 0 £c $ i . • 

The above simplification is computationally cheap and justified by Theorem 4.4. 

The problem size may be further reduced by performing the projection operation on 

4>i. The projection operation is defined as follows: 

Let a and 0 be two terms. 

Let a[i] be the value of a variable Xi such that 

1 : Xi occurs in a 

0 : xi occurs in a 

d : neither z, nor X{ occurs in a . 

The projection of a with respect to 0, denoted by a:n|^, is a n[ ; ] |^ = a[i], 

q:[z] (1 < f < n) = 



where i is the j t h position of 0 whose value is d. 

The projection of a set of terms T with respect to 0, denoted by r n | 5 , is 

the set of projections • • •, oc^|^}, where is the projection of ct{ 

with respect to 0 for each a,-(^ 0) € I\ We abbreviate 0n\/3 to 0n. • 

And it is shown that can be extracted from in 0(mn) time, where m = |$i | , 

n is the number of input variables. By performing simplification based on projection, 

a simplified set <&2 may be obtained from $ i , which is justified by Theorems 3.3 and 

4.4: 

Let $ 2 be $5%. 

Then, 0 £ c iff 0n €° <E>2. • 

The concepts of minimal cover (Definition 3.10) and uniqueness (Definition 3.12) 

are the theoretical basis for simplification based on projection. The efficiency of pro-

jection reduction is directly determined by the number of literals of 0. So, the more 

literals in 0, the more simplifications would take place. Obviously, the operation 

always simplifies because 0 normally contains at least one literal. Since simplifi-

cation based on projection is performed throughout the whole input set of terms, it 

often leads to big simplifications. The cover testing problem has now been reduced 

to the problem of testing whether or not 0n €° $2-

We also investigate the theoretical aspects which can be observed from the 

derivational method: minimal cover, uniqueness, mergeability, and losslessness. Min-

imal cover and uniqueness essentially concern redundancies regarding a cover and 

essentiality of terms as well as minterms with respect to a cover. Mergeability shows 

the sufficient condition for the existence of merges for a set of terms. Losslessness ad-

dresses the issues of the side-effects caused by the derivation process concerning lost 

minterms and their recovery. We establish interrelationships among these concepts 

and develop simplification techniques based on these properties. Theorems developed 
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in Chapter 3 are used to prove the correctness of the equivalence testing algorithm 

described in Chapter 4. 

In Chapter 4, we present the Algorithm Cover-Merge which is the top level 

algorithm realizing the divide-and-conquer method for equivalence testing described 

in Theorem 3.1. Theorem 4.5 shows the validity of the Algorithm Cover-Merge. The 

top level algorithm performs a series of subproblems each of which is to solve a cover 

testing problem. Cover testing is performed by the Algorithm Cover which essentially 

invokes the Algorithm Merge-Loop for each cover testing. The Algorithm Cover is 

validated by Theorem 4.4. 

The purpose of the Merge-Loop is to prove 7 Gc T for a PLA T and a term 7, 

using the derivational method (Definition 3.8): 

A is called a derivation of a term 7 from a set of terms F iff 

(1) A is a finite sequence of terms. 

(2) the last term in A is 7. 

(3) each term of A is either a member of T or an immediate 

consequence (Definition 3.6) by the Merge Rule (Definition 3.5) of two 

terms preceding it in the sequence. • 

Let r h ) denote a derivation of 7 from F. T 7 denotes that it is not the case 

that T 7. The Algorithm Merge_Loop_l realizes the paradigm of the Merge-Loop, 

which is proved to be sound and complete (Theorem 4.1): 

Let T be a PLA and 7 be a term. For any two terms a and /?, /? is said 

to be a generalization of a iff 0 is the result of replacing zero or more O's 

and l 's in a by efs. 

There is a derivation of 7 from T by the Merge_Loop_l iff 7 E° T, where 

7 is a generalization of 7. • 

Thus, we establish, 
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/?n €c $2 iff the Merge_Loop_l returns True. • 

Although the Merge_Loop_l is logically bound to give correct answers, it may 

contain many redundancies and unnecessary operations. So, it would not be prac-

tical unless simplifications take place adequately in order to remove such redun-

dancies so that a combinatorial explosion could be avoided as much as possible. 

Because of the NP-completeness of the problem, we do not expect that this al-

gorithm or any algorithm can always avoid such an explosion in terms of time or 

space (or both) on every instance of cover testing problems. This strongly indicates 

that simplification techniques or whatever methods that can reduce the search space 

should be extensively used as an essential part of the Merge-Loop. The Algorithm 

Merge_Loop_2 implements simplification techniques and heuristics developed in this 

direction. The Merge_Loop_2 greatly improves the performance of the Merge-Loop 

in terms of the length of derivation of /3n from $2 by incorporating simplification 

techniques and heuristics into the algorithm. Theorem 4.3 substantiates the validity 

of the Merge_Loop_2: 

(3n £ c $2 iff the Merge_Loop_2 returns True. • 

Simplification is the most important part of the algorithm as far as running 

time is concerned. Three different types of simplifications are extensively used for the 

Merge_Loop_2: covered term reduction, nonessential term reduction, and nonmerge 

reduction. Simplifications during the Merge-Loop can be done by excluding degen-

erating merges (Definition 4.2), justified by Theorem 4.1, and by removing covered 

terms due to forward merges (Definition 4.1). Nonessential term reduction removes 

nonessential terms with respect to a nonredundant derivation (Definition 4.4), justi-

fied by Theorem 4.2. Removal of nonmergeable terms is justified by Theorem 3.6. 

These simplification rules preserve the notion of cover. 
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Heuristics based on types of merges are developed to speed up the derivation 

process by allowing simplifications or by eliminating unnecessary operations. They 

are ordered by priorities so that the most favorable heuristic might be selected at 

each iteration of the algorithm. Heuristics are designed and implemented such that 

they can be performed within a reasonable amount of time. Experiments show that 

these heuristics are the main cause of big speed-ups. 

Suppose f3n $2 for a term Because the basic structure of the algorithm 

is designed to prove /?n Ec $2 by showing the existence of a derivation $2 0 n , the 

Merge-Loop will do an exhaustive search for 0 n until every possibility is exhausted. It 

may not be always possible to avoid this undesirable situation because of the nature 

of the derivation process. However, the situation may be improved considerably by 

introducing a heuristic which is specially designated to dynamically predict the out-

come of a derivation, based on the following observation: A nonredundant derivation 

of /3n can be viewed as the process of replacing O's or l 's by oPs (i.e. reducing the 

number of literals) of merges along the sequence of a derivation. However, a certain 

type of merges called backward merges (Definition 4.1) always increases the number 

of literals along a derivation sequence as the result of performing such merges. The 

heuristic H7 (Section 4.2) says that if only backward merges are possible for a set of 

terms $ 2 , then it is most likely that 0 n $2- If the condition for the heuristic is met, 

then [3n <E>2 is assumed and falsification heuristics are initiated to search a minterm 

of (3U which would not be covered by $2- Prediction is made at each iteration of the 

Merge-Loop so that better chances of detection can be obtained. Experiments show 

that almost all cases have been successfully detected within a few iterations of the 

Merge-Loop. 

Since the problem of proving that ,8n Ec $2 and the problem of disproving it 
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are equally hard in general, any technique for disproof is not expected to be complete 

because otherwise it might spend too much time on some unfavorable cases. Instead, 

we invent falsification heuristics which run in 0(nm2) time, where n is the number of 

variables and m is the number of terms of $2- The main objective of the heuristics is 

to produce a counterexample by constructing a minterm of /3n which is not covered 

by $2- These heuristics are based on greedy methods which would seek to maximize 

the number of terms falsified by the assignment made at each step of the falsification 

process. Empirical results show that nearly all cases have been successfully falsified 

by the heuristics. 

In Chapter 5, we prepare and test a wide variety of parameterized random sets of 

problem instances to give an unbiased way of testing the algorithms and techniques 

developed so far. We address various issues of constructing randomized problem 

instances and analyze their probabilistic properties. 

Experimental results follow in Chapter 6. Experimental results on a wide variety 

of circuits show that the heuristics and techniques presented in Chapter 4 are found 

to be quite effective in simplification and reduction of proof procedures, achieving 

big speed-ups in most cases. In comparison with the most widely used technique 

called Binary Decision Diagram or BDD, the algorithm proposed outperforms BDD 

in nearly all cases of input circuits including standard benchmark problems. Finally, 

concluding remarks are found in Chapter 7. 



CHAPTER 2 

THE EQUIVALENCE PROBLEM AND RELATED WORK 

In this chapter, we first discuss the equivalence problem in more precise terms 

and then we take other closely related problems into consideration. A review of 

related works points out important concepts and features that have been developed 

so far. 

2.1 Introduction 

The main purpose of the equivalence problem is to verify that two Boolean 

expressions have the same functionality. In other words, the problem is to decide, 

given two Boolean expressions 4>\ and </>2, whether <f)\ and <j>2 are logically equivalent. 

The meaning of the problem is to check whether or not each set of assignments which 

satisfies <j>\ also satisfies fa and vice versa. Exhaustive search by enumerating all such 

satisfying instances cannot be a solution because it always requires an exponential 

computing time in general as the number of variables increases. The difficulty arises 

from the fact that the problem involves Boolean satisfiability problems or tautology 

checking problems which are known to be NP-complete [60]. 

Much of the work on the equivalence problem has concentrated on applications 

in the verification of Boolean circuits. Circuit designers are mostly concerned about 

the correctness of logic minimizers (or logic optimizers) during the process of circuit 

design. The correctness of each design level requires that the minimized (or optimized) 

version has not changed the original meaning of the circuit (i.e., for the same set of 

11 
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input values, the two circuits must produce the same output). So, a verification 

process is an essential part of circuit design. Other application domains can be 

found in artificial intelligence, databases, etc., where information or knowledge can 

be described in Boolean expressions and searching (or matching) is involved. 

It is obvious that the inherent nature of the equivalence problem is closely re-

lated to the satisfiability problem because both problems rely on the existence of a 

satisfying instance: Testing tautologyhood of a circuit and testing satisfiability are 

dual because ^ is a tautology is unsatisfiable, where <j> is the negation of <f>. So, a 

tautology checker and a satisfiability checker are essentially doing the same task. An-

other related problem that we can think of is the problem of testing whether certain 

properties are realized in a Boolean circuit <f>, which can be solved by first expressing 

the properties in a Boolean expression, and then testing the implication <f> ip. 

The implication can be tested by checking its tautologyhood. 

The equivalence problem has been treated in many different ways. However, we 

can categorize them into a few groups depending on the type of algorithms used. Here 

is the list of groupings of algorithms which have contributed significantly to the area. 

• Algorithms based on divide-and-conquer and backtracking: Traditionally, this 

technique has been used most widely in this area. To prove <f> = ip, one has to 

prove either (1) (j) = tp is a tautology or (2) <j> 0 ip = false is a tautology. So, 

the equivalence problem is interpreted directly as a tautology checking prob-

lem. And then a divide-and-conquer type algorithm along with backtracking 

is invoked to prove the tautologyhood. A variety of algorithms have been de 

signed along this line, sharing a similar paradigm, with different strategies of 

backtracking and branching techniques. 

• Graph-based algorithms: Algorithms based on binary decision diagram (BDD) 

proposed by Bryant [18] in 1986 are essentially different from divide-and-conquer 
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type tautology checkers in many respects and have become standard methods 

for Boolean function verifications. The central part of graph-based algorithms is 

to construct directed-acyclic graphs (DAGs) which represent a Boolean expres-

sion, without ambiguity, without duplication, and in a consistent, and system-

atic manner. After construction of such graphs, most of the Boolean operations 

including equivalence testing can be performed by simply using appropriate 

graph algorithms already developed. 

• Algorithms based on logic programming: Simonis and others [27, 43, 131] pro-

posed a new algorithm to solve Boolean circuit verification problems using an 

extended logic programming language named CHIP. Boolean satisfiability is 

tested by performing Boolean unification, which would show a set of variable 

bindings if a Boolean circuit is satisfiable. 

• Algorithms based on counting: Iwama [73] computes the total number of dis-

tinct solutions for a Boolean expression by excluding overlapped solutions for 

each clause. 

None of these works efficiently for every problem instance because of the difficulty 

of the problem. However, each algorithm can demonstrate a good performance un-

der certain restrictions and problem characteristics. We will discuss the merits and 

demerits for some of the important works in later sections. 

2.2 Satisfiability Problems 

We briefly discuss satisfiability problems as well as their variations and classifi-

cations. We then review some of the important works done in the area. Finally, we 

examine some of the algorithms which play important roles in solving the problems. 

This section concentrates on describing Boolean satisfiability problems, and the 
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approaches that have been presented to solve the problems. Various types of ap-

proaches are reviewed, analyzed and compared with each other. The most popular 

type of algorithm is backtracking. State-of-the-art techniques in backtracking for sat-

isfiability problems are discussed and analyzed in later sections. 

A Boolean expression has been the standard representation for describing any 

decision problem with discrete variables. A typical satisfiability problem for an ex-

pression could be to obtain a set of assignments which satisfies the expression or to 

test its tautologyhood. Problems of this type can be found in many important appli-

cation areas such as circuit testing, tautology checking, combinatorial problems, etc. 

Unfortunately, most of these problems are NP-complete. 

' The satisfiability problem or SAT is to determine if a Boolean formula is true for 

some assignment of truth values to the variables. CNF-Satisfiability is the satisfiability 

problem for CNF formulas. Also, this problem is known as a Constraint Satisfaction 

Problem (CSP). The problem is to find an assignment for the variables that satisfies all 

of the constraints or to determine that the problem is unsatisfiable. The requirement 

is that all the constraints must be satisfied at once. So, an approximation technique 

is of little help because of the nature of the problem. 

Traditional approaches were to develop algorithms for particular domain of ap-

plications in which domain specific knowledge can be built into the algorithms to 

exploit structural characteristics. The result is that an algorithm may work well on 

one type of problem, but badly on other types of problems. This type of ad-hoc 

approach to each individual problem has advantages and disadvantages. The disad-

vantages are the following: (1) Algorithms used for solving one type of problem might 

not be easily adapted to solve other problems. (2) It is very hard to combine them 

with other techniques used for different types of problems to design a more efficient. 
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algorithm for solving more general type of problems. (3) It is usually not easy to an-

alyze such an algorithm. So, researchers have tried to find algorithms that can work 

well under a wide range of conditions. So far, the results have not been satisfactory in 

the sense that no generally applicable algorithms have been designed, although much 

progress have been reported in this area. 

Parallelization for this area is quite new. Cook and Chen [31, 33] recently pre-

sented efficient parallel algorithms for solving Parallel 2-CNF problem in logarithmic 

time on a concurrent-read concurrent-write parallel random access machine (CRCW 

PRAM) which can be solved in linear time by a serial algorithm [45]. 

Intractable Problems 

The satisfiability problem or SAT is the standard NP-complete problem, proved 

by Cook in 1971 [35], which draw much attention from theoretical computer scientists. 

Since the monumental work done by Cook, an enormous amount of research has been 

done on intractable problems. 

3SAT or 3-CNF is the same as the satisfiability problem ( S A T ) except each 

clause has exactly three distinct literals. This type of problem is known to be NP-

complete. Other satisfiability-related problems which have been proved to be NP-

complete can be found in the famous book on intractable problems published by 

Garey and Johnson [60] in 1979. 

Tractable Problems 

Since satisfiability problems are hard in general, it became important to identify 

specific classes of problems which admit tractable solution techniques. Researchers 

have found some classes of satisfiability problems which can be solved in linear or 

polynomial time. These tractable classes can also be used to assist in the solution of 

more general problems. 
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The following are some of the problems that can be solved in linear or polyno-

mial time. 

• Dowling and Gallier [44] showed that SAT restricted to Horn clauses can be 

solved in linear time. 

• Even et al. [45] showed that SAT restricted to binary clauses (2-CNF) can be 

solved in linear time. 

• Yamasaki and Doshita [157] defined a class H2, that strictly includes Horn 

clauses, for which Arvind and Biswas [3] proved that SAT can be solved in 

quadratic time. 

• Gallo and Scutella [59] have built a hierarchy, T = To,ri , • • •, of classes, where 

To consists of only Horn clauses and Fi is H2, such that for each Fk, SAT can 

be solved in 0(nmk) time, where n is the input size, and m is the number of 

atomic propositions. 

2.3 Satisfiability (Tautology) Checker 

In this section, we summarize state-of-the-art technologies in the area of Satis-

fiability (Tautology) Checking. Since so many techniques and algorithms have been 

developed, it is not helpful to put everything down here. Instead we take some of 

the significant works into consideration so that we can categorize them into a few or 

more groups of ideas from which many techniques can be designed. 

We also review some of the important algorithms developed for tautology check-

ers, which have been widely used and have become standard in the area. Yet some 

techniques can be recognized as radically different from others in many respects. 

Interesting results have been reported in the area of satisfiability checking using tech-

niques different from backtracking. Algorithms based on non-backtracking work in-

dependently and are hard to combine them with other techniques while algorithms 
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based on backtracking are relatively ?asy to combine so that more powerful algorithms 

can be devised by mixing and adapting various techniques. Performances of several 

algorithms have been measured on random predicates with parameters: v (the num-

ber of variables), t (the number of clauses), and p (the probability that each literal 

appears in a clause). 

Tautology Checkers based on Binary Decision Diagram 

Bryant [15, 18] proposed a graph-based representation of Boolean functions 

called binary decision diagrams (BDDs). Earlier graphical representations [1, 49, 

92, 104, 108] similar to BDD lack in the abilities for practical applications to ma-

nipulate Boolean functions systematically and to represent many Boolean functions 

with reasonable size of graphs. BDD was presented as an improvement on the earlier 

works and has demonstrated nice properties and advantages over previous approaches. 

BDD follows the principle of representation based on directed acyclic graphs origi-

nated from Lee [92] and Akers [1]. As far as graphical representation is concerned, 

BDD is the most advanced representation and it has become the standard method 

for Boolean function manipulations. 

Research has been done to improve the performance of BDD in many respects. 

Most efforts have been made to reduce the size of the graphs by putting various 

restrictions on their construction such as variable ordering [54, 55, 56]. Some have 

introduced new functionalities and features into the manipulation functions of BDD, 

while many other researchers have proposed variations of the diagram [4, 7, 26, 85, 

94, 102, 152]. 

Two major contributions of BDD are: 

• A canonical representation for a Boolean function can be realized as the result 

of constructing a directed-acyclic graph for the function, given a total ordering 

of input variables. 
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• Algorithms for combining two functions with a binary operator and for com-

posing two functions are embodied in the system so that the construction of a 

graph can be done in a consistent and systematic way, which are the central 

part of BDD. 

