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Traditional parametric statistical methods for solving 

the classification problem are based on certain assumptions. 

Innovative mathematical programming methods provide 

alternative approaches to the standard parametric 

discriminant procedures, when the underlying parametric 

assumptions are violated. For some data configurations, 

however, these mathematical programming models fail to 

provide the optimal classification rule. 

This research examines certain modifications of the 

mathematical programming models to improve their 

classificatory performance. These modifications involve the 

inclusion of second-order terms and secondary goals in 

mathematical programming models. A Monte Carlo simulation 

study is conducted to investigate the performance of two 

standard parametric models and various mathematical 

programming models, including the MSD (minimize sum of 

deviations) model, the MIP (mixed integer programming) model 

and the hybrid linear programming model. Misclassification 

rates for the classification models are empirically 



estimated on both training samples and validation (holdout) 

samples. Exact misclassification rates are determined from 

the estimated classification functions for some models. 

Several factors, such as sample size, covariance structure, 

distribution, and orientation of the data, are varied in the 

simulation study. 

The results show that the modified mathematical 

programming models have potential for being very useful in 

situations in which violations of the usual parametric 

assumptions are severe. This study addresses certain issues 

in implementing mathematical programming approaches to the 

classification problem. For example, with some mathematical 

programming models, there are solutions that are not 

invariant under data translations or rotations. The study 

shows the usefulness of a general contaminated multivariate 

normal distribution in estimating misclassification 

probabilities. The study also illustrates that a wide range 

of values can be assigned to the measures of skewness and 

kurtosis when generating the contaminated normal 

distribution by using different parameter settings. The 

results of this study will assist practitioners in 

understanding and implementing improved versions of 

mathematical programming formulations and, thus, give them 

greater flexibility in choosing an appropriate 

classification model. 
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CHAPTER I 

INTRODUCTION 

Overview of the Statistical Classification Problem 

The statistical classification problem is a well-known 

problem in many areas of business applications, for example, 

as in differentiating between prospective buyers and 

nonbuyers, between successful employees and unsuccessful 

ones, or between promising new firms and those likely to 

fail. The intent of classification is to properly 

categorize or classify subjects or observations into two or 

more groups based on certain attributes or characteristics 

of the subjects to be classified. 

Discriminant analysis is a statistical technique that 

uses the information available from a set of data to develop 

a rule or method for predicting to which group a new 

observation is most likely to belong based on the observed 

values of the observation's attribute variables. 

Discriminant analysis provides a powerful technique for 

examining differences between two or more groups of 

observations with regard to several attribute variables. 

For example, a credit manager may wish to classify previous 

holders of bank loans into two groups--payers or defaulters. 

For this situation, the credit manager may use several 



characteristics of the loan holders for attribute variables 

in the analysis. Some characteristics of interest might be 

size of the loan, income, liability, marital status, and 

credit history of the loan holder. All of these 

characteristics are measured at the time of the loan 

application. The analysis begins by finding a discriminant 

function which uses the measured values of the 

characteristics as input. This discriminant function will 

be used to identify potential payers or defaulters in the 

future. That is, the credit manager would measure these 

characteristics on future loan applicants and, by use of the 

discriminant function, identify applicants as either 

probable payers or defaulters. 

The most commonly used methods for the classification 

problem are the parametric statistical methods. These 

traditional parametric statistical methods are based on 

certain assumptions, and these methods may not yield the 

optimal classification rule if the underlying assumptions 

are violated. Over the past thirteen years, the literature 

has increasingly recognized that a variety of standard 

statistical problems, such as discriminant analysis, can be 

examined and analyzed advantageously by using computer-

intensive techniques from the field of optimization. 

Innovative mathematical programming methods provide 

alternative approaches to the standard parametric methods 

for the classification problem. 



Some of the mathematical programming models have been 

found to compare favorably with the parametric models. For 

some data configurations, however, these mathematical 

programming models fail to provide the optimal 

classification rule. Furthermore, some of the mathematical 

programming models involve a large amount of computational 

effort, and there have been only limited simulation studies 

evaluating their classificatory performance. 

This research examines certain modifications of the 

mathematical programming models in order to improve their 

classificatory performance. These modifications involve the 

inclusion of second-order terms in linear programming (LP) 

models and mixed integer programming (MIP) models, and the 

inclusion of secondary goals in MIP models. This study 

addresses certain issues in implementing mathematical 

programming approaches to the classification problem. For 

example, with some mathematical programming methods, there 

are solutions that are not invariant under data translations 

or rotations. 

A Monte Carlo simulation study is performed to assess 

the performance of classification models. Two standard 

parametric models and various mathematical programming 

models are employed in this research study. 

Misclassification rates for various discriminant models are 

empirically estimated on both training samples and 

validation (holdout) samples. Also, exact misclassification 



rates are determined from the estimated classification 

functions for some models and from data configurations 

involving the contaminated normal distributions. Several 

factors, such as sample size, covariance structure, 

distribution, and orientation of the data, are varied in the 

simulation study. This study will assist decision-makers in 

understanding and implementing improved versions of 

mathematical programming formulations and, thus, give them 

greater flexibility in choosing an appropriate 

classification model. 

An Application Comparing Different 
Classification Methods 

An example illustrating the potential of the 

mathematical programming approaches to discriminant analysis 

is explained using a data set in Johnson and Wichern (1992). 

These authors presented an example using this data set to 

illustrate the standard discriminant analysis procedures to 

classify two groups of families in a city. In the example, 

a riding-mower manufacturer is interested in classifying 

families into one of two groups--Gl: riding-mower owners, 

and G2: those without riding mowers (that is, nonowners). 

The classification is based on two attribute variables, xx = 

incomes and x2 = lot size. Random samples of nx = 12 

current owners and n2 = 12 current nonowners yield the 

values in Table 1. 



Table l.--Data Set for Owners and Nonowners of Riding Mowers 

G1: Riding--mower owners G2 : Nonowners 

Xi (income x2 (lot size xx (income x2 (lot size 
in $1000s) in 1000 ft2) in $1000s) in 1000 ft2) 

64.8 21.6 52.8 20.8 
61.5 20.8 64.8 17.2 
60.0 18.4 43.2 20.4 
87.0 23.6 84 .0 17.6 

101.1 19.2 49.2 17.6 
108.0 17.6 59.4 16.0 
82.8 22.4 66.0 18.4 
85.5 16.8 47.4 16.4 
69.0 20.0 33.0 18.8 
93.0 20.8 75.0 19.6 
51.0 22.0 51.0 14 .0 
81.0 20.0 63.0 14.8 

Source: Johnson and Wichern, 1992, page 496. 

Six classification models are used to analyze this data 

set. Fisher's linear discriminant function (LDF) and 

Smith's quadratic discriminant function (QDF) are used to 

represent the parametric statistical method. For the 

mathematical programming method, the minimize sum of 

deviations (MSD) model and the mixed integer programming 

(MIP) model are used in this example. MSD and MIP models 

are both linear classification models consisting of only 

first-order terms of the two attribute variables. Two 

second-order mathematical programming models, consisting of 

all first-order and second-order terms (5 variables), are 



also used to classify the data in the example. These 

second-order models are denoted by MSD5 and MIP5. 

Table 2 shows results of the six classification models. 

If the LDF method is used to classify the data in this 

example, then 3 out of 24 observations will be 

misclassified. Specifically, one riding-mower owner will be 

classified as nonowner and two nonowners will be classified 

as riding-mower owners. If the QDF method is used, the same 

results will be obtained. That is, 3 out of the 24 

observations will be classified incorrectly. For the 

mathematical programming methods, if the first-order MSD 
% 

model is used, then 5 out of the 24 observations will be 

misclassified. Specifically, two riding-mower owners will 

be classified as nonowners and three nonowners will be 

classified as riding-mower owners. However, if the second-

order MSD model is used, then the same results as the LDF 

and QDF methods will be obtained. If the first-order MIP 

model is used, then only two of the riding-mower owners will 

be misclassified as nonowners. However, if the second-order 

MIP model is used, then only 1 out of the 24 observations 

will be classified incorrectly. Specifically, only one 

riding-mower owner will be classified as nonowner but none 

of the nonowners will be misclassified. 

It is interesting to note that the three misclassified 

observations by the second-order MSD method are also 

misclassified by both parametric methods, and that the only 



one misclassified observation by the second-order MIP method 

is also misclassified by all other methods. Clearly, from 

Table 2.--Classification Results for the Data Set of Owners 
and Nonowners of Riding Mowers 

Observations and 
Actual Group 

Group into Which Models 
Classified Observations 

*1 x2 LDF QDF MSD MSD5 MIP MIP5 

G1: Riding-mower owners 

64.8 21.6 1 1 1 1 1 1 
61.5 20.8 1 1 1 1 1 1 
60.0 18.4 (2) (2) (2) (2) (2) (2) 
87.0 23 .6 1 1 1 1 1 1 

101.1 19.2 1 1 1 1 1 1 
108.0 17.6 1 1 1 1 1 1 
82.8 22.4 1 1 1 1 1 1 
85.5 16.8 1 1 (2) 1 (2) 1 
69.0 20.0 1 1 1 1 1 1 
93 .0 20.8 1 1 1 1 1 1 
51.0 22.0 1 1 1 1 1 1 
81. 0 20.0 1 1 1 1 1 1 

G2: Nonowners 

52.8 20.8 2 2 (1) 2 2 2 
64.8 17.2 2 2 2 2 2 2 
43.2 20.4 2 2 2 2 2 2 
84.0 17.6 (1) (1) (1) (1) 2 2 
49.2 17.6 2 2 2 2 2 2 
59.4 16.0 2 2 2 2 2 2 
66.0 18.4 2 2 2 2 2 2 
47.4 16.4 2 2 2 2 2 2 
75.0 19.6 (1) (1) (1) (1) 2 2 
33.0 18.8 2 2 2 2 2 2 
51.0 14.0 2 2 2 2 2 2 
63.0 14 .8 2 2 2 2 2 2 

Note: The misclassified observations are shown in 
parenthesis. 



the results of this example, an appropriate mathematical 

programming method has the potential to effectively classify 

observations from certain data sets and, therefore, should 

be investigated. 

Purpose, Problem, and Significance 

Purpose of the Research Study 

The purpose of this research is to analyze the 

performance of certain mathematical programming models for 

solving the statistical classification problem under certain 

modifications of these models. The research in this study 

investigates the appropriateness of the inclusion of second-

order terms in LP models and in MIP models. The study also 

analyzes the effects of some existing and proposed secondary 

goals in MIP models on the classificatory performance of 

these models. The appropriateness of using contaminated 

normal data in simulation studies to generate different 

types of nonnormal data is also examined. 

Problem Motivating the Research Study 

The problem motivating this study is the lack of 

performance results for mathematical programming models 

proposed over the past decade to solve the discriminant 

problem. Although several Monte Carlo simulation studies 

have investigated the advantages and disadvantages of using 



LP-based and MlP-based models, these simulation studies have 

not thoroughly explored certain modifications to these 

mathematical programming approaches for solving the 

discriminant problem. These simulation studies typically 

have not used higher-order terms in the classification 

models. One of the problems associated with MIP models is 

the possibility of numerous alternate optimal solutions. 

While these alternate solutions are all optimal on the 

training set of observations, they may each have different 

performance results on a validation set of observations. 

Some researchers have studied mathematical programming 

models with secondary goals, but they have not addressed the 

importance of the secondary goal. 

Most of the simulation studies investigating 

mathematical programming approaches to the classification 

problem fail to use contaminated normal data, although 

normal and other nonnormal distributions are explored. 

Several simulation studies generate nonnormal data, using a 

simulation method in which the mean, variance, skewness, and 

kurtosis are specified, but the actual shape of the 

distribution of the data is not known. The range of values 

for the skewness and kurtosis of the contaminated normal 

distribution is not readily available for researchers 

desiring to use contaminated normal data in Monte Carlo 

simulation studies. 
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Significance of the Research Study 

Advances in computer technology have spurred research 

in computer-intensive techniques such as solving statistical 

problems with mathematical programming models. The results 

of this research would allow practitioners to understand and 

implement improved versions of mathematical programming 

formulations for the discriminant problem by utilizing 

higher-order terms and appropriate secondary goals in 

certain mathematical programming models. These formulations 

have the potential for being very useful in situations in 

which violations of the usual parametric assumptions of 

discriminant analysis are severe. 

Previous research studies of mathematical programming 

models primarily have investigated linear discriminant 

functions that included only first-order terms. It is easy 

to find data for which these first-order mathematical 

programming models fail to yield the optimal classification 

rule. Mathematical programming models that use all first-

order terms and second-order terms of the attribute 

variables include all of the terms that are present in 

Smith's quadratic discriminant function. Thus, these 

mathematical programming formulations with first-order and 

second-order terms have the potential for being competitive 

with the quadratic method in problems requiring a 

classification function that is nonlinear in the attribute 

variables. The use of second-order terms in mathematical 



11 

programming models would allow for greater flexibility in 

choosing an appropriate discriminant procedure. 

The usefulness of various secondary goals proposed in 

the literature has not been adequately addressed. An 

appropriately selected secondary goal has the potential of 

improving the classificatory performance of the mathematical 

programming model on the validation samples. Understanding 

the types of configurations that may warrant the use of a 

certain secondary goal is important in utilizing the 

appropriate mathematical programming procedure. 

The normal distribution contaminated with outliers is 

mentioned in the literature as being an important 

distribution to describe certain real-world data sets. 

Understanding the range of possible values for the skewness 

and kurtosis for these distributions will assist researchers 

in generating certain types of nonnormal distributions. An 

important advantage of using the contaminated normal 

distribution in a Monte Carlo simulation study investigating 

the performance of linear discriminant functions is that the 

exact misclassification rate of the estimated linear 

discriminant function can be found analytically, and, hence, 

the need for large validation samples is eliminated. 

Organization of the Dissertation 

This dissertation is organized into six chapters. 

Chapter 1 provides introductory material explaining an 
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overview of the statistical problem, including a numerical 

example comparing different classification methods. Chapter 

1 also contains the purpose, problem, and significance of 

the study. Chapter 2 provides a literature review of 

mathematical programming approaches for discriminant 

analysis, and it also includes research questions of the 

study. Chapter 3 contains the theoretical framework of the 

two-group classification problem and the proposed 

classification models used in the study. Chapter 4 provides 

experimental designs for the Monte Carlo simulations used in 

this study, including the selection of models and parameter 

settings of data configurations. Chapter 5 presents 

experimental results obtained from the simulations. Chapter 

6 provides a summary of the findings, key assumptions, 

future directions, and major contributions of the research. 



CHAPTER II 

LITERATURE REVIEW 

Overview of Previous Research 

The classification problem in discriminant analysis is 

concerned with correctly classifying observations into well-

defined groups or classes when group membership of these 

observations is either known or unknown (Huberty 1984) . 

Applications of discriminant analysis extend to both 

business and scientific disciplines, including psychology 

(Huberty, Wisenbaker, and Smith 1987) ; economics (Sudarsanam 

and Toffler 1985); accounting (Welker 1974); and finance 

(Srinivason and Kim 1987). 

Existing parametric statistical methods for solving the 

classification problem include Fisher's (1936) linear 

discriminant function (LDF) and Smith's (1947) quadratic 

discriminant function (QDF). Optimality for the LDF and QDF 

methods is based on the assumption that the attribute 

variables for each group follow a multivariate normal 

distribution, with equal and unequal variance-covariance 

structure across groups, respectively (Johnson and Wichern 

1992) . Alternative approaches for solving the 

classification problem have been researched in order to 

13 
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develop promising models that are robust to violations of 

these assumptions (Freed and Glover 1986). 

Linear Programming Approaches 

Linear programming approaches for solving the 

statistical classification problem have been given 

considerable attention since the introduction of LP-based 

models for the discriminant problem by Freed and Glover 

(1981) and Hand (1981). In many research studies involving 

LP models for discriminant analysis, the objective is to 

find a discriminant rule that is either optimal or 

competitive with the parametric approaches in correctly 

classifying observations from a set of new observations or 

from a representative validation sample (Glover, Keene, and 

Duea 1988) . These new approaches are relatively easy for 

practitioners to implement. 

In recent years, theoretical and empirical 

investigations of innovative discriminant analysis 

procedures have been an attempt to improve upon the 

classificatory performance of alternative discriminant 

procedures as opposed to the standard statistical 

discriminant procedures. Some studies have focused on the 

undesirable problems associated with mathematical 

programming models. Koehler (1989a and 1989b), Markowski 

and Markowski (1987), Rubin (1989 and 1991), and Glover 

(1990) have investigated problems that plagued certain 
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mathematical programming models. These problems included 

formulations that obtained unbounded solutions, trivial 

solutions, and solutions that were not invariant under data 

translation or rotation. These problems have inspired 

numerous variations of mathematical programming 

formulations. Normalization constraints, such as those 

discussed in Glover, Keene, and Duea (1988) and Glover 

(1990), were introduced to overcome the undesirable problems 

associated with early mathematical programming formulations. 

Mixed Integer Programming Approaches 

Each LP-based model obtains a classification rule by 

optimizing an objective function that is a surrogate for 

minimizing the number of misclassifications. To directly 

minimize the number of misclassifications in the training 

sample, MIP models have been proposed. However, it does not 

always follow that these models will perform optimally on 

the validation sample. Because of the computationally 

intensive nature of these models, several researchers have 

proposed heuristic algorithms to make the MIP approach more 

computationally efficient. Koehler and Erenguc (1990), 

Banks and Abad (1991) , and Rubin (1990a) have investigated 

heuristic algorithms that appear to yield good, albeit 

suboptimal, solutions to the MIP models. Loucopoulos (1993) 

investigated the performance of MIP models specifically 
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designed for the multiple groups case. These MIP models 

tend to be particularly computer intensive. 

Classificatorv Performance of Models 

Several recent studies have compared the classificatory 

performance of LP-based discriminant procedures with the 

performance of the standard statistical procedures. 

Experimental studies have been conducted by Mahmood and 

Lawrence (1987), Joachimsthaler and Stam (1988) , Markowski 

and Markowski (1987) , Freed and Glover (1986), and Rubin 

(1990b). The MSD (minimize sum of deviations) model of 

Freed and Glover (1986) was found to compare favorably with 

the existing discriminant procedures. However, 

Joachimsthaler and Stam (1988) concluded that relative 

differences in performance by linear programming 

formulations and standard statistical procedures are small, 

even under multivariate nonnormal conditions. An early 

study by Markowski and Markowski (1985) focused on 

limitations of the LP procedures. Studies such as Glover 

(1990) and Glover, Keene, and Duea (1988) later appeared to 

overcome these special limitations. 

Rubin (1990b) found that Smith's quadratic procedure 

was superior to the fifteen linear programming models tested 

in his study when the data follow a multivariate normal 

distribution, with various parameter values for the means, 

variances, and correlations. This result is not totally 
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surprising since the quadratic method allows for a nonlinear 

classification function. Silva and Stam (1994) conducted a 

simulation study using second-order terms in the hybrid and 

MSD models. They considered a large training samples of 

size 100 from exponentially distributed random variables. 

However, they did not consider the MIP model in their study. 

For the highly nonnormal data generated in their study, the 

hybrid model and the MSD model greatly benefitted from the 

second-order terms. 

Several studies proposed the use of secondary goals in 

mathematical programming models (Freed and Glover 1981, 

Bajgier and Hill 1982, Glover 1990, and Rubin 1990a). 

Bajgier and Hill (1982) used an LP-based model, with the 

first goal of minimizing the deviations of the misclassified 

observations and the secondary goal of maximizing the 

deviations of the correctly classified observations from the 

cutoff value in the discriminant rule. This model is known 

as the OSD (optimize sum of distances) model. Bajgier and 

Hill (1982) also presented in their studies an MIP model 

with secondary goals. The first goal of their MIP model is 

to minimize the number of misclassified observations, while 

the secondary goals are to minimize the deviations of the 

misclassified observations and to maximize the deviations of 

the correctly classified observations. Rubin (1990a) used a 

secondary goal that maximized the minimum interior distance 

of the correctly classified observations and found promising 
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results for the MIP model with this secondary goal in a 

limited simulation study. 

Contaminated Normal Data 

Several studies, such as Nath (1984), Hampel (1974), 

and Lee and Ord (1990), have considered the contaminated 

normal distribution to be useful in simulation studies. 

Nath (1984) pointed out that the contaminated normal 

distribution is of particular importance to researchers who 

wish to determine analytically the exact misclassification 

rate of a linear discriminant function for future 

observations. Thus, from the linear discriminant function 

estimated by using a training sample, an exact 

misclassification rate can be calculated without using large 

validation samples. 

The contaminated normal distribution is widely accepted 

as realistic because a small proportion of outlying 

observations occurs even in good data sets. Especially in 

business-related problems, outlier-contaminated data are not 

uncommon (Mahmood and Lawrence 1987). Although the 

contaminated normal distribution is generally accepted as 

being an important nonnormal distribution, it has been used 

very little in Monte Carlo simulation studies that have 

investigated misclassification rates of mathematical 

programming approaches for solving the two-group 

discriminant problem. 
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In some published simulation studies, such as Freed and 

Glover (1986) and Rubin (1990b), only normally distributed 

data were used. Restricting the simulated data to normally 

distributed data eases the interpretation of the results as 

well as limits the complexity involved in generating 

multivariate data. Other studies, such as Joachimsthaler 

and Stam (1988) , used a technique for generating nonnormal 

data with specified values for skewness and kurtosis. This 

technique for generating nonnormal data was presented by 

Vale and Maurelli (1983) . However, there is no easy way to 

describe the generated data or the cumulative distribution 

function of the population. With contaminated normal data, 

the distribution of the data can be easily described. 

Research Questions 

Motivation for Research Question on Second-Order Term 

The appropriateness of adding higher-order terms to 

mathematical programming models has not been thoroughly 

addressed (Silva and Stam 1994). In multiple regression 

analysis, it is well known that the independent variables 

used in a linear regression function may be first-order 

terms or higher-order terms (Draper and Smith 1981). The 

same approach may be used in discriminant analysis in which 

squared terms, crossproduct (interaction) terms, or higher-

order terms are included to improve the classificatory 

performance of the models (Johnson and Wichern 1992). 
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Freed and Glover (1986) regarded Fisher's LDF procedure 

as an important benchmark of performance and showed that the 

MSD method with first-order terms performed competitively 

with the Fisher's LDF and the logistic models in a 

simulation study. In a more extensive simulation study in 

which the QDF procedure was included, Rubin (1990b) found 

that Smith's QDF procedure was superior to the fifteen LP-

based models tested in his study when the data followed a 

multivariate normal distribution with various parameter 

values for the means, variances, and correlations. This 

result is not totally surprising since the quadratic method 

allows for second-order terms in the model, whereas the LP-

based models include only first-order terms. Rubin (1990b, 

page 3 82) stated that "it is incumbent on researchers to 

include QDF as a benchmark when seeking situations in which 

the linear programming approaches would be advantageous." 

Rubin (1990b) also showed that the MSD method performed 

competitively with Fisher's LDF procedure and appeared to be 

one of the more promising LP-based models. 

The procedure for implementing a mathematical 

programming model with all first-order and second-order 

terms present is similar to including second-order terms in 

a linear regression model. For example, let Yt = (au, a12, 

..., alp)
T be the ith observation with p attribute values. A 

first-order model for any of the LP-based procedures would 
p 

simply use E^a^Xj as the discriminant score, with the 
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weights Xj determined by the linear programming approach. A 

complete second-order model with all first-order terms would 

use the following discriminant score in the model, with the 

XJJ, Xj, and x^ weights to be determined by the linear 

programming approach: 

p 
E a . .X.. + L, cl. iJti + UL. 
j-1 JJ j-l 1J J h>k 
E a2

MxM + £ a,,x, + EE a^a^x^ 

It is important to note that the above discriminant 

score is linear in terms of the parameters (weights) to be 

estimated, although it is a second-order polynomial in terms 

of the attribute values. Silva and Stam (1994) used a 

second-order discriminant score in a simulation study that 

involved the LDF, QDF, hybrid, and MSD methods. However, 

their simulation study was restricted to exponentially 

distributed attribute values and training samples of size 

100. Also, Silva and Stam (1994) found that including the 

crossproduct terms in the model appeared to improve the 

classificatory performance when correlation between 

attributes was present. However, it is not appropriate to 

extend this conclusion to situations in which other data 

configurations are used. Establishing conditions for 

translational and rotational invariance of LP-based model 

has been important in selecting desirable models (Freed and 

Glover 1986, Koehler and Erenguc 1990, Markowski and 

Markowski 1985). Silva and Stam (1994) did not address this 

issue in evaluating models with second-order terms. From 
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the literature, it is clear that further research needs to 

address the following research question. 

