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CHAFPTER 1

Introduction

1.1 Owerview

In 1989 Sarahon Shelah proved one of the most astounding results in set theory:
if 2%~ = %, for all m < w, then 2% < ¥,

The main idea of thiz thesiz wasz to “relativize” thiz proof to L[]]. Assuminga covering rezult
of Woodin which itzelf assumes the nonstationarsy ideal on wy iz w4 zaturated and a large
cardinal hypothesis, we show here that some regular cardinal « X, in L[B] collapses in 17
This gives a new relationship between L[R] and 7. The methods for this proof come mainly
from deseriptive set theory and Shelah’s theory of possible cofinalities of reduced products of
regular cardinals (often abbreviated “pef”). A highly recommended reference for deseriptive
zot theory iz [4]. Likewize, a good refersnce for pef is [Z]. The introduction inecludes a
tew well-known results in these fields, not a0 much ag a review, but more to introduce the
reader in a relatively gentle setting to methods which will be used later in more complicatad
contexta. These resultz also provide enough information to make the proofs in this theasis
reagonably self-contained.

Zhapter 2 gives a streamlined proof of a result in Shelah’s pef theory, For any set a of rae-
ular cardinals let J.,(a) = {# € a : for all ultrafilters D on a, & € D implies cof(J [ a/D) <
A} Fimstofall, J..(a) iz an ideal on a and consists of the sets which “foree” the cofinality of
[]a tobe <« A We prove that J_ . (a) iz generated from J_,(a) by adding a singleton. It is

+8 . ,
a|”" <« mina. There are quicker

gignificant to note that the only assumption in thiz proof iz |
proofs of this result assuming 26 « mina {see [5], for instance). Howewver, if we assume the
continuum iz small, then our main collapsing result in chapter 4 becomes towvial.

In chapter 3 we assume the axdom of determinacy and prove the strong partition relaticn
Kechriz [6] ,and 8. C Jackson [3]. The current proof is particularly straightforward and uses
only basie aset theory. The main new idea iz a coding of subasta of w, which iz facilitated by
inverting presging-down functiona.

In ¢hapter 4 we prowve the main result of the theaiz. The first step iz to show a polarzad

partition relation on w; length ssquences of reasonable cardinals and then show that if a



product of cardinals has the finite polarized partition relation, then the product (modulo
any nonprincipal measure) iz a regular cardinal. Next, we show the existence of a “c.ub.
cenarator” in the pef theory Assuming Woodin's covering result, thiz iz enough to show

gome regular cardinal < ¥, in L[R] collapses in 7.

12 Pasics of pef

In thiz zection we present some of the baszic notions of the pef theory, most important of
which iz a partial ordenng of reduced products of regular cardinals. Let o be a et of regular

cardinalz and J be an ideal on 2. Then we can compare any two functions in the product

[[a=ih a—=lJa:¥icah(d)ed} Forany f,g€]]a define

FErg = {dca flé)=qld)}e]
FErg <= fZsgr{ica fli)=gli)} g J
Ffarg = {dca f(&)=gdi} et

Clearly, f <, 9 == f%s ¢ = f =;q Bach f €]]a gives rse to an equivalence class
[Fle =17 €]]a:f =;s Frf =<; f} We will not distingnizh between a function and its
equivalence clase. The reduced product [[a/J = {[f]r . f €[] a} iz aleo partially ordered
by the partial order given abosee.

There are several terms dealing with sequences in reduced productz. We say (fo o = A)
in [ Ja/J is ncreasing if it iz increasing in the weak senwe, ie if o’ < @ < A, then for <7 fa
(Wote: in general, when we say a sequence iz increasing in any partial order, eg. Z, we
mean it iz weakly increasing.) The sequence (f, @ @ < A} iz pos#tively increasing if 2" < o
implies for 7 fo. The same sequence is strictly dncreasing if o < o implies for <s fo. Say
(fo o < A)is cofinal in [Ja/J if for all g € [Ja there exdsts & < A such that g < fa.
If A iz a regular cardinal and {f. : & < A) iz both strictly increasing and cofinal, we say
(fo < A iz a X soale If thereiza A zeale in [[afJ, wesay [ [a/J haz true cofinality A
and write tef(] [a/J) = A In this case cof(] [a/JS) = A for every ultrafilter D on a which is

We will use two different notions of upper bounds for subsete of [Ja/J. Bay g (not
necessarily in [ [a) iz a least upper bound of (fo o < A ifforall @ < A, fo <7 g and if
h Zs g, then A iz not an upper bound of {f, : @ < A), Le. there exdats @ < A such that
{6 €a: f,[8)»h(d)} ¢ J Say gis an exact upper bound of (f, o < A} if g iz an upper
bound of {f, : @ < A) and for any A <, g there existe & < A such that A <, f,. Clearly, ¢



being an exact upper bound implies that g iz a least upper bound. Conditions under which
the conwverse iz true will be given later (zee lemma 2.1.4).

If J iz an ideal on a, then J[4 iz the ideal gemerated by adding the singleton & to J,
namely {a"U& : & C &, a' € J}. Conversely, J [ iz the restriction of the ideal J to &,
Le. JIé=Ja—8. I {fs: o €8} iesa collection of functions in [ [ a, then pteup, .o fo 12
the function whose value iz sup, o fa(d) for each § € a. The ideal which we will consider
most often iz the collection of subsets of @ which force cof(a) = A Specifically, we define
Jonla) = {b C a: for every ultrafilter D on a, if & € D, then cof ([ a/ D) < A}, Theideal of
nonetationary subsete Ty of a reenlar cardinal will alzo be used repeatedly.

If & € ON, & C ON, and there exists § € ' with o < F, then o™ ia the least ordinal
in & greater than . Let plz) denote the power zet of x and pes(z) = {8 STz k| < 5}
Lastly, let 8% = {o < A cofa = s}

The rest of the lemmas in thiz section come directly from [2] and are provided for the
convenience of the reader. Lemmas 1.2.1 and 125 in particular will be uzed repeatedly.

Assume throughout that |a|[*t < mina.

Lemma 1.2.1. [Ja/J., s X directed, 4 if AT [aand |4 < A, then there emists g €] [a
such that ferall f € A, f <5_, 7.

FProof By induction on cardinals w < A we will show that if A C] Jaf/J-y and |A4| = 4, then
A iz bounded. Let 5 = |a|t.

It w = &, then g = pteup,. 4 f iz an upper bound of Ain [Ja. fu = &, then by induction
we may assume A iz an increasing sequence (f, ' a < pb. If u iz singular, easily (f, o < u)
iz bounded. So assume p iz a regular cardinal with & < p = A Towards a contradiction
guppoze (f, | @ < u) iz not bounded. We will inductively define a pointwize increaszing
sequence (gs :f < k) in [[a. Define 8 = {6 €a: f.(8) » gs(§)} forall @ < pand § < &,
Let go = fo. If iz a limit, let g5 = pteupg s gsr. For the successor case, since gs iz not an
upper bound of {f, : @ < p}, there exdste me < p such that biﬂ ¢ J... By definition there
exdste an ultrafilter D on bﬂﬂ such that cof [Ja/Ds = A Purther, Dy M J,, =2 Hence,
flfuu'uf-'i'.-'g dEHliﬂLbGTf‘Uiﬂirﬁn?ﬁ hﬂﬁf_a-nr hah Tot a. . — wbmawla. AV Thie aomnlatae tha

Let cx = supg., s < u by the regulanty of 4. Fix § < £ Since bf,ﬂ Cres B and

4
Da M Jey = @&, then ¥ € Dz On the other hand, #5F! & Dy, so $571 & B . Thus,
(65 8 = s =|a|™} iz a strctly decreasing sequence of subsets of a, contradicting the

agsumption that (f, ' a < @) was not bounded. a



By definition if I iz an ultrafilter on @ and DM J., # &, then cof(] [a/D) < A
The converse iz alzo true, otherwise any cofinal sequence in [ [2/D of length < A would be
bounded mod J., hence mod D. Clearly, the map A — J.,(a) i# increasing and continuous.
Define pef(a) = {A: 3 ideal J on a zuch that A =tef(J[a/J)}. It iz easy to see A € pef(a)
iff Joa(a) & Jou+(a). Hence, pef(a) = {A: 3 ultrafilter D on @ such that A = cof(J [a/D)}.
Also, it iz sazy to see that pef(a) has a maximal element, which iz denoted maxpefia).

The next lemma iz eszentially the equivalent of lemma 1.2 1 for an arbitrary ideal.

Lemma 1.2.2, Suppose J 4s an ddeal on a, A 45 a regular cardingl, and (f, o <A n]]a
is increasing and wnbounded mod J. Then there emist a sequence (b, o < A) of subsets of
a and a function g € [[a such that

L obodJ
2 e’ as o so = by Trbs
3oWa' < A{f, o< A ds ascale mod J[h,

4. g iz an upper bound for (f. o < A} mod the ideal generated by JU I, o < A}

FProof Let x = |a|t. We will inductively define a pointwizse increasing sequence of functions
(gz 8 < By in[Ja where 8y < k. Foreach 8 < fpand o < A define #® = {i ca: g:(8) =
F(8)}. The induction will continue until (8% : o < A} and gs, satisfy properties 1-4 or until
Ho = . To prove the theorem we will show the latter alternative iz impossible.