The most elegant feature of BDD is without doubt the canonicity, which was first 

observed by Fortune et al [49]. The canonicity means that there exists a unique 

graphical representation for any Boolean expression and BDD guarantees to produce 

such a graph for a Boolean function as the result of performing the construction 

process on the input graph. The cost of constructing a canonical graph is reasonable 

in terms of time and space for many widely used circuits. Experimental results show 

that BDD can construct a canonical form in nearly linear time proportional to the 

size of an input graph for a wide variety of circuits. 

The canonicity provides a theoretical basis for solving tasks of interest such as 

testing for equivalence and testing for satisfiability as follows: 

1. Testing for equivalence of two Boolean circuits is equivalent to testing whether 

the two graphs representing the circuits match exactly. 

2. The problem of testing for satisfiability involves a depth first traversal of a graph 

with backtracking in order to search a terminal vertex having value 1 (or true). 

Testing for tautology can be done similarly. 

3. The problem of testing whether certain properties are embodied in a Boolean 

function can be solved by testing the satisfiability of the graph resulting from 

applying the Boolean product of the original graph which is the canonical rep-

resentation of the original function and the other graph which represents the 

properties in terms of a Boolean function in a canonical form. 

Graph algorithms already known can directly be utilized to solve these problems and 

most of the problems have time complexity proportional to the size of the graphs. So, 
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the algorithms based on BDD could be quite efficient provided that the graphs can 

be constructed in a reasonable amount of time and the size of the graphs is not big. 

Because of the strict ordering of input variables, BDD acquires the ability to 

produce a unique canonical structure for a Boolean function. However, the same 

fixed ordering scheme may require too much space when the initial ordering is not 

good. In other words, the size of the final canonical graph for a Boolean function is 

highly sensitive to the ordering of input variables, which is the major drawback of 

BDD. That is, a poor choice of ordering may cause the system to require too much 

computing resources. 

Example 2.1 For a Boolean function (a A b) V (c A d) V (e A / ) , the system 

requires 8 vertices with an ordering a<b<c<d<e< f but 16 vertices with an 

ordering a < d < b < e < c < f . In general, the function (xi A x2) V • • • V (x2n-i A x2n) 

can be realized by a graph of 2n + 2 vertices with the ordering x\ < x2 < • • • < x2n 

but 2n+1 vertices with the ordering x\ < xn+1 < x2 < xn+2 < • • • < xn < x2n• D 

For a simple circuit, it may not be hard to obtain a good ordering either manually 

or algorithmically, but it may become quite difficult as the size of input grows. In 

fact, an optimal ordering for a Boolean circuit for constructing a canonical graph 

with minimum number of vertices is known, to be co-NP. Many algorithms have been 

designed to get a good ordering although it may not give an optimal solution. Some 

of the results show nice performances on a wide range of Boolean functions [54, 55, 56, 

75, 96]. Yet we believe that no polynomial algorithm for computing such an ordering 

in general is feasible because of the NP-completeness of the problem. An optimal 

ordering can be extremely hard to obtain especially when the input circuit shows 

little symmetry or little hierarchy but much randomness. 

There are some Boolean functions which are inherently hard to be represented 
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with BDD graphs regardless of the ordering of variables. For example, integer mul-

tipliers cannot be represented in BDD as the number of vertices of the graph grows 

exponentially [18], while others report practical performances without using graphical 

representations [132, 147, 148]. 

Tautology Checkers based on Divide-and-Conquer 

Algorithms based on divide-and-conquer are popular in this area and a variety of 

algorithms have been designed and implemented. However, there are some concepts 

which are shared by most of the algorithms. Yet we still can point out other distinctive 

techniques exclusively used in some algorithms, which have shown their merits. 

The theoretical basis for divide-and-conquer algorithms is Shannon's expansion 

principle [129]. The order of variables involved in the expansion directly controls the 

behavior of such algorithms and severely affects the performance. Most of the tau-

tology checkers of this kind emphasize choosing the best variable and simplifying so 

that the length of the proof or the size of the subproblems could be minimized. Since 

algorithms for finding an optimal ordering are costly, most algorithms use heuristics 

to choose a good variable which is likely to lead to smaller subproblems or big sim-

plifications. It is natural to take advantage of the characteristics of problem domains 

for designing efficient heuristics [7, 136, 54, 90, 136, 149]. 

The first multilevel tautology tester was VERIFY, developed by Roth [125, 123], 

which is a specialization of consistency of the D-algorithm [126]. VERIFY seeks a 

counterexample that shows a discrepancy of two logic designs, starting with an output 

pair. If the program fails to find one, then the two designs are equivalent. 

Smith et al. [136] developed a hardware design verification methodology for 

the IBM 3081 project in 1982. Boolean comparison was incorporated in the system 

to verify that two design representations — hardware flowcharts and the detailed 
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hardware logic design — are logically equivalent. The algorithm uses domain-specific 

heuristics to choose one variable for reduction of the Boolean expression at the current 

branch point by Shannon expansion. A manual intervention is carried out to select a 

variable in case the heuristics fail. A simple backtracking scheme is used. 

Haralick and Wu [65] developed a divide-and-conquer type theorem prover, as 

an improvement of resolution theorem proving programs and Wang's technique [151], 

not based on Shannon expansion but based on a set of divide-rules which divides 

a material implication into two subexpressions, preserving logical equivalence. The 

program uses fairly simple heuristics to choose the next expression to be divided. 

Gelder [61] developed a divide-and-conquer satisfiability checker which has simi-

lar characteristics with previous ones. But it shows many superior qualities comparing 

with earlier systems in the sense that it emphasizes simplification rules and branch-

ing techniques. An initial transformation is required such that only leaf nodes in 

the search tree may contain negations, which is called an AND-OR tree. And by 

putting a few more restrictions an AND-OR tree can be transformed into a succinct 

AND-OR tree. The succinctness allows the system to use simplification rules based 

on dominance to collapse variables and other techniques to remove literals, preserving 

satisfiability. Simplification rules preserving satisfiability would give more cha,nces to 

reduce the search space than those preserving logical equivalence. Another contribu-

tion is that the system employs heuristics for branching techniques depending on the 

number of occurrences and the type (mixed or symmetric) of a variable. 

INSTEP, presented by Vlach [147, 148, 149], is a multilevel satisfiability checker 

designed for a verification of a commercial VLSI chip manufactured by Texas Instru-

ments. Results on IFIP and ISCAS benchmarks are overall competitive with those for 

the widely used methods based on binary decision diagrams ox BDDs. One of the ma-
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jor contributions of INSTEP is for the first time it shows the solution in polynomial 

time of certain benchmarks involving combinational multipliers, while any program 

based on BDDs runs in exponential time. 

INSTEP has unique features in simplification strategies and backtracking tech-

niques. The main focalization of the program is simplification which takes place in 

the beginning of a verification process before a backtracking procedure is initiated. 

Non-equivalence preserving rules are extensively used depending on the polarity and 

the number of occurrences of a variable. A special type of backtracking algorithm 

called dependency-directed backtracking (DDB) is designed for INSTEP. Experimental 

evidence shows that DDB reduces the search space substantially by keeping track of 

good branch expressions and by eliminating nonessential ones so that the procedure 

can find a short path to a contradiction. 

The introduction of higher-level operators and nonstandard operators such as 

i f3+ , i f4+, adder, half-adder, etc. is unique and proved to be very effective in 

verification. INSTEP shows that simplification alone is enough for many benchmarks 

without even having to call the backtracking procedure. The system will work most 

efficiently when a Boolean circuit demonstrates certain characteristics described as 

follows: (1) Hierarchical structures in terms of input and output (2) Sparsity of 

occurrence of variables (3) Repetition of similar elements (4) Occurrences of specific 

configurations such as half-adder, adder, etc. 

Algorithms based on divide-and-conquer have the following advantages: (1) It 

is relatively easy to combine them with other techniques developed for simplification 

and backtracking. (2) It is also easy to apply various types of simplification rules 

at different places of algorithms. (3) Characteristics of each problem domain can be 

encoded in the system so that the performance might be maximized. 
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In conclusion, divide-and-conquer algorithms are widely used in the area and 

work quite efficiently in many cases. Their performance is heavily depended upon the 

effectiveness of simplification rules and backtracking techniques. Since most of the 

systems naturally incorporate domain-specific knowledge into the rules and heuristics, 

they may not work well for other problem domains. 

Logic Programming 

Using an extended logic programming language CHIP, developed by Dincbas et 

al. [43], whose main objective is to solve search problems with constraints in areas 

like Operations Research, financial planning or digital circuit design. Simonis et al. 

[27, 43, 131, 134, 135] presented a new method to solve Boolean satisfiability problems 

using Boolean unification. The program would show a set of variable bindings as the 

result of unification process if a Boolean circuit is satisfiable. Experimental results 

show that the program works efficiently on a number of benchmark circuits. 

The major difference between CHIP and other ordinary logic programming lan-

guages lies in its internal representation of Boolean terms which holds the same char-

acteristics of the canonicity of binary decision diagram (BDD). Performing circuit 

verifications using logic programming languages is an interesting approach and it 

should receive more attention from the community. 

Counting Algorithm 

The algorithm proposed by Iwama in 1989 [73] computes the number of solutions 

for each clause and then count the number of solutions for each pair of clauses that 

depend on different variables, and continue for triples, etc. For each step overlapping 

solutions are discarded by using the inclusion-exclusion principle. The efficiency of 

this algorithm clearly depends on the number of overlaps, which can be exponentially 

large in general. 
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Iwama's algorithm runs in polynomial time when p > y —. This algorithm is 

quite efficient when p is large. That is, the more literals in a clause, the more chances 

the algorithm works efficiently. The major advantage of this algorithm is that it 

works efficiently where backtracking algorithms work less efficiently because the more 

literals in a clause, the more branch points would occur in backtracking. So, the 

algorithm can work as complementary to backtracking, but how to combine the two 

schemes to design a better algorithm is not clear, since counting and backtracking are 

totally different schemes in nature. Later, Tanaka in 1991 [142] reported preliminary 

results on a refinement of Iwama's algorithm. 

Algorithms for Better Upper Bounds 

The BSAT algorithm, proposed by Monien and Speckenmeyer [103] in 1985, is 

based on branching techniques which can solve the 3SAT in less than 2" steps (1.62™, 

where n is the number of variables), which establishes a better upper bound, although 

not much significance for practical purpose is expected. A general solution can be 

found in the paper for k-SAT, k > 3. 

For non-clausal Boolean expressions, Gelder in 1988 [61] proved that satisfiability 

testing in the propositional calculus can be done with an upper bound of 2(°-25+e)L 

for any positive e, where L is the length of the input expression. According to his 

algorithm, the number of input variables is not an essential part of the complexity 

consideration. 

2.4 Backtracking 

A divide-and-conquer type tautology checker typically selects a variable to sim-

plify input problems by assigning a truth value, which in turn generates two smaller 

1v, t, and p are defined on page 17. 
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problems each of which is solved by employing the same assigning and simplifying 

technique recursively. A backtracking process will be invoked whenever there is no 

hope of reaching a solution from the current branch point and it repeats the pro-

cess until every possibility is exhausted. The fundamental idea behind backtracking 

methods is Shannon cofactoring [129], which is a theoretical basis for many divide-

and-conquer tautology checkers and has become a standard technique in the area. 

The performance of such an algorithm heavily depends on strategies to select 

a variable to be assigned and to decide its truth value. In other words, an efficient 

algorithm should find a variable which can lead to a big simplification or to a short 

path to a solution (or a contradiction). Also, the algorithm should show the ability 

to choose the right truth value for the variable selected so that the best result can 

be achieved. Designing such an algorithm for all instances of problems may not be 

feasible. However, it is possible that algorithms can be designed so that they can 

run in polynomial average time within certain restricted ranges of control parameters 

[23, 62, 73, 111]. Unfortunately, none of these have a practical range of parameters 

in which algorithms may demonstrate a polynomial average time behavior. 

Simple Backtracking 

This scheme selects the variables in a fixed order. However, the algorithm does 

not provide any clue to how we order the variables to reduce the number of steps to 

reach a solution. The range of control parameters in which simple backtracking runs 

in polynomial average time is not practical at all [110]. 

Unit Clause Backtracking 

This method [112, 113] basically concerns the choice of the next variable to 

simplify a propositional formula. The basic idea of choosing the next variable is the 

following: If some clause depends on only one of the unset variables, then select that 
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variable, otherwise select the first unset variable and continue as in backtracking. 

The theory behind this idea is the concept of intermediate predicate PA defined 

over sets ACS, where S is the set of all variables. The intermediate predicate must 

have the values true for any assignment of values to the variables in A that can be 

extended to solution to P. When PA = 0 (or false), there is no hope of extending 

the partial setting PA to a solution. So, the tenet is to extend partial solutions 

unless the values of partial predicates are false. Subproblems can be reduced as early 

as possible by excluding those partial settings which would never give solutions to 

P. When there is no satisfying assignment of variables to a problem, the algorithm 

would backtrack until every possibility is exhausted. This algorithm is considered to 

be superior to simple backtracking because there is a region where simple backtracking 

takes exponential time while unit clause backtracking takes polynomial time. 

Clause Order Backtracking 

The algorithm [23] selects the first clause that is not always true. For the first 

variable that affects the value of this clause, each possible value is plugged in, the 

predicate simplified, and the resulting subproblem is solved by recursive application 

of the algorithm. Each solution of the subproblem (along with the partial assignments 

of values that lead to the subproblem) gives a solution to the original problem. If 

the original problem has no nontrivial clauses, then every assignment of values to the 

remaining variables results in a solution. 

The average time for clause order backtracking is always less than that for simple 

backtracking. It leads to polynomial time under many conditions where simple back-

tracking uses exponential average time. Clause order backtracking runs in polynomial 

average time when 

p < j-, and p > Inf+ ln v 
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Also it is empirically shown that clause order backtracking with the unit clause rule 

is better than plain clause order backtracking. 

Pure Literal Rule Algorithm 

This algorithm [62] uses the basic idea of the Davis-Putnam procedure, which is a 

powerful technique for solving the satisfiability problem. The algorithm first searches 

for a unit clause and sets the variable belonged to the clause so that the clause is true 

and simplify the original predicate using the assignment. If any variable appears only 

negated or unnegated, set the truth value of it so that its literals are true. Simplify the 

original predicate based on that assignment. Then, the original predicate is satisfiable 

if the simplified predicate is. If no pure literal can be found in input predicate, apply 

the Shannon Cofactoring, which forms two predicates by setting the variable to each 

value and simplifying the resulting predicates. The original predicate is satisfiable if 

at least one of the simplified predicates is satisfiable. If each subpredicate happens 

to be simplified much, then the algorithm would be left with less search space. But 

for some types of predicates, we may not be able to simplify much and we would end 

up with fast growing number of subpredicates. This algorithm uses polynomial time 

when 

t < ^ and p > e or 

*P S e\/¥. 

where e is any fixed small number [111]. 

Dependency-Directed Backtracking 

Whenever the current set of expressions is found to be inconsistent, INSTEP 

[148] initiates the directed backtracking algorithm. The major part of backtracking 

in INSTEP is Dependency Directed Backtracking (DDB), which keeps track of which 

branch expressions (i.e., expressions on which branching is done) are involved in the 



28 

derivation of a contradiction. Such branch expressions are recognized as essential 

branch expressions. When a backtracking starts, nonessential branch expressions are 

excluded so that unnecessary branches cannot be generated subsequently. This would 

reduce the number of branch points exponentially. Experiments show that DDB 

reduces the search space substantially by removing nonessential branch expressions. 

To efficiently detect essential branch expressions, INSTEP embodies the follow-

ing observations: 

• Branch expressions that immediately resulted in the contradiction are essential. 

• Branch expressions that resulted in big simplifications of the current set of ex-

pressions are most likely essential. 

• Branch expressions that led quickly to a contradiction previously are likely to 

be essential to the current derivation of the contradiction. 

These potentially essential expressions will most likely be involved in the derivation 

of the contradiction. Based on these information, INSTEP assigns an appropriate 

priority to each branch expression. INSTEP achieves a very large speed-up in back-

tracking by removing nonessential expressions and by reordering branch expressions 

according to the priorities associated with branch expressions. 

2.5 Simplification Techniques 

Since a divide-and-conquer type algorithm for Boolean function manipulations 

requires binary tree traversal in depth-first, the search would soon be victimized by 

combinatorial explosion unless an efficient algorithm to reduce the search space is 

used. Many types of simplifications have been proposed and evolved since the birth 

of the mechanical theorem proving. In this section, we discuss and analyze some of 

the significant ones to outline its development and current techniques. 



29 

Almost all tautology checkers employ truth functional simplifications which pre-

serve logical equivalence, introduced in [118]. Yet others adopt satisfiability preserving 

rules to allow more simplifications in addition to the truth functional simplifications. 

The idea of applying such rules to reduce the search space is due to Davis and Put-

nam [40]. They presented four simplification rules which preserve satisfiability. These 

are the tautology rule, one-literal rule, pure-literal rule and splitting rule, which have 

been extensively used and proved to be very effective in mechanical theorem proving. 

Researchers in verification area have embodied the rules in their systems with exten-

sions and generalizations [14, 61, 65, 147]. Gelder [61] generalized the pure-literal rule 

of Davis-Putnam procedure to non-clausal expressions. A set of new simplifications 

of this kind (Non-Equivalence Preserving or NEP rules) depending on the polarity of 

variables is introduced in INSTEP [147]. The NEP simplifications are justified by the 

Image Theorem and they can achieve more reductions than the truth functional ones 

in many cases. The extensive use of such rules is the primary cause for INSTEP's 

ability to verify the multipliers in the IFIP benchmarks in polynomial time. 

Extended Shannon cofactoring [61, 65, 125, 147] takes cases on complex formulas 

as well as variables, which provide a means to allow more simplifications. For example, 

Boolean expressions like (or <j) i>) or (iff 4> i/>), where <j> and t/> may be complex 

formulas, can be branched into two sub-expressions by taking cases on the truth 

value of <j)• 

Example 2.2 Let T be a set of formulas and A, B be formulas. 

T U {(iff A B)} is satisfiable 

iff either T U {A, (iff T B)} or T U {(not A), (iff F B)} is satisfiable 

iff either T U {A,B} or T U {(not A), (not B)} is satisfiable. • 

Nonstandard higher-level Boolean operators, as opposed to the standard Boolean 
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operators such as and, or, not, etc., are effectively incorporated in INSTEP so that 

more simplified and succinct representation of circuit elements can be achieved, ex-

pressing the same truth values. Thus, the formula (or (and <f> ij>) (and (not <j>) ip)) 

now can be equivalently described in a simple form: 

(if3 <f> <0 x), 

which defines a three-place if-then-else expression. For further simplifications IN-

STEP introduces a set of new higher-level operators such as i f3+ , i f4+. For example, 

the definitions of i f 3 + and i f4+ are given as follows: 

(iff ( i f3+ <f> tp x) (if3 <t> (or ip x) ( n ° t </>)))• 

(iff ( i f4+ <i> ip x 0 (if3 <t> (and tp (or x 0 ) ( o r ( n o t 0) ( n o t £))))• 

Some higher-level operators depict circuit elements at functional level rather 

than gate level. For example, adder and half-adder are defined by the following 

expressions: 

(iff (adder <j> ip x ( C) (and (iff <P (al2 \ i 0 ) (even ip xi C)))-

(iff (half-adder 4> if) x 0 (and (iff <f> (and x 0 ) (even ifi x € )))• 

A formula beginning with al2 is true when at least two of its arguments are true. A 

formula beginning with even is true when even number of its arguments are true. <j> 

and ip of adder and half-adder represent carry and sum outputs, respectively. The 

remaining signals represent the inputs. These special operators are especially benefi-

cial in the verification of a particular type of circuits in which they are components 

of the circuits and hierarchically structured. Tautology checking for some circuits 

becomes quite easy when higher-level operators are used in a simplification process. 