Research Question 1 

How do second-order terms in mathematical 

programming models affect the performance of certain 

two-group classification models for small to moderate 

training sample sizes and for normal and nonnormal 

data? Can the correlation structure of the data 

determine whether the crossproduct terms should be 

included in the models? Under what conditions are 

these models invariant with respect to translation and 

rotation of the data? 

Motivation for Research Question on Secondary Goal 

The hybrid model (Glover 1990) has several desirable 

goals. These goals require properly selected weights to 

prioritize the goals in the objective function of the 

formulation for the hybrid model. Silva and Stam (1994) 

found that the hybrid model performed competitively with the 

LDF and the QDF procedures when second-order terms were 

included in the model. Bajgier and Hill (1982) presented an 

MIP model with the goals of minimizing the deviations of the 

misclassified observations and maximizing the deviations of 

the correctly classified observations from the cutoff value 

in the discriminant rule. Since the MIP model is 
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computationally intensive, particularly for large sample 

sizes, few simulation studies have included the model. Some 

extensive simulation studies, such as Rubin (1990b) and 

Joachimsthaler and Stam (1988), have excluded the MIP model 

because of the computational effort. 

In recent simulation studies by Koehler and Erenguc 

(1990) and Stam and Jones (1990), the MIP model typically 

did not perform much better than the QDF or the LDF models 

on validation samples for configurations with normal and 

uniform distributions. Since the MIP model may have many 

alternative solutions that are optimal on the training 

samples (Bajgier and Hill 1982) , it is possible that an 

appropriate secondary goal may improve the classificatory 

performance of the MIP model on the validation samples. The 

secondary goal would considerably limit the number of 

alternative solutions. Rubin (1990a) also used a secondary 

goal in his study. His secondary goal maximized the 

deviation between the cutoff value and the discriminant 

score of the closest correctly classified observation to the 

cutoff value. Another way to state this is to say that the 

secondary goal maximizes the minimum interior distance of 

correctly classified scores (Rubin 1990a). This very 

limited simulation study, which used only the normally 

distributed data, showed promising results for the MIP model 

with this goal. 
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One secondary goal that has not been investigated with 

MIP models is the goal of maximizing the separation between 

the discriminant scores of the centroid (mean vector of the 

attribute values) of each group. The theoretical motivation 

for using this secondary goal is the fact that Fisher's LDF 

method can be derived by maximizing the absolute difference 

|wT(a1 - a2) |, where at and a2 are the mean vectors of the 

attribute values for group 1 and group 2, respectively, 

subject to the constraint wTSw = 1, where S is the estimated 

variance-covariance matrix of the two populations (Morrison 

1976) . Now, wTSw = 1 is nonlinear in the weights wt of the 

w vector and thus cannot be used in the standard MIP 

formulation, which includes only linear constraints in the 

parameters that need to be estimated. One way to remedy 

this situation is to use a constraint on the range of the 

discriminant scores or a constraint on the range of values 

for the weights. These constraints would be surrogates for 

the constraint wTSw = l. The second research question 

addresses the issue of the importance of certain secondary 

goals in MIP models and is stated below. 

Research Question 2 

Can the use of certain secondary goals improve 

the performance of MIP models for the two-group 

classification problem on small to moderate sample 

sizes? 
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Motivation for Research Question on Contaminated Normal 
Distribution 

Several Monte Carlo simulation studies use nonnormal 

distributions to evaluate the robustness of various 

statistical procedures. Some studies have used 

distributions such as uniform, double exponential, 

lognormal, and discrete uniform to generate nonnormal data 

(Stam and Jones 1990; Nath, Jackson, and Jones 1992) . These 

distributions are often the standard types of distributions 

used in simulation studies to represent distributions with 

various skewness and kurtosis values. However, not all real 

data correspond to the skewness and kurtosis values of these 

distributions. Fleishman (1978) generated nonnormal data by-

using a polynomial transformation and constructed a table of 

values for the skewness and kurtosis. This table could be 

used to select various skewness and kurtosis values for 

generating nonnormal data with a polynomial transformation. 

Vale and Maurelli (1983) observed that the shape of the 

generated data by Fleishman's method was difficult to 

understand and that both the exact probability density 

function and the cumulative distribution function were 

unknown. 

Contaminated normal data is viewed as an important 

distribution in representing real-world data (Nath 1984, 

Hampel 1974, and Lee and Ord 1990). However, only Lee and 

Ord (1990) used the contaminated normal to evaluate LP-based 

models in a simulation study. Perhaps one reason that the 
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contaminated normal distribution is not widely used in 

simulation studies evaluating LP-base models is that the 

range of possible values for the skewness and kurtosis is 

not readily available. Joachimsthaler and Stam (1988) used 

Fleishman's method and selected various values for the 

skewness and kurtosis from the table to generate nonnormal 

data. 

One important motivation for considering the 

contaminated normal distribution as a nonnormal distribution 

in simulation studies with linear discriminant functions is 

that an exact misclassification rate can be calculated from 

an estimated linear discriminant function under the 

assumption of this distribution. Therefore, under this 

distribution, the need for validation samples can be 

eliminated when linear discriminant functions are being 

evaluated. 

The following research question is important to 

researchers desiring to conduct a simulation study with 

nonnormal data, particularly if exact misclassification 

rates from estimated linear discriminant functions are 

desired. 

Research Question 3 

Since the contaminated normal distribution 

(mixture of two normals) can be used to assess the 

performance of linear discriminant functions without a 
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validation sample, how appropriate is this distribution 

for a simulation study in generating nonnormal data 

with a variety of values for the skewness and kurtosis 

measures? In particular, what range of values for the 

measures of skewness and kurtosis can the contaminated 

normal distributions have by using different parameter 

settings for the mean, standard deviation, and 

contaminating fraction? 

Summary of Research Questions 

This research study investigates the effect of certain 

modifications of mathematical programming models for solving 

the statistical classification problem. A summary of the 

research questions to be answered in this research study is 

presented below. 

Research Question 1 

How do second-order terms in mathematical 

programming models affect the performance of certain 

two-group classification models for small to moderate 

training sample sizes and for normal and nonnormal 

data? Can the correlation structure of the data 

determine whether the crossproduct terms should be 

included in the models? Under what conditions are 

these models invariant with respect to translation and 

rotation of the data? 
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Research Question 2 

Can the use of certain secondary goals improve 

the performance of MIP models for the two-group 

classification problem on small to moderate sample 

sizes? 

Research Question 3 

Since the contaminated normal distribution 

(mixture of two normals) can be used to assess the 

performance of linear discriminant functions without a 

validation sample, how appropriate is this distribution 

for a simulation study in generating nonnormal data 

with a variety of values for the skewness and kurtosis 

measures? In particular, what range of values for the 

measures of skewness and kurtosis can the contaminated 

normal distributions have by using different parameter 

settings for the mean, standard deviation, and 

contaminating fraction? 



CHAPTER III 

THEORETICAL FRAMEWORK 

The goal of classification analysis is to describe, 

either graphically or algebraically, the differential 

features of objects (observations) from several known 

collections (populations) and to allocate new objects into 

two or more labeled classes (Johnson and Wichern 1992). 

Good classification procedures are constructed to achieve a 

high rate of correctly classifying observations under 

certain conditions. If one class or population has a 

greater likelihood of occurrence than the others, the 

classification rule should take this prior probability of 

occurrence into account. The cost of misclassification is 

another important consideration. The cost of misclassifying 

an observation from group 1 into group 2 may be greater than 

the cost of misclassifying an observation from group 2 into 

group 1. Most classification rules can be adapted to take 

into account the cost of misclassification as well as the 

prior probability of occurrence (Banks and Abad 1991). 

The Two-Group Classification Problem 

The two-group statistical classification problem may be 

more formally stated as follows. Let Gt, i = 1, 2 be two 

29 
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distinct populations. Assume that each object in Gj 

possesses a set of common characteristics or attributes 

defined by Y = (a1( a2, ap)
T, where the superscript T 

denotes the transpose of the vector and the subscript p 

denotes the number of attributes. The a^s are assumed to 

be observable numerical entities. If an observation Y = 

(a1# a2, ...., ap)
T is randomly selected from the combined 

populations of GI and G2, the statistical classification 

problem is to construct a decision rule that optimizes some 

criterion that is a surrogate for classification accuracy. 

For many two-group discriminant models with linear 

discriminant functions, the resulting decision rule consists 

of an estimated vector of weights X = (xlf x2, ...., Xp)
T 

and scalars Cx and C2, which are employed in the following 

fashion to classify an observation Y = (aw a2, ...., ap)
T: 

assign observation Y to group 1 if 

T p 

YrX = £ a.x. * C, 
i - i 

and assign observation Y to group 2 if 

T P 

Y X = E a.x, a C, 

i-i 

The observation Y is misclassified if the discriminant 

score YTX does not fall on the correct side of the cutoff 

value Cx or C2. For some classification models, Cx and C2 

are set equal to each other. In such cases, the optimal 

decision rule provides a hyperplane that separates the 

groups with a minimum number of misclassifications. 
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However, other models allow for a "classification gap" by 

letting C2 be greater than 

General Classification Rules for Parametric Models 

Classification rules for the parametric statistical 

models are based on the assumption that each group under 

consideration has a multivariate population density function 

fj (Y) for i = 1, 2 over the p measured variables. 

Furthermore, let the prior probability and the cost of 

misclassification be defined as follows: 

px is the prior probability of being from group 1, 

p2 is the prior probability of being from group 2, 

C (112) is the cost of misclassification when an 

observation from group 2 is incorrectly classified 

as from group 1, 

C (211) is the cost of misclassification when an 

observation from group 1 is incorrectly classified 

as from group 2. 

The cost function can be written as follows: 

C (i | j) . I =• ° if i ' j for i, j - 1, 2 

' = 0 if i = j for i, j = 1, 2. 

The optimal classification rule is to assign an 

observation Y to group 1 if 
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f ! (Y) C(1|2) P2 ' 
f 2 (Y) C (2 j 1) J Pi J 

and to assign an observation Y to group 2 if 

f i (Y) C (11 2) P 2 
f2 (Y) C (2 11) J • Pi • 

Now if the misclassification costs are equal and the prior 

probabilities are equal, then the optimal classification 

rule is to assign an observation Y to group 1 if 

, ! 
f 2 m 

and to assign an observation Y to group 2 if 

< i . 
£2(Y) 

For the discriminant functions used in this study, all 

misclassification costs are assumed to be equal and all 

prior probabilities are assumed to be equal. Hence, these 

parameters (costs and prior probabilities) do not need to be 

assigned values in the discriminant functions. 

Fisher's Linear Discriminant Function (LDF) 

Fisher's (1936) linear discriminant function is 

designed to maximize the likelihood of a correct 

classification (minimize the probability of 

misclassification) when the groups have multivariate normal 

distributions with equal variance-covariance structures. If 

ft (Y) is the multivariate normal distribution with mean 

vector \ii and variance-covariance matrix E4 for i = 1, 2 
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and Ex = E2 = E, then the optimal classification rule is to 

assign an observation Y to group 1 if 

(Mi - M2)T£_1Y - M(Mi - M2)
T2_1(Mi + M2)

 a 0 

and to assign an observation Y to group 2 if 

~ M2) E Y - ~ M2)
 1 + M2)

 < 

In most practical situations, the population parameters 

are not known. If /xlf n2, and E are replaced by their 

corresponding maximum likelihood sample estimators Yl7 Y2, 

and S, then the optimal classification rule is to assign an 

observation Y to group 1 if 

(YX - Y2)
TS_1Y - M(YX - Y2)

TS_1(Y1 + Y2) a 0 

and to assign an observation Y to group 2 if 

(Y1 - Y2)
TS'1Y - H(YX - Y2)

TS'1(Y1 + Y2) < 0. 

Smith7s Quadratic Discriminant Function (PDF) 

Smith's (1947) quadratic discriminant function is 

designed to maximize the likelihood of a correct 

classification (minimize the probability of 

misclassification) when the groups have multivariate normal 

distributions with unequal variance-covariance structures. 

The QDF model includes first-order terms and second-order 

terms of the attribute variables. Using the same notation 

as in the LDF model, but here L1 ^ E2, the optimal 
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classification rule is to assign an observation Y to group 1 

if 

l̂ il 
(Y - m2)

T22
_1(Y - H2) ~ (Y - Aix) (Y - Mi) In a 0 

and to assign an observation Y to group 2 if 

(Y - " P2> " <Y - M i ) V < Y " Mi> " In 
1^1 

< 0. 

If \ilt ia2, T,lt and E2 are replaced by their 

corresponding maximum likelihood sample estimators Yx, Y2/ 

S1# and S2, then the optimal classification rule is to 

assign an observation Y to group 1 if 

IS,I 
(Y - Y2)

tS2"
1(Y - Y2) - (Y - Y ^ S f ^ Y - Yj) In a 0 

and to assign an observation Y to group 2 if 

(Y - Y2)
tS2"

1(Y - Y2) - (Y - Y ^ S f M Y - Yj) In < 0. 

Mathematical Programming Models 

In general, the mathematical programming models for 

solving the two-group classification problem develop a 

hyperplane separating the two groups. The hyperplane is 

described by the equation 

E xjaij = C . 
J-i 

The atj variable represents the value of attribute j for 

observation i. The Xj and C variables represent the unknown 

attribute weights and the cutoff value, respectively. 
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Minimize Sum of Deviations Model 

There is a plethora of variations on the minimize sum 

of deviations (MSD) model (Koehler and Erenguc 1990). The 

model presented in Ragsdale and Stam (1991) is selected. 

This model is similar to the original model suggested by 

Hand (1981). It does not require any normalization 

constraints such as that proposed by Freed and Glover 

(1986); Glover, Keene, and Duea (1988) ; and Glover (1990) . 

Some of these normalization constraints have undesirable 

side effects, as illustrated by Koehler (1989a and 1989b). 

The objective of the MSD model is to minimize the sum of 

misclassification deviations. The criterion of minimizing 

the misclassification deviations is a surrogate for directly 

minimizing the number of misclassifications. The MSD model 

by Ragsdale and Stam (1991), however, does include a gap 

which separates the hyperplanes used for classification. 

Hand (1981) referred to the gap as a "safety margin." 

Koehler (1989a) showed that Hand's model does not have the 

undesirable side effects displayed by some other 

mathematical programming models. 

The MSD model of Ragsdale and Stam (1991) is presented 

below. The training sample consists of n, (i = 1, 2) 

observations from each of two groups for a total of n = nL + 

n2 observations. The notation Gx and G2 will denote the sets 

of observations from group 1 and group 2, respectively. 
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Notation: 

dt denotes the external (undesirable) deviation of a 

misclassified observation's discriminant score 

from 0 or e. For a correctly classified 

observation, d, is equal to zero. 

a^ denotes the jth attribute value for observation i. 

Xj denotes the weight for attribute j. 

x0 denotes the constant term in the discriminant 

function. 

e denotes the minimum gap size separating the 

discriminant scores between the two groups. 

p denotes the number of predictor variables 

(attributes). 

MSD Formulation: 

Minimize E dt + £ d, 

subject to 

x0 + ^ajjXj - dj s 0 ieGj 

leGj iSG2 

x0 + Ea^x, + dj 2 s ieG2 

where 

Xj is a sign-unrestricted variable (j = 0, 1,..., p) 

dj is a nonnegative variable (i = 1, 2, ..., n) 

e is a small positive constant. 
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Mixed Integer Programming Model 

The mixed integer programming (MIP) model used in this 

study is similar to that presented in Koehler and Erenguc 

(1990) . By replacing the dt's in the MSD model with binary 

variables It's and multiplying the It's by a large constant 

M in the constraints, it is easy to construct the MIP model, 

Using the same notation as in the MSD model, the MIP 

formulation is expressed next. 

MIP formulation: 

Minimize E I. + E I, 
1 6 G j 16G 2 

subject to 

p 
x0 + ^ajjXj - Mlt

 s 0 ieGi 

p 
x0 + Ea,jXj + MI, a £ ieG2 

where 

Xj is a sign-unrestricted variable (j =0, 1,..., p) 

It is a binary variable (i = 1, 2, ..., n) 

e is a small positive constant 

M is a large positive constant. 

In the above constraints, the M parameter can be 

interpreted as the maximum possible deviation that a 

misclassified observation can be from the gap. In choosing 

the values of M and e, Koehler and Erenguc (1990, page 71) 

noted that "we rely on the standard maxim in mixed integer 
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programming to choose M large enough and e small enough." 

Hybrid Model 

The hybrid model was first introduced by Freed and 

Glover (1986) . Unlike the objective function of the MSD 

model, which is only minimizing the external (undesirable) 

deviations, the objective function of the hybrid model 

simultaneously considers both minimizing the external 

deviations and maximizing the internal (desirable) 

deviations. Furthermore, the hybrid model also considers 

the maximum deviation of observations from the separating 

hyperplane. 

Hybrid formulation: 

Minimize h0a0 + Eh,a, - k0£0 - Ek,£i 
16G i e G 

subject to 

ÊajjXj - a0 - + fi0 + Sj = b ieGi 

J 
E ^ J X J + oi0 + - S0 - Sj = b ieG2 

-n, £ Ea,,x, + n, £ £a,,x, = 1 
leGj j - i 1 J J 1 i e G j j - 1 i J J 

where 

Q!0, alt £0, and fij are nonnegative variables 

xt's and b are sign-unrestricted variables 

G = Gx U G2 . 
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To give an interpretation of the objective function of 

the hybrid model, the a/s can be considered as the 

misclassified (external) deviations, and the 64's can be 

considered as the correctly classified (internal) 

deviations. The term a0 can be interpreted as the maximum 

external deviation, whereas S0 can be interpreted as the 

minimum internal deviation if the hj and kt weights in the 

objective function are very large relative to h0 and k0. 

The last constraint is a normalization used to prevent a 

degenerate (zero) solution. Glover (1990, page 772) 

remarked that this normalization "eliminates the previous 

distortions in the LP models and has attractive properties 

enabling it to obtain demonstrably superior solutions." In 

this study, h0 = 150, ht = 2, k0 = 80, and kt = 1 are 

selected. This choice of coefficient values is consistent 

with Glover's (1990) recommendations and with the parameters 

of the hybrid model in Silva and Stam (1994). 

Second-Order Model Formulation 

To form second-order mathematical programming 

formulations, the squared attribute values and the 

crossproduct values of all attributes need to be included as 

additional predictor variables. Note that the second-order 

terms in the MSD, MIP, and hybrid formulation still have 

constraints that are linear in the x parameters 

(coefficients of the discriminant rule). However, the 
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constraints are obviously nonlinear in the attribute values. 

Since the second-order mathematical programming models have 

all of the terms present in the Smith's quadratic 

discriminant function, the second-order mathematical 

programming formulations have the potential of being 

competitive with the quadratic method in problems requiring 

a nonlinear classification function. 

The following lemma and theorem are presented to 

establish that the MSD, MIP, and hybrid models with all 

first-order terms and second-order terms are translationally 

and rotationally invariant. Furthermore, the MIP model will 

not have more misclassifications on the training sample than 

the MSD, hybrid, or QDF methods if all first-order terms and 

second-order terms are included in the models. 

Lemma 1 

Any linear combination of second-order and first-order 

terms of a, = (an, a12, ..., alp)
T can be expressed as 

a^Waj + a*x, where W = (w^J is a symmetric matrix and x = 

(xlf x2, ..., Xp)T. The coefficients of the square terms are 

Wyj, the coefficients of the crossproduct terms are 2whk, and 

the coefficients of the first-order terms are Xj. 

Proof 

A linear combination of the second-order and first-

order terms of a! = (an, a12, ..., alp)
T can be written as 



41 

p p P 

^Ea^Xjj H-^Ea^Xj + E Ila^a^x^ = E JCa^a^x^ + ̂ Ea^Xj 

p p p 
= E Ea^a.vWjj, + Ea,,x, 

h-lk-l n lK j-l IJ J 

TT.T— , - , T , = a\Vial + a}x 

where W = (whk) and 

Xjjfc/2 if h > k 
whk = j xkh/2 if h < k 

1 if h = k 

From the equations above, the statement of the lemma readily 

follows. 

Theorem 1 

If all of the first-order terms and second-order terms 

are included in the MIP, MSD, and hybrid formulations, then 

1. The MIP method will not have more 

misclassifications than the MSD, hybrid, or QDF methods on 

the training sample. 

2. The MIP, MSD, and hybrid methods are rotationally 

and translationally invariant. 

Proof 

The first statement follows since the MIP procedure 

directly minimizes the total number of misclassifications on 

the training sample as seen by its objective function and 

since each of the MIP, MSD, hybrid, and QDF procedures is 

assumed in this theorem to contain all first-order and 

second-order terms. To show that the second statement 

holds, let P be an orthogonal matrix and let c be a vector 
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of constants of length p. By Lemma 1, the discriminant 

score of observations for the MSD, MIP, and hybrid 

formulations can be written as x0 + â Waj + a^x. 

Now consider both an orthogonal rotation P and a 

translation c of the at vector. We have 

x0 + [P(at + c)]
TW[P(a1 + c)] + [P(a, + c)]

Tx 

= x0 + a* (P
TWP) at + (Pc)

TWPa1 + a^(P
TWP)c 

+ cT(PTWP)c + a*PTx + cTPTx 

A / IP fp 

= x0 + atWaj + ajX 

where x0 = x0 + c
T(PTWP)c + cTPTx 

W = PTWP 

x = PTx + 2PTWPc. 

We can see that x0 + a*Wat + â x is still a linear 

combination of both the first-order and second-order terms 

of the values of the vector a^ Thus, the statement of the 

theorem follows. 

Note that if some of the second-order terms are 

missing, such as the crossproduct terms, then it is possible 

that the QDF procedure may produce fewer misclassifications 

than the MIP procedure on the training sample. Also note 

that if the crossproduct terms were missing from the second-



43 

order models for the MSD, MIP, and hybrid procedures, then 

these formulations would not be rotationally invariant. 

MIP Models with Secondary Goals 

Four MIP models that are used with secondary goals are 

investigated. The first and second MIP models have the 

secondary goal of maximizing the distance between the means 

of the discriminant scores for the two groups. These two 

models have not been previously investigated. The third and 

fourth MIP models are existing models that have not been 

thoroughly investigated under nonnormal configurations. The 

secondary goal of the third MIP model is used to maximize 

the minimum deviation of the correctly classified 

observations, whereas the secondary goal of the fourth MIP 

model is used to minimize the sum of all the deviations of 

the misclassified observations from the cutoff value in the 

discriminant rule. Because the motivation for including the 

secondary goal of maximizing the distance between the means 

of the discriminant score of attribute values is based on 

Fisher's method, it follows that this secondary goal may 

perhaps be more appropriate with only first-order terms in 

the MIP models. The four MIP models with secondary goals 

are presented next. 
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MIP 1: MIP model with a secondary goal of maximizing the 

distance between projected means (bounded scores). 

Minimize PXE Ij - P26 
1-1 

subject to 

E^a^Xj - Milj «s c - s ieGi 

E^a^Xj a c - M2 ieGi 

p 
E a,,x, + M,I, a c + e ieG, ij J i i 

Ê ajjXj s c + M2 ieG2 

P _C2) p _<1) 

E a, x, - E a, x, a 5 
j-i J J j-i J J 

where 

P^ P2 are positive constants 

Ij is a binary variable (i = 1, 2, ..., n) 

Xj is a sign-unrestricted variable (j = 1, 2, ..., p) 

Mj, M2, and s are positive constants 

5 is a nonnegative variable 

atJ is the j
th attribute value for the ith observation 

jn 

aj is the average value of the aj's for group i 

c is a sign-unrestricted variable. 
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MIP 2: MIP model with a secondary goal of maximizing the 

distance between projected means (bounded coefficients). 

Minimize It - P26 
i-i 

subject to 

E a^Xj - MIj «; c - e ieGx 
j-i 

p 
Ê ajjXj + MIj a c + e ieG2 

P _(2) p _(1) 
E a, x, - E a, x, a 5 
j-i J J j-i J J 

• 1 £ Xj £ 1 

where 

Px/ P2 are positive constants 

It is a binary variable (i = 1, 2, ..., n) 

Xj is a sign-unrestricted variable (j = 1, 2, ..., p) 

M and e are positive constants 

6 is a nonnegative variable 

ajj is the jth attribute value for the ith observation 
JD 

aj is the average values of aj for group i 

c is a sign-unrestricted variable. 
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MIP 3: MIP model with a secondary goal of maximizing the 

minimum internal deviation (bounded coefficients). 