Let gg be an arbitrary element of [[a. For limit § < &, let g5 = ptaup g5 g € []a,
gince § < min a. Now if gs hag been defined, since {f, 1 @ < A} iz unbounded, there exiaste
g < A such that bfm ¢ J,ile property 1 holds with &g = bin. Froperties 2 and 4 follow
immediately (for &, = biﬁa and g = gg). If property 3 holds az well, the theorem is proved.
Otherwise, there exist o «< A and b €[] a such that for each @ = A, &f = {§ €a: f.(8) =
hio)} & J[biﬂ. Thus, &£ biﬂ ¢ J. Let gsyy = ptmax(gs, h). Note that for any o < A,
of M b+l = & This completes the induection.

This induction cannot continue x times. To zee this, let o, = sup, . s < A zinca A
contradicticn we wall shﬂmv'{b’;": fir) = 'ﬁ}' 1z 'stnctlj,r' decfégsmg/.j Bix b'-:: %. Une on Fmd,
85 & J by properties 1 and 2. On the other hand,

b, —EF DU N, 2 BN E ¢

So, (gs ©§ < &) iz strictly decreasing, an impossibility. O
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Lemma 1.2.8. ff J is an ddeal on a, [[a/J is A divected, D is an ultrafilier on o with
DnJ =@, andeof [ [afD = A, then there emsts b € D such that tef(J[8/J) = A

Froof. Let (f, o < A) beascale in[Ja/D. Since J iz A directed and D respects J, we can
take {f, : & < A} to be stretly increasing mod J. Also, (f, : @ < A} must be unbounded
mod J, or else it would be bounded mod D Fix (b, : & < A) and g as in lemma 122
It cannot be the case b, ¢ D for all @ = A, for otherwize g would be a bound mod D

for (f. : o« < A} Consequantly, some b, = & iz in D, and by property 3 of lemma 1.2.2
(fo:c < Adbizascalein [[&/J. O

Lemma 1.2.4. If J %z an ideal on a and every utrafilier D on a respecting J hascof(J [a/ D) =
A, them tef([JafJ) = A

FProof First, observe that J., € J. Then consider the {possibly improper) ideal J* =
{61 Uby by & JW tef(] [Ba /) = A}, If J* were proper, then there would be an ultrafilter D
on & with D M J* =&, By azsumption, cof (J [a/D) = A So, by lemma 123 DM J* # &5
Thug, J* could not be proper, showing tef(] [a/J) = A O

Lemma 1.2.5. If& € J 4 (a) — J.u(a), then tef ([ [ &/ Fonla)) = A

FProof If D' iz an ultrafilter on & respecting J.», then cof(J [ 2/ D) = Aand cof ([ [ 2/ D) = A
So, by lamma 124, tef(J[a/Jea [8) = A = tef(] [5/ Jn). O

1.3 PBasice of Descriptive Sat Theory

Descniptive set theory g often zaid to be the study of definable relations in Polish spaces
(completely metrizable, separable topological spaces). This section deseribes some of the
bazic terminolosy and results of descriptive set theory. The Polish space which we will uase
most often iz the Baire space w", the countable product of the intesers with the discreset
topology. One commeon tocl in deseriptive set theory ia trees. A free on a set X iz a collection
of finite sequances T C X% cloged under subsequence. A branch of tree T iz an infinite
gaequence x € X" such that forallm < w. o m € 7. The collection of all branches of tree 7'
denctez therank of sin T IfX C ONand § € ON, T'[5 iz the resiriction of T 4o §, namely
{s€T :%¥n«len(s)s, < F}. I T iz atree on a product X = ¥, then we identify T with
the set {(s,#) : len(s) = len(t) A ((so,%a),.. ., (Swnp)=1, fangs—1)) € T} For any tree T on
X %Y and x € X* the section Ty of the tree T at x iz the tree {t £ ¥ : (z [len(t),#) € T'}.
The projection p[T]) of T iz {x € X¥ : Fg € ¥Y¥n < w (znan) € T} 5o, T} i

5



wellfounded iff x ¢ p[T]. Let WO = {z € w* x codez a wellorder of w} and WF = {z €
w* & codes a wellfounded relation on w}. For any - < wy let WO, be {2 € WO |z| < v}
and WO be {# € WO : |z| = v} Likewiss, lot WF, be {z € WF : |z| < 7} and WF., be
{x € WE : |z| = +}.The Shoenfield free T™F on w X wy iz

{(s,2) : len(s) =len(a) A ¥,7 < len(s) (2 <. f == o < o) A
Wi, i k< len(si(i <. Ad <ok == <.k}

where <, iz a partial order on a subsst of w coded in the standard manner by s. Then
WE =p[T%F], and if x € WE with |z| < &, then x € p[T%F [5].

We briefly dizcuss the axiom of determinacy, AD, and some of its conssquences which we
will uge. Forany A4 C w® the game 74 ia played as follows: players I and IT alternately play
integers

I: =g Ta

IT: T Ta

forming & € w* I wins the run of the game iff ¥ € A, otherwize II wing. The amom af
determinacy (AD) states that for each A4 C w* one of the players has a winning strategy in
(4. AD wag introduced by Mycielaki and Steinhans in the 1960%. Its consequences hawve
been an active area of research ever gince and comprises a good deal of what goes under the
heading of descriptive st theory, We will take for sranted just a couple consequences of AD)
Define © to be the supremum of lengths of prewellorders of w®. In [6] Kechriz showed the
finite partition relation on w;, which in turn implies that the c.u.b. filber on wy iz a normal
measure, denoted W} In fact, it is the unique normal measure on w;. AD implies that
avery filter on & < © can be extended to an ultrafilter and that every ultrafilter iz countably
complete. If 4 iz a measure on £, e a countably complete ultrafilter on &, and f: 5 — A,
then the #mage measure flu) on s {5 C A u(f~1(5)) =1}, 8o B has f{u) measure one
iff for palmost all @ € &, fla) € 5.

For the gake of completeness we present a construction of the Kwunen tree Similar methods

will be uzed later.
Lemma 1.53.1 (AD). Thereis atree T on w X w; such that for all f1 wy — wy there exists

T € w such that T is wellfounded and for all infinite v < w we have Flv) < |TH 4.

Froof Let A C w* be any X| complete set and a T be a tree on w x w which projects to



A ie Azp[’i"“d‘]. Define tree T'on w x w0 % w1 % w ) by
(t,a,cb,c) €T = (a,0) €T Ata=bh (bc)eTH

where ta = & means that in some reasonable manner ¢ codes a partial stratesy in a game
applied to a partial run of the game @, and that & doss not contradict ¢ applied to a. We will
show a slight variant of 7' satisfies the conditions of the lemma. Let §: w, — w,. Consider

the game where I plays =, IT plays %, and I wins iff

z € WF == T;'is wellfounded A |T}*| = sup 7(5).
B2z
I cannot win thiz game. Otherwise, if I had a winning strategy o, then of{w®) € WE would
be ®1, and the prewellorder on w* defined by

r<r e x,r'colw) Az < |z

would also be &1 But by the Kunen-artin theorem ] prewellorders of w* are boundad
below w;. Henee, {f(|z|) : € o(w")} iz alao bounded below wy, say by o, Since -4 is
IT} complete, then {|T;‘| gy ¢ A} iz unbounded in w;. 3o, II can choosey € —.4 such that
|T;i| > g and beat I’z strategy. Hence by AD), IT wing. (In later proofe thisz paragraph is
abbreviated “by boundedness” )

Fix a winning strategy 7 for II. T is wellfounded. Otherwise, if (x, 2,9, 2) € [73], then
(z,c) € [T™], 7{x) =v, and (g, 2) € [T, 8o, *+ € WF and 4 € A, contradicting the fact
that 7 iz a winning stratecy for 11

For any € WF we can embad T}r’%m} into Ty [|z|. To ses this choose o € |z|* such that
(x,c) € [T |x|], then map c € Tf‘m of length nto (zfn,aln v(z)[nc) € 7. 1|z So,
Fllz) = |T,f|:m:|| < |7+ T |z||. Finally, weave the last four coordinates of T on w x w; % w % w

into one coordinate on wy, and call this the Kunen tree T¥ . Clearly, T iz wellfoundad iff’f'T

iz wallfounded, in which casze |Ti [ < |72 I+ Henee, we have shown f(v) < [T¥ [~ O

aubaet of w,. Later it will be conwenient for us to use a version of the of the previous lemma

for linear orders, az opposed to trees. For this purpose we quote a rezult from [4].

Lemma 1.53.2. There is a function s — T%(s) which assign fe each s € w™ a wellordering

of a subset of w1 with the following propertics. If ¢ extends s, then TH() O T¥(s). Forx €



w, let TH =| | TH(z [n). 8o TF is a knear order. Then for any f: w1 — w1, there iz an
T € w" such that T 45 o wellordering and for alla = w, fla) < |TF [a|. Furthermore, the
map s+ TH(s) 45 Al n the oodes, 6. there are B, I1] relation: S(n,a,x,9), An,a,z,2)
such that for all x4 € WO we have

Sin,a,x,9) = Aln.a,z9) <= [z, )€ T, ., a1)].