Such an example can be found in Vlach [147] for a parity checker: 

(iff (odd A B C D) (xor (xor A B) (xor C D))). 

INSTEP simplifies it to true in linear time for this type of circuit while a divide-and-
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conquer tautology checker without simplification may involve combinatorial search. 

The notions of control and dominance [61, 147] enable the system to allow sim-

plifications that can easily be identified such that the actual reduction process is 

computationally cheap. 



CHAPTER 3 

THE DERIVATIONAL METHOD 

In this chapter, we first introduce basic terminologies and concepts regarding 

the derivational method. Next, we introduce the notion of cover for the equivalence 

problem and outline briefly how the concept can be used to solve the equivalence 

problem. The Merge Rule and other operations are also introduced. We propose a 

new deductive apparatus for formal verification: a derivational approach using the 

Merge Rule as the rule of inference. 

Next, the concept of minimal cover is investigated in order to remove redun-

dancies from input expressions, and also to provide a means of proof of the theorems 

essential to equivalence testing. The uniqueness property enables us to perform sim-

plification based on projection reduction, which is extensively used in verification. 

Mergeability accounts for the condition of the existence of a merge and also for sim-

plification based on nonmerge reduction. 

Finally, we introduce the concept of losslessness, which deals with the conse-

quences of merges and addresses those issues that a merge can cause. Our interest in 

losslessness is to study the effects of different types of merges as to what can be lost 

as the result of merges and how lost information can be recovered, etc. 

3.1 Introduction 

We assume that ®i, • • •, xn are input variables and also assume that both Xi and 

Xi do not occur in a term. The symbols 1, 0, and d indicate True, False, and don't-

32 
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care, respectively. A term (or and-term) can be represented by a string of symbols: 

a,\a,2 • • • on, 

1 : Xi occurs in the term 

0 : Xi occurs in the term 

d : neither xt- nor Xi occurs in the term. 

For example, X2X3X5 is represented by dOldO, when n = 5. A string composed 

of {0, 1 ,cT} is to be regarded as a term or a disjunction of minterms for the term 

depending on the context (for example, dOldO can be treated as a disjunction of 

four minterms: 00100 + 00110 + 10100 + 10110). We use a[i\ to represent a,-. Note 

that the above representation is conceptual, but for the actual implementation the 

symbol d can be omitted by using a linked list storing only literals and their positional 

information. 

We define two special types of terms: unit term and complete term. 

Definition 3.1 A unit term is a term which contains a single literal in it. A 

complete term with n variables consists only of n occurrences of the symbol d, denoted 

by on . a n is often used to represent a tautology. • 

Unit terms are valuable for simplifications where the average number of literals 

in a term is very small (best if it is close to one). 

Definition 3.2 The cardinality of a term a is the number of literals in it, 

denoted by |a | or Lit(a). The cardinality of a set of terms </> is the number of terms 

in it, denoted by \(j)\. • 

Definition 3.3 Define a PLA as the set of terms occurred in a Boolean ex-

pression in DNF. Let <f>\,</>2 be two PLAs (|<^i|, |̂ >2i ^ 1)- <j>\ covers <j>2, denoted by 

4>2 £ c </>i, iff for each term fi (z (f>2, any assignment that satisfies f3 also satisfies a 

disjunction of some terms of <f>\. • 
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We can rewrite it using the definition of cover. 

<p\ covers (f>2 iff each term (3 € <t>2 is covered by ip C <j>x. 

A term can be treated as the set of minterms covered by the term. Likewise, a 

PLA can be treated as the set of minterms covered by the PLA. Therefore, we can 

rewrite the definition as follows: 

(/>! covers <j)2 iff (j>\, considered as a set of minterms, is a superset of <̂ 2-

Testing cover between two terms can be done easily by comparing literal values 

at each position without enumerating minterms. Formally, a covers 0 iff for each 

position i such that a[i] — 0 or 1, f3[i] = a[i]. For example, dOldO covers <10110, but 

not ddll0. 

' We state the notion of equivalence in terms of cover, which basically divides the 

original problem into two subproblems. 

Theorem 3.1 (Equivalence between two PLAs) 4>\ is equivalent to (f>2 

iff cj)i covers (j)2 and <j)2 covers (j>\. • 

Example 3.1 Let 4>i = x4 + X2X3 + X1X4 + X\X2 + x2x4 and (f>2 = x2x4 + X1X4 + 

X3X4 + xix2x3x4 + X3X4 + X3X4. Then, <f>\ and <f)2 are equivalent because <j)2 6C <j>\ and 

</>i Gc (f>2• G 

Note that each of the two subproblems of the same kind can in turn be divided 

into many smaller problems of deciding whether or not a set of terms in one side covers 

a single term in the other side. This simple divide-and-conquer strategy increases the 

probability of getting more simplifications. 

The following terminologies are frequently used in this thesis in order to describe 

the relationship between two terms. 

Definition 3.4 Let a , 0 be any arbitrary terms. 

(1) Complementary: The position j of a,f3 is called a complementary position 
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if a[j] ^ d,ft\j] ± d, and a[j] = 1 - ft\j] (or, ft[j] - 1 - a[j]). a and ft are called 

complementary terms if there is a complementary position j and for any other position 

k, a[k] — f3[k}. (e.g. Odld and OdOd are complementary.) 

(2) Disjoint: a, ft are called disjoint terms if there is a position j such that a[j] 

and ft\j] are complementary. We define the distance of two disjoint terms as the 

number of complementary positions, (e.g. Odld and 110c? are disjoint with distance 

= 2.) 

(3) Identical: The position j of a, ft is called an identical position if a[j] = ft\j). 

a and ft are called identical terms if a[j\ is identical to ft[j] for each position j. 

(4) Inclusive: The position j of a, ft is called an inclusive position if either (a) 

a[j] = d, ft[j] = 0 or 1 or (b) a[j] = 0 or 1, ft[j] = d. a and ft are called inclusive if 

one is covered by the other. I (a, ft) denotes the number of inclusive positions between 

the two terms a, ft. (e.g. Odld and 011c? are inclusive.) 

(5) Shared: a and ft are called shared if a and ft are not disjoint, (e.g. Odld 

and 01e?0 are shared.) 

(6) Common Literal Position: A common literal position of two terms a and ft 

is a position j in which a[j\ = ft[j] ^ d. • 

3.2 The Merge Rule and Derivation 

The Quine-McCluskey method [99, 117] was the first algebraic approach to pro-

duce a simplified expression for a Boolean function. The method is based on tabu-

lation which overcomes many drawbacks of the earlier method called the Karnaugh 

map [81]. The tabulation method starts from the list of minterms that specify a 

Boolean function and simplifies by combining two complementary terms. It repeats 

the process until no new simplification is possible. This method works efficiently for 
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minimizing Boolean expressions of up to 10 variables. The Merge-Rule introduced in 

this section has similar idea of combining two terms. But two terms need not be com-

plementary to be merged. So, the Merge-Rule can be considered as a generalization 

of the previous work. 

The Merge Rule is the only inference rule employed for the derivation procedure. 

Later, we will show that the derivational method using the Merge Rule as its sole rule 

of inference is sound and complete in deciding whether or not a PLA covers a term. 

Definition 3.5 A merge 7 of two terms a and ft is a term such that (1) a and 

ft have exactly one complementary position and (2) for each position i, 7[i] is defined 

by the Merge Rule shown in Table 2. The resulting 7 is called the merged term or 

merge of a and ft. • 

a[i\ 0 0 0 1 1 1 d d d 

m 0 1 d 0 1 d 0 1 d 

7 [i] 0 d 0 d 1 1 0 1 d 

Table 2: The Merge Rule 

Definition 3.6 7 is called an immediate consequence of two terms a and ft 

if 7[i] is the result of applying the Merge Rule to a[«] and ft[i] for each position i, 

denoted by {a, ft} 1—• 7. A merge position (MP) for {a, ft} 1—> 7 is the position j in 

which a[j] and ft[j] are complementary and 7(7] = d, denoted by MP(«, ft). There is 

only one merge position for any merge. • 

We observe the following simple facts which will be used in later sections for 

proving theorems. 

Observation 3.1 

1. If {a, ft} 1 • 71 then a + ft covers 7 (because a U ft is a superset of 7). 
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2. If {«,/?} i-* 7, then (a) a and 7 are either inclusive or shared and (b) so are 3 

and 7 . • 

There are two special types of merges: unit merge and simple merge. They are 

considered to be quite useful for simplification. 

Definition 3.7 7 is said to be a unit merge of two terms a;,/? iff a , 0 are 

mergeable and at least one of them is a unit term. 7 is said to be a simple merge of 

two terms a, 0 iff a, 0 are complementary. • 

Definition 3.8 A is called a derivation of a term 7 from a set of terms T iff 

(1) A is a finite sequence of terms. 

(2) the last term in A is 7. 

(3) each term of A is either a member of F or an immediate consequence by the 

Merge Rule of two terms preceding it in the sequence. • 

r 1—• 7 denotes a derivation of a term 7 from a set of terms r . T ^ 7 denotes that 

it is not the case that T 1—• 7. In Section 4.1, we show how the derivational method 

can be used for cover testing. Since the derivation process may contain redundancies, 

it is crucial to exclude them for efficient derivation, which is discussed in Section 4.2. 

The following theorem, a generalization of Observation 3.1 (1), says that a 

merged term is always covered by the base set of terms from which it is derived. 

Theorem 3.2 If {a1? • • •, am} 7 then {a\, • • •, a m } covers 7. 

Proof: Let s = 6x, • * *, s r be any sequence of derivation of 7 from T = {o?i, • • •, a m } , 

where sr = 7. When r = 1, there exists a merge: {eti,aj} 7, sr = 7. Then, it 

is obvious that {a,-, ay} covers 7. Assume that the theorem holds for r < k(> 1). 

Suppose r = k + 1. If sr € {ax, • • •, a m } , then {<*1, • • •, aTO} immediately covers sr. 

Otherwise, sr must be an immediate consequence of merging two terms sp and sq 

preceding sr in the sequence, where p,q < k. Then, by the hypothesis, {o;x, • • •, am} 

covers sp and {c*i, • • •, a m } covers sq. So, {ctx, • • •, am} covers sp U sq. But sp U sq 
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covers sr. Hence, {«!,-•• , a m } covers sr. • 

3.3 Operations 

We define union, intersection, difference, and projection operations on terms, 

which will be frequently used in subsequent algorithms as basic functions. Operations 

on terms and operations on sets are essentially same except projection if we interpret 

a term as the set of minterms covered by it. Computing union, intersection and 

projection on terms is cheap, but computing difference is much more costly. 

Definition 3.9 (1) Union: The union of two terms a and /?, denoted by aU 3, 

is {t 11 is a minterm such that t a or t (Ec 0}. 

(2) Intersection: The intersection of two terms a and /3, denoted by a fl /?, 

is {t 11 is a minterm such that t (Ec a, t (Ec /?}. The intersection 7 of a, 0 can be 

computed as follows: 

(i) If a and fl are disjoint, then 7 = 0. 

(ii) Otherwise, for each position i, 7[i] is defined by the Intersection Rule shown 

in Table 3. 

(3) Difference: The difference of two terms a, 0 or relative complement of /? with 

respect to a, denoted by a © /?, is {t \ t is a minterm such that t ec a, t /?}. 

(4) Projection, Complementary Projection: We define a new operation called 

«[*] 0 0 1 1 d d | d 

m 0 d 1 d 0 
i i 

1 d 

7[»] 0 0 1 1 0 1 d 

Table 3: The Intersection Rule 
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projection whose main purpose is to extract some portion of terms and rearrange 

their components. The projection is extensively used to prove some theorems as well 

as to simplify the verification process. Let a, ft be two terms of I \ The projection of 

a with respect to ft, denoted by ota\f3, is = ar[i], where i is the j t h position 

of ft whose value is d. The projection of T with respect to ft, denoted by is the 

set of projections where o^\ 0 is the projection of a,- with respect 

to ft for each a t ' (^ ft) € T. We abbreviate ft^p to ftn which is equivalent to a r , 

where r = n — \ft\. The complementary projection of a with respect to ft, denoted 

by o; - n 1̂ , is exactly like except that i is the jth position of ft whose value is 

not d. Similarly, we define r - 1 1 ^ and ft~n. We abbreviate ctn|^, r n | ^ , 

to d n , Vn,a~n, r ~ n , respectively if there is no ambiguity. • 

Example 3.2 Let T = {dddll,ldddl,d00ld,0dldl,100dd} and/? = dOdld. By 

applying the projection rule, we obtain, ftn = ddd and T n = {ddl, ldl, dOd, Oil, 10c?}. 

For complementary projections, ft~u = 01 and r - 1 1 ^ = {dl,dd,01,dd,0d}. • 

The following facts are immediately understood on the above operations: 

Observation 3.2 

1. Let T, A be sets of terms. If T i-» 7, then T U A 7. 

2. If T is not a cover for a term ft, then there is a set A such that T U A is a cover 

for ft. 

3. Two terms, a and ft, are disjoint iff a D ft = 0. 

4. Let i be a minterm. If t fi a ^ 0 and t fl ft ^ 0, then a fl ft ^ 0. • 

3.4 Minimal Cover 

In this section, we introduce the concept of minimal cover. Suppose a set of 

terms T covers a term ft. Then, it is possible that some terms of T may not be 
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essential to the cover. We will show that removing this type of redundancy not only 

gives a means for simplification, but provides, more importantly, some of the crucial 

properties for the proofs of the main theorems for our equivalence testing algorithm. 

Definition 3.10 A set of terms T is said to be a minimal cover for a single 

term /? iff 

(1) T covers 0 and 

(2) no proper subset of T covers (3. • 

The following facts are observed regarding minimal cover (trivial proofs by con-

tradiction). 

Observation 3.3 

1. If T is a minimal cover for /?, then each term of T contains at least one minterm 

of f3. 

2. If T is a minimal cover for /?, then there is no term a G T such that a is disjoint 

with /3. • 

We now show that there exists a subset of T which is a minimal cover for a term 

(3, provided that F covers /3. 

Theorem 3.3 (Existence of a minimal cover) If T covers /?, then there 

exists a subset T of T such that T' is a minimal cover for /?. 

Proof: Let T0 = T be the set of terms {«!,••• , a m } . Define a recursion as 

follows: 

for j = 1 to m, 

if ( P - 1 — {aj}) covers /?, 

then P = P _ 1 — {a,}; 

else P = P 1 ; 

end.for; 

The theorem follows immediately from a trivial proof by contradiction. • 
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Example 3.3 Let 0 = dOdl and T = {dOOd,Oddl,Odld,lOdd}. Then, I\ = 

{dOOd, Odld, 10dd} covers 0 and Ti is a subset of T. However, any subset of Ti does 

not cover 0. So, Tj is a minimal cover for 0. • 

A minimal cover is not necessarily optimal in terms of cardinality. 

Definition 3.11 Let T = {o^, • • • , a m } cover 0. Fopt is said to be an optimal 

cover for 0 if 

(1) rop< is a cover for 0 and 

(2) any other cover has at least as many members as Topt has. • 

For example, 1^ = {Oddl, 10dd} is an optimal cover for the previous example. It 

is obvious that an optimal cover is a minimal cover by the definition of optimal cover, 

but not vice versa. The actual computation of optimal cover seems too costly to be 

practical, even though it has some theoretical importance. 

3.5 Uniqueness 

The idea of minimal cover emerges from the observation that some terms of T 

may be redundant with respect to a cover. Likewise, we observe that some minterms 

of a term may not be essential to a cover. In this section, we introduce the concept of 

uniqueness, which tells about the essentiality of a minterm as well as a term. Next, we 

investigate the properties associated with uniqueness and establish the relationship 

between the two concepts: uniqueness and minimal cover. Later, we further study 

how the concepts of uniqueness, minimal cover, and merge are interrelated. 

Definition 3.12 A minterm t of a term a is said to be unique with respect to 

a set of terms T (or simply, t of a is unique when V is assumed) iff t €c a and there 

is no 0 e T — {a} such that 0 covers t. • 

Example 3.4 Let V = {d0dd,ddld,dd00,dldl}. Then, t - 0001 € dOdd is 
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unique with respect to T. But 0000 is not. • 

U(a) denotes the set of all minterms of a that are unique with respect to T. For 

example, U(dOdd) = {0001,1001} = dOOl for the previous example. 

We show the sufficient condition for the existence of a unique minterm for each 

term of T, which will be used in subsequent theorems. 

Lemma 3.1 If T is a minimal cover for a term /3, then each member of T has 

at least one unique minterm of (3. 

Proof: Suppose not. Then, there exists a term a such that T — {a} covers (3. 

Hence, T is not minimal. • 

Example 3.5 We use the Example 3.4. T is a minimal cover for <74. And dOdd 

(ddld, ddOO, dldl) has a unique minterm 0001 (0110, 0100, 0101, resp.). • 

The concept of uniqueness can be extended to a term. Also we can define 

redundancy of a term in terms of the uniqueness. 

Definition 3.13 A term a € T is called unique with respect to T iff it contains 

a unique minterm. A term a € T is called redundant with respect to T iff it is not 

unique. • 

Example 3.6 In Example 3.4, every term of T is unique with respect to F. • 

The following theorem justifies simplification based on projection called projec-

tion reduction, preserving the notion of minimal cover. The performance of projection 

reduction largely depends on the cardinality of (3 (The larger |/3|, the more simplifi-

cations would take place). It reduces the number of input variables for a particular 

testing, which exponentially reduces the search space and would lead to a big simpli-

fication. 

Theorem 3.4 (Projection Reduction) If T = {(*i, • • • ,ctTO} is a minimal 

cover for (3, then T11^ = • • •, a minimal cover for /3n. 
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Proof: We first show that T11 covers f3n. 

By the definition of minimal cover, we have, 

(1) VA[A is a proper subset of T —* 3t[t Gc f3,t A]], and 

(2) \/t\t £c /3 —> 3o[fv (E F, t Ec o;]]. 

Using the definition of projection and complementary projection, we get 

(3) \/t[t (zc fl —> t~n = /H1,*11 €c /5n] and 

(4) \/ct[a € T —+ [an € rn,Vi[i Gc a an ,£~n €c af"n]]j. 