Minimize Px£ Ii - P2d 
1-1 

subject to 

E^ajjXj + d - MIj s c - e ieGj 

£ ajjXj - d + MIj a c + fi ieG2 
J-i 

-1 £ Xj £ 1 

where 

Plf P2 are positive constants 

Ii is a binary variable (i = 1, 2, ..., n) 

Xj is a sign-unrestricted variable (j = 1, 2, ..., p) 

M and e are positive constants 

d is a nonnegative variable 

a^ is the jth attribute value for the ith observation 

c is a sign-unrestricted variable. 
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MIP 4: MIP model with a secondary goal of minimizing the 

sum of external deviations. 

n n 

Minimize PXE It + PZE d, 
1-1 I-I 

subject to 

f 
Ê ajjXj - d, s c - e ieGi 

p 

Ê ajjXj + dj a c + e ieG2 

MIj a dt 

where 

Pj, P2 are positive constants 

It is a binary variable (i = 1, 2, n) 

Xj is a sign-unrestricted variable (j = 1, 2, ..., p) 

M and £ are positive constants 

dt is a nonnegative variable (i = 1, 2, n) 

atJ is the j
th attribute value for the ith observation 

c is a sign-unrestricted variable. 
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Contaminated Normal Distribution 

Contaminated normal distribution is considered to be an 

important distribution in representing real-world data 

(Hampel 1974, Nath 1984, and Lee and Ord 1990). However, 

the contaminated normal distribution appears in only a few 

simulation studies evaluating LP-based models. The range of 

possible values for skewness and kurtosis measures does not 

appear to be readily available for this distribution. 

The notation CMN (/xx, 2j, ji2, Z2, e) = (l-e)N iix1,L1) + 

eN(/x2,£2) will be used to denote the general contaminated 

multivariate normal distribution. The notation N(/x,E) 

represents the normal distribution with mean vector n and 

variance-covariance matrix E. The N(/I2,E2) population can 

be interpreted as the contaminating part, and e can be 

interpreted as the contaminating fraction of the data. 

Therefore, this general contaminated normal distribution can 

be viewed as a mixture of two normal populations. As the e 

parameter becomes larger, the shapes of contaminated normal 

distribution are seen, not as one larger normal population 

with a small set of outliers, but rather as a mixture of two 

normally distributed populations. For e = 0 or 1, the 

contaminated multivariate normal distribution simply reduces 

to a multivariate normal distribution. Each of the 

parameters filr E1# fi2, £2, and e plays a role in determining 

the skewness and kurtosis values of the distribution. This 

version of the contaminated normal distribution is more 
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general than the distribution presented in Nath (1984) and 

Lee and Ord (1990) . In their studies, and ju2 were 

selected to be equal, and, thus, the contaminated normal 

distribution was a symmetrical distribution and always had a 

value of zero for the skewness measure. 

To show that any linear transformation of X0, for X0 

from CMN (/î  Ej, pi2, E2, e) is distributed as a contaminated 

univariate normal, consider the following equations where F 

is a cumulative distribution function, I is a vector of 

constants, c is a constant, and <£> represents the standard 

normal cumulative distribution. 

P[£TX0 s c] 

= P[£TX0 <; c and X0 from N(/x1,E1) 

or £TX0 s; c and X0 from N(£i2,£2)] 

= P[£TX0 £ c | X0 from N(/x1,E1)] • P[X0 from N(/i1,E1)] 

+ P [£TXQ S C | X0 from N(/x2,E2)] • P [X0 from N ( J U 2 , £ 2 ) ] 

= (1 - e)$[(c-.eVi)/(*%£)*] + e * [ ( c / (tTZ2t)^] 

Thus, £TX0 is distributed as a contaminated univariate 

normal distribution. An alternative proof could be provided 

using characteristic functions, as in Nath (1984). From the 

above equations, exact misclassification rate could easily 

be obtained for a given linear discriminant function. 

Therefore, under this distribution, the need for validation 
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samples can be eliminated when a linear discriminant 

function is being evaluated. 

It should be noted that the marginal distributions of 

the contaminated multivariate normal distribution are simply-

contaminated univariate normal distribution. Any random 

variable with a contaminated univariate normal distribution 

can be shifted and scaled so that its cumulative 

distribution function is 

F (X) = (l-e)*(X) + e$( (X-/x)/a) • 

Using the technique given in Hogg and Craig (1978), the 

first, second, third, and fourth moments can be generated as 

the following: 

E [X] = e/x 

E [X2] = (1-e) + e (a2 + /x2) 

E [X3] = 3 e a V + e/x3 

E [X4] = 3(l-e) + 3ea 4 + 6ea2/x2 + e/x4 

Now let y1 and y2 be the notation for the skewness and 

kurtosis measures, respectively. Using the standard 

definitions for the measures of skewness and kurtosis, 

namely E [ (X-/0 3/cr3] and E [ (X-/x) 4/a4] , and y2 can be 

mathematically derived as 
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eju(l-e) (3a2 + /i2 - 2/ize - 3) 

T2 = 

[1 - e + ecr2 + /i2e (1 - e)]3/2 

6e/x2a2 (e2-2e+l) + e^4(l+6e2-3e2-4e)+6/x2e2(l-€)+3(l-e)+3ecr* 

[1 - e + ea2 + /*2e (1 - e) ]2 

From the above formulas, the pattern of possible values 

of skewness and kurtosis for various values of parameters /x, 

a, and e can be obtained. Also, the limiting values of the 

skewness and kurtosis measures when /x and/or a approach 

infinity can be determined. 

To understand the relationship between the values of 

the skewness and kurtosis measures, consider the following 

theorem. 

Theorem 2 

Let Yj and y2 be defined as the sample skewness measure 

and the sample kurtosis measure, respectively, as in Bickel 

and Doksum (1977). That is, 

= n1/2E(X1 - XJVd^Xj - X)
2)3/2, and 

72 = nE(X, - X)V(E(Xj - X)
2)2, then 

1^ 2 A -

• Yi s 7a - 1 

2. y2 a 1 



52 

Proof Let 

A = (xlf X2, . . . , xn) 

B = ((Xi-X)2, (X2-X)
2, . (X^X)2) 

X = E(X,)/n 

Sn = (E(X, - X) 2/n)1/2 

rA,B = the sample correlation coefficient between A and B. 

Note that 

E[(Xt - X)2 - Sn
2]2 

= 2(Xj - X)« - nSn
4 

= [(E(X1 - X)
2) 2/n] tnE(Xl - X)V(E(Xt - X)2)2] - nSn< 

- nSn4Y2 " nSn
4 

= nsn
4(y2- i). 

Hence, rA,B = E [ (xi - X) ((X, - X)2 - S„2) ] 

(nSn
2)1/2 (E[(X, - X)2 - Sn

2]2)1/2 

= E(Xt - X)
3 

(nSn
2)1/2 (nSn

A (y2 - l))
1'2 

= nSn
3 Yi 

(nSn
2)1/2 (nSn

4 (y2 - l))
1'* 

9i 

/fT7! 
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Since rA>B s 1, we have that 

7i 
Vy2 -1 

or y{ <, 72 " 1 • 

The second statement follows from the fact that 2y\ a 0, 

therefore y2 a 1 . 

The above result does not appear to be readily-

available. It can be found in Devroye (1986), which used 

somewhat complicated Hankel determinants to prove it. 

However, the above proof shows that the result can readily 

follow from the sample correlation between A and B in the 

above theorem. This proof does not appear to be mentioned 

by many mathematical statistics books or simulation 

textbooks, such as Devroye (1986) , Hogg and Craig (1978), 

and Bickel and Doksum (1977) . 



CHAPTER IV 

SIMULATION DESIGNS 

Simulation Designs for Models with 
Second-Order Terms 

To determine how second-order terms in mathematical 

programming models affect their classificatory performance 

relative to the first-order models and the parametric 

statistical procedures, a Monte Carlo simulation study is 

conducted. Eleven classification models are used in this 

study and are listed in Table 3. The notations MSD5, MIP5, 

and HYB5 are used to denote the MSD, MIP, and hybrid 

procedures, respectively, with all of the squared, linear, 

and crossproduct terms in the models. The notations MSD4, 

MIP4, and HYB4 are used to denote the MSD, MIP, and hybrid 

procedures, respectively, with only the squared and linear 

terms (no crossproduct term) in the models. For the MSD, 

MIP, and hybrid procedures, which contain only the linear 

terms, the notations MSD2, MIP2, and HYB2, respectively, are 

used to indicate them. The notations LDF and QDF are used 

for the Fisher's linear discriminant function and the 

Smith's quadratic discriminant function, respectively. 

Eight different data configurations are examined in the 

simulation study. The population distributions in the first 

54 
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six configurations are normally distributed, while the last 

two configurations contain nonnormal data. These data 

configurations are described in Table 4. Configurations 1A 

and IB are the configurations in which a first-order 

(linear) classification rule would be optimal since the 

variance-covariance structures of the two populations are 

equal. The observations in configuration IB are correlated, 

whereas the observations in configuration 1A are 

uncorrelated. For the other configurations, it is expected 

that a second-order (nonlinear) classification rule would be 

the classification rule of choice. 

Configurations 1C and ID are selected for examining the 

usefulness of the crossproduct terms in the mathematical 

programming models when correlation is present in the data. 

Configurations 1C and ID contain interesting covariance 

structures. The crossproduct term for the QDF procedure 

with configuration 1C should not be needed because the off-

diagonal terms of the matrix M = Ef1 - Z2~
l cancel out and, 

thus, M is a diagonal matrix (where L1 and E2 are the 

covariance matrices of the first and second populations, 

respectively; see Johnson and Wichern 1992, page 509) . 

However, the crossproduct term for the QDF procedure with 

configuration ID should be important since the off-diagonal 

terms of the matrix M are the only non-zero elements. The 

simulation study will show how important the crossproduct 

terms are in the mathematical programming models. 
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Configuration IE is selected because there is no 

correlation among the variables for either group and because 

it is a configuration in which the QDF model should easily 

perform well. Configuration IF consists of two normal 

populations with identical means, but the variance-

covariance structure of one population is much larger than 

that of the other population. Configuration IF can be 

viewed as one normal population contained inside another 

normal population. Any first-order linear discriminant 

function would be expected to perform poorly on a set of 

data from this configuration. 

Configuration 1G is one of the two configurations that 

contain nonnormal data. The second population of 

configuration 1G consists of a normal population with mean 

vector (2, 2)t and two independent variables with each 

variance equals to one, but this population also contains a 

15% contamination from a set of normally distributed 

outliers. The outlier group has mean vector (-10, -10)T and 

two independent variables with variances equal to 9. 

Configuration 1H is the other configuration that 

contains nonnormal data. Consider a population in which the 

first attribute variable is uniformly distributed over the 

interval from 0.1 to 5.0 and the second attribute variable 

is uniformly distributed over the interval 0 to l/at where 

ai is the value of the first attribute variable. Hence, the 

value of the second attribute variable is conditional on the 
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value of the first attribute variable. Eighty percent of 

the first population's observations come from this 

distribution. The other 20% of observations come from the 

point (-4.60894, -4.60894). Now consider a population in 

which the first attribute variable is again uniformly-

distributed over the interval from 0.1 to 5.0, but the 

second attribute variable is uniformly distributed over the 

interval l/ax to l/a! + 0.5 where aj is the value of the 

first attribute variable. Note that the second attribute 

variable is dependent on the value of the first attribute 

variable. Eighty percent of the second population's 

observations come from this distribution. The other 20% of 

observations come from the point (4.195634, 4.195634). For 

group 1 and group 2, the points (-4.60894, -4.60894) and 

(4.195634, 4.195634) were selected to make the two attribute 

variables in each group uncorrelated. 

Graphically, 80% of the values of the first population 

in configuration 1H can be thought of as falling under the 

curve Y = l/X on a two-dimensional graph with X being equal 

to values between 0.1 and 5.0, whereas 80% of the values of 

the second population fall above the curve Y = l/X . The 

other 20% of the observations for configuration 1H come from 

a point for each group. Thus, 20% of the observations from 

each population can be considered outliers. While the 

distributions of the populations in configuration 1H are not 

commonly mentioned in the literature, they are included to 
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gain some insight into the performance of various models on 

configurations that may include a mixture of continuous and 

discrete data. Also, the shape of this data will allow the 

correlation of the variables in each group to be zero. The 

simulation study can then assess the appropriateness of the 

crossproduct terms. In addition, these populations are 

highly nonnormal, and it is expected that the second-order 

mathematical programming models will perform well. 

For each configuration in this simulation study, 

training sample sizes of n, = 25, i = 1, 2, and nt = 50, i = 

1, 2 are used for each of the two groups. Validation sample 

sizes of 500 are used for each group, for a total of 1000 

observations for each validation sample. In each simulation 

experiment, two attribute values are generated for each 

observation. The simulation study is performed by using the 

SAS statistical package (version 6.07) on the Solbourne 

6/904 computer operating under UNIX at the Computing Center 

of the University of North Texas. All experimental 

conditions are replicated 100 times. 

For each replication, the number of misclassified 

observations in both the training sample and the validation 

sample is determined. The mean and standard deviation of 

the number of misclassified observations are computed for 

100 replications. Paired t-tests are used to indicate 

significant differences in classificatory performance among 

the models. A Bonferroni adjustment (Johnson and Wichern 
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1992) is used in finding the critical values of the test. 

Two models will be referred to as being significantly 

different if the paired t-test calculated from their 

misclassification rates shows a significant difference at 

the .05/55 significance level. 

Simulation Designs for Models with 
Secondary Goals 

In this section, four MIP models that include secondary 

goals are evaluated on normal and contaminated normal data. 

These data are used because they are important distributions 

representing real-world data. An additional advantage is 

that the exact misclassification rate on the estimated 

classification functions for these models can be calculated 

with these particular distributions, and, thus, large 

validation samples are not necessary. However, only linear 

(first-order) terms of the attribute variables can be used 

to easily obtain this exact misclassification rate. The 

objective of this section is to evaluate the added 

classificatory power that results from the secondary goals 

in the MIP models. 

Four classification models are examined in a Monte 

Carlo simulation study to answer Research Question 2. These 

models are listed in Table 21 and are presented in the 

theoretical framework chapter of this dissertation. These 

models are labeled MIP1, MIP2, MIP3, and MIP4. Note that 
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all of these models result in a classification function that 

is linear in terms of the attribute variables. 

Fourteen different data configurations are used in this 

simulation study. These data configurations are described 

in Table 22. The population distributions of the data in 

the first three configurations are normally distributed, 

whereas those in the last eleven configurations are 

contaminated normal distributions. Some configurations 

contain contaminated normal data in only one of the two 

groups, while other configurations contain contaminated 

normal data in both groups. The last three data 

configurations contain contaminated normal populations with 

different values of skewness and kurtosis. Configuration 2L 

is designed to have low skewness (0.461) and high kurtosis 

(13.419). Configuration 2M, however, is designed to have 

moderate values of skewness (1.625) and kurtosis (7.612). 

Configuration 2N is designed to have low skewness (0.129) 

and very low kurtosis (2.214). Since the MIP2 and MIP3 

models are not rotationally invariant, different 

orientations of the normal populations and contaminated 

normal populations are also considered in evaluating the 

variability in the classificatory performance of the MIP 

models. Contaminating fractions of 10%, 15%, and 2 0% are 

used on some data configurations. 

There are two training sample sizes of n, = 20, i = 1, 

2, and nt = 40, i = 1, 2 for each of the two groups in each 
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data configuration. The training sample sizes are slightly-

less than the training sample sizes used in the simulation 

design described in the previous section. The smaller 

sample sizes in this section were chosen because of the 

computational intensiveness of MIP models. Validation 

samples are not used in this part of the study because exact 

misclassification rates can be directly determined from the 

estimated classification functions. The misclassification 

rates of the MIP models with secondary goals will all 

perform the same on the training samples because each model 

has the same first goal. In each simulation experiment, two 

independent variables are generated for each observation. 

The simulation study is performed by using the SAS 

statistical package (version 6.07) on the Solbourne 6/904 

computer operating under UNIX at the Computing Center of the 

University of North Texas. All experimental conditions are 

replicated 200 times.. 

For each replication, the probability that a new 

observation will be misclassified (the estimate of the 

expected actual misclassification rate) is calculated. The 

mean and standard deviation of the estimated 

misclassification rates are computed on the 200 

replications. Paired t-tests are used to indicate 

significant differences in classificatory performance among 

the models. A Bonferroni adjustment (Johnson and Wichern 

1992) is used in finding the critical values of the test. 
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Two models will be referred to as being significantly 

different if the paired t-test calculated from their 

misclassification rates shows a significant difference at 

the .05/6 significance level. 



CHAPTER V 

EXPERIMENTAL RESULTS 

Simulation Results for Models with 
Second-Order Terms 

The results of a Monte Carlo simulation for models with 

second-order terms are presented in this section. These 

results will be used to answer Research Question 1. Tables 

5 through 20 and Figures 1 through 8 contain the results 

from the simulation study. 

Configuration 1A 

For configuration 1A, the LDF model is expected to 

perform well since the two populations each have a normal 

distribution with equal variance-covariance structures. 

Thus, the squared and crossproduct terms should not be 

necessary for the mathematical programming models to perform 

well. 

The results in Table 5 show that the LDF model has the 

lowest misclassification rate on the validation samples for 

both training samples of sizes 25 and 50 per group. The 

average misclassification rates on the validation samples of 

the LDF model are 8.36% and 8.13% for training samples of 

sizes 25 and 50 per group, respectively. However, all of 
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the MSD and MIP models have a lower misclassification rate 

than both of the LDF and QDF models on the training samples 

for both training samples of sizes 25 and 50 per group. The 

QDF model performs almost as well as the LDF model. 

As expected, the mathematical programming models with 

only linear terms (2 variables) outperform the mathematical 

programming models with crossproduct and squared terms on 

the validation samples for both training sample sizes. The 

addition of second-order terms decreases classificatory 

performance of the mathematical programming models, 

particularly for the case of 25 observations per training 

group. The mathematical programming models without the 

crossproduct term perform better than the second-order 

mathematical programming models with both the crossproduct 

and squared terms in the models. 

The best mathematical programming models on the 

validation samples for training samples of sizes 25 and 50 

per group of configuration 1A are HYB2 and MSD2, 

respectively. The average misclassification rate on the 

validation samples of the HYB2 model is 8.63% for training 

samples of size 25 per group. For the MSD2 model with 

training samples of size 50 per group, the average 

misclassification rate on the validation samples is 8.40%. 

These results are close to the results of the LDF model. 

The model that has the highest misclassification rate on the 

validation samples for this data configuration is MIP5. The 
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average misclassification rates on the validation samples 

for the MIP5 are 14.66% and 11.64% for training samples of 

sizes 25 and 50 per group, respectively. However, the MIP5 

model yields the lowest number of misclassified observations 

in the training samples. This occurs because the objective 

function of the MIP model is to directly minimize the number 

of misclassified observations and the MIP5 model contains 

all of the linear, squared, and crossproduct terms. 

Table 13 shows the results of paired t-tests for the 

mean difference in classificatory performance of the models 

on validation samples for configuration 1A. The results 

reveal that the performance of the LDF model is 

significantly different from the performance of all other 

mathematical programming models with the Bonferroni 

adjustment to the family of 55 tests, thus using a 

significance level of .05/55. The results also reveal that 

the performance of the first-order MSD, MIP, and hybrid 

models is significantly different from the performance of 

the corresponding second-order MSD, MIP, and hybrid models, 

respectively, for configuration 1A. 

Configuration IB 

Configuration IB is another data configuration in which 

the variance-covariance structures of the two populations 

are equal. However, the observations within each population 

are correlated with the coefficient of correlation equals to 
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0.6. For this configuration, the LDF model is expected to 

perform optimally because all statistical assumptions are 

met. Hence, it is expected that the first-order 

mathematical programming models should outperform the 

second-order mathematical programming models. 

The results in Table 6 show that the LDF model has the 

lowest average misclassification rate on the validation 

samples for both training samples of sizes 25 and 50 per 

group. The average misclassification rates on the 

validation samples for the LDF model are 4.98% and 4.74% for 

training samples of sizes 25 and 50 per group, respectively. 

However, the LDF model has an average misclassification rate 

on the training samples that is higher than those of the 

MSD, MIP, and QDF models. The QDF model performs almost as 

well as the LDF model. These results are similar to the 

results of configuration 1A. In configuration 1A, the 

standard deviation of the misclassification rate on the 

validation samples decreases for all models, except the 

three hybrid models, when the training sample size is 

increased from 25 to 50 per group. For configuration IB, 

only the standard deviation for the HYB5 model increases for 

the misclassification rate on the validation sample when the 

training sample size increases from 25 to 50 per group. 

For mathematical programming models, the models with 

only first-order terms outperform the corresponding models 

with the squared terms and crossproduct terms on the 



67 

validation samples. The addition of squared and/or 

crossproduct terms decreases classificatory performance of 

the mathematical programming models, despite the superior 

performance of the second-order mathematical programming 

models on the training samples. 

The best mathematical programming model on the 

validation samples for this data configuration is HYB2 model 

for training samples of size 25 per group. For training 

samples of size 50 per group, the best mathematical 

programming model is MSD2. The average misclassification 

rate on the validation samples for the HYB2 model is 5.18% 

for training samples of size 25 per group. The average 

misclassification rate on the validation samples of the MSD2 

model is 5.10% for training samples of size 50 per group. 

These results are close to the results of the LDF model. 

The worst classification model on the validation samples for 

this data configuration is MIP5. The average 

misclassification rates on the validation sample of the MIP5 

are 11.06% and 8.09% for training samples of sizes 25 and 50 

per group, respectively. 

From Table 14, the results of paired t-tests of the 

classificatory performance of the models on the validation 

samples reveal that only the HYB2 model is not significantly 

different from the LDF model for training samples of size 25 

per group on configuration IB. While the performances of 

the HYB2 and MSD2 on the validation samples are not 
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significantly different for configuration 1A, they are 

significantly different for configuration IB for training 

samples of size 25 per group. The results also reveal that 

the performance of the first-order mathematical programming 

models is significantly different from the performance of 

the corresponding second-order mathematical programming 

models for this data configuration. 

Configuration 1C 

Configuration 1C is a data configuration with'unequal 

variance-covariance structures for the two populations. It 

is expected that the QDF model will perform optimally on 

data from these normally distributed populations. The 

variance-covariance structures of this data configuration 

are interesting in that the off-diagonal terms of matrix Ef1 

- Ej,'1 cancel out. Therefore, the crossproduct term for the 

QDF model is not expected to be needed. It is also expected 

that the second-order mathematical programming models 

without the crossproduct term will outperform the other 

corresponding mathematical programming models on the 

validation samples. 

The results in Table 7 show that the QDF model has the 

best classification rate on the validation samples for this 

data configuration for both training samples of sizes 25 and 

50 per group. The average misclassification rate on the 

validation samples of the QDF model are 6.88% and 6.47% for 



69 

training samples of sizes 25 and 50 per group, respectively. 

As expected, the LDF model does not perform well on the 

validation samples for both training sample sizes. In fact, 

the LDF model has the highest misclassification rate on the 

validation samples for training samples of size 50 per 

group. 

The results for the mathematical programming models are 

somewhat surprising for the cases of 25 observations per 

training group. For training samples of size 25 per group, 

the MSD2, MIP2, and HYB5 are the best MSD, MIP, and hybrid 

classification models, respectively. This is surprising 

since it is expected that the MSD4, MIP4, and HYB4 models 

would be the classification models of choice for the MSD, 

MIP, and hybrid formulations, respectively. The best 

mathematical programming model for training samples of size 

25 per group is the HYB5. The average misclassification 

rate on validation samples of the HYB5 model is 8.53% for 

training samples of size 25 per group. When the training 

sample size increases to 50 per group, the results are the 

same as what is expected. With training samples of size 50 

per group, the second-order mathematical programming models 

without the crossproduct term outperform the corresponding 

second-order mathematical programming models with the 

crossproduct term and the corresponding first-order 

mathematical programming models. The best mathematical 

programming model for training samples of size 50 per group 
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is the MSD4. The average misclassification rate on 

validation samples of the MSD4 model is 7.21% for training 

samples of size 50 per group. The models that have the 

highest misclassification rate on the validation samples for 

training samples of size 50 per group are the first-order 

mathematical programming models. This is expected because 

of the unequal variance-covariance structure of the two 

populations. 

Table 15 shows the results of paired t-tests on the 

classificatory performance of the models on validation 

samples for configuration 1C. The results reveal that the 

performance of the QDF model is significantly different from 

the performance of all other models. Note that, at the 

Bonferroni significance level of .01/55 and training samples 

of size 50, the MSD4 model is significantly different from 

the MSD5 and MSD2 models, but the MIP4 and HYB4 models are 

not significantly different from their corresponding model 

with the crossproduct term and from their corresponding 

first-order model. However, at the Bonferroni significance 

level of .05/55, the HYB4 and HYB2 models are significantly 

different in performance for both training samples of sizes 

25 and 50 per group. 