Mow we briefly discuss norms and scales. A norm on a set A € w* is a map from A into
ON. Any norm on A induces a prewellorder on A, and vice wersa. If ¢ iz a norm on A and
I' iz a pointclase, ¢ iz called a T nerm if theare are relations <I. Eg guch that foralley € A4,

Wr Ew¥ [t € AN P(n) < dly) = 1 =ly = w=ly]
Az long az I'iz closed under finite intersections and unions, ¢ A — ON iz a I' norm iff the

tollowing “starred” relations are also in I

iy = z€AA(EAVH) < Hy)
T,y = T EAA[YE AV PE) < Ply))

Say I" has the prewellordering property, denoted pwo(T), if every A € T has aT' norm. Itiza
clasgical result that pwo(TL}). It iz straightforward to show that pwo{T) implies pwo(3*° T
The first periodicity thecrem saye that if T' iz a pointelass closed under 3% with pwolI)
and A =T NT determinaey holds, then pwo(v* " T). A scale on a set A4 C w® iz a sequence
(the © m = w) of norms such that if {z., ' m < w} C A, iMoo ®w = 2, and for sach n,
() 12 eventually constant (call this walue A,), then » € A and for all », ¢ (z) = A, T
has the scale property, denoted scals(I'), if every A € I" haz a I" acale. It iz straightforward
to show that seale(T") implies scala(3*"TY). The second periodicity theorem says that if T is
a pointelass closed under 3% and A,V with scale(T) and A = I'nI* determinacy holds, then
zcale( ). Say A C w" iz 5 Suskin if there exists a tree on w % & such that A =g[7T]. It is
motantm] b Tersuteahrindide e BueicGd B abmr dacwardn 1 u®d#sudnne 0 doy ra T
5"k

A classical theorem of Ramasey states that for any colonng of pairs of intesers into two
colors there iz an infinite et of intesers so that all pairs with both entries coming from

this set have the same color We generalize this result. Let o, 8,4 € OIN. [=2)* is the



eollection of subsets of @ of order type @ In general, o — ,Sf mean# for every partiticn
p: [2]* — § there exista a € [a]” such thatp [[a]is constant. Ifd = Z, the subscript is usually
omitted. The streng partiion relation on a cardénal £ ia the statement ¥ — 5" There iz an
adquivalent formulation of the strong partition relation which in practice iz more convenisnt
to uze. Bay f: 5 — ON has wuniferm cofinality w if for some increasing 7': w5 — ON,
Fflo) = aupgcpore £ la’) forall @ < . Define f: 5 — ON to be of correct type if f ia

atrictly increasing, discontinuous, ie. flo) = sup_.., f(2) for all limit @ < %, and has
3

7

uniform ecfinality w. The cw b wersion of the sfrong parfifion relafion, & 2UR £* means
for ewery partition of the functions of correct type there exste a cub. & C g which i=
homogeneousz for the funetionz of correct type from A to & The next two lemmas are

standard exercises and show the equivalence of these two notions of partition relation.
Lemma 1.3.3. f 5 — £%* then s 228 £*

Proof Let P be a partiticn of #* of the comrect type. Thiz induces a partition P cn £%*:
if 0 wh — & and F(8) = supgioypeqny (67, then F'(f) = F(f). Let A be homogeneous
for F', and define & to be the limit points of A Clearly, ¢ C & iz cub. Now for any
Fi A — O of correct type (witnesses by f* wA — &) there iz another witness f: A — A4, for
ingtance (8 = (max({F (5 — 13, F (B4 8o F(f) = P(#), and thus ' iz homogensous
for F. O

Lemma 1.3.4. ¥ 5 25 &% then 5 — &%

Froof Fartition all funetions from A to s, This partitions the functions of correct type, so
let ¢ub. & be homoseneous for the functions of correct type. Define the Sth element of A4
to be the w(f + 1)th slement of &' Hence, every f: A — A iz of the correct type, and A is

homoseneous for the partition. [l

The notion of a partition relation can be extended to products of ordinals . Suppose

k. £ wm are ordinal walued secuences of length 4. Then k& — wf means for every parti-

ticn p: HM#[IC(&}]‘E':G‘:' — 2 there exiata & < HM#[;C(&}]‘“(“:' such that p [HM#[E{&}]E(O‘:’

lz increasing and dizcontinuous, ie. ¥o < w sup,.., k(2") < ko), there iz an equivalent

f{&
formulation of the partition relation uzing block functions. Let A = supa{#k[&} and for
each @ < w, let b, = [aup,. ., ko), k(o)) dencte the ath block of k. A function F: A — A
iz a block functéon if for all o < w, F[b. € b, There iz a cne-to-one cormrespondence be-

twean block functions and &% The polarized sivong partition reloidon, k poly i holds if for



every partition p: {f: A — A f iz a block function } — 2 there exdste & C A such that
Vo < u |8 Mk = ko) and p[{f: A — & : fiza block function } iz constant. Clearly,
o i e T i As before, there iz an equivalent ¢ u b, wversion of the polarzed strong
partition relation. First, say & C Ais block cud if for all @ < @, O Nk(a) iz cub. in ko).
Then, the cou.b wversion of the polarized strong vartition relation, k wuk i holds if for every
partition p: {f: A — A f iz a block funetion } — 2 there iz a block c.ub. & € A such that
of{f A — ¢  fisa block function of the correct type} iz constant. As in lemmas 133
polar

and 1.3.4 k255 K% i £ 228
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CHAFTER 2

Simple Generation

2.1 FPreliminares

In thiz section we define and show the existence of Shelah sequences (sometimes called
c.u.b. guessing sequences) and then show that sequences of functions which respect a Shelah
gequence have exact upper bounds mod J.,. These lemmas will be usged in the next section

to prove that J..+ iz generated from J., by adding a singleton.

Lemma 2.1.1. fet 5, M be regular cardéinals with wy = & and & = A Then there emsts o
sequence (A, o € 5} such that

I foralla € 8 A,iézacub subset of o and |Aa| = &,

2 for all cub O C X there is a stalionary § C S such that for all @ € § we hawe
A, ST

FProof Note that it suffices to replace “for all” in (1) by “for almost all” with respect to the
c.ub. filter on A, since the requirement in (2) only depends on a stationary set. Let (17)
denote the “for almost all” version. For each & € 52 fixa c.u.b. subzet A, of & of cardinality
£, We will inductively define a decreasing sequence (C¥ © § = Fgb of c.ub. subssts of A
where By < s+ For each 8 < Gy define 45 = A, N <. The induction will terminate if
(A .o € 82 satisfies (17) and (2) or if the % step is reached. We will show the induction
cannot continue £+ steps, thus proving the lemma. For any cub. subset & of A the zequence
(A, NC o€ 5 satisfies (17) since &@Mais cub. in @ for every o € £ M lim < and the
intersaction of c.u.b. sets iz cu.b. Hence, the induction will continue only when (2) iz not
gatisfied.

G =0 Let &%= A

, B iz a succeszor: Since (AS1 . o € S did not safisfv (2] thers exdst cu.b. subasts

in particular A% g A for o € §2 0 DEL

£ isa limit: Let ©F =7, _, %"

This induction cannct continue % steps. Otherwise, for each & € S the sequence
(A% - 8 = k*} iz decreasing, and zince |AY| = &, there is £, < &% such that 47 = 4%~ for all
G = B, Since xt = A, by Fodor's theorem there iz a staticnary S C S: and §* < &1 such
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that 8, = 8% for all @ € § On the other hand, for any & € 5 M D" by the successor case
of the induecticn A’i""l g Aﬂ‘, contradicting the definition of 5% (Il

Lemma 2.1.2, & and A are reqular cardingls weth wy = 8 and gt < X, fthen there exdsts

an fcreasing sequence (S, o < A) such that
I oforalla = A, 8, C penla) and |Sa] < A;

2 4 C CAhiscub, then there emists o € O NS} and (as - F < 5) in O such that
BUPs., 0 = and for all § < & {ae 8 <} € Sag,,.

Notes: Such a sequence (&, : @ < A) iz called a Shelah sequence or a cub. guessing

gequence. Alzo, thiz lemma iz true assuming only s = A, but we will not nead thia.

Froof Fixa sequence (Cf 8 € 8% azinlemma 2.1.1. Foreach 8 € 5*,, lat gg enumerate

an inecreasing, cofinal sequence in @ of length ™. For each @ < A define
S, ={mngeg, [[ENCy) 88, Na, dc S::-I—l-? 8 <5}

Clearly, {8, @ < A} iz an increasing sequence satisfying property 1. To show property 2,
let & C A be cub. Define a normal f: s — < by induction. Suppoge § iz a successor
ordinal = &%+ and F [ S iz given. Bor each § € S:++ let & € &%, be least ordinal (if one

exizte, 0 otherwize) such that

95 [(B N1 Cy) = FIENCE). (2.1)

Define f(5) = (max[supﬁéﬁ:H &5, sup range F I“,S}jl_'_mgi. Let & = sup ranee . Since both F
and g are normal functionz unbounded in &, there iz a cub. D € 7 zuch that g [ D =
FID. By lemma 211 there is § € 87 with ¢ € D. Let @ = F(§) € ¢ S and
as = f(Fth element of O3}, We claim thiz choice of o and {2 © F < &) satisfies property
2 PFixf = & and consider {as : 8" = 8} Let & « F(8 + 1) be such that g¢ [(F +
LGy = F18 £ 10 ¢, Note that @ IOy = #TCy by _definition of §._zo for anv 4.
at & Then {ow : 8" < 8} = range go [(8 M Ch) € Sayy, O

Lemma 2.1.3. Suppose |a| < &, #7177 < A, and {fo © a =< A} 45 an dncreasing se-
quence @ | [afJon which respects a Shelah sequence (S, o < A), ie Vo < AVE £
o ptaup,eg for Siey Fo Then (fo o < A} has a least upper bound.