(2) and (4) implies that, 

(5) \/t[t €c 0 —* 3a n [a n € r n , 2 n €c «n]]. 

From (3) and (5), we derive, 

Vt[t ec 0 -* tn €c f3n, 3an[an € Tn, *n €c a11]], which implies *n ec /3n - • *n €c 

o;n for some 

a n g r n , provided that t Gc /?. 

Hence, 

(6) covers /3n. 

Next, we show that no proper subset of Tn covers 0U. 

Let A = {&!,•••, £p} be any proper subset of T. Let An = {<5̂ , • • •, 5"}. Then, by 

the universal instantiation, (1) can be rewritten as 
(7) /?, t\ ^i, • • •, <y. 

Observation 3.3 (2) implies that for any S € A, 6 is not disjoint with (3. Then, £ - n is 

not disjoint with (3~n, which further implies that 
(8) r n e c ^ r n , - - - , r n e c £ - n . 

From (3) and (8), we get, 

(9) vt[< ec (3->tn ec / ? n , r n e c ^ n , - - - , r n e c t f-n] . 

(7) and (9) implies that 6° (3n,t" • • • , ^ ^]. 

That is, 
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(10) for any proper subset A n of Tn , 3 i i [ ^ Gc /3n , tf $.c An]. 

From (6), (10), and the definition of minimal cover, we conclude, 

r n = { a f , • • •, } is a minimal cover for f3n. • 

E x a m p l e 3 . 7 Let T = {dddll, lddOl, dOOdl, OdlOl, d\00d} and 0 = ddddl. 

Then, T is a minimal cover for 0. By applying the projection reduction, we obtain, 

0n = (T4, r n = {dddl, IddO, dOOd, OdlO, c?100} and r n is a minimal cover for 0n. • 

3.6 Mergeability 

In this section, we establish the relationship between two concepts: merge and 

cover, concerning the existence of a merge. Next, we show a stronger result regarding 

the existence of a merge by taking the notion of minimal cover into consideration. 

This directly leads to a practical application to a special type of simplification called 

nonmerge reduction. This type of simplification would take place more often in a 

circuit design before minimization than in a minimized version. 

To prove that T does not cover <rn, it is enough to find a minterm such that it 

cannot be covered by each term of T. To do that, we design a falsification algorithm 

named Algorithm-F which seeks a counterexample by constructing such a falsifying 

minterm. Also we show the validity of Algorithm-F. The result obtained from the 

algorithm tells us the sufficient condition for a merge, using the concept of cover, 

which will be later extended to a stronger result in Theorem 3.5. 

Lemma 3.2 Let T be a set of terms. 

If (1) for each term a € I \ a ^ crn, and 

(2) for each pair of terms a , 0 £ T, a and 0 are not mergeable, 

then r does not cover crn. 

Proof: Construct a minterm t which is disjoint with each member of P as fol-

lows: 
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Algorithm-F: 

Input: Ao = T, satisfying the antecedent. 

Output: a minterm t which is disjoint with each member of T. 

Procedure: 

£[l..n] <—0; { initialize t} 

k <— 0; {k is a position of t} 

while Afc is not empty do 

k *— k -f~ 1 j 

A i— {cx | a € A / t - i , a\k\ = 1}; 

if A is not empty, then i[k] <— 0; 

else A *- {a | a £ Afc_i, a[k] = 0}; 

t[k] <— 1; 

<— Afc_i — A; 

end.while; 

return f; 

end.procedure; 

Correctness of the Algorithm-F: 

The algorithm removes each member of A from Afc_i at each iteration whenever 

A ^ 0. Thus as long as A 0, A k - i will be reduced to Afc whose cardinality 

is less than that of A/t_i. Then, it is possible that A^ becomes 0 at fcth iteration 

(1 < k < n). Hence, the algorithm terminates and returns t. If A = 0 at A:th iteration 

(1 < k < n) (i.e. a[k] — d for each member a G T at kth iteration.), then we proceed 

k to the next position (i.e., k+ i). 

Suppose we have just reached the last iteration, where k = n. Then, it is 
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sufficient to show that A n = 0. Suppose A n is not empty. Then, there exists a term 

a G An . Then, we conclude: 

(1) There is no j < n such that a[j\ = 1 because otherwise a (£ Aj (a would be 

excluded at step j). 

(2) There is some j < n such that «[;'] = 0 because otherwise a = crn, which is 

impossible. 

So, let j be the last j < n such that a[j] = 0. Then, there is a term 0 G Aj_i 

such that fl\j] = 1. For all k < j, 0[j] ^ 1, otherwise /3 ^ Aj_i because 0 would be 

excluded earlier. For all j <k<n, a[k] - d. So, a[j] = 1 - 0\j] and there is no other 

complementary positions except j. Then, a and 0 are mergeable. A contradiction. 
• 

Example 3.8 Let T = {dOddldOld, lddOdlOll, ddQOlddld, ddOOdddll, 

IddOllddd, ldddddOll, OddllddlO, OllldOlcW}. Table 4 shows the trace of Algorithm-

F on T for constructing the falsifying minterm t. • 

We now prove the next two Lemmas as preliminaries to Theorem 3.5, which 

establishes the existence of a merge for each term of T. 

Lemma 3.3 If T is a cover for <xn and <rn T, then there exists 7 such that 

for some a , 0 G T, {a, 0} 7. 

Proof: Directly from Lemma 3.2. • 

Lemma 3.4 Let a be a term of T. 

If (1) a is not mergeable with any 0 G T, and 

(2) there is a minterm t G° U(a), and 

(3) there is a minterm t and a position / such that a[l] ^ d, t[l] = 1 - t[l] and for 

each position p(^ I), t[p} = t[p], 

then t T. 
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k 1 2 3 4 5 

A lctaOdlOll OllldOlcM ddOOlddld OddllddlO dOddldOld 

IddOllddd ddOOdddll 

IdddddOll 

t[k] 0 0 1 0 0 

dOddldOld dOddldOld dOddldOld dOddldOld 0 

ddOOlddld ddWlddld OddllddlO 

ddOOdddll ddOOdddll 

OddllddlQ OddllddlO 

OUldOldd 

Table 4: Trace of the Algorithm-F for Example 3.8 

Proof: From (1), one of the following relationships between a and f3 must be 

true: 

• (3 and a are disjoint with distance > 2. 

• (3 and a are shared. 

From (2) and (3), we obtain, 

for each a) € I \ t /3 and t a. 

There are two cases to be considered as stated above: 

Case 1. For each term (3(^ a) G I \ /? and a are disjoint with distance > 2. 

Then, t (3 because t and t are different at exactly one position, while t and (3 

are disjoint with distance > 2. 

Case 2. For each term /3(^ a) € T, f3 and a are shared. 

Recall that I is the only position in which t[l] and t[l] are complementary. Then, 

t[l] and a[/] are complementary because a[l] = t[l], j3[l] = d or a[l] because [3 and a 

are shared. 
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Let k be a position where t[k] and ft[k] are complementary. 

If ft[l] = a[l], then t[l] and ft[l\ are complementary because t[l] and a[/] are comple-

mentary. Then, t ft. If ft[l] = d, then, k ^ /, and t[k] = t[k}. Then, t[k] and /3[k] 

are complementary because t[k] and ft[k] are complementary. Then, t ft. Hence, 

t ft for each ft € T. This completes the proof. • 

Theorem 3.5 (Existence of a Merge) If T is a minimal cover for <7n and 

crn ^ T, then Va[a € T —> 3ft[ft € I \ ft ^ a , a and ft are mergeable ] ]. 

Proof: Suppose that there exists a term a G T such that, for each ft a) € I\ 

a and ft are not mergeable. Since T is a minimal cover for a n , there exists a minterm 

t ec U(a). 

Let t be the minterm resulting from taking the negation of t[l] where I is any 

arbitrary position of a such that a[l] is either 0 or 1. Then, it immediately follows 

from Lemma 3.4 that t T. Then, T is not a cover for a n . A contradiction. • 

Directly from Theorem 3.5, we obtain the following simplification rule called 

nonmerge reduction. 

Theorem 3.6 (Nonmerge Reduction) Let f — T — N, where N is the 

set of all nonmergeable terms. Then, crn £ c T iff crn £
c f \ 

Proof: (=£•) &n £c r implies that there exists a subset T' of T such that T' 

is a minimal cover for crn (Theorem 3.3). Then, for each a € T', there exists a term 

ft € r ' such that a and ft are mergeable (Theorem 3.5). But, T' C f . Then, it follows 

that <7n G
c f . 

(•£=) Obvious. • 

3.7 Losslessness 

In this section, we consider the effects of the merge operation which might lose 
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unique minterms of the base set of terms from which a merge can be derived. We 

also consider how a lost minterm can be recovered. 

A lossless merge is a special kind of merge which covers every unique minterm 

of the base set of terms, defined as follows: 

Definition 3.14 7 is said to be a lossless merge iff for some a, 0 G I\ (1) 

{a,/?} I-* 7, and (2) 7 contains U(a) U U(0). (i.e. No unique minterm of a or 0 is 

lost as the result of the merge operation.) 7 is lossy if it is not lossless . • 

Example 3.9 (1) dddO is the merge of two terms ddld and ddOO in Example 

3.4. Then, the merged term is lossless because U(ddld) = {0110,1110}, U(dd00) = 

{0100,1100}. 

" (2) Let T = {ddll, dddO, 00c?l, 01 dd, IdOd}. Then, {ddll, dddO) (-*• ddld. The 

merged term is lossy because 0000 is lost because of the merge. • 

A simple merge, by its definition, always covers the original set of base terms. 

Thus, a simple merge 7 of a and 0 is lossless because a U 0 = 7, but not vice versa. 

Because of this favorable characteristic, a simple merge has higher priority than any 

other types of merge so that it will be performed before any other merges except unit 

merges. 

The following Lemma shows that replacing a, 0 by 7 preserves the notion of 

cover when {<*, 0} 1—> 7 is lossless. 

Lemma 3.5 Let T be a minimal cover for an and for some a, 0 6 T, {a, 0} 7. 

Let r ' = T — {a, 0} + {7}. Then, 7 is lossless iff T' is a minimal cover for crn. 

Proof: The lemma may be proved by a trivial contradiction. • 

In case of a lossy merge, we first need to decide whether or not lost information 

can be reclaimed. And then, if it is possible, we want to figure out how lost minterms 

can be recovered. Theorem 3.7 addresses these issues with the help of supporting 
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Lemmas 3.6 and 3.7. 

Lemma 3.6 Let a, j3 be two terms in a set of terms I\ If a minterm t Ec a is lost 

in {a, /?} 7, then, there is a position k such that a[k] = d and j3[k] = 7[&] = 1 — t[k]. 

Proof: Since t 7, there is a position k such that 7[fc] is the negation of t[k\. 

The fact that t is a minterm of a implies, 

For each position p, t[p] (Ec Oi\p). That is, a[p] = t[p] or d. 

However, a[k] ^ t[k\ because 7[fc] ^ 1 — a[k]. So, a[k] = d. Then, it follows immedi-

ately from the Merge Rule that f3[k] = 7[fc]. • 

In the next lemma, we show that a minterm lost as the result of a lossy merge 

can always be recovered by another merge involving the term which contains the lost 

minterm. 

Lemma 3.7 If (1) T be a cover for <rn, and 

(2) every merge for any two mergeable terms of T is lossy, and 

(3) a, (3 are mergeable terms of T and t Gc a is a unique minterm, which is lost in 

the merge of a and /?, 

then there is another term /3) G T such that {a,£} 7 and t £° 7. 

Proof: Assume the hypothesis and the negation of the conclusion. Let A be 

the set of all terms of T each of which member is mergeable with a . Let 0 be 

{7 I {«>£} 7> £ € A}. Then, by the negation of the conclusion, t 7 for each 

7 G 0 . Let <rn) be the minterm just like t except that i[p] = 1 — t\p], where p is 

the merge position of a and /3. Then, t a, since t\p] = 1 - a[p]. From Lemma 3.4, 

it immediately follows that 

(a) i r (r - A). 

Now, we show that for each £ 6 A, i (. For each 0) € A, by the definition of 

A, there is a merge 7 such that {<*, £} 1—• 7. And, by the assumption, t ^ c 7. 
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Then, by Lemma 3.6, there is a position k such that a[k] = e?, £[&] = *y[k] = 1 — t[k], 

but i[k] = t[k] because k ^ p. So, ([k] = 1 — t[k]. Then, 

(b) i i. 

From (a) and (b), we conclude that t T, but this contradicts the hypothesis. • 

Theorem 3.7 is a natural extension to the previous lemma, which extends to the 

recovery of each lost minterm caused by lossy merges. 

Theorem 3.7 (Recovery) Let T be a minimal cover for crn. Let 7i, • • •, 7y be 

all possible distinct merges in one step from I\ If each merge is lossy, then {71, • • •, 7y} 

covers U(ai) U • • • U(am). 

Proof: From Theorem 3.5, for each term a G T, there is a mergeable term with 

a. Since each merge is lossy, there is a unique minterm lost in each merge. Then, 

from Lemma 3.7, any unique minterm lost is recovered by {71, • • •, 7^}. • 

The significance of the above theorem is not actual implementation of the recov-

ery because it might lead to an exhaustive search, in general, for right merges which 

would recover lost minterms, but the validity of the derivational method which will 

eventually recover every lost minterm. In Chapter 4, we propose an algorithm along 

with a set of heuristics which obviates the recovery process and yet achieves the goal 

efficiently. 



CHAPTER 4 

THE COVER-MERGE ALGORITHM 

We introduce the Merge-Loop which is a realization of the derivational approach 

discussed in Chapter 3. The significance of the algorithm lies in the establishment 

of the equivalence of the two concepts: cover and derivation. Although the deriva-

tional method is valid, it may contain many redundancies and unnecessary operations. 

Hence, we devise a set of heuristics and simplification rules which would shorten proof 

procedures in most cases. Heuristics are mainly focused on how potentially favorable 

merges can be identified and how they can be chosen for next merge operation. Pri-

orities are imposed on each of the heuristics so that most favorable heuristic can be 

selected, and consequently, a shorter proof can be obtained. 

Suppose Tj T for a term 77 and a set of terms T. To test whether or not T 

covers 77, the Merge-Loop would try to continually search for rj (or a generalization 

of TJ) until no more merges can newly be generated because the basic structure of the 

algorithm is designed to prove rj Ec F by showing the existence of a derivation F i—• rj. 

This indicates that exhaustive searches are unavoidable if the problem is to disprove 

r/ Ec T. However, we improve the situation significantly by employing a cost-effective 

heuristic which would predict the outcome of a cover test and initiate falsification 

heuristics to try to disprove it if a certain condition for the heuristic is met. We will 

discuss and analyze these heuristics in this chapter. 

Simplification is the most important aspect of equivalence testing as far as run-

ning time is concerned. Three different types of simplifications are extensively used 

for the Merge-Loop: covered term reduction, nonessential term reduction, and non-

52 
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and nonmerge reduction. Most of the simplifications during the Merge-Loop are 

performed by removing covered terms due to forward merges. Other types of sim-

plifications are introduced to strengthen simplification process so that simplifications 

take place in a wider range of conditions and situations. 

We propose the final version of the Merge-Loop incorporating heuristics and 

simplification rules developed so far. Finally, the top level algorithm Cover-Merge for 

the equivalence problem is presented and discussed. 

4.1 The Merge-Loop and Proof 

This section contains the Merge-Loop and its proof which establishes the equiva-

lence of the two concepts: cover and derivation. The main purpose of the Merge-Loop 

is to decide whether or not i] Gc T for a term i] and a set of terms I\ In case of 77 T, 

it may return a counterexample which disproves t) €c T (Merge_Loop_2 in Section 

4.5). The Merge-Loop is invoked by the Algorithm Cover, which is in turn invoked 

by the top level Cover-Merge Algorithm. The relationship between the Algorithm 

Cover and the Merge-Loop will be discussed in later sections. 

Any method involving exhaustive search cannot be a solution for this algorithm 

because it would never give us a result within a reasonable amount of time, although 

the method is theoretically valid. Therefore, we first present a valid (or sound and 

complete) method for the cover testing problem and then we propose a set of heuristics 

in order to allow more simplifications and speed up the process. 

Since the number of possible merges in a set of terms T can be quite big (0(m2), 

where m = |T|), it is crucial to generate only those merges that can be useful in the 

derivation process. It is not a trivial problem, in general, to determine which merge 

would be good and which would be bad for future use. Such a test should be fast 
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because it should be made for each merge generated. Even if an exact prediction may 

not be possible, a good estimate can guide the merge process much efficiently. First, 

we define two types of merges: forward and backward merges. 

Definition 4.1 A merge, {«,/?} 7, is called 

(1) a forward merge if 7 covers a or f3 (or both). 

(2) a backward merge if it is not forward and I(a,(3) > 3.1 • 

Obviously, a forward merge can be viewed as a simplification. So, it should be 

given a higher priority than backward merges. There are some merges which are nei-

ther forward nor backward. Fortunately, this does not happen very often, compared 

with backward merges. Thus, storing these merges for future use may not cause much 

ovefhead to a derivation process and in many cases it allows the production of new 

favorable merges in subsequent steps. Backward merges are usually considered as 

not helpful in a derivation. Some backward merges are useful for subsequent merges. 

However, there are many cases where backward merges are immediately useless, which 

are recognized as degenerating. 

Example 4.1 Let T = {q,r,s,u,v,w,x,y,z}, where q(r,s,u,v,w,x,y,z) is 

dOdOl (IdOll, dlldl, 01 ddd, dddOO, OdOld, lddlO, dOlld, dldOd, resp.). Table 5 illus-

trates the set of all possible forward and backward merges from T in one step. Most 

of the merges generated are found to be backward, which is a typical phenomenon for 

most PL As. Some merges are neither forward nor backward. In this example, they 

a r e {?>y},{s,2/},{u;,a;}, and {w,y}. • 

Definition 4.2 A merge 7 of two terms from T is said to be a nondegenerating 

merge if 7 is not covered by any term of I\ Otherwise, 7 is called a degenerating 

merge. • 

[I(a,/3) denotes the number of inclusive positions of a and (3 (Definition 3.4). 
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Types of Merges Merges 

backward {<7, * } , { g , u } , { 9 , w } , { r , s } , 

{r, u}, {r, y}, {r, z}, {s, u}, {s, u;}, 

{s, x}, {u, x}, {u, y}, {u, u;}, {v, y}, 

{w,z},{x,z} 

forward {<?,i>}, {q,z},{r,w}, {r, x}, {u, x} 

Table 5: Types of Merges for Example 4.1 

Example 4.2 Merges {3, t;}, {5, to}, and {iy, zj are degenerating in Example 

4.1. • 

If a merge is found to be degenerating, then it is immediately useless for the 

verification. The Merge-Loop ignores each degenerating merge occurred during a 

derivation, justified by the following observation which shows that (1) if a term a is 

degenerating and there is a term t] such that {a,rj} 1—• 7, then 7 is always covered 

by another term or merge, and (2) if there exists no mergeable term 77, then, by the 

nonmerge reduction (Theorem 3.6), a must be eliminated immediately. 