Configuration ID 

Configuration ID is another data configuration with 

unequal variance-covariance structures for the two 
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populations. The QDF model should perform optimally on 

these normally distributed populations. Since the off-

diagonal terms of the matrix Ej"1 - E2
_1 are the only non-zero 

elements, the crossproduct term is an important term in the 

QDF model for this data configuration. Also, the second-

order mathematical programming models with the crossproduct 

term should outperform the other corresponding mathematical 

programming models on the validation samples. The results 

in Table 8 show that the best performing model on the 

validation samples for this data configuration is the QDF 

model for both training samples of sizes 25 and 50 per 

group. The average misclassification rates on the 

validation samples of the QDF model are 5.92% and 5.58% for 

training samples of sizes 25 and 50 per group, respectively. 

Also, on the training samples, the misclassification rate of 

the QDF model is lower than those of the LDF and hybrid 

models for training samples of size 25 per group, and lower 

than those of the LDF, hybrid, and MSD2 models for training 

samples of size 50 per group. 

The mathematical programming models yield unexpected 

results. The best MSD and MIP models are the first-order 

models for both training samples of sizes 25 and 50 per 

group. The best hybrid model is HYB4 for training samples 

of size 25 per group and is HYB2 for training samples of 

size 50 per group. These results are surprising because it 
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is expected that the crossproduct term would be necessary 

for the optimal classification model. Perhaps the squared 

terms in the second-order mathematical programming models 

are overfitting the data and, thus, underperform the 

corresponding first-order models. The best mathematical 

programming model for training samples of size 25 per group 

is the HYB4, which has an average misclassification rate of 

6.64%. When the training sample size increases to 50 per 

group, the best mathematical programming model shifts to the 

MSD2, which has an average misclassification rate of 6.12%. 

Note that the LDF model's misclassification rate on the 

validation samples is lower than all of the mathematical 

programming models except the HYB4 model for training 

samples of size 25 per group. It is also lower than all of 

the mathematical programming models except the MSD2 model 

for training samples of size 50 per group. 

The paired t-tests in Table 16 show a significant 

difference between the QDF model and all other models. The 

table also shows that the performance of the MSD2 and MIP2 

models is significantly different from the performance of 

their corresponding second-order models for both training 

sample sizes. The HYB2 model's performance is significantly 

different from the other hybrid models only for training 

samples of size 50 per group. 
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Configuration IE 

Configuration IE is another data configuration in which 

the variance-covariance structures of the two populations 

are unequal. However, the variance-covariance structures of 

this data configuration are different from those of 

configuration 1C and configuration ID in that the 

correlation between observations is zero. The first 

variance-covariance structure of this data configuration is 

in the form of an identity matrix while the second variance-

covariance structure is four times that of the first one. 

However, configuration IE is similar to configuration 1C in 

that the off-diagonal terms of the matrix Ef1 - £2
-1 are 

zero. Again, the QDF model should perform optimally on the 

normally distributed populations of configuration IE. 

However, the crossproduct term for the QDF model should not 

be important. It is expected that the second-order 

mathematical programming models without the crossproduct 

term should outperform the other corresponding mathematical 

programming models. 

The results in Table 9 show that the best performing 

model on the validation samples for this data configuration 

is the QDF model, as expected, for both training samples of 

sizes 25 and 50 per group. The average misclassification 

rates on the validation samples of the QDF model are 7.20% 

and 6.66% for training samples of sizes 25 and 50 per group, 

respectively. For training samples of size 25 per group, 
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the optimal classification models of the MSD and MIP models 

are MSD2 and MIP2, respectively. These results are not 

expected since the second-order mathematical programming 

models should perform better than the first-order 

mathematical programming models for this data configuration. 

However, the HYB5 does perform better than the HYB2. 

The best performing mathematical programming model with 

training samples of size 25 per group is the MSD2. The 

average misclassification rate of the MSD2 model for 

training samples of size 25 per group is 8.33%. For 

training samples of size 50 per group, the best performing 

MSD, MIP, and hybrid models are MSD4, MIP2, and HYB4, 

respectively. The best performing mathematical programming 

models with training samples of size 50 per group is MSD4, 

which has an average misclassification rate of 7.44%. 

However, at the Bonferroni significance level of .05/55, the 

MSD4 and MSD2 models, the MIP4 and MIP2 models, and the HYB4 

and HYB2 models are all not significantly different for 

training samples of size 50 per group as indicated by the 

paired t-tests in Table 17. 

Interestingly, for training samples of size 25 per 

group, the HYB4 model performs worse than the HYB5 and HYB2 

models, and is significantly different in performance from 

the HYB5 and HYB2 models. The results in Table 17 also 

reveal that the QDF model performs better than all other 
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models and its performance is significantly different from 

all other models. 

Configuration IF 

For configuration IF, it is expected that the QDF model 

would perform well, whereas the LDF model would perform 

poorly since the means of the two populations are equal but 

the variance-covariance structures are not equal. It is 

also expected that the second-order mathematical programming 

models without the crossproduct term would outperform other 

corresponding mathematical programming models. 

The results in Table 10 show that the best performing 

model on the validation samples for this data configuration 

is the QDF model for both training samples of sizes 25 and 

50 per group. The average misclassification rates on the 

validation samples of the QDF model are 5.82% and 5.25% for 

training samples of sizes 25 and 50 per group, respectively. 

As expected, the LDF model does not perform well at all for 

this data configuration. The average misclassification 

rates on the validation samples of the LDF model are 39.38% 

and 41.29% for training samples of sizes 25 and 50 per 

group, respectively. In fact, the LDF model has the highest 

misclassification rate on the validation samples of all the 

models for training samples of size 25 per group. 

The high overlap of the two populations makes the MIP 

models impractical to compute for training samples of size 
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50 per group. This is the only experimental situation in 

which the MIP models are not assessed on 100 replications of 

the data. The mathematical programming models yield results 

according to expectations. The second-order mathematical 

programming models without the crossproduct term outperform 

the other corresponding mathematical programming models for 

both training sample sizes. All of the first-order 

mathematical programming models perform poorly. The MSD4 

model has the lowest misclassification rate for the 

mathematical programming models for both training sample 

sizes. The average misclassification rates on the 

validation samples for the MSD4 model are 7.95% and 6.16% 

for training samples of sizes 25 and 50 per group, 

respectively. 

The paired t-tests in Table 18 indicate that for 

training samples of size 25 per group, the HYB4 and HYB5 

models, and the MSD4 and MSD5 models are not significantly 

different in performance. For training samples of size 50 

per group, the MSD4 and MSD5 models are not significantly 

different in performance. As expected, the QDF model, 

clearly outperforms all other models. However, the addition 

of second-order terms to the mathematical programming models 

greatly improves their classificatory performance over the 

first-order mathematical programming models. 
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Configuration 1G 

Configuration 1G is a data configuration that has a 

normal population for one group and a contaminated normal 

population for the other group. The population of the 

second group contains 15% of its observations as outliers. 

It,is expected that the nonnormality of this data set would 

weaken the classificatory performance of the QDF model. It 

is also expected that the second-order mathematical 

programming models would outperform the first-order 

mathematical programming models. 

Table 11 shows that all of the first-order models 

perform rather poorly relative to the second-order models. 

The average misclassification rates on the validation 

samples of the QDF model are 13.32% and 12.18% for training 

samples of sizes 25 and 50 per group, respectively, while 

those of the LDF model are 41.31% and 42.66%, respectively. 

However, the QDF model is not the best performing 

classification model for this data configuration. The best 

performing models are MSD4 and MSD5 for training samples of 

sizes 25 and 50 per group, respectively. The average 

misclassification rate on the validation samples for the 

MSD4 model with training samples of size 25 per group is 

10.09% and that for the MSD5 model with training samples of 

size 50 per group is 8.95%. The mathematical programming 

models are capable of outperforming the QDF model when the 

data set contains outlier. The paired t-tests in Table 19 
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indicate that the performances of many second-order 

mathematical programming models are significantly different 

from the performance of the QDF model, particularly for 

training samples of size 50 per group. As seen in Table 19, 

the performance of the following pairs of mathematical 

programming models are not significantly different: MSD4 and 

MSD5 models, MIP4 and MIP5 models, and HYB4 and HYB5 models. 

Configuration 1H 

Configuration 1H is another data configuration that 

contains nonnormal data. The populations of this data 

configuration consist of both discrete and continuous data. 

It is expected that the nonnormality of this data would 

weaken the classificatory performance of the QDF and LDF 

models. It is also expected that the second-order 

mathematical programming models should outperform the first-

order mathematical programming models. Since this data 

configuration can be perfectly separated by equation XY = 1, 

it is expected that the crossproduct term would be 

significant to the mathematical programming models. This is 

an example of a data set with no correlation between the 

variables, but the crossproduct term is still expected to be 

significant for the classification models. 

The results in Table 12 show that both the LDF and QDF 

models perform poorly for this data configuration. The 

average misclassification rates for both the LDF and QDF 
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models are around 3 0% on both training samples and 

validation samples. The nonnormality of the data clearly 

weakens the classificatory performance of the two parametric 

statistical models. Configuration 1H is clearly an example 

of a data configuration where the second-order mathematical 

programming model can perform dramatically better than the 

QDF model. For mathematical programming models, the second-

order models outperform the first-order models. As 

expected, the second-order mathematical programming models 

with the crossproduct term outperform the models without the 

crossproduct term. With the exception of the hybrid models 

for training samples of size 25 per group, the results in 

Table 20 indicate that the performances of the second-order 

mathematical programming models with the crossproduct term 

and those of the corresponding second-order models without 

the crossproduct term are significantly different. 

The best performing mathematical programming model for 

training samples of size 25 per group is MSD5 which has an 

average misclassification rate of 5.54% on the validation 

samples. When the training sample size increases to 50 per 

group, the best performing mathematical programming model is 

still the MSD5 model, which has an average misclassification 

rate of 2.91% on the validation samples. However, Table 20 

indicates that the MSD5 model and the MIP5 model do not have 

significantly different performance. The MSD5 and MIP5 

models can perfectly classify observations in the training 
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samples of the two populations because the groups can be 

separated by the equation XY = 1. This data configuration 

shows that the crossproduct term may be important for a 

classification model despite the fact that the variables for 

each population are uncorrelated. 

Simulation Results for Models with 
Secondary Goals 

The results of a Monte Carlo simulation for MIP models 

with secondary goals are presented in this section. These 

results will be used to answer Research Question 2. Tables 

23 through 50 and Figures 9 through 22 contain the results 

from the simulation study. 

Configuration 2A 

Configuration 2A is a configuration that contains two 

normal populations with equal variance-covariance 

structures. The results in Table 23 show that the best 

performing MIP model for this data configuration is the MIP1 

model for both training samples of sizes 20 and 4 0 per 

group. The average misclassification rates of the MIP1 

model are 3.42% and 3.08% for training samples of sizes 20 

and 4 0 per group, respectively. The secondary goal of 

maximizing the distance between projected means in the MIP1 

model seems to be effective in reducing the number of 

misclassification when compared with other secondary goals. 
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However, with the same secondary goal but bounded 

coefficients, the MIP2 model performs poorly. The 

constraint of bounded coefficients decreases the 

classificatory performance of the MIP2 model. The average 

misclassification rates of the MIP2 model are 6.14% and 

4.25% for training samples of sizes 20 and 40 per group, 

respectively. The classificatory performances of the MIP3 

and MIP4 models are almost the same. Thus, for this data 

configuration, the performances of the MIP3 and MIP4 models 

show that either maximizing the minimum internal deviation 

or minimizing the sum of the external deviations as a 

secondary goal in an MIP model will yield similar results. 

Table 37 shows the results of paired t-tests for the 

mean difference in classificatory performance of the models 

for configuration 2A. The results reveal that the 

performance of the MIP1 model is significantly different 

from the performance of the other MIP models with 

significance level of .05/6 for both training samples of 

sizes 2 0 and 40 per group. The MIP3 and MIP4 models are not 

significantly different in performance for training samples 

of size 20 per group. 

Configuration 2B 

Configuration 2B is the same as configuration 2A, 

except that the data are rotated 45 degrees. Note that the 

distance between the means of the two populations is still 
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the same. The results in Table 24 show that the MIP1 model 

is still the classification model of choice among the MIP 

models for training samples of size 2 0 per group. The 

average misclassification rates of the MIP1 model are 3.29% 

and 3.03% for training samples of sizes 20 and 40 per group, 

respectively, which are very close to those for 

configuration 2A. The performance of MIP4 model for this 

configuration is also very close to that for configuration 

2A. It is interesting to see the MIP2 and MIP3 models 

perform much better in this configuration than in 

configuration 2A. The reason for this is the fact that the 

MIP2 and MIP3 models are not rotationally invariant. For 

training samples of size 40 per group, the MIP2 model 

performs as well as the MIP1 model. 

From Table 38, the results of paired t-tests reveal 

that neither the MIP1 and MIP3 models, nor the MIP2 and MIP3 

models are significantly different in performance for both 

training samples of sizes 20 and 40 per group. The 

performance of the MIP1 model is significantly different 

from the performance of the MIP2 model for training samples 

of size 20 per group. 

Configuration 2C 

Configuration 2C also contains two normal populations. 

However, the variance-covariance structures of the two 

populations are not equal. The variance-covariance 
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structure of the first population is four times larger than 

that of the second population. Among the MIP models, the 

MIP1 model yields the lowest misclassification rate. As 

shown in Table 25, the average misclassification rates of 

the MIP1 model are 16.74% and 16.18% for training samples of 

sizes 20 and 40 per group, respectively. However MIP2 

model, which has the same secondary goal as the MIP1 model 

but with bounded coefficients constraint, does not perform 

well for this data configuration. The MIP3 model performs 

nearly as well as the MIP4 model for both training samples 

of sizes 20 and 40 per group. 

The results of paired t-tests in Table 3 9 reveal that 

the performance of the MIP1 model is significantly different 

from the performance of the other MIP models for training 

samples of size 20 per group. For training samples of size 

40 per group, the performance of the MIPI model is 

significantly different from the performance of the MIP2 and 

MIP3 models. The performance of the MIP3 model is not 

significantly different from that of the MIP4 model for both 

sizes of training samples. 

Configuration 2D 

For configuration 2D, the first population contains 

normal data, whereas the second population contains 

nonnormal data. Ten percent of the observations in the 

second population are contaminated by another normally 
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distributed group of data. The results in Table 26 show 

that, among the MIP models, the MIP3 model yields the lowest 

misclassification rate for this data configuration. The 

secondary goal of maximizing the minimum internal deviation 

in the MIP3 model works well for this nonnormal data. The 

average misclassification rates of the MIP3 model are 8.40% 

and 7.48% for training samples of sizes 20 and 40 per group, 

respectively. For training samples of size 40 per group, 

the MIP4 model performs nearly as well as MIP3 model. 

The results of paired t-tests in Table 4 0 reveal that 

the performance of the MIP2 model is significantly different 

from the performance of the other models for both sizes of 

training samples. However, none of the pairs of the MIP1, 

MIP3, and MIP4 models show any significant difference in 

performance for both training sample sizes. 

Configuration 2E 

Configuration 2E is a configuration that results from a 

45 degrees rotation of configuration 2D. Table 27 shows 

results of the classification models for configuration 2E. 

These results are similar to the results from configuration 

2B, in that the MIP2 model performs significantly better in 

the rotated data. Among the MIP models with training 

samples of size 40 per group, the MIP2 model yields the 

lowest misclassification rate. The average 

misclassification rate of the MIP2 model is 7.38% for 
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training samples of size 4 0 per group. For training samples 

of size 20 per group, the MIP2 model performs nearly as well 

as the MIP3 model. The average misclassification rate of 

the MIP2 model is 8.19%, whereas that of the MIP3 model is 

8.16% for training samples of size 20 per group. From Table 

41, the results of paired t-tests reveal that most of the 

performances of the four MIP models are not significantly 

different from each other. However, the MIP1 and MIP2 

models for training samples of size 40 per group and the 

MIP3 and MIP4 models for both training sample sizes are each 

significantly different in performance. 

Configuration 2F 

Configuration 2F contains contaminated normal data for 

both populations. The contaminating fraction is 10% for 

both populations. The results in Table 28 show that the 

best performing MIP model for training samples of size 20 

per group is the MIP1 model. The average misclassification 

rate of the MIP1 model is 5.47% for training samples of size 

20 per group. Among the MIP models with training samples of 

size 40 per group, the MIP1, MIP3, and MIP4 models perform 

almost the same. The average misclassification rate of the 

MIP4 model is 4.61%, whereas those of the MIP1 and the MIP3 

models are 4.65% and 4.69%, respectively, for training 

samples of size 40 per group. The MIP2 model performs 

poorly for this data configuration. 
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The results of paired t-tests in Table 42 indicate that 

the performance of the MIP2 model is significantly different 

from the performance of the MIP1, MIP3, and MIP4 models for 

both sizes of the training samples. The MIP1, MIP3, and 

MIP4 models are not significantly different in performance. 

Configuration 2G 

Configuration 2G is the configuration that results from 

a 45 degrees rotation of configuration 2F. Again, the 

results in Table 29 show a significant improvement of the 

MIP2 model with this rotated data. Among the MIP models 

with training samples of size 40 per group, the MIP2 model 

yields the lowest misclassification, which is 4.50%. For 

training samples of size 20 per group, the best performing 

MIP model is the MIP1 model, which yields an average 

misclassification rate of 5.18%. The results of the paired 

t-tests in Table 43 reveal that the performances of the 

MIP1, MIP2, and MIP3 models are not significantly different 

from each other for both training sample sizes. For 

training samples of size 20 per group, the performance of 

the MIP3 model is significantly different from that of the 

MIP4 model. 

Configuration 2H 

Configuration 2H is another configuration that contains 

contaminated normal data in both populations. The 
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contaminating fraction is 10% for both populations. The 

results in Table 3 0 show that, among the MIP models, the 

MIP1 model yields the lowest misclassification rate for both 

sizes of the training samples. The average 

misclassification rates of the MIP1 model are 2.22% and 

1.94% for training samples of sizes 20 and 40 per group, 

respectively. The MIP2 model performs poorly for this 

configuration. The MIP4 model performs nearly as well as 

the MIP3 model for training samples of size 4 0 per group. 

The results of paired t-tests in Table 44 indicate that the 

performances of all MIP models are significantly different 

from each other for both sizes of the training samples, 

except for the MIP3 and MIP4 models in the case of training 

samples of size 40 per group. 

Configuration 21 

The data in configuration 21 are similar to those in 

configuration 2H, except that the contaminating fraction is 

increased to 20% for both populations. The results of this 

configuration are similar to those of configuration 2H. The 

results in Table 31 show that the MIP1 model is still the 

best among the MIP models for both sizes of the training 

samples. The average misclassification rates of the MIP1 

model are 3.37% and 2.92% for training samples of sizes 20 

and 40 per group, respectively. The MIP4 model performs 

nearly as well as the MIP3 model. As shown in Table 45, the 
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results of the paired t-tests indicate that the performances 

of all the MIP models, except the MIP3 and MIP4 models, are 

significantly different from each other for both sizes of 

training samples. 

Configuration 2J 

For configuration 2J, the first population contains 

normal data, whereas the second population contains 

contaminated normal data. The contaminating fraction of the 

second population is 10%. The results in Table 32 show 

that, among the MIP models, the MIP3 model yields the lowest 

misclassification. However, the MIP4 model performs as well 

as the MIP3 model for training samples of size 40 per group. 

The average misclassification rates of the MIP3 model are 

8.77% and 8.15% for training samples of sizes 20 and 40 per 

group, respectively. The results of the paired t-tests in 

Table 46 reveal that the performance of the MIP3 model is 

significantly different from the performance of the MIP1 and 

MIP2 models for both training samples of sizes 2 0 and 4 0 per 

group. However, the MIP3 model's performance is not 

significantly different from that of the MIP4 model. 

Configuration 2K 

Configuration 2K is similar to configuration 2J, except 

that the contaminating fraction of the second population is 

increased to 20%. The results for this configuration are 
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similar to those for configuration 2 J. Table 33 shows that, 

among the MIP models, the MIP3 model still has the lowest 

misclassification rate for both sizes of the training 

samples. The average misclassification rates of the MIP3 

model are 13.59% and 12.99% for training samples of sizes 20 

and 4 0 per group, respectively. The MIP4 model performs 

nearly as well as the MIP3 model. The results of paired t-

tests in Table 47 indicate that the performance of the MIP3 

model is significantly different from the performance of the 

MIP1 and MIP2 models for both training samples of sizes 20 

and 4 0 per group. However, there is no significant 

difference in the performance between the MIP3 and MIP4 

models. 

Configuration 2L 

Configuration 2L is the configuration chosen to have a 

low value of skewness and a high value of kurtosis. The 

values of skewness and kurtosis are chosen to be 0.461 and 

13.419, respectively, for both populations. From these 

specified values of skewness and kurtosis, the means and 

variance-covariance structures of the two populations were 

obtained from the results generated on the contaminated 

normal distribution in the next section of this chapter and 

are presented in Table 22. The results in Table 34 show 

that, among the MIP models, the MIP3 and MIP4 models both 
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yield an average misclassification rate of 13.44%, which is 

the lowest misclassification for training samples of size 20 

per group. For training samples of size 40 per group, the 

best performing MIP model is the MIP1 model which has 

average misclassification rate of 12.40%. The MIP2 model 

does not perform well for this data configuration. The 

results of paired t-tests in Table 48 reveal that the 

performances of the MIP1, MIP3, and MIP4 models are not 

significantly different from each other for both sizes of 

the training samples. 

Configuration 2M 

Configuration 2M is the configuration chosen to have 

moderate values of skewness and kurtosis. The values of 

skewness and kurtosis are chosen to be 1.625 and 7.612, 

respectively, for both populations. From these specified 

values of skewness and kurtosis, the means and variance-

covariance structures of the two populations were obtained 

from the results generated on the contaminated normal 

distribution in the next section of this chapter and are 

presented in Table 22. The results in Table 35 show that, 

among the MIP models, the MIP4 model yields the lowest 

misclassification for both sizes of the training samples. 

The average misclassification rates of the MIP4 model are 

9.56% and 8.53% for training samples of sizes 20 and 40 per 
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group, respectively. Table 49 shows that the results of 

paired t-tests that are similar to those of configuration 

2L. The results indicate that the performances of the MIP1, 

MIP3, and MIP4 models are not significantly different from 

each other for both sizes of training samples. 

Configuration 2N 

Configuration 2N is the configuration chosen to have a 

low value of skewness and a very low value of kurtosis. The 

values of skewness and kurtosis are chosen to be 0.129 and 

2.124, respectively, for both populations. From these 

specified values of skewness and kurtosis, the means and 

variance-covariance structures of the two populations were 

obtained from the results generated on the contaminated 

normal distribution in the next section of this chapter and 

are presented in Table 22. The results in Table 36 show 

that, among the MIP models, the MIP1 model yields the lowest 

misclassification rate for both sizes of the training 

samples. The average misclassification rates of the MIP1 

model are 7.10% and 6.37% for training samples of sizes 20 

and 40 per group, respectively. However, the results of 

paired t-tests in Table 50 show that the performances of the 

MIP3 and MIP4 models are not significantly different from 

that of the MIP1 model for training samples of size 20 per 

group. 



92 

Skewness and Kurtosis Measures for the 
Contaminated Normal Distribution 

The general contaminated multivariate normal 

distribution can be written as 

2 2 2 2 
CMN ( n l t o l t n 2 l o 2 , e ) = (1 - e)N(/x1,a1) + eN ( / j l 2 , o 2 ) . 

2 
The notation N(ja,a ) represents the normal distribution with 

2 2 
mean /x and variance a . The N(fi2, a2) population can be 

interpreted as the contaminating part, and e can be 

interpreted as the contaminating fraction of the data. The 

above distribution can be shifted and scaled (such that n1 = 

2 

0 and o1 = 1) so that the cumulative distribution function 

is 

F (X) = (1- e) <f> (X) + e#((X-#t)/a) . 

As shown in the theoretical framework chapter of this 

dissertation, the formulas for the skewness (yx) and the 

kurtosis (y2) measures can be mathematically derived as 

= (3<r2 + M2 - 2M2e - 3) 

[1 - e + ea2 + /x2e (1 - e)]3/2 

m _ 6e/x2a2(e2-2e+l) +e^A (l+6e2-3e2-4e) +6^2e2(l-e) +3 (1-e) +3ecrA 
J 2 — — 

[1 - e + ea2 + /x2e (1 - e)]2 

Now, if n approaches infinity, the kurtosis measure would 

have a limiting value of 
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1 + 6 e 2 - 3 e 3 - 4 6 3 e 2 - 3 e + 1 
•3 + 

e ( 1 - e ) 2 e ( 1 - e ) e ( 1 - e ) 

If e is equal to 0.5, then the limiting value of the 

kurtosis is 1 as the parameter /i approaches infinity. The 

value of one for the kurtosis is the smallest value that the 

kurtosis can have. Also note that as a approaches infinity, 

the kurtosis has a limiting value of 3/e. Thus, e can be 

chosen to give any desired limiting value for the kurtosis. 

