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Traditional parametric statistical methods for solving
the classification problem are based on certain assumptions.
Innovative mathematical programming methods provide
alternative approaches to the standard parametric
discriminant procedures, when the underlying parametric
assumptions are violated. For some data configurations,
however, these mathematical programming models fail to
provide the optimal classification rule.

This research examines certain modifications of the
mathematical programming models to improve their
classificatory performance. These modifications involve the
inclusion of second-order terms and secondary geals in
mathematical programming models. A Monte Carlo simulation
study is conducted to investigate the performange of two
standard parametric models and various mathematical
programming models, including the MSD (minimize sum of
deviations) model, the MIP (mixed integer programming) model
and the hybrid linear programming model. Misclassification

rates for the classification models are empirically
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estimated on both training samples and validation (holdout)
samples. Exact misclassification rates are determined from
the estimated classification functions for some models.
Several factors, such as sample size, covariance structure,
distribution, and orientation of the data, are varied in the
simulation study.

The results show that the modified mathematical
programming models have potential for being very useful in
situations in which violations of the usual parametric
assumptions are severe. This study addresses certain issues
in inplementing mathematical programming approaches to the
classification problem. For example, with some mathematical
programming models, there are solutions that are not
invariant under data translations or rotations. The study
shows the usefulness of a general contaminated multivariate
normal distribution in estimating misclassification
probabilities. The study also illustrates that a wide range
of values can be assignhed to the measures of skewness and
kurtosis when generating the contaminated normal
distribution by using different parameter settings. The
results of this study will assist practitioners in
understanding and implementing improved versions of
mathematical programming formulations and, thus, give them
greater flexibility in choosing an appropriate

classification model.
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CHAPTER 1

INTRODUCTION

Overview of the Statistical Classification Problem

The statistical classification problem is a well-known
problem in many areas of business applications, for example,
as in differentiating between prospective buyers and
nonbuyers, between successful employees and unsuccessful
oneg, or between promising new firms and those likely to
fail. The intent of classification is to properly
categorize or classify subjects or observations into two or
more groups based on certain attributes or characteristics
of the subjects to be classified.

Discriminant analysis is a statistical technique that
uses the information available from a set of data to develop
a rule or method for predicting to which group a new
observation is most likely to belong based on the observed
values of the observation’s attribute variables.
Discriminant analysis provides a powerful technique for
examining differences between two or more groups of
observations with regard to several attribute variables.

For example, a credit manager may wish to classify previous
holders of bank loans inteo two groups--payers or defaulters.

For this situation, the credit manager may use several



characteristics of the loan holders for attribute variables
in the analysis. Some characteristics of interest might be
size of the loan, income, liability, marital status, and
credit history of the loan holder. All of these
characteristics are measured at the time of the loan
application. The analysis begins by finding a discriminant
function which uses the measured values of the
characteristics as input. This discriminant function will
be used to identify potential payers or defaulters in the
future. That is, the credit manager would measure these
characteristics on future loan applicants and, by use of the
discriminant function, identify applicants as either
probable payers or defaulters.

The most commonly used methods for the classification
problem are the parametric statistical methods. These
traditional parametric statistical methods are based on
certain assumptions, and these methods may not yield the
optimal classification rule if the underlying assumptions
are violated. Over the past thirteen years, the literature
has increasingly recognized that a variety of standard
statistical problems, such as discriminant analysis, can be
examined and analyzed advantageously by using computer-
intensive techniques from the field of optimization.
Innovative mathematical programming methods provide
alternative approaches to the standard parametric methods

for the classification problem.



Some of the mathematical programming models have been
found to compare favorably with the parametric models. For
some data configurations, however, these mathematical
programming models fail to provide the optimal
clasgification rule. Furthermore, some of the mathematical
programming models involve a large amount of computational
effort, and there have been only limited simulation studies
evaluating their classificatory performance.

This research examines certain modifications of the
mathematical programming models in order to improve their
¢lassificatory performance. These medifications involve the
inclusion of second-order terms in linear programming (LP)
models and mixed integer programming (MIP) models, and the
inclusion of secondary goals in MIP models. This study
addresses certain issues in implementing mathematical
programming approaches to the classification problem. For
example, with some mathematical programming methods, there
are solutions that are not invariant under data translations
or rotations.

A Monte Carlo simulation study is performed to assess
the performance of classification models. Two standard
parametric models and various mathematical programming
models are employed in this researxch study.
Misclassification rates for various discriminant models are
empirically estimated on both training samples and

validation (heldout) samples. Also, exact misclassification



rates are determined from the estimated classification
functions for some models and from data configurations
involving the contaminated normal distributions. Several
factors, such as sample size, covariance structure,
distribution, and orientation of the data, are varied in the
simulation study. This study will assist decision-makers in
understanding and implementing improved versions of
mathematical programming formulations and, thus, give them
greater flexibility in choosing an appropriate

classification model.

An Application Comparing Different
Classification Methods
An example illustrating the potential of the
mathematical programming approaches to discriminant analysis
is explained using a data set in Johnson and Wichern (1882).
These authors presented an example using this data set to
illustrate the standard discriminant analysis procedures to
classify two groups of families in a city. In the example,
a riding-mower manufacturer is interested in classifying
families into one of two groups--Gl: riding-mower owners,
and G2: those without riding mowers {that is, nonowners).
The classification is based on two attribute variables, x, =
incomes and x, = lot size. Random samples of n, = 12
current owners and n, = 12 current nonowners yield the

values in Table 1.



Table 1.--Data Set for Owners and Nonowners of Riding Mowers

Gl: Riding-mower owners G2: Nonowners
x, (income x, (lot size x; {income x, (lot size
in $1000s) in 1000 ft?) in $1000s}) in 1000 ft?)
64.8 21.6 52.8 20.8
61.5 20.8 64.8 17.2
60.0 18.4 43.2 20.4
87.0 23.6 84.0 17.6
101.1 19.2 49.2 17.6
108.0 17.6 59.4 16.0
82.8 22.4 66.0 18.4
85.5 16.8 47.4 16.4
69.0 ) 20.0 33.0 18.8
93.0 20.8 75.0 19.6
51.0 22.0 51.0 14.0
81.0 20.0 63.0 14.8

Source: Johnson and Wichern, 1992, page 496.

Six classification models are used to analyze this data
set. Fisher’s linear discriminant function (LDF) and
Smith’s quadratic discriminant function (QDF} are used to
represent the parametric statistical method. For the
mathematical programming method, the minimize sum of
deviations (MSD} model and the mixed integer programming
(MIP) model are used in this example. MSD and MIP models
are both linear classification models consisting of only
first-order terms of the two attribute variables. Two
second-order mathematical programming models, consisting of

all first-order and second-order terms (5 variables), are



also used to classify the data in the example. These
second-order models are denoted by MSDS and MIPS.

Table 2 shows results of the six classification models.
If the LDF method is used to classify the data in this
example, then 3 out of 24 observations will be
misclassified. Specifically, one riding-mower owner will be
classified as nonowner and two nonowners will be classified
as riding-mower owners. If the QDF method is used, the same
results will be obtained. That is, 3 out of the 24
observations will be classified incorrectly. For the
mathematical programming methods, if the first-order MSD
model is used, then 5 out of the 24 observations will be
misclassified. Specifically, two riding-mower owners will
be classified as nonowners and three nonowners will be
classified as riding-mower owners. However, if the second-
order MSD model is used, then the same results as the LDF
and QDF methods will be obtained. If the first-order MIP
model is used, then only two of the riding-mower owners will
be misclassified as nonowners. However, if the second-order
MIP model is used, then only 1 out of the 24 observations
will be classified incorrectly. Specifically, only one
riding-mower owner will be classified as nonowner but none
of the nonowners will be misclassified.

It is interesting to note that the three misclassified
observations by the second-order MSD method are also

misclassified by both parametric methods, and that the only



one misclassified observation by the second-order MIP methed

is also misclassified by all other methods. Clearly, from

Table 2.--Classification Results for the Data Set of Owners
and Nonowners of Riding Mowers

Observations and Group into Which Models
Actual Group Classified Observations
Xy X, LDF QDF MSD MSDS MIP MIP5

Gl: Riding-mower owners

64.8 21.6 1 1 1 1 1 1
61.5 20.8 1 1 1 1 1 1
60.0 18.4 (2) (2) (2) (2) (2) (2}
87.0 23.6 1 1 1 1 1 1
101.1 19.2 1 1 1 1 1 1
108.0 17.6 1 1 1 1 1 1
82.8 22.4 1 1 1 1 1 1
85.5 16.8 1 1 (2} 1 (2) 1
69.0 20.0 1 1 1 1 1 1
93.0 20.8 1 1 1 1 1 1
51.0 22.0 1 1 1 1 1 1
81.0 20.0 1 1 1 1 1 1
G2: Nonowners
52.8 20.8 2 2 (1) 2 2 2
64.8 17.2 2 2 2 2 2 2
43.2 20.4 2 2 2 2 2 2
84.0 17.6 {1) (1) {1) (1) 2 2
49.2 17.6 2 2 2 2 2 2
59.4 16.0 2 2 2 2 2 2
66.0 18.4 2 2 2 2 2 2
47.4 16.4 2 2 2 2 2 2
75.0 19.6 (1) (1) (1) {1) 2 2
33.0 18.8 2 2 2 2 2 2
51.0 14.0 2 2 2 2 2 2
63,0 14.8 2 2 2 2 2 2

Note: The misclassified observations are shown in
parenthesis.



the results of this example, an appropriate mathematical
programming method has the potential to effectively classify
observations from certain data sets and, therefore, should

be investigated.

Purpose, Problem, and Significance

Purpose of the Research Study

The purpcse of this research is to analyze the
performance of certain mathematical programming models for
solving the statistical classification problem under certain
modifications of these models. The research in this study
investigates the appropriateness of the inclusion of second-
order terms in LP models and in MIP models. The study also
analyzes the effects of some existing and proposed seccndary
goals in MIP models on the classificatory performance of
these models. The appropriateness of using contaminated
normal data in simulation studies to generate different

types of nonnormal data is also examined.

Problem Motivating the Research Study

The problem motivating this study is the lack of
performance results for mathematical programming models
proposed over the past decade to solve the discriminant
problem. Although several Monte Carlo simulation studies

have investigated the advantages and disadvantages of using



LP-based and MIP-based models, these simulation studies have
not thoroughly explored certain modifications to these
mathematical programming approaches for solving the
discriminant problem. These simulation studies typically
have not used higher-order terms in the classification
models. One of the problems associated with MIP meodels is
the possibility of numerous alternate optimal solutions.
While these alternate solutions are all optimal on the
training set of cbservations, they may each have different
performance results on a validation set of observations.
Some researchers have studied mathematical programming
models with secondary gocals, but they have not addressed the
importance of the secondary goal.

Most of the simulation studies investigating
mathematical programming approaches to the classification
problem fail to use contaminated normal data, although
normal and other nonnormal distributions are explored.
Several simulation studies generate nonnormal data, using a
simulation method in which the mean, variance, skewness, and
kurtosis are specified, but the actual shape of the
distribution of the data is not known. The range of values
for the skewness and kurtosis of the contaminated normal
distribution is not readily available for researchers

desiring to use contaminated normal data in Monte Carlo

simulation studies.
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Significance of the Regeaxch Study

Advances in computer technology have spurred research
in computer-intensive techniques such as solving statistical
problems with mathematical programming models. The results
of this research would allow practitioners to understand and
implement improved versions of mathematical programming
formulations for the discriminant problem by utilizing
higher-order terms and appropriate secondary gcals in
certain mathematical programming models. These formulaticns
have the potential for being very useful in situations in
which violations of the usual parametric assumptions of
discriminant analysis are severe.

Previous research studies of mathematical programming
models primarily have investigated linear discriminant
functions that included only first-order terms. It is easy
to find data for which these first-order mathematical
programming models fail to yield the optimal classification
rule. Mathematical programming models that use all first-
order terms and second-order terms of the attribute
variables include all of the terms that are present in
Smith’s quadratic discriminant function. Thus, these
mathematical programming formulations with first-order and
second-order terms have the potential for being competitive
with the quadratic method in problems requiring a
classification function that is nonlinear in the attribute

variables. The use of second-order terms in mathematical
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programming models would allow for greater flexibility in
choosing an appropriate discriminant procedure.

The usefulness of various secondary goals proposed in
the literature has not been adequately addressed. An
appropriately selected secondary goal has the potential of
improving the classificatory performance of the mathematical
programming model on the validation samples. Understanding
the types of configurations that may warrant the use of a
certain secondary goal is important in utilizing the
appropriate mathematical programming procedure.

The normal distribution contaminated with outliers is
mentioned in the literature as being an important
distribution to describe certain real-world data sets.
Understanding the range of possible values for the skewness
and kurtcsis for these distributions will assist researchers
in generating certain types of nonnormal distributions. An
important advantage of using the contaminated normal
distribution in a Monte Carlo simulation study investigating
the performance of linear discriminant functions is that the
exact misclassification rate of the estimated linear
discriminant function can be found analytically, and, hence,

the need for large validation samples is eliminated.

Organization of the Dissertation

This dissertation is organized into six chapters.

Chapter 1 provides introductory material explaining an
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overview of the statistical problem, including a numerical
example comparing different classification methods. Chapter
1 also contains the purpose, problem, and significance of
the study. Chapter 2 provides a literature review of
mathematical programming approaches for digscriminant
analysis, and it also includes research questions of the
study. Chapter 3 contains the theoretical framework of the
two-group classification problem and the proposed
clagsification models used in the study. Chapter 4 provides
experimental designs for the Monte Carlo simulations used in
this study, including the selection of models and parameter
settings of data configurations. Chapter 5 presents
experimental results obtained from the simulations. Chapter
6 provides a summary of the findings, key assumptions,

future directions, and major contributions of the research,



CHAPTER II

LITERATURE REVIEW

Overview of Previous Research

The classification problem in discriminant analysis is
concerned with correctly classifying observations into well-
defined groups or classes when group membership of these
observations is either known or unknown (Huberty 1984).
Applications of discriminant analysis extend to both
business and scientific disciplines, inecluding psychology
(Huberty, Wisenbaker, and Smith 1987); economics (Sudarsanam
and Toffler 1985); accounting (Welker 1974); and finance
(Srinivason and Kim 1987).

Existing parametric statistical methods for solving the
classification problem include Fisher’s (1936) linear
discriminant function (LDF) and Smith‘s (1947) quadratic
discriminant function {(QDF). Optimality for the LDF and QDF
methods is based on the assumption that the attribute
variables for each group follow a multivariate normal
distribution, with equal and unequal variance-covariance
structure across groups, respectively (Johnson and Wichern
1892). Alternative approaches for solving the

classification problem have been researched in order to

13
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develop promising models that are robust to violations of

these assumptions (Freed and Glover 1986).

Linear Programming Approaches

Linear programming approaches for solving the
statistical classification problem have been given
considerable attention since the introduction of LP-based
models for the discriminant problem by Freed and Glover
(1981) and Hand (1981). 1In many research studies involving
LP models for discriminant analysis, the objective is to
find a discriminant rule that is either optimal or
competitive with the parametric approaches in correctly
classifying observations from a set of new observations or
from a representative validation sample (Glover, Keene, and
Duea 1988). These new approaches are relatively easy for
practitioners to implement.

In recent years, theoretical and empirical
investigations of innovative discriminant analysis
procedures have been an attempt to improve upon the
classificatory performance of alternative discriminant
procedures as opposed to the standard statistical
discriminant procedures. Some studies have focused on the
undesirable problems associated with mathematical
programming models. Koehler (1989%a and 1989b), Markowski
and Markowski (1987), Rubin (1989 and 1991), and Glover

{1990) have investigated problems that plagued certain
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mathematical programming models. These problems included
formulations that obtained unbounded sclutions, trivial
golutions, and soluticnsg that were not invariant under data
translation or rotation. These problems have inspired
numerous variations of mathematical programming
formulations. Normalization constraints, such as those
discussed in Glover, Keene, and Duea (1988) and Glover
(1990), were introduced to overcome the undesirable problems

associated with early mathematical programming formulations.

Mixed Integexr Programming Approaches

Each LP-based model obtains a classification rule by
optimizing an objective function that is a surrogate for
minimizing the number of misclassifications. To directly
minimize the number of misclassifications in the training
sample, MIP models have been proposed. However, it does not
always follow that these models will perform optimally on
the validation sample. Because of the computationally
intensive nature of these models, several researchers have
proposed heuristic algerithms to make the MIP approcach more
computationally efficient. Koehler and Erenguc (1990),
Banks and Abad {(1991), and Rubin {(1990a) have investigated
heuristic algorithms that appear to yield good, albeit
subcptimal, solutions to the MIP models. Loucopoulos (1993)

investigated the performance of MIP models specifically
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designed for the multiple groups case. These MIP models

tend to be particularly computer intensive.

Classificatory Performance of Models

Several recent studies have compared the classificatory
performance of LP-based discriminant procedures with the
performance of the standard statistical procedures.
Experimental studies have been conducted by Mahmood and
Lawrence (1987), Joachimsthaler and Stam (1988), Markowski
and Markowski (1987), Freed and Glover (1986), and Rubin
(1990b). The MSD (minimize sum of deviations} model of
Freed and Glover (1986) was found to compare favorably with
the existing discriminant procedures. However,
Joachimsthaler and Stam (1988} concluded that relative
differences in performance by linear programming
formulations and standard statistical procedures are small,
even under multivariate nonnormal conditions. An early
study by Markowski and Markowski (1985) focused on
limitations of the LP procedures. Studies such as Glover
(1990) and Glover, Keene, and Duea (1988) later appeared to
overcome these special limitations.

Rubin (1990b) found that Smith’s quadratic procedure
was superior to the fifteen linear programming models tested
in his study when the data follow a multivariate normal
distribution, with various parameter values for the means,

variances, and correlations. This result is not totally
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surprising since the quadratic method allows for a nonlinear
classification function. Silva and Stam (1594) conducted a
simulation study using second-order terms in the hybrid and
MSD models. They considered a large training samples of
size 100 from exponentially distributed random variables.
However, they did not consider the MIP model in their study.
For the highly nonnormal data generated in their study, the
hybrid model and the MSD model greatly benefitted from the
second-order terms.

Several studies proposed the use of secondary goals in
mathematical programming models (Freed and Glover 1981,
Bajgier and Hill 1982, Glover 1990, and Rubin 199%0a}.
Bajgier and Hill (1982) used an LP-based model, with the
first goal of minimizing the deviations of the misclassified
observations and the secondary goal of maximizing the
deviations of the correctly classified observations from the
cutoff value in the discriminant rule. This model is known
as the 0SD (optimize sum of distances) model. Bajgier and
Hill {1982) also presented in their studies an MIP model
with secondary goals. The first goal of their MIP model is
to minimize the number of misclassified cbservations, while
the secondary goals are to minimize the deviations of the
misclassified observations and to maximize the deviations of
the correctly classified observations. Rubin {(1990a) used a
secondary goal that maximized the minimum interior distance

of the correctly classified observations and found promising
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results for the MIP model with this secondary gcal in a

limited simulation study.

Contaminated Norxrmal Data

Several studies, such as Nath (1984), Hampel (1974),
and Lee and Ord (1990), have considered the contaminated
normal distribution to be useful in simulation studies.

Nath (1984) pointed out that the contaminated normal
distribution is of particular importance to researchers who
wish to determine analytically the exact misclassification
rate of a linear discriminant function for future
observations. Thus, from the linear discriminant function
estimated by using a training sample, an exact
misclassification rate can be calculated without using large
validation samples.

The contaminated normal distribution is widely accepted
as realistic because a small proportion of outlying
observations occurs even in good data sets. Especially in
business-related problems, cutlier-contaminated data are not
uncommon (Mahmood and Lawrence 1987). Although the
contaminated normal distribution is generally accepted as
being an important nonnormal distribution, it has been used
very little in Monte Carlo simulation studies that have
investigated misclassification rates of mathematical
programming approaches for solving the two-group

discriminant problem.
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In some published simulation studies, such as Freed and
Glover (1986} and Rubin (1990b), only normally distributed
data were used. Restricting the simulated data to normally
distributed data eases the interpretation of the results as
well as limits the complexity involved in generating
multivariate data. Other studies, such as Joachimsthaler
and Stam (1988), used a technique for generating nonnormal
data with specified values for skewness and kurtosis. This
technique for generating nonnormal data was presented by
Vale and Maurelli (1983). However, there is no easy way to
describe the generated data or the cumulative distribution
function of the population. With contaminated normal data,

the distribution of the data can be easily described.

Research Questions

Motivation for Research Question on Second-Order Term

The appropriateness of adding higher-order terms to
mathematical programming models has not been thoroughly
addressed (Silva and Stam 1994). In multiple regression
analysis, it is well known that the independent variables
used in a linear regression function may be first-order
terms or higher-order terms (Draper and Smith 1981). The
same approach may be used in discriminant analysis in which
squared texms, crossproduct (interaction) terms, or higher-
order terms are included to improve the classificatory

performance of the models (Johnson and Wichern 1992).
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Freed and Glover (1986) regarded Fisher’s LDF procedure
as an important benchmark of performance and showed that the
MSD method with first-order terms performed competitively
with the Fisher’s LDF and the logistic models in a
simulation study. In a more extensive simulation study in
which the QDF procedure was included, Rubin (193%Cb) found
that Smith’s QDF procedure was superior to the fifteen LP-
based models tested in his study when the data followed a
multivariate normal distribution with various parameter
values for the means, variances, and correlations. This
result is not totally surprising since the quadratic method
allows for second-order terms in the model, whereas the LP-
based models include only first-order terms. Rubin (1990b,
page 382) stated that "it is incumbent on researchers to
include QDF as a benchmark when seeking situations in which
the linear programming approaches would be advantageous."
Rubin (1990b) also showed that the MSD method performed
competitively with Fisher’s LDF procedure and appeared to be
one of the more promising LP-based models.

The procedure for implementing a mathematical
programming model with all first-order and second-order
terms present is similar to including second-order terms in
a linear regression model. For example, let Y, = (a,,, a,,

- a,p}T be the i*™ observation with p attribute values. A
first-order model for any of the LP-based procedures would

P
simply use JElaUxJ as the discriminant score, with the
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weights x, determined by the linear programming approach. A
complete second-order model with all first-order terms would
use the following discriminant score in the model, with the
Xyy: Xy, and x,; weights to be determined by the linear
programming approach:
P, P
j‘ilaux‘,-1 + ﬁlauxj + E‘E A& 13Ky

It is important to note that the above discriminant
score is linear in terms of the parameters (weights) to be
estimated, although it is a second-order polynomial in terms
of the attribute values., Silva and Stam (1994) used a
second-order discriminant score in a simulation study that
involved the LDF, QDF, hybrid, and MSD methods. However,
their simulation study was restricted to exponentially
distributed attribute values and training samples of size
100. Also, Silva and Stam (1994) found that including the
crossproduct terms in the model appeared to improve the
classificatory performance when correlation between
attributes was present. However, it is not appropriate to
extend this conclusion to situations in which other data
configurations are used. Establishing conditions for
translational and rotational invariance of LP-based model
has been important in selecting desirable models (Freed and
Glover 1986, Koehler and Erenguc 1980, Markowski and
Markowski 1985}). Silva and Stam (1994} did not address this

issue in evaluating models with second-order terms. From
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the literature, it is clear that further research needs to

address the following research guestion.

Research Question 1
How do second-order terms in mathematical

programming models affect the performance of certain
two-group classification models for small to moderate
training sample sizes and for normal and nonnormal
data? Can the correlation structure of the data
determine whether the crossproduct terms should be
included in the models? Under what conditions are
these models invariant with respect to translation and

rotation of the data?

Motivation for Research Question on_ Secondary Goal

The hybrid model (Glover 1990) has several desirable
goals. These goals require properly selected weights to
prioritize the goals in the objective function of the
formulation for the hybrid model. Silva and Stam {1994)
found that the hybrid model performed competitively with the
LDF and the QDF procedures when second-order terms were
included in the model. Bajgier and Hill {(1982) presented an
MIP model with the goals of minimizing the deviations of the
misclassified observations and maximizing the deviations of
the corxrectly classified observations from the cutoff value

in the discriminant rule. Since the MIP model is
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computationally intensive, particularly for large sample
sizes, few simulation studies have included the model. Some
extensive simulation studies, such as Rubin {(1990b) and
Joachimsthaler and Stam (1988), have excluded the MIP model
because of the computational effort.

In recent simulation studies by Koehler and Erenguc
{1990} and Stam and Jones (1990), the MIP mecdel typically
did not perform much better than the QDF or the LDF models
on validation samples for configurations with normal and
uniform distributions. Since the MIP model may have many
alternative solutions that are optimal on the training
samples (Bajgier and Hill 1982), it is possible that an
appropriate secondary goal may improve the classificatory
performance of the MIP model on the validation samples. The
secondary goal would considerably limit the number of
alternative solutions. Rubin (1990a) also used a secondary
goal in his study. His secondary goal maximized the
deviation between the cutoff value and the discriminant
score of the closest correctly classified observation to the
cutoff value. Another way to state this is to say that the
secondary goal maximizes the minimum interior distance of
correctly classified scores (Rubin 1990a). This very
limited simulation study, which used only the normally
distributed data, showed promising results for the MIP model

with this goal.
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One secondary goal that has not been investigated with
MIP models is the goal of maximizing the separation between
the discriminant scores of the centroid {(mean vector of the
attribute values) of each group. The theoretical motivaticn
for using this secondary gocal is the fact that Fisher’s LDF
method can be derived by maximizing the absolute difference
|w'(a, - &,)|, where a, and a, are the mean vectors of the
attribute values for group 1 and group 2, respectively,
subject to the constraint wSw = 1, where S is the estimated
variance-covariance matrix of the two populations (Morrison
1976). Now, w'Sw = 1 is nonlinear in the weights w, of the
w vector and thus cannot be used in the standard MIP
formulation, which includes only linear constraints in the
parameters that need to be estimated. One way to remedy
this situation is to use a constraint on the range of the
discriminant scores or a constraint on the range of values
for the weights. These constraints would be surrogates for
the constraint w'Sw = 1. The second research question
addresses the issue of the importance of certain secondary

goals in MIP models and is stated below.

Regearch Question 2
Can the use of certain secondary goals improve
the performance of MIP models for the two-group

classification problem on small to moderate sample

sizes?
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Motivation for Research Question on _Contaminated Normal
Distribution

Several Monte Carlo simulation studies use nonnormal
distributions to evaluate the robustness of various
statistical procedures. Some studies have used
distributions such as uniform, double exponential,
lognormal, and discrete uniform to generate nonnormal data
(Stam and Jones 1990; Nath, Jackson, and Jones 1992). These
distributions are often the standard types of distributions
used in simulation studies to represent distributions with
various skewness and kurtosis values. However, not all real
data correspond to the skewness and kurtosis values of these
distributions. Fleishman (1978) generated ncnnormal data by
using a polynomial transformation and constructed a table of
values for the skewness and kurtosis. This table could be
used to select various skewness and kurtosis values for
generating nonnormal data with a poclynomial transformation.
Vale and Maurelli (1983} observed that the shape of the
generated data by Fleishman’s method was difficult to
understand and that both the exact probability density
function and the cumulative distribution function were
unknown.