12



FProof. Ifnot, we will define a positively decreasing (mod J. ) sequence (g5 1 § < ») of upper
bounds for {f, : @ < A} and derive a contradietion.

G =0 Lat g = id.

£ 1z a succeszor: Since gs_) 1z a not a least upper bound of {f, : @ < A}, then there exiate
an upper bound gs ., Go-1.

£ is a limit < s For each § in a define &*(§) = {g+ () : " = #} and for each & < A
define £1(#) = least element of G*(§) = F.(8). Forall § € a, &’ < @ < A, and 8" = 3,
it iz immediate that |G(8)] < & and Ffor <o Fio o, fo S, ge. We claim there exists
a* < A such that for all o = o® we have ) =;_, .., in which case gz = f/, iz an upper
bound for (f, : o < A}, and gg S, ge forall 57 < § Otherwize, for all @ < A there ia
¥ < A such that f) &, 1. Let & C Abeacub set closed under the o — 7y function.
By lemma 2.1.2 there is an ordinal & € ¢'M 8" and (o, : v < &} in ' with BUP .o By = &
and for all v < & {a, @ ¥ < v} € &5 - oo, for all ¥ < & by the definition of & we get
f:;‘fm i f;ﬁg. Since (f, 1 @ < A} respects (5, © o < A}, ptaup.... f%a ey Fay, and

! ! 1 141
hence, ptaup...., f&qa s f%ﬂ. Intersecting a set of positive measure and measure one, we

hawve for all v < £ thers exists 4., € a auch that

sup £, (62) < 7L, (62} < £1, (02} 22)
Ty

Since x is regular and & > |a| there existe § € 2 and H € x where |H| =& such that §, =3
for all v € F. Enumerate a subset of H of size £ az follows. Let 4, be the least slement of
H. Ifn iz a successor, let %, = (%-1 + 2/7¥, and if 17 iz a limit, lat % = (sup,.., w75
Then by equation 2.2 {f;q (§):m = &) iz a strictly increasing sequence of ordinals in GP(4),
contradicting the fact tha.tﬂ|G‘ﬁ(5}| < %. This finishes the claim, 8o the sequence {f] @ a < A)
must stabilize.

5 = k. Repeat the limit case, replacing & by &+

For each & € a there existe 8 < & such that g,(8) € G (8). Let § = sup;.. 5. Then,
8x =7, 95,2 contradiction. O

(Ss o = A, then g s also an ezact upper bound,

Froof. Let ¢' <., g. If gis not an exact upper bound, then for each o < A we have ¢’ = fa
on a positive set F, Let ¢ = ¢'[ F,.Ug[a — F, Since g iz a least upper bound, there is
£ = o and positive F,  F, such that foreach d € F, f.(8) < ¢'(8) = fs(d) Let & C A bea

o.u1.b. aubaet closed under the o — & function. By lemma 2.1 2 there exate oo € &N S: and
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sequence (ag - § < &) in O such that sup,.  os = cand forall § < & {as ' < G} € Say,, -
Since {fo @ o < A) respectz (&, 0 @ = A, then

i)
Az before, for each § = 5 and 4§ £ Ej{ﬂﬂ

Fopn(8) = §'(8) < fap,, (5). (2.4)

Intersecting a measure one et with a set of positive measure we have for each § = &5 thers
exizts dg such that 24 and 2.3 hold at §s. Since x is regular and |a| < &, there iz § € a and
H C r with |H| = & such that dz =d for all § € H. Choose §1,5; in H with §1 +2 < §;.
Then

gr(é} < fﬂ’.ﬂpl—&(é} E sup fﬂ’,g-' I:a} {—: fﬂ’,gg+1 (5} {—: 5"!(5}:
FAy

a contradiction. O

2% Main Proof

The following proof iz not new. Rather, it iz a streamlined wversion of theorem 4.6 in [2].
Assume |a[™+ < mina. We epecifically do not assume 218l < mina, as in other proofs of

thiz result.
Theorem 2.2.1. J.+(a) = Joala)[b] for some b C a.

Froof Let (&, @ & = Ad be a Shelah sequence for x = ||t For some g < & we will
inductively define a two sequences of sequences of functions ({2 : o < A} . § < Fg} and
(g% = A8 < o) in[]a as well as a sequence (3 . § < Fo) of subsets of o satisfying
properties 25 210 until either we have found a generator, ie J.,+ = Jou[#")], or we have

reached the sth step of the induction, ie. Fy = 5. To prowve the theorem we will show the
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induetion cannot continue & steps. The inductive requirements are:

o <o = f5 <, 12 (25)
B'<f = f5 2o 5 (2.6)
pteup Fo <o, foral § €8, (2.7)
=, (2.8)

7 e ] i (2.9)

A S (2.10)

To begin the induction let #7 be an arbitrary element of [Ja. We require /5 to be a bound
mod J.. of {ff, +1:a" < o} This iz possible since & < A and J., iz A directed. 8o 25
holds. For each § € &, define Y = ptaup,..o 7o, which iz in [Ja since |S| < & < mina.
We also require % to be a bound mod J.y of {AY : § € &.} Again, this is possible since
|Sa| < A and Jou iz A directed. So 2.7 holde. Additionally, we require ptaup s, s o2 72,
which is possible since § < mina. So 2.6 holds. By lemma 2.1.4 (% : & < A} has an exact
upper bound mod J.y, say 7. Define & = {§ €a: 7(§) = §}. I # is a generator, the
theorem is proved. Otherwise, there exists 4° € J..4 — J-u[#7], and by lemma 1. 2.5 there
s a scale (g% o = A} mod Jou[d¥ Purthermore, (75 @ o = A) iz a scale mod J., [
and (% : o = A) iz bounded by #7 mod J..[#¥]. To satisfy (2.8) and (2.9) we additionally
require only that % <,  pna S+ and g8 <., F5+! Note that since (g5 o < A} iz a scale
on @ and 2.8 holds, then d° C,_, 4! and hence 2.10 iz satizfied.

Nowr we will show the induction cannot continue 5 = |a|* steps. Let g = pteup,., F5 For
sach § < &, since (% . & < A) was a acale on &7, there exdets oy < A with g ey [P fgﬂ. Lat
Qo = BUPge, g < A Poreach § < s definec® ={d €a: 75 (§) = g(d)} By 26, (c" : 8 < 5}
i# an increasing ssquence of subasstz of a4 For a contradiction we claim that this ssquence iz
strictly inereazing. Fix f < 5. On one hand by equation 2.9, ffﬂ e ] f§+1 e 7. 1D
particular, since ¥+ — &% & J, then f2 (8) < g(d) for J., ae § €48+ — 8 On the other
hand, g <., e FArl Hence, for Joy ae § € 87— we have 7 (§) < o(8) < £8 and

15



CHAFPTER 3

Strong Partition Relation
Azsume AD throughout this chapter.

3.1 Coding Subasta of wy

We describe a method tocode an arbitrary subset of wy, by a real in w? Define WO* to be
{2 € wv 2y € WO A 2 €2¥} Intuitively, each 2 € WO* iz a tagged wellorder, and = iz an
slement of the #et coded by # sxactly when the rank of w in the wellorder coded by 27 iz o
and #(n) =1 Let T%" on w x w; be the Shoenfield tree of WO, that is p[T%"] = WO and
Yo = wide € w x| = a ATy - [ais illfounded. We say #, 2 € w" are compatible codes iff
#,# € WO and forall m,m’ < w [mly, = [mfly == =lm) = #{(m/). So, the predicate &

repregenting incompatibility of codes 1a
Sle,2) = [p,2 e WO = Im,m' <w|m|s = |mg A arlm) # 21(m7)].

Note that S iz 21, 20 there iz a tree T on w % w x w with p[T¥] = & Define a stratesy 7
to be = o #wariant if Yo, 2’ € WO (|z|, |z £ ) = -8(r(z), 7(z")). Furthermore, 7 iz

an #muariant strategy if 7 ls < o invarant stratesy for all o < wy. Say 7 codes B Cwy if

Wr € WO [rix) € WO A |1(2)o| = |2| A
W8 < |r(x)olvm < w B = |mlrpy, == (€8 = r(zh(m) =1]].

Clearly, if 7 codes B C wi, then 7 iz invanant. Conversely, if v iz invanant and WV £
WO |r(z)a| = |z|, then there exists a unique & < w; which iz coded by 7, namely § € B
iff 3z € WO3Im < w |m|rzy, =F and r(zj:(m) = 1. In an upcoming lemma (3.1.2) we will
ghow each subaset of w can be coded by some invarant stratesy Towards this end we define

that of the Kunen tree (zee lemma 1.3.1). Define 77 by

(t,a,c,a’,a b p c) e T —
(a,0) €T Afa, o)y €T pta=bata =8 A (b4 c) €T,
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where, as in lemma 1.3.1, fa = & means that in some reasonable manner £ codes a partial
gtratesy in a game applied to a partial run of the game 4, and that & doss not contradict £

applied to a.