For the measure of skewness, the limiting value as 

approaches infinity is 

1 - 2 e 

[e ( 1 - e ) ] 1 / 2 

which is equal to zero for e = .5 and approaches infinity 

when e becomes close to zero. Thus, there is a wide range 

of values that can be specified for the skewness and 

kurtosis measures in simulating contaminated normal data. 

Tables 51 through 58 contain various values of the skewness 

and kurtosis measures for e = .01, .05, .10, .15, .20, .30, 

.40, and .50 with various settings of the parameters fx and 

a. 

Note that for the contaminated normal distribution with 

the contaminating fraction higher than 0.50, the 

distribution will be similar to the one with contaminating 

fraction equals to 1-e. For example, if a contaminated 
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normal distribution with contaminating fraction equals 0.60 

and specific values of the skewness and kurtosis measures is 

desired, then one can simply use the table with e = 0.40 to 

select the parameter settings for the distribution. 



CHAPTER VI 

CONCLUSIONS 

Research Questions Addressed 

This study has addressed three research questions 

regarding the effects of certain modifications to the 

mathematical programming models for solving the statistical 

classification problem and the appropriateness of using the 

contaminated normal distribution in Monte Carlo simulation 

studies. 

Research Question 1 

How do second-order terms in mathematical 

programming models affect the performance of certain 

two-group classification models for small to moderate 

training sample sizes and for normal and nonnormal 

data? Can the correlation structure of the data 

determine whether the crossproduct terms should be 

included in the models? Under what conditions are 

these models invariant with respect to translation and 

rotation of the data? 

From the results of simulation study, second-order 

terms in mathematical programming models can be very 

95 
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effective in correctly classifying observations for certain 

data configurations. For certain data configurations in 

which the data are highly nonnormal, including the second-

order terms in mathematical programming models greatly 

improves the classification results over the first-order 

models and the Smith's quadratic discriminant method. Also, 

when the variance-covariance structures of the two 

populations are different, the second-order mathematical 

programming models can easily outperform the first-order 

models. However, particularly for a small sample size, it 

is possible for the first-order models to outperform the 

second-order models when the variance-covariance structures 

are only slightly different. 

The correlation structure of the data can sometimes 

determine the need of the crossproduct term for mathematical 

programming models. If the sample size is moderate to large 

and the data are approximately normal, then the crossproduct 

term should not be included in the mathematical programming 

model for data configurations such that E^1 - E2
_1 is 

strictly a diagonal matrix (where and E2 are the 

variance-covariance matrices of the first and second 

populations, respectively). For a small sample size, 

second-order terms may reduce the classificatory performance 

of some mathematical programming models even if the 

variance-covariance matrices of the populations differ. For 

nonnormal data, the correlation structure may not determine 
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the need for a crossproduct term. For example, the data may 

be uncorrelated but perfectly separable by the equation XY = 

constant, where X and Y are the two attribute variables. In 

this case, the crossproduct term can significantly improve 

the classificatory performance of the mathematical 

programming models despite the independence of the attribute 

variables. Figure 23 displays guideline for alternative 

mathematical programming models. To guarantee that the 

second-order mathematical programming models are both 

translationally invariant and rotationally invariant, all of 

the first-order and second-order terms must be included in 

the models. Omitting the crossproduct term, for example, 

may improve the performance of the model, but the model may 

not be optimal after a rotation. 

Research Question 2 

Can the use of certain secondary goals improve 

the performance of MIP models for the two-group 

classification problem on small to moderate sample 

sizes? 

The use of certain secondary goals can improve the 

performance of the MIP models. An appropriate secondary 

goal for an MIP model depends on the characteristic and 

orientation of the data. From the results of the simulation 

study, the secondary goal of maximizing the distance between 
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the means of the discriminant scores is appropriate mostly 

for configurations in which both populations have the same 

distribution and the line between the two population means 

is approximately parallel to the horizontal axis. However, 

if this type of data configuration is rotated 45 degrees, 

then the same secondary goal with constraints to bound the 

coefficients would be more effective for the MIP model in 

classifying observations. For contaminated normal 

configurations with the two population distributions being 

very different, maximizing the minimum deviation of the 

correctly classified observations would be an appropriate 

secondary goal for the MIP model. 

The secondary goal of minimizing the sum of all the 

misclassified observations' deviations is appropriate for 

the contaminated normal data with moderate values of 

skewness and kurtosis measures. However, if the 

contaminated normal data have low values for the skewness 

and kurtosis measures, then maximizing the distance between 

the means of the discriminant scores would be an appropriate 

secondary goal for the MIP model. 

Research Question 3 

Since the contaminated normal distribution 

(mixture of two normals) can be used to assess the 

performance of linear discriminant functions without a 

validation sample, how appropriate is this distribution 
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for a simulation study in generating nonnormal data 

with a variety of values for the skewness and kurtosis 

measures? In particular, what range of values for the 

measures of skewness and kurtosis can the contaminated 

normal distributions have by using different parameter 

settings for the mean, standard deviation, and 

contaminating fraction? 

This study shows the usefulness of a general 

contaminated multivariate normal distribution in estimating 

misclassification probabilities in a simulation study which 

investigates various classification models. The 

contaminated normal distribution is appropriate for a 

simulation study in generating nonnormal data. A wide range 

of values can be assigned to the measures of skewness and 

kurtosis when generating contaminated normal distribution by 

using different parameter settings for the mean (/x) , 

standard deviation (a), and contaminating fraction (e). 

The results on the contaminated normal distribution 

show that the limiting values of the skewness and kurtosis 

measures when /x approaches infinity are (l-2e) / [e (1-e) ]1/2 

and -3 + l/e(l-e), respectively. Therefore, if e equals 

0.50 and ix approaches infinity, then the values of the 

skewness and kurtosis measures will approach 0 and 1, 

respectively. Note that the smallest value of the kurtosis 

measure for the contaminated normal distribution is 1. 
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However, the kurtosis measure will have a limiting value of 

3/e as a approaches infinity. When e becomes close to zero 

and the value of fi is sufficiently large, the value of the 

skewness measure will approach infinity. 

Tables illustrating various values of the skewness and 

kurtosis measures for the contaminated normal distribution 

with values of /x, a, and e help to identify contaminated 

normal distributions that approximate nonnormal 

distributions with certain skewness and kurtosis values. 

Thus, using the contaminated normal distribution in 

simulation studies allows for greater use of distributions 

that approximate certain real-world data sets with similar 

values for the measures of skewness and kurtosis. 

Limitations and Key Assumptions 

Limitations and keys assumptions of this study include 

the following: 

1. Only the two-group classification problem is 

considered in this research study. It is common to find 

classification problems involving more than two groups. 

Although the extension of classification models to more than 

two groups is conceptually straightforward, different 

mathematical programming models would be needed. The 

results on the inclusion of second-order terms and the use 

of secondary goals may not be easily generalized to the 

multiple group discriminant problem. 
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2. The training sample is limited to small to moderate 

sizes (20 to 50 observations for each group). The 

simulation study does not compare the performance of the 

classification models with higher sample sizes. This is due 

to the computational intensiveness of the MIP procedures at 

higher sample sizes, particularly for the data in which the 

degree of overlap in the groups is large. 

3. Only the MSD, MIP, and hybrid models of 

mathematical programming-based formulations are included in 

this study. Although these models are found to compare 

favorably with the parametric statistical models, other 

mathematical programming models and nonparametric models 

that have been presented in the literature have shown some 

potential for good classificatory performance under certain 

data configurations. 

4. The simulation study is limited to only data 

configurations that are presented in the Simulation Designs 

chapter of this dissertation. The results may not 

necessarily extend to other data configurations. The 

simulation study includes mostly normal and contaminated 

normal data. Although this type of data represents real-

world data, there are countless possibilities for data 

configurations. 

5. This study considers only attribute variables with 

first-order and second-order terms. Some data 

configurations in which a nonlinear discriminant function is 
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the optimal classification rule may require terms that are 

perhaps higher than the second-order in the discriminant 

function for optimality. 

6. The prior probability of an observation coming from 

either population is assumed to be equal. The cost of 

assigning an observation to one population when, in fact, it 

belongs to the other population, is considered to be equal 

for all observations. 

Future Directions for Research 

Many issues related to the study in this dissertation 

can be investigated in future research studies. 

1. Although the results in this dissertation show 

benefits from inclusion of second-order terms in 

mathematical programming approaches to discriminant analysis 

for the two-group problem, the usefulness of second-order 

terms for the classification problem with more than two 

groups needs to be investigated. 

2. This dissertation compares the classificatory 

performance of MIP models with four different secondary 

goals. There are other secondary goals that can be 

evaluated. 

3. The sizes of training samples and the 

characteristics of data configurations other than the ones 

used in this dissertation can be explored in simulation 

studies. 
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4. The study comparing classificatory performance of 

the parametric statistical methods and the mathematical 

programming methods can be extended to classification 

problems with unequal prior probabilities and/or unequal 

costs of misclassification. 

5. Further examination of other modifications to 

mathematical programming approaches may yield-benefits to 

practitioners by having greater flexibility in choosing an 

appropriate model. 

Major Contribution of the Research 

The results from this study will assist practitioners 

and decision-makers in understanding and implementing 

improved versions of mathematical programming formulations 

and will give them greater flexibility in choosing 

appropriate models to solve the statistical classification 

problem. Previous simulation studies have shown that the 

MSD and MIP models can perform well in the presence of 

nonnormal data (Stam and Jones 1990) . However, the 

inclusion of second-order terms of the attribute variables 

in these mathematical programming formulations gives these 

models the potential to be very competitive with Smith's 

quadratic discriminant method, which involves both first-

order and second-order terms. The condition for rotational 

and translational invariance will help practitioners to 
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understand the effect of omitting terras to obtain a 

parsimonious model. 

The results of the simulation study reveal that the 

success exhibited by Rubin's (1990a) MIP model with a 

secondary goal in his limited simulation study is shared by 

MIP models with other secondary goals for certain data 

configurations. Some secondary goals may be appropriate 

with only certain types of data configurations. Not all of 

the MIP models with secondary goals are rotationally 

invariant. An appropriately selected secondary goal can 

improve the classificatory performance of the MIP model and 

make the model more competitive to both the parametric 

statistical procedures and the mathematical programming-

based models. 

The formulas for the measures of skewness and kurtosis 

for the general contaminated normal distribution were 

derived. For contaminated normal data, the measures of 

skewness and kurtosis are generally not available. However, 

the results in this dissertation show that a wide range of 

values for the measures of skewness and kurtosis are 

possible with contaminated normal distribution. These 

results make the contaminated normal distribution useful in 

simulating nonnormal data with various values of the 

skewness and kurtosis measures. 

Managerial decision-makers can easily implement the 

mathematical programming models in this study by using a 
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standard optimization computer package such as SAS/OR and 

LINDO. The results of this study allow the managerial 

decision-makers to use improved versions of mathematical 

programming formulations for the discriminant problem by 

utilizing second-order terms and appropriate secondary 

goals. When violations of the usual parametric assumptions 

are severe, these formulations provide alternative 

classification methods. 



APPENDIX A 

TABLES 

106 



107 

Table 3.--Classification Models for Research Question 1 

Models Descriptions 

1 . MSD5 MSD with all linear, squared, and 
crossproduct terms (5 variables) 

2. MSD4 MSD with linear and squared terms 
(4 variables) 

3 . MSD2 MSD with only linear terms 
(2 variables) 

4 . MIP5 MIP with all linear, squared, and 
crossproduct terms (5 variables) 

5. MIP4 MIP with linear and squared terms 
(4 variables) 

6 . MIP2 MIP with only linear terms 
(2 variables) 

7. HYB5 Hybrid with all linear, squared, 
and crossproduct terms (5 variables) 

8 . HYB4 Hybrid with linear and squared terms 
(4 variables) 

9. HYB2 Hybrid with only linear terms 
(2 variables) 

10. LDF Fisher's Linear Discriminant Function 

11. QDF Smith's Quadratic Discriminant Function 



108 

Table 4.--Data Configurations for Research Question 1 

Configura-
tion 

First Population 

Mean 
Vector 

Covariance 
Matrix 

Second Population 

Mean 
Vector 

Covariance 
Matrix 

1A 1 0 
0 1 

1 0 
0 1 

IB 1 .6 
.6 1 

1 .6 
.6 1 

1C 1 4 
4 20 

3.5 
3.5 

4.47 4 
4 4.47, 

ID 2 1 
1 2, 

2 - 1 

• 1 2 . 

IE 1 0 
0 1 

4 0 
0 4 

IF 1 0 
0 1, 

49 0 
0 49 

1G 1 0 
0 1 

1 0 
0 1. 

15% of observations from 

•10 

•10 

9 0 
0 9 

1H ax from Uniform(0.1, 5.0) 

a2 from Uniform(0, — ) ai 

20% of observations from 

ai = a2 = -4.60894 

a1 from Uniform(0.1, 5.0) 

1 1 a2 from Uniform (-r , -^+.5) 
ai ai 

20% of observations from 

ai = a2 = 4.195634 
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Table 5-Percentages of Misclassified Observations for 
Training Samples of Sizes 25 and 50 Per Group for 

Configuration 1A 

nj = n 2 = 25 nj = n 

o
 

in II CM
 

Method Training Sample Validation Sample Training Sample Validation Sample 

Mean STD Mean STD Mean STD Mean STD 

MSD5 5.32 3.68 11.68 2.76 6.53 2.40 9.58 1.71 

MSD4 5.76 3.77 10.43 2.08 6.66 2.30 9.10 1.29 

MSD2 6.64 3.90 8.84 1.34 7.17 2.37 8.40 0.90 

MIP5 3.16 2.38 14.66 4.11 4.36 1.74 11.64 2.23 

MIP4 3.50 2.48 12.90 3.12 4.50 1.74 10.81 2.16 

MIP2 4.28 2.57 9.86 2.30 5.11 1.87 9.14 1.22 

HYB5 8.88 3.69 10.98 2.21 7.68 2.90 10.46 3.11 

HYB4 8.42 3.37 10.11 1.96 7.50 2.46 10.42 2.36 

HYB2 7.48 3.20 8.63 1.15 6.93 2.49 8.62 1.41 

LDF 7.10 3.23 8.36 1.03 7.33 2.44 8.13 0.87 

QDF 6.90 3.25 8.62 1.11 7.27 2.44 8.24 0.85 
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Table 6.--Percentages of Misclassified Observations for 
Training Samples of Sizes 25 and 50 Per Group for 

Configuration IB 

n-L = n 2 = 25 nx = n 2 = 50 

Method Training Sample Validation Sample Training Sample Validation Simple 

Mean STD Mean STD Mean STD Mean STD 

MSD5 2.54 2.74 9.43 3.43 3.31 1.87 6.43 1.50 

MSD4 2.86 2.89 8.48 3.00 3.77 1.96 5.78 1.33 

MSD2 3.42 2.96 5.82 1.58 3.89 1.86 5.10 0.80 

MIP5 1.48 1.57 11.06 3.27 2.00 1.24 8.09 2.18 

MIP4 1.92 1.80 10.10 3.38 2.34 1.29 7.15 1.70 

HIP2 2.12 1.86 6.70 2.14 2.62 1.40 5.64 1.17 

HYB5 6.42 3.21 8.15 2.20 4.73 2.24 7.65 2.51 

HYB4 6.84 3.14 8.06 2.07 4.89 2.02 7.20 1.90 

HYB2 4.88 2.78 5.18 1.05 3.82 1.81 5.37 1.00 

LDF 4.40 2.90 4.98 0.87 4.27 1.86 4.74 0.69 

QDF 4.10 2.80 5.29 1.01 4.23 1.86 4.86 0.69 
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Table 7.--Percentages of Misclassified Observations for 
Training Samples of Sizes 25 and 50 Per Group for 

Configuration 1C 

nj = n 2 = 25 ni = n 2 = 50 

Method Training Sample Validation Sample Training Sample Validation Sample 

Mean STD Mean STD Mean STD Mean STD 

MSD5 3.20 3.35 11.02 3.17 4.92 2.65 7.64 1.62 

MSD4 3.68 3.74 9.53 2.50 5.23 2.71 7.21 1.24 

MSD2 7.62 4.03 9.02 1.56 7.68 2.60 8.49 1.11 

MIP5 1.72 1.78 12.40 3.15 2.90 1.57 9.38 1.96 

MI PA 2.24 2.04 11.44 2.92 3.16 1.63 8.76 1.93 

MIP2 5.90 3.33 10.74 2.68 6.19 2.29 9.15 1.71 

HYB5 7.96 3.27 8.53 1.57 6.68 5.15 9.01 4.84 

HYB4 8.24 3.19 8.74 1.50 6.47 4.67 8.84 4.69 

HYB2 11.88 3.47 12.54 2.41 8.91 3.36 10.68 2.25 

LDF 10.50 3.31 11.15 2.03 10.34 2.19 10.81 1.35 

QDF 6.22 3.57 6.88 0.97 6.14 2.45 6.47 0.94 
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Table 8,--Percentages of Misclassified Observations for 
Training Samples of Sizes 25 and 50 Per Group for 

Configuration ID 

nx = n 2 = 25 nx = n 

o
 

LO tl CM
 

Method Training Sample Validation Sample Training Sample Validation Sample 

Mean STD Mean STD Mean STD Mean STD 

MSD5 2.54 2.75 9.75 3.26 4.30 2.19 6.99 1.46 

MSD4 3.40 3.01 8.34 2.33 4.60 2.13 6.58 1.16 

MSD2 3.98 3.07 6.81 1.57 5.09 2.19 6.12 0.75 

MIP5 1.60 1.58 11.97 3.50 2.78 1.42 8.97 2.14 

MIP4 2.20 1.92 10.35 3.46 3.16 1.66 8.09 2.28 

MIP2 2.78 2.11 7.66 1.96 3.81 1.84 6.81 1.22 

HYB5 5.76 2.94 7.21 1.90 5.73 2.59 8.57 3.23 

HYB4 5.68 2.94 6.64 1.33 5.75 2.78 8.12 2.63 

HYB2 6.30 2.91 7.06 1.48 5.40 2.47 6.66 1.28 

LDF 5.34 2.68 6.77 1.18 5.99 2.21 6.48 0.90 

QDF 4.64 2.65 5.92 0.91 5.05 2.13 5.58 0.66 
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Table 9.--Percentages of Misclassified Observations for 
Training Samples of Sizes 25 and 50 Per Group for 

Configuration IE 

Method 

ni = n 2 - 25 ni = n 2 = = 50 

Method Training Sample Validation Sample Training Sample Validation Sample Method 

Mean STD Mean STD Mean STD Mean STD 

MSD5 3. .88 3. ,24 10. ,18 2. ,85 4. ,83 1. ,99 7. ,90 1. .84 

MSD4 4. ,34 3. ,42 9. ,06 2. .30 4. ,97 2. ,05 7. ,44 1. .40 

MSD2 6. ,46 3. ,91 8. ,33 1. .26 6. ,36 2. .20 7. ,85 0. .90 

MIP5 2. ,34 1. .84 12. ,45 3, .57 3. .06 1. .35 9. ,52 2, .38 

MIP4 2. ,64 2. .05 11. ,35 3, .55 3. .31 1, .47 9. ,11 2, .28 

MIP2 4. .30 2. .61 9. .43 2, .12 4, .64 1, .68 8. .55 1, .40 

HYB5 7. .10 3. .29 8. .41 2, .18 6, .56 2, .48 9. .46 2, .49 

HYB4 9. .18 3. .75 10, .72 2, .69 6, .29 2, .43 8. .76 2, .05 

HYB2 8. .80 3. .36 9, .34 1, .78 6, .98 2, .42 8. .86 1, .51 

LDF 8. .00 3. .36 8. .50 1, .35 7. .59 2, .13 8. .36 1, .07 

QDF 5. .92 3. .14 7, .20 1, .13 5, .61 1, .86 6. .66 0, .99 
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Table 10-Percentages of Misclassified Observations for 
Training Samples of Sizes 25 and 50 Per Group for 

Configuration IF 

nj = n 2 = 25 nj = n 2 = 50 

Method Training Sample Validation Sample Training Sample Validation Sample 

Mean STD Mean STD Mean STD Mean STD 

MSD5 2.32 2.75 8.67 2.94 3.29 2.01 6.39 1.24 

MSD4 2.66 2.98 7.95 2.50 3.56 2.42 6.16 1.53 

MSD2 31.89 4.81 35.93 2.71 34.58 3.93 37.64 2.54 

MIPS 1.76 2.07 10.58 3.70 * * * * 

MIP4 1.96 2.16 9.29 3.08 * * * • 

MIP2 21.56 3.00 32.80 1.89 * * * * 

HYB5 17.34 3.64 20.34 3.27 5.06 2.07 7.97 1.82 

HYB4 17.76 3.54 19.89 3.36 4.72 2.44 7.30 1.85 

HYB2 29.16 6.96 34.85 4.98 43.86 6.34 48.05 3.84 

LDF 34.46 7.62 39.38 4.80 37.13 6.43 41.29 4.34 

QDF 3.94 2.95 5.82 1.06 4.14 1.81 5.25 0.97 

* Computationally too intensive to complete runs for this model. 
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Table 11.--Percentages of Misclassified Observations for 
Training Samples of Sizes 25 and 50 Per Group for 

Configuration 1G 

Method 

= n 2 ~ 25 n i = n 2 ~ 50 

Method Training Sample Validation Simple Training Sample Validation Sample Method 

Mean STD Mean STD Mean STD Mean STD 

MSD5 4. ,48 3. ,62 12. ,06 3. ,30 5. ,97 2. ,43 8. ,95 1. ,37 

MSD4 5. .64 4. ,01 10. .09 2. ,93 6. ,57 2. ,27 9. ,13 1. ,44 

MSD2 25. .16 12. .80 30, .64 13. ,94 26. .28 12. .17 29. ,65 12. .85 

MIP5 2. .82 2, .36 14, .40 4. ,15 4. .00 1, .75 10. .63 2. .07 

MIP4 3, .58 2, .59 13, .63 3. ,20 4, .43 1, 00
 

to
 

10. .25 1. .70 

MIP2 11, .68 4, .62 17, .27 2. .39 12. .05 2, .82 15. .83 1, .29 

HYB5 8. .56 3, .95 11, .97 2. .55 7, .64 2, .76 10, .36 1, .75 

HYB4 8. vo
 

to
 

3, .79 11, .47 2. .12 7, .97 3, .25 10. .55 2, .66 

HYB2 30, .80 19, .67 36, .93 20. .57 38, .98 21, .21 42, .48 20. .75 

LDF 34, .66 12, .15 41, .31 12, .65 38, .50 11, .60 42, .66 11, .49 

QDF 10, .16 5, .41 13, .32 4, .27 11, .12 4, .10 12, .18 2, .58 
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Table 12.--Percentages of Misclassified Observations for 
Training Samples of Sizes 25 and 50 Per Group for 

Configuration 1H 

ni = n = 25 ni = n 2 = 50 

Method Training Sample Validation Sample Training Sample Validation Sample 

Mean STD Mean STD Mean STD Mean STD 

MSD5 0 0 5.54 2.83 0 0 2.91 1.47 

MSD4 2.62 3.40 8.64 2.71 5.13 3.48 7.33 1.71 

MSD2 11.44 7.47 14.49 6.33 11.50 5.75 12.96 5.18 

MIPS 0 0 5.58 2.93 0 0 2.94 1.43 

MIP4 1.14 1.31 8.25 2.74 2.03 1.38 6.71 1.74 

MIP2 5.22 3.07 10.20 2.93 6.19 2.39 9.04 1.66 

HYB5 10.80 4.93 15.36 6.86 3.72 4.41 6.45 4.70 

HYB4 11.30 5.66 15.50 7.58 7.50 4.29 9.34 2.83 

HYB2 17.08 7.18 20.53 9.01 13.33 5.39 14.83 4.27 

LDF 27.48 5.87 30.89 4.30 28.14 4.39 29.98 3.48 

QDF 29.44 7.11 31.46 5.23 30.97 5.08 32.20 3.90 
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Table 13.--Paired T-Tests of Mean Difference in Classification 
Performance on Validation Samples for Training Samples of Sizes 