Contaminated normal data is viewed as an important
distribution in representing real-world data {(Nath 1984,
Hampel 1974, and Lee and Oxrd 19%0). However, only Lee and
Ord {(19290) used the contaminated normal to evaluate LP-based

models in a simulation study. Perhaps one reason that the
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contaminated normal distribution is not widely used in
simulation studies evaluating LP-base models is that the
range of possible values for the skewness and kurtosis is
not readily available. Joachimsthaler and Stam (1988) used
Fleishman’s method and selected various values for the
skewness and kurtosis from the table to generate nonnormal
data.

One important motivation for considering the
contaminated normal distribution as a nonnormal distribution
in simulation studies with linear discriminant functions is
that an exact misclassification rate can be calculated from
an estimated linear discriminant function under the
assumption of this distribution. Therefore, under this
distribution, the need for validation samples can be
eliminated when linear discriminant functions are being
evaluated.

The following research question is important to
researchers desiring to conduct a simulation study with
nonnormal data, particularly if exact misclassification
rates from estimated linear discriminant functions are

desired.

Regearch Question 3
Since the contaminated normal distribution
(mixture of two normals) can be used to assess the

performance of linear discriminant functions without a
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validation sample, how appropriate is this distribution
for a simulation study in generating nonnormal data
with a variety of values for the skewness and kurtosis
measures? In particular, what range of values for the
measures of skewness and kurtosis can the contaminated
normal distributions have by using different parameter
settings for the mean, standard deviation, and

contaminating fraction?

Summary of Research Questions

This research study investigates the effect of certain
modifications of mathematical programming models for solving
the statistical classification problem. A summary of the
research questions to be answered in this research study is

pregsented below.

Research Question 1
How do second-order terms in mathematical

programming models affect the performance of certain
two-group clasgsification models for small to moderate
training sample sizes and for normal and nonnormal
data? Can the correlation structure of the data
determine whether the crossproduct terms should be
included in the models? Under what conditions are
these models invariant with respect to translation and

rotation of the data?
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Research Question 2

Can the use of certain secondary goals improve
the performance of MIP models for the two-group
classification problem on small to moderate sample

sizesg?

Research Quegtion 3
Since the contaminated normal distribution

(mixture of two normals) can be used to assess the
performance of linear discriminant functions without a
validation sample, how appropriate is this distribution
for a simulation study in generating nonnormal data
with a variety of values for the skewness and kurtosis
measures? In particular, what range of values for the
measures of skewness and kurtosis can the contaminated
normal distributions have by using different parameter
settings for the mean, standard deviation, and

contaminating fraction?



CHAPTER III

THEORETICAL FRAMEWORK

The goal of classification analysis is to describe,
either graphically or algebraically, the differential
features of objects (observations) from several known
collections (populations) and to allocate new cbjects into
two or more labeled classes (Johnson and Wichern 1992).

Good classification procedures are constructed to achieve a
high rate of correctly classifying observations under
certain conditions. If one class or population has a
greatexr likelihood of occurrence than the others, the
classification rule should take this prior probability of
cccurrence into account. The cost of misclassification is
another important consideration. The cost of misclassifying
an observation from group 1 into group 2 may be greater than
the cost of misclassifying an observation from group 2 into
group 1. Most classification rules can be adapted to take
into account the cost of migclassification as well as the

prior probability of occurrence (Banks and Abad 1991).

The Two-Group Classification Problem

The two-group statistical classification problem may be

more formally stated as follows. Let G,, i = 1, 2 be two

29
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distinct populations. Assume that each object in G,
possesses a set of common characteristics or attributes
defined by Y = (a;, a5 ...., aQT, where the superscript T
denotes the transpose of the vector and the subscript p
denotes the number of attributes. The a,’s are assumed to
be obsgervable numerical entities. If an observatiocn Y =

)T

{a,, a5, ...., a is randomly selected from the combined

P
populations of G, and G,, the statistical classification
problem is to construct a decision rule that optimizes some
criterion that is a surrogate for classification accuracy.

For many two-group discriminant models with lineaxr
discriminant functions, the resulting decision rule consists
of an estimated vector of weights X = (x,, %X,, ...., XQT
and scalars C, and C,, which are employed in the following
fashion to classify an observation Y = (a,, a,, ...., aQT:
assign observation Y to group 1 if

¥iX = E ax, = C
= g K 1

and assign observation Y to group 2 if

YTx—Eax = C
IR Rt i 2

The observation Y is misclassified if the discriminant
score Y'X does not fall on the correct side of the cutoff
value C, or C,. For some classification models, C, and C,
are set equal to each other. In such cases, the optimal
decision rule provides a hyperplane that separates the

groups with a minimum number of misclassifications.
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However, other models allow for a "classification gap" by

letting C, be greater than C,.

General Classification Rules for Parametric Models

Classification rules for the parametric statistical
models are based on the assumption that each group under
consideration has a multivariate population density function
f,(Y) for i = 1, 2 over the p measured variables.
Furthermore, let the prior probability and the cost of

misclassification be defined as follows:

P is the prior probability of being from group 1,

P, is the prior probability of being from group 2,

C(1]|2) is the cost of misclassification when an
observation from group 2 is incorrectly classified
ag from group 1,

C(2|1) 1is the cost of misclassification when an
observation from group 1 is incorrectly classified

as from group 2.
The cost function can be written as follows:

if 1 % 5 for i, j

|
)
\¥)

N

0
clilj) =
0 if i =3  for i, i

Il
[y
\¥)

The optimal classification rule is to assign an

oObservation Y to group 1 if
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£00 [ c(1]2) 1 1 Pz]
£,(Y) c(2]|1) Py

and to assign an observation Y to group 2 if

£0Y) l C(llz)] _Pz_l
£, (Y) c(2i1) P

Now if the misclassification costs are equal and the prior
probabilities are equal, then the optimal classification

rule is to assign an observation Y to group 1 if

£,{Y)
fz (Y)

and to assign an observation Y to group 2 if

£,(Y)
£, (Y)"

For the discriminant functions used in this study, all
migclasgssification costs are assumed to be equal and all
prior probabilities are assumed to be equal. Hence, these
parameters (costs and prior probabilities) do not need to be

assigned values in the discriminant functions.

Fisher’s Linear Discriminant Function (LDF)

Fisher’s (1936) linear discriminant function is
designed to maximize the likelihood of a correct
classification (minimize the probability of
misclassification) when the groups have multivariate normal
distributions with equal variance-covariance structures. If
£,(Y) is the multivariate normal distribution with mean

vector pu, and variance-covariance matrix I, for i = 1, 2
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and Z, = L, = £, then the optimal classification rule is to
assign an observation Y to group 1 if

By - w7 - Ry - w) T ey 4o 2 O
and to assign an observation Y to group 2 if

(hy - )2 - %lpy - p) T, o+ Ha) < 0.

In most practical situations, the population parameters
are not known. If u,, u4,, and £ are replaced by their
corresponding maximum likelihood sample estimators ?1, ?b

and S, then the optimal classification rule is to assign an

observation Y to group 1 if
(Y, - ¥, - %(¥, - T8UY, + Y, = O
and to assign an observation Y to group 2 if

(¥, - Y78y - %(Y, - T (Y, + ¥,) < o.

Smith’s Quadratic Discriminant Function (ODF)

Smith’s (1947) quadratic discriminant function is
designed to maximize the likelihood of a correct
classification (minimize the probability of
misclassification) when the groups have multivariate normal
distributions with unequal variance-covariance structures.
The QDF model includes first-order terms and second-orderx
terms of the attribute variables. Using the same notation

as in the LDF model, but here =&, # Z,, the optimal
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classification rule is to assign an observation Y to group 1

if

(Y - p) 5, (Y - ) - (Y- pOTEHY - o) - In —Fi‘l‘:- z 0
2

and to assign an observation Y to group 2 if

(Y - p) 27N Y - ) - (Y - )TNy - o) - 1n( :zl: <
2

If u,, K, Z,, and I, are replaced by their
corresponding maximum likelihood sample estimators Y, Y,
S,, and S,, then the optimal classification rule is to

assign an observation Y to group 1 if

(Y - ?Z)Tsz-l(y - Y,) - (Y - YIS, Y - Y,) - 1n (—:——z—l:—} 2 0
2

and to assign an observation Y to group 2 if

(Y - §,)Ts,7 (Y - ¥,) - (Y - Y87y - ¥)) - ln( :2‘: } < 0
2

Mathematical Programming Models

In general, the mathematical programming models for
solving the two-group classification problem develop a
hyperplane separating the two groups. The hyperplane is

described by the eguation

P
z x.a = C
<1 %y

The a,; variable represents the value of attribute j for
observation i. The x; and C variables represent the unknown

attribute weights and the cutoff value, respectively.
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Minimize Sum of Deviations Model

There is a plethora of variations on the minimize sum
of deviations (MSD) model (Koehler and Erenguc 1990). The
model presented in Ragsdale and Stam (1991) is selected.
This model is similar to the original model suggested by
Hand (1981). It does not require any normalization
constraints such as that proposed by Freed and Glover
(1986) ; Glover, Keene, and Duea (1988); and Glover (19%90).
Some of these normalization constraints have undesirable
side effects, as illustrated by Koehler {(198%a and 1983%b).
The objective of the MSD model is to minimize the sum of
misclassification deviations. The criterion of minimizing
the misclassification deviations is a surrogate for directly
minimizing the number of misclassifications. The MSD model
by Ragsdale and Stam (1991), however, does include a gap
which separates the hyperplanes used for classification.
Hand (1981) referred to the gap as a "safety margin."
Koehler (1989a) showed that Hand’s model does not have the
undesirable side effects displayed by some other
mathematical programming models.

The MSD model of Ragsdale and Stam (1991) is presented
below. The training sample consists of n, (i = 1, 2)
observations from each of two groups for a total of n = n; +
n, observations. The notation G, and G, will denote the sets

of observations from group 1 and group 2, respectively.
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denotes the external (undesirable) deviation of a
misclassified observation’s discriminant score
from 0 or €. For a correctly classified
observation, d, is equal to zero.

denotes the j™ attribute value for observation i.
denotes the weight for attribute j.

denotes the constant term in the discriminant
function.

denotes the minimum gap size separating the
discriminant scores between the two groups.
denotes the number of predictor variables

(attributes) .

MSD Formulation:

Minimize rd, + Zd,

166, 166G,

subject to

where

Xy
di

b

1s a nonnegative variable (i = 1, 2,

P
Xo + Za;x, - d, s 0 i
0 Pt b ) €Gy
r 4
Xg + La, X, + z & ieG
0 Pttt 1 2
is a sign-unrestricted variable (j = 0, 1,..., p)

is a small positive constant.
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Mixed Integer Programming Model

The mixed integer programming {(MIP} model used in this
study is similar to that presented in Koehler and Erenguc
{1590) . By replacing the d;’s in the MSD model with binary
variables I,’s and multiplying the I,’s by a large constant
M in the constraints, it is easy to construct the MIP model.
Using the same notation as in the MSD model, the MIP
formulation is expressed next.

MIP formulation:
iEGl

Minimize I, +Z 1
1€G,

subject to

P
X, + Za X, - MI 0 ieG
0 Patat A t = 1
Zp MI 1eG
X, + & X, + £ ie
0 Perhat N 1 =2 2
where
X, 1s a sign-unrestricted variable (j =0, 1,..., p)

I, is a binary variable (i = 1, 2,
g is a small positive constant
M is a large positive constant.
In the above constraints, the M parameter can be
interpreted as the maximum possible deviation that a
misclassified observation can be from the gap. In choosing
the values of M and &, Koehler and Erenguc (1990, page 71)

noted that "we rely on the standard maxim in mixed integer
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programming to choose M large enough and & small enough."

Hybrid Model

The hybrid model was first introduced by Freed and
Glover (1986). Unlike the objective function of the MSD
model, which is only minimizing the external (undesirable)
deviations, the objective function of the hybrid model
simultaneously considers both minimizing the external
deviations and maximizing the internal (desirable)
deviations. Furthermore, the hybrid model alsoc considers

the maximum deviation of observations from the separating

hyperplane.

Hybrid formulation:

Minimize ho, + £h,o, - kB, - Zk,B
00 16011 00 iEGii

subject to

P
P .
jElauxJ + 0 + 0, - By -8B, = Db 1€G,
s :
~-n 8y, X + n, I Za;X = 1
2 (g6, ym1 WY eg, gm1 T

where

0y, a,, B, and B, are nonnegative variablesg

X;’s and b are sign-unrestricted variables

G =G Ug,
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To give an interpretation of the objective function of
the hybrid model, the «,’s can be considered as the
misclassified {(external) deviations, and the 8,'s can be
considered as the correctly classified (intexnal)
deviations. The term «, can be interpreted as the maximum
external deviation, whereas f3; can be interpreted as the
minimum internal deviation if the h, and k,; weights in the
objective function are very large relative to h, and k,.

The last constraint is a normalization used to prevent a
degenerate (zero) solution. Glover (1990, page 772)
remarked that this normalization "eliminates the previous
distortions in the LP models and has attractive properties
enabling it to obtain demonstrably superior solutions." 1In
this study, h, = 150, h, = 2, k, = 80, and k, = 1 are
selected. This choice of coefficient values is consistent
with Glover’s (1990) recommendations and with the parameters

of the hybrid model in Silva and Stam (1994).

Second-Order Model Formulation

To form second-order mathematical programming
formulations, the squared attribute values and the
crossproduct values of all attributes need to be included as
additional predictor variables. Note that the second-order
terms in the MSD, MIP, and hybrid formulation still have
constraints that are linear in the x parameters |

(coefficients of the discriminant rule). However, the
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congtraints are obviously nonlinear in the attribute values.
Since the second-order mathematical programming models have
all of the terms present in the Smith's quadratic
discriminant function, the second-order mathematical
programming formulations have the potential of being
competitive with the quadratic method in problems requiring
a nonlinear clasgification function.

The following lemma and theorem are presented to
establish that the MSD, MIP, and hybrid models with all
first-order terms and second-order terms are translationally
and rotationally invariant. Furthermore, the MIP model will
not have more misclassifications on the training sample than
the MSD, hybrid, or QODF methods if all first-order terms and

second-~-order terms are included in the models.

Lemma 1

Any linear combination of second-order and first-order

terms of a, = (a,;, a,,, ..., a,)" can be expressed as
ajWa, + alx, where W = (w,) is a symmetric matrix and x =
(X3, Xy, ooy ng. The coefficients of the square terms are

Wy, the coefficients of the crossproduct terms are 2w,, and
the coefficients of the first-order terms are Xy.
Proof

A linear combination of the second-order and first-

order terms of a; = (a;,, a,;, ..., a,)" can be written as
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P

Eaux” + Eauxi+ EEaihaikxhk = Eza,haikxhk + Eaij 3

P P
Y Eana Wy + £a,,x
hel kel TSRV hK =1 13%)

T

= aiWa, + aix
where W = {wy,) and
X/ 2 if h > k
Whe = Xoen/ 2 if h < k

From the equations above, the statement of the lemma readily

follows.

Theoxem 1

If all of the first-order terms and second-order terms
are included in the MIP, MSD, and hybrid formulations, then

1. The MIP method will not have more
misclassifications than the MSD, hybrid, or QDF methods on
the training sample.

2. The MIP, MSD, and hybrid methods are rotationally
and translationally invariant.
Proof

The first statement follows since the MIP procedure
directly minimizes the total number of misclassifications on
the training sample as seen by its objective function and
since each of the MIP, MSD, hybrid, and QDF procedures is
assumed in this theorem to contain all first-order and
second-order terms. To show that the second statement

holds, let P be an orthogonal matrix and let ¢ be a vector
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of constants of length p. By Lemma 1, the discriminant
score of observations for the MSD, MIP, and hybrid
formulations can be written as x, + alWa, + aix.

Now consider both an orthogonal rotaticon P and a

translation ¢ of the a, vector. We have
X, + [P(a, + c))™W[P(a, + c)] + [Pla, + c)]™x

X, + a’(P™WP)a, + (Pc)™Pa, + aj(P'WP)c

+ cT(P'WP)c + alP™x + c¢'P'x

~
X, + ayWa, + aix

where X, = X, + T (P"WP)c + c"Px
W = PTwWp
X = P™x + 2PTWPc.

We can see that X, + aﬁﬁéi + alX is still a linear
combination of both the first-order and second-order terms
of the values of the vector a,. Thus, the statement of the
theorem follows.

Note that if some of the second-corder terms are
missing, such as the crossproduct terms, then it is possible
that the QDF procedure way produce fewer misclassifications
than the MIP procedure on the training sample. Alsc note

that if the crossproduct terms were missing from the second-
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order models for the MSD, MIP, and hybrid procedures, then

these formulations would not be rotationally invariant.

MIP Models with Secondary Geoals

Four MIP models that are used with secondary goals are
investigated. The first and second MIP models have the
secondary goal of maximizing the distance between the means
of the discriminant scores for the two groups. These two
models have not been previously investigated. The third and
fourth MIP models are existing models that have not been
thoroughly investigated under nonnormal configurations. The
secondary goal of the third MIP model is used to maximize
the minimum deviation of the correctly classified
observations, whereas the secondary goal of the fourth MIP
model is used to minimize the sum of all the deviations of
the misclassified observations from the cutoff value in the
discriminant rule. Because the motivation for including the
secondary goal of maximizing the distance between the means
of the discriminant score of attribute values is based on
Fisher’s method, it follows that this secondary goal may
perhaps be more appropriate with only first-order terms in
the MIP models. The four MIP models with secondary goals

are presented next.



MIP 1: MIP model with a secondary goal of maximizing the

distance between projected means {bounded scores).

n
Minimize PEI, - P,
i=1

subject to

P
rax, - MI < c - & i1eG
ety 11 1
E M 1eG
a, x = c - i€
Pttt 2 1
p 1]
Lajx, + MI, = C + £ 1€G,
§=1
g M 1eG
r a; X < c + ie
et e 2 2
P _(2) p (1)
ﬁfﬁ Xy - EE% X, 2 d
where

P,, P, are positive constants

I, is a binary variable (i =1, 2, ..., n)

Xy is a sign-unrestricted variable (j = 1, 2,
M, M,, and & are positive constants

8 is a nonnegative variable

a,y is the j*™ attribute value for the i™ observation

(1)
a; is the average value of the a,’s for group i

c is a sign-unrestricted variable.
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MIP 2: MIP model with a secondary goal of maximizing the

distance between projected means (bounded coefficients).

n
Minimize PZI, - P,
i=1

subject to

P

L a,x, - MI < c - & 1eG

Fefa b 1 1

}IZ)) MI 1eG
a; X, + = C + & ie

fratats il 1 2

p (D (1)

where

P,, P, are positive constants

I, is a binary variable (i =1, 2, ..., n)

X, is a sign-unrestricted variable (j = 1, 2, ..., p)
M and ¢ are positive constants

d is a nonnegative variable

a;; is the j* attribute value for the i'" observation
(1)

a, 1is the average values of a, for group i

¢ is a sign-unrestricted variable.
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MIP 3: MIP model with a secondary goal of maximizing the

minimum internal deviation (bounded coefficients).

n
Minimize BRZI, - PJd
i=1

subject to

p .
L a;xy +d - MI, s c - & 1eG,
J=1

P
J-

where

P,, P, are positive constants

I, is a binary variable (i = 1, 2, ..., n)

X, is a sign-unrestricted variable {(j = 1, 2, ..., p)
M and ¢ are pesitive constants

d is a nonnegative variable

a;; is the j*™ attribute value for the i™ observation

c 1s a sign-unrestricted variable.



MIP 4: MIP model with a secondary goal of minimizing the

sum of external deviations.

n n
Minimize PZI, + P,Xd
i=1 i=1

subject to

p
Tawx, -d, = ¢ - ¢ ieG
= 20%) 1 1
7 4 i eG
a, X, + = C + & ie
=, 30%) 1 2
MI, = d,

where

P,, P, are positive constants

I, is a binary variable (i = 1, 2, ..., n)

X, is a sign-unrestricted variable (j = 1, 2, ...,
M and ¢ are positive constants

d, is a nonnegative wvariable (i =1, 2, ..., n)
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a;; is the j* attribute value for the i*™ observation

¢ is a sign-unrestricted variable.
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Contaminated Normal Distribution

Contaminated normal distribution is considered to be an
important distribution in representing real-world data
(Hampel 1974, Nath 1984, and Lee and Ord 1990). However,
the contaminated normal distribution appears in only a few
simulation studies evaluating LP-based models. The range of
possible values for skewness and kurtosis measures does not
appear tc be readily available for this distribution.

The notation CMN(u,,Z,,4,,Z,,€) = {1-€)N(g,,Z,} +
€eN{u,,Z,;) will be used to denote the general contaminated
multivariate normal distribution. The notation N{u,Z)
represents the normal distribution with mean vector u and
variance-covariance matrix £. The N{u,,Z,) population can
be interpreted as the contaminating part, and ¢ can be
interpreted as the contaminating fraction of the data.
Therefore, this general contaminated normal distribution can
be viewed as a mixture of two normal populations. As the ¢
parameter becomes larger, the shapes of contaminated normal
distribution are seen, not as one larger normal population
with a small set of outliers, but rather as a mixture of two
normally distributed populations. For € = 0 or 1, the
contaminated multivariate normal distribution simply reduces
to a multivariate normal distribution. Each of the
parameters u,, I,, 4,, &,, and ¢ plays a role in determining
the skewness and kurtosis values of the distribution. This

version of the contaminated normal distribution is more
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general than the distribution presented in Nath (1984) and
Lee and Ord (1990). In their studies, u, and u, were
selected to be equal, and, thus, the contaminated normal
distribution was a symmetrical distribution and always had a
value of zero for the skewness measure.

To show that any linear transformation of X,, for X,
from CMN(u,,I,,},,%,,€) is distributed as a contaminated
univariate normal, consider the following equations where F
is a cumulative distribution function, f is a vector of
constants, ¢ is a constant, and ¢ represents the standard

normal cumulative distribution.

P[2"X, s c]

i}

P[¢™X, s ¢ and X, from N(u,,Z,)
or £™X, s ¢ and X, from N(u,,Z,)]

PI€X, = ¢ | X, from N(p,,Z,)] - P[X, from N(u,, Z,}]

+ PUUTX, = ¢ | X, from N(y,,Z,)] - P[X, from N(u,,Z,)]

it

(1 - €)@l {c-2Tu) /(&™) + ed({(c-£Tu,) / (£72,0)%]

Thus, {T™X, is distributed as a contaminated univariate

normal distribution. An alternative proof could be provided
using characteristic functions, as in Nath (1984). From the
above equations, exact misclassification rate could easily
be obtained for a given linear discriminant function.

Therefore, under this distribution, the need for wvalidation
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samples can be eliminated when a linear discriminant
function is being evaluated.

It should be noted that the marginal distributions of
the contaminated multivariate normal distribution are simply
contaminated univariate normal distribution. Any random
variable with a contaminated univariate normal distribution
can be shifted and scaled so that its cumulative

distribution function is

F(X) = (1-€)®(X) + e®((X-u)/0)

Using the technique given in Hogg and Craig (1978), the
first, second, third, and fourth moments c¢an be generated as

the following:

E [X] = EQ

E[X?%] = (1-€} + el(o? + u?)

E[X?*] =  3eo’p + ep?

E [X%] =  3(l-€) + 3ec® + 6eau® + ept

Now let vy, and vy, be the notation for the skewness and
kurtosis measures, respectively. Using the standard
definitions for the measures of skewness and kurtosis,
namely E[(X-u)%*/0°] and E[(X-u)*/0*]l, ¥, and vy, can be

mathematically derived as
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ep{l-€) {302 + u® - 2p%e - 3)
(L - € + eo? + ple(l - €)132

1 -

_ 6eplo?(e-2e+1) +ept (1+6€%-3€?-4¢) +6p"e®(1-€) +3 (1-¢€) +3e0*

[1 - € + €0% + p2e(l ~ €)1?

From the above formulas, the pattern of possible values
of skewness and kurtosis for various values of parameters pu,
g, and € can be cobtained. Also, the limiting values of the
skewness and kurtosis measures when g and/or ¢ approach
infinity can be determined.

To understand the relationship between the values of
the skewness and kurtosis measures, congider the following

theorem.

Theorem 2
Let Ql and inbe defined as the sample skewness measure
and the sample kurtosis measure, respectively, as in Bickel

and Doksum (1977). That is,
Y, = nt’(x, - X)¥/(T(x, - X))¥?, and

v, = nZ(X, - X)*/(E(X, - X)%)?, then
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A = (X, X5 ..., X))

B = ((X-X2% (-07?, ..., (X,-X)2)

X = I(X,)/n

Sn = (Z(X, - X)¥/n)i?

Yap = the sample correlation coefficient between A and B.
Note that

L[(X, - X)2 - g2

Hence,

(X, - X)* - ng ¢

[(Z(X, - X))%/n) (nZ(X, - D)/ (X, - )2 - ns_*

nsnﬁ';z - r.‘!'Snlﬁ
ns4(y, - 1).

ZIX, - X) (X, - X)? - 82))
(nS,2) % (z[(x, - X)* - g2)?)i/2

Ty

(X, - X)°
(nSnZ) 1/2 (nsné (?2 - 1)) 1f2

~

nsn3 71
(nS,*) Y% (ns “(y, - 1))/

7
Ve, -1

1]
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Since r,,; s 1, we have that

—_— s 1
V. -1
or b < ¥a- 1.

The second statement follows from the fact that 292 = 0,
therefore ¥,=2 1.

The above result does not appear to be readily
available. It can be found in Devroye (1986), which used
somewhat complicated Hankel determinants to prove it.
However, the above proof shows that the result can readily
follow from the sample correlation between A and B in the
above theorem. This proof does not appear to be mentioned
by many mathematical statistics books or simulation
textbooks, such as Devroye (1986), Hogg and Craig (1978),

and Bickel and Doksum (1977).