Lemma 3.1.1, Forallv € w" and forall 8 < w1, TV [ 8 ¢z vellfounded 4ff v 4 = § invariant
strateqy.

FProof If TV 5 iz illfounded, let (z,q, x', 0, 2, 2", w) € [TV [8]. 8o (z,a),(z",a") € [TW]
and z,x" € WO with |z|, |z = 8. Also, 7(x) = # and 7(x) = #/, where (z, 2, w) € [T%].
Thus, &(r(x),7(x")) holds, 2o T cannot be < § invarant.

Conversely, suppoze 7 iz not < § invariant. Then there exist x, 2" € WO with |z|, |z < 8
and S(7(z), 7(z")). There exista w € w® such that (v(z), 7(z"),w) € [I¥]. Choose o, 2’ such
that for all m, o, ) < § and (z,2), (2,2} € [T%]. Then (x, o2’ o, r(x), 7(2),w) €
[T7 1 5], showing T [ is illfounded. O

Lemma 3.1.2, Ffor all B Cw, there emsts an dnvariant strafeqy T which codes 5.

Froof Flay the Solovay game where I playez x, II playe ¢ and II winz iff

r € WO == [y € WO A fyg| = |z| A
98 < fpolvm = w B =|mly, == (f €5 = wi(m) =1)]

By boundednesz I cannot have a winning stratesy. So II must have a winning stratesy 7.
We claim that 7 codes &, and hence iz invariant. Let @ € WO, Bince 7 iz a winning strategy,
Tlx) € WO and |r(x)g| = |z|. By the last clause of the statement of the game 7 codes
B. |

Now suppose o € " and the Kunen tree 7 iz wellfoundad. Let ), be the c.u.b. subsst
of wy of limit ordinals closed under & s |T¥ 2| The next lemma shows that such O, 's

form a base of the c.u b, subastas of wy.

Lemma 3.1.5. If ¢ Cw, és cub, then there emsts 0 € w¥ such that TH s wellfounded

amd
Proof Let A C w® be Bl complete. Play the Sclovay game where I playe , II playe 4 and

IT wina iff

T WO = o £ AA |TyA| = |zt
By boundedness, I cannot have a winning stratesy. 30 II haz a winning stratesy o Az in
the proof of lemma 1.3.1, T'F iz wellfounded, and |T;%$:I| < |TE T |z|| for any = € WO, Let
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+ € C, and choose * € WO with |z| < . Then, |z| < |z[*° < |Tf($}| < | TETz|| = v So
ig a limit of pointz of &, hence in & (Il

3.2 Simple Seta

Recall T¥ is the linear order version of the Kunen tree (seelemma 1.3.2). So, for any x € w",
TH iz a linear order of a subset of wy. For any v < wy, 75 [v= T My iz a linear order of a
subset of v. For any o, § < wi, @ = [T [(8)| means if § € wi (T [), then o = |8|gw .y =
the rank of & in 75 [ .

We now define a notion of a sémple set Sr .2 © wy coded by three reals 7,0,x € w™:

o E 8, = Jlimit vy < o
W < (T 6 s wellfounded A [T 8] = ) A
W < (T [ iz wellfounded A |TY [8] < ) A
38 <y (§ € wE(T T) A= [T T(8)] A
oy € WO, An < w [n|rgy, =8 A Tlehin) = 1)

We say that 7,0, code S, ... Intuitively, @ € S, . iff @ is the lift-up |75 [ v(8)| by some
~in ', of some 4 in the set coded by the invardant strategy 7. In lemma 2 2.3 we show that
every subast of wy iz a countable union of simple sste.

We begin the trek to the strong partition relation on wn with a quick proof that the
diagonal intersection of normal measure one astz iz still measure one, and then prove a
ceneral lemma about the eoherence of sequences of subsets of w1, A s=quence satisfying the

conclusion lemma 3.2.2 18 gald to “cohers.”

Lemma 3.2.1, [fforalla < wy D, C w) contains a cou b set, then the diagonal éntersection

Dy Do = {7y <1 W < v v € D} also contains a cu b set

FProof Without loss of generality (D, © o < w;) iz decreasing (otherwize take intersections).
Bartition naim oz < v < wi_hy whathar ov not_~ £ 10, - Bv_tha finite rarhitiog relation on s
“not in” side, else for any @ € ¢ we would hawe D, MC C o, 1.2, the intersection of two
c.u.b. seta iz countable. Now let & be the limit points of & We claim that C° C A peuy Do
If v € " and @ = -+, then o™ < + Since ¢ iz homoegeneous for the %n” side, then
e D o CD,. O
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Lemma 8.2.2, For each sequence (B, Ty v € C) where O Cuwn dscud, theredsa cu b
D C O such that
W, €D mam = By =58, Nmn.

Froof. For each & < w; define D, = {v€ & : o € B,}. One of the sete, D, or w;, — D,
containg a c.ub. get, gay ¥ By lemma 321D = A ., D/ containg a cub. zst. Now
suppoge y,% € D and v < 9 < <w. By the definition of the diagonal intersection both
. € DL IE DL € D, then by definition of D, we have v € B, and v € B, . Otherwiss,
Dl Cw, — D, in which case v £ B, and v ¢ 5, Consequently, 5., = B, M. O

Lemma 3.2.5. Fuvery subsef of w is a countable undon of sémple sets.

Froof If not, let A € wy be a counterexample. Then the collection subsstz of A4 which
are ¢ountable unions of simple sstz form a proper o ideal on A Let i be a measure on A
rezpacting this ideal, and let . w; — wq be a representative of the least equivalence class
with respect to  of a function which iz nonconstant and increasing. Specifically, thiz means
that f iz not constant on any » measure one set, and thers exdste a ¢ measure one sat 4 < w
guch that ¥o,8 € Al = § == Fla) = f(8)) Since the identity iz such a funection, f
iz necessarily nonstrictly pressing down. Also note that #(») iz the normal measure W]l on
wy. Otherwise, there exist dizjoint setz &, 4 € w, where ¢ iz c.ub. and f»)(A) = 1. If we
define 7. 4 — w; by g(a) = the largest slement of ¢ « &, then ge f violates the minimality
of f

Fix A; € A such that »(4,) =1 and f[4; iz increasing and nonstrictly pressing down.
Por each v = w define

gly) = suple € Ay Fla) = v}

Ifx € Ay, then g(f(a)) = o Also, note that g(v) < w; since f iz nonconstant and increasing.
By lemma 132 there exist x € w™ and c.ub. & € wy such that the assction of the Kunen
linear order T)F is wellordered, and for all v € C'y we have [T [ | > o(+). For each + € Oy
define 5., by

FAe R e A mwdTdaes Ao o — ITE PO 10
Let &) € Cp be the c.u.b. et from lemma 3.2.2 such that the sequence (5., C v v & )

coheres. Let B = U,?ECI B, and by lemma 3.1.2 there exists an invariant strategy 7 which
codes B. By lemma 3.1.1 7Y is wellfoundad. Let c.ub. &3 € ) be closed under the functicn
v [TV [ By lemma 3.1.3 there iz o € w* such that T.¥ iz wellfounded and &, C &,

Consider the simple set 5. ...
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First, we claim that S, © A Let o € S, DBy definition of S;,; there iz some
v € Cyand § € Bauchthatd < v < o and o = [T [(§)]. Since B is a union, then § € B..
for soma " € ). By the definition of £ we have § € B,, and by equation 3.1 it follows
that = = 4; C A

Second, we claim that A\NF1C, C8rpr o€ ANFIC,, then v= fla) € C,. Since
a € Ay and v € T, then & = gly) < [T [+|. 8o, for some § € B, o = [T ()] Since
v € (', then § € B. Finally, since v € &y and &', < &%, we have satisfied the definition for
& Srax.

Futting these claims together, we have shown that »(S,,.) =0 and »(5.,.) =1, a

7

contradietion. O

Definition 5.2.4. A reeular cardinal & 1z reasonable if there 1# a nonselfdual pointelass T

cloged under 3% and a map ¢ with domain w® zatisfving
1l Yedlz) CTr =k
29 ks rdadin) =71

3. Va8 < kA, s € A= 'L, wherez € R,a = dlx)(a, )3 < k(dlx)(a, i) =
B =8).

d HTa«<s, A€TA and A C R, = {z: 36 = & Aus(x)}, then 38" = g%z € A5 <
B Ao alw).

If v € Ao, let ¢(x)(a) be the unique § such that ¢lx)(e,5). Let Sop =T,z [ gics Hon s
and £, = ﬂﬂ"’i:@f A...

Theorem 3.2.5 (Martin). Fuery reasonable cardinal has the strong partition relation.