25 and 50 Per Group for Configuration 1A 

Method 
Method 

MSD4 MSD2 MIP5 MIP4 MIP2 HYB5 HYB4 HYB2 LDF QDF 

MSD5 
n P25 
ni=50 

MSD4 
rip 2 5 
np50 

MSD2 
nj=25 
^=50 

MIPS 
np 2 5 
iii=50 

MIP4 
rip 2 5 
11}=50 

MIP2 
rij=25 
11}=50 

HYB5 
rii=25 
11}=50 

HYB4 
ri}=25 
11}= 50 

HYB2 
il}=25 
11}=50 

LDF 
11}=2 5 
il}=50 

5.99 11.49 
3.72 8.24 

-8. 18 -3 .51 5 .92 2. 11 5. 24 10. .44 12. .21 11. ,75 
-8. 84 -5 .93 2 .73 -2. 82 -3. 52 5, .19 8. .82 8. ,54 

i H
 

O
 

51 -8 .35 2 .23 -2. 06 1. 23 8, .48 10, .59 9. ,68 
-11. 84 -8 .63 -0 .26 -4. 51 -6. 30 3, .29 8, .37 8, ,29 

-14. 36 -13 .48 -4 .65 -9. 30 -6. 18 1 .65 4 .50 2. .20 
-14. 66 -11 .60 -6 .42 -6. 68 -8. 95 -1 .84 4 .09 2. .80 

4 .30 10 .84 8. 53 10. 80 14 .47 15 .53 15, .52 
3 .92 11 .76 3. 39 4. 35 12 .45 15 .13 14 .89 

10 .15 5. 59 7. ,98 13 .64 14 .69 13 .70 
8 .52 1. ,07 1. ,75 9 .86 12 .41 12 .18 

-4. ,14 -0, ,99 5 .26 6 .66 5 .61 
-4, ,07 -5. ,38 3 .41 8 

o
 

o
 7 .33 

3 . .86 10 .40 12 .19 11 .13 
0. .12 5 .84 7 .49 7 

CO 
(N 

8 .00 10 .17 8 .64 
8 .24 10 o

 
00
 

9 

r-CO 

4 .05 0 .11 
4 .07 3 .34 

-4 .50 
•3.43 

Note: A positive (negative) t-value in position (i,j) of the table indicates 
that the mean misclassification rate of method i is higher (lower) than that 
of method j. Underlined t-values indicate pairs of means that differ 
significantly after applying the Bonferroni adjustment to the family of 55 
tests, i.e., the individual computed t-value must be significant at « = 
.05/55, resulting in a critical value of 3.368. The above t-values can also 
be compared to the critical value of 3.815, which is the critical value 
obtained from the Bonferroni method with a significance level of .01/55. 
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Table 14.--Paired T-Tests of Mean Difference in Classification 
Performance on Validation Samples for Training Samples of Sizes 

25 and 50 Per Group for Configuration IB 

Method 
Method 

MSD4 MSD2 MIPS MIP4 MIP2 HYB5 HYB4 HYB2 LDF QDF 

MSD5 
11}=2 5 
n,=50 

MSD4 
31^25 
nj=50 

MSD2 
11^25 
11^50 

MIPS 
Hi»25 
ni=50 

MIP4 
rXi=25 
nj=50 

MIP2 
11^25 
n^SO 

HYB5 
11^25 
n^SO 

HYB4 
rij=25 
n8=50 

HYB2 
ni=25 
npSO 

LDF 
np25 
11;= 50 

3.02 
6.64 

11.35 
10.31 

10.66 

- 4 . , 9 0 - 1 . 6 8 8 . 1 0 3 . 7 1 3 . 9 7 12 . 3 5 1 3 . 5 3 13 . 1 0 
- 7 . , 6 0 - 4 . 2 3 5 . 3 0 - 5 . 6 9 - 4 . 58 6 . 9 9 1 1 . 8 7 1 1 . 3 1 

- 7 , . 1 4 - 5 . 1 0 5 . 9 0 0 . 9 9 1 . 32 1 1 . 3 9 1 2 . 4 9 1 1 . 6 6 
- 1 0 . . 2 0 - 9 . 1 2 1 . 1 5 - 7 . 9 5 - 9 . 6 5 3 . 2 5 8 . 8 9 8 . 0 5 

- 1 5 , . 8 1 - 1 3 . 5 9 - 5 . 0 0 - 8 . 8 7 - 9 . 3 1 4 . 1 1 6 . 5 4 3 . 9 9 
- 1 4 , . 3 8 - 1 3 . 3 4 - 5 . 3 6 - 1 0 . 6 1 i to

 

0 0 - 3 . 3 3 6 . 3 2 4 . 1 9 

2 . 8 8 1 2 . 8 5 7 . 4 4 7 . 4 4 1 7 . 2 9 1 9 . 1 1 1 9 . 0 9 
4 . 2 3 1 1 . 9 9 1 . 7 4 3 . 75 1 3 . 1 5 1 6 . 2 1 1 5 . 8 7 

1 2 . 0 0 4 . 9 2 5 . 38 1 4 . 8 0 1 5 . 9 7 1 5 . 2 6 
1 0 . 3 7 - 1 . 8 4 - 0 . 2 5 1 1 . 4 2 1 5 . 1 0 14 . 2 8 

- 5 . 1 0 - 5 . , 0 7 6 . 9 2 8 . 7 8 7 . 2 0 
- 8 . 0 6 - 8 . 3 4 2 . 4 9 8 . 2 2 6 . 9 0 

0 . , 4 9 12 . 4 4 1 3 . 3 2 12 . 6 0 
1 . , 9 4 9 . 6 5 1 1 . 93 1 1 . 7 4 

14 . 7 9 1 5 . 1 1 13 . 9 1 
1 0 . 8 2 1 3 . 8 4 13 . 5 9 

3 . 0 3 - 1 . 1 4 
6 . 78 5 . 7 6 

- 5 . 7 3 
- 3 . 6 8 

Note: A positive (negative) t-value in position (i,j) of the table indicates 
that the mean misclassification rate of method i is higher (lower) than that 
of method j. Underlined t-values indicate pairs of means that differ 
significantly after applying the Bonferroni adjustment to the family of 55 
tests, i.e., the individual computed t-value must be significant at <* = 
.05/55, resulting in a critical value of 3.368. The above t-values can also 
be compared to the critical value of 3.815, which is the critical value 
obtained from the Bonferroni method with a significance level of .01/55. 
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Table 15.--Paired T-Tests of Mean Difference in Classification 
Performance on Validation Samples for Training Samples of Sizes 

25 and 50 Per Group for Configuration 1C 

Method 
Method 

MSD4 MSD2 MIP5 MIP4 MIP2 HYB5 HYB4 HYB2 LDF QDF 

MSD5 
rLj=25 
1^=50 

MSD4 
rij=25 
nj=50 

MSD2 
ni=25 
nj=50 

MIP5 
n|«25 
ni=50 

MIP4 
nj=:25 
n^SO 

MIP2 
rXi=25 
nj=50 

HYB5 
nj=25 
npSO 

HYB4 
xij-25 
nj=50 

HYB2 
niS=25 
rip 50 

LDF 
nj=25 
118=50 

5.22 
4.68 

7.04 
•5.73 

1.98 
-12.11 

-3 .87 -1 .23 0 .75 7 .43 6. 63 -3. 84 -0, .35 12, .94 
-9 .64 -5 .58 -8 .11 -2 .87 -2. 65 -12. 28 -17, .48 8 .68 

-8 .75 -6 .11 -3 .39 3 .98 2. 89 -8, ,92 -5 .61 11 .36 
12 .99 -8 .64 -12 .20 -3 .84 -3. 66 -15. ,82 -24 .56 7 .83 

-9 .95 -8 .80 -6 .90 3 .01 1. 68 -13. ,08 -10 .33 14 .65 
-4 .91 -1 .50 -4 .71 -1 .09 -0. 75 -11. .02 -19 .89 27 .66 

2 .97 4 .09 11 .77 10. 47 -0, .37 3 .41 17 .67 
3 .64 1 .12 0 .73 1. 10 -5, .06 -6 .77 16 .48 

1 .87 9 .96 8. 81 -3, .18 0 .87 15 .92 
-1 .76 -0 .49 -0. 18 -7, .50 -9 .74 13 .05 

7 .98 7. 19 -5, .07 -1 .38 14 .58 
0 .27 0. 60 -7 .59 -8 .42 17 .39 

-1. 90 -16 .89 -15 .68 12 .20 
0. 26 -3 .06 -3 .71 5 .22 

-17 .36 -14 .29 12 .89 
-3 .48 -4 .15 5 .23 

7 .25 22 .64 
-0 .48 21 .41 

21 .56 
36 .14 

Note: A positive (negative) t-value in position (i,j) of the table indicates 
that the mean misclassification rate of method i is higher (lower) than that 
of method j. Underlined t-values indicate pairs of means that differ 
significantly after applying the Bonferroni adjustment to the family of 55 
tests, i.e., the individual computed t-value must be significant at « = 
.05/55, resulting in a critical value of 3.368. The above t-values can also 
be compared to the critical value of 3.815, which is the critical value 
obtained from the Bonferroni method with a significance level of .01/55. 
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Table 16.--Paired T-Tests of Mean Difference in Classification 
Performance on Validation Samples for Training Samples of Sizes 

25 and 50 Per Group for Configuration ID 

Method 
Method 

MSD4 MSD2 MIP5 MIP4 MIP2 HYB5 HYB4 HYB2 LDF QDF 

MSD5 
xij®25 
np50 

MSD4 
np25 
np50 

MSD2 
rip 2 5 
np50 

MIPS 
np25 
np50 

MIP4 
lip 2 5 
np50 

MIP2 
np25 
np50 

HYB5 
np25 
rip 50 

HYB4 
n P25 
np50 

HYB2 
np25 
rip 50 

LDF 
np25 
rip 50 

4.41 
3.21 

8.83 
6.18 

7.76 
4.27 

-6. .77 -1 .43 6. .14 7 .04 9 .08 7 .44 8. 83 12. 47 
-9, ,13 -4 .86 1. ,03 -5 .40 -4 .20 1 .90 3. 37 10. 08 

-9. .25 -5 .97 3. ,11 4 .27 7 .05 4 .52 6. 24 11. 36 
-10, .31 -7 .63 -1. ,50 -6 .01 -6 .29 -0 .60 0. 70 8. 76 

-14, .23 -10 .42 -5, .38 -1 .91 0 .95 -1 .28 0. 24 7. 22 
-13, .27 -8 .81 -5, .70 -7 .70 -7 .76 -4 .81 -3. 97 8. 36 

4 .18 12, .31 12 .57 14 .58 12 Iv
o 

|o
 

14. 21 17. 70 
3 .44 9, .47 1 .22 2 .70 10 .28 10. 95 16. 14 

7 .54 8 .18 9 .92 9 .09 10. 09 13. 21 
5 .48 -1 .38 -0 .15 6 .53 6. 56 10. 99 

1 .94 4 .87 2 .65 4. 53 9. 91 
-5 .19 -4 .68 0 .99 2. 39 10. ,35 

3 .83 0 .61 1. 99 6. ,88 
1 .14 5 .81 6. 37 9. ,50 

-2 .04 -0. 74 5. ,48 
6 .51 6. 07 9, ,71 

3. ,66 7, .61 
1. ,31 9, .09 

7, .93 
10, .92 

Note: A positive (negative) t-value in position (i,j) of the table indicates 
that the mean misclassification rate of method i is higher (lower) than that 
of method j. Underlined t-values indicate pairs of means that differ 
significantly after applying the Bonferroni adjustment to the family of 55 
tests, i.e., the individual computed t-value must be significant at <* = 
.05/55, resulting in a critical value of 3.368. The above t-values can also 
be compared to the critical value of 3.815, which is the critical value 
obtained from the Bonferroni method with a significance level of .01/55. 
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Table 17.--Paired T-Tests of Mean Difference in Classification 
Performance on Validation Samples for Training Samples of Sizes 

25 and 50 Per Group for Configuration IE 

Method 
Method 

MSD4 MSD2 MIP5 MIP4 MIP2 HYB5 HYB4 HYB2 LDF QDF 

MSD5 
nj=25 
rv=50 

MSD4 
nt=25 
ni=50 

MSD2 
np25 
ni=50 

MIP5 
nj=25 
npSO 

MIP4 
1̂ =25 
npSO 

MIP2 
lli=25 
11}=: 50 

HYB5 
nj=25 
rî SO 

HYB4 
ni=25 
n^SO 

HYB2 
ilj=2 5 
nt=50 

LDF 
rii=25 
np50 

5.04 
4.85 

6.52 
0 . 2 8 

3.12 
-3.24 

-6 .71 -3 .64 2 .16 4, .99 -1. 39 2, .65 5.53 11. ,20 
-8 .91 -6 .62 -3 .10 -7, .28 -4. 73 -4 .66 -2.42 7, ,83 

-9 .20 -6 .52 -1 .23 2 .03 -4. 59 -1 .09 2.29 8, .34 
-10 .40 -9 .55 -6 .47 -10 .18 -8. 21 -8 .57 -6.33 6. ,95 

-11 .56 -8 .66 -5 .39 -0 .40 -8. 87 -5 .36 -1.32 8, .71 
-7 .20 -5 .93 -5 .82 -6 .67 -4. 54 -7 .92 -5.86 16, .31 

3 .43 7 .75 9 .61 3 . 92 8 .14 10.64 14 .69 
2 .15 3 .77 0 .27 3. 37 2 .69 4.38 13 .19 

5 .00 7 .49 1. 53 5 .16 7.73 12 .08 
2 .56 -1 .46 1. ,63 1 .03 3.18 11 .74 

3 .61 -3. 92 0 .36 3.94 9 .41 
-3 .38 -0. ,91 -1 .82 1.31 13 .77 

-9. .18 -3 .79 -0.40 5 .58 
3, .42 2 .58 4.19 12 .32 

6 .25 9.45 13 .90 
-0 .50 1.75 11 .75 

7.25 12 .71 
2.89 17 .10 

10 .20 
16 .76 

Note: A positive (negative) t-value in position (i,j) of the table indicates 
that the mean misclassification rate of method i is higher (lower) than that 
of method j. Underlined t-values indicate pairs of means that differ 
significantly after applying the Bonferroni adjustment to the family of 55 
tests, i.e., the individual computed t-value must be significant at <* = 
.05/55, resulting in a critical value of 3.368. The above t-values can also 
be compared to the critical value of 3.815, which is the critical value 
obtained from the Bonferroni method with a significance level of .01/55. 
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Table 18.--Paired T-Tests of Mean Difference in Classification 
Performance on Validation Samples for Training Samples of Sizes 

25 and 50 Per Group for Configuration IF 

Method 
Method 

MSD4 MSD2 MIPS* MIP4* MIP2* HYB5 HYB4 HYB2 LDF QDF 

MSD5 
n P25 
rij—5 0 

MSD4 
nj=25 
n{=50 

MSD2 
rii=25 
npSO 

MIPS* 
ns=25 

MIP4* 
np25 

MIP2* 
n|=25 

HYB5 
rv=25 
n^SO 

HYB4 
11^25 
npSO 

HYB2 
n,«25 
111=50 

LDF 
nj=25 
n^SO 

1 - 5 5 - 1 1 8 . 9 7 

• 1 0 7 . 8 4 

- 5 , . 5 1 - 2 . 0 5 - 7 0 . . 1 1 - 2 8 . 3 6 - 2 9 

o CO - 4 5 . 6 7 - 5 5 . 0 7 9 . 7 5 
- 9 . 01 - 4 . 88 - 1 0 2 . 2 0 - 7 5 . 3 1 10 . 6 5 

- 7 . , 60 - 5 . 0 2 - 8 3 . 82 - 3 1 . 8 5 - 3 0 . 5 5 - 4 9 . 0 5 - 5 6 . 7 0 8 . 9 1 
- 9 . 4 3 - 5 . 8 5 - 9 7 . 9 5 - 7 4 . 7 6 6 . 3 1 

5 5 . 92 69 . 3 3 9 . 55 44 . 8 9 44 . 2 0 1, . 9 5 - 6 . 2 6 1 1 0 . 9 7 
98 . 1 3 95 . 4 1 - 2 7 . . 6 9 - 9 . 0 5 1 2 5 , . 2 8 

4, . 1 8 - 5 8 . 95 - 2 1 . 2 7 - 2 0 . 2 2 - 3 8 . . 2 4 - 4 7 . 5 6 1 2 . ,57 

- 7 1 . 63 - 2 6 . 0 0 - 2 5 . 7 8 - 4 4 . 35 - 5 2 . , 5 3 1 1 . 64 

34 . . 0 4 33 . . 2 9 - 3 . 9 1 - 1 3 . ,04 1 3 2 . 19 

1 . .97 - 2 3 . 79 - 3 2 . 1 9 4 2 . 13 
4, .80 - 9 1 . 17 - 6 7 . 89 1 6 . 29 

- 2 4 . 65 - 3 2 . 89 3 9 . 62 
- 9 1 . 9 1 - 7 0 . 6 7 1 1 . 8 8 

- 9 . 5 0 5 7 . 9 8 
2 1 . 3 9 1 0 7 . 4 6 

6 9 . 3 5 
8 0 . 0 6 

P°sitive (negative) t-value in position (i,j) of the table indicates 
Jf , m? a n "^classification rate of method i is higher (lower) than that 

U ? ? e r l i n e ? t-valu.. indicate pairs of m s L s that S f f e r 
tests f l? a"tly after applying the Bonferroni adjustment to the family of 55 

1- e-' the individual computed t-value must be significant at « = 
. 0 5 / 5 5 , resulting m a critical value of 3 . 3 6 8 . The above t-values can a l s o 

t 0 ^ h \ c r i t i c a l v a l u e o f 3- 8 1*< which is the critical value 
from the Bonferroni method with a significance level of .01/55. 

L S p T e f o ^ s i z e ^ O ^ e r ^ S p ^ 6 t 0 C O m p l e t e r u n s f o r M I P m e t h o d with training 
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Table 19.--Paired T-Tests of Mean Difference in Classification 
Performance on Validation Samples for Training Samples of Sizes 

25 and 50 Per Group for Configuration 1G 

Method 
Method 

MSD4 MSD2 MIPS MIP4 MIP2 HYB5 HYB4 HYB2 LDF QDF 

MSD5 
11}=2 5 
nt=50 

MSD4 
IV=25 
nj=50 

MSD2 
np25 
n^SO 

MIPS 
n*=25 
n^SO 

MIP4 
nt=25 
n^SO 

MIP2 
nj=25 
npSO 

HYB5 
11}=2 5 
n^SO 

HYB4 
n4=25 
xii=50 

HYB2 
11}=2 5 
ni=50 

LDF 
nj=25 
iij=50 

- 1 2 . ,54 -6 . 69 - 4 

ch 
in - 1 5 , . 64 0 . 2 6 1 , .65 - 1 1 . 69 - 2 1 . ,41 - 2 . 87 

- 1 5 . ,85 -8 . 14 -7 . 1 9 - 4 5 . 6 0 - 7 . 23 - 5 , .67 - 1 6 . 12 - 2 9 . .06 - 1 1 . 28 

- 1 3 , ,57 -8 . 80 - 8 . 9 1 - 2 2 . 0 3 - 3 . 2 3 - 1 . 3 1 - 1 2 . 36 - 2 3 , .03 - 5 . 20 
- 1 5 , .65 - 7 .02 - 7 .67 - 4 0 . 4 5 - 5 . 8 1 - 5 . 2 1 - 1 5 . 96 - 2 8 , .62 - 1 0 . 67 

10 .57 11 . 5 5 9 . 6 2 13 . 4 0 14 . 02 - 6 . 13 - 1 4 .13 1 3 . 47 
14 .38 14 . 87 10 . 6 7 14 . 9 4 14 . 54 - 1 0 . 87 - 2 0 . 03 14 . 51 

2 . 2 1 - 6 . 8 4 6 . 8 6 7 . 2 9 - 1 0 . 35 - 1 8 . 8 7 2 . 26 
1 . 8 5 - 2 4 . 1 9 1 . 0 5 0 .26 - 1 5 . 19 - 2 7 . 0 5 - 4 . 45 

- 1 1 . 2 1 5 . 3 2 6 .38 - 1 0 . 91 - 2 0 . 3 1 0 . 67 
- 2 9 . 8 7 - 0 . 5 4 - 1 . 12 - 1 5 . 48 - 2 7 . 77 - 6 . 67 

18 . 9 7 21 . 78 - 9 . 56 - 1 8 . 5 8 10 . ,24 
28 . 8 2 19 . 43 - 1 2 . 83 - 2 3 . 2 2 14 . ,29 

3 . 17 - 1 2 . ,20 - 2 2 . 9 6 - 3 . ,40 
- 0 . 8 0 - 1 5 . ,49 - 2 7 . 9 1 - 7 . ,24 

- 1 2 . ,53 - 2 3 . 8 9 - 4 . ,48 
- 1 5 , ,19 - 2 6 . 84 - 5 . .12 

- 4 . 06 12, .44 
-0.17 15.37 

23.78 
2 8 . 6 6 

Note: A positive (negative) t-value in position (i,j) of the table indicates 
that the mean misclassification rate of method i is higher (lower) than that 
of method j. Underlined t-values indicate pairs of means that differ 
significantly after applying the Bonferroni adjustment to the family of 55 
tests, i.e., the individual computed t-value must be significant at <* = 
.05/55, resulting in a critical value of 3.368. The above t-values can also 
be compared to the critical value of 3.815, which is the critical value 
obtained from the Bonferroni method with a significance level of .01/55. 
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Table 20.--Paired T-Tests of Mean Difference in Classification 
Performance on Validation Samples for Training Samples ofsizL, 

25 and 50 Per Group for Configuration IH 

Method 

MSD4 MSD2 MIPS 

fMti iitil :$:S MM ^ ^ ^ 
-9.78 
-12.32 

8.73 
20.50 

12.78 
17.95 

1.25 
3.29 

9.17 
12.20 

-3.96 
-7.85 

7.05 
7.76 

" 7• 7 1 "19.39 "25.32 -70.21 -64.09 

9 * 4 7 * 01 -13.89 -51.86 -43.76 
1.72 

-0.90 
8.51 

•18.76 -29.25 -7.36 

-4.91 -9.48 
-10.63 0.54 

•7.15 
5.34 

Method 

MSD5 
lip 2 5 
njss 5 0 

MSD4 
11}=2 5 
np 50 

MSD2 
n}=25 
11}= 50 

MIPS 
11}=2 5 
11}=50 

MIP4 
rij=25 
11}=50 

MIP2 
n}=25 
nj=50 

HYB5 
n}=25 
11}=50 

HYB4 
rii=25 
rii=50 

HYB2 
iii=25 
21}=50 

LDF 
11}=2 5 
11}=50 

F-aTsSreiS Sr™ vi&xx srss 
be compaJer to

1tL 1Sriticar5alurof e3°815' 3 6h : "J0** t _ V a l u e s c a n a l s o 

obtained from the Bonferroni method with a'sigiificance 6!^! 1©? 1.^!/^. 

-9 .95 -20 .22 -62 .70 -67 .47 

-1 .02 -6 .55 -27 to
 

to
 

-25 .26 
7 .19 -5 .30 -33 .26 -33 .22 

-12. .91 -15 .43 -49 .23 -40 

o\ 
CO 

-19. ,48 -26 .22 -71 .11 -64 .67 

-8. 88 -13 , .15 -43 .27 -39 .74 
-9. 09 -20, .18 -61 .37 -60 

00 
vo 

-6. 55 -11. 27 -40, .98 -35, .28 
-0. 97 -13. 69 -56. .83 -58, .01 

-0. 27 -5. 96 -21. 41 -18. .33 
-4. 71 -12. 27 -39. 58 -38. 52 

-5. 52 -19. 07 -16. 41 
-13. 33 -50. 46 -64. 94 

-13. 61 -11. 26 
-31. 68 -35. 38 

-1. 01 
-4. 81 



125 

Table 21-Classification Models for Research Question 2 

Models Descriptions 

1. MIP1 MIP with maximize distance between 
projected means (Bounded Scores) 

2. MIP2 MIP with maximize distance between 
projected means (Bounded Coefficients) 

3. MIP3 MIP with maximize the minimum internal 
deviation (Bounded Coefficients) 

4. MIP4 MIP with minimize sum of the external 
deviations 
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Table 22.--Data Configurations for Research Question 2 

Configura-
tion 

First Population 

Mean 
Vector 

Covariance 
Matrix 

Second Population 

Mean 
Vector 

Covariance 
Matrix 

2A 1 0 
0 1 

1 0 
0 1. 

2B •1.414 
1.414 

1 0 
0 1 

1.414 
•1.414 

1 0 
0 1 

2C 4 0 
0 4 

1 0 
0 1 

2D 1 0 
0 1 

1 0 
0 1 

10% of observations from 

4 0 
0 4 

2E •1.414 
1.414 

1 0 
0 1, 

1.414 
-1.414 

1 0 
0 1 

10% of observations from 

•1.414 
1.414 

4 0 
0 4 

2F 1 0 
0 1 

10% of observations from 

1 0 
0 1 

10% of observations from 

•2 
0. 