CHAPTER IV

SIMULATION DESIGNS

Simulation Designs for Models with
Second-Order Terms
To determine how second-order terms in mathematical
programming models affect their classificatory performance
relative to the first-order models and the parametric
statistical procedures, a Monte Carlo simulation study is
conducted. Eleven classification models are used in this
study and are listed in Table 3. The notations MSD5, MIPS5S,
and HYBS5 are used to denote the MSD, MIP, and hybrid
procedures, respectively, with all of the squared, linear,
and crossproduct terms in the models. The notations MSD4,
MIP4, and HYB4 are used to denote the MSD, MIP, and hybrid
procedures, respectively, with only the squared and linear
terms (no crossproduct term) in the models., For the MSD,
MIP, and hybrid procedures, which contain only the linear
terms, the notations MSD2, MIP2, and HYB2, respectively, are
used to indicate them. The notations LDF and QDF are used
for the Fisher’s linear discriminant function and the
Smith’s quadratic discriminant function, respectively.
Eight different data configurations are examined in the

simulation study. The population distributions in the first
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gix configurations are normally distributed, while the last
two configurations contain nonnormal data. These data
configurations are described in Table 4. Configurations 1A
and 1B are the configurations in which a first-order
(linear) classification rule would be optimal since the
variance-covariance structures of the two populations are
equal. The observations in configuration 1B are correlated,
whereas the observations in configuration 1A are
uncorrelated. For the other configurations, it is expected
that a second-order (nonlinear) classification rule would be
the classification rule of choice.

Configurations 1C and 1D are selected for examining the
usefulness of the crossproduct terms in the mathematical
programming models when correlation is present in the data.
Configurations 1C and 1D contain interesting covariance
structures. The crossproduct term for the QDF procedure
with configuration 1C should not be needed because the off-
diagonal terms of the matrix M = £,;"! - £,”! cancel out and,
thus, M is a diagonal matrix {(where I, and I, are the
covariance matrices of the first and second populations,
respectively; see Johnson and Wichern 1992, page 509).
However, the crossproduct term for the QDF procedure with
configuration 1D should be important since the off-diagonal
terms of the matrix M are the only non-zero elements. The
simulation study will show how important the crossproduct

terms are in the mathematical programming mcdels.
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Configuration 1E is selected because there is no
correlation among the variables for either group and because
it is a configuration in which the QDF model should easily
perform well. Configuration 1F consists of two normal
populations with identical means, but the variance-
covariance structure of one population is much larger than
that of the other population. Configuration 1F can be
viewed as one normal population contained inside another
normal population. Any first-order linear discriminant
function would be expected to perform poorly on a set of
data from this configuration.

Configuraticn 1G is one of the two configurations that
contain nonnormal data. The second population of
configuration 1G consists of a normal population with mean
vector (2, 2)T and two independent variables with each
variance equals to one, but this population also contains a
15% contamination from a set of normally distributed
outliers. The outlier group has mean vector (-10, -10)T and
two independent variables with variances equal to 9,

Configquration 1H is the othex configuration that
contains nonnormal data. Consider a population in which the
first attribute variable is uniformly distributed over the
interval from 0.1 to 5.0 and the second attribute variable
is uniformly distributed over the interval 0 to 1/a, where
a, is the value of the first attribute variable. Hence, the

value of the second attribute variable is conditional on the
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value of the first attribute variable. Eighty percent of
the first population’s observations come from this
distribution. The other 20% of cbservations come from the
point {-4.60894, -4.60894). Now consider a pcpulation in
which the first attribute variable is again uniformly
distributed over the interval from 0.1 to 5.0, but the
second attribute variable is uniformly distributed over the
interval 1/a, to 1/a, + 0.5 where a, is the value of the
first attribute variable. Note that the second attribute
variable is dependent on the value of the first attribute
variable. Eighty percent of the second population’s
observations come from this distribution. The other 20% of
observations come from the point (4.195634, 4.195634). For
group 1 and group 2, the points (-4.6089%94, -4.6085%4) and
(4.195634, 4.195634) were selected to make the two attribute
variables in each group uncorrelated.

Graphically, 80% of the values of the first population
in configuration 1H can be thought of as falling under the
curve Y = 1/X on a two-dimensional graph with X being equal
to values between 0.1 and 5.0, whereas 80% of the values of
the second population fall above the curve Y = 1/X . The
other 20% of the observations for configuration 1H come from
a point for each group. Thus, 20% of the observations from
each population can be considered outliers. While the
distributions of the populations in configuration 1H are not

commonly mentioned in the literature, they are included to
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gain some insight into the performance of various models on
configurations that may include a mixture of continuous and
discrete data. Alsc, the shape ¢f this data will allow the
correlation of the variables in each group to be zero. The
simulation study can then assess the appropriateness of the
crossproduct terms. In addition, these populations are
highly nonnormal, and it is expected that the second-oxrder
mathematical programming models will perform well.

For each configuration in this simulation study,
training sample sizes of n, = 25, i =1, 2, and n, = 50, i =
1, 2 are used for each of the two groups. Validation sample
sizes of 500 are used for each group, for a total of 1000
observations for each validation sample. In each simulation
experiment, two attribute values are generated for each
observation. The simulation study is performed by using the
SAS statistical package (version 6.07) on the Solbourne
6/904 computer cperating under UNIX at the Computing Center
of the University of North Texas. All experimental
conditions are replicated 100 times.

For each replication, the number of misclassified
observations in both the training sample and the validation
sample is determined. The mean and standard deviation of
the number of misclassified observations are computed for
100 replications. Paired t-tests are used to indicate
significant differences in classificatory performance among

the meodels. A Bonferroni adjustment {(Johnson and Wichern
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1992) is used in finding the critical values of the test.
Two models will be referred to as being significantly
different if the paired t-test calculated from their
misclassification rates shows a significant difference at

the .05/55 significance level.

Simulation Designs for Models with
Secondary Goals

In this section, four MIP models that include secondary
goals are evaluated on normal and contaminated normal data.
These data are used because they are important distributions
representing real-world data. An additional advantage is
that the exact misclassification rate on the estimated
classification functions for these models can be calculated
with these particular distributions, and, thus, large
validation samples are not necessary. However, only linear
{first-order) terms of the attribute variables can be used
to easily obtain this exact misclassification rate. The
objective of this section is to evaluate the added
classificatory power that results from the secondary gecals
in the MIP models.

Four classification models are examined in a Monte
Carlo simulation study to answer Research Question 2. These
models are listed in Table 21 and are presented in the
theoretical framework chapter of this dissertation. These

models are labeled MIP1l, MIP2, MIP3, and MIP4. Note that
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all of these models result in a classification function that
is linear in terms of the attribute variables.

Fourteen different data configurations are used in this
simulation study. These data configurations are described
in Table 22. The population distributions of the data in
the first three configurations are normally distributed,
whereas those in the last eleven configurations are
contaminated normal distributions. Some configurations
contain contaminated normal data in only one of the two
groups, while other configurations contain contaminated
normal data in both groups. The last three data
configurations contain contaminated normal populations with
different values of skewness and kurtosis. Configuration 2L
is designed to have low skewness (0.461) and high kurtosis
(13.419) . Configuration 2M, however, is designed to have
moderate values of skewness (1.625) and kurtosis (7.612).
Configuration 2N is designed to have low skewness (0.129)
and very low kurtosis (2.214). Since the MIP2 and MIP3
models are not rotationally invariant, different
orientations of the normal populations and contaminated
normal populations are also considered in evaluating the
variability in the classificatory performance of the MIP
models. Contaminating fractions of 10%, 15%, and 20% are
used on some data configurations.

There are two training sample sizes of n, = 20, i = 1,

2, and n, = 40, i = 1, 2 for each of the two groups in each
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data configuration. The training sample sizes are slightly
less than the training sample sizes used in the simulation
design described in the previous section. The smaller
sample sizes in this section were chosen because of the
computational intensiveness of MIP models. Validation
samples are not used in this part of the study because exact
migclassification rates can be directly determined from the
estimated classification functions. The misclassification
rates of the MIP models with secondary goals will all
perform the same on the training samples because each model
has the same first goal. In each simulation experiment, two
independent variables are generated for each observation.
The simulation study is performed by using the SAS
statistical package (version 6.07) on the Solbourne 6/904
computer operating under UNIX at the Computing Center of the
University of North Texas. All experimental conditions are
replicated 200 times.

For each replication, the probability that a new
obgervation will be misclassified (the estimate of the
expected actual misclassification rate) is calculated. The
mean and standard deviation of the estimated
misclassification rates are computed on the 200
replications. Paired t-tests are used to indicate
significant differences in classificatory performance among
the models. A Bonferroni adjustment {(Johnson and Wichern

1992) is used in finding the critical values of the test.



Two models will be referred to as being significantly
different if the paired t-test calculated from their
misclassification ratesg shows a significant difference at

the .05/6 significance level.
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CHAPTER V

EXPERIMENTAL RESULTS

Simulation Results for Models with
Second-Order Terms
The results of a Monte Carlo simulation for models with
second-order terms are presented in this section. These
results will be used to answer Research Question 1. Tables
S through 20 and Figures 1 through 8 contain the results

from the simulation study.

Configuration 1A

For configuration 1A, the LDF model is expected to
perform well since the two populations each have a normal
distribution with equal variance-covariance structures.
Thus, the squared and crossproduct terms should not be
necessary for the mathematical programming models to perform
well.

The results in Table 5 show that the LDF model has the
lowest misclassification rate on the validation samples for
both training samples of sizes 25 and 50 per group. The
average misclassification rates on the validation samples of
the LDF model are 8.36% and 8.13% for training samples of

sizes 25 and 50 per group, respectively. However, all of
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the MSD and MIP models have a lower misclassification rate
than both of the LDF and QDF models on the training samples
for both training samples of sizes 25 and 50 per group. The
QDF model performs almost as well as the LDF model.

As expected, the mathematical programming models with
only linear terms (2 variables) outperform the mathematical
programming models with crossproduct and squared terms on
the validation samples for both training sample sizes. The
addition of second-order terms decreases classificatory
performance of the mathematical programming models,
particularly for the case of 25 observations per training
group. The mathematical programming models without the
crossproduct term perform better than the second-order
mathematical programming models with both the crossproduct
and squared terms in the models.

The best mathematical programming models on the
validation samples for training samples of sizes 25 and 50
per group of configuration 1A are HYB2 and MSD2,
respectively. The average misclassification rate on the
validation samples of the HYB2 model is 8.63% for training
samples of size 25 per group. For the MSD2 model with
training samples of size 50 per group, the average
misclassification rate on the validation samples is 8.40%.
These results are close to the results of the LDF model.
The model that has the highest misclassification rate on the

validation samples for this data configuration is MIPS. The
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average misclassification rates on the validation samples
for the MIPS are 14.66% and 11.64% for training samples of
sizes 25 and 50 per group, respectively. However, the MIP5
model yields the lowest number of misclassified observations
in the training samples. This occurs because the cbjective
function of the MIP model is to directly minimize the number
of misclassified observations and the MIPS model containg
all of the linear, squared, and crossproduct terms.

Table 13 shows the results of paired t-tests for the
mean difference in classificatory performance of the models
on validation samples for configuration 1A. The results
reveal that the performance of the LDF model is
significantly different from the performance of all other
mathematical programming models with the Bonferroni
adjustment to the family of 55 tests, thus using a
significance level of .05/55. The results also reveal that
the performance of the first-order MSD, MIP, and hybrid
models is significantly different from the performance of
the corresponding second-order MSD, MIP, and hybrid models,

respectively, for configuration 1A.

Ceonfiguration 18

Configuration 1B is another data configuration in which
the variance-covariance structures of the two populaticns
are equal. However, the observations within each population

are correlated with the coefficient of correlation eguals to
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0.6. For this configuration, the LDF model is expected to
perform cptimally because all statistical assumptions are
met. Hence, it is expected that the first-order
mathematical programming models should outperform the
second-order mathematical programming models.

The results in Table € show that the LDF model has the
lowest average misclassification rate on the validation
samples for both training samples of sizes 25 and 50 per
group. The average misclassification rates on the
validation samples for the LDF model are 4.98% and 4.74% for
training samples of sizes 25 and 50 per group, respectively.
However, the LDF model has an average migclassification rate
on the training samples that is higher than those of the
MSD, MIP, and QDF models. The QDF model performs almost as
well as the LDF model. These results are similar to the
results of configuration 1A. In configuration 1A, the
standard deviation of the misclassification rate on the
validation samples decreases for all models, except the
three hybrid models, when the training sample size is
increased from 25 to S0 per group. For configuration 1B,
only the standard deviation for the HYB5 model increases for
the misclassification rate on the validation sample when the
training sample size increases from 25 to 50 per group.

For mathematical programming models, the mcodels with
only first-order terms outperform the corresponding models

with the squared terms and crossproduct terms on the
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validation samples. The addition of squared and/or
crossproduct terms decreases classificatory performance of
the mathematical programming models, despite the superior
performance of the second-order mathematical programming
models on the training samples.

The best mathematical programming model on the
validation samples for this data configuration is HYB2 model
for training samples of size 25 per group. For training
samples of size 50 per group, the best mathematical
programming model is MSD2. The average misclassification
rate on the validation samples for the HYB2 model is 5.18%
for training samples of size 25 per group. The average
misclassification rate on the validation samples of the MSD2
model is 5.10% for training samples of size 50 per group.
These results are close to the results of the LDF model.

The worst clasgssification model on the validation samples for
this data configuration is MIPS5. The average
misclassification rates on the validation sample of the MIPS
are 11.06% and 8.09% for training samples of sizes 25 and 50
per group, respectively.

From Table 14, the results of paired t-tests of the
¢classificatory performance of the models on the validation
samples reveal that only the HYB2 model is not significantly
different from the LDF model for training samples of size 25
per group on configuration 1B. While the performances of

the HYB2 and MSD2 on the validation samples are not
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significantly different for configuration 1A, they are
significantly different for configuration 1B for training
samples of size 25 per group. The results also reveal that
the performance of the first-order mathematical programming
models is significantly different from the performance of
the corresponding second-order mathematical programming

models for this data configuration.

Configuration 1C

Configuration iC is a data configuration with ‘unequal
variance-covariance structures for the two populations. It
is expected that the QDF model will perform optimally on
data from these normally distributed populations. The
variance-covariance structures of this data configuration
are interesting in that the off-diagonal terms of matrix ;™
- ,”! cancel out. Therefore, the crossproduct term for the
QDF model is not expected to be needed. It is also expected
that the second-order mathematical programming models
without the crossproduct term will outperform the other
corresponding mathematical programming models on the
validation samples.

The results in Table 7 show that the QDF model has the
best classification rate on the validation samples for this
data configuration for both training samples of sizes 25 and
50 per group. The average misclassification rate on the

validation samples of the QDF model are 6.88% and 6.47% for
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training samples of sizes 25 and 50 per group, respectively.
As expected, the LDF model dces not perform well on the
validation samples for both training sample sizes. In fact,
the LDF model has the highest misclassification rate on the
validation samples for training samples of size 50 per
group.

The results for the mathematical programming mcdels are
somewhat surprising for the cases of 25 observations per
training group. For training samples of size 25 per group,
the MSD2, MIP2, and HYBS are the best MSD, MIP, and hybrid
classification models, respectively. This is surprising
since it is expected that the MSD4, MIP4, and HYB4 models
would be the classification models of choice for the MSD,
MIP, and hybrid formulations, respectively. The best
mathematical programming model for training samples of size
25 per group is the HYB5. The average misclassification
rate on validation samples of the HYBS5 model is 8.53% for
training samples of size 25 per group. When the training
sample size increases to 50 per group, the results are the
same as what is expected. With training samples of size 50
per group, the second-order mathematical programming models
without the crossproduct term outperform the corresponding
second-order mathematical programming models with the
crossproduct term and the corresponding first-order
mathematical programming models. The best mathematical

programming model for training samples of size 50 per group



70

is the MSD4. The average misclassification rate on
validation samples of the MSD4 model is 7.21% for training
samples of size 50 per group. The meodels that have the
highest misclassification rate on the validation samples for
training samples of size 50 per group are the first-order
mathematical programming models. This is expected because
of the unequal variance-covariance structure of the two
populations.

Table 15 shows the results of paired t-tests on the
classificatory performance of the models on validation
samples for configuration 1C. The results reveal that the
performance of the QDF model is significantly different from
the performance of all other models. Note that, at the
Bonferroni significance level of .01/55 and training samples
of size 50, the MSD4 model is significantly different from
the MSD5 and MSD2 models, but the MIP4 and HYB4 models are
not significantly different from their corresponding model
with the crossproduct term and from their corresponding
first-order model. However, at the Bonferroni significance
level of .05/55, the HYB4 and HYB2 models are significantly
different in performance for both training samples of sizes

25 and 50 pexr group.

Configuration 1D
Configuration 1D is another data configuration with

unequal variance-covariance structures for the two
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populations. The QDF model should perform optimally on
these normally distributed populations. Since the off-

diagonal terms of the matrix I, - I,

are the only non-~zero
elements, the crossproduct term is an impertant term in the
QDF model for this data configuration. Also, the second-
order mathematical programming models with the crossproduct
term should outperform the other corresponding mathematical
programming models on the validation samples. The results
in Table 8 show that the best performing model on the
validation samples for this data configuration is the QDF
model for both training samples of sizes 25 and 50 per
group. The average misclassification rates on the
validation samples of the QDF model are 5.92% and 5.58% for
training samples of sizes 25 and 50 per group, respectively.
Also, on the training samples, the misclassification rate of
the QDF model is lower than those of the LDF and hybrid
models for training samples of size 25 per group, and lower
than those of the LDF, hybrid, and MSD2 models for training
samples of size 50 per group.

The mathematical programming models yield unexpected
results. The best MSD and MIP models are the first-order
models for both training samples of sizes 25 and 50 per
group. The best hybrid model is HYB4 for training samples
of size 25 per group and is HYB2 for training samples of

size 50 per group. These results are surprising because it
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is expected that the crossproduct term would be necessary
for the optimal classification model. Perhaps the squared
terms in the second-order mathematical programming mcdels
are overfitting the data and, thus, underperform the
corresponding first-order models. The best mathematical
programming model for training samples of size 25 per group
is the HYB4, which has an average misclassification rate of
6.64%. When the training sample size increases to 50 per
group, the best mathematical programming model shifts to the
MSD2, which has an average misclassification rate of 6.12%.
Note that the LDF model’s misclassification rate on the
validation samples is lower than all of the mathematical
programming models except the HYB4 model for training
samples of size 25 per group. It is also lower than all of
the mathematical programming models except the MSD2 model
for training samples of size 50 per group.

The paired t-tests in Table 16 show a significant
difference between the QDF model and all other modelg. The
table also shows that the performance of the MSD2 and MIP2
models is significantly different from the performance of
their corresponding second-order models for both training
sample sizes. The HYB2 model’s performance is significantly
different from the other hybrid models only for training

samples of size 50 per group.
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Configuration 1E

Configuration 1lE is another data configuration in which
the variance-covariance structures of the two populations
are unequal. However, the variance-covariance structures of
this data configuration are different from those of
configuration 1C and configuration 1D in that the
correlation between cbservations is zero. The first
variance-covariance structure of this data configuration is
in the form of an identity matrix while the second variance-
covariance structure is four times that of the first one.
However, configuration 1E is similar to configuration 1C in
that the off-diagonal terms of the matrix I,;”! - £,”! are
Zzero. Again, the QDF model should perform optimally on the
normally distributed populations of configuration 1E.
However, the crossproduct term for the QDF model should not
be important. It is expected that the second-order
mathematical programming models without the crossproduct
term should outperform the other corresponding mathematical
programming models.

The results in Table 9 show that the best performing
model on the validation samples for this data configuration
is the QDF model, as expected, for both training samples of
sizes 25 and 50 per group. The average misclassification
rates on the validation samples of the QDF model are 7.20%
and 6.66% for training samples of sizes 25 and 50 per group,

respectively. For training samples of size 25 per group,
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the optimal classification models of the MSD and MIP models
are MSD2 and MIP2, respectively. These results are not
expected since the second-order mathematical programming
models should perform better than the first-order
mathematical programming models for this data configuration.
However, the HYBS does perform better than the HYB2.

The best performing mathematical programming model with -
training samples of size 25 per group is the MSD2. The
average misclassification rate of the MSD2 model for
training samples of size 25 per group is 8.33%. For
training samples of size 50 per group, the best performing
MSD, MIP, and hybrid models are MSD4, MIP2, and HYB4,
respectively. The best performing mathematical programming
models with training samples of size 50 per group is MSD4,
which has an average misclassification rate of 7.44%.
However, at the Bonferroni significance level of .05/55, the
MSD4 and MSD2 models, the MIP4 and MIP2 models, and the HYB4
and HYB2 models are all not significantly different for
training samples of size 50 per group as indicated by the
paired t-tests in Table 17.

Interestingly, for training samples of size 25 per
group, the HYB4 model performs worse than the HYBS5 and HYB2
models, and is significantly different in performance from
the HYB5 and HYB2 models. The results in Table 17 also

reveal that the QDF model performs better than all other
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models and its performance is significantly different from

all other models.

Configquration 1F

For configuration 1F, it is expected that the QDF model
would perform well, whereas the LDF model would perform
poorly since the means of the two populations are equal but
the variance-covariance structures are not equal. It is
also expected that the second-order mathematical programming
models without the crossproduct term would outperform other
corresponding mathematical programming models.

The results in Table 10 show that the best performing
model on the validation samples for this data configuration
is the QDF model for both training samples of sizes 25 and
50 per group. The average misclassification rates on the
validation samples of the QDF model are 5.82% and 5.25% for
training samples of sizes 25 and 50 per group, respectively.
As expected, the LDF model does not perform well at all for
this data configuration. The average misclassification
rates on the validation samples of the LDF model are 39.38%
and 41.29% for training samples of sizes 25 and 50 per
group, respectively. In fact, the LDF mecdel has the highest
misclassification rate on the validation samples of all the
models for training samples of size 25 per group.

The high overlap of the two populations makes the MIP

models impractical to compute for training samples of size
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50 per group. This is the only experimental situation in
which the MIP models are not assegsed on 100 replications of
the data. The mathematical programming models yield results
according to expectations. The second-order mathematical
programming models without the crossproduct term outperform
the other corresponding mathematical programming models for
both training sample sizes. All of the first-order
mathematical programming models perform poorly. The MSD4
model has the lowest misclassification rate for the
mathematical programming models for both training sample
sizes. The average misclassification rates on the
validation samples for the MSD4 model are 7.95% and 6.16%
for training samples of sizes 25 and 50 per group,
respectively.

The paired t-tests in Table 18 indicate that for
training samples of size 25 per group, the HYB4 and HYBS
models, and the MSD4 and MSD5 models are not significantly
different in performance. For training samples of size 50
per group, the MSD4 and MSD5 models are not significantly
different in performance. As expected, the QDF model
clearly outperforms all other models. However, the addition
of second-order terms to the mathematical programming models
greatly improves their clasgsificatory performance over the

first-order mathematical programming models.
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Configuration 1G

Configuration 1G is a data configuration that has a
normal population for one group and a contaminated normal
population for the other group. The population of the
second group contains 15% of its observations as outliers.
It .is expected that the nonnormality of this data set would
weaken the classificatory performance of the QDF model. It
is also expected that the second-order mathematical
programming models would outperform the first-order
mathematical programming models.

Table 11 shows that all of the first-order models
perform rather poorly relative to the second-order models.
The average misclassification rates on the validation
samples of the QDF model are 13.32% and 12.18% for training
samples of sizes 25 and 50 per group, respectively, while
those of the LDF model are 41.31% and 42.66%, respectively.
However, the QDF model is not the best performing
classification model for this data configuration. The best
performing models are MSD4 and MSDS for training samples of
sizes 25 and 50 per group, respectively. The average
misclassification rate on the validation samples for the
MSD4 model with training samples of size 25 per group is
10.09% and that for the MSD5 model with training samples of
size 50 per group is 8.95%. The mathematical programming
models are capable of outperforming the QDF model when the

data set contains outlier. The paired t-tests in Table 19
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indicate that the performances of many second-order
mathematical programming models are significantly different
from the performance of the QDF model, particularly for
training samples of size 50 per group. As seen in Table 18,
the performance of the following pairs of mathematical
programming models are not significantly different: MSD4 and

MSD5 models, MIP4 and MIPS models, and HYB4 and HYBS models.

Configquration 1H

Configuration 1H is ancother data configuration that
contains nonnormal data. The populations of this data
configuration consist of both discrete and continucus data.
It is expected that the nonnormality of this data would
weaken the classificatory performance of the QDF and LDF
models. It is also expected that the second-order
mathematical programming models should ocutperform the first-
order mathematical programming models. Since this data
configuration can be perfectly separated by equation XY = 1,
it is expected that the crossproduct term would be
significant to the mathematical programming models. This is
an example of a data set with no correlation between the
variables, but the crossproduct term is still expected to be
significant for the classification models.

The results in Table 12 show that both the LDF and QDF
models perform poorly for this data configuration. The

average misclassification rates for both the LDF and QDF
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models are arocund 30% on both training samples and
validation samples. The nonnormality of the data clearly
weakens the classificatory performance of the two parametric
statistical models. Configuration 1H is clearly an example
of a data configuration where the second-order mathematical
programming model can perform dramatically better than the
QDF model. For mathematical programming medels, the second-
order models outperform the first-order models. As
expected, the second-order mathematical programming models
with the crossproduct term outperform the models without the
crossproduct term. With the exception of the hybrid models
for training samples of size 25 per group, the results in
Table 20 indicate.that the performances cf the second-order
mathematical programming models with the crossproduct term
and those of the corresponding second-order models without
the crossproduct term are significantly different.

The best performing mathematical programming model for
training samples of size 25 per group is MSD5 which has an
average migclasgification rate of 5.54% on the validation
samples. When the training sample size increases to 50 per
group, the best performing mathematical programming model is
still the MSD5 model, which has an average misclassification
rate of 2.91% on the validation samples. However, Table 20
indicates that the MSD5 model and the MIP5 model do not have
significantly different performance. The MSD5 and MIP5

models can perfectly classify observations in the training
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samples of the two populations because the groups can be
separated by the equation XY = 1. This data configuration
shows that the crossproduct term may be important for a
classification model despite the fact that the variables for

each population are uncorrelated.

Simulation Results for Models with
Secondary Goals
The results of a Monte Carlo simulation for MIP models
with secondary goals are presented in this section. These
results will be used to answer Research Question 2. Tables
23 through 50 and Figures 9 through 22 contain the results

from the simulation study.

Configuration 23

Configuration 2A is a configuration that contains two
normal populations with equal variance-covariance
structures. The results in Table 23 show that the best
performing MIP model for this data configuration is the MIP1
model for both training samples of sizes 20 and 40 per
group. The average misclassification rates of the MIP1
model are 3.42% and 3.08% for training samples of sizes 20
and 40 per group, respectively. The secondary goal of
maximizing the distance between projected means in the MIP1
model seems to be effective in reducing the number of

misclagsification when compared with other secondary goals.
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However, with the same secondary goal but bounded
coefficients, the MIP2 model performs pcorly. The
constraint of bounded coefficients decreases the
classificatory performance of the MIP2 model., The average
misclassification rates of the MIP2 model are 6.14% and
4.25% for training samples of sizes 20 and 40 per group,
respectively. The classificatory performances of the MIP3
and MIP4 models are almost the same. Thus, for this data
configuration, the performances of the MIP3 and MIP4 models
show that either maximizing the minimum internal deviation
or minimizing the sum of the external deviations as a
secondary goal in an MIP model will yield similar results.
Table 37 shows the results of paired t-tests for the
mean difference in classificatory perxrformance of the models
for configuration 2A., The results reveal that the
performance of the MIP1l model is significantly different
from the performance of the other MIP models with
significance level of .05/6 for both training samples of
sizes 20 and 40 per group. The MIP3 and MIP4 models are not
significantly different in performance for training samples

of size 20 per group.