Observation 4.1 A covered term or a degenerating merge is redundant for an 

efficient merge process. 

Proof: Let a, (3 be two terms and a Gc /3. Suppose there exists a term 77 such 

that {oc,rj} t—> •j1. There are two cases to be considered: 

Case 1. 77 and f3 are not mergeable. 

Let p be an inclusive position such that a\p) ^ d,fi\p] = d. Let q be a common 

literal position of a and /?. Let r be a position where a[r] = (3{r] = d, if any. Then, 

for each position w, if (3[w\ ^ d, then a[u;] = (3[w] because a £ c /?. Obviously, 



56 

MP(a, rj) cannot be a common literal position of a and 0.2 Then, MP(a, rj) must be 

an inclusive position of a and 0. Let pi = MP(a, t/) Then, 

(a) 7i[Pi] = P\P\] = d-

(b) \/w[w 7̂  pi, a[u;] ^ d =>• 7i[tw] = a[iw]]. 

(c) Vr[a[r] = 0[r\ = d =$• 71 [r] = 7/[r]. 

(d) If there is another inclusive position of a and 8, p2, other than p\ such that 

a\p2] ^ d,0\p2] = d, then 71 [p2] = vM-

From (a), (b), (c) and (d), we observe, 

vi[[7i[i] = d=> (3[j] = d\ and [71 [j] ^ d => f3[j] = d or 71 [j]]]-

Hence, 71 Gc 0. 

Case 2. 77 and 0 are mergeable. 

Let {0,r)} h-» 72 and x be the merge position. Then, 0[x] = 1 — rj[x] d, which 

implies that A[x] = 0[x\ because A £ c 0. Let y be MP(a, TJ). Suppose x ^ y. Then, 

a[x] = 1 — r)[x\ ^ d. Then, a and r) cannot be merged, which is a contradiction. 

Hence, x = y. Then, obviously, a €c 0 =>- 71 €c 72. a 

So, there is no point holding degenerating merges or covered terms for the Merge-

Loop. We now define the basic structure of the Merge-Loop whose current merge set 

is defined recursively by its previous set. 

Definition 4.3 Let T0 be a set of terms. Let Mk+1 = {7 | {«,/?} 7, 

a , 0 6 rfc, 7 ^ 7 is a nondegenerating merge} and (J Mk+1, for k > 0. 

AP is called the j t h merge set from F°, which is the set of all new merges from T° at 

the j t h merge step. 

We define the closure of merges from T0 as follows: 

M* = M° U M1 U • • • U Mj, where Mj+l = 0. • 

2MP(<x,f3) denotes the merge position of a, /3. Definitions of inclusive position, common literal 

position, and merge position are found in Definition 3.4. 
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Suppose we have a derivation of a term 7 from a set of terms. Then, we observe 

that many nondegenerating merges from the set are redundant with respect to the 

derivation. Definition 4.4 clarifies this observation. 

Definition 4.4 Let A be a successful derivation of a term 7 from a set of 

terms F. Then, there exists a finite sequence of merges whose last merge is 7. The 

nonredundant derivation of 7, denoted by A', is a derivation such that 

(1) the last term in A' is 7, and 

(2) If {a, 0} i—* T] for some a , /? in A and 77 in A', then both a and 0 are included 

in A' and they appear before r) in the sequence. 

(3) Nothing is in A' unless it follows from (1) and (2). 

If a term a in A appears in A', then a is said to be essential to A'. Otherwise, a is 

nonessential to A'. • 

The essentiality of a merge is relative to a nonredundant derivation. In other 

words, a merge can be essential to one derivation, but at the same time it could be 

nonessential to another because there can be many nonredundant derivations for a 

given goal term. 

Definition 4.5 f3 is a generalization of a iff /3 is the result of replacing zero 

or more O's or l 's in a by d's iff for each position p, /3[p] = a[p] or j5\p] = d. 

A term a is said to be derivable from a set of terms T iff there is a derivation of a 

generalization of a from T. • 

4.1.1 The Merge-Loop 

In this section, we propose the Merge_Loop_l and provide its proof. The main 

purpose of this section is to establish the relationship: 

r\ £ c T •$=$• r 1—> 17, for any term r/ (0 < |^| < n, f j is a generalization of 77). 
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We will refine the Merge_Loop_l and produce a better version, Merge_Loop_'2, by 

removing redundancies and employing heuristics to shorten the merge process. 

Algorithm Merge_Loop_l; 

Input: a set, T, of terms and a term r]. 

Output: True if T covers ?/. False, otherwise. 

Procedure: 

Let r° = r. 

k <— 0; 

while rj (rj is a generalization of T)) do 

Let jh be a nondegenerating merge of two terms from 

if is not found, return False; 

Let Tfc+1 = (Tk — {term(s) covered by 7fc})U{7fc}-

k i— k 1; 

end.while; 

return True; 

end.procedure; 

It is obvious that the Merge_Loop_l terminates because 

(i) only nondegenerating merges can be added to the system, 

(ii) a nondegenerating merge cannot be added more than once because of (i), 

and 

(iii) the set of nondegenerating merges is finite. 

Theorem 4.1 (Merge_Loop_l) The Merge_Loop_l returns True iff t] €c P. 

Proof: 

Part A. Soundness Proof: 

If rj is derivable from T0 by the Merge.LoopA, then T° covers rj. 

We prove the following theorem by induction on the length I of a derivation of fj from 
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r° , where 17 is a generalization of Tj: 

If there is a derivation of f j from T0, then T0 covers rj. 

If I = 0, then the theorem immediately follows from rj 6 T0. Suppose the 

theorem holds for I = k — 1 (k > I). If I = k and {x, y} 1-* f j , then, by the hypothesis, 

T° covers both x and y. Then, by Observation 3.1 (1), T0 covers f j . 

Part B. Completeness Proof: 

If r° covers rj, then rj is derivable from T0 by the Merge.LoopA. 

We prove the following theorem by induction on / (the number of d's in rj): 

If rj contains exactly I d's, and T0 covers rj, then rj is derivable from T0, (rj ^ 

r°,o < I < n). 

1. Basis: I = 0. Then, there is an immediate derivation T0 1—> fj, where f j is a 

generalization of rj. 

2. Hypothesis: If rj contains exactly (/ — l)d's and T0 covers rj, then rj is derivable 

from r° . 

3. Induction Step: Let r\, • • •, r; be the positions where d appears in rj. Consider 

two terms /? and a such that they are exactly like rj except fi[rj] = 1 — <*[rj] / d for 

any 1 < j < I. Then, by the hypothesis, /? (a) is derivable from T0 if rj €c T0. Let /3 

(a) be a generalization of /3 (a), derived from T0. Then, if (3 or a is a generalization 

of ij, then the theorem immediately follows. If not, (3[rj] = 1 — a[rj\ ^ d. Then, 

{f3, o;} 1—• f j and rj is a generalization of rj. • 

The theorem shows that cover testing can be performed by applying the Merge-

Loop algorithm using the derivational method. But we want to point out that rj can 

be any term including a complete term. If 77 is a complete term, then the Merge-Loop 

conducts a special type of cover testing, namely tautology checking. In reality, rj is 

indeed a complete term particularly for our cover testing problem because rj is the 
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result of performing projection operation on a term 0 for cover testing. Because of 

that , we now assume, without loss of generality, that an input term to the Merge-

Loop for a cover testing is a complete term. And we often use a ''goal term'' or '<7/ to 

refer to a complete term for cover testing. 

E x a m p l e 4 .3 Let T0 = {5, u, v, w, x, y, z}, where s (u, u, w, x, y, z) is dlldl 

(01 ddd, dddOO, OdOld, ddOdl, dOldd, IddlO, resp.). Trace of Merge_Loop_l for the 

derivation of cr5 is shown below (Table 6). Direct application of the algorithm requires 

34 steps to complete the process, while Merge_Loop_2 (Section 4.5) employing a set 

of heuristics to shorten the length of derivation takes only 11 steps (Table 7). • 

k Tk ik Covered Terms 

0 {s,u,v,w,x,y,z} {5, v} i->- 70 (dllOd) 0 

1 r° u{7 0} {s, x} t-* 71 (dlddl) 5 

2 (r1 - { s » u {7 1} {u, y} 72 (Odldd) 0 

3 r2 u{7
2} {u, z} i-» 7 3 (efldlO) 0 

4 r3 u{7
3} {v, w} 1 • 7 4 (OdOrfO) 0 

5 r4 u{7
4} {u,x} i-> 75 (ddOOd) 0 

6 r5 u{75} {v, z} t-+ 76 (IdddO) z 

7 (r6 - {z}) u {7
6} T1} ̂  77 (dldOd) 7° 

8 (r7 - {7°» U {77} {w,73}1 • 7 8 (dlddO) 7 3 

9 (r8 - {7
3}) u {7

8} {w,y}1 • 7 9 (OOdld) 0 

10 r9 u {79} {w,7 2} 7 1 0 (Oddld) w , 7 9 

11 (r10-{w,7
9})u{710} {x,y}' ^711 (dOddl) 0 

12 r11 u {7 1 1} {x,7 2} 7 1 2 (Odddl) 0 

13 r12 u {7
12} {x,7 4} t-» 7 1 3 (OdOdd) 7 4 

14 (r13-{7
4})u{7

13} {x,7 6} 1—>• 7 1 4 (ldOdd) 0 
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15 r 1 4 u {714} { a ; , 7 8 } ' 7 1 5 (dlOdd) 0 

16 r 1 5 u { 7
1 5 } {y,71} 716 (ddldl) 0 

17 r 1 6 u { 7 1 6 } {Vif5} l-> 717 (dOdOd) 0 

18 r 1 7 u { 7 1 7 } { ? / , 7 7 } ^ 7 1 8 (ddlOd) 0 

19 r 1 8 u { 7 1 8 } {Vi 78} ^ 719 (ddldO) 0 

2 0 r 1 9 u { 7 1 9 } {2/? 713} ^ 720 (00ddd) 0 

2 1 r 2 0 u { 7
2 0 } {Vi 714} 721 (10ddd) 0 

2 2 r 2 1 u { 7
2 1 } { 7 1 , 7 6 } *-* 7 2 2 ( 1 1 ddd) 0 

2 3 r 2 2 u { 7
2 2 } {717 78} 723 (dlddd) U , 7 \ 7

7 , 7 8 , 7 1 5 , 

22 
7 

2 4 ( r 2 3 - { u , 7 \ 7 T , 7 8 , 7 1 5 , 7 2 2 } ) 

U { 7
2 3 } 

{ 7 2 » 7 5 } •""* 7 2 4 (OddOd) 0 

2 5 r 2 4 u { 7
2 4 } { 7 2 , 7 1 3 } ' ^ 7 2 5 (0dddd) -,2 ^10 ^12 ^13 

I > / ? / W 7 

7 2 ° , 7 2 4 

2 6 ( r 2 5 — { 7
2 , 7 1 0 , 7 1 2 , 7 1 3 , 7 2 0 , 

7 2 4 } ) U { 7
2 5 } 

( 7 5 , 7 1 6 } ^ 7 2 6 ( d t M O l ) 0 

2 7 r 2 6 u { 7
2 6 } { 7 5 > 7 1 8 } ^ I27 (dddOd) V , 7 5 , 7 1 7 , 7 1 8 , 7 2 6 

2 8 ( T 2 7 — { ^ , 7 5 , 7 1 7 , 7 1 8 , 7 2 6 } ) 

U { 7 2 7 } 

{ 7 6 , 7 1 6 } ^ 7 2 8 ( l d l < M ) 0 

2 9 r 2 8 u { 7
2 8 } { 7

6 , 7 2 5 } ^ 7 2 9 (ddddO) 7 6 , 7 1 9 

3 0 ( r 2 9 - { 7
6 , 7 1 9 } ) U { 7 2 9 } { 7 X 1 , 7 2 3 } '->• 7 3 0 (ddddl) a : , 7 n , 7 1 6 

3 1 ( r 3 0 - { x , 7 U , 7 1 6 } ) u { 7 3 0 } { 7 1 4 > 7 2 5 } ^ 7 3 1 (ddOdd) 7 1 4 

3 2 ( r 3 1 _ { 7 1 4 } ) u { 7 3 1 } { T
2 1 , 7 2 3 } 7 3 2 ( 1 dddd) 7 2 1 , 7 2 8 

3 3 ( r 3 2 - { 7
2 1 , 7 2 8 } ) U { 7 3 2 } { 7 2 5 , 7 3 2 } 7 3 3 (ddddd) r 3 3 

Table 6: Trace of the Merge_Loop_l for Example 4.3 
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The bottleneck of the Merge_Loop_l is the merge process which blindly gen-

erates all nondegenerating merges without knowing the efficacy of such merges for 

subsequent merges toward a goal term. It is interesting to observe that only 13 

merges are essential to the derivation of <r5 in the above example, indicating many 

redundancies are involved. Table 7 illustrates the sequence of essential merges. Re-

moving redundant merges is essential to speed up the derivation process especially for 

big PLAs. The focalization of next section will be mainly on how these redundancies 

can be eliminated. 

No. Merge 

1 {s,ty} i—* 71 (= dlddl) 

2 {u,y} I—• 72 (= Odldd) 

3 {u, z} i-» 7 3 (= dldlO) 

4 {v, w} >-> 74 (= OdOdO) 

5 {v,z} 76 (= ldddO) 

6 

^3 
r-H

 

00 1 
CO 

7 {x , 74} 71 3 (= OdOdd) 

8 { a ; , 7 6 } 7 1 4 ( = IdOdd) 

9 { j / , 7 1 4 } i->- 7 2 1 ( = 1 0 d d d ) 

1 0 {7
1,7

8} ^ 7
23 (= dlddd) 

11 {72 ,71 3} •-> 72 5 (= 0dddd) 

12 { 7 2 \ 7 2 3 } 732 (= 1 dddd) 

13 {72 5 ,73 2} ^ 73 3 (= ddddd) 

Table 7: Sequence of Essential Merges for the Derivation of Example 4.3 
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4.2 Heuristics for the Merge-Loop 

Although the Merge_Loop_l guarantees correct answers, it might contain redun-

dant merges and unnecessary operations, which would lead to poor performance. To 

enhance the algorithm, we propose a set of prioritized heuristics which can signifi-

cantly reduce redundant computations in most cases. Since the order of merges in 

a derivation greatly affects the performance of the merge process, the prioritization 

of these heuristics may provide a speed-up of the merge process and more simplifica-

tions. In this section, we use 'oy', a complete term with r d's, to denote a goal term 

for our cover testing problem. 

Heuristics from HI to H6 are incorporated into the algorithm to speed up the 

Merge-Loop approaching ay, while H7 is to disprove the existence of a derivation of oy 

by calling fast falsification heuristics to produce a counterexample if the input seems 

to be a nontautology. Heuristics are ordered by priorities in which HI has the highest 

priority and H7 has the least. Each heuristic is tested in this order whether or not its 

condition is met at each iteration of the Merge-Loop. If so, we put the heuristic into 

action. When a heuristic has already been in action and yet another decision has to 

be made regarding the selection of a heuristic, the algorithm will recursively apply 

the priority rule until a choice is made. 

HI. Perform unit merges before any other merges are tried. If a unit term is 

found, unit merges are performed throughout the input. Since a unit merge always 

reduces the number of literals of the terms involved, it is treated as a simplification 

called unit-merge reduction. Another strong point is that a unit term can easily be 

identified. 

H2. Perform simple merges. A simple merge is generally considered as a sim-

plification that can immediately eliminate its base terms. We name this type of 
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simplification as simple-merge reduction. It also would lead to big simplifications in 

many cases. 

H3. Experiments on a large scale of data show that terms which have partic-

ipated in forward merges are more likely to trigger off other forward merges than 

terms involved in other types of merges. A forward merge must be exploited to gen-

erate as many forward merges as possible because it is highly likely that a cascade 

of new forward merges can be subsequently generated and big simplifications can be 

achieved. Since a forward merge always simplifies at least one of its base terms, it is 

considered as a simplification called forward-merge reduction. If two or more forward 

merges are found, apply H4 to choose the best one. 

H4. If 71 and 72 are both forward merges such that {a, (3} 1—• 71, {a, 77} 1—• 72, 

and I(oc,(3) < I(a,r)), then choose 71. before 72. 

H5. Merge terms a and /3 before ( and 7] if Lit(a) + Lit(f3) < Lit(() + Lit(rj). 

Terms containing small number of literals are more likely to produce big merges which 

would allow more simplifications than terms with large number of literals. 

H6. Postpone backward merges, if possible. Since backward merges increase the 

number of literals as the result of the operation, they are less likely to be involved in 

a successful derivation as essential merges. However, there are some cases in which 

backward merges are essential to a derivation sequence. 

H7. If only backward merges are possible in for any k > 0, then it is likely 

that <rr r f c . The heuristic is based on the fact that if {a, /?} i—• 7 is a backward 

merge, then ( 1 ) 7 realizes only a portion of a U /? and (2) Lit(7) is increased as the 

result of the merge. Note that any successful sequence of merges which can lead to a r 

can be recognized as the process of replacing literals by cTs until no more replacement 

is possible. We can also observe that merges along a successful sequence of derivation 
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are most likely to reduce the number of literals of terms along the sequence. Since 

backward merges can only increase the number of literals along a merge sequence, we 

need to avoid them if they are redundant (Experiments show that they are redundant 

indeed in most cases). We propose two heuristic approaches to implement H7 in 

Section 4.3, based on falsification procedures. 

Unit merges are extremely valuable for simplification, but they rarely occur at 

the initial stage of a derivation unless input is very sparse, especially for random 

PLAs. As the process approaches a goal term in a successful derivation, more and 

more simplifications would take place and input gets very sparse. So, we very often 

observe lots of unit merges near the end of successful derivations. Also, simple merges 

and forward merges are rarely found at the initial stage, but they are likely to occur 

as the process approaches a goal term in a successful derivation. The heuristic H5 

is most frequently found at the initial stage and usually generates more favorable 

merges in subsequent steps. 

Heuristics presented in this section are incorporated into the Merge-Loop and 

tested successfully. Experimental results on standard benchmark problems as well as 

on random PLAs are shown and discussed in Chapter 6. 