4 0 
0 4. 

2 
0. 

4 0 
0 4. 
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Configura-
tion 

First Population 

Mean 
Vector 

Covariance 
Matrix 

Second Population 

Mean 
Vector 

Covariance 
Matrix 

2G -1.414 
1.414 

1 0 
0 1 

10% of observations from 

•1.414 
1.414 

4 0 
0 4 

1.414 
-1.414 

1 0 
0 1 

10% of observations from 

1.414 
•1.414 

4 0 
0 4 

2H - 2 

2 
1 0 
0 1, 

10% of observations from 

2 0 
0 2 

2 
- 2 

1 0 
0 1 

10% of observations from 

2 0 
0 2 

21 - 2 

2 
1 0 
0 1 

20% of observations from 

2 0 
0 2 

2 
-2 

1 0 
0 1 

20% of observations from 

2 0 
0 2 

2 J 4 0 
0 4 

4 0 
0 4 

10% of observations from 

1 0 
0 1 

2K -4 
0 

4 0 
0 4 

4 0 
0 4 

20% of observations from 

•5 
0. 

1 0 
0 1. 
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Configura-
tion 

First Population 

Mean 
Vector 

Covariance 
Matrix 

Second Population 

Mean 
Vector 

Covariance 
Matrix 

2L 1 0 
0 1 

15% of observations from 

25 0 
0 25 

1 0 
0 1 

15% of observations from 

3.5 
0 

25 0 
0 25 

2M 1 0 
0 1 

20% of observations from 

•2.5 
0 

9 0 
0 9 

1 0 
0 1 

20% of observations from 

5.5 
0 

9 0 
0 9 

2N 1 0 
0 1 

20% of observations from 

•2.5 
0 

. 01 0 
0 .01, 

1 0 
0 1 

20% of observations from 

5.5 
0 

. 01 0 
0 .01 
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Table 23.--Exact Misclassification Rates for 
Training Samples of Sizes 20 and 40 Per Group for 

Configuration 2A 

Method 
n, = n2 = 20 ni 1! 11 O

 

Method 
Mean STD Mean STD 

MIP1 3 .42 1.05 3 .08 0.80 

MIP2 6.14 2.66 4 .25 1.70 

MIP3 3.85 1.58 3 .38 1.07 

MIP4 3 . 94 1.82 3 .26 0.99 

Table 24.--Exact Misclassification Rates for 
Training Samples of Sizes 20 and 40 Per Group for 

Configuration 2B 

Method 

ni = ; n2 = 20 ni = n2 = 40 

Method 
Mean STD Mean STD 

MIP1 3 .29 1.11 3 .03 0.70 

MIP2 3 .81 2.02 3.02 0.89 

MIP3 3 .56 1.44 3 .18 0.98 

MIP4 3.86 1.61 3 .24 0.95 
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Table 25.--Exact Misclassification Rates for 
Training Samples of Sizes 20 and 40 Per Group for 

Configuration 2C 

Method 

n l = n2 = 20 il £ II o
 

Method 
Mean STD Mean STD 

MIP1 16 .74 2.07 16.18 1.35 

MIP2 18 .40 2.71 16.91 1.90 

MIP3 17.27 2.43 16.38 1.60 

MIP4 17.15 2.39 16.34 1.50 

Table 26.--Exact Misclassification Rates for 
Training Samples of Sizes 20 and 40 Per Group for 

Configuration 2D 

Method 

ni = n2 = 20 n, = n2 = 40 
Method 

Mean STD Mean STD 

MIP1 8.52 2.19 7.69 1.22 

MIP2 9.89 2.46 8.39 1.67 

MIP3 8.40 2.16 7.48 1.06 

MIP4 8.52 2.28 7.50 1.02 



Table 27.--Exact Misclassification Rates for 
Training Samples of Sizes 20 and 40 Per Group for 

Configuration 2E 
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ni = n2 = 20 ni il II o
 

Method 
Mean STD Mean STD 

MIP1 8.38 2.13 7.73 1.36 

MIP2 8.19 2.08 7.38 1.40 

MIP3 8.16 1.92 7.49 1.42 

MIP4 8.37 1. 93 7.54 1.42 

Table 28.--Exact Misclassification Rates for 
Training Samples of Sizes 20 and 40 Per Group for 

Configuration 2F 

Method 

ni = n2 = 20 = n2 = 40 

Method 
Mean STD Mean STD 

MIP1 5.47 1.96 4 .65 0 . 93 

MIP2 7.72 2.61 5.44 1.56 

MIP3 5.52 2.11 4.69 1.10 

MIP4 5.57 1.13 4 .61 0.97 
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Table 29.--Exact Misclassification Rates for 
Training Samples of Sizes 20 and 40 Per Group for 

Configuration 2G 

ni = n2 = 20 nt = n2 = 40 

Method 
Mean STD Mean STD 

MIP1 5.18 1.71 4.56 0.99 

MIP2 5.35 2.08 4.50 1.17 

MIP3 5.29 1.86 4.58 1.02 

MIP4 5.50 1.85 4.66 1.04 

Table 30.--Exact Misclassification Rates for 
Training Samples of Sizes 20 and 40 Per Group for 

Configuration 2H 

Method 

ni = n2 = 20 ni 

o
 il <N 
£
 ll 

Method 
Mean STD Mean STD 

MIP1 2.22 1.03 1.94 0 . 68 

MIP2 3.20 1.57 2.60 1.07 

MIP3 2 .47 1.30 2.19 0.83 

MIP4 2.74 1.79 2.29 0.93 
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Table 31.--Exact Misclassification Rates for 
Training Samples of Sizes 20 and 40 Per Group for 

Configuration 21 

n i = n2 = 20 II 1?
 II o
 

Method 
Mean STD Mean STD 

MIP1 3.37 1.21 2.92 0.70 

MIP2 4 .58 1.87 3 .49 1.07 

MIP3 3 .81 1.57 3 .15 0.87 

MIP4 3 . 90 1.65 3 .13 0 . 91 

Table 32.--Exact Misclassification Rates for 
Training Samples of Sizes 20 and 40 Per Group for 

Configuration 2J 

Method 
nt = n2 = 20 ni II P

 
N

) II O
 

Method 
Mean STD Mean STD 

MIP1 9.22 2.01 8.41 1.19 

MIP2 11.11 2.70 9.01 1.65 

MIP3 8.77 1.87 8.15 1.10 

MIP4 8.89 2.24 8.15 1.13 
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Table 33.--Exact Misclassification Rates for 
Training Samples of Sizes 20 and 40 Per Group for 

Configuration 2K 

Method 

nl = ; n2 = 20 ni II £
 II O
 

Method 
Mean STD Mean STD 

MIP1 14.43 2.05 13 .34 1. 07 

MIP2 15.99 2 .78 13.99 1.49 

MIP3 13.59 1.79 12.99 0.94 

MIP4 13.64 2.10 13 .03 1.02 

Table 34.--Exact Misclassification Rates for 
Training Samples of Sizes 20 and 40 Per Group for 

Configuration 2L 

Method 

ni = n2 = 20 ni = n2 = 40 
Method 

Mean STD Mean STD 

MIP1 13 .63 2.74 12.40 1.36 

MIP2 14.90 3.01 13 .10 1.93 

MIP3 13 .44 2.55 12.59 1.60 

MIP4 13 .44 2.57 12.52 1.55 



Table 35.--Exact Misclassification Rates for 
Training Samples of Sizes 20 and 4 0 Per Group for 

Configuration 2M 
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n, = n2 = 20 ni = n2 = 40 

Method 
Mean STD Mean STD 

MIP1 9.80 2.76 8.57 1.30 

MIP2 11.10 3 .10 9.15 1.68 

MIP3 9.69 2.62 8 .56 1.29 

MIP4 9.56 2.47 8.53 1.26 

Table 36.--Exact Misclassification Rates for 
Training Samples of Sizes 20 and 40 Per Group for 

Configuration 2N 

Method 

ni = n2 = = 20 ni Ii 2
 

N
> II O
 

Method 
Mean STD Mean STD 

MIP1 7.10 1.73 6.37 1.12 

MIP2 8.81 2.68 7.42 1.60 

MIP3 7.28 1.76 6.79 1.30 

MIP4 7.17 1.57 6 .67 1.25 
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Table 37.--Paired T-Tests of Mean Difference in Exact 
Misclassification Rates for Training Samples of Sizes 20 and 

40 Per Group for Configuration 2A 

Method 
Method 

MIP2 MIP3 MIP4 

MIPl 
n,- 20 
* 40 

-14.14 
-9.79 

-3.43 
-4.21 

-3.63 
-2.92 

MIP2 
n, « 20 
nt = 40 

13.99 
8.24 

12.94 
9.06 

MIP3 
nj = 20 
ns as 40 

-1.22 
2.84 

Note: A positive (negative) t-value in position (i,j) of the table 
indicates that the mean misclassification rate of method i is higher 
(lower) than that of method j. Underlined t-values indicate pairs of 
means that differ significantly after applying the Bonferroni adjustment 
to the family of 6 tests, i.e., the individual computed t-value must be 
significant at <* = .05/6, resulting in a critical value of 2.665. The 
above t-values can also be compared to the critical value of 3.187, 
which is the critical value obtained from the Bonferroni method with a 
significance level of .01/6. 
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Table 38.--Paired T-Tests of Mean Difference in Exact 
Misclassification Rates for Training Samples of Sizes 20 and 

4 0 Per Group for Configuration 2B 

Method 
Method 

Method 
MIP2 MIP3 MIP4 

MIPl 
nj= 20 
nx = 40 

-3.50 
0.27 

-2.50 
-2.51 

-5.11 
-3.54 

MIP2 
n, = 20 
n4 = 40 

1.64 
-2.40 

-0.26 
-3 .32 

MIP3 
nx « 20 
nj = 40 

-3.85 
-1.62 

Note: A positive (negative) t-value in position (i,j) of the table 
indicates that the mean misclassification rate of method i is higher 
(lower) than that of method j. Underlined t-values indicate pairs of 
means that differ significantly after applying the Bonferroni adjustment 
to the family of 6 tests, i.e., the individual computed t-value must be 
significant at « s .05/6, resulting in a critical value of 2.665. The 
above t-values can also be compared to the critical value of 3.187, 
which is the critical value obtained from the Bonferroni method with a 
significance level of .01/6. 
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Table 39.--Paired T-Tests of Mean Difference in Exact 
Misclassification Rates for Training Samples of Sizes 20 

40 Per Group for Configuration 2C 
and 

Method 
Method 

MIP2 MIP3 MIP4 

MIPl 
= 20 
= 40 

-9.72 
-7.56 

-4.46 
-2.74 

-3.25 
-2.44 

MIP2 
= 20 
= 40 

6.90 
6.55 

7.64 
6.56 

MIP3 

n* 
= 20 
= 40 

2.07 
1.21 

Note: A positive (negative) t-value in position (i,j) of the table 
indicates that the mean misclassification rate of method i is higher 
(lower) than that of method j. Underlined t-values indicate pairs of 
means that differ significantly after applying the Bonferroni adjustment 
to the family of 6 tests, i.e., the individual computed t-value must be 
significant at « = .05/6, resulting in a critical value of 2.665. The 
above t-values can also be compared to the critical value of 3.187, 
which is the critical value obtained from the Bonferroni method with a 
significance level of .01/6. 
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Table 40.--Paired T-Tests of Mean Difference in Exact 
Misclassification Rates for Training Samples of Sizes 20 

4 0 Per Group for Configuration 2D 
and 

Method 
Method 

MIP2 MIP3 MIP4 

MIPl 
n{= 20 
nj= 40 

-7.64 
-6.31 

0.98 
2.66 

0.01 
2.43 

MIP2 
n* - 20 
n{ = 40 

9.70 
8.14 

9.03 
8.16 

MIP3 
n, « 20 
nj = 40 

-2.32 
-0.36 

Note: A positive (negative) t-value in position (i,j) of the table 
indicates that the mean misclassification rate of method i is higher 
(lower) than that of method j. Underlined t-values indicate pairs of 
means that differ significantly after applying the Bonferroni adjustment 
to the family of 6 tests, i.e., the individual computed t-value must be 
significant at <* = .05/6, resulting in a critical value of 2.665. The 
above t-values can also be compared to the critical value of 3.187, 
which is the critical value obtained from the Bonferroni method with a 
significance level of .01/6. 
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Table 41.--Paired T-Tests of Mean Difference in Exact 
Misclassification Rates for Training Samples of Sizes 20 and 

40 Per Group for Configuration 2E 

Method 
Method 

MIP2 MIP3 MIP4 

MIPl 
IXt as 20 
nj = 40 

1.08 
3.49 

1.40 
2.28 

0.05 
1.82 

MIP2 
nj = 20 
^ = 40 

0.16 
-1.21 

-1.17 
-1.77 

MIP3 
n} = 20 
n} * 40 

-3.54 
-2.67 

Note: A positive (negative) t-value in position (i,j) of the table 
indicates that the mean misclassification rate of method i is higher 
(lower) than that of method j. Underlined t-values indicate pairs of 
means that differ significantly after applying the Bonferroni adjustment 
to the family of 6 tests, i.e., the individual computed t-value must be 
significant at « = .05/6, resulting in a critical value of 2.665. The 
above t-values can also be compared to the critical value of 3.187, 
which is the critical value obtained from the Bonferroni method with a 
significance level of .01/6. 



141 

Table 42.--Paired T-Tests of Mean Difference in Exact 
Misclassification Rates for Training Samples of Sizes 20 

40 Per Group for Configuration 2F 
and 

Method 
Method 

MIP2 MIP3 MIP4 

MIPl 
nj= 20 
rij = 40 

-11.36 
-7.55 

-0.36 
-0.61 

-0.79 
0.59 

MIP2 
rij = 20 
rij = 40 

13.06 
8.63 

12.24 
9.40 

MIP3 
n{ = 20 
rij = 40 

-0.54 
1.87 

Note: A positive (negative) t-value in position (i,j) of the table 
indicates that the mean misclassification rate of method i is higher 
(lower) than that of method j. Underlined t-values indicate pairs of 
means that differ significantly after applying the Bonferroni adjustment 
to the family of 6 tests, i.e., the individual computed t-value must be 
significant at « = .05/6, resulting in a critical value of 2.665. The 
above t-values can also be compared to the critical value of 3.187, 
which is the critical value obtained from the Bonferroni method with a 
significance level of .01/6. 
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Table 43.--Paired T-Tests of Mean Difference in Exact 
Misclassification Rates for Training Samples of Sizes 20 

4 0 Per Group for Configuration 2G 
and 

Method 
Method 

MIP2 MIP3 MIP4 

MIPl 
ni= 20 
nj= 40 

-1.12 
0.79 

-0.72 
-0.18 i 

i 
h

 
to

 
to

 t
o

 
to

 t
o

 

MIP2 
n{ = 20 
nt = 40 

0.36 
-0.96 1 

1 
H
 O
 

VO
 0
0 

t
f
*
 <

1 

MIP3 
n{ as 20 
nj = 40 

-2.78 
-2.49 

Note: A positive (negative) t-value in position (i,j) of the table 
indicates that the mean misclassification rate of method i is higher 
(lower) than that of method j. Underlined t-values indicate pairs of 
means that differ significantly after applying the Bonferroni adjustment 
to the family of 6 tests, i.e., the individual computed t-value must be 
significant at <* » .05/6, resulting in a critical value of 2.665. The 
above t-values can also be compared to the critical value of 3.187, 
which is the critical value obtained from the Bonferroni method with a 
significance level of .01/6. 
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Table 44.--Paired T-Tests of Mean Difference in Exact 
Misclassification Rates for Training Samples of Sizes 20 

40 Per Group for Configuration 2H 
and 

Method 
Method 

MIP2 MIP3 MIP4 

MIPl 
ns= 20 
ni== 40 

-8.39 
-8.38 

-3.06 
-4.47 

-4.46 
-5.87 

MIP2 
nj = 20 

as 40 
5.53 
5.28 

2.97 
3.53 

MIP3 
lit = 20 
n} as 40 

-3.22 
-2.61 

Note: A positive (negative) t-value in position (i,j) of the table 
indicates that the mean misclassification rate of method i is higher 
(lower) than that of method j. Underlined t-values indicate pairs of 
means that differ significantly after applying the Bonferroni adjustment 
to the family of 6 tests, i.e., the individual computed t-value must be 
significant at <* = .05/6, resulting in a critical value of 2.665. The 
above t-values can also be compared to the critical value of 3.187, 
which is the critical value obtained from the Bonferroni method with a 
significance level of .01/6. 
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Table 45.--Paired T-Tests of Mean Difference in Exact 
Misclassification Rates for Training Samples of Sizes 20 and 

40 Per Group for Configuration 21 

Method 
Method 

MIP2 MIP3 MIP4 

MIPl 
n* 

II 
II to
 

o
 o
 

-8.87 
-7.99 

-4.15 
-4.60 

-4.86 
-3.24 

MIP2 

Hi 
= 20 
= 40 

5.41 
5.17 

4.62 
4.79 

MIP3 
n} 
Hi 

= 20 
= 40 

-1.62 
0.57 

Note: A positive (negative) t-value in position (i, j) of the table 
indicates that the mean misclassification rate of method i is higher 
(lower) than that of method j. Underlined t-values indicate pairs of 
means that differ significantly after applying the Bonferroni adjustment 
to the family of 6 tests, i.e., the individual computed t-value must be 
significant at « = .05/6, resulting in a critical value of 2.665. The 
above t-values can also be compared to the critical value of 3.187, 
which is the critical value obtained from the Bonferroni method with a 
significance level of .01/6. 
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Table 46.--Paired T-Tests of Mean Difference in Exact 
Misclassification Rates for Training Samples of Sizes 20 and 

40 Per Group for Configuration 2J 

Method 
Method 

Method 
MIP2 MIP3 MIP4 

MIPl 
ni= 20 
n} ss 40 

-9.89 
-5.86 

3.37 
3.21 

2.17 
3 .15 

MIP2 
n, = 20 
nj = 40 

13.51 
8.89 

12.05 
8.90 

MIP3 
n} = 20 
n} = 40 

-1.90 
0.09 

Note: A positive (negative) t-value in position (i,j) of the table 
indicates that the mean misclassification rate of method i is higher 
(lower) than that of method j. Underlined t-values indicate pairs of 
means that differ significantly after applying the Bonferroni adjustment 
to the family of 6 tests, i.e., the individual computed t-value must be 
significant at « = .05/6, resulting in a critical value of 2.665. The 
above t-values can also be compared to the critical value of 3.187, 
which is the critical value obtained from the Bonferroni method with a 
significance level of .01/6. 
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Table 47.--Paired T-Tests of Mean Difference in Exact 
Misclassification Rates for Training Samples of Sizes 20 

40 Per Group for Configuration 2K 
and 

Method 
Method 

MIP2 MIP3 MIP4 

MIPl 
Hi = 20 
= 40 

-8.64 
-5.97 

5.78 
4.19 

5.05 
3.56 

MIP2 
n* 

o
 
o
 

04 ̂
 

II 
II 

12.68 
11.08 

11.70 
10.65 

MIP3 
Hi = 20 

« 40 

-0.86 
-1.65 

Note: A positive (negative) t-value in position (i,j) of the table 
indicates that the mean misclassification rate of method i is higher 
(lower) than that of method j . Underlined t-values indicate pairs of 
means that differ significantly after applying the Bonferroni adjustment 
to the family of 6 tests, i.e., the individual computed t-value must be 
significant at « = .05/6, resulting in a critical value of 2.665. The 
above t-values can also be compared to the critical value of 3.187, 
which is the critical value obtained from the Bonferroni method with a 
significance level of .01/6. 
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Table 48.--Paired T-Tests of Mean Difference in Exact 
Misclassification Rates for Training Samples of Sizes 20 and 

40 Per Group for Configuration 2L 

Method 
Method 

MIP2 MIP3 MIP4 

MIPl 
111= 20 
rij = 40 

-7.51 
-6.60 

1.34 
-2.02 

1.28 
-1.34 

MIP2 
rij s 20 
rij « 40 

9.50 
5.98 

9.32 
6.35 

MIP3 
n{ = 20 
II4 as 40 

0.02 
1.80 

Note: A positive (negative) t-value in position (i,j) of the table 
indicates that the mean misclassification rate of method i is higher 
(lower) than that of method j. Underlined t-values indicate pairs of 
means that differ significantly after applying the Bonferroni adjustment 
to the family of 6 tests, i.e., the individual computed t-value must be 
significant at « = .05/6, resulting in a critical value of 2.665. The 
above t-values can also be compared to the critical value of 3.187, 
which is the critical value obtained from the Bonferroni method with a 
significance level of .01/6. 
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Table 49.--Paired T-Tests of Mean Difference in Exact 
Misclassification Rates for Training Samples of Sizes 20 and 

40 Per Group for Configuration 2M 

Method 
Method 

MIP2 MIP3 MIP4 

MIPl 
ni== 20 
nt = 40 

-7.00 
-5.23 

0.64 
0.13 

1.36 
0.49 

MIP2 
n} = 20 
n4 « 40 

7.60 
5.54 

8.45 
6.21 

MIP3 
n{ = 20 
IXj = 40 

1.59 
0.71 

Note: A positive (negative) t-value in position (i, j) of the table 
indicates that the mean misclassif ication rate of method i is higher 
(lower) than that of method j. Underlined t-values indicate pairs of 
means that differ significantly after applying the Bonferroni adjustment 
to the family of 6 tests, i.e., the individual computed t-value must be 
significant at <* = .05/6, resulting in a critical value of 2.665. The 
above t-values can also be compared to the critical value of 3.187, 
which is the critical value obtained from the Bonferroni method with a 
significance level of .01/6. 
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Table 50.--Paired T-Tests of Mean Difference in Exact 
Misclassification Rates for Training Samples of Sizes 20 and 

40 Per Group for Configuration 2N 

Method 
Method 

MIP2 MIP3 MIP4 

MIPl 
nta 20 
ni= 40 

-10.09 
-10.99 

-1.57 
-5.98 

-0.73 
-4.99 

MIP2 
n, = 20 
nj = 40 

10.10 
6.55 

10.00 
7.60 

MIP3 
^ = 20 
^ = 40 

1.59 
3 .35 

Note: A positive (negative) t-value in position (i,j) of the table 
indicates that the mean misclassification rate of method i is higher 
(lower) than that of method j. Underlined t-values indicate pairs of 
means that differ significantly after applying the Bonferroni adjustment 
to the family of 6 tests, i.e., the individual computed t-value must be 
significant at <* = .05/6, resulting in a critical value of 2.665. The 
above t-values can also be compared to the critical value of 3.187, 
which is the critical value obtained from the Bonferroni method with a 
significance level of .01/6. 
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Table 51.--Values of Skewness and Kurtosis Measures for 
Various Settings of Mean (fi) and Standard Deviation (a) with 

Contaminating Fraction (e) =0.01 

M 0 
Skew-
ness 

Kurto-
sis M a Skew-

ness 
Kurto-
sis 

0.5 0 .1 -0.0136 3.0155 2.0 0 .1 0.0180 2.9506 
0.5 0 .5 -0.0100 3.0064 2.0 0 .5 0.0315 2.9916 
0.5 1 .0 0.0012 3.0006 2.0 1 .0 0.0732 3.1379 
0.5 1 .5 0.0193 3.0633 2.0 1 .5 0.1407 3.4395 
0.5 2 .0 0.0436 3.2923 2.0 2 . 0 0.2313 3.9745 
0.5 2 .5 0.0731 3 .8047 2.0 2 .5 0.3413 4.8362 
0.5 3 .0 0.1066 4.7220 2.0 3 .0 0 .4666 6.1213 
0.5 3 .5 0.1429 6.1558 2.0 3 .5 0.6032 7.9177 
0.5 4 .0 0.1810 8.1960 2.0 4 . 0 0.7465 10.2955 
0.5 4 .5 0.2198 10.9039 2.0 4 .5 0.8928 13 .3006 
0.5 5 . 0 0.2582 14.3083 2.0 5 .0 1.0385 16.9519 
0.5 5 .5 0.2956 18.4067 2.0 5 .5 1.1806 21.2419 
0.5 6 .0 0.3312 23.1687 2.0 6 .0 1.3166 26.1390 