Configuration 2B
Configuration 2B is the same as configuration 2A,
except that the data are rotated 45 degrees. Note that the

distance between the means of the two populations is still
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the same. The results in Table 24 show that the MIP1 model
is still the classification model of choice among the MIP
models for training samples of size 20 per group. The
average misclassification rates of the MIP1l model are 3,29%
and 3.03% for training samples of sizes 20 and 40 per group,
respectively, which are very close to those for
configuration 2A. The performance of MIP4 model for this
configuration is also very close to that for configuration
2A. It is interesting to see the MIP2 and MIP3 models
perform much better in this configuration than in
configuration 2A. The reason for this is the fact that the
MIP2 and MIP3 models are not rotaticnally invariant. For
training samples of size 40 per group, the MIP2 model
performs as well as the MIP1 model.

From Table 38, the results of paired t-tests reveal
that neither the MIP1l and MIP3 models, nor the MIP2 and MIP3
models are significantly different in performance for both
training samples of sizes 20 and 40 per group. The
performance of the MIP1 model is significantly different
from the performance of the MIP2 model for training samples

of size 20 per group.

Configuration 2C

Configuration 2C also contains two normal populations.
However, the variance-covariance structures cof the two

populations are not equal. The variance-covariance
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structure of the first population is four times larger than
that of the second population. Among the MIP models, the
MIP1 model yields the lowest misclassification rate. As
shown in Table 25, the average misclassification rates of
the MIP1 model are 16.74% and 16.18% for training samples of
sizes 20 and 40 per group, respectively. However MIP2
model, which has the same secondary goal as the MIP1 model
but with bounded coefficients constraint, does not perform
well for this data configuration. The MIP3 model performs
nearly as well as the MIP4 model for both training samples
of sizes 20 and 40 per group.

The results of paired t-tests in Table 39 reveal that
the performance of the MIP1 model is significantly different
from the performance of the other MIP models for training
samples of size 20 per group. For training samples of size
40 per group, the performance of the MIP1 model is
significantly different from the performance of the MIP2 and
MIP3 models. The performance of the MIP3 model is not
significantly different from that of the MIP4 model for both

sizes of training samples.

Configuration 2D

For configuration 2D, the first population contains
normal data, whereas the second population contains
nonnormal data. Ten percent of the observations in the

second population are contaminated by another normally
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distributed group of data. The results in Table 26 show
that, among the MIP models, the MIP3 model yields the lowest
misclassification rate for this data configuration. The
secondary goal of maximizing the minimum internal deviation
in the MIP3 model works well for this nonnormal data. The
average misclassification rates of the MIP3 model are 8.40%
and 7.48% for training samples of sizes 20 and 40 per group,
respectively. For training samples of size 40 per group,
the MIP4 model performs nearly as well as MIP3 model.

The results of paired t-tests in Table 40 reveal that
the performance of the MIP2 model is significantly different
from the performance of the other models for both sizes of
training samples. However, none of the pairs of the MIP1,
MIP3, and MIP4 models show any significant difference in

performance for both training sample sizes.

Configuration 2E

Configuration 2E is a configuration that results from a
45 degrees rotation of configuration 2D. Table 27 shows
results of the classification models for configuration 2E.
These results are similar to the results from configuration
2B, in that the MIP2 model performs significantly better in
the rotated data. Among the MIP models with training
samples of size 40 per group, the MIP2 model yields the
lowest misclassification rate. The average

migclassification rate of the MIP2 model is 7.38% for
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training samples of size 40 per group. For training samples
of size 20 per group, the MIP2 model performs nearly as well
as the MIP3 model. The average misclassification rate of
the MIP2 model is 8.19%, whereas that of the MIP3 model is
8.16% for training samples of size 20 per group. From Table
41, the results of paired t-tests reveal that most of the
performances of the four MIP models are not significantly
different from each other. However, the MIPl and MIP2
models for training samples of size 40 per group and the
MIP3 and MIP4 models for both training sample sizes are each

significantly different in performance.

Confiquration 2F

Configuration 2F contains contaminated normal data for
both populations. The contaminating fraction is 10% for
both populations. The results in Table 28 show that the
best performing MIP model for training samples of size 20
per group is the MIPl1 model. The average misclassification
rate of the MIPl1 model is 5.47% for training samples of size
20 per group. Among the MIP models with training samples of
size 40 per group, the MIP1, MIP3, and MIP4 models perform
almost the same. The average misclassification rate of the
MIP4 model is 4.61%, whereas those of the MIP1 and the MIP3
models are 4.65% and 4.69%, respectively, for training
samples of size 40 per group. The MIP2 model performs

poorly for this data configuration.
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The results of paired t-tests in Table 42 indicate that
the performance of the MIP2 model is significantly different
from the performance of the MIP1, MIP3, and MIP4 models for
both sizes of the training samples. The MIP1l, MIP3, and

MIP4 models are not significantly different in performance.

Configuration 2G

Configuration 2G is the configuration that results from
a 45 degrees rotation of configuration 2F. Again, the
results in Table 29 show a significant improvement of the
MIP2 model with this rotated data. Among the MIP models
with training samples of size 40 per group, the MIP2 model
yields the lowest misclassification, which is 4.50%. For
training samples of size 20 per group, the best performing
MIP model is the MIP1 model, which yields an average
misclassification rate of 5.18%. The results of the paired
t-tests in Table 43 reveal that the performances of the
MIP1l, MIP2, and MIP3 models are not significantly different
from each other for both training sample sizes. For
training samples of size 20 per group, the performance of
the MIP3 model is significantly different from that of the

MIP4 model.

Configuration 2H
Configuration 2H is another configuration that contains

contaminated normal data in both populations. The
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contaminating fraction is 10% for both populations. The
results in Table 30 show that, among the MIP models, the
MIP1 model yields the lowest misclassification rate for both
sizes of the training samples. The average
misclassification rates of the MIP1 model are 2.22% and
1.94% for training samples of sizes 20 and 40 per group,
respectively. The MIP2 model performs poorly for this
configuration. The MIP4 model performs nearly as well as
the MIP3 model for training samples of size 40 per group.
The results of paired t-tests in Table 44 indicate that the
performances of all MIP models are significantly different
from each other for both sizes of the training samples,
except for the MIP3 and MIP4 models in the case of training

samples of size 40 per group.

Configuration 2T

The data in configuration 2I are similar to those in
configuration 2H, except that the contaminating fraction is
increased to 20% for both populations. The results of this
configuration are similar to those of configuration 2H. The
results in Table 31 show that the MIP1 model is still the
best among the MIP models for both sizes of the training
samples. The average misclassification rates of the MIP1
model are 3.37% and 2.92% for training samples of sizes 20
and 40 per group, respectively. The MIP4 model performs

nearly as well as the MIP3 model. As shown in Table 45, the
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results of the paired t-tests indicate that the performances
of all the MIP models, except the MIP3 and MIP4 models, are
significantly different from each other for both sizes of

training sampiles.

Configuration 2J

For configuration 2J, the first population contains
normal data, whereas the second population contains
contaminated normal data. The contaminating fraction of the
second population is 10%. The results in Table 32 show
that, among the MIP models, the MIP3 mcodel yields the lowest
misclassification. However, the MIP4 model performs as well
as the MIP3 model for training samples of size 40 per group.
The average misclassification rates of the MIP3 model are
8.77% and 8.15% for training samples of sizes 20 and 40 per
group, respectively. The results of the paired t-tests in
Table 46 reveal that the performance of the MIP3 model is
significantly different from the performance of the MIP1l and
MIP2 models for both training samples of sizes 20 and 40 per
group. However, the MIP3 model’s performance is not

significantly different from that of the MIP4 model.

Confiquration 2K

Configuration 2K is similar to configuration 2J, except
that the contaminating fraction of the second population is

increased to 20%. The results for this configuration are
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similar to those for configuration 2J. Table 33 shows that,
among the MIP models, the MIP3 model still has the lowest
misclassification rate for both sizes of the training
samples. The average misclassification rates of the MIP3
model are 13.59% and 12.9%% for training samples of sizes 20
and 40 per group, respectively. The MIP4 model performs
nearly as well as the MIP3 model. The results of paired t-
tests in Table 47 indicate that the performance of the MIP3
model is significantly different from the performance of the
MIP1 and MIP2 models for both training samples of sizes 20
and 40 per group. However, there is no significant
difference in the performance between the MIP3 and MIP4

models.

Configuration 2L

Configuration 2L is the configuration chosen to have a
low value of skewness and a high value of kurtosis. The
values of skewness and kurtosis are chosen to be 0.461 and
13.413, respectively, for both populations. From these
specified values of skewness and kurtosis, the means and
variance-covariance structures of the two populations were
ocbtained from the results generated on the contaminated
normal distribution in the next section of this chapter and
are presented in Table 22. The results in Table 34 show

that, among the MIP models, the MIP3 and MIP4 models both
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yield an average misclassification rate of 13.44%, which is
the lowest misclassification for training samples of size 20
per group. For training samples of size 40 per group, the
best performing MIP model is the MIP1 model which has
average misclassification rate of 12.40%. The MIP2 model
does not perform well for this data configuration. The
results of paired t-tests in Table 48 reveal that the
performances of the MIP1, MIP3, and MIP4 models are not
significantly different from each other for both sizes of

the training samples.

Confiquration 2M

Configuration 2M is the configuration chosen tc have
moderate values of skewness and kurtosis. The values of
skewness and kurtosis are chosen to be 1.625 and 7.612,
respectively, for both populations. From these specified
values of skewness and kurtosis, the means and variance-
covariance structures of the two populations were obtained
from the results generated on the contaminated normal
distribution in the next section of this chapter and are
presented in Table 22. The results in Table 35 show that,
among the MIP models, the MIP4 model yields the lowest
misclassification for both sizes of the training samples.
The average misclassification rates of the MIP4 model are

9.56% and 8.53% for training samples of sizes 20 and 40 per
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group, respectively. Table 49 shows that the results of
paired t-tests that are similar to those of configuration
2L. The results indicate that the performances of the MIP1,
MIP3, and MIP4 models are ncot significantly different from

each other for both sizes of training samples.

Confiquraticn 2N

Configuration 2N is the configuration chosen to have a
low value of skewness and a very low value of kurtosis. The
values of skewness and kurtosis are chosen to be 0.129 and
2.124, resgpectively, for both populations. From these
specified values of skewness and kurteosis, the means and
variance-covariance structures of the two populations were
obtained from the results generated on the contaminated
normal distribution in the next section of this chapter and
are presented in Table 22. The results in Table 36 show
that, among the MIP models, the MIP1l model yields the lowest
misclassification rate for both sizes of the training
samples. The average misclassification rates of the MIP1
model are 7.10% and €.37% for training samples of sizes 20
and 40 per group, respectively. However, the results of
paired t-tests in Table 50 show that the performances of the
MIP3 and MIP4 models are not significantly different from
that of the MIP1 model for training samples of size 20 per

group.
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Skewness and Kurteosis Measures for the
Contaminated Normal Distribution
The general contaminated multivariate normal

distribution can be written as
2 2 2 2
CMN(FI:U],:Pz:Uz:E] = (l - E)N(,U,I,G'I) + GN(P"ZIUZ}-

The notation N(p,az) represents the normal distribution with
mean u and variance o°. The N(pz,of) population can be
interpreted as the contaminating part, and € can be
interpreted as the contaminating fraction of the data. The
above distribution can be shifted and scaled (such that u, =

0 and af = 1) so that the cumulative distribution function

is
F(X) = (1-€)®(X) + ed((X-pu)/0)

As shown in the theoretical framework chapter of this
dissertation, the formulas for the skewness (y,) and the

kurtosis (y,) measures can be mathematically derived as

ep{l-€) (307 + p? - 2u% - 3)
[1 - € + €0 + pe(l - €)}132

Y1 =

6eulol{e?-2e+1) +ep® (1+6€*-3€%-4¢€) +6u%?(1-€)+3 (1-€) +3eg*

2 -
[1 - € + €02 + pPe(l - €)]2

Now, if u approaches infinity, the kurtosis measure would

have a limiting value of
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1 + 6e€% - 3¢ - 4¢ 3¢?2 - 3¢ + 1 1
€{l-¢)? e{l-¢€) e{1l-¢)

If ¢ is equal to 0.5, then the limiting value of the
kurtosis is 1 as the parameter p approaches infinity. The
value of one for the kurtosis is the smallest value that the
kurtosis can have. Also note that as ¢ approaches infinity,
the kurtosis has a limiting value of 3/e¢. Thus, € can be
chosen to give any desired limiting value for the kurtosis.

For the measure of skewness, the limiting value as py
approaches infinity is

1 - 2¢
[e(1-€e)]t?

which is equal to zero for ¢ = .5 and approaches infinity
when € becomes close to zero. Thus, there is a wide range
of values that can be specified for the skewness and
kurtosis measures in simulating contaminated normal data.
Tables 51 through 58 contain various values of the skewness
and kurtosis measures for ¢ = .01, .05, .10, .15, .20, .30,
.40, and .50 with various settings ¢f the parameters u and
g.

Note that for the contaminated normal distribution with
the contaminating fraction higher than 0.50, the
distribution will be similar to the one with contaminating

fraction equals to 1-¢. For example, if a contaminated



94

normal distribution with contaminating fraction equals 0.6¢
and specific values of the skewness and kurtosis measures is
desired, then one can simply use the table with € = 0.40 to

select the parameter settings for the distribution.



CHAPTER VI
CONCLUSTIONS
Research Questions Addressed

This study has addressed three research questions
regarding the effects of certain modifications to the
mathematical programming models for solving the statistical
classification problem and the appropriateness of using the
contaminated normal distribution in Monte Carlo simulation

studies,

Research Question 1

How do second-order terms in mathematical
programming models affect the performance of certain
two-group classification models for small to moderate
training sample sizes and for normal and nonnormal
data? Can the correlation structure of the data
determine whether the crossproduct terms should be
included in the models? Under what conditions are
these models invariant with respect to translation and

rotation of the data?

From the results of simulation study, second-order

terms in mathematical programming models can be very

95
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effective in correctly classifying observations for certain
data configurations. For certain data configurations in
which the data are highly nonnormal, including the second-
order terms in mathematical programming models greatly
improves the classification results over the first-order
models and the Smith’s quadratic discriminant method. Also,
when the variance-covariance structures of the two
populations are different, the second-order mathematical
programming models can easily outperform the first-order
models. However, particularly for a small sample size, it
is possible for the first-order models to outperform the
second-order models when the variance-covariance structures
are only slightly different.

The correlation structure of the data can sometimes
determine the need of the crossproduct term for mathematical
programming models. If the sample size is moderate to large
and the data are approximately normal, then the crossproduct
term should not be included in the mathematical programming
model for data configurations such that I, - £,”! is
strictly a diagonal matrix (where Z, and £, are the
variance-covariance matrices of the first and second
populations, respectively}. For a small sample size,
second-order terms may reduce the classificatory performance
of some mathematical programming models even if the
variance-covariance matrices of the populations differ. For

nonnormal data, the correlation structure may not determine
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the need for a crossproduct term. For example, the data may
be uncorrelated but perfectly separable by the equation XY =
constant, where X and Y are the two attribute wvariables. 1In
this case, the crossproduct term can significantly improve
the classificatory performance of the mathematical
programming models despite the independence of the attribute
variables. Figure 23 displays guideline for alternative
mathematical programming models. To guarantee that the
second-order mathematical programming models are both
translationally invariant and rotationally invariant, all of
the first-order and second-order terms must be included in
the models. Omitting the crossproduct term, for example,
may improve the performance of the model, but the model may

not be optimal after a rotation.

Research Question 2
Can the use of certain secondary goals improve
the performance of MIP models for the two-group

classification problem on small to moderate sample

gizes?

The use of certain secondary goals can improve the
performance of the MIP models. An appropriate secondary
gecal for an MIP model depends on the characteristic and
orientation of the data. From the results of the simulation

study, the secondary goal of maximizing the distance between
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the means of the discriminant scores is appropriate mostly
for configurations in which both populations have the same
distribution and the line between the two population means
is approximately parallel to the horizontal axis. However,
if this type of data configuration is rotated 45 degrees,
then the same secondary goal with constraints to bound the
coefficients would be more effective for the MIP model in
classifying observations. For contaminated normal
configurations with the two population distributions being
very different, maximizing the minimum deviation of the
correctly classified observations would be an appropriate
secondary goal for the MIP model.

The secondaxy goal of minimizing the sum of all the
misclassified observations’ deviations is appropriate for
the contaminated normal data with moderate values of
skewness and kurtosis measures. However, if the
contaminated normal data have low values for the skewness
and kurtosis measures, then maximizing the distance between
the means of the discriminant scores would be an appropriate

secondary goal for the MIP model.

Research Question 3
Since the contaminated normal distribution
(mixture of two normals) can be used to assess the
performance of linear discriminant functions without a

validation sample, how appropriate is this distribution



99

for a simulation study in generating nonnormal data
with a variety of values for the skewness and kurtosis
measures? In particular, what range of values for the
measures of skewness and kurtosis can the contaminated
normal distributions have by using different parameter
settings for the mean, standard deviation, and

contaminating fraction?

This study shows the usefulness of a general
contaminated multivariate normal distribution in estimating
misclassification probabilities in a simulation study which
investigates various classification models. The
contaminated normal distribution is appropriate for a
simulation study in generating nonnormal data. A wide range
of values can be assigned to the measures of skewness and
kurtosis when generating contaminated normal distribution by
using different parameter settings for the mean (u},
standard deviation (c¢), and contaminating fraction (e¢).

The results on the contaminated normal distribution
show that the limiting values of the skewness and kurtosis
measures when u approaches infinity are (1-2¢€¢)/[e(1-¢€)]/?
and -3 + 1/e(1-€¢), respectively. Therefore, if ¢ equals
0.50 and u approaches infinity, then the values of the
skewness and kurtosis measures will approach 0 and 1,
respectively. Note that the smallest value of the kurtosis

measure for the contaminated normal distribution is 1.
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However, the kurtosis measure will have a limiting value of
3/e as ¢ approaches infinity. When ¢ becomes close to zero
and the value of u is sufficiently large, the value of the
skewness measure will approach infinity.

Tables illustrating various values of the skewness and
kurtosis measures for the contaminated normal distribution
with values of g, o0, and ¢ help to identify contaminated
normal distributions that approximate nonnormal
distributions with certain skewness and kurtosis values.
Thus, using the contaminated normal distribution in
simulation studies allows for greater use of distributions
that approximate certain real-world data sets with similar

values for the measures of skewness and kurtosis.

Limitations and Key Assumptions

Limitations and keys assumptions of this study include
the following:

1. Only the two-~group classification problem is
considered in this research study. It is common to find
classification problems involving more than two groups.
Although the extension of classification models to more than
two groups is conceptually straightforward, different
mathematical programming models would be needed. The
results on the inclusion of second-order terms and the use
of secondary goals may not be easily generalized to the

multiple group discriminant problem.
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2. The training sample ig limited to small to moderate
sizes (20 to 50 observations for each group). The
simulation study does not compare the performance of the
classification models with higher sample sizes. This is due
to the computational intensiveness of the MIP procedures at
higher sample sizes, particularly for the data in which the
degree of overlap in the groups is large.

3. Only the MSD, MIP, and hybrid models of
mathematical programming-based formulations are included in
this study. Although these models are found to compare
favorably with the parametric statistical models, other
mathematical programming models and nonparametric models
that have been presented in the literature have shown some
potential for good classificatory performance under certain
data configurations.

4. The simulation study is limited to only data
configurations that are presented in the Simulation Designs
chapter of this dissertation. The results may not
necessarily extend to other data configurations. The
simulation study includes mostly normal and contaminated
normal data. Although this type of data represents real-
world data, there are countless possibilities for data
configurations.

5. This study considers only attribute variables with
first-order and second-order terms. Some data

configurations in which a nonlinear discriminant function is
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the optimal classification rule may require terms that are
perhaps higher than the second-order in the discriminant
function for optimality.

6. The prior probability of an observation coming from
either population is assumed to be ecqual. The cost of
assigning an observation to one population when, in fact, it
belongs to the other population, is considered to be equal

for all observations.

Future Directions for Research

Many issues related to the study in this dissertation
can be investigated in future research studies.

1. Although the results in this dissertation show
benefits from inclusion of second-order terms in
mathematical programming approaches to discriminant analysis
for the two-group problem, the usefulness of second-order
terms for the classification problem with more than two
groups needs to be investigated.

2. This dissertation compares the classificatory
performance of MIP models with four different secondary
goals. There are other secondary goals that can be
evaluated.

3. The sizes of training samples and the
characteristics of data configurations other than the ones
used in this dissertation can be explored in simulation

studies,
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4. The study comparing classificatory performance of
the parametric statistical methods and the mathematical
programming methods can be extended to classification
problems with unequal prior probabilities and/or unequal
costs of misclassification.

5. Further examination of other modifications to
mathematical programming approaches may yield.benefits to
practitioners by having greater flexibility in choosing an

appropriate model.

Major Contribution of the Research

The results from this study will assist practitioners
and decision-makers in understanding and implementing
improved versions of mathematical programming formulations
and will give them greater flexibility in choosing
appropriate models to solve the statistical classification
problem. Previous simulation studies have shown that the
MSD and MIP models can perform well in the presence of
nonnormal data {(Stam and Jones 1990). However, the
inclusion of second-order terms of the attribute variables
in these mathematical programming formulations gives these
models the potential to be very competitive with Smith’s
quadratic disgcriminant method, which involves both first-
order and second-order terms. The condition for rotational

and translational invariance will help practitioners to
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understand the effect of omitting terms to obtain a
parsimonious model.

The results of the simulation study reveal that the
success exhibited by Rubin‘s (1990a) MIP model with a
secondary geal in his limited simulation study is shared by
MIP models with other secondary goals for certain data
configurations. Some secondary goals may be appropriate
with only certain types of data configurations. Not all of
the MIP models with secondary goals are rotationally
invariant. An appropriately selected secondary goal can
improve the classificatory performance of the MIP model and
make the model more competitive to both the parametric
statistical procedures and the mathematical programming-
based models.

The formulas for the measures of skewness and kurtosis
for the general contaminated normal distribution were
derived. For contaminated normal data, the measures of
skewness and kurtosis are generally not available. However,
the results in this dissertation show that a wide range of
values for the measures of skewness and kurtosis are
possible with contaminated normal distribution. These
results make the contaminated normal distribution useful in
simulating nonnormal data with various values of the
skewness and kurtosis measures.