Example 4.4 Table 8 demonstrates some of the heuristics on the same input 

for Example 4.3. Note that the first few heuristics help the process to quickly reach 

a unit term which would start a series of unit merges. Also note that HI is heavily 

used in this example. This is a typical phenomenon which can be found near the 

end of every successful derivation because merged terms become quite sparse as the 

derivation approaches near crr and unit terms would appear more frequently near the 

end of a successful derivation of a r than any other stages of the derivation. Because 

of the heuristics used, we are able to shorten the length of the derivation from 34 to 
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11. The reduction rate increases considerably as the input size grows. Nevertheless, 

the solution is not optimal (8 is the smallest). However, we are confident that these 

heuristics work efficiently in many cases. • 

No. Merge Heuristics Used 

1 {u,y} 7° (= Odldd) H5 

2 {to, 7°} 71 (= Oddld) H3, H4 

3 {z, 7 1 } t — 7 2 ( = dddlO) H3, H4 

4 { v , 7 2 } 7 3 ( = ddddO) H2 

5 { s , 7 3 } 1—> 7 4 ( = dlldd) HI 

6 {a ; , 7 3 } 7 5 ( = ddOdd) HI 

7 { 5 , 7 s } h->. 7 6 (= dlddl) HI 

8 { x , 7 5 } 1—> 7 7 (= dOddd) HI 

9 {7°?75} 78 0dddd) HI 

10 { 7 4 , 7 5 } (—• 7 9 (= dlddd) HI 

11 {l7179} ^ 7 1 0 ( = ddddd) HI, H2 

Table 8: Derivation Sequence using Heuristics for Example 4.4 

4.3 Falsification 

Since the problem of disproving a tautology is as hard as the problem of proving 

it, we need to devise fast heuristics which can be used repeatedly at each step of 

the Merge-Loop, although they may not be complete (but sound, nevertheless). Two 

separate heuristics based on greedy methods are designed for the purpose: Falsify.l 

and Falsify_2. Falsify_1 uses a greedy method which tries to find an assignment as 



67 

a counterexample, seeking to maximize the number of terms falsified by the partial 

assignment made at each step of choosing a variable and its truth value. This can be 

done by choosing a variable with the most occurrences and assigning the negation of 

the truth value which takes place most frequently for the variable. 

Procedure Falsify_l; 

Input: a set of terms, Ffc from which only backward merges can be derived. 

Output: (1) returns a falsifying minterm t if it is found. 

(2) returns 'Fail', otherwise. 

Procedure: 

PI. Let xi, • • •, xn be the variables. 

f[l..ra] <— 0; 

Let Ni(w) be the number of occurrences in of Xi (1 < i < n) 

having the value w (0 or 1). 

repeat P2, P3, and P4 until no more reductions are possible. 

P2. for each unit term a £ 

i[j] 1 - «[j] ; where a[j] ^ d] 

Perform reductions on using t[j]. 

end.for; 

if rfc is empty, then return t\ 

P3. Compute Ni(w), • • •, Nn(w) for Tk. 

Compute the index j and the value w such that 

w) is the largest among N\{w), • • •, Nn(w). 

i \ j ] <- 1 - «>; 

P4• Perform reductions on using f[;'] as follows: 

for each term a € 
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if a[j] = t[j], then a[j] *- d; 

else if a[j] = 1 — t[j], then Tk <— Tk — {a}; 

if Lit(a) = 0, then return 'Fail 

if is empty, then return 

end.for; 

end. procedure; 

If T is not a tautology, then Tk(k > 0) at kth merge step would most likely 

show the characteristic of H7. The falsifying heuristic Falsify_1 is called from the 

Merge-Loop every time Tk at kth step shows the characteristic of H7. The procedure 

Falsify_l works efficiently for many cases, even though it sometimes fails to generate 

a falsifying assignment for nontautological expressions. Whenever the first procedure 

(Falsify_l) fails, we try the second procedure (Falsify^) again on the same input 

to construct a falsifying minterm with different and better approaches, but more 

complicated. 

In this manner we may have more chances of getting a falsification. At worst 

case, the falsification process could merely add computational burdens to the Merge-

Loop, failing at each invocation. Fortunately, this rarely happens in practice. 

Example 4.5 Let Tk = {«, v, w, x, y, z}, where u (v, w, x, y, z) is dlddl 

(Olddd, dddOO, ddOdl, dOldd, IdddO, resp.). Table 9 shows the trace of Falsify_l for 

the construction of t. Falsify_1 needs to have all five iterations for five variables to 

obtain t = 00010 for this example. However, for many cases the procedure only tests 

some portion of the variables to complete the falsification. We show that for the same 

example Falsify_2 needs three assignments to falsify the set in Example 4.7. • 

Example 4.6 Let Tfc = {5, u, v, w, x, y, z}, where s (u, v, w, x, y, z) is IdOdl 

(Oldll, dOlld, (flOOd, Odldd, lldOl, ddldO, resp.). Then, is reduced to 0 because 
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Iter. r k t Reductions 

1 {u,v,w,x,y,z} t[2] = 0 remove u, v from Tk h y[2] = d. 

2 {w,x,y,z} <[3] = 0 remove y from Tk & a: [3] = d. 

3 {w,x,z} O
r II o remove x from Tk k, z[5] = d. 

4 {w,z} i[l] = 0 remove z from Ffc. 

5 {w} ([4] = 1 remove w from 

6 0 

Table 9: Trace of Falsify.l for Example 4.5 

of the reductions taken place in Falsify_1, using the following sequential assignments: 

t[2] = 0, t[3] = 0 and t[ 1] = 0. 

This example shows that three out of five variables are required to be assigned by 

zeroes. But, Falsify_2 for the same input can disprove the set by having only two 

assignments in Example 4.8. • 

The second heuristic has more computing power than the first one in the sense 

that it can falsify more nontautological expressions than Falsify_1 does. Falsify_2 uti-

lizes information on the number of literals as in Falsify_l as well as information on 

the merges occurred at each merge step. Experimental results show that both proce-

dures work efficiently for most cases, consuming a reasonable amount of computing 

resources. 

Procedure Falsify_2; 

Input, Output: same as in Falsify.l. 

Procedure: 

PI. Let S = {(a, /?)|a, /3 € a and /3 merge backwardly } 

# < - 0 ; 
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£[l..n] = d; 

P2. for each unit term a in a pair of 5, 

i[j) 1 ~ «[;], where a[j] / d; 

Perform reductions on S using t[j]. 

end.for; 

if rfc is empty, then return t; 

PS. Let j be the position at which merge positions take place most frequently 

for all pairs in S. 

Compute Ni(w), • • •, Nn(w) as in Falsify_1. 

if Nj(0) > JVj(l), then t[j] «- 1; 

else t[j] <— 0; 

P4• Perform reductions on the set of pairs S using t[j] as follows: 

for each term a of each pair in S, 

if a[j] = t[j], then a[j] = d; 

if a[j] = 1 — t[j], then remove a from its pair; 

end.for; 

for each member s of S, 

if s contains a single term 77, 

then S <— S - {s}; i? <— Z?U{a}; 

end.for; 

Remove each member of R from R if it appears in a pair of S. 

Perform reductions on the set R using t[j] as follows: 

for each term a £ R, 

if a[j] = t[j], then a[j] = d; 

if Q;[j] = 1 — t[ji], then remove a from R] 
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end.for; 

if S is empty, go to P5; 

else if S contains a contradictory pair, return 'Fail 

else go to P2. 

P5. { Call Algorithm-F of Lemma 3.2 } 

Let 11%= {a%\ a £ R}. 

Call Algorithm-F for constructing a minterm t* which falsifies Rn. 

for each position j of t*, 

t[l] <— t*[j], where I is the jth position of t whose value is d. 

return t; 

end.procedure; 

The goal of a falsifying procedure is to find a minterm t which falsifies 

A falsifying procedure is said to be consistent if the decision of t[j] for a position 

j will remain unchanged throughout the falsifying process. It is obvious that both 

heuristics are consistent and sound. A pair of terms in S of Falsify_2 is said to 

be contradictory if it contains two complementary unit terms. We show that the 

existence of a contradictory pair is the necessary and sufficient condition for the 

failure of constructing the minterm t. 

Observation 4.2 If two complementary unit terms are generated by the pro-

cedure Falsify-!, then the two terms must be paired in S. 

Proof: If they are not paired, then they are not mergeable. Then, there must 

be another disjoint position j, where both literals on j must have been reduced to d's 

by the procedure, which is impossible. • 

Upon completion of P4, if R is empty, then we conclude that t falsifies S. Oth-

erwise, R contains those terms that have not yet been falsified by the procedure. We 
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then perform the next part of falsification. 

Right before P5 is to be executed, the following facts are understood: 

Observation 4.3 For each term a € R, 

( 1) OC 7^ <7n, 

(2) Vp[i[p] 7̂  d =$• a\p] = d\, and 

(3) there exists a position p such that t\p] = d and a\p] ^ d. • 

Observation 4.4 The remaining terms of the set R are not mergeable with 

each other. 

Proof: Suppose there are two remaining terms ot , ft' and they are mergeable. 

Let a ( 0 ) be the original term for ot ( 0 ). 

Case 1. a and /? are mergeable. 

Then, the pair (a, (3) would be removed from S by a reduction at P\. So, at 

least one of a , d' would be removed from R. 

Case 2. a and (3 are not mergeable. 

If a and /? have no complementary position, then a and d' are not mergeable. 

If a and /3 have two or more complementary positions, there are two cases to be 

considered: 

(i) If there is a complementary position p such that t[p] / d, then one of a and 

0 would be removed from R. 

(ii) If, for each complementary position p, t[p] = d, then a and ,8 are not 

mergeable. • 

Then, at P5, We observe: 

1. For each a n | j E an | (- is not a complete minterm. 

2. Each pair of terms of Ru |(- is not mergeable. 

Then, by Algorithm-F of Lemma 3.2, there must be a minterm t* which falsifies 
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Rn\t- Now, by assigning new values of t* to the corresponding positions of t, t falsifies 

the original set S. 

To demonstrate the true capacity of Falsify_2, we need to show which is 

not falsified by Falsify_1 but falsified by Falsify_2. We have many such cases in 

experimental results for big PLAs, but it is quite hard to get a small example showing 

the quality because almost all small PLAs which are nontautological can be falsified 

by Falsify_1 alone. Because of that, same examples shown in Examples 4.5 and 4.6 

are used as examples for Falsify_2. 

Example 4.7 We use the same input Tk of Example 4.5. Using information 

on merges in addition to the information used in Falsify_1, Falsify_2 can reduce the 

number of iterations for the construction of t. Table 10 shows the trace of Falsify_2 

on r fc. The procedure falsifies the set by making three assignments of truth values to 

f, while Falsify_1 needs to have five in Example 4.5. • 

Iter. S R t Reductions 

1 {(u,w),(u,y),(u,z),(v,y), 

(v,z),(w,x),(x,y),(x,z)} 

0 

o II 
icT 

<-»o remove {(u, w), (u, y), (u, z), 

(w, x), (x, y), (x, z)j from S 

R = {w} 

2 {(vty),(v,z)} M i[i] = o remove {(v, z)} from S 

3 {(«,»)} M t[ 2] = 0 remove {(f,j/)} from S 

4 0 M 

Table 10: Trace of Falsify_2 for Example 4.7 

Example 4.8 On the same input of Example 4.6, Falsify_2 can falsify the 

set by having only two assignments: i[3] = 0 and f[5] = 0. One more assignment is 

necessary to falsify the set R = {iu} in order to return t. This can be done by running 
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the Algorithm-F, which completes the falsification. • 

A falsifying procedure (or algorithm) is said to be complete if a set of terms, T, 

does not cover <rn, then the procedure guarantees to construct a falsifying minterm 

t. We believe that both heuristics are not complete because the problem of designing 

a complete falsification algorithm is as hard as the original problem of checking the 

tautologyhood, while the time complexity of Falsify_2 is only 0(nm2), where n is the 

number of variables and m is the number of terms of T. So, 'Fail' returned from the 

procedures does not necessarily imply crn 6° However, both heuristics are sound 

because if such a minterm i can be constructed, then obviously T does not cover the 

minterm. 

4.4 Simplifications during the Merge-Loop 

Without simplification, the Merge-Loop would soon be overwhelmed by enor-

mous search space for even a small size input. Therefore, we need to incorporate 

various types of simplification techniques into the Merge-Loop so that 

• it would not produce useless merges, and 

• it would produce good merges which cover other terms, and 

• it would shorten the length of the verification by choosing most favorable merge 

for next merge step. 

Simplifications can be done within the Merge-Loop in different ways as follows: 

(1) Covered Term reduction: 

Simplifications during the Merge-Loop are mostly done by removing covered 

terms due to forward merges. Unit-merge reduction and simple-merge reduction tend 

to reduce greatly and cause the process to quickly approach a goal. As the derivation 

approaches near a goal term, the average cardinality of merges is likely to become 
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small, which means more simplifications can be expected. 

(2) Nonessential Term Reduction: 

Another possibility is that some terms may never be participated as essential 

elements in a derivation of a goal term. Removing them will reduce the number of 

merges at current merge step as well as subsequent steps. The reduction is justified 

by the following theorem: 

Theorem 4.2 (Nonessential Term Reduction) Let A be a derivation of 

<rn from T. If there is a position j and a term a such that a[j] ^ d and a[j] ^ 1 - /?[;] 

for each term a) € T, then a is nonessential to A. 

Proof: Let 7 be a merge of a and TJ. Since rj[j] ^ 1 — <*[;'], the position j 

cannot be the merge position. So, *f[j] = a[j] d. And any merge using 7 cannot 

produce d at position j for the same reason. The theorem follows directly from a 

simple induction on |A|. • 

The reduction can take place in the entire range of the Merge-Loop. Although 

the reduction rate is not as big as the first one, it certainly contributes to the simpli-

fication of the merge process to some extent. 

(3) Nonmerge Reduction: 

By Theorem 3.6, nonmerge terms are removed from the input. The situation 

can be found mostly in a sparse circuit where many redundancies are involved. 

Nonessential term reduction and nonmerge reduction are found to be effective in 

many experimental cases. We want to compare the two reduction schemes in detail. 

First of all, a nonessential term may or may not be mergeable with other terms, 

while a nonmerge term cannot be merged with any term at all as the name suggests. 

Second, a positional testing is enough for detecting nonessential terms, but a test for 

each pair of terms is required for recognizing nonmerge terms. Clearly, we can observe 
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that testing nonmerge reduction is more costly than the other case. Therefore, it is 

natural to put the nonessential term test before the nonmerge test. 

4.5 The Merge_Loop_2 

We now present the final version of the Merge-Loop, the Merge_Loop_2 as an 

improvement over the Merge_Loop_l, which is an implementation of heuristics, falsi-

fication procedures and simplification rules proposed in previous sections. 

Algorithm Merge_Loop_2; 

Input, Output: same as in the Merge_Loop_l 

Procedure: 

PI. Let r° = r. 
k <— 0; 

P2. while f j ̂  Tfc ( f j is a generalization of 7J) do 

Choose the first heuristic from HI to H6. 

Perform a merge process, using the heuristic chosen. 

Perform reductions according to Section 4.4. 

if only backward merges are possible in Tk for generating a new merge, 

then Perform Falsify_l on Tk. 

if Falsify_1 returns a falsifying minterm t, then return t; 

else Perform Falsify_2 on 

if Falsify_2 returns a falsifying minterm t, then return 

Let 7^ be a nondegenerating merge of two terms from 

if 7fc is not found, return False. 

Let Tk+1 = (Tk — {term(s) covered by 7fc}) U{7fc}-

k <— k -)- 15 
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end.while; 

return True; 

end.procedure; 

We show that the above procedure is valid. 

Theorem 4.3 (Merge_Loop_2) The Merge_Loop_2 returns True iff 77 (Ec F. 

Proof: Immediately from the following: 

(1) The procedure terminates because (i) only nondegenerating merges can be 

added to the system as the result of using heuristics, and (ii) the Merge_Loop_l 

terminates. 

(2) The Merge_Loop_l is sound and complete (Theorem 4.1). 

(3) Reduction rules employed in the Merge_Loop_2 preserves the tautologyhood. 

• 

Example 4.9 shows when and how Falsify_l is performed and Example 4.10 

demonstrates how heuristics for accelerating the Merge-Loop are selected and how 

various reductions can be made in order to quickly approach the goal. 

Example 4.9 Let T° = {q, r, s, t, u, v, w, x, y, z}, where q (r, s, t, u, v, w, x, 

y, z) is OlOOldO (dddddl1, OOldldd, IddOdOO, dlllOOl, lOdddlO, dOdlOld, llddddO, 

ddlddOd, 0001 (Ml, resp.). The sequence of merges derived from T0 is 70 • • • 

which represents IddddlO, Iddddld, ldldddd, dOldldd, lddOddO, c/1001c/0, ddldddl, 

QOdlddl, respectively in the same order. Table 11 shows the trace of Merge_Loop_2. 

When k = 8, no nonbackward merge is attainable for generating a new merge. The 

procedure now calls Falsify_1 to find a counterexample for the set T8. Falsify_1 returns 

a minterm t after making five assignments: t[2] = 1, f[6] = 1, f[7] = 0, f[l] = 0, 

f[3] = 1. • 

Example 4.10 Let T0 = {o, p, q, r, s, t, u, v, w, x, y, z}, where o (p, q, r, s, 
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k pA: lk Heuristics Used Reductions 

0 {q,r,s,t,u,v, w, x, y, z} {?;, x} i~> 7 0 H 4 v.CV 

1 {q,r,s,t,u,w,x,y,z, 70} { T ° , 7*} ^ T 1 H 3 , H 4 , H 5 7 ° : C V 

2 {q,r,s,t,u,w,x,y,z,~f1} { T 1 , 2 / } ^ T 2 H 3 , H 5 , H 6 0 

3 {q,r,s,t,u,w,x,y,z,yl,y2} { 7 2 , s } 7 3 H 4 s : C V 

4 {q, r , t, u, w, x, y, z, 7 1 , y2,73} { T 1 ^ } ^ 7 4 H 4 t : C V , 

7 2 : N M 

5 {q,r,u,w,x,y,z,y1,y:i,<y4} { 7 4 , g } h * 7 5 H 3 , H 4 q: C V 

6 {r, u, w,x,y, z, 7 1 , 7 3 , f4,75} { r , 2 / } ^ 7 6 H 5 0 

7 {r , u, w, x, y, z, 7 1 , j3, f4,7s, 7 s } { 7 6 , ^ } 7 7 H 4 z : C V 

8 { r , u,w,x, y, z, 7 1 , 7 3 , 7 4 , 7 s , 7 s , 7 7 } 

CV: covered term reduction, NM: nonmerge reduction 

Table 11: Trace of the Merge_Loop_2 for Example 4.9 

t, u, v, w, X, y, z) is dldlO (OlOdl, Qddld, lOddl, d0\0d, l l ldO, ddOld, dOddO, 0<M)1, 

c?100J, dlldl, OdlOO, resp.). The sequence of merges derived from T0 is 70 • • • 714 , 

which represents dddlO, OdldO, dlldO, dlldd, ddlOd, dldOd, lOddd, Odddl, Odldd, 

dldld, dlddd, ddddO, 0dddd , dOddd, ddddd, respectively in the same order. Table 12 

shows the trace of Merge_Loop_2 on T0, illustrating how cr5 can be reached. • 

In summary, the major improvements made in the Merge_Loop_2 are 

• The addition of reduction rules in order to reduce the search space. 

• The implementation of heuristics for speed-up of the merge process. 