Froof Let T and ¢h: w* — plk x &) witness that » iz reasonable. Supposze p iz a partiticn
of functiong from & to & of the correct type. Conzider the game where I playve x, 1T playa 2,
and if thers existe o < & such that 4 € 8, but = & S.p1, then IT wing. Otherwize, both gz}
and @(a) determine functionz from & to x, in which case II wing when v(F..) = 1, where

Aszsume IThag a winning strategy 7. (The argument for I iz slightly simpler.) For o, 8 < &
define £{m, 7)) = sup{dly)i(a) ‘v € 7[Sap|}. We note that A iz closed under < » unions and
intersections (see the last paragraph of the proof of theorem 2 28 in [4]). So S,z € A, and
hence 7[S.s] € 3" A Since & is reasonable, #a,5) = 5. Let ¢ C & bea cub. set closed
under £, and let & be the limit points of &' We claim for any F: 5 — O of the corract
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type, p(F) = 1. Sosuppose F: 5 — C' iz of the correct type. Fix f: 5 — C such that for
all & < &, Flo) =8P, pone o), and fix e € w® such that § = ¢z Let ¢ = r(x). 3o,
@7 ) iz a funetion from & to x, and @z )(a) < Hlz)la’+ 1) for all &’ =< x. Thus, F = Fuy,
and sinece 7 wag a winning strategy for II, p(#) = 1. O

3.3 Coding Punctions

In the previous sectionsz we showed how to code subsetas of wy by reals. In particular we
showed that every subset of w; iz a countable union of simple sete. To show the strong
partition relation on w; we must code funetions from w; to w;. Of course, we could embed
1 ¥ W into ey and view functions as subsets of wy accordingly. The problem iz that this
eoding doss not seem to satisfy the conditions of Martin's theorem 325 Therefore, we
will go through the two previous sections, sketching proofs of analogous results for functions
from wy to w; and show that wy iz reasonable relative to thiz coding of functions and the
pointelass of analytic sete. The proofs themselves are often identical to the proofs in the
previous sections. Here, howeser, we highlight the new ideas needad to code functions and
carefully point out the changes they bring about.

Let WO™ = {2z € wv 25 € WO A 2 € 29} BFormally, WO™ = WO*, but we think
of 2 € WO* az coding a subset of w) x w, Namely, the pair (=, F) iz in the subset coded
by & iff the rank of wm in the wellorder 2 iz & and the rank of n in the wellorder 2 iz 5
and #z1(m,n) = 1. We say #,2 € w* are compatible codesz iff #,2" € WO*™ and for all
m,m’ n,n < wm|g, =|mg Anla = ng) = a;im,n) =#(m' n) So, the predicate

& representing incompatibility of codes is

Sle, ) = [z, € WO = Im,nm/ n’ <w

Imls, = |mg /|y =7y A 2(m,n) # a(m’, 0]

Clearly, § € 3] Let 7% be a tree on w X w X w which projects to §. Define strategy 7 to
be < o énuariant if ¥z, z' € WO |z|, |z|' < & == -8(r(z), 7(z")). Purthermore, v iz an

Ve € WO [t(z) € WOF A |r(z)o] = |z] A
Wi e < |T(xjol¥m,n < w (§ =", A e = [1frp)) ==
((5,6) € B = v{zh(m,n) =1]]
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The tree T representing noninvariance iz defined the same as before.

Lemma 3.3.1. For allt € w" and for alla < w1, T [ o is vellfounded 47 7 45 = o fnvariant

strafeqy.
Froaf Same az proof of lemma 3.1.1. O

Lemma 3.3.2, For all B C wy » w) there emists an fnwvariant strategy 7 which codes 5.
Froof Same az proof of lemma 3.1.2. (Il

We now define a notion of stmple subsel 5., € wy X w; coded by threereals 7,0, v € w®:

(,8) € Srpr == 3 limit v <
W8 = A(TH [ § iz wellfoundad A |TE [5] < ) A
W < (T 6 is wellfounded A | T [ 8] < ) A
e <y [fecwi(TF T Ao =T 1@ A8 =T Tle)] A
Fy € WO Am, n < w ™y, =3 A 0|y, = A Tl him,n) = 1].

Thiz definition iz the expected two dimenzional analos of the definition of simple subaet of
to1, the only possible exception being in the firet line where -y ig required to be at most &, a

more stringent recquirement than 4 < max{a, 5).

Lemma §.5.8. ff fer all o, < wy D, 5 € w conlafnz a cub sef, then the diagonal

intersection N, e Dag = 17 <wy W, 8 < v v &€ D, g} also contains a coub set

FProof Without loss of generality {D.as @ @, < wi} iz decreasing in both coordinates.
Partition trples o << § < ¥ < w) by whether ornot v € i, 5. By the finite partition relaticn
on wq thers iz a homogeneous cou b, & < wy for thiz partition. < cannot be homogeneous
for the “not in” side, elae for any «,8 € & we would have D, z M & € max(x,8), i.e. the
intersection of two ¢ ub. seta iz countable. Now let & be the limit points of & We claim

that, o (:..f\a-.a{/,--vpam ,Ti’Lﬁ.J?:ua-ﬂf']-_ﬂ'ﬁuf. w then ot% 8% =~ Hince (7 iz homoraneons

Lemma 3.3.4, For each sequence (B, Cyxy v €O where O Cwy s cud, thereds a
ctd DCO such that

Y, wm €D mayw = B, =5, Niwxm).
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Froof. For all o, 8 < w, define Do = {v € O (2, B) € B,}. One of the sets, D,s or
w1 — Dag, containg a cub. set, say D) ;. By lemma 333 D = A, pew D) 5 contains a
c.ub. zet. Now suppose v, € D and o, 8 < 9 < <. By the definition of the diagonal
intersection both v, € DL 5. T DY 5 € Dy g, then by definition of D g we have e, § € By
and o, 8 € By Otherwise, D, ;3 C w1 — Dag in which case o, f ¢ B, and o8 £ B,
Conssquently, B, = B, My xm). O

Lemma 3.3.5. Bvery function b w) — wy 25 a countable union of simple partial functions

from wy to w).

Froof If not, let 2: w; — w) be a counterexample. Then the ¢ollaction of countable unions
of simple partial functions which are subsets of A form a proper o ideal on 2. Let » be
a measure on A respecting thiz ideal (The measure » on wy X wy can be identified with
a measure on wy, namely for 4 € wy, w(4) = 1 iff w({(2,8) : hla) = 5}) = 1) Let
Fow ®w — wy be a representative of the least equivalence class with respect to w of a
function which i# nonconstant and increazing on the first coordinate. (Likewise, f can be
identified with a function whose domain ig wy by fla) = f(a,5).) By thiz we mean that
for all @ measure one satz A, f iz nonconstant on A4 and that there exdstz 4 C A such that
viA) = 1 and for all (a,h(a)), (2" h(a”) € Aif & < &', then Ffla,hla)) = Ffla’ h(a").
Since the “identity” @ — (2, h(x)) iz such a function, then f iz nonstrictly pressing down,
le ¥ia fla,hla)) = o Asbefore fv iz the normal measure on wy. Fix 4; € A such that
w(A1) =1and f[.A4; iz increasing on the first coordinate and nonstrictly pressing down. For

each v < w; define

gy =sup{max{a, hla))  (a,hla)) € 41 A Fla,hla)) < v}

If (e, hia)) € Ay, then g(f(a,hla))) = max(a, h(a)). Also, note that glvy) < w since f i
nonconstant and inereasing on the first coordinate By lemma 1.3.2 there exdat o € w™ and
c.oub. & Z wiy such that the section of the Kunen linear order TIH iz wellorderad, and for all

¢ € C'n we have g{y) < |TH I'+|. Por each v € ' define B, C v = v by
(e € By, = deacyrIarla))cd y<ah (3.2)

a= T3 (6] Ak(e) =T (el

Let & € & bethe c.ub. set from lemma 3.3 4 such that the sequence (B, € yx v v & 1)

coheres. Let B = Uf;-Eﬂl B, and by lemma 3.3 2 there exsts an invarant strategy 7 which
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ecodes & By lemma 331 T;r 12 wellfounded. Let e.ub. &% Z & be eloged under the function
¥+ |TY I By lemma 3.1.3 there is ¢ € w* such that T is wellfounded and C, C C%.
Congider the simple set 8., 0.

First, we claim that S, Ch Let (2,8) € Sz By definition of &, there iz some
v & Cyand §,¢ € B such that §,e = v = @ and o = [T [+(d)] and 8 = |T.F [+(e)|. Since
B i a union, then (4, ¢) € By for some v € & By the definition of & we have (§,¢) € B,
and by equation 3 2 it follows that (2,5) € A1 CTh

Second, we claim that 4 N 7710, € 8.2 If (a,h{a)) € Ay M F71C,, then
fla,hia)) € O, Note that + < o Since (a,h(a)) € A and v € &y, then max(a, Ala)) <
glv) =< |TE T+ 8o, for some (§,¢) € B, o = |TX [+(d)| and hla) = [T [v(c)]. Bince
v € O, then (8,¢) € 5. Finally, gince v € O, and &, < &%, we have zatisfied the definition
for (o, o)) € Seon

Futting these claims together, we have shown that »(S,,,) = 0 and »(5.,.) =1, a

contradiction. |

We are now able to give our coding of functions from w; to w; by reala. View each

# € w* az coding a countable sequence of reals #p, 21, ..., #p,. .., sach of which codes three
reals 7,, 0y, &, Define ¢lz) = || ., Sr o 0. By Martin’s theorem 3.2.5 all that remains to

et £
prove the strong partition relation on w, iz to verfy that w, (with thiz ¢ and I' = 21} ia

reagonable, 1.2 satisfies the conditions in definition 3.2 4 Trwvially, éie) < wy x wy, and by
lemma 3.3.5 for all A: wy — w; there existe 2 € w* with ¢iz) = A

Lemma 3.3.6. For all o, f <

Rop ={z €w" ¢lz)(2,8) A 9E" < w1 le)(a,8) == =513
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Froof Fix o, 8 < w) and consider the get A, 5. From the definition of simple zet, we hawve

#2€ Rpp — Jp < widy = o
Wi < o Ta ['§ is wellfounded A [T [8] < 4 A
Wi < Ty 6 i wellfounded A |T7) [6] <« A
36,6 < yd.e € wi(Tye [ ) A | Tos T(8) = A | T Tle)| = B A
Ty € WO Am,n < w [mlrpy, =8 A Mlrg), =€ A mplahlm,n) =14
o' o wiry = o e <y
[7¢" < o Tj; [ ¢ ia wellfounded A |T;; N
W T;; [ ¢ iz wellfounded A |T:;; ¢ = o A
o € Wi (TIS 1) AT T/(8)] = e
Wy’ € WOWm', n' < w(lm'|r o =8 A 0o =€) == mlghlm’ n) =1] =
£ e wi(T 1) AT 1Y () = 8.