Managerial decision-makers can easily implement the

mathematical programming models in this study by using a
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standard optimization computer package such as SAS/OR and
LINDC. The results of this study allow the managerial
decision-makers to use improved versions of mathematical
programming formulations for the discriminant problem by
utilizing second-order terms and appropriate secondary
goals. When violations of the usual parametric assumptions
are gevere, these formulations provide alternative

classification methods.
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Table 3.--Classification Models for Research Question 1
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Models Descriptions
1. MSD5 MSD with all linear, squared, and
crossproduct terms (5 variables)
2. MSD4 MSD with linear and squared terms
(4 variables)
3. MSD2 MSD with only linear terms
(2 variables)
4, MIPS MIP with all linear, squared, and
crossproduct terms (5 variables)
5. MIP4 MIP with linear and squared terms
(4 variables}
6. MIP2 MIP with only linear terms
(2 variables)
7. HYBS Hybrid with all linear, sqguared,
and crossproduct terms (5 variables)
8. HYB4 Hybrid with linear and squared terms
(4 variables)
9. HYB2 Hybrid with only linear terms
{2 variables)
10. LDF Fisher’s Linear Discriminant Function
11. QDF Smith’s Quadratic Discriminant Function
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Table 4.--Data Configurations for Research Question 1

First Population Second Population
Configura-
tion
Mean Covariance Mean Covariance
Vector Matrix Vector Matrix
1A [0 {1 0] 2 [l o]
L O 01 L 2 01
1B 0 ll .6} 3 [1 .6)
L O 6 1 3 .6 1
1C 0 {1 4] l3.5l l4.47 4 l
0 4 20 3.5 4 4,47
1D 0 21 3] [ 2 -1]
4] 1 2 | 3] -1 2
1E 0| 10 3 l:; ol
0 i 0 1 3 0 4
1F 0 1 0 0 [49 0]
0 0 1J 0 0 49
1G o 10 2 1 0
L O | 0 1] L 2 L0 1
15% of cbservations from
l-—l[}] 9 0
-10 0 9
1H a, from Uniform{(0.1, 5.0) a; from Uniform(0.1, 5.0)
a, from Uniform{O0, X ) a, from Uniform(l ‘ ;-+.5}
a, a,;” a,
20% of observations from 20% of observations from




Table 5.--Percentages of Misclassified Observations for

Training Samples of Sizes 25 and 50 Per Group for
Configuration 1A
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n, =n, = 25 n, = n, = 50
Method | Training Sample | Validation Sample | Training Sample | Validation Sampie
Mean STD Mean STD Mean STD Mean STD
MSD5 5.32 3.68 | 11.68 2.76 | 6.53 2.40 9.58 1.71
MSD4 5.76 3.77 | 10.43 2,08 | 6.66 2.30 9.10 1.29
MSD2 6.64 3.90 8.84 1.34 | 7.17 2.37 8.40 0.90
MIP5 3.16 2.38 | 14,66 4.11 | 4.36 1.74 | 11.64 2.23
MIP4 3.50 2.48 | 12,90 3.12 | 4.50 1.74 | 10.81 2,16
MIP2 4.28 2.57 9.86 2.30 | S5.11 1.87 9.14 1.22
HYB5 8.88 3.69 | 10.98 2.21 | 7.68 2.90 | 10.46 3.11
HYB4 8.42 3.37 | 10.11 1.96 | 7.50 2.46 | 10.42 2.36
HYB2 7.48 3.20 8.63 1.15 | 6.93 2.49 8.62 1.41
LDF 7.10 3.23 8.36 1.03 | 7.33 2,44 8.13 0.87
QDF 6.90 3.25 8.62 1.11 | 7.27 2.44 8.24 0.85
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Table 6.--Percentages of Misclassified Observationg for
Training Samples of Sizes 25 and 50 Per Group for
Configuration 1B

n, = n, = 25 n, = n, = 50
Method | Training Sample | Validation Sample | Training Sample | Validatton Sample
Mean STD Mean STD Mean STD Mean STD

MSDS 2.54 2.74 9.43 3.43 { 3.31 1.87 | 6.43 1.50
MSD4 2.86 2.89 8.48 3.00 | 3.77 1.96 | 5.78 1.33
MSD2 3.42 2.96 5.82 1.58 | 3.89 1.86 | 5.10 0.80
MIPS 1.48 1.57 | 11.06 3.27 | 2.00 1.24 | 8,09 2.18
MIP4 1.92 1.80 | 10.10 3.38 | 2.34 1.29 | 7.15 1.70
MIP2 2,12 1.86 6.70 2.14 | 2.62 1.40 | 5.64 1.17
HYBS 6.42 3.21 8.15 2.20 | 4.73 2.24 | 7,65 2.51
HYB4 6.84 3.14 8.06 2.07 | 4.89 2.02 [7.20 1.90
HYB2 4.88 2.78 5.18 1.05 | 3.82 1.81 | 5.37 1.00
LDF 4,40 2.90 4.98 0.87 | 4.27 1.86 | 4.74 0.69
QDF 4.10 2.80 5.29 1.01 | 4.23 1.86 | 4.86 0.69




Table 7.--Percentages of Misclassified Observations for

Training Samples of Sizes 25 and 50 Per Group for
Configuration 1C
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n, = n, = 25 n, = n, = 50
Method | Training Sample | Validation Sample | Training Sample | Validation Sampie
Mean STD Mean STD Mean STD Mean STD
MSD5 3.20 3.35 | 1l.02 3.17 4,92 2.65 7.64 1.62
MSD4 3.68 3.74 9.53 2.50 5.23 2.71 7.21 1.24
MSD2 7.62 4.03 9.02 1.56 7.68 2.60 8.49 1.11
MIP5 1.72 1.78 | 12.40 3.15 2.90 1.57 9.38 1.96
MIP4 2.24 2.04 | 1ll.44 2.92 3.16 1.63 8.76 1.93
MIP2 5.90 3.33 | 10.74 2.68 6.19 2.29 9.15 1.71
HYB5 7.96  3.27 8.53 1.57 6.68 5.15 9.01 4,84
HYB4 8.24 3.19 8.74 1.50 6.47 4.67 8.84 4.69
HYB2 11.88 3.47 | 12.54 2.41 8.91 3.36 | 10.68 2.25
LDF 10.50 3.3l 11.15 2.03 | 10.34 2.19 | 10.81 1.35
QDF 6.22 3.57 6.88 0.97 6.14 2.45 6.47 0.94




Table 8.--Percentages of Misclassified Observations for

Training Samples of Sizes 25 and 50 Per Group for
Configuration 1D
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Il1=nz

= 50

Method | Training Sample | Validation Sample | Training Sample | Validation Sample
Mean STD Mean STD Mean STD Mean STD
MSD5 2.54 2.75 9.75 3.26 | 4.30 2.19 | 6.99 l.46
MSD4 3.40 3.01 8.34 2.33 | 4.60 2.13 [ 6.58 1.16
MSD2 3.98 3.07 6.81 1.57 | 5.09 2.19 | 6.12 0.75
MIP5 .60 1.58 | 11.97 3.50 { 2.78 l1.42 | 8.97 2,14
MIP4 2.20 1.92 | 10.35 3.46 [ 3.16 1.66 | 8.09 2.28
MIP2 2.78 2,11 7.66 1.96 | 3.81 1.84 | 6.81 1.22
HYBS 5.76 2,94 7.21 1.90 | 5.73 2.59 | 8.57 3.23
HYB4 5.68 2.94 6.64 1.33 | 5.75 2.78 | 8.12 2.63
HYB2 6.30 2.91 7.06 1.48 | 5.40 2.47 | 6.66 1.28
LDF 5.34 2.68 6.77 1.18 | 5.99 2.21 | 6.48 0.90
QDF 4.64 2.65 5.92 0.91 | 5.05 2.13 | 5.58 0.66




Table 9.--Percentages of Misclassified Observations for

Training Samples of Sizes 25 and 50 Per Group for
Configuration 1E
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——

n, = n, = 25 n, =n, =50
Method | Training Sample { Validation Sample | Training Sample | Validation Sample
Mean STD Mean STD Mean STD Mean STD
MSDS 3.88 3.24 | 10.18 2.85 | 4.83 1.99 | 7.90 1.84
MSD4 4,34 3.42 9.06 2.30 | 4.97 2.05 | 7.44 1.40
MSD2 6.46 3.8l 8.33 1.26 | 6.3¢ 2.20 | 7.85 0.90
MIP5 2.34 1.84 | 12.45 3.57 | 3.06 1.35 | 9.52 2,38
MIP4 2.64 2.05 [ 11.35 3.55 | 3.31 1.47 | 9.11 2.28
MIP2 4.30 2.61 9.43 2.12 | 4.64 1.68 | 8.55 1.40
HYBS 7.10 3.29 8.41 2.18 | 6.56 2.48 | 9.46 2.49
HYB4 9.18 3.75 | 10.72 2.69 | 6.29 2.43 | 8.76 2.05
HYB2 8.80 3.36 9.34 1.78 | 6.98 2.42 | 8.86 1.51
LDF 8.00 3.36 8.50 1.35 | 7.59 2.13 | 8.36 1.07
QDF 5.92 3.14 7.20 1.13 | 5.61 1.86 | 6.66 0.99
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Table 10.--Percentages of Misclassified Observations for
Training Samples of S8izes 25 and 50 Per Group for
Configuration 1F

n, = 1N,

= 50

Method | Training Sanple | Validation Sample | Training Sample | Validation Sample
Mean STD Mean STD Mean STD Mean STD
MSD5 2.32 2.75 8.67 2.94 3.29 2.0l 6.39 1.24
MSD4 2.66 2.98 7.95 2.50 3.56 2.42 6.16 1.53
MSD2 31.89 4.81 | 35.93 2,71 | 34.58 3.93 | 37.64 2.54
MIP5 1.76 2,07 | 10.58 3.70 * * * *
MIP4 1.96 2.16 9.29 3.08 * * * *
MIP2 21.56 3.00 | 32.80 1.89 * * * *
HYBS5 17.34 3.64 | 20.34 3.27 5.06 2.07 7.97 1.82
HYB4 17.76 3.54 | 19.89 3.36 4.72 2.44 7.30 1.85
HYB2 29.16 6.96 | 34.85 4,98 | 43.86 6.34 | 48,05 3.84
LDF 34.46 7.62 | 39.38 4,80 | 37.13 6.43 | 41.29 4.34
QDF 3.94 2.95 5.82 1.06 4.14 1.81 5.25 0.97

* Computationally too intensive to complete runs for this model.
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Table 11.--Percentages of Misclassified Observationg for
Training Samples of Sizes 25 and 50 Per Group for
Configuration 1G

n, = n, = 25 n, = n, = 50
Method | Training Sample | Validation Sample | Training Sample | Validation Sample
Mean STD Mean STD Mean STD Mean STD
MSD5 4.48 3.62 | 12.06 3.30 5.97 2.43 8.95 1.37
MSD4 5.64 4,01 10.09 2.93 6.57 2.27 9.13 l.44
MSD2 25.16 12.80 | 30.64 13.94 { 26.28 12,17 | 29.65 12.85
MIPS 2.82 2.36 | 14.40 4,15 4,00 1.75 } 10,63 2.07
MIP4 3.58 2.59 | 13.63 3.20 4.43 1.82 | 10,25 1.70
MIP2 11.68 4.62 | 17.27 2.39 | 12.05 2.82 | 15.83 1.29
HYBS 8.56 3.95 | 11.97 2.55 7.64 2.76 | 10.36 1.75
HYB4 8.92 3.79 | 11.47 2.12 7.97 3.25 | 10.55 2.66
HYB2 30.80 19.67 | 36.93 20.57 [ 38.98 21.21 | 42.48 20.75
LDF 34.66 12.15 | 41.31 12.65 | 38.50 11.60 | 42.66 11.49
QDF 10.16  5.41 13.32 4.27 | 11.12 4,10 | 12.18 2.58
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Table 12.--Percentages of Misclassified Observations for
Training Samples of Sizes 25 and 50 Per Group for
Configuration 1H

n, =n, =25 n, = n, = 50
Method | Training Sample | Validation Sample | Training Sample | Validation Sample
Mean STD Mean STD Mean STD Mean STD
MSD5 0 0 5.54 2.83 0 0 2.91 1.47
MSD4 2.62  3.40 8.64 2.71 5.13  3.48 7.33 1.71
MSD2 11.44  7.47 | 14.49 6.33 | 11.50 5.75 12.96 5.18
MIP5 0 0 5.58 2.93 0 0 2.94 1.43
MIP4 1.14 1.31 8.25 2.74 2.03 1.38 6.71 1.74
MIP2 5.22 3.07 | 10.20 2.93 6.19 2.39 9.04 1.66
HYBS 10.80 4.93 15.36 6.86 3.72  4.41 6.45 4.70
HYB4 11.30 5.66 | 15.50 7.58 7.50 4.29 g.34 2.83
HYB2 17.08 7.18 | 20.53 9.01 13.33 5.39 14.83 4.27
LDF 27.48 5.87 | 30.89 4,30 | 28.14 4.39 | 29.98 3.48
QDF 29.44 7,11 | 3l.46 5.23 | 30.97 5.08 | 32.20 3.90




117

Table 13.--Paired T-Tests of Mean Difference in Classification
Performance on Validation Samples for Training Samples of Sizes

25 and 50 Per Group for Configuration 1A

Method
Metrthod
MSD4 MSD2 MIP5 MIP4 MIP2 HYB5 HYB4 HYB2 LDF QDF
MSD5
n=25 | 5.99 11.49 -8.18 -3.51 5.92 2.11 5.24 10.44 12.21 11.75
n=50 |3.72 B8.24 -8.84 -5.93 2.73 =-2.82 -3.52 5.19 B8.82 8.54
MSD4
n=25 8.68 -10.51 =-8.35 2.23 -2.06 1.23 8.48 10.59 9.68
n=50 7.77 -11.84 -8.63 -0.26 -4.51 -6.30 3.29 8.37 8.29
MSD2
n=25 -14.36 -13.48 -4.65 -9.30 -6.18 1.65 4.50 2.20
;=50 -14.66 -11.60 -6.42 -6.68 -8.95 -1.84 4.09 2.80
MIPS
nens 4.30 10.84 8.53 10.80 14.47 15.53 15.52
n—50 3.92 11.76 3.39 4.35 12.45 15.13 14.89
M;Eés 10.15 5.59 7.98 13.64 14.69 13.70
<50 8.52 1.07 1.75 9.86 12.431 12.18
NP -4.14 -0.99 5.26 6.66 5.6l
o= —4.07 -5.38 3.41 B8.00 7.33
n|=50
HYBS 3,86 10,40 12.19 11.12
n;=25 0.12 5.84 7.49 7.28
n,=50
HYR4 8.00 10.17 B8.64
n=25 8.24 10.08 9.87
ni=50
HYB2 4.05 0.11
n;=25 4.07 3.34
nl=50
LDF -4.50
n=25 -3.43
ni=50

Note: A positive (negative} t-value in position (i,j) of the table indicates

that the mean misclassification rate of method i is higher (lower)} than

of method j. Underlined t-values indicate pairs of means that differ

that

significantly after applying the Bonferroni adjustment to the family of S5

tests,
.05/55,

obtained from the Bonferroni method with a significance level of

i.e., the individual computed t-value must be significant at «
resulting in a critical value of 3.368.
be compared to the critical value of 3.815,

The above t-values can

also

which is the critical value
.01/55.



118

Table 14.--Paired T-Tests of Mean Difference in Classification
Performance on Validation Samples for Training Samples of Sizes
25 and 50 Per Group for Configuration 1B

Method
Method
MSD4 MSD2 MIP5 MIP4 MIP2 HYBS HYB4 HYB2 LDF QDF
MSD5
n=25 {3.02 11.35 -4.90 -1.68 8.10 3.71 3.97 12.35 13.53 13.10
n=50 | 6.64 10,31 -7.60 -4.23 5.30 -5.69 -4.58 6.99 11.87 11.31
MSD4
n=25 10.66 -7.14 -5.10 5.90 0.99 1.32 11.39 12.45 11.66
n=50 6.30 -10.20 -9.12 1.15 ~-7.95 -9.65 3.25 8.89 8.05
MSD2
n=25 -15.81 -13.59 -5.00 =-8.87 -9.31 4.11 6.54 3.99
n.=50 -14.38 -13.34 -5.36 -10.61 -12.00 -3.33 6.32 4.19
MIPS
e 2.88 12.85 7.44 7.44 17.29 19.11 19.09
5250 4.23 11.89 1.74 3.75 13.15 16.21 15.87
1
MIP4
Sl 12.00 4.92 5.38 14.80 15.97 15.26
nreo 10.37 -1.84 -0.25 11.42 15.10 14.28
- 10.37 ii.42 15.30
M -5.10 -5.07 6.92 8.78 7.20
= -8.06 -8.34 2.49 8.22 6.90
n|=50
HYBZ 0.49 12.44 13.32 12.60
=25 1.94 9.65 11.93 11.74
ni=50
HYB4 14.79 15.11 13.91
n=25 10.82 13.84 13,59
n-l==50
HYB2 3.03 -1.14
n=25 6.78 5.76
ni=50
LDF -5.73
n=25 ~3.68
ni=50

Note: A positive (negative) t-value in position (i,j) of the table indicates
that the mean misclassification rate of method i is higher (lower) than that
of method j. Underlined t-values indicate pairs of means that differ
significantly after applying the Bonferroni adjustment to the family of 55
tests, i.e., the individual computed t-value must be significant at e =
.05/55, resulting in a critical value of 3.368., The above t-values can also
be compared to the critical value of 3.815, which is the critical value
obtained from the Bonferroni method with a significance level of ,01/55.
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Table 15.--Paired T-Tests of Mean Difference in Classification
Performance on Validation Samples for Training Samples of Sizes
25 and 50 Per Group for Configuration 1C

Method
Method
MSD4 MSD2 MIPS MIP4 MIP2 HYBS KYB4 HYB2  LDF ODF
MSDS
n=25 |5.22 7.04 -3.87 -1.23 0.75 7.43 6.63 =-3.84 -0.35 12.94
n=50 | 4.68 -5.73 -9.64 ~5.58 ~-8.11 -2.87 -2.65 -12.28 -17.48 8.68
MSD4
n=25 1.98 -8.75 -6.11 -3.39 3.98 2.89 -8.92 -5.61 11.36
n=50 -12.131 -12.99 -8.64 -12.20 -3.84 -3.66 -15.82 -24.56 7.83
MSD2
n=25 -9.95 -8.80 -6.90 3,01 1.68 -13.08 -10.33 14.65
n=50 -4.91 -1.50 -4.71 ~-1.09 -0.75 -11.02 -19.89 27.66
MIP5
o2 2.97 4,09 11.77 10.47 -0.37 3.41 17.67
At 3.64 1.12 0.73 1.10 -5.06 -6.77 16.48
Mﬁﬁzs 1.87 9.96 8.81 -3.18 0.87 15.92
neto -1.76 -0.49 -0.18 -7.50 -9.74 13.05
=
MIgés 7.98 7.19 -5.07 -1.38 14.58
e 0.27 0.60 -7.59 -8.42 17.39
ni=50
HIBS -1.90 -16.89 -15.68 12.20
n=25 0.26 -3.06 -3.71 5.22
n;= S0
HYB4 -17.36 -14.29 12.89
n=25 -3.48 -4.15 5.23
n|=50
HYB2 7.25 22.64
n;=25 -0.48 21.41
nl=50
LDF 21.56
n;=25 36.14
n1=50

Note: A positive (negative) t-value in position {i,j) of the table indicates
that the mean misclassification rate of method i is higher (lower) than that
of method j. Underlined t-values indicate pairs of means that differ
significantly after applying the Bonferroni adjustment to the family of 5§
tests, i.e., the individual computed t-value must be significant at « =
.05/55, resulting in a critical value of 3.368. The above t-values can also
be compared to the critical value of 3.815, which is the critical value
obtained from the Bonferroni method with a significance level of .01/55.
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Table 16.~~Paired T-Tests of Mean Difference in Classification
Performance on Validation Samples for Training Samples of Sizes
25 and 50 Per Group for Configuration 1D

Method
Method
MSD4  MSD2 MIPS MIP4 MIP2 HYBS HYB4 HYB2 LDF QDF
MSDS
n=25 |4.41 8.83 -6.77 -1.43 6.14 7.04 9.08 7.44 B.83 12.4
n=50 |[3.21 6.18 -9.13 -4.86 1.03 -5.40 -4.20 1.50 3.37 10.08
MSD4
n=25 7,76 -9.25 -5.97 3.11 4.27 7.05 - 4.52 6.24 11.36
n=50 4.27 -30.31 -7.63 -1.50 -6.0%1 -6.29 -0.60 0.70 8.76
MSD2
n,=25 -14.23 -10.42 -5.38 -1.91 ©0.95 -1.28 0.24 7.22
n=50 -13.27 -8.81 -5.70 -7.70 -7.76 -4.81 -3.97 B8.36
MIPS
=25 4.18 12.31 12.57 14.58 12.90 14.21 17.70
n=50 3.44 9.47 1.22 2.70 10.28 10.95 16.14
= 10.85 16.14
Miiés 7.54 8.18 9.92 9.09 10.09 13.21
50 5.48 -1.38 -0.15 6.53 6.56 10.99
i 1.94 4.87 2.65 4.53 9.91
i -5.19 -4.68 0.99 2.39 10.35
ni=50
HYBS 31.83 0.61 1.99 §6.88
=25 1.14 5.81 6.37 9.50
ni=50
HYB4 -2.04 -0.74 5.48
n;=25 6.51 6.07 9,71
n-,=50
HYB2 3.66 1.61
n=25 1.31  9.09
ni=50
LDF 7.93
n;=25 10.92
n|=50

Note: A positive {negative) t-value in position (i,3j) of the table indicates
that the mean misclassification rate of method i is higher (lower) than that
of method j. Underlined t-values indicate pairs of means that differ
significantly after applying the Bonferroni adjustment to the family of 55
tests, i.e., the individual computed t-value must be significant at « =
.058/55, resulting in a critical value of 3.368. The above t-values can also
be compared to the critical value of 3.815, which is the critical wvalue
obtained from the Bonferroni method with a significance level of .01/55.
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Table 17.--Paired T-Tests of Mean Difference in Classification
Performance on Validation Samples for Training Samples of Sizes
25 and 50 Per Group for Configuration 1E

Method
Method
MSD4 MSD2 MIP5 MIP4 MIP2 HYBS HYB4 HYB2 LDF ODF
MSDS
n=25 | 5.04 6.52 -6.71 -3.64 2.16 4.93 -1.39 2.65 5.53 11.20
n=50 |4.85 0.28 -8.91 -6.62 ~-3.10 -7.28 -4.73 -4.66 -2.42 7.83
MSD4
n,=25 3.12 -9.20 -6.52 -1.23 2.03 -4.59 -1.09 2.29 8.34
n=50 -3.24 -10.40 -9.55 -6.47 -10.18 -8.21 -8.57 -6.33 6.95
MSD2
n.=25 -11.56 -8.66 -5.39 -0.40 -8.87 =-5.36 -1.32 8.71
n=50 -7.20 -5.93 -5.82 -6.67 =-4.54 -7.92 -5.86 16.31
MIPS
=25 3.43 7.75 9.61 3.92 8.14 10.64 14.69
n.=50 2,15 3.77 0.27 3.37 2.69 4.38 13.19
1
Mifzs 5.00 7.49 1.3 5.16 7.73 12.08
=50 2.56 -1.46 1.63 1.03 3.18 11.74
=
M 3.61 -3.92 0.36 3.94 9.41
0= -3.38 -0.91 -1.82 1.31 13.77
n;=50
HYBS -9.18 -3.79 -0.40 5.58
n;=25 3.42 2.58 4.19 12.32
ni=50
HYB4 6.25 9.45 13.90
n=25 -0.50 1.75 11.75
ni=50
HYB2 7.25 12.71
n=25% 2.89 17.10
ni=50
LDF 10.20
n=25 16.76
ni=50

Note: A positive {(negative} t-value in pesition (i,j) o¢f the table indicates
that the mean misclassification rate of method i is higher (lower) than that
of method j. Underxlined t-values indicate pairs of means that differ
significantly after applying the Bonferroni adjustment to the family of 55
tests, i.e., the individual computed t-value must be significant at « =
.05/55, resulting in a c¢ritical value of 3.368. The above t-values can also
be compared to the critical value of 3.815, which is the critical value
obtained from the Bonferroni method with a gignificance level of .01/585,
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Table 18.--Paired T-Tests of Mean Difference in Classification
Performance on Validation Samples for Training Samples of Sizes
25 and 50 Per Group for Configuration 1F

Method
Method ) . .
MSD4 MSD2  MIPS' MIP4" MIP2" HYBS HYB4  HYR2 LDF ODF
MSDS
n=25 [ 2.91 -67.44 -5.51 -2.05 -70.11 -28.36 -29.30 -45.67 -55.07 9.75
n=50 | 1.55 -118.97 -9.01 -4.88 -102.20 -75.31 10.65
MSD4
n,=25 -79.17 -7.60 -5.02 -83.82 -31.85 -30.55 -49.05 -56.70 8§.91
n,=50 -107.84 -9.43 -5.85 -97.95 -74.76 6.31
MSD2
n,=25 55.92 69.33 9.55 44.89 44.20 1.95 -6.26 110.97
n=>50 98.13 95.41 -27.69 -9.05 125.28
1
MIPS"
ne25 4.18 -58.95 -21.27 -20.22 -38.24 -47.56 12.57
(]
“iﬁgs ~71.63 -26.00 -25.78 -44.35 -52.53 11.64
= 2£.23
MIP2 34.04 33.29 -3.91 -13.04 132.19
ni=25 ————k G .
HYRS 1.97 =23.79 -32.19 42.13
n=25 4.80 -91.17 -67.89 16.29
n=50 =R 0T
HYB4 -24.65 -32.89 139.62
=25 -91.91 -70.67 11.88
ni=50
HYB2 -9.50 57.98
n=25 21.39 107.46
ni=50
LDF 69,35
n=25 B0.06
ni=50

Note: A positive (negative} t-value in position (i,j} of the table indicates
that the mean misclassification rate of method i is higher (lower) than that
of method j. Underlined t-values indicate pairs of means that differ
significantly after applying the Bonferroni adjustment to the family of 55
tests, i.e., the individual computed t-value must be significant at « =
-05/55, resulting in a critical value of 3.368. The above t-values can also
be compared to the critical value of 3.815, which is the critical value
obtained from the Bonferroni method with a significance level of .01/55.

* Computatiocnally too intensive to complete runs for MIP method with training
samples of size 50 per group.
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Table 19.--Paired T-Tests of Mean Difference in Classification
Performance on Validation Samples for Training Samples of Sizes

25 and 50 Per Group for Configuration 1G

Method

Method '

MgD4 MSD2  MIP5 MIP4 MIP2 HYB5 HYB4 HYB2 LDF _ QDF

MSD5
n=25 3.20 -12.54 -6.69 =-4.59 -15.64 0.26 1.65 -11.69 -21.41 -2.87
n=50 | -1.33 -15.85 ~-8.14 ~-7.19 -45.60 -7.23 ~-5.67 -16.12 -29.06 -11,28

MSD4
n=25 -13.57 -8.80 -8.91 -22.03 -3.23 -1.31 -12.36 -23.03 -5.20
n,=50 -15.65 -7.02 -7.67 -40.45 =-5.81 =-5.21 -15.96 -28.62 -10.67

MSD2
n=25 10.57 11.55 9.62 13.40 14.02 -6.13 -14.13 13.47
n=50 14.38 14.87 10.67 14.94 14.54 -10.87 -20.03 14.51

MI1PS
n=25 2.21 -6.84 6.86 7.29 -10.3% -18.87 2.26
=50 1.85 -24.19 1.05 0.26 -15.19 -27.05 -4.45

= z24.19 z15.13

Miiés -11.21 5.32 6£.38 -10.91 -20.31 0.67
ne50 -29.87 -0.54 ~-1.12 -15.48 -27.77 -6.67

= —<2.87 22398

e 18.97 21.78 -9.56 -18.58 10.24
2‘50 28.82 19.43 -12.83 -23.22 14.29

i=

HYB5 3.17 -12.20 -22.96 -3.40
nﬁgg -0.80 ~15.49 ~27.91 -7.24
n= .

HYB4 -312.53 ~23.89 -4.48
n;=25 -15.19 -26.84 =-5.12
n-,=50

HYB2 -4.06 12.44
n;=25 -0.17 15.37
ni=50

LDF 23.78
n=25 28.66
ni=50

Note: A positive ({(negative} t-value in position (i,j) of the table indicates

that the mean misclassification rate of method i is higher (lower) than
of method j. Underlined t-values indicate pairs of means that differ

significantly after applying the Bonferroni adjustment to the family of
tests, i.e., the individual computed t-value must be significant at o« =
.05/55, resulting in a critical value of 3.368. The above t-values can
be compared to the critical wvalue of 3.815, which is the critical value

that
55

also

obtained from the Bonferroni method with a significance level of .01/55.
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Table 20.--Paired T-Tests of Mean Difference in Clasgification
Performance on Validation Samples for Training Samples of Sizes
25 and 50 Per Group for Configuration 1H

Method
Method
MSD4 MSD2 MIPS5 MIP4 MIP2 HYB5 HYB4 HYB2 LDF QDF
MSDS5
n,=25 -8, 71 -12.37 -0.16 -7.58 -12.27 -13.71 -12.83 ~16.23 -52.04 -40.69
n=50 | -20.69 -17.90 -0.20 -17.87 -27.46 -7.71 -19.39 -25.32 -70.21 -64.09
MSD4
n=25 -2.78 8,73 1.25 -3.96 -9.47 -9.01 -13.89 -51.86 -43.76
n=50 ~12.32 20.50 3.29 -7.85 1.72 -9.95 -20.22 -62.70 -67.47
MSD2
n=25 12.78  9.17 7.05 -0.90 -1.02 -6.55 -27.22 -25.26
n=50 17.95 12.20 7.76 8.51 7.1%9 -5.30 -33 .26 -33.22
MIps
=25 —8.00 -11.33 -13.25 -12.91 -15.43 -49.23 -40.89
n=50 =18.76 -29.25 -7.36 -19.48 -26.22 -71.11 64 67
1]
Miiés -4.91 -5.48 -8.88 -13.15 -43.27 -39.74
a=50 -10.63 0.54 -9.09 -20.18 -61.37 -60.68
= —ad.63 =2 24U, 18 —54Y.68
“Ipés -7.15 -6.55 -11.27 -40.98 -35.28
= 5.34 -0.97 -13.69 -56.83 -58.01
ni=50 T —t— ——ta A
HYB5 -0.27 -5.96 -21.41 -18.33
n;=25 -4.71 -12.27 -39.58 -38.62
ni=50
HYB4 -5.52 -19.07 -16.41
n;=25 -13.33 -50.46 -64.94
I'.l,-=50
HYB2 -13.61 -11.26
n;=25 -31.68 -35.38
n-,=50
LDF -1.01
n=25 -4.81
ni=50

Note: A positive (negative) L-value in position (1,3} of the table indicates
that the mean misclassification rate of method i is higher {lower} than that
of method j. Underlined t-values indicate pairs of means that differ
significantly after applying the Bonferroni adjustment to the family of 55
tests, i.e., the individual computed t-value must be significant at « =
.05/55, resulting in a critical value of 3.368. The above t-values can also
be compared to the critical value of 3.815, which is the critical value
obtained from the Bonferroni method with a significance level of .01/55.