• The implementation of the falsification procedures for seemingly nontautolog-
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ical expressions. 

4.6 Algorithm Cover-Merge 

In this section, we present the top level algorithm Cover-Merge, which calls the 

Algorithm Cover to test whether or not a PLA (f> covers a term (3 of the other PLA. We 

first show how the Algorithm Cover works and then provide a proof that establishes 

the relationship between cover testing and tautology testing. Next, we describe the 

Algorithm Cover-Merge which basically implements the divide-and-conquer method, 

described in Theorem 3.1. 

Algorithm Cover; 

Input: a PLA 4> and a term /3. 

Output: returns 'Yes'if 4> covers 0. 'No', otherwise. 

Procedure: 

PI. Let To be the set of all terms of (j). 

if any term of To covers /?, then return 'Fes'; 

Let Ti be {a | a € r 0 , a is not disjoint with j3}. 

L e t r = r ! \ 

P2. Call the Merge-Loop to test the tautologyhood of T. 

if r is found to be a tautology, 

then return 'Fes'; 

else return Wo'; 

end.procedure; 

Theorem 4.4 (The Algorithm Cover) The Algorithm Cover returns 

'Fes'iff 13 ec <{>. 

Proof: The proof of P2 is shown in Theorem 4.3. It is sufficient to prove that 
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Gc r 0 iff <Jb €c r , where b is the number of cTs in /?. 

Part A: Suppose (3 6C T0. Then, (3 ec Fu directly from Theorem 3.3 and Obser-

vation 3.3. Then, crb e c T, justified by the projection reduction (Theorem 3.4). 

Part B: Conversely, suppose crb e
c T. Let $ = p~n\\f3n and f x = { a ^ l K , 

•••' amnHam} according to the definition of p - n , 0 n , a ~ n and a n from projection 

operation (Definition 3.4), where r \ = and 0U = <rb (x\\y denotes the 

concatenation of two strings x and y). Recall that each term a € I \ is not disjoint 

with 0. Then, 

(1) for each position i, oc[i\ and Q[i] are not complementary, and 

(2) for each position i, (3~n[i] ^ d, by the definition of f3~u. 

From l̂ l) and (2), there are only two cases to be considered: 

. 0-n[j] = a - n ^ = o o r L 

• {3~n[i] = 0 or 1, and = d. 

Then, it follows that f3~n e c a~ n . That is, (3~n e c aj~n, • • •, p~n e c a~n. Then, 

clearly, {^-n | |o;n, • . . , ^ _ n | |o ;^} covers /?_n | |/3n, which implies that, 

{ « r n II a:", lie*"} covers /?~n||/?n. So, /5 €c I \ . Hence, /3 e c IV There-

fore, /? (Ec To because To is a superset of Tj. • 

The Algorithm Cover-Merge is the top level equivalence checker realizing the 

divide-and-conquer strategy of Theorem 3.1. 

Algorithm Cover-Merge; 

Input: two PLAs fa and fa. 

Output: returns 'Yes'if <j) = fa. 'No', otherwise. 

Procedure: 

for each a £ fa, 

Call Algorithm Cover to test whether a <EC fa. 



81 

if a <j>2, then return Wo'; 

end.for; 

for each (3 £ fa, 

Call Algorithm Cover to test whether (3 Ec 4>\-

if (3 <f>i, then return Wo'; 

end.for; 

return 'Yes) 

end.procedure; 

Theorem 4.5 (The Cover-Merge Algorithm) The Algorithm Cover-

Merge returns 'Yes'iff <t>i = <f>2-

Proof: Directly from Theorems 4.4 and 3.1. • 
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k Tk jk Heuristics Reductions 

0 {o,p,q,r,s,t,u,v,w,x,y,z} {o,v} >-+ 7 0 H 4 , H 5 0: C V 

1 {p,q,r,s,t,u,v,w,x,y,z, 70} ( 7 V ) - 7 1 H 3 0 : C V 

2 { p , q, r , s, t , u, v, w, x , y, 7 0 , 7 1 } { 7 ! ^ } 7 2 H 3 t: C V 

3 { p , g , r , s , u , u , w , a; , 2/, 7 0 , 7 1 , 7 2 } { 7 2 , 2 / } ~ 7 3 H 3 , H 2 V, 7 2 ; C V 

4 { p , r , s , u, v, w , Z , 7 0 , 7 1 , 7 3 } { 7 3 ^ } ^ 7 4 H 3 , H 5 s : C V 

5 { p , q, r , u , v , w , x, 7 0 , 7 1 , 7 3 , 7 4 } { 7 4 , X } H-> 7 5 H 3 , H 4 x : C V 

6 { p , g , r , u, v, w, 7 0 , 7 1 , 7 3 , -y4,75} { r , t ?} h-> 7 6 H 4 , H 5 r : C V 

7 { P , v, w , 7 0 , 7 1 , 7 3 , 7 4 , 7 s , 7 6 } { t f , ™ } ^ 7 7 H 4 , H 5 p , w : C V 

8 {<2S t>, 7 ° , 7 1 , 7 3 , 7 4 , 7 5 > 7 6 , 7 7 } { 7 ? , 7 1 } ^ 7 8 H 3 7 X : C V 

9 , u , v, 7 0 , 7 3 , 7 4 , 7 5 , 7 6 , 7 7 , 7 s } { 7
3 , - U } 7

9 H 5 0 

1 0 { g , u, v, 7 0 , 7 3 , 7 4 , 7 5 , 7 6 , 7 7 , 7
8 , T

9 } { 7 9 , 7 5 } ^ 7 1 0 H 3 , H 2 7 3 , 7 5 , 7 9 : C V 

1 1 { q , u , w , 7 0 , 7 4 , 7 6 , 7 7 , 7 s , 7 1 0 } { 7 1 0 , v} i—• 7 1 1 H I v , 7 ° : C V 

1 2 { ? > 7 4 » 7 6 5 1 7 1 l8i 7 1 0 > 7 1 1 } {711 ,77} ^ 712 
H I , H 3 

S 
g 

00 ^ 
2"

 
s 

*- 
£r 

1 3 { 7 6 , 7 l ° , 7 1 2 } ( 7 1 2 , 7 6 } - 7 1 3 H I 7 6 : C V , 

7 1 2 : N E 

1 4 { 7 1 0 , 7 1 3 } { 7 1 3 , 7 1 0 } - 7 1 4 H I 7 1 0 , 7 l 3 : C V 

1 5 0 

CV: covered term reduction, NM: nonmerge reduction, NE: nonessential reduction 

Table 12: Trace of the Merge_Loop_2 for Example 4.10 



CHAPTER 5 

RANDOM MODELS 

Many approaches to solve satisfiability-related problems have been made to 

achieve good performances on specific problem domains. Using domain-specific knowl-

edges and built-in information, one can devise an efficient algorithm under particular 

conditions. (An example for a circuit testing problem: some types of circuits might 

have the symmetric property which can be found very effective for designing a testing 

algorithm.) Although algorithms like that could run well on special types of data 

sets which contain domain-specific knowledge, it may not be the case that the same 

algorithms could run also well on other types of data sets. So, parameterized random 

sets of problems have gained much attention from research people on this area in 

order to give an unbiased way of testing algorithms [24, 25, 50, 109]. 

Thus, randomized problem instances do not include any built-in knowledge on 

specific domain of problems. But this does not mean that devising an algorithm 

which embodies domain-specific knowledge for a particular type of problems is not 

important. The paradigm of this is that algorithms that do well on random problems 

would do also well on specific problems too [23]. 

There are various types of random satisfiability models that have been proposed 

by researchers. Even though there is no standard random model, we do have the 

popular model which has been used most prevalently by researchers. There is no 

name for the model, but most people call it the popular model [24, 25, 109, 55]. Let 

us first define the control parameters: 

• t : the number of clauses to be generated. 
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• v : the number of variables. 

• p : the probability that each literal appears in a clause. 

The popular model assumes that each literal has the same probability p to be 

selected for a clause and each clause is independently generated. With this scheme, a 

clause can contain both a variable x and its negation, which becomes a tautological 

clause. In that case, the truth value of such clause is true regardless of truth values 

of other variables that are in the clause. Also, it is possible that a clause can contain 

no literals at all (i.e. a null clause). 

In the following sections, we first describe how random PLAs can be generated 

using the popular model. To obtain two equivalent random PLAs, we introduce a set 

of transformation rules which derives a logically equivalent set of terms from a random 

PLA. Next, a probabilistic analysis for random PLAs is stated and experimental 

results for various parametric values show the probabilistic properties of random 

PLAs. We further study the properties of random PLAs consisting only of active 

terms. 

5.1 Constructing Random PLAs 

We use the popular model to define our random PLAs so that each term is ran-

domly generated according to the paradigm of the popular model. Thus, a random 

PLA can be generated with parameters: 

• v : the number of variables. 

• t : the number of terms. 

• p : the probability that each literal appears in a term. 

A term is generated randomly by independently selecting the 2v literals with proba-

bility p. A random PLA is generated randomly by independently forming t terms. 
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Because of the way we build random PLAs, we can expect the following phe-

nomena: 

• Some terms may be empty (null terms). 

• Some terms may consist of both Xi and Xi (contradictory, treated as false). 

• Some terms may be duplicates of others. 

• Some variables may not occur at all in a random PLA. 

The probability that each of these occurs depends on the values of the parameters, 

which will be shown in next section. However, we need to remove the first two oc-

currences from the resulting PLAs because they cannot be considered as meaningful 

terms for our purpose. 

A pair of random PLAs can be generated in two different modes for the equiva-

lence problem: 

(1) Mode 1 : Two random PLAs are generated independently. 

(2) Mode 2 : A PLA, < l̂7 is generated randomly and then another PLA, </>2, is 

derived from <j>i using transformation rules which preserve the logical equivalence. 

This method guarantees to produce two equivalent random PLAs. 

The first one is straightforward but the second mode depends on the transfor-

mation rules which need to be explained in detail. The overall objective of the second 

mode is to obtain a PLA <j>2 which is quite different from <f> 1 in terms of its syntactic 

structures, but nevertheless preserves the logical equivalence. 

First, we propose the transformation rules and define their functionalities. Let 

4> 1 be a random PLA. Define the following transformation rules: 

1. Combine: The combine operation is to replace two complementary terms 

oc, /? € <f>\ by 7, where 7 is the merge of a and /?. 

2. Divide: The divide operation is the reverse of combine. If a variable x does 
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not occur in a term a E. <f> 1, then replace a by a • x + a • x. 

3. Remove-Intersection: This function removes the intersection of two terms 

a,/? 6 ^i- A subexpression a+ /9 of 4>i is replaced by at + (f3Q(ar\0)) or aQ(aC\(3) + 

For example, xix2x5xe + X2X4X5 is replaced by xxx^x^x^ + X1X2X4X5 + X1X2X4X5XQ 

or X\X2X^X^XQ + X2X4X5. 

The divide operation is always possible on any term except a minterm and it 

should take a term of 4> 1 as its argument. The operation first selects a term randomly 

and then a variable to be divided randomly. However, this transformation will be used 

only when other rules are not applicable because otherwise <j>2 would show a structural 

resemblance to (j>\ and equivalence testing can be trivially done by performing a 

sequence of simple merges. To mitigate that problem, we test each of the divided 

terms for further transformations except dividing. 

The probability of applying combine rule is relatively low in comparison with that 

of remove-intersection. Special care must be taken not to combine two terms which 

have been previously divided and vice versa. To do that, a special data structure is 

maintained to keep track of the changes made by the divide or combine rule. The 

chance of getting remove-intersection rule depends on the number of nondisjoint pairs 

of <j) 1 which might be dynamically changed by applying other rules. 

The combine and remove-intersection operations ought to take at least a term 

of <j> 1 or a divided term as its argument. The transformation process ends after each 

term of <j>\ has been replaced. Example 5.1 shows how the transformation rules are 

used to derive a new PLA from an existing one. 

Example 5.1 Let (j>i = u + v + w + x + y + z, where u (u, w, x, y, z) is 

OIgWI (dOdld, ddlld, c?01c?l, ldldd, IdOlO, respectively). Table 13 shows that after 

8 transformations we obtain a new set of terms <f>2 from 4>\\ 
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4>2 = in + r2 + r3 + r4 + re + r7 + r8 + r13 + r J 4 + r15), 

where r j (r2, r$, r4, r6, r7, r§, 7"i3iri45
ri5) is IdlQd ( l r f l l l , OOdld, 1011c£, 001 o?l, 10111, 

OdllO, lldlO, OldOl, Oldll). • 

The resulting PLA tends to be bigger than the original because of the transforma-

tion rules. The actual number of terms of <f>2 depends on the types of transformation 

rules used, the order of the rules applied and their arguments too. 

5.2 Probabilistic Properties of Random PLAs 

In this section, we study various probabilistic properties of the random model. 

Let x = x\ • • • X{ • • • xv be a term. Let P(:rt- = 1) and P(xi = 0) be the probability 

that Xi = 1 and Xi = 0, respectively. 

Pl. P{xi = 1) = P(Xi = 0) = p. 

The probability that both Xi and occur is: 

P2. P(xi = l,a;; = 0) = p2. 

The probability that neither Xi nor x; occur is: 

P3. -iP(xi = 1, X{ = 0) = 1 — jo2. 

The probability that a term is not contradictory is: 

P4- P(cont) = (1 — p2)v. 

The probability that a term is contradictory : 

P5. P(cont) = 1 — (1 —p2)v. 

The probability that Xi does not occur is: 

P6. P(xi = d) = ->P(xi = 1 )k~^P(xi = 0) = (1 — p)2. 

The probability that a term is null is: 

P7. P(null) = (1 — p)2v. 

The probability that a term is useless is: 



P8. P(useless) = P(cont) or P(null) = 1 — (1— p2)" + (l — p)2v. 

The probability that a term is active is: 

P9. P(active) — 1 — P(useless) = (1 — p2)v — (1 — p)2v. 

Let L be the number of literals of a term and W be the number of active terms of a 

random PL A. 

The expected number of literals of a term is: 

P10. E(L) = 2 pv. 

The expected number of active terms of a random PLA is: 

PH. E(W) = t[(l - p2f - - pf% 

Define density as D = ^ for a term. The expected density of a random PLA is: 

PIS. E(D) = 

Table 14 shows some of the probabilistic results for v = 10,30,50 and p = 0.001 

to 0.5. We observe the following results: 

(1) when p > 0.4, it is hardly likely to obtain a term without a contradiction 

except for small v. 

(2) when p > 0.3 and v is large, it will be hard to obtain an active term. 

(3) when p < 0.001, almost all terms will be null. 

(4) when p < 0.01, the expected number of literals in a term is too small (less 

than two). 

So, for a practical purpose, a feasible range of p would be [0.1,0.2]. Also, we point out 

that E(L) gets close to v as p approaches 0.5. This happens because contradictory 

terms are not excluded from random PLAs. Experimental results (Table 15) show a 

close resemblance to Table 14. 
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5.2.1 Probabilistic Analysis of Active Terms 

Because of the way we construct random PLAs using the popular model, useless 

terms such as contradictory and null terms may be included. To get a more meaningful 

random model, it is necessary to remove any nonsensical terms from a random PLA 

so that only active terms should remain. 

Let x and y be two active terms. Then, X{ and can be one of three values — 

0,1 and d with the following probabilities: 

P(xi = 0) = P(x{ = 1) = • 

P(xi = d) = 

The probability that Xi and j/t- are disjoint is: 

PIS. P{xi,yi disjoint) = P(xi = 0,tn = 1) + P{xi = l,y< = 0) = 2(j^)2. 

The expected number of literals in an active term x is: 

PH. E(L) = t, - vP( Xi = d) = v- v 

The probability that two terms x,y are shared is: 

P15. P(shared) = [1 — P(xi,yi:disjoint)]v = [1 — )2]v-

The probability that two terms x, y are disjoint is: 

P16. P(disjoint) = 1 — P(shared) = 1 — [1 — 2( )2]^-

The probability that two terms x,y are mergeable is: 

PI7. P(merge) = vP{x^yi:disjoint) -iP(xi,yi:disjoint)v~l = 2u(yq^2)2(l — 

2 ( T ^ ) 2 r x -

Example 5.2 Let x, y be any two active terms. Then, P(shared) = 0.267 

(when, v = 30,p = 0.15) and 0.108 (when v = 50,p = 0.15). • 

Table 16 shows the probabilistic results for W(number of active terms), ^(number 
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of literals in a term), P(disjoint) and P(merge). Table 17 shows the results from ran-

dom PL As. We observe that the probabilistic analysis and the actual results exhibit 

a close resemblance. 

From the the statistics gathered, we observe the following facts: 

1. Let Sp = (1 — p2)v — (1 — p)2v (P9). Then, obviously, 6P > 0 for 0 < p < 1. 

The popular model always produce active terms for 0 < p < 1 and v > 0. However, 

It is possible that Sp can be so small that t should be very big to obtain an active 

term, which is considered to be impractical in most cases. 

2. At p = 0.1, W is maximum for v < 50 and decreases sharply as p deviates 

from 0.1. For 50 < v < 100, W is maximized at p = 0.01 because £o.oi > ^o.i-

3. For the same value of p (> 0.1), W decreases as v increases. For p < 0.01 

and v < 100, W increases as v increases because L < 2. 

4. As p approaches 0.5, W quickly diminishes to zero for v > 10. 

5. The larger the value of v is, the faster W approaches zero. For example, if 

v > 50, p is expected to be no greater than 0.2 to obtain any active terms. 

6. For small v (for instance, v < 10), it is always possible for p < 0.5 that active 

terms can be obtained. 

7. The value of L increases as the probability p grows for p < 0.5 until W = 0. 

Table 18 and 19 shows the behavior of W and L, respectively, for a wider range of v 

(10 < v < 800), based on the empirical results collected from the random construc-

tion of PLAs. 

8. Maximum density for different values of v and p decreases as v grows. For 

example, D = 0.68 (0.58,0.34) when v = 10 (20,30, respectively). In other words, 

the random PLAs tend to be sparser as v gets bigger, which is shown in Table 20 

(Density). 
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9. The range of p for W > 0 shrinks quickly for v < 50 and then gets narrower 

slowly as v increases, which is shown in Table 20 (Upper Bound). 

10. P(disjoint) increases as p increases until W = 0. However, P(merge) de-

creases sharply as p increases after p shows peak values. This is because the number 

of complementary positions of two active terms would increase as p increases. 

11. If active terms exist (W > 2), almost always P(merge) > 0. 

12. Maximum value of P(merge) decreases as v increases. 

We have seen that random PL As using the popular model have intrinsic prop-

erties determined by the setting of the control parameters. Even though random 

models may not exhibit any particular structural characteristics such as symmetry 

and'hierarchy, it certainly convey some probabilistic properties acquired from control 

parameters for constructing random PLAs. Given the values of the parameters, one 

could expect the type of random PLAs to be created. (For example, the expected 

number of active terms, the density, etc.) 