Lines 15 above show that ¢{#)(2,8) while lines 6-11 show if ¢z)(c, 57, then § =8 We
have written F, g as countable uniong and intersections of Borel relations, meet of which are
of the form: a section of some tree iz wellfounded of rank less than some countable ordinal,
which by the standard tree computation iz Borel. The quantifiers applied to WO, and WO,
(in lines 5 and 10) make this relation ] Hence, A, s iz 3] We parenthetically note that
with a little more work we could show that A, g isin fact AJ, but this is not necessary. O

Lemma 3.3.7. foao<w, ACA, ={zcw¥: 38 <w, 2 € A, s}, and A€ X}, then there
ezgsts B < wy such that Ve € A5 < "2 € A.p.

Froof. Let & = w,. Wa will define a prewellorder # —« 2" which is equivalant to 2, 2" € A4 A
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dlz)(a) = ¢z (a). It iz sufficient to show this prewellorder iz £] We define

= = gz ArNTp Iy <a
W8 <y T ['§ is wellfounded A [T,7 18] < o A
W8 <y To [ is wellfounded A [T 18] < A
3b,e < yd € wi(TE ) AT T 4(E)] = i
Jy € WO Am n < w M|, =0 A M|, = A Rmn) =14
I’ < w3y <o
Wil < o Tj; ré iz wellfounded A |Tj; 87 <+ A
hW{fQJWEWMWMMﬁmDWHfh
HﬁE{fFEﬁﬂgrﬂﬁﬁgffWﬂzah
Fy' e WO, 3Am' n' = u,1|'i"n“'|fr1=h,,:i,a:,,j =" A |n’|,r?,[ya:,c, =" Arp(m/ n) =14
“Hﬁrﬂ@%iﬁﬁrfﬁﬂ?

First of all, note that lines 1-5 say that ¢{z)(a) = |T¥ [v(e)|. Likewise, lines 6-10 say
(o) = |TE [+ Since 2,2 € H,, it follows from lines 1-5 and 6-10 that ¢ €
wi(Z,* [y) and 1=:E“' & wi(TH ['+), #o these predicates (which are I'l}) are not included. The
last line in quotation rna.rka:represents a %1 pradicate which checks |Tf: [vle)| < |TI1: EAGHE
civen that € € W‘f(TI}: [~) and &' & WfliTmi [+ Thus, this prewellorder iz %1,
has some countable langth §° Clearly, if # € A, then éiz)(a) < §° Thus, if # € A, then
g8 O

and hence

All the conditions of Martin’s theorem 3.2.5 have been zatisfied, 2o we may conclude that

Theorem 3.3.8. w; — w]?.
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CHAFTER 4

Zollapzing Result
4.1 Fartition Relationz and Ultraproducts

In this final chapter we present some vanants of known results, quote a theorem of Woodin,
and prove our collapsing result.

Recall from chapter 1 that if & is an increasing, discontinuous sequence of cardinalas
of length u, then & — &* means that for all partitions p: [ [ [k(2)]” — 2 there exista
b e Hﬂﬁ[k(&]]k[“} such that p[[] . [B(2)]” iz constant. There iz an equivalent c.u.b.
vargion of the polardzed partition relation. Let A = supmmﬁ::(&}, and for each o < u,
let &, = [sup,.., k(2" k(a)) denote the oth block of A A funetion f:wp — Az an
w block function if ¥a < aWn < w flwa +n) € b, The cub version of the polar-
teed parfition relation, k palcd k¥, iz the following for all partitionz p: {f: wu — A
F ig an w block function} — 2 there exdstsz a block cub. & C A such thatp[{f: wu — O
# ig an w block function of the correct type} iz constant. Exactly as in chapter 1, & — k% is
edquivalent to & pued O ,and we will use these two notions interchanseabls.

We will require a wersion of theorem 3.2.5 specifically for w block functions. Towards this

end we give conditions on a sequence k which are sufficient to prove & — k%, as in definition

5.2 of [1].

Definition 4.1.1. ILet & be an increasing, discontinuous sequence of regular cardinals of
length 4. We asay the aequence kis reasonable if thereisa sequence of nonselfdual pointclasses

(T, @< u) each closed under 3, and a function ¢ with domain w* satisfying:
1 W € w* dhiz) Cwp x A
2. ¥ w block functionz 1w — Adx € w¥ ¢lx) = F
3.Wo < 4 Ae € Aaq, wherez € A, = Wo' < an < wiy € by [dlz){wa’+n. v A

4. Vo < pvn < wVY € by Aopy € Ao, where t € Aap, = [dlz){va+n,v) AWy €
b $(&) (w4, 7)) =y = .

5 fa<pn<w ACIVA, and AC Aun =1, Aoy, then sup{gla)iwa +n)
€ A} < ko).
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Theorem 4.1.2. If k 95 renzonable, then k& — B
The proof of 4.1 2 follows the proof of 325, mutatiz mutandia.

Lemma 4.1.5. Let k be o wy length sequence of successers of Mmit Suskn cardinals of
coftnaliy w. Then b — &Y

FProof Let o < wy. Say k(o) = AL where A, iz a Suslin cardinal of cofinality w. We will
aggociate to each k(o) a pointelass TT%, az defined below. Let A be the pointelass of < A,
Sualin sets. Then A iz clogad under 37, ¥
the pointelaszs of countable unions of A setz, and IT'l; be the dual of 35 Then every ast in 3y

. 7, finite union, and intersection. Let 34 be
i A, Suslin, and g iz closed under countable unicn and 3% Likewise, every set in Il; i
Mg Sualin, and Iy ig closed under ¢ountable intersection and % . Furthermore, ¥g has the
scale property. To see this, let A= ., A € By, where sach A, € A and let (¢ - & < w)
bea A scale on A, into A, Forz € A4 define ya(z) = least n such that x € A4, and for each
k =0 define #fp(z) = {%(m],ﬁﬂmjﬂmﬂm. To show (% - k < w) iz a scale on A, suppose
1Tm M < w} C A, iMoo T, = %, and for each k& < w, ¥hiz.) iz eventually equal to an
ordinal 4. In particular, ¥l . ) iz eventually equal to 4, o eventually all x., € 4., . Since,
et 1( T ) 18 eventually constant, 2o is " (2, ), and since (¢ : k < w)iza scale on A, , then
t € A, T A Bo, ¢ulz) = v Ifwdalz) < 96, then ¢fu(x) < 4% since vy, was defined using
the lexicographic crdering. Otherwise, " (2) < limm o o (T, 80 ¥ () < % in this case,
too. Thus, (¢ & < w) iz ascaleon A Toshow (e & < w) iz a ¥ acals, note the starred
relation © <f ¢ = v € AA (g £ AV gp(z) < ohlzy)) is equivalent to

Iz €A hgE A A Ynsned Ay Ay £ Aa)
Inir € As A9 € Au A¥m < nfr £ An Ay & Au) A dh(z) = ¢hla),

and likewize for «7. Since all of the above conjuncts are A, both =7 and <} are ¥,.
Now define £% = 3“TI;, TIY = "%, and A® = Z2 N IIF IT¥ iz cloged under ",
countable union and intersection, and by Mozchowakis® second periodicity thecrem has the
scale property. Ewvery set in XT e atill A, Sualin.  In fact, X7 ig the pointelags of A
iz a A prewellorder of w*}, and any Il prewellorder on a Iy complete set has length
At = k(a). Purthermore, the length of any Y prewellorder iz < kiz). In thiz sense,

* k(e)) iz analogous to (T, wi).