Table 21.--Classification Models for Research Question 2
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Models Descriptions

1. MIP1 MIP with maximize distance between
projected means (Bounded Scores)

2. MIpP2 MIP with maximize distance between
projected means (Bounded Coefficients)

3. MIP3 MIP with maximize the minimum internal
deviation (Bounded Coefficients)

4., MIp4 MIP with minimize sum of the external

deviations




126

Table 22.--Data Configurations for Research Question 2

First Population Second Population
Configura-
tion
Mean Covariance Mean Covariance
Vector Matrix Vector Matrix
2A l-z’ 1 0 [2} {1 o}
0 0 1 0 01
2B [ -1.414’ 1 0 [ 1.414] 10
1.414 0 1 -1.414 01
2C [-1] 4 o] ‘2] 10
0 0 4 0 L 0 1
2D [-2] llO] lz} 1 0
0 0 1 0 . 0 1]
10% of observations from
[-2] 4 0
0 [ 0 4
2E I -1.414] [1 0} { 1.414’ [1 0]
l.414 01 -1.414 0 1
10% of cbservations from
[-1.414} 4 0
1.414 L O 4]
OF -2 1 0] [ 2 10
8] 01 0 0 1
10% of observations from 10% of observations from
[ -2 | 4 0} 2 40
0l t 0 4 0) 0 4]
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Table 22.--Continued.

First Population Second Population
Configura-
tion
Mean Covariance Mean Covariance
Vector Matrix Vector Matrix
2G | -1.414] 1 0 [ 1.414] 10
1.414] 01 -1.414 0 1!
10% of observations from 10% of cbservations from
~1.414 4 0 [ 1.414] 4 0
1.414 0 4 ~1.414 0 4
. X
2H -2 10 [ 2 10
I 2] L 0 1) -2 1t 0 1)
10% of observations from 10% of observations from
-2 [ 2 0 [2 2 0
¢ 0 2] 0 0 2
271 -2 10 2 1 ¢
2 01 -2 0 1
20% of cbservations from 20% of observations from
-2 2 0 2 [ 2 9]
0 0 2 0 L0 2
23 -4 4 0 4 | 4 o
0 0 4 0 L 0 4]
10% of observations from
l-s} 1 0]
0 t 0 1;
2K [-4] l4 o] [4] 40
¢ 0 4 0 0 4]

20% of observations from

3 N



Table 22.--Continued.
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First Population

Second Population

Configura-
tion
Mean Covariance Mean Covariance
Vector Matrix Vector Matrix
2L [o] 1 o] laJ 10
0 0 1 0 01
15% of observations from 15% of observations from
[-.5] [25 o] 3.5} [25 0}
0 0 25 0 0 25
2M {o 10 3‘ 10
0 0 1 0 0 1
20% of observations from 20% of observations from
[-2.5] 9 0 5.5 9 0
0] 0 9 0 0 8
2N [o} 1 0 3} 1 0
0 ¢ 1) 0 1 0 1]
20% of observations from 20% of observations from
l-z.s} l.01 0] 5.5} .01 o}
0 0 .01 0 0 .01




Table 23.--Exact Misclassification Rates for

Training Samples of Sizes 20 and 40 Per Group for
Configuration 2A

n, =n, = 20 n, = n, = 40
Method
Mean STD Mean STD
MIP1 3.42 1.05 3.08 0.80
MIP2 6.14 2.66 4 .25 1.70
MIP3 3.85 1.58 3.38 1.07
MIP4 3.94 1.82 3.26 0.99

Table 24.--Exact Misclassification Rates for

Training Samples of Sizes 20 and 40 Per Group for
Configuration 2B

nl = n2 = 20 1'11 = I'l2 = 490
Method
Mean STD Mean STD
MIP1 3.29 1.11 3.03 0.70
MIP2 3.81 2.02 3.02 0.89
MIP3 3.56 1.44 3.18 0.98
MIP4 3.86 l.61 3.24 0.95
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Table 25.--Exact Misclassification Rates for
Training Samples of Sizes 20 and 40 Per Group fox
Configuration 2C

n, = n = 20 n, =n, = 40
Method
Mean STD Mean STD
MIP1 16.74 2.07 16.18 1.35
MIP2 18.40 2.71 16.91 1.90
MIP3 17.27 2.43 16.38 1.60
MIP4 17.15 2.39 16.34 1.50

Table 26.--Exact Misclassification Rates for
Training Samples of Sizes 20 and 40 Per Group for
Configuration 2D

n, =n = 20 n, =mn = 40
Method
Mean STD Mean STD
MIP1 8.52 2.19 7.69 1.22
MIP2 9.89 2.46 8.39 1.67
MIP3 8.40 2.16 7.48 1.06
MIP4 8.52 2.28 7.50 1.02




Table 27.--Exact Misclassification Rates for

Training Samples of Sizes 20 and 40 Per Group for
Configuration 2E

I'll = nz = 20 I'll -~ 1’12 = 40
Method
Mean STD Mean STD
MIP1l 8.38 2.13 7.73 1.36
MIP2 8.19 2.08 7.38 1.4¢
MIP3 8.16 1.92 7.49 1.42
MIP4 8.37 1.93 7.54 1.42

Table 28.--Exact Misclassification Rates for

Training Samples of Sizes 20 and 40 Per Group for
Configuration 2F

n, =n, = 20 n, = n = 40
Method
Mean STD Mean STD
MIP1 5.47 1.96 4.65 0.93
MIP2 7.72 2.61 5.44 1.56
MIP3 5.52 2.11 4.69 1.10
MIP4 5.57 1.13 4.61 0.97
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Table 29.--Exact Misclassification Rates for

Training Samples of Sizes 20 and 40 Per Group for

Configuration 2G

nl = nz = 2 0 nl = n2 = 40
Method
Mean STD Mean STD
MIP1 5.18 1.71 4.56 0.99
MIP2 5.35 2.08 4 .50 1.17
MIP3 5.29 1.86 4.58 1.02
MIP4 5.50 1.85 4,66 1.04

Table 30.--Exact Misclassification Rates for

Training Samples of Sizes 20 and 40 Per Group for

Configuration 2H

nl = nz = 20 nl = nz = 4 0
Method
Mean STD Mean STD
MIP1 2.22 1.03 1.94 0.68
MIP2 3.20 1.57 2.60 1.07
MIP3 2.47 1.30 2.19 0.83
MIP4 2.74 1.79 2.29 0.93
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Table 31.--Exact Misclassification Rates for

Training Samples of Sizes 20 and 40 Per Group for

Configuration 21

I'll = nz = 2 0 I'll - nz = 4 O
Method
Mean STD Mean STD
MIP1 3.37 1.21 2.82 0.70
MIP2 4 .58 1.87 3.49 1.07
MIP3 3.81 1.57 3.15 0.87
MIP4 3.90 1.65 3.13 0.91

Table 32.--Exact Misclassification Rates for

Training Samples of Sizes 20 and 40 Per Group for

Configuration 2J

n = n, = 20 n, =n, = 40
Method
Mean STD Mean STD
MIP1 9.22 2.01 8.41 1.19
MIP2 11.11 2.70 9.01 1.65
MIP3 8.77 1.87 8.15 1.10
MIP4 8.89 2.24 8.15 1.13
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Table 33.--Exact Misclassification Rates for
Training Samples of Sizes 20 and 40 Per Group for
Configuration 2K

nl = I'12 = 20 nl = nz = 4 O
Method
Mean STD Mean STD
MIP1 14 .43 2.05 13.34 1.07
MIP2 15.99 2.78 13.99 1.49
MIP3 13.59 1.79 12.99 0.%4
MIP4 13.64 2.10 13.03 1.02

Table 34.--Exact Misclassification Rates for
Training Samples of Sizes 20 and 40 Per Group for
Configuration 2L

Method
Mean STD Mean STD
MIP1 13.63 2.74 12.40 1.36
MIP2 14.90 3.01 13.10 1.93
MIP3 13.44 2.55 12.59 1.60
MIP4 13.44 2.57 12.52 1.55
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Table 35.--Exact Misclassification Rates for
Training Samples of Sizes 20 and 40 Per Group for
Configuration 2M

n =n = 20 n, =n, = 40
Method
Mean STD Mean STD
MIP1 9.80 2.76 8.57 1.30
MIP2 11.10 3.10 9.15 1.68
MIP3 9.69 2.62 8.56 1.29
MIP4 9.56 2.47 8.53 1.26

Table 36.--Exact Misclassification Rates for
Training Samples of Sizes 20 and 40 Per Group for
Configuration 2N

1’11 = n2 = 20 Ill = 112 = 40
Method
Mean STD Mean STD
MIP1 7.10 1.73 6.37 1.12
MIP2 8.81 2.68 7.42 1.60
MIP3 7.28 1.76 6.79 1.30
MIP4 7.17 1.57 6.67 1.25
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Table 37.--Paired T-Tests of Mean Difference in Exact
Misclassification Rates for Training Samples of Sizes 20 and
40 Per Group for Configuration 2A

Method
Method

MIP2 MIP3 MIP4

MIP1
n,= 20 -14.14 -3.43 -3.63
n,= 40 -9.79 -4.21 -2.92

MIP2
n, = 20 13.99 12.94
n, = 40 8.24 9.06

MIP3
n, = 20 -1.22
n; = 40 2.84

Note: A positive (negative)} t-value in position (i,j}) of the table
indicates that the mean misclassification rate of method i is higher
{lower) than that of method j. Underlined t-values indicate pairs of
means that differ significantly after applying the Bonferroni adiustment
to the family of 6 tests, i.e., the individual computed t-value must be
gsignificant at « = .05/6, resulting in a critical value of 2.665. The
above t-values can also be compared to the critical value of 3.187,
which is the critical value obtained from the Bonferroni method with a
significance level of .01/6.
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Table 38.--Paired T-Tests of Mean Difference in Exact
Misclassification Rates for Training Samples of Sizes 20 and
40 Per Group for Configuration 2B

Method
Method

MIP2 MIP3 MIP4

MIP1
n,= 20 ~3.50 -2.50 -5.11
n;= 49 0.27 -2.51 -3.54

MIP2
n, = 20 1.64 -0.26
n; = 40 -2.40 -3.32

MIP3
n, = 20 -3.85
n; = 40 -1.62

Note: A positive (negative) t-value in position {i,j) of the table
indicates that the mean misclassification rate of method i is higher
{lower) than that of method j. Underlined t-values indicate pairs of
means that differ significantly after applying the Bonferroni adjustment
to the family of 6 tests, i.e., the individual computed t-value must be
significant at x = .05/6, resulting in a critical value of 2.665. The
above t-values can also be compared to the critical value of 3.1B7,
which is the critical value obtained from the Bonferroni metheod with a
significance level of .01/6.
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Table 39.--Paired T-Tests of Mean Difference in Exact
Misclassification Rates for Training Samples of Sizes 20 and
40 Per Group for Configuration 2C

Method
Method
MIP2 MIP3 MIP4
MIP1
n;= 20 -9.72 -4.46 -3.25
n,= 40 -7.56 -2.74 -2.44
MIP2
n = 20 6.90 7.64
n;, = 40 6.55 6.56
MIP3
n, = 20 2.07
n = 40 1.21

Note: A positive {negative)} t-value in position (i,3j) of the table
indicates that the mean misclasgsification rate of method i is higher
(lower} than that of method j. Underlined t-values indicate pairs of
means that differ significantly after applying the Bonferroni adjustment
to the family of € tests, i.e., the individual computed t-value must be
significant at « = .05/6, resulting in a critical value of 2.665. The
above t-values can also be compared to the critical value of 3.187,
which is the critical value obtained from the Bonferroni method with a
significance level of .01/6.
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Table 40.--Paired T-Tests of Mean Difference in Exact
Misclassification Rates for Training Samples of Sizes 20 and
40 Per Group for Configuration 2D

Methed
Method
MIP2 MIP3 MIP4
MIP1
n; 20 -7.64 0.98 0.01
n;= 40 -6.31 2.66 2.43
MIP2
n, = 20 9.70 9.03
n, = 40 8.14 8.16
MIP3
n, = 20 -2,32
n, = 40 -0.36

Note: A positive (negative) t-value in position {i,3j) of the table
indicates that the mean misclassification rate of method i is higher
(lower} than that of method j. Underlined t-values indicate pairs of
means that differ significantly after applying the Bonferroni adjustment
to the family of é tests, i.e., the individual computed t-value must be
gsignificant at « = .05/6, resulting in a critical value of 2.665. The
above t-values can also be compared to the critical value of 3.187,
which is the critical value obtained from the Bonferroni method with a
significance level of .01/6.



140

Table 41.--Paired T-Tests of Mean Difference in Exact
Misclassification Rates for Training Samples of Sizes 20 and
40 Per Group for Configuration 2E

Method
Method
MIP2 MIE3 MIP4
MIP1
n= 20 1.08 1.40 0.05
n,= 40 3.49 2.28 1.82
MIP2
n; = 20 0.16 -1.17
n, = 40 ~1.21 -1.77
MIE3
n, = 20 -3.54
n; = 40 ~2.67

Note: A positive (negative) t-value in position (i,j) of the table
indicates that the mean misclassification rate of method i is higher
{lower) than that of method j. Underlined t-values indicate pairs of
means that differ significantly after applying the Beonferroni adjustment
to the family of 6 tests, i.e., the individual computed t-value must be
significant at =« = .05/6, resulting in a critical value of 2.665. The
above t-values can also be compared to the critical value of 3.18B7,
which is the critical value obtained from the Bonferroni method with a
significance level of .01/6.
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Table 42.--Paired T-Tests of Mean Difference in Exact
Misclassification Rates for Training Samples of Sizes 20 and
40 Per Group for Configuration 2F

Method
Method
MIP2 MIP3 MIP4
MIP1
n;= 20 ~-11.36 -0.36 ~-0.79
n;= 40 -7.5% -0.61 0.58
MIP2
n, = 20 13.06 12.24
n, = 40 8.63 9.40
MIP3
n, = 20 -0.54
n, = 40 1.87

Note: A positive (negative) t-value in position (i,j) of the table
indicates that the mean migclassification rate of method i is higher
{lower) than that of method j. Underlined t-values indicate pairs of
means that differ significantly after applying the Bonferroni adjustment
to the family of 6 tests, i.e., the individual computed t-value must be
significant at « = .05/6, resulting in a critical value of 2.665. The
above t-values can also be compared to the critical value of 3.187,
which is the critical value obtained from the Bonferroni method with a
significance level of .01/6.
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Table 43.--Paired T-Tests of Mean Difference in Exact
Misclassification Rates for Training Samples of Sizes 20 and
40 Per Group for Configuration 2G

Method
Method
MIP2 MIP3 MIP4
MIP1
n; 20 -1.12 -0.,72 -2.22
n= 40 0.79 -0.18 -1.22
MIP2
n, = 20 0.36 -0.87
n, = 40 -0.96 -1.94
MIP3
n, = 20 -2.78
n, = 40 -2.49

Note: A positive (negative) t-value in position (i,7j) of the table
indicates that the mean misclassification rate of method i is higher
(lower) than that of method j. Underlined t-values indicate pairs of
means that differ significantly after applying the Bonferroni adjustment
to the family of 6 tests, i.e., the individual computed t-value must be
significant at = = ,05/6, resulting in a critical value of 2.665. The
above t-values can also be compared to the critical value of 3,187,
which is the critical value obtained from the Bonferroni method with a
significance level of .01/6.
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Table 44.--Paired T-Tests of Mean Difference in Exact
Misclassification Rates for Training Samples of Sizes 20 and
40 Per Group for Configuration 2H

Method
Method
MIP2 MIP3 MIP4
MIP1
n,= 20 -8.39 -3.06 -4.46
1= 40 -8.38 -4.47 -5.87
MIP2
n = 20 5.53 2.97
n, = 40 5.28 3.53
MIP3
n, = 20 ~3.22
n, = 40 -2.61

Note: A positive (negative) t-value in position (i,j} of the table
indicates that the mean misclassification rate of method i is higher
{lower} than that of method j. Underlined t-values indicate pairs of
means that differ significantly after applying the Bonferroni adjustment
to the family of 6 tests, i.e., the individual computed t-value must be
significant at =« = .05/6, resulting in a critical value of 2.665. The
above t-values can also be compared to the critical value of 3.187,
which is the critical value obtained from the Bonferroni method with a
significance level of .01/6.
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Table 45.--Paired T-Tests of Mean Difference in Exact
Misclassification Rates for Training Samples of Sizes 20 and
40 Per Group for Configuration 21

Method
Method
MIP2 MIP3 MIP4
MIP1
n,= 20 -8.87 -4.15 -4.86
n;= 40 -7.99 -4.60 -3.24
MIP2
n, = 20 5.41 4.62
n; 40 5.17 4.79
MIP3
n, = 20 ~1.62
n, = 40 0.57

Note: A positive (negative) t-value in position (i,j) of the table
indicates that the mean misclassification rate of method i is higher
{lower} than that of method j. Underlined t-values indicate pairs of
means that differ gignificantly after applying the Bonferroni adjustment
to the family of 6 tests, i.e., the individuwal computed t-value must be
gignificant at « = .05/6, resulting in a critical value of 2.665. The
above t-values can also be compared to the critical value of 3.187,
which is the c¢ritical value obtained from the Bonferroni method with a
significance level of .01/6.
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Table 46.--Paired T-Tests of Mean Difference in Exact
Misclassification Rates for Training Samples of Sizes 20 and
40 Pexr Group for Configuration 2J

Method
Method
MIP2 MIP3 MIP4
MIP1
n= 20 -9.89 3.37 2.17
n;= 40 -5.86 3.21 3.15
MIP2
n, = 20 13.51 ) 12.05
n, = 40 8.89 8.90
MIP23
n, = 20 -1.90
ni = 40 0.09

Note: A positive (negative) t-value in position (i,j) of the table
indicates that the mean misclassification rate of method i is higher
(lower) than that of method j. Underlined t-values indicate pairs of
means that differ significantly after applying the Bonferroni adjustment
to the family of 6 tests, i.e., the individual computed t-value must be
significant at = = .05/6, resulting in a critical value of 2.665. The
above t-values can alsoc be compared to the critical value of 3.187,
which is the critical value obtained from the Bonferroni method with a
significance level of .01/6.
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Table 47.--Paired T-Tests of Mean Difference in Exact
Misclassification Rates for Training Samples of Sizes 20 and
40 Per Group for Configuration 2K

Method
Method
MIP2 MIE3 MIP4
MIP1
n,= 20 -8.64 5.78 5.0S
n; 40 -5.97 4.19 3.56
MIP2
n, = 20 12.68 11.70
n, = 40 11.08 10.65
MIP3
n, = 20 -0.86
n, = 40 -1.65

Note: A positive {negative) t-value in position (i,j) of the table
indicates that the mean misclassgification rate of method i is higher
{lower) than that of method j. Underlined t-values indicate pairs of
means that differ significantly after applying the Bonferroni adjustment
to the family of 6 tests, i.e., the individual computed t-value must be
significant at « = .05/6, resulting in a critical value of 2.665. The
above t-values can also be compared to the critical value of 3.187,
which is the critical value obtained from the Bonferroni method with a
significance level of .01/6.
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Table 48.--Paired T-Tests of Mean Difference in Exact
Misclassification Rates for Training Samples of Sizes 20 and
40 Per Group for Configuration 2L

Method
Method
MIP2 MIP3 MIP4
MIP1
n,= 20 -7.51 1.34 1.28
n,= 40 -6.60 -2.02 ~1.34
MIP2
n = 20 9.50 9.32
n = 40 5.98 6.35
MIP3
n; = 20 0.02
ni s 40 1.80

Note: A positive (negative} t-value in position (i,j) of the table
indicates that the mean misclassification rate of method i is higher
{lower) than that of method j. Underlined t-values indicate pairs of
means that differ significantly after applying the Bonferroni adjustment
to the family of 6 tests, i1.e., the individual computed t-value must be
significant at « = .05/6, resulting in a critical value of 2.665. The
above t-values can alsc be compared to the critical value of 3,187,
which is the c¢ritical value obtained from the Bonferroni method with a
significance level of .01/6.
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Table 49.--Paired T-Tests of Mean Difference in Exact
Misclassification Rates for Training Samples of Sizes 20 and
40 Per Group for Configuration 2M

Method
Method
MIP2 MIP3 MIP4
MIP1
n,= 20 -7.00 0.64 1.36
n,= 40 -5.23 0.13 0.49
MIP2
n, = 20 7.60 8.45
n, = 40 5,54 6.21
MIP3
n; = 20 1.59
n, = 40 0.71

Note: A positive (negative) t-value in position (i,]j) of the table
indicates that the mean misclassification rate of method i is higher
{lower) than that of method j. Underlined t-values indicate pairs of
meang that differ significantly after applying the Bonferroni adjustment
to the family of 6 tests, i.e., the individual computed t-value must be
significant at « = .05/6, resulting in a critical value of 2.665. The
above t-values can also be compared to the critical value of 3.187,
which is the critical wvalue obtained from the Bonferroni method with a
significance level of .01/6.
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Table 50.--Paired T-Tests of Mean Difference in Exact
Misclassification Rates for Training Samples of Sizes 20 and
40 Per Group for Configuration 2N

Method
Method
MIP2 MIP3 MIP4
MIP1
n= 20 -10.09 -1.57 -0.73
n;= 40 -10.998 -5.98 -4.99
MIP2
n, = 20 10.10 10.00
n, = 40 6.55 7.60
MIP3
n, = 20 1.59
n; = 40 3.35

Note: A positive (negative} t-value in position (i,j) of the table
indicates that the mean misclassification rate of method i is higher
(lower) than that of method j. Underlined t-values indicate pairs of
means that differ significantly after applying the Bonferroni adjustment
to the family of 6 tests, i.e., the individual computed t-value must be
significant at « = .05/6, resulting in a critical value of 2.665. The
above t-values can also be compared to the critical value of 3.187,
which is the critical value obtained from the Bonferroni method with a
significance level of .01/6.
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Table 51.--Values of Skewness and Kurtosis Measures for
Various Settings of Mean (u} and Standard Deviation (¢) with

Contaminating Fraction (e€) = 0.01
i d Skew- Kuyto- ’ N Skew- Ku;to—
ness sis ness 8is
0.5 0.1 -0.013s6 3.0155 2.0 0.1 0.0180 2.9506
0.5 0.5 -0.0100 3.0064 2.0 0.5 0.0315 2.9916
0.5 1.0 0.0012 3.0006 2.0 1.0 0.0732 3.1379%
0.5 1.5 0.0183 3.0633 2.0 1.5 0.1407 3.4395
0.5 2.0 0.0436 3.2923 2.0 2.0 0.2313 3.9745
0.5 2.5 0.0731 3.8047 2.0 2.5 0.3413 4.8362
0.5 3.0 0.1066 4,7220 2.0 3.0 0.4666 6.1213
0.5 3.5 0.1429 6.1558 2.0 3.5 0.6032 7.9177
0.5 4.0 0.1810 8.1960 2.0 4.0 0.7465 10.2955
0.5 4.5 0.2198 10.%039 2.0 4.5 0.8928 13.3006
0.5 5.0 0.2582 14.3083 2.0 5.0 1.038%5 16.9519
0.5 5.5 0.2956 18.4067 2.0 5.5 1.1806 21.2419
.5 6.0 0.3312 23.1687 2.0 6.0 1.3166 26.1390
1.0 0.1 -0.0197 2.9808 2.5 0.1 0.0724 3.0285
1.0 0.5 -0.0125 2.9824 2.5 0.5 0.0886 3.0968
1.0 1.0 0.0086 3.0091 2.5 1.0 $0.1385 3.3226
1.0 1.5 0.0453 3.1229 2.5 1.5 0.21%5 3.7493
1.0 2.0 0.0932 3.4173 2.5 2.0 0.3281 4.,4448
1.0 2.5 0.1513 4,0043 2.5 2.5 0.4602 5.4902
1.0 3.0 0.2173 5.0000 2.5 3.0 0.6110 6.9690
1.0 3.5 0.2891 6.5110 2.5 3.5 0.7755 8.,89570
1.0 4.0 0.3644 8.6230 2.5 4.0 0.92485 11.5137
1.0 4.5 0.4410 11.3939 2.5 4.5 1.1253 14.6769
1.0 5.0 0.5170 14.8506 2.5 5.0 1.3017 18.4600
1.0 5.5 0.5910 18.9896 2.5 5.5 1.4741 22.8524
1.0 6.0 0.6616 23.7801 2.5 6.0 1.6394 27.8221
1.5 0.1 -0.0112 2.9479 3.0 0.1 0.1550 3.2273
1.5 0.5 -0.0007 2.9666 3.0 0.5 0.1735 3.3232
1.5 1.0 0.0317 3.0451 3.0 1.0 0.2305 3.6359
1.5 1.5 0.0840 3.2403 3.0 1.5 0.3229 4,1994
1.5 2.0 0.1542 3.6388 3.0 2.0 0.4471 5.0707
1.5 2.5 0.2393 4.3448 3.0 2.5 0.5983 6.3174
1.5 3.0 0.3363 5.4656 3.0 3.0 0.7711 8.0090
1.5 3.5 0.4417 7.0999 3.0 3.5 0.8599 10.2079
1.5 4.0 0.5523 9.3267 3.0 4.0 1.1589 12.9620
1.5 4.5 0.6650 12,1986 3.0 4.5 1.3627 16.3000
1.5 5.0 0.7770 15.7392 3.0 5.0 1.5665 20.2291
1.5 5.5 0.8861 19.9431 3.0 5.5 1.7661 24.7353
1.5 6.0 0.9903 24,7795 3.0 6.0 1.9581 29.7858
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Table 51.--Continued.