Therefore, we should not restrict the parameters to a certain range of values 

because, if we do, random PLAs created under a restricted range might represent 

a particular type of PLAs having similar probabilistic properties. By appropriately 

setting the control parameters, we might be able to see different types of random 

PLAs. 
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Iter. <t>2 Transformations Rules Used 

1 u+v+w+x+y+z replace w + y by w + rx + r2 

ri = lo?10d, r2 = l d l l l 

R 

2 u + v + w-\-x + z + rx~\-r2 replace v + 2 by z + r3 + r4 + r$ 

r3 = OOdld, r4 = 1011c?, 

r s = 100<fl 

R 

3 u + w + x + z + ri + r2 + r3 

+r4 + r5 

replace x + r\ by r\ + r§ + r7 

r6 = 001dl, r7 = 10111 

R 

4 u + w + z + r-i + r2 + r3 + r4 

+r 5 + r6 + r7 

replace w + r4 by r4 + r8 + r9 

r8 = OdllO, r9 = lldlO 

R 

5 u + z + r\ + r2 + r3 + r4 + r5 

+re + r7 + r8 + r9 

replace 2 by rio + rn 

r10 = 10010, r n = 11010 

D 

6 u + ri + r2 + r3 + r4 + r5 + r6 

+ r 7 + r8 + r9 + rio + r xi 

replace r5 + r10 by r12 

r12 = 1001c? 

C 

7 u + rx + r2 + r3 + r4 + r6 + r7 

+r 8 + r9 + r n + n 2 

replace r9 + r n by r1 3 

r i 3 = lldlO 

C 

8 u + ri + r2 + r3 + r4 + r6 + r7 

+r 8 + 1̂2 + r13 

replace u by ri4 + r i 5 

r14 = 01d01, r15 = 01dll 

D 

9 r i + r2 + + r4 + re + r7 + r8 

+ru + f 13 + r14 + r15 

R: remove-intersection, C: combine, D: divide 

Table 13: Generating an Equivalent PLA for Example 5.1 
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Probabilistic Results for v = 10,30,50 and t = 1000 

p 
P(cont) (%) P(null) (%) P(act) (%) E(L) 

p 
10 30 50 10 30 50 10 30 50 10 30 50 

0.001 0.0 0.0 0.0 98.0 94.1 90.4 1.9 5.8 9.5 0.0 0.0 0.1 

0.01 0.1 0.3 0.4 81.7 54.7 36.6 18.1 44.9 62.8 0.2 0.6 1.0 

0.1 9.5 26.0 39.4 12.1 0.1 0.0 78.2 73.7 60.4 2.0 6.0 10.0 

0.15 20.3 49.4 67.9 3.8 0.0 0.0 75.7 50.5 32.0 3.0 9.0 15.0 

0.2 33.5 70.6 87.0 1.1 0.0 0.0 65.3 29.3 12.9 4.0 12.0 20.0 

0.3 61.0 94.0 99.1 0.0 0.0 0.0 38.8 5.9 0.8 6.0 18.0 30.0 

0.4 82.5 99.4 99.9 0.0 0.0 0.0 17.4 0.5 0.0 8.0 24.0 40.0 

0.5 94.3 99.9 100.0 0.0 0.0 0.0 5.6 0.0 0.0 10.0 30.0 50.0 

P(cont) : probability that a term is contradictory. 

P(null) ; probability that a term is null. 

P(act) : probability that a term is active. 

E(L) ; expected number of literals in a term. 

Table 14: Probabilistic Analysis of Random PLAs 
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Empirical Results for v = 10,30,50 and t = 1000 

p 
Contradictory (%) Null (%) Active (%) L 

p 
10 30 50 10 30 50 10 30 50 10 30 50 

0.001 0.0 0.0 0.0 97.8 94.8 92.0 2.2 5.2 8.0 1.0 1.0 1.1 

0.01 0.0 0.1 0.5 84.0 60.2 39.7 16.0 39.7 60.2 1.1 1.2 1.5 

0.1 9.1 27.3 38.9 13.2 0.3 0.0 79.2 72.4 61.1 2.2 5.3 9.1 

0.15 19.4 48.8 67.4 6.2 0.1 0.0 76.0 51.1 32.6 2.8 7.9 13.2 

0.2 32.2 69.6 86.8 1.9 0.0 0.0 66.8 30.1 13.2 3.4 10.2 16.6 

0.3 59.9 94.1 99.1 0.7 0.0 0.0 40.1 5.9 0.9 4.7 13.5 24.2 

0.4 81.0 99.8 99.8 0.1 0.0 0.0 19.0 0.2 0.2 5.9 18.0 31.0 

0.5 95.4 99.9 100.0 0.0 0.0 0.0 4.6 0.1 0.0 6.5 25.0 42.7 

Contradictory (%) : percentage of contradictory terms. 

Null (%) : percentage of null terms. 

Active (%) : percentage of active terms. 

L : number of literals in a term. 

Table 15: Experimental Results for Random PLAs 
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Probabilistic Results for v • = 10,30,50 and t = 1000 

E(W) E(L) P(disjoint) (%) P(merge ) 
p 

10 30 50 10 30 50 10 30 50 10 30 50 

0.001 20 58 95 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 

0.01 181 450 629 0.2 0.6 1.0 0.2 0.6 1.0 0.2 0.6 1.0 

0.1 783 738 605 2.0 5.9 9.9 18.0 44.8 62.8 16.4 33.1 37.2 

0.15 758 505 321 2.9 

00 

00 14.7 35.6 73.3 88.9 29.0 36.1 24.9 

0.2 653 294 130 3.8 11.5 19.2 53.6 90.0 97.9 37.0 23.9 8.6 

0.3 389 59 9 5.5 16.5 27.5 80.7 99.3 100.0 34.5 3.9 0.2 

0.4 175 5 5 6.9 20.7 20.7 93.4 100.0 100.0 20.6 0.3 0.3 

0.5 56 0 0 8.0 0.0 0.0 97.9 0.0 0.0 9.9 0.0 0.0 

E(W) : expected number of active terms. 

E(L) : expected number of literals in a term. 

P(disjoint) : probability that a pair of active terms is disjoint. 

P(merge) : probability that two active terms are mergeable. 

Table 16: Probabilistic Analysis of Active Terms 
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Empirical Results for v = 10,30,50 and t = 1000 

W L P(disjoint) (%) P(merge ) 
p 

10 30 50 10 30 50 10 30 50 10 30 50 

0.001 15 47 92 1.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 

0.01 181 406 582 1.0 1.3 1.6 5.3 2.6 2.4 5.3 2.6 2.4 

0-.1 795 735 588 2.1 5.5 8.9 21.0 39.9 55.1 19.5 31.1 36.2 

0.15 758 497 297 2.6 7.8 13.0 30.3 64.4 82.0 26.1 37.1 31.0 

0.2 648 299 120 3.4 9.9 17.1 44.5 81.8 95.3 34.1 32.2 15.6 

0.3 396 58 8 4.7 13.7 22.8 68.7 96.2 100.0 38.9 12.4 3.6 

0.4 178 8 0 5.8 17.4 0.0 83.5 100.0 0.0 32.4 0.0 0.0 

0.5 71 0 0 6.8 0.0 0.0 92.9 0.0 0.0 21.1 0.0 0.0 

W : number of active terras. 

L : number of literals in a term. 

P(disjoint) : probability that a pair of active terms is disjoint. 

P(merge) : probability that two active terms are mergeable. 

Table 17: Experimental Results for Active Terms 
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The values of W for v = [10,800] and t = 1000 

p 
W 

p 
10 50 100 200 300 400 500 600 700 800 

0.001 15 92 185 351 466 545 650 709 737 798 

0.01 181 582 822 955 977 977 966 952 950 950 

0.1 795 588 343 131 45 16 2 1 0 0 

0.15 758 297 91 12 3 0 0 0 0 0 

0.2 648 120 13 0 0 0 0 0 0 0 

0.3 396 8 0 0 0 0 0 0 0 0 

0.4 178 0 0 0 0 0 0 0 0 0 

0.5 71 0 0 0 0 0 0 0 0 0 

W : number of active terms. 

Table 18: Empirical Results for W 
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The values of L for v = [10,800] and t = 1000 

L 
p 

10 50 100 200 300 400 500 600 700 800 

0.001 1.0 1.0 1.1 1.2 1.3 1.4 1.6 1.8 1.8 2.0 

0.01 1.0 1.6 2.2 3.7 5.4 7.1 8.8 10.7 12.5 14.5 

0.1 2.1 8.9 18.0 36.8 54.8 70.6 93.0 0.0 0.0 0.0 

0.15 2.6 13.0 25.8 52.8 81.0 0.0 0.0 0.0 0.0 0.0 

0.2 3.3 17.1 33.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

0.3 4.7 23.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

0.4 5.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

0.5 6.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

L : average number of literals of a term. 

Table 19: Empirical Results for L 

Results 
V 

Results 
10 50 100 200 300 400 500 600 700 800 

(1) Density (%) 76.0 47.8 33.5 26.4 27.0 17.6 18.6 1.7 1.7 1.8 

(2) Upper Bound for p 0.6 0.3 0.2 0.15 0.15 0.1 0.1 0.01 0.01 0.01 

Density : largest ^ for different values of p. 

Upper Bound for p : Largest possible value of p satisfying W > 0 

Table 20: Empirical Results for (1) Density and (2) Upper Bound for p 



CHAPTER 6 

EXPERIMENTAL RESULTS 

In this chapter, we discuss the experimental results for the equivalence problem. 

A program was written in C on a Sequent Symmetry, implementing the algorithms and 

heuristics presented in the previous chapters. We present the results on the standard 

benchmark problems as well as on various types of PLAs constructed randomly as 

described in Chapter 5. Algorithms and heuristics implemented in the program will 

be discussed and analyzed as to how particular techniques are effectively used in the 

program. Also, the results are compared with the most widely used Boolean function 

manipulator called Binary Decision Diagrams or BDDs (see Section 2.4). 

It is not easy to accurately compare the performance of verification methods. 

However, CPU time required for verification is generally accepted as a good indicator 

of performance because it would show the asymptotic behavior of running time as 

the size of input grows. We measure CPU times for both programs (ours and BDD) 

in 10 milliseconds on the same Sequent machine. The results show that the Cover-

Merge Algorithm combining with heuristics works very efficiently for most cases in 

comparison with BDD, especially for big PLAs where BDD shows no hope of com-

pleting the verification because of memory shortage caused by its memory greedy 

representational scheme. 

We prepare four separate programs (CV-A, CV-B, CV-C and CV-D) each of 

which implements a different set of techniques such that comparison of their perfor-

mances can be easily made. All four programs implement the same base algorithms: 

the Algorithm Cover-Merge, the Algorithm Cover and the Merge-Loop. However, 
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they use different techniques in different places and in different ways. Most heuristics 

are used for simplification of input terms at each iteration of the Merge-Loop, and 

some are for cutting down the length of proofs. These heuristics are incorporated in 

various stages of the programs as follows: 

1. Before the Algorithm Cover-Merge. 

2. Before the Merge-Loop. 

3. Inside the Merge-Loop. 

Table 21 shows when and where each of the techniques is used for the programs. 

The program CV-A is the simplest version which implements the base algorithms 

with a few essential simplification rules. The program CV-B is essentially same as 

CV-A except two more reduction rules are added. The program CV-C uses a few more 

heuristics in addition to those used in CV-B. Since the heuristics used in CV-C are 

not prioritized, it is possible that a heuristic can be fired even though more promising 

heuristics are available. The program CV-D is the final version of the Algorithm 

Cover-Merge, which implements techniques mentioned in the previous chapters. In 

addition to a few more heuristics added to CV-C, the program CV-D improves its 

performance significantly by employing the prioritized heuristics and the falsification 

heuristics. 

Benchmark Results 

We ran the program CV-D on the benchmarks in the PLASCO1 group of IFIP. 

The results show that the program has successfully verified the benchmarks: 

1. The outputs cst2 and casl have non-equivalent expressions in the werner.be. 

2. The outputs h, j, k, m and n are non-equivalent in d3.be. 

All the benchmarks have been run in less than a few seconds of CPU of the 

1 PLASCO consists of a group of standard benchmark problems for equivalence testing 
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same Sequent computer. Table 22 shows the comparison of running time of BDD and 

CV-D. Both programs demonstrate practical performances. However, the benchmark 

problems are not big enough to demonstrate the true capacity of algorithms. 

Results on Random PL As 

Table 23 and 24 show the comparison of the programs run on different sizes of 

random PLAs in two different modes stated in Chapter 5. 

We observe the following results based on the above experiments: 

1. Both CV-C and CV-D outperform BDD. 

2. CV-D shows the best performance and it does not indicate any steep rise in 

execution time in the range v < 50 and it is fairly stabilized within the range. 

3. CV-A and CV-B show almost same performance on the first mode and CV-A 

outperforms CV-B on the second mode of experiments, which suggests that the 

two rules added to CV-A only creates computational overheads to CV-B. How-

ever, those rules are often found to be effective in simplification for many cases 

when they work in conjunction with other rules and heuristics. 

4. The program CV-C outperforms the previous programs for all cases except the 

case where v = 20 on the second mode (see Table 24). This is because simplifi-

cation rules and heuristics are extensively used at each step of the Merge-Loop 

and big simplifications occur because of the techniques used. 

CV-D improves its performance considerably by employing two important techniques: 

the prioritization of heuristics and the falsification procedures. The former repeat-

edly seeks in depth-first the most favorable merge utilizing previous history so that 

big simplifications take place as many as possible. Speed-ups of the merge process 

have been achieved because of that. The latter works efficiently in detecting the 

nontautologyhood of a PLA and in disproving it in most cases. 
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Experiments on different values of the control parameters might show differ-

ent performances. CV-D will eventually show an exponential running time with a 

wider range of v, t, and different values of p because of the NP-completeness of the 

equivalence problem. 
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Techniques Used CV-A CV-B cv-c CV-D 

1. Before the Cover-Merge 

covered term reduction V y/ V y j 

simple-merge reduction y j y j V y j 

unit-merge reduction y j V y j 

2. Before the Merge-Loop 

projection reduction y j y j V y/ 

3. Inside the Merge-Loop 

covered term reduction y j y j V y j 

simple-merge reduction V y/ 

nonessential term reduction V y/ 

nonmerge reduction y j V y j 

prioritized heuristics J 

heuristic HI V y/ 

heuristic H2 y j y j 

heuristic H3 V y j 

heuristic H4 V 

heuristic H5 V 

heuristic H6 V V 

heuristic H7 y j 

falsification heuristics y j 

Heuristics HI through rI7 can be found in Section 4-2. 

Table 21: Implementation of Algorithms and Heuristics 
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Benchmarks 
CPU Time 

Benchmarks 
BDD CV-D 

counter.be 7 7 

d3.be 93 31 

inl.be 1238 206 

hostintl.be 6 4 

mul.be 7 5 

pitch.be 335 52 

table.be 64 23 

werner.be 1 1 

Measured in 10 milliseconds 

Table 22: Equivalence Testing of Benchmark Problems: The outputs cst2 and casl 

have non-equivalent expressions in the werner.be. In d3.be, h, j, k, m and n are 

non-equivalent. 
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V 

CPU Time Measurements in 10 milliseconds 
V 

BDD CV-A CV-B cv-c CV-D 

10 104 8 65 1 3 

15 301 30 80 2 3 

20 1982 801 92 2 3 

25 36152 oo oo 2867 2693 

30 oo oo oo oo 3592 

35 oo oo oo oo 5024 

40 oo oo oo oo 4820 

45 oo oo oo oo 5839 

50 oo oo oo oo 7481 

Table 23: Equivalence Testing of Two Random PL As (Mode 1) : T = 2000, p = 

0.15. (Mode 1: two independently generated random PLAs, (see Section 5.1 for 

construction), T: total number of input terms, p: the probability that a literal appears 

in a term) 'oo' indicates that jobs are terminated manually after about six hours of 

execution on the Sequent. 

Note: BDD spends 1308.61 seconds for v = 30 and T = 1200, while CV-D takes 28.31 

seconds. 
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V 

CPU Time Measurements in 10 milliseconds 
V 

BDD CV-A CV-B CV-C CV-D 

10 191 143 74 21 7 

15 495 34 92 4 2 

20 2522 13524 146 1263 396 

25 44392 46478 oo 10408 9709 

30 oo oo oo 15551 10828 

35 oo oo oo 20241 7658 

40 oo oo oo 19053 9939 

45 oo oo oo 19714 8595 

50 oo oo oo 16554 8973 

Table 24: Equivalence Testing of Two Random PLAs (Mode 2) : T = 2000, p = 0.15. 

(Mode 2: two equivalent random PLAs (see Section 5.1 for construction), T: total 

number of input terms, p: the probability that a literal appears in a term) 'oo' 

indicates that jobs are terminated manually after about six hours of execution on the 

Sequent. 

Note: BDD spends 1217.87 seconds for v = 30 and T = 1600, while CV-D takes 72.77 

seconds. 



CHAPTER 7 

CONCLUSION 

In this dissertation, we have presented a new algorithm based on a divide-and-

conquer strategy using the concept of cover and a derivational method to solve the 

equivalence problem. We have proved the correctness of the algorithm and developed 

heuristics which have been implemented and tested successfully on a large scale of 

data. We have shown that it is an improvement over the state-of-the-art technology 

in this area in terms of performance. 

Any algorithm for solving this type of problem must incorporate a wide variety 

of simplification techniques, and perform simplifications as much as possible at every 

stage of the algorithm. Most big PL As require an enormous amount of space for 

representation regardless of representational methodologies, which indicates simpli-

fication is essential to the verification process. The algorithm Cover-Merge employs 

various types of simplification techniques as its essential part. A set of prioritized 

heuristics is employed to choose the most favorable heuristic which would most likely 

ensure more simplifications or shorter paths to a goal than any other choices. The 

falsification heuristics have been empirically found to be quite effective in detecting a 

nontautology and finding out a counterexample of it. Big speed-ups has been achieved 

by extensively using these heuristics. 

Good representational methods can express properties and characteristics of in-

put circuits in a succinct way and enable efficient logic function manipulations in 

many applications. However, experimental results show that the issue of simplifica-

tion is far more important than that of representation for solving this type of problem. 
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Although a simplified version may lose some of structural information inherent in orig-

inal circuits, simplification techniques must be incorporated into a verification process 

as an essential part so that combinatorial explosion would less likely occur. More re-

search on simplification techniques for an economical representation expressing as 

much structural information as possible would be anticipated in this area. 

The algorithm presented in this thesis is widely different from other methods 

popular on the subject. It is not clear how the algorithm can be combined with 

other methods such as BDDs. However, this algorithm can be used as an alternative 

approach where algorithms based on representational schemes such as BDDs expe-

rience difficulties in manipulating big PLAs. For future research, we would like to 

investigate the effectiveness of using Logic Programming to formalize simplification 

rules and heuristics for Boolean logic verification. 
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