For each o« < wy let F, be a universal IT and let {¢7 : n < w) be a TI} acale on F,

with ¢ F, g k(z). It turnz out that ITY and (¢ : n < w) can be chogen uniformly in

28



c (zea [10]). (Note: Steel’s proof of thiz uniformity result assumes ¥V = L[] However, our
result iz true even without this assumption.}) Let I C (w)® be a universal &; set, and let
U C (w*)® xw bea X uniformization of U7, To prove this lemma we will give a coding of
block functions which satisfies the conditions of Martin’s theorem 4.1 2. Porrowing an idea
from Kechras' theory of genenc codes of countable ordinals, for sach o < wy, § € &,, and

< w" define
Hz)e,B) = Wy € WO 3z € B, Uln,g,2) A ¢l(e) = 5,

where ¥y € WO/, means for comeager many % € WO, in the sense of generic codes (s=e

713

First, we must show every block function iz ¢coded. Suppose F:w; — A be an w block
function, and define F: w; — plw*) by Fla) = {# € F, ¢f(z) = f(a)}. By the Coding
lemma relative to 2] (see lemma TD5 of [8]), there is a 32} choiceset & € w® xw™ such that
if (g,2) € C, then 4 € WO and # € Fy A #¥(2) = #(lz|), and for all @ < w; there exista
v € WO, and # € w* such that (¢, 2) € ¢ Since U iz ¥} universal, there exists x € w® such
that ¢ = {/; and hence f = ¢z},

To show A, s € AT note that

T E Rop = Ty € WO [Tz F, Ulz,g,2) A ¢d(z) =5]

Since (¢ ' n < w) iz a IT¥ scale, 1 C A%, and the above # iz unique, the predicate in the
brackets iz A% A% iz closed under the category quantifier (ses [8], page 202), so R, 5 € A%

Laztly, we must show the boundedness property. 8o fix @ < A and suppose § £ 3" A%
and & € A, We must find § in the ath block of k such that & € A, s Tothizend, definea
prewellorder < on & by x; <@g iffx,®0 €8 A b)) < ¢p(ma)(c). Thue, by intersecting

two comeager geta we gat

Ty < xy = Wy € WO a2 € F, Uley g, 20 A Ulzg g, 20) A g8 (1) < 5 ()",

Pl R s WS AR LA ML AL e e e e =) PRSI L e W A il e L e i ] e
Noteagain that the # and #; are unique. As before 27 iz closed under the category quantifier,
which implies <€ %% 8o, the length of —, and hence the range of ¢(z)(a) for z € &, is
< ko). O

Lemma 4,14, Letk be a wy length sequence of reqular cardinals and p o nonatomic measure
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onwy. Ik =k, then[[kfu iz a regular cardinal

FProof Let A be the order type of [ [&/u. If A iz not regular, then there iz p = A and an
increasing, cofinal w: g — A Partition elements of [k]* az follows: wiew sach element of [K]*
ag two functionsz fo, fi € [ [ &/ p, and let o be the rank of f; in [ [ &/u. Define P{fy, f1) =0
iff there exists some element in the ranege of & between oy and o By assumption, bk — &2,
g0 thers exdatz a block c.u b, & which 12 homoseneous for block functions of correct type. &
muzt be homoeeneous for P =0 sinee for any fp into & of correct typethere exdata & = o with
ag = w(g) and fi: A — & of correct type with w(g) < ay. Let (fz 1 § < g} be a strictly
increasing sequence in [ &fu. For each o < w) and § = g+ define fi{a) = w(fs(a) + Lth
element of (&' M k(a)). So, f&wn — € s a block function of correct type. In addition,
for any distinet 5§ < g there iz an element in the range of 7 between [f7] and [7Z],

contradicting the fact that the range of w has order type o Thus, A ia regular. (Il

Lemma 4.1.5, Suppose A s a singular cardinal of cofinality k and 9. 5 — M is cofinal and
novmal. Then there emists a cub. © C & such that maxpef{(g(d)it . & €c} = AT,

Proaf Forany d € x define d = {(g(6))* : § €d}. Let J., = J.,(%). Since X is singular,
Joy = Jy. By theorem 2.2.1, there exista & C x such that J.,. = J'EA[E]. By lemma 1.2.5,
maxpef(B) = A+,

Wa claim that there exdstz a cub. ¢ & If 2o, then maxpef(é) = A+ The proof of this
claim iz by contradiction. 5o, assume x — & = s iz gtationary. Since bisa eenarator, any
At gequence in [ [ § iz bounded mod J.,. Note that if dc Sy, then 4 iz bounded below &,
=0, the nonstationary ideal on %, Ty, containg J.,, and it immediately follows that any A+

gequence in [ [S iz bounded mod Zy,. Claim 4.1.6 finishes the proct of this claim. O

Claim 4.1.6. There does not exists stationary s C & such that any AT sequence én [ [§ ds

tounded mod Tya.

FProof Suppose not, and fix stationary s < & such that any AT sequence in [ [ § iz bounded
mod Fiya.
be a c.ub. subset of § of cardinality cof(F) < A Define &, = {ds Mo : § « A+, F limit}.
Clearly, for each a < A+, |8, £ A and &, C p..(a). Further, (&, 1 o < A} iz increasing
in the gense that forall o’ <« o <A+, &, ={dna’ d € &}

Now we inductively define (f. - @ < AT} in [ [§ such that for all & < A*, fo <o Forl
and for all 4 € &,, pteupgey for Sgg fo Given (fo o' < a) satizfying the inductive
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hypothesiz up to o, for each d € S, sup .oy Ffor(§) < 8 for sach § € § with § » some J4. So
pteup ooy for €] [ §/Ine. Since we are assuming A" sequences are bounded mod Tyg, let .
be a bound of {ptsupa,édfaa d € &, mod Iyg. The condition f, <ev fog1 can be satizfied
trivially. This completes the inductive definition. As in lemma 2.1.3, {f, : @& < AT) haz a
least upper bound, zay A.

For any § € 8, cof(h(§)) = &, 2o by Fodor's theorem there sxist a stationary s’ C §and a
regular cardinal o < A such that forall § € 8%, cof (A(8)) = o Foreachd €s5'let s beacub.
gubset of A(4) of arder type g, and for each a < At define F1(4) = (f.(d))t%. Clearly, for
all o < o < X" we have f. <, Fl, Sy fland for all 4 € &,, pteup, ., Fl, Saee FL Since
h iz a least upper bound of (f, : @ «< At} then (f] : & < A*) cannot stabilize (otherwize,
the stable walue would be a smaller than & on &) Thus Yo = AP35 < AT FL, Zg, fi Let
cub ey € AT be closed under & — §. Define g to be the first 57 elementa of 5, and let
gy = supec,. 9o, cof{ag) = g+, Let o = ¢y Md,, which iz cub. in @y Forall a € o,
PESUD ey o T So Fo Also, for all of o € o if of < @, then ff, S 7, Hence for sach

o € ¢y there exdsta § € s* auch that

sup  flL(0) = fL(8) < fle(d). (4.1)

e E g Pl
By the regularity of g% there exist cg € ¢ with || = g" and §% € &' such that for all & € cg
equation 4.1 holde at § = 4% Lastly, choose c4 C €5 such that |ca] = ¢+ and betwesn any

two elements of ¢4 there iz an element of c;. Then {f1(6%) o € cq4} iz a subset of dy. of size

+

£, a contradicticn. (Il

4% Dlain Theorem

At thiz point we quote a theorem of Woodin (theorem 1.3 of [11]).

Theorem 4.2.1 (Woodin). Assume the nonstationary 4deal on wy 45wy saturated, there
exst w many Woodin cardinals with o measurable cardinal above them all, and X iz a bounded

subzet of @M of cardinality we. Then there emists a set Y € LB of cardinality w. in LIR]
We are now ready to prove the main result of thiz thesia

Theorem 4.2.2. [ the nonstationary ddeal on wy 45 wy saturated and there em@st w many
Woodin cardinals with o measurable cardinal above them all, then some regular cardinal < N,
in L[R] collapses in V.
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FProof Let Oy C Wy, bea cub. get of limit Suslin cardinals of size wy. Let 4 = {s+ 1 k€
Ca}. By theorem 4.1.3 ]| Ag has the countable and henee finite polarized partition relation.
By theorem 4 15 there iz a cub. & C g such that maxpef{s™ : x € O1} = Ry, 1. Let
Ay ={rt 5 €} and 51 = Ry 41

In L[R] there are Ry many functions f: wy — A;. For each such function f by theorem
414 [Jrange(f) /W] iz a regular cardinal. 8o there are at lsast ¥y regular cardinals in
L[R] of the form [ range(f) /%] Among these fix some regular 53 > &1, where 5y =
[Trange(f) /W) for some 7@ w; — A;. Let B =range §.

Now in V, W/ XM iy not a measure, but at least a filter base for the subasta of w,. By
Zorn's lemma this filter baze can be extended to an ultrafilter U7, Since maxpef(d;) = 5y,
then eof(J[B/U) = k1. (In fact, equality holds here ) Towards a contradiction suppose &g
iz regular in V. Let {f, : @ < 51} be some cofinal sequence in [ [ BT,

For a contradiction we will define a cofinal map 7 5; — %5, Foreach @ < 5, by theorem
4.2.1 there is some # € L[R] such that 7, <., . For @ < 5, define w(a) = min{[F]yy  F €
LIR] A fo =o F}. Note that if £, 7' € L[R] and F =ya F', then [Flya = [Fga. G < 5,
then § = [G]ya for some & € L[R]. Of course, & € V, and hence there exsts & < 5, such
that & <y fo <y F. But both Gand F are in L[E], 20 it must be the case that & <y F
Thug, § = [Glus < [Flup = w(a), showing 7 ig cofinal. This contradicts the assumption

that &g wasz regularin V. (Il
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