u o Skew- Ku;to— U o Skew- Ku;to—
ness sis ness sis

3.5 0.1 0.2672 3.5833 5.0 0.1 0.7741 5.8781
3.5 0.5 0.2876 3.7088 5.0 0.5 0.7976 6.0861
3.5 1.0 0.3503 4,1114 5.0 1.0 0.8704 6.7397
3.5 1.5 0.4522 4.8166 5.0 1.5 0.,9887 7.8410
3.5 2.0 0.5892 5.8700 5.0 2.0 1.1484 9.4051
3.5 2.5 0.7563 7.3257 5.0 2.5 1.3442 11.4490
3.5 3.0 0.9476 9.2388 5.0 3.0 1.5696 13.9877
3.5 3.5 1.1569 11.6576 5.0 3.5 1.8180 17.0306
3.5 4.0 1.3780 14.6180 5.0 4.0 2.0824 20.57%0
3.5 4.5 1.6051 18.1391 5.0 4.5 2.3561 24,6243
3.5 5.0 1.8327 22.2216 S.0 5.0 2.6330 29.1470
3.5 5.5 2.0562 26.847¢6 5.0 5.5 2.9074 34.1173
3.5 6.0 2.2718 31.9831 5.0 6.0 3.1748 39.4960
4.0 0.1 0.4089 4.,1303 5.5 0.1 0.9918 7.0931
4.0 0.5 0.4307 4.,2850 5.5 0.5 1.0158 7.3236
4.0 1.0 0.43980 4.,.7765 5.5 1.0 1.0897 8.0461
4.0 1.5 0.6073 5.6218 5.5 1.5 1.2100 9.2561
4.0 2.0 0.7544 6.8557 5.5 2.0 1.3727 10.9610
4.0 2.5 0.9341 8.5189 5.5 2.5 1.5724 13.1674
4.0 3.0 1.1402 10.6523 5.5 3.0 1.8028 15.87%%
4.0 3.5 1.3662 13.23504 5.5 3.% 2.0574 19.0960
4.0 4.0 1.6056 16.4570 5.5 4.0 2.3291 22.8085
4.0 4.5 1.8520 20.1617 5.5 4.5 2.6112 27.0002
4.0 5.0 2.0997 24.3981 5.5 5.0 2.8975 31.6458
4.0 5.5 2.3436 29.1446 5.5 5.5 3.1823 36.7115
4.0 6.0 2.5796 34,3655 5.5 6.0 3.4607 42.1564
4.5 0.1 0.5787 4.8911 6.0 0.1 1.2283 8.5281
4.5 0.5 0.6016 5.0736 6.0 0.5 1.2523 8.7780
4.5 1.0 0.6722 5.6496 6.0 1.0 1.3266 9.5595
4,5 1.8 0.7868 6.6283 6.0 1.5 1.4475 10.8629
4.5 2.0 0.9415 8.0342 6.0 2.0 1.6112 12.6886
4.5 2.5 1.1306 9.8856 6.0 2.5 1.8126 15.0347
4.5 3.0 1.3481 12.2397 6.0 3.0 2,0454 17.8960
4.5 3.5 1.5870 15.0882 6.0 3.5 2.3032 21.28619
4.5 4.0 1.8407 18.45390 6.0 4.0 2.,5792 25,1154
4.5 4.5 2.1026 22.3343 6.0 4.5 2.8666 29,4329
4.5 5.0 2.3667 26.7183 6.0 5.0 3.1593 34.1834
4,5 5.5 2.6276 31.581¢% 6.0 5.5 3.4515 39.3297
4.5 6.0 2.8809 36.8850 6.0 6.0 3.7382 44.8291
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Table 52.--Values of Skewness and Kurtosis Measures for
Various Settings of Mean (u) and Standard Deviation (o0} with

Contaminating Fraction (¢) = 0.05
u o Skew- Kurto- ’ . Skew- Ku;to—
ness sis ness sis
0.5 0.1 -0.0691 3.0845 2.0 0.1 0.0491 2.7442
0.5 0.5 -0.0500 3.0360 2.0 0.5 0.1037 2.8%01
0.5 1.0 0.0052 3.0021 2.0 1.0 0.2635 3.3837
0.5 1.5 0.0848 3.2642 2.0 1.5 0.4581 4.3058
c.% 2.0 0.1749 4.0941 2.0 2.0 0.7717 5.7311
0.5 2.5 0.2637 5.6271 2.0 2.5 1.6501 7.6724
0.5 3.0 0.3430 7.8335 2.0 3.0 1.3078 10.0691
6.5 3.5 0.4085 10.5681 2.0 3.5 1.52%4 12.8074
0.5 4.0 0.4593 13.6393 2.0 4.0 1.7087 15.7527
0.5 4.5 0.4%963 16.8634 2.0 4.5 1.8455 18.7770
0.5 5.0 0.5214 20.0921 2.0 5,0 1.9438 21.7755
6.5 6.5 0.5368 23.2196 2.0 5.5 2.0089 24.6710
0.5 6.0 0.5445 26.1791 2.0 6.0 2.0466 27.4130
1.0 0.1 -0.0986 2.9194 2.5 0.1 0.2263 2.,9224
1.0 0.5 -0.0632 2.9233 2.5 0.5 0.2836 3.1289
1.0 1.0 0.0399 3.0310 2.5 1.0 0.4523 3.7888
1.0 1.5 0.1889 3.4685 2.5 1.5 0.7024 4.9228
1.0 2.0 0.3589 4.454¢6 2.5 2.0 0.9979 6.5437
1.0 2.5 0.5275 6.0932 2.5 2.5 1.3035 8.6220
1.0 3.0 0.6791 8.3483 2.5 3.0 1.5915 11.0822
1.0 3.5 0.8057 11.0841 2.5 3.5 1.8442 13.8169
1.0 4.0 0.9047 14,1247 2.5 4.0 2.0529 16.7089
1.0 4.5 0.9776 17.3008 2.5 4.5 2.2160 19.6495
1.0 5.0 1.0277 20.4749 2.5 5,0 2.3364 22.5499
1.0 5.5 1.0589 23,5480 2.5 5.5 2.4191 25.3447
1.0 6.0 1.0751 26.4569 2.5 6.0 2.4700 27.9906
1.5 0.1 -0.0619 2.7677 3.0 0.1 0.451¢ 3.3187
1.5 0.5 ~-0.,0145 2.8419 3.0 0.5 0.5087 3.5692
1.5 1.0 0.1239 3.1403 3.0 1.0 0.6768 4.3500
1.5 1.5 0.3254 3.8161 3.0 1.5 0.9284 5.6392
1.5 2.0 0.5575 5.0167 3.0 2.0 1.2299 7.4038
1.5 2.5 0.7903 6.8020 3.0 2.5 1.5468 9.5818
1.5 3.0 1.0024 9.1255 3.0 3.0 1.8515 12.0842
1.5 3.5 1.1818 11.8631 3.0 3.5 2.1244 14.8070
1.5 4.0 1.3242 14.8595 3.0 4.0 2.3549 17.6453
1.5 4.5 1.4307 17.9655 3.0 4.5 2.5396 20.5058
1.5 5.0 1.5053 21.06588 3.0 5.0 2.6800 23.3128
i.5 5.5 1.5531 24.0508 3.0 5.5 2.7801 26.0112
1.5 6.0 1.5792 26.8839 3.0 6.0 2.8454 28.5644
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Skew- Kurto- Skew- Kurto-

ness sis ness sis
3.5 ¢.1 0.7060 3.9052 5.0 0.1 1.4837 6.2854
3.5 0.5 0.7601 4,1824 5.0 0.5 1.5256 6.5689
3.5 1.0 0.9213 5.0367 5.0 1.0 1.6517 7.4359
3.5 1.5 1.1649 6.4197 5.0 1.5 1.8472 8.8202
3.5 2.0 1.4607 8.2695 5.0 2.0 2.0934 10.6404
3.5 2.5 1.7771 10.5022 5.0 2.5 2.3689 12,7992
3.5 3.0 2.0870 13.0191 5.0 3.0 2.6534 15,1949
3.5 3.5 2.3705 15.7177 5.0 3.5 2.92%5 17,7309
3.5 4.0 2.6157 18.5014 5.0 4.0 3.1842 20.3228
3.5 4.5 2.8172 21.2871 5.0 4.5 3.4091 22.9015
3.5 5.0 2.9748 24.0093 5.0 5.0 3.5998 25.4142
3.5 5.5 3.0914 26,6206 5.0 5.5 3.7549 27.8234
3.5 6.0 3.1716 29.0898 5.0 6.0 3.8756 30.1046
4.0 0.1 0.9708 4,6307 5.5 0.1 1.7178 7.1294
4.0 0.5 1.0212 4.9200 5.5 0.5 1.7556 7.4014
4.0 1.0 1.1718 5.8068 5.5 1.0 1.8697 8.2334
4.0 1.5 1.4016 7.2291 5.5 1.5 2.0480 9.5632
4.0 2.0 1.6843 9.1097 5.5 2.0 2.2746 11.3142
4.0 2.5 1.9%16 11.3530 5.5 2.5 2.5315 13.3945
4.0 3.0 2.2983 13.8553 5.5 3.0 2.8008 15.7078
4.0 3.5 2.5847 16.5149 5.5 3.5 3.0666 18.1622
4.0 4.0 2.8381 19.2405 5.5 4.0 3.3166 20.6767
4.0 4.5 3.0517 21.9559 5.5 4.5 3.5420 23.1844
4.0 5.0 3.2235 24.6023 5.5 5.0 3.7375 25.6340
4.0 5.5 3.3551 27.1373 5.5 8.5 3.9009 27.9883
4.0 6.0 3.44988 29.5336 5.5 6.0 4.,0321 30.2226
4.5 0.1 1.2330 5.4402 6.0 0.1 1.9328 7.9466
4.5 0.5 1.2791 5.7304 6.0 0.5 1.9668 8.2042
4.5 1.0 1.4176 6.6183 6.0 1.0 2.0698 8.9933
4.5 1.5 1.6308 8.0370 6.0 1.5 2.2318 10.2567
4.5 2.0 1.8961 9.9039 6.0 2.0 2.4395 11.9246
4.5 2.5 2.1890 12.1198 6.0 2.5 2.6777 13.9127
4.5 3.0 2.4865 14.5802 6.0 3.0 2.9308 16.1313
4.5 3.5 2.7699 17.1854 6.0 3.5 3.1846 18.4%44
4.5 4.0 3.0262 138.8475 6.0 4.0 3.4275 20.8247
4.5 4.5 3.2473 22.4948 6.0 4.5 3.6506 23.3581
4.5 5.0 3.4302 25.0722 6.0 5.0 3.8484 25.7439
4.5 5.5 3.5747 27.54Q07 6.0 5.5 4.,0177 28.0450
4.5 6.0 3.6831 29.8750 6.0 6.0 4.,1575 30.2360
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Table 53.--Values of Skewness and Kurtosis Measures for
Various Settings of Mean (u) and Standard Deviation (o) with

Contaminating Fraction (e€) = 0.10
“ o Skew- Kuyto- u o Skew- Kuyto—
ness sis ness sis
0.5 0.1 ~0.,1405 3.1880 2.0 0.1 0.0292 2.5071
0.5 0.5 -0.1000 3.0818 2.0 0.5 0.1174 2,7083
0.5 1.0 0.0087 3.0025 2.0 1.0 0.3632 3.3581
0.5 1.5 0.1446 3.4249 2.0 1.5 0.6913 4.4712
0.5 2.0 0.2722 4.,5761 2.0 2.0 1.0268 6.0035
0.5 2.5 0.3728 6.3454 2.0 2.5 1.3180 7.8340
0.5 3.0 0.4426 8.4634 2.0 3.0 1.5423 9.8086
0.5 3.5 0.4855 10.6737 2.0 3.5 1.6978 11.78%0
0.5 4.0 0.5077 12.8024 2.0 4.0 1.7938 13.6769
0.5 4.5 0.5153 14.7560 2.0 4.5 1.8427 15,4155
0.5 5.0 0.5131 16.4985 2.0 5.0 1.8566 16.9808
0.5 5.5 0.5046 18.0271 2.0 5.5 1.845¢6 18.3698
0.5 6.0 0.4922 1%9.3562 2.0 6.0 1.8178 19.5918
1.0 0.1 -0.1980 2.8761 2.5 0.1 0.2580 2.6306
1.0 0.5 -0.1276 2.8731 2.5 0.5 0.3411 2.8843
1.0 1.0 0.0633 3.0348 2.5 1.0 0.5760 3.6624
1.0 1.8 0.3058 3.6796 2.5 1.5 0.8%81 4,9012
1.0 2.0 0.5382 4.9499 2.5 2.0 1.2393 6.5017
1.0 2.5 0.7257 6.7387 2.5 2.5 1.5480Q 8.3318
1.0 3.0 0.8580 8.8166 2.5 3.0 1.7969 10.2557
1.0 3.5 0.%9433 10.%640 2.5 3.5 1.978% 12.1606
1.0 4.0 0.9889 13.0284 2.5 4.0 2.0991 13.9679
1.0 4.5 1.0066 14.9259 2.5 4.5 2.1678 15.6324
1.0 5.0 1.0049 16.6230 2.5 5.0 2.1964 17.1349
1.0 5.5 0.9906 18.1164 2.5 5.5 2,.1953 18.4732
1.0 6.0 0.9683 19.4187 2.5 6.0 2.1728 19.6557
1.5 0.1 -0.1363 2.5992 3.0 0.1 0.5103 2.9211
1.5 0.5 -0.0507 2.7109 3.0 0.5 0.5848 3.1958
i.% 1.0 0.1843 3.1449 3.0 1.0 0.7983 4.0236
1.5 1.5 0.4899 4.0478 3.0 1.5 1.0984 5.3063
1.5 2.0 0.7917 5.4609 3.0 2.0 1.4271 6.9189
1.5 2.5 1.0435 7.2739 3.0 2.5 1.7367 8.7238
1.5 3.0 1.2281 5.3006 3.0 3.0 1.89978 10.594%
1.5 3.5 1.3516 11.3652 3.0 3.5 2.1989 12.4338
1.5 4.0 1.4221 13.3429 3.0 4.0 2.3404 14.1740
1.5 4.5 1.4535 15.1633 3.0 4.5 2.4294 15,7775
1.5 5.0 1.4571 16.7970 3.0 5.0 2.4755 17.2284
1.5 5.5 1.4417 18,2406 3.0 §.5 2.4882 18.5252
1.5 6.0 1.4138 19.5048 3.0 6.0 2.4758 19,6755
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Skew- Kurto- d Skew- Kurto-
# ness gis ness sis
3.5 0.1 0.7587 3.3085 5.0 0.1 1.3701 4,5558
3.5 0.5 0.8238 3.5827 .0 0.5 1.4119 4.7783
3.5 1.0 1.0126 4.4054 5.0 1.0 1.5361 5.4497
3.5 1.5 1.2839 5.6703 5.0 1.5 1.7237 6.43838
3.5 2.0 1.5903 7.2478 5.0 2.0 1.9510 7.8169
3.5 2.5 1.8897 2.0022 5.0 2.5 2.1934 9.3167
3.5 3.0 2.1531 10.8139 5.0 3.0 2.4293 10.8985
3.5 3.5 2.3659 12.5922 5.0 3.5 2.6432 12.484%
3.5 4.0 2.5246 14.2762 5.0 4.0 2.8254 14,0194
3.5 4.5 2.6326 15.8314 5.0 4.5 2.9720 15.4652
3.5 5.0 2.6970 17.2430 5.0 5.0 3.0827 16.8020
3.5 5.5 2.7259 18.5091 5.0 5.5 3.15%9 18.0214
3.5 6.0 2.7270 19.6364 5.0 6.0 3.2075 19,1235
4.0 0.1 0.9880 3.7336 5.5 0.1 1.5236 4,9201
4.0 0.5 1.0443 3.9952 5.5 0.5 1.5597 5.1222
4.0 1.0 1.2090 4.7802 5.5 1.0 1.6679 5.7339
4.0 1.5 1.4503 5.9882 5.5 1.5 1.8332 6.6911
4.0 2.0 1.7303 7.4974 5.5 2.0 2.0370 7.9144
4.0 2.5 2.0131 9.1798 5.5 2.5 2.25%0 9.3151
4.0 3.0 2.2716 10.9232 5.5 3.0 2.4808 10.8085
4.0 3.5 2.4896 12.6411 5.5 3.5 2.6877 12.3228
4.0 4.¢ 2.6606 14.2750 5.5 4.0 2.8701 13.8033
4.0 4.5 2.7850 15.7908 5.5 4.5 3.0225 15.2121
4.0 5.0 2.8670 17.1728 5.5 5.0 3.1433 16.5264
4,0 5.5 2.8912%9 18.4179 5.5 §5.5 3.2333 17.7349
4.0 6.0 2.929%3 19.5309 5.5 6.0 3.2949 18.8348
4.5 0.1 1.1921 4.1568 6.0 0.1 1.6552 5.2465
4.5 0.5 1.2406 4.395%9 6.0 0.5 1.6867 5.4293
4.5 1.0 1.3836 5.131¢ 6.0 1.0 1.7813 5.9845
4.5 1.5 1.5967 6£.2613 6.0 1.5 1.9274 6.8585
4.5 2.0 1.8497 7.6821 6.0 2.0 2.1101 7.9846
4.5 2.5 2.1127 9.2776 6.0 2.5 2.3128 9.2868
4.5 3.0 2.3614 10.9436 6.0 3.0 2.5199 10.6905
4.5 3.5 2.5793 12.5980 6.0 3.5 2.7181 12.1298
4.5 4.0 2.7581 14,1832 6.0 4.0 2.8%879 13.5526
4.5 4.5 2.8953 15.6639 6.0 4.5 3.0532 14.38210
4.5 5.0 2.9930 17.0222 6.0 5.0 3.1813 16.2100
4.5 5.5 3.0554 18.2528 6.0 §.5 3.2816 17.40658
4.5 6.0 3.0876 19.3583 6.0 6.0 3.3554 18,5026
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Table 54.--Values of Skewness and Kurtosis Measures for
Various Settings of Mean (u) and Standard Deviation (¢) with

Contaminating Fraction (¢} = 0.15
U o Skew- Ku;to— " a Skew- Ku;to—
ness sis ness sis
0.5 0.1 ~-0.2146 3.3130 2.0 0.1 -0.0273 2.3169
0.5 0.5 -0.1501 3.1380 2.0 0.5 0.0849% 2.5331
0.5 1.0 0.0106 3.0018 2.0 1.0 0.3848 3.2103
0.5 1.5 0.1858 3.5158 2.0 1.5 0.7552 4 ,3030
0.5 2.0 0.3242 4.,7514 2.0 2.0 1.0966 5.6936
0.5 2.5 0.4137 6.3979 2.0 2.5 1.3583 7.2185
0.5 3.0 0.4622 §.1298 2.0 3.0 1.5319 8.7319
0.5 3.5 0.4823 9.7503 2.0 3.5 1.6301 10.1388
0.5 4.0 0.4844 11.1770 2.0 4.0 1.6718 11.3941
0.5 4.5 0.4759 12.3949 2.0 4.5 1.6743 12.48¢67
0.5 5.0 0.461¢ 13.4191 2.0 5.¢C 1.6512 13.424%6
0.5 5.5 0.4443 14.2759 2.0 5.5 1.6122 14.2243
0.5 6.0 0.4259 14.9926 2.0 6.0 1.5640 14.9046
1.0 0.1 -0.2988 2.8693 2.5 0.1 0.2116 2.3493
1.0 0.5 -0.1933 2.8481 2.5 0.5 0.3098 2.6036
1.0 1.0 0.0745 3.0238 2.5 1.0 0.5750 3.3625
1.0 1.5 0.3763 3.7500 2.5 1.5 0.8265 4.,53114
1.0 2.0 0.6242 5.0410 2.5 2.0 1.2658 5.9026
1.0 2.5 0.7914 6.6496 2.5 2.5 1.5440 7.3845
1.0 3.0 0.8869 8.3152 2.5 3.0 1.7433 8.8372
1.0 3.5 0.9300 9.8732 2.5 3.5 1.8684 10.1851
1.0 4.0 0.9387 11.2511 2.5 4.0 1.9332 11.3919
1.0 4.5 0.9263 12.4340 2.5 4.5 1.9532 12.4488
1.0 5.0 0.9018 13.4344 2.5 5.0 1.9417 13.3623
1.0 5.5 0.8707 14.2755 2.5 5.5 1.9093 14.1466
1.0 6.0 0.8368 14.9819 2.5 6.0 1.8637 14.8182
1.5 0.1 ~0.2197 2.4859 3.0 0.1 0.4507 2.5071
1.5 0.5 -0.1014 2.6108 3.0 0.5 0.533¢6 2.7652
1.5 1.0 0.2063 3.081¢6 3.0 1.0 0.7657 3.5263
1.5 1.5 0.5689 4.0376 3.0 1.5 1.0774 4.6597
1.5 2.0 0.8835 5.389¢6 3.0 2.0 1.3979 6.0129
1.5 2.5 1.31090 6.9553 3.0 2.5 1.6774 7.4429
1.5 3.0 1.2472 8.5413 3.0 3.0 1.8923 8.8419
1.5 3.5 1.3170 10.0213 3.0 3.5 2.0398 10.1432
1.5 4.0 1.3391 11.3367 3.0 4.0 2.1278 11.3143
1.5 4.5 1.3303 12.4738 3.0 4.5 2.1685 12.3464
1.5 5.0 1.3025 13.4427 3.0 5.0 2.1736 13.2445
1.5 5.5 1.2639 14.2628 3.0 5.5 2.1534 14.0206
1.5 6.0 1.2196 14.9%559 3.0 6.0 2.1158 14.6893
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Skew- Kurto- Skew- Kurto-

ness sis » ness gis
3.5 0.1 0.6671 2.7213 5.0 0.1 1.1411 3.3585
3.5 0.5 0.7363 2.8652 5.0 0.5 1.1818 3.5360
3.5 1.0 0.9332 3.6851 5.0 1.0 1.301¢8 4.0679
3.5 1.5 1.2065 44,7587 5.0 1.5 1.4804 4.8839
3.5 2.0 1.5004 6.044¢6 5.0 2.0 1.6916 5.8983
3.5 2.5 1.7709 7.4105 5.0 2.5 1.9102 7.0223
3.5 3.0 1.9923 8.7559 5.0 3.0 2.11857 8.1788%
3.5 3.5 2.1562 10.0169 5.0 3.5 2.2944 9.3086
3.5 4.0 2.2650 11.1608 5.0 4.0 2.4394 10.3743
3.5 4.5 2.3267 12.1769 5.0 4.5 2.5492 11.3542
3.5 5.0 2.3508 13.0676 5.0 5.0 2.6255 12.2398
3.5 5.5 2.3464 13.8425 5.6 5.5 2.6721 13.0307
3.5 6.0 2.3213 14.5141 5.0 6.0 2.6936 13.7319
4.0 0.1 0.8537 2.9477 5.5 0.1 1.2496 3.5303
4.0 0.5 0.9113 3.1703 5.5 0.5 1.2842 3.6879
4.0 1.0 1.0777 3.8300 5.5 1.0 1.3873 4.1623
4.0 1.5 1.3150 4.,8219 5. 1.5 1.5428 4,8967
4.0 2.0 1.5801 6.0227 5. 2.0 1.7308 5.8213
4.0 2.5 1.8355 7.3137 5.8 2.5 1.9309 6.8609
4.0 3.0 2.0562 8.6011 5.5 3.0 2.1252 7.9471
4.0 3.5 2.2302 9.8222 5.5 3.5 2.300¢6 9.0255
4.0 4.0 2,3557 10.9421 5.5 4.0 2.44%93 10.0576
4.0 4.5 2.4367 11.9467 5.5 4.5 2.5681 11.0197
4.0 5.0 2.4789 12.8350 5.5 5.0 2.6568 11.8999
4.0 5.5 2.4930 13.6138 5.5 5.5 2.7176 12.694¢6
4.0 6.0 2.4828 14.2932 5.5 6.0 2.7537 13.4058
4.5 0.1 1.0105 3.1634 6.0 0.1 1.3397 3.67985
4.5 0.5 1.0588 3.3630 6.0 0.5 1.3695 3.8195
4.5 1.0 1.1997 3.8577 6.0 1.0 1.458¢6 4.,2427
4.5 1.5 1.4053 4.,8608 6.0 1.5 1.5948 4.9032
4.5 2.0 1.6424 5.9688 6.0 2.0 1.7625 5.7441
4.5 2.5 1.8799 7.1778 6.0 2.5 1.9451 6.7023
4.5 3.0 2.08%4¢6 8.4017 6.0 3.0 2.1273 7.7184
4.5 3.5 2.2732 9.5796 6.0 3.5 2.2971 8.7422
4.5 4.0 2.4107 10.6743 6.0 4.0 2.4464 9.7365
4.5 4.5 2.5079 11.6678 6.0 4.5 2.5708 10.6762
4.5 5.0 2.5689 12.5554 6.0 5.0 2.6690 11.5467
4.5 5.5 2.5994 13.3403 6.0 5.8 2.7417 12.3416
4.5 6.0 2.6051 14.0303 6.0 6.0 2.7908 13.0601
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Table 55.--Values of Skewness and Kurtosis Measures for
Various Settings of Mean (i) and Standard Deviation {¢) with

Contaminating Fraction (e} = 0.20
" o Skew- Kurto- p o Skew- Kurto-
ness sis ness sis
0.5 0.1 -0.2920 3.4631 2.0 0.1 -0.1053 2.1785
0.5 0.5 -0.2001 3.2050 2.0 0.5 0.0264 2.3894
0.5 1.0 0.0113 3.0004 2.0 1.0 0.3657 3.0381
0.5 1.5 0.2129 3.5591 2.0 1.5 0.7574 4.0449
0.5 2.0 0.3485 4.,7670 2.0 2.0 1.0881 5.2589
0.5 2.5 0.4210 6.2019 2.0 2.5 1.3164 6.5141
0.5 3.0 0.4504 7.5731 2.0 3.0 1.448¢6 7.6920
0.5 3.5 0.4545 8.7622 2.0 3.5 1.5078 8.7343
0.5 4.0 0.4448 9.7494 2.0 4.0 1.5176 9.6263
0.5 4.5 0.4284 10.5544 2.0 4.5 1.45963 10.3764
0.5 5.0 0.4090 11.2079 2.0 5.0 1.4568 11.0022
0.5 5.5 0.3888 11.7395 2.0 5.5 1.4073 11.5234
0.5 6.0 0.3690 12.1743 2.0 6.0 1.3533 11.9584
1.0 0.1 -0.4019 2.8991 2.5 0.1 0.1290 2.1243
1.0 0.5 -0.2601 2.8475 2.5 0.5 0.2384 2.3630
1.0 1.0 0.0768 3.0048 2.5 1.0 0.5303 3.0625
1.0 1.5 0.4157 3.7426 2.5 1.5 0.8889 4.0864
1.0 2.0 0.6578 4.9545 2.5 2.0 1.2165 5.2737
1.0 2.5 0.7%962 6.3293 2.5 2.5 1.4643 6.4808
1.0 3.0 0.8584 7.6385 2.5 3.0 1.6251 7.6119
1.0 3.5 0.8728 8.7822 2.5 3.5 1.7120 8.6194
1.0 4.0 0.8599 9.7404 2.5 4.0 1.7441 9.4900
1.0 4.5 0.8325 10.5284 2.5 4.5 1.7386 10.2297
1.0 5.0 0.7983 11.1728 2.5 5.0 1.7088 10.8532
1.0 5.5 0.761l6 11.7001 2.5 5.5 1.6641 11.3771
1.0 6.0 0.7249 12.1336 2.5 6.0 1.6111 11.8179
1.5 ¢.1 -0.3104 2.4222 3.0 0.1 0.3475 2.1757
1.5 0.5 ~0.1623 2.5427 3.0 0.5 0.4363 2.4089
1.5 1.0 0.2043 3.0175 3.0 1.0 0.6801 3.0871
1.5 1.5 0.5992 3.9268 3.0 1.5 0.9955 4.0708
1.5 2.0 0.9052 5.1450 3.0 2.0 1.3040 5.2064
1.5 2.5 1.0969 6.4549 3.0 2.5 1.5571 6.3632
1.5 3.0 1.1947 7.6933 3.0 3.0 1.7379 7.4549
1.5 3.5 1.2282 8.7828 3.0 3.5 1.8502 8.4368
1.5 4.0 1.2219 8.7087 3.0 4.0 1.9067 9.2946
1.5 4.5 1.1927 10.4731 3.0 4.5 1.59215 10.0311
1.5 5.0 1.1514 11.1068 3.0 5.0 1.9071 10.6580
1.5 5.5 1.1046 11.6298 3.0 5.5 1.8732 11.1896
1.5 6.0 1.0559 12.0628 3.0 6.0 1.8271 11.6402
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o Skew- Kuyto« i G Skew- Kuyto-
ness sis ness sis
3.5 0.1 0.5344 2.2719 5.0 0.1 0.9146 2.5756
3.5 0.5 0.6063 2.4856 5.0 0.5 0.9550 2.7224
3.5 1.0 0.8082 3.1096 5.0 1.0 1.0733 3.1600
3.5 1.5 1.0808 4,0220 5.0 1.5 1.247¢ 3.8254
3.8 2.0 1.3631 5.0869 5.0 2.0 1.4488 4.6429
3.5 2.5 1.6110 6.1862 5.0 2.5 1.6531 5.5362
3.5 3.0 1.8028% 7.2382 5.0 3.0 1.8401 6.4417
3.5 3.5 1.9354 8.1978 5.0 3.5 1.9978 7.3139
3.5 4.0 2.0148 9.0470 5.0 4.0 2.1213 8.1250
3.5 4.5 2.0514 9.7849 5.0 4.5 2.2106 8.8613
3.5 5.0 2.0556 10.4185 5.0 5.0 2.2687 9.5190
3.5 5.5 2.0366 10.9625 5.0 5.5 2.3000 10.1003
3.5 6.0 2.0016 11.4265 S.0 6.0 2.3094 10.6111
4.0 0.1 0.6883 2.3794 5.5 0.1 0.9968 2.6569
4.0 0.5 0.7470 2.5697 5.5 0.5 1.0309 2.7856
4.0 1.0 0.9147 3.1293 .5 1.0 1.1317 3.1717
4.0 1.5 1.1489 3.9581 5.5 1.5 1.2823 3.7654
4.0 2.0 1.4030 4.9419 5.5 2.0 1.4619 4.5057
4.0 2.5 1.6391 5.9763 5.5 2.5 1.6495 5.3290
4.0 3.0 1.8346 6.9844 5.5 3.0 1.8278 6.1790
4.0 3.5 1.9811 7.9197 5.5 3.8 1.9848 7.0127
4.0 4.0 2.0798 8.7601 5.5 4.0 2.1144 7.8C15
4.0 4.5 2.1369 9.5003 5.5 4.5 2.2143 8.5289
4.0 5.0 2.1605 10.1442 5.5 5.0 2.2858 9.1877
4.0 5.5 2.1584 10.7006 5.5 5.5 2.3316 9.7774
4.0 6.0 2.1373 11.1802 5.5 6.0 2.3554 10.3011
4.5 0.1 0.8134 2.4826 6.0 0.1 1.0640 2.7268
4.5 0.5 0.8618 2.6501 6.0 0.5 1.0931 2.8401
4.5 1.0 1.0020 3.1460 6.0 1.0 1.1798 3.1815
4.5 1.5 1.2033 3.8906 6.0 1.5 1.3112 3.7115
4.5 2.0 1.4301 4.7902 6.0 2.0 1.4712 4.3813
4.5 2.5 1.6510 5.7548 6.0 2.5 1.6428 5.1377
4.5 3.0 1.8443 6.7137 6.0 3.0 1.8110 5.9318
4.5 3.5 1.9988 7.6200 6.0 3.5 1.9647 6.7241
4.5 4.0 2.1122 8.4483 6.0 4.0 2.0969 7.4861
4.5 4.5 2.1872 9.1885 6.0 4.5 2.2042 8.199¢6
4.5 5.0 2.2291 9.8408 6.0 5.0 2.2862 8.8551
4.5 5.5 2.2442 10.4107 6.0 5.5 2.3443 9.4491
4.5 ¢€.0 2.2383 10.9063 6.0 6.0 2.3811 9.9825
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Table 56.--Values of Skewness and Kurtosis Measures for
Various Settings of Mean {u) and Standard Deviation (¢) with

Contaminating Fraction {e) = 0.30
u d Skew- Kurto- M o Skew- Kurto-
ness sis ness sis
0.5 0.1 -0.4589 3.8573 2.0 0.1 -0.3002 2.0541
0.5 0.5 -0.2999 3.3745 2.0 0.5 -0.1330 2.2212
0.5 1.0 0.0097 2.9969 2.0 1.0 0.2692 2.7420
0.5 1.5 0.2370 3.5587 2.0 1.5 0.6816 3.5362
0.5 2.0 0.3502 4.5856 2.0 2.0 0.981¢ 4.4445
0.5 2.5 0.3908 5.6105 2.0 2.5 1.1547 5.3216
0.5 3.0 0.3945 6.4665 2.0 3.0 1.2315 6.0913
0.5 3.5 0.3815 7.1396 2.0 3.5 1.2467 6.7336
0.5 4.0 0.3615 7.6589 2.0 4.0 1.2260 7.2571
0.5 4.5 0.3405 8.0601 2.0 4.5 1.1862 7.6801
¢.5 5.0 0.3183 8.3727 2.0 5.0 1.1373 8.0218
0.5 5.5 0.2994 8.6190 2.0 5.5 1.085%51 8.2991
6.5 6.0 0.2810 8.8156 2.0 6.0 1.0328 8.5257
1.0 0.1 -0.6187 3.0767 2.5 0.1 -0.0862 1.85893
1.0 0.5 -0.3974 2.9194 2.5 0.5 0.0435 2.0497
1.0 1.0 0.0631 2.9627 2.5 1.0 0.3732 2.6012
1.0 1.5 0.4367 3.6209 2.5 1.5 0.7448 3.3862
1.0 2.¢ 0.6441 4.6009 2.5 2.0 1.0486 4.2584
1.0 2.5 0.7297 5.5729 2.5 2.5 1.2500 5.1021
1.0 3.0 0.7470 6.3991 2.5 3.0 1.3600 5.8543
1.0 3.5 0.7305 7.0600 2.5 3.5 1.4031 6.4945
1.0 4.0 0.6987 7.5778 2.5 4.0 1.4025 7.0264
1.0 4.5 0.6615 7.9826 2.5 4.5 1.3753 7.4637
1.0 5.0 0.6234 8.3009 2.5 5.0 1.3331 7.8222
1.0 5.5 0.5867 8.5536 2.5 5.5 1.283¢ 8.1167
1.0 6.0 0.5524 8.7564 2.5 6.0 1.2306 8.3598
1.5 0.1 -0.5116 2.4344 3.0 0.1 0.0951 1.7662
1.5 0.5 -0.3052 2.5036 3.0 Q.5 0.19855 1.9482
1.5 1.0 0.1587 2.8725 3.0 1.0 0.4616 2.470S
1.5 1.5 0.5833 3.6227 3.0 1.5 0.7849 3.20984
1.5 2.0 0.8534 4.5626 3.0 2.0 1.0759 4.0342
1.5 2.5 0.9858 5.4810 3.0 2.5 1.2821 4.8437
i.% 3.0 1.0293 6.2752 3.0 3.0 1.4291 5.5795
1.5 3.5 1.0227 6.9244 3.0 3.5 1.500% 6.2189
1.5 4.0 0.9906 7.4430 3.0 4.0 1.5241 6.7605
1.5 4.5 0.9469 7.8549 3.0 4.5 1.5153 7.2134
1.5 5.0 0.8991 8.182% 3.0 5.0 1.4860 7.5902
1.5 5.5 0.8513 8.4461 3.0 5.5 1.4445 7.9037
1.5 6.0 0.8052 8.65380 3.0 6.0 1.3964 8.1652



Table 56.--Continued.

lel

skew- Kurto- Skew- Kurto-

ness sis ness sis
3.5 0.1 0.2393 1.7242 5.0 0.1 0.5082 1.702%
3.% 0.5 0.3180 1.8872 5.0 0.5 0.5502 1.8094
3.5 1.0 0.5334 2.3580 5.0 1.0 0.6720 2.1264
3.5 1.5 0.8106 3.0326 5.0 1.5 0.8467 2.6038
3.5 2.0 1.08G1 3.7998 5.0 2.0 1.0435 3.1828
3.5 2.5 1.2996 4.,5694 5.0 2.5 1.2352 3.8066
3.5 3.0 1.4553 5.2853 5.0 3.0 1.4033 4.4300
3.% 3.5 1.5513 5.8212 5.0 3.5 1.5384 5.0224
3.5 4.0 1.5991 6.4707 5.0 4.0 1.6385 5.5668
3.5 4.5 1.6113 6.9383 5.0 4.5 1.7060 6.0559
3.5 5.0 1.5986 7.3333 5.0 5.0 1.7455 6.4889
3.5 5.5 1.5695 7.6661 5.0 5.5 1.7623 6.8690
3.5 6.0 1.5301 7.94¢68 5.0 6.0 1.7614 7.2009
4.0 0.1 0.3518 1.7071 5.5 0.1 0.5627 1.705%
4.0 0.5 0.4146 1.8495 5.5 0.5 0.5979 1.7984
4.0 1.0 0.5905 2.2647 5.5 1.0 0.7010 2.0758
4.0 1.5 0.8275 2.8701 5.5 1.5 0.8522 2.4989
4.0 2.0 1.0723 3.5741 5.5 2.0 1.028¢0 3.0212
4.0 2.5 1.2868 4.,2980 5.5 2.5 1.2058% 3.598853
4.0 3.0 1.4529% 4.,9882 5.5 3.0 1.3650 4.1810
4.0 3.5 1.5677 5.6153 5.5 3.5 1.5072 4.7491
4.0 4.0 1.6372 6.1686 5.5 4.0 1.6162 5.2813
4.0 4.5 1.6701 6.6479 5. 4.5 1.6562 5.7678
4.0 5.0 1.6756 7.0591 5.5 5.0 1.7497 6.2054
4,0 5.5 1.6613 7.4103 5.5 5.5 1.7807 6.5948
4.0 6.0 1.6336 7.7098 5.5 6.0 1.7930 6.9390
4.5 0.1 0.4395 1.7020 6.0 0.1 0.6063 1.709%¢6
4.5 0.5 0.4904 1.8254 6.0 0.5 0.6362 1.7907
4.5 1.0 0.6359 2.1885 6.0 1.0 0.7245 2.0343
4.5 1.5 0.8388 2.7269 6.0 1.5 0.8563 2.4101
4.5 2.0 1.0589 3.3672 6.0 2.0 1.0133 2.8809
4.5 2.5 1.2634 4.0417 6.0 2.5 1.1774 3.4075%
4.5 3.0 1.4330 4.7004 6.0 3.0 1.3335 3.9550
4.5 3.5 1.5606 5.3130 6.0 3.5 1.4714 4.4960
4.5 4.0 1.6476 5.8645 6.0 4.0 1.5858 5.011¢%
4.5 4.5 1.6993 6.3512 6.0 4.5 1.6750 5.4914
4,5 5.0 1.7226 6.7754 6.0 5.0 1.7400 5.9293
4.5 5.5 1.,7241 7.1426 6.0 5.5 1.7833 6.3243
4.5 6.0 1.7095 7.4594 6.0 6.0 1.8080 6.6776
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Table 57.-~Values of Skewness and Kurtosis Measures for
Various Settings of Mean (u) and Standard Deviation (g) with

Contaminating Fraction {(€) = 0.40
" g Skew- Kuyto— " o Skew- Ku;to—
ness sis ness sisg
0.5 0.1 -0.6476 4.,4239 2.0 0.1 -0.5325 2.131%
0.5 0.5 -0.3985 3.5963 2.0 0.5 -0.3254 2.2203
0.5 1.0 0.0055 2.9941 2.0 1.0 0.1399 2.5602
0.5 1.5 0.2340 3.4965 2.0 1.5 0.5660 3.1447
0.5 2.0 0.3196 4.3097 2.0 2.0 0.8374 3.8258
0.5 2.5 0.3375 5.0246 2.0 2.5 0.9711 4,4683
0.5 3.0 0.3282 5.5706 2.0 3.0 1.0156 5.0133
0.5 3.8 0.3094 5.9737 2.0 3.5 1.0100 5.4537
0.5 4.0 0.2882 6.2717 2,0 4.0 0.9789 5.8028
0.5 4.5 0.2675 6.4948 2.0 4.5 0.9361 6.0787
0.5 5.0 0.2484 6.6647 2.0 5.0 0.8891 6.2977
0.5 5.5 0.2312 6.7963 2.0 5.5 0.8419 6.4728
0.5 6.0 0.2157 6.8938% 2.0 6.0 0.7965 6.6143
1.0 0.1 -0.8574 3.4421 2.5 0.1 -0.3382 1.8250
1.0 0.5 -0.5399 3.0944 2.5 0.5 -0.1839 1.9525
1.0 1.0 0.0348 2.9313 2.5 1.0 0.1897 2.3400
1.0 1.5 0.4130 3.4556 2.5 1.5 0.5774 2.9167
1.0 2.0 0.5793 4,2158 2.5 2.0 0.8641 3.5665
1.0 2.5 0.6271 4,2050 2.5 2.5 1.0339 4.1895
1.0 3.0 0.6208 5.4490 2.5 3.0 1.1133 4.,7345
1.0 3.5 0.5925 5.8603 2.5 3.5 1.1339% 5.1888
1.0 4.0 0.5569 6.1710 2.5 4.0 1.1198 5.5588
1.0 4.5 0.5203 6.4063 2.5 4.5 1.0867 5.8578
1.0 5.0 0.4855 6.5873 2.5 5.0 1.0442 6.0995
1.0 5.5 0.4535 6.7286 2.5 5.5 0.9979 6.2956
1.0 6.0 0.4244 6.8405 2.5 6.0 0.8512 6.4559
1.5 0.1 -0.7414 2.6405 3.0 0.1 -0.1833 1.6369
1.5 0.5 -0.4693 2.599%6 3.0 0.5 -0.0670 1.7661
1.5 1.0 0.0848 2,.7746 3.0 1.0 0.2307 2,1434
1.5 1.5 0.5189 3.3365 3.0 1.5 0.5707 2.6873
1.5 2.0 0.7501 4.0509 3.0 2.0 0.8541 3.3000
1.5 2.5 0.8398 4.7142 3.0 2.5 1.0474 3.8999
1.5 3.0 0.8529 5.2579 3.0 3.0 1.1582 4.4404
1.5 3.5 0.8294 5.6830 3.0 3.5 1.2073 4.9042
1.5 4.0 0.7903 6.0111 3.0 4.0 1.2154 5.2922
1.5 4.5 0.7460 6.2648 3.0 4.5 1.1980 5.6128
1.5 5.0 0.7015 6.4628 3.0 5.0 1.1658 5.8767
1.5 5.5 0.6581 6.6191 3.0 5.5 1.1256 6.0942
1.5 6.0 0.6197 6.7440 3.0 6.0 1.0818 6.2743
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Skew- Kurto- o Skew- Kurto-

ness gis nesgs sis
3.5 0.1 -0.0655 1.5164 5.0 0.1 0.1435 1.3394
3.5 0.5 0.0242 1.6349 5.0 0.5 0.1903 1.4185
3.5 1.0 0.2631 1.9792 5.0 1.0 0.3240 1.6531
3.5 1.5 0.5567 2.47768 5.0 1.5 0.5112 2.0067
3.5 2.0 0.8254 3.0461 5.0 2.0 0.7155 2.4360
3.5 2.5 1.0299 3.6173 5.0 2.5 0.9071 2.8991
3.5 3.0 1.1645 4.1467 5.0 3.0 1.0683 3.3622
3.5 3.5 1.2401 4.6140 5.0 3.5 1.1924 3.8025
3.5 4.0 1.2719 5.0148 5.0 4.¢C 1.2801 4.2071
3.5 4.5 1.2733 5.3535 5.0 4.5 1.3360 4.5707
3.5 5.0 1.2552 5.6375 5.0 5.0 1.3662 4,8926
3.5 5.5 1.2250 5.8754 5.0 5.5 1.3764 5.1751
3.5 6.0 1.1878 6.0749 5.0 6.0 1.3717 5.4218
4.0 0.1 0.0236 1.435% 5.5 0.1 0.1844 1.3094
4.0 0.5 0.0943 1.5404 5.5 0.5 0.2234 1.3782
4.0 1.0 0.2885 1.8460 5.5 1.0 0.3364 1.5837
4.0 1.5 0.5407 2.2934 5.5 1.5 0.4989 1.8973
4.0 2.0 0.7890 2.8155 5.5 2.0 0.6828 2.2847
4.0 2.5 0.9950 3.3530 5.5 2.5 0.8630 2.7107
4.0 3.0 1.1454 3.8649 5.5 3.0 1.0224 3.1458
4.0 3.5 1.2427 4.3289 5.5 3.5 1.1526 3.5681
4.0 4.0 1.2965 4,7368 S.5 4.0 1.2514 3.9641
4.0 4.5 1.3176 5.0889 5.5 4.5 1.3208 4.3265
4.0 5.0 1.3156 5.3897 5.5 5.0 1.3650 4.6527
4.0 5.5 1.2980 5.6456 5.5 5.5 1.3885 4.9433
4.0 6.0 1.2702 5.8631 5.5 6.0 1.3957 5.2003
4.5 0.1 0.0913 1.3798 6.0 0.1 0.2167 1.2866
4.5 0.5 0.1483 1.4708 6.0 0.5 0.2497 1.3467
4.5 1.0 0.3083 1.7390 6.0 1.0 0.3464 1.5273
4.5 1.5 0.5252 2.1375 6.0 1.5 0.4883 1.8059
4.5 2.0 0.7513 2.6123 6.0 2.0 0.6536 2.1552
4.5 2.5 0.9522 3.1130 6.0 2.5 0.8216 2.5460
4.5 3.0 1.1109 3.6022 6.0 3.0 0.8765 2.9525
4.5 3.5 1.2243 4.0569 6.0 3.5 1.10590 3.354¢
4.5 4.0 1.2970 4.4658 6.0 4.0 1.2153 3.7386
4.5 4.5 1.3367 4.8261 6.0 4.5 1.2953 4.0960
4.5 5.0 1,3512 5.139¢6 6.0 5.0 1.3514 4.4228
4.5 5.5 1.3473 5.4105 6.0 5.5 1.3870 4,7181
4.5 6.0 1.3307 5.6439 6.0 6.0 1.4057 4,9827
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Table 58.--Values of Skewness and Kurtosis Measures for
Various Settings of Mean (u) and Standard Deviation {¢} with

Contaminating Fraction (¢} = 0.50
u Skew- Kurto- i g Skew- Kurtoe-
ness sis ness sis
.5 0.1 -0.8684 5.2582 2.0 0.1 -0.8043 2.4415
0.5 0.5 -0.4934 3.8760 2.0 0.5 -0.,5431 2.4024
0.5 1.0 0.0000 2.9931 2.0 1.0 0.0000 2.5000
0.5 1.5 0.2138 3.4088 2.0 1.5 0.4409 2.8798
0.5 2.0 0.2743 4.0268 2.0 2.0 0.6872 3.3878
.5 2.5 0.2780 4.,5197 2.0 2.5 0.7917 3.8729
0.5 3.0 0.2634 4.8726 2.0 3.0 0.8165 4.2778
0.5 3.5 0.2439 5.1223 2.0 3.5 0.8015 4.5982
0.5 4.0 0.2245 5.3016 2.0 4.0 0.7684 4.8476
0.5 4.5 0.2066 5.4331 2.0 4.5 0.7285 5.0417
0.5 5.0 0.1906 5.5318 2.0 5.0 0.6872 5.1838
0.5 5.5 0.1765 5.6074 2.0 5.5 0.6473 5.3144
0.5 6.0 0.1641 5.6664 2.0 6.0 0.60397 5.4109
1.0 0.1 -1.1318 4.,0703 2.5 0.1 -0.6244 2.0297
1.0 0.5 -0.6872 3.3878 2.5 0.5 -0.4347 2.0678
1.0 1.0 0.0000 2.9200 2.5 1.0 0.0000 2.2564
1.0 1.5 0.3651 3.2978 2.5 1.5 0.4118 2.6348
1.0 2.0 0.4934 3.8760 2.5 2.0 0.6870 3.1131
1.0 2.5 0.5162 4.3684 2.5 2.5 0.8332 3.5867
1.0 3.0 0.4988 4.7370 2.5 3.0 0.8923 4.,0012
1.0 3.5 0.4681 5.0056 2.5 3.5 0.9004 4.3432
1.0 4.0 0.4347 5.2024 2.5 4.0 0.8811 4.6184
1.0 4.5 0.4026 5.3489% 2.5 4.5 0.8483 4.8382
1.0 5.0 0.3732 5.4600 2.5 5.0 0.8098 5.0141
1.0 5.5 0.3468 5.5457 2.5 5.5 0.7697 5.1556
1.0 6.0 0.3233 5.6130 2.5 6.0 0.7303 5.2705
1.5 0.1 ~-1.0098 3.0897 3.0 0.1 -0.4871 1.7629
1.5 0.5 -0.6520 2.8504 3.0 0.5 -0.3462 1.8261
1.5 1.0 0.0000 2.7408 3.0 1.0 0.0000 2.0414
1.5 1.5 0.4347 3.1127 3.0 1.5 0.3687 2.4037
1.5 2.0 0.6297 3.6522 3.0 2.0 0.6520 2.8504
1.5 2.5 0.6893 4.1428 3.0 2.5 0.8295 3.3056
1.5 3.0 0.6860 4.5309 3.0 3.0 0.9221 3.7206
1.5 3.5 0.6568 4,8252 3.0 3.5 0.9574 4.0766
1.5 4.0 0.6185 5.0470 3.0 4.0 0.9575 4.,3726
1.5 4.5 0.5787 5.2155 3.0 4.5 0.9375 4.6155
1.5 5.0 0.5406 5.3451 3.0 5.0 0.9068 4.8140
1.5 5.5 0.5053 5.4464 3.0 5.5 0.8708 4,9766
1.5 6.0 0.4731 5.5266 3.0 6.0 0.8332 5.1103
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Skew- Kurto- Skew- Kurto-

ness sis ness sis
3.5 0.1 -0.3857 1.5839 5.0 0.1 -0.2115% 1.3040
3.5 0.5 -0.2780 1.6515 5.0 0.5 -0.1560 1.3560
3.5 1.0 0.0000 1.8634 5.0 1.0 0.0000 1.5137
3.5 1.5 0.3233 2.1996 5.0 1.5 0.2121 1.7591
3.5 2.0 0.6003 2.6119 5.0 2.0 0.4347 2.0678
3.5 2.5 0.7969 3.0428 5.0 2.8 0.6344 2.4108
3.5 3.0 0.9173 3.4499 5.0 3.0 0.7950 2.7620
3.5 3.5 0.9794 3.8116 5.0 3.5 0.92132 3.1013
3.5 4.0 1.0015 4.1219 5.0 4.0 0.9930 3.4165
3.5 4.5 0.9979 4.3833 5.0 4.5 1.0413 3.7016
3.5 5.0 0.9786 4.6017 5.0 5.0 1.0656 3.9550
3.5 5.5 0.9504 4.7837 5.0 5.5 1.0721 4.1777
3.5 6.0 0.9176 4.9357 5.0 6.0 1.0659 4.3723
4.0 0.1 -0.3106 1.4595 5.5 0.1 -0.1782 1.2538
4.0 0.5 -0.2262 1.5237 5.5 0.5 -0.1321 1.3000
4.0 1.0 0.0000 1.7200 5.5 1.0 0.0000 1.4399
4.0 1.5 0.2811 2.0257 5.5 1.5 0.1852 1.6588
4.0 2.0 0.5431 2.4024 5.5 2.0 0.3877 1.9370
4.0 2.5 0.7480 2.8052 5.5 2.5 0.5787 2.2513
4.0 3.0 0.888% 3.1975 5.5 3.0 0.7411 2.5794
4.0 3.5 0.9745 3.5574 5.5 3.5 0.8684 2.9033
4.0 4.0 1.0182 3.8752 5.5 4.0 0.9612 3.2107
4.0 4.5 1.0325 4,1498 5.5 4.5 1.0238 3.4944
4.0 5.0 1.0272 4.3841 5.5 5.0 1.0617 3.7512
4.0 5.5 1.0083 4.,5830 5.5 5.5 1.0806 3.9807
4.0 6.0 0.9838 4 ,7516 5.5 6.0 1.0851 4.1842
4.5 0.1 -0.2543 1.3701 6.0 0.1 -0.15820 1.2150
4.5 0.5 -0.1866 1.4285 6.0 0.5 -0.1130 1.2559
4.5 1.0 0.0000 1.6054 6.0 1.0 0.0000 1.3800
4.5 1.5 0.2439 1.8801 6.0 1.5 0.1624 1.5754
4.5 2.0 0.4869% 2.2218 6.0 2.0 0.3462 1.8261
4.5 2.5 0.6920 2.59%47 6.0 2.5 0.5267 2.1133
4.5 3.0 0.8459 2.9678 6.0 3.0 0.6872 2.4184
4.5 3.5 0.9503 3.3197 €.0 3.5 0.8187 2.7252
4.5 4.0 1.0136 3.6387 6.0 4.0 0.9220 3.0220
4.5 4.5 1.0456 3.9210 6.0 4.5 0.9964 3.3010
4.5 5.0 1.0552 4.1670 6.0 5.0 1.04¢66 3.5579
4.5 5.5 1.0492 4,.3796 6.0 5.5 1.0771 3.7910
4.5 6.0 1.0328 4.5625 6.0 6.0 1.0821 4.0007
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Fig. 23. Guideline for Alternative Mathematical Programming
Models.
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