1.0 0 .1 -0.0197 2.9808 2.5 0 .1 0.0724 3.0295 
1.0 0 .5 -0.0125 2.9824 2.5 0 .5 0.0886 3.0968 
1.0 1 .0 0.0096 3.0091 2.5 1 .0 0.1385 3.3226 
1.0 1 .5 0.0453 3.1229 2.5 1 .5 0.2195 3.7493 
1.0 2 .0 0.0932 3.4173 2.5 2 .0 0.3281 4.4448 
1.0 2 .5 0.1513 4.0043 2.5 2 .5 0.4602 5.4902 
1.0 3 .0 0.2173 5.0000 2.5 3 .0 0.6110 6.9690 
1.0 3 .5 0.2891 6.5110 2.5 3 .5 0.7755 8.9570 
1.0 4 .0 0.3644 8.6230 2.5 4 .0 0.9485 11.5137 
1.0 4 .5 0.4410 11.3939 2.5 4 .5 1.1253 14.6769 
1.0 5 .0 0.5170 14.8506 2.5 5 .0 1.3017 18.4600 
1.0 5 .5 0.5910 18.9896 2.5 5 .5 1.4741 22.8524 
1.0 6 .0 0.6616 23.7801 2.5 6 .0 1.6394 27.8221 

1.5 0 .1 -0.0112 2.9479 3.0 0 .1 0.1550 3.2273 
1.5 0 .5 -0.0007 2.9666 3.0 0 .5 0.1735 3.3232 
1.5 1 .0 0.0317 3.0451 3.0 1 .0 0.2305 3.6359 
1.5 1 .5 0.0840 3.2403 3.0 1 .5 0.3229 4.1994 
1.5 2 .0 0.1542 3.6388 3.0 2 .0 0.4471 5.0707 
1.5 2 .5 0.2393 4.3448 3.0 2 .5 0.5983 6.3174 
1.5 3 .0 0.3363 5.4656 3.0 3 .0 0.7711 8.0090 
1.5 3 .5 0.4417 7.0999 3.0 3 .5 0.9599 10.2079 
1.5 4 . 0 0.5523 9.3267 3.0 4 .0 1.1589 12.9620 
1.5 4 .5 0.6650 12.1986 3.0 4 .5 1.3627 16.3000 
1.5 5 .0 0.7770 15.7392 3.0 5 .0 1.5665 20.2291 
1.5 5 .5 0.8861 19.9431 3.0 5 .5 1.7661 24.7353 
1.5 6 .0 0.9903 24.7795 3.0 6 . 0 1.9581 29.7858 



T a b l e 5 1 . - - C o n t i n u e d . 
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M a Skew-
n e s s 

K u r t o -
s i s 

i £7 
S k e w -
n e s s 

K u r t o -
s i s 

3 . 5 0 . 1 0 . 2 6 7 2 3 . 5 8 3 3 5 . 0 0 . 1 0 . 7 7 4 1 5 . 8 7 8 1 
3 . 5 0 . 5 0 . 2 8 7 6 3 . 7 0 8 8 5 . 0 0 . 5 0 . 7 9 7 6 6 . 0 8 6 1 
3 . 5 1 . 0 0 . 3 5 0 3 4 . 1 1 1 4 5 . 0 1 . 0 0 . 8 7 0 4 6 . 7 3 9 7 
3 . 5 1 . 5 0 . 4 5 2 2 4 . 8 1 6 6 5 . 0 1 . 5 0 . 9 8 8 7 7 . 8 4 1 0 
3 . 5 2 . 0 0 . 5 8 9 2 5 . 8 7 0 0 5 . 0 2 . 0 1 . 1 4 8 4 9 . 4 0 5 1 
3 . 5 2 . 5 0 . 7 5 6 3 7 . 3 2 5 7 5 . 0 2 . 5 1 . 3 4 4 2 1 1 . 4 4 9 0 
3 . 5 3 . 0 0 . 9 4 7 6 9 . 2 3 8 8 5 . 0 3 . 0 1 . 5 6 9 6 1 3 . 9 8 7 7 
3 . 5 3 . 5 1 . 1 5 6 9 1 1 . 6 5 7 6 5 . 0 3 . 5 1 . 8 1 8 0 1 7 . 0 3 0 6 
3 . 5 4 . 0 1 . 3 7 8 0 1 4 . 6 1 8 0 5 . 0 4 . 0 2 . 0 8 2 4 2 0 . 5 7 9 0 
3 . 5 4 . 5 1 . 6 0 5 1 1 8 . 1 3 9 1 5 . 0 4 . 5 2 . 3 5 6 1 2 4 . 6 2 4 3 
3 . 5 5 . 0 1 . 8 3 2 7 2 2 . 2 2 1 6 5 . 0 5 . 0 2 . 6 3 3 0 2 9 . 1 4 7 0 
3 . 5 5 . 5 2 . 0 5 6 2 2 6 . 8 4 7 6 5 . 0 5 . 5 2 . 9 0 7 4 3 4 . 1 1 7 3 
3 . 5 6 . 0 2 . 2 7 1 8 3 1 . 9 8 3 1 5 . 0 6 . 0 3 . 1 7 4 8 3 9 . 4 9 6 0 

4 . 0 0 . 1 0 . 4 0 8 9 4 . 1 3 0 3 5 . 5 0 . 1 0 . 9 9 1 8 7 . 0 9 3 1 
4 . 0 0 . 5 0 . 4 3 0 7 4 . 2 8 5 0 5 . 5 0 . 5 1 . 0 1 5 8 7 . 3 2 3 6 
4 . 0 1 . 0 0 . 4 9 8 0 4 . 7 7 6 5 5 . 5 1 . 0 1 . 0 8 9 7 8 . 0 4 6 1 
4 . 0 1 . 5 0 . 6 0 7 3 5 . 6 2 1 8 5 . 5 1 . 5 1 . 2 1 0 0 9 . 2 5 6 1 
4 . 0 2 . 0 0 . 7 5 4 4 6 . 8 5 5 7 5 . 5 2 . 0 1 . 3 7 2 7 1 0 . 9 6 1 0 
4 . 0 2 . 5 0 . 9 3 4 1 8 . 5 1 8 9 5 . 5 2 . 5 1 . 5 7 2 4 1 3 . 1 6 7 4 
4 . 0 3 . 0 1 . 1 4 0 2 1 0 . 6 5 2 3 5 . 5 3 . 0 1 . 8 0 2 8 1 5 . 8 7 9 5 
4 . 0 3 . 5 1 . 3 6 6 2 1 3 . 2 9 0 4 5 . 5 3 . 5 2 . 0 5 7 4 1 9 . 0 9 6 0 
4 . 0 4 . 0 1 . 6 0 5 6 1 6 . 4 5 7 0 5 . 5 4 . 0 2 . 3 2 9 1 2 2 . 8 0 8 5 
4 . 0 4 . 5 1 . 8 5 2 0 2 0 . 1 6 1 7 5 . 5 4 . 5 2 . 6 1 1 2 2 7 . 0 0 0 2 
4 . 0 5 . 0 2 . 0 9 9 7 2 4 . 3 9 8 1 5 . 5 5 . 0 2 . 8 9 7 5 3 1 . 6 4 5 8 
4 . 0 5 . 5 2 . 3 4 3 6 2 9 . 1 4 4 6 5 . 5 5 . 5 3 . 1 8 2 3 3 6 . 7 1 1 5 
4 . 0 6 . 0 2 . 5 7 9 6 34 . 3 6 5 5 5 . 5 6 . 0 3 . 4 6 0 7 4 2 . 1 5 6 4 

4 . 5 0 . 1 0 . 5 7 8 7 4 . 8 9 1 1 6 . 0 0 . 1 1 . 2 2 8 3 8 . 5 2 8 1 
4 . 5 0 . 5 0 . 6 0 1 6 5 . 0 7 3 6 6 . 0 0 . 5 1 . 2 5 2 3 8 . 7 7 8 0 
4 . 5 1 . 0 0 . 6 7 2 2 5 . 6 4 9 6 6 . 0 1 . 0 1 . 3 2 6 6 9 . 5 5 9 5 
4 . 5 1 . 5 0 . 7 8 6 8 6 . 6 2 8 3 6 . 0 1 . 5 1 . 4 4 7 5 1 0 . 8 6 2 9 
4 . 5 2 . 0 0 . 9 4 1 5 8 . 0 3 4 2 6 . 0 2 . 0 1 . 6 1 1 2 1 2 . 6 8 8 6 
4 . 5 2 . 5 1 . 1 3 0 6 9 . 8 9 5 6 6 . 0 2 . 5 1 . 8 1 2 6 1 5 . 0 3 4 7 
4 . 5 3 . 0 1 . 3 4 8 1 1 2 . 2 3 9 7 6 . 0 3 . 0 2 . 0 4 5 4 1 7 . 8 9 6 0 
4 . 5 3 . 5 1 . 5 8 7 0 1 5 . 0 8 8 2 6 . 0 3 . 5 2 . 3 0 3 2 2 1 . 2 6 1 9 
4 . 5 4 . 0 1 . 8 4 0 7 1 8 . 4 5 3 0 6 . 0 4 . 0 2 . 5 7 9 2 2 5 . 1 1 5 4 
4 . 5 4 . 5 2 . 1 0 2 6 2 2 . 3 3 4 3 6 . 0 4 . 5 2 . 8 6 6 6 2 9 . 4 3 2 9 
4 . 5 5 . 0 2 . 3 6 6 7 2 6 . 7 1 9 3 6 . 0 5 . 0 3 . 1 5 9 3 3 4 . 1 8 3 4 
4 . 5 5 . 5 2 . 6 2 7 6 3 1 . 5 8 1 9 6 . 0 5 . 5 3 . 4 5 1 5 3 9 . 3 2 9 7 
4 . 5 6 . 0 2 . 8 8 0 9 3 6 . 8 8 5 0 6 . 0 6 . 0 3 . 7 3 8 2 44 . 8 2 9 1 
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Table 52.--Values of Skewness and Kurtosis Measures for 
Various Settings of Mean (fi) and Standard Deviation (a) with 

Contaminating Fraction (e) =0.05 

0 
0, 
0, 
0. 
0, 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 

1.0 
1.0 
1.0 
1.0 
1.0 
1.0 
1 
1 
1 
1, 
1. 
1. 
1. 

1. 
1. 
1. 
1. 
1. 
1. 
1. 
1. 
1. 
1. 
1. 
1. 
1. 

.0 

. 0 

.0 

. 0 

. 0 

. 0 

.0 

5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 

a 

5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 

0 
0 
1 
1. 
2 . 
2 . 

3 . 
3 . 
4. 
4. 
5. 
5. 
6. 

0. 
0. 
1. 
1. 
2 . 
2 . 
3 . 
3 . 
4 . 
4 . 
5. 
5. 
6 . 

0. 
0 
1. 
1, 
2 . 
2. 
3 . 
3 . 
4 . 
4 . 
5. 
5 . 
6. 

1 
5 
0 
5 
0 
5 
0 
5 
0 
5 
0 
5 
0 

.1 

.5 

.0 

.5 

. 0 

.5 

. 0 

.5 

. 0 

.5 
,0 

.5 
0 

1 
5 
0 
5 
0 
5 
0 
5 
0 
5 
0 
5 
0 

Skew-
ness 

0 
0, 

•0.0691 
•0.0500 

0052 
0848 

0.1749 
0.2637 
0.3430 
0.4085 
0.4593 
0.4963 
0.5214 
0.5368 
0.5445 

-0.0986 
-0.0632 
0.0399 
0.1889 
0.3589 
0.5275 
0.6791 
0.8057 
0.9047 
0.9776 
1.0277 
1.0589 
1.0751 

-0.0619 
-0.0145 
0.1239 
0.3254 
0.5575 
0.7903 
1.0024 
1.1818 
1.3242 
1.4307 
1.5053 
1.5531 
1.5792 

Kurto-
sis 

a Skew-
ness 

Kurto-
sis 

3.0845 2 .0 0 .1 0.0491 2.7442 
3.0360 2 .0 0 .5 0.1037 2.8901 
3.0021 2 .0 1 .0 0.2635 3.3837 
3.2642 2 .0 1 .5 0.4981 4.3058 
4.0941 2 .0 2 .0 0.7717 5.7311 
5.6271 2 .0 2 .5 1.0501 7.6724 
7.8335 2 .0 3 .0 1.3078 10.0691 

10.5681 2 . 0 3 .5 1.5294 12.8074 
13.6393 2 .0 4 .0 1.7087 15.7527 
16.8634 2 .0 4 .5 1.8455 18.7770 
20.0921 2 . 0 5 .0 1.9438 21.7755 
23.2196 2 .0 5 .5 2.0089 24.6710 
26.1791 2 .0 6 .0 2.0466 27.4130 

2.9194 2 .5 0 .1 0.2263 2.9224 
2.9233 2 .5 0 .5 0.2836 3.1289 
3.0310 2 .5 1 .0 0.4523 3.7888 
3.4685 2 .5 1 .5 0.7024 4.9228 
4.4546 2 .5 2 .0 0.9979 6.5437 
6.0932 2 .5 2 .5 1.3035 8.6220 
8.3483 2 .5 3 .0 1.5915 11.0822 

11.0841 2, .5 3 , .5 1.8442 13 .8169 
14.1247 2 , .5 4 . .0 2.0529 16.7089 
17.3008 2 . .5 4, .5 2.2160 19.6495 
20.4749 2 . .5 5. .0 2.3364 22.5499 
23.5480 2. ,5 5. .5 2.4191 25.3447 
26.4569 2. ,5 6. ,0 2.4700 27.9906 

2.7677 3 . .0 0. .1 0.4519 3 .3187 
2.8419 3 . 0 0. 5 0.5087 3.5692 
3.1403 3 . 0 1. 0 0.6768 4.3500 
3.8161 3. 0 1. 5 0.9284 5.6392 
5.0167 3 . 0 2. 0 1.2299 7.4038 
6.8020 3 . 0 2. 5 1.5469 9.5818 
9.1255 3 . 0 3. 0 1.8515 12.0842 

11.8631 3 . 0 3 . 5 2.1244 14.8070 
14.8595 3 . 0 4 . 0 2.3549 17.6453 
17.9655 3 . 0 4 . 5 2.5396 20.5058 
21.0588 3 . 0 5. 0 2.6800 23 .3128 
24.0508 3 . 0 5. 5 2.7801 26.0112 
26.8839 3 . 0 6. 0 2.8454 28 .5644 
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a Skew-
n e s s 

K u r t o -
s i s 

a Skew-
n e s s 

K u r t o -
s i s 

3 . 5 0 . 1 0 . 7 0 6 0 3 . 9 0 5 2 5 . 0 0 . 1 1 . 4 8 3 7 6 . 2 8 5 4 
3 . 5 0 . 5 0 . 7 6 0 1 4 . 1 8 2 4 5 . 0 0 . 5 1 . 5 2 5 6 6 . 5 6 8 9 
3 . 5 1 . 0 0 . 9 2 1 3 5 . 0 3 6 7 5 . 0 1 . 0 1 . 6 5 1 7 7 . 4 3 5 9 
3 . 5 1 . 5 1 . 1 6 4 9 6 . 4 1 9 7 5 . 0 1 . 5 1 . 8 4 7 2 8 . 8 2 0 2 
3 . 5 2 . 0 1 . 4 6 0 7 8 . 2 6 9 5 5 . 0 2 . 0 2 . 0 9 3 4 1 0 . 6 4 0 4 
3 . 5 2 . 5 1 . 7 7 7 1 1 0 . 5 0 2 2 5 . 0 2 . 5 2 . 3 6 8 9 1 2 . 7 9 9 2 
3 . 5 3 . 0 2 . 0 8 7 0 1 3 . 0 1 9 1 5 . 0 3 . 0 2 . 6 5 3 4 1 5 . 1 9 4 9 
3 . 5 3 . 5 2 . 3 7 0 5 1 5 . 7 1 7 7 5 . 0 3 . 5 2 . 9 2 9 5 1 7 . 7 3 0 9 
3 . 5 4 . 0 2 . 6 1 5 7 1 8 . 5 0 1 4 5 . 0 4 . 0 3 . 1 8 4 2 2 0 . 3 2 2 8 
3 . 5 4 . 5 2 . 8 1 7 2 2 1 . 2 8 7 1 5 . 0 4 . 5 3 . 4 0 9 1 2 2 . 9 0 1 5 
3 . 5 5 . 0 2 . 9 7 4 8 2 4 . 0 0 9 3 5 . 0 5 . 0 3 . 5 9 9 8 2 5 . 4 1 4 2 
3 . 5 5 . 5 3 . 0 9 1 4 2 6 . 6 2 0 6 5 . 0 5 . 5 3 . 7 5 4 9 2 7 . 8 2 3 4 
3 . 5 6 . 0 3 . 1 7 1 6 2 9 . 0 8 9 8 5 . 0 6 . 0 3 . 8 7 5 6 3 0 . 1 0 4 6 

4 . 0 0 . 1 0 . 9 7 0 8 4 . 6 3 0 7 5 . 5 0 . 1 1 . 7 1 7 8 7 . 1 2 9 4 
4 . 0 0 . 5 1 . 0 2 1 2 4 . 9 2 0 0 5 . 5 0 . 5 1 . 7 5 5 6 7 . 4 0 1 4 
4 . 0 1 . 0 1 . 1 7 1 8 5 . 8 0 6 8 5 . 5 1 . 0 1 . 8 6 9 7 8 . 2 3 3 4 
4 . 0 1 . 5 1 . 4 0 1 6 7 . 2 2 9 1 5 . 5 1 . 5 2 . 0 4 8 0 9 . 5 6 3 2 
4 . 0 2 . 0 1 . 6 8 4 3 9 . 1 0 9 7 5 . 5 2 . 0 2 . 2 7 4 6 1 1 . 3 1 4 2 
4 . 0 2 . 5 1 . 9 9 1 6 1 1 . 3 5 3 0 5 . 5 2 . 5 2 . 5 3 1 5 1 3 . 3 9 4 5 
4 . 0 3 . 0 2 . 2 9 8 3 1 3 . 8 5 5 3 5 . 5 3 . 0 2 . 8 0 0 8 1 5 . 7 0 7 8 
4 . 0 3 . 5 2 . 5 8 4 7 1 6 . 5 1 4 9 5 . 5 3 . 5 3 . 0 6 6 6 1 8 . 1 6 2 2 
4 . 0 4 . 0 2 . 8 3 8 1 1 9 . 2 4 0 5 5 . 5 4 . 0 3 . 3 1 6 6 2 0 . 6 7 6 7 
4 . 0 4 . 5 3 . 0 5 1 7 2 1 . 9 5 5 9 5 . 5 4 . 5 3 . 5 4 2 0 2 3 . 1 8 4 4 
4 . 0 5 . 0 3 . 2 2 3 5 2 4 . 6 0 2 3 5 . 5 5 . 0 3 . 7 3 7 5 2 5 . 6 3 4 0 
4 . 0 5 . 5 3 . 3 5 5 1 2 7 . 1 3 7 3 5 . 5 5 . 5 3 . 9 0 0 9 2 7 . 9 8 8 3 
4 . 0 6 . 0 3 . 4 4 9 8 2 9 . 5 3 3 6 5 . 5 6 . 0 4 . 0 3 2 1 3 0 . 2 2 2 6 

4 . 5 0 . 1 1 . 2 3 3 0 5 . 4 4 0 2 6 . 0 0 . 1 1 . 9 3 2 8 7 . 9 4 6 6 
4 . 5 0 . 5 1 . 2 7 9 1 5 . 7 3 0 4 6 . 0 0 . 5 1 . 9 6 6 8 8 . 2 0 4 2 
4 . 5 1 . 0 1 . 4 1 7 6 6 . 6 1 8 3 6 . 0 1 . 0 2 . 0 6 9 8 8 . 9 9 3 3 
4 . 5 1 . 5 1 . 6 3 0 8 8 . 0 3 7 0 6 . 0 1 . 5 2 . 2 3 1 8 1 0 . 2 5 6 7 
4 . 5 2 . 0 1 . 8 9 6 1 9 . 9 0 3 9 6 . 0 2 . 0 2 . 4 3 9 5 1 1 . 9 2 4 6 
4 . 5 2 . 5 2 . 1 8 9 0 1 2 . 1 1 9 8 6 . 0 2 . 5 2 . 6 7 7 7 1 3 . 9 1 2 7 
4 . 5 3 . 0 2 . 4 8 6 5 1 4 . 5 8 0 2 6 . 0 3 . 0 2 . 9 3 0 8 1 6 . 1 3 1 3 
4 . 5 3 . 5 2 . 7 6 9 9 1 7 . 1 8 5 4 6 . 0 3 . 5 3 . 1 8 4 6 1 8 . 4 9 4 4 
4 . 5 4 . 0 3 . 0 2 6 2 1 9 . 8 4 7 5 6 . 0 4 . 0 3 . 4 2 7 5 20 . 9247 
4 . 5 4 . 5 3 . 2 4 7 3 2 2 . 4 9 4 8 6 . 0 4 . 5 3 . 6 5 0 6 2 3 . 3 5 8 1 
4 . 5 5 . 0 3 . 4 3 0 2 2 5 . 0 7 2 2 6 . 0 5 . 0 3 . 8 4 8 4 2 5 . 7 4 3 9 
4 . 5 5 . 5 3 . 5 7 4 7 2 7 . 5 4 0 7 6 . 0 5 . 5 4 . 0 1 7 7 28 . 0450 
4 . 5 6 . 0 3 . 6 8 3 1 2 9 . 8 7 5 0 6 . 0 6 . 0 4 . 1 5 7 5 3 0 . 2 3 6 0 
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Table 53.--Values of Skewness and Kurtosis Measures for 
Various Settings of Mean (/x) and Standard Deviation (a) with 

Contaminating Fraction (e) = 0.10 

M a Skew- Kurto-
U a Skew- Kurto-

ness sis r~ ness sis 

0.5 0.1 -0.1405 3 .1880 2.0 0.1 0.0292 2.5071 
0.5 0.5 -0.1000 3.0818 2.0 0.5 0.1174 2.7083 
0.5 1.0 0.0087 3.0025 2 . 0 1.0 0.3632 3.3581 
0.5 1.5 0.1446 3.4249 2.0 1.5 0.6913 4.4712 
0.5 2.0 0.2722 4.5761 2.0 2 . 0 1.0268 6.0035 
0.5 2.5 0.3728 6.3454 2.0 2.5 1.3180 7.8340 
0.5 3.0 0.4426 8.4634 2.0 3.0 1.5423 9.8086 
0.5 3.5 0.4855 10.6737 2.0 3.5 1.6978 11.7890 
0.5 4.0 0.5077 12.8024 2.0 4 . 0 1.7938 13.6769 
0.5 4.5 0.5153 14.7560 2.0 4.5 1.8427 15.4155 
0.5 5.0 0.5131 16.4985 2.0 5.0 1.8566 16.9808 
0.5 5.5 0.5046 18.0271 2.0 5.5 1.8456 18.3698 
0.5 6.0 0.4922 19.3562 2.0 6.0 1.8178 19.5918 

1.0 0.1 -0.1980 2.8761 2.5 0 .1 0.2580 2.6306 
1.0 0.5 -0.1276 2.8731 2.5 0.5 0.3411 2.8843 
1.0 1.0 0.0633 3.0348 2.5 1.0 0.5760 3.6624 
1.0 1.5 0.3058 3.6796 2.5 1.5 0.8981 4.9012 
1.0 2.0 0.5382 4.9499 2.5 2.0 1.2393 6.5017 
1.0 2.5 0.7257 6.7387 2.5 2.5 1.5480 8.3318 
1.0 3.0 0.8590 8.8166 2.5 3.0 1.7969 10.2557 
1.0 3.5 0.9433 10.9640 2.5 3.5 1.9789 12.1606 
1.0 4.0 0.9889 13.0284 2.5 4.0 2.0991 13.9679 
1.0 4.5 1.0066 14.9259 2.5 4.5 2.1678 15.6324 
1.0 5.0 1.0049 16.6230 2.5 5.0 2.1964 17.1349 
1.0 5.5 0.9906 18.1164 2.5 5.5 2.1953 18.4732 
1.0 6.0 0.9683 19.4187 2.5 6.0 2.1728 19.6557 

1.5 0.1 -0.1363 2.5992 3.0 0.1 0.5103 2.9211 
1.5 0.5 -0.0507 2.7109 3.0 0.5 0.5848 3.1958 
1.5 1.0 0.1843 3.1449 3 . 0 1.0 0.7983 4.0236 
1.5 1.5 0.4899 4.0478 3.0 1.5 1.0984 5.3063 
1.5 2.0 0.7917 5.4609 3 . 0 2.0 1.4271 6.9189 
1.5 2.5 1.0435 7.2739 3.0 2.5 1.7367 8.7238 
1.5 3.0 1.2291 9.3006 3 . 0 3.0 1.9978 10.5949 
1.5 3.5 1.3516 11.3652 3.0 3.5 2.1989 12.4338 
1. 5 4.0 1.4221 13.3429 3.0 4 . 0 2.3404 14.1740 
1.5 4.5 1.4535 15.1633 3 . 0 4.5 2.4294 15.7775 
1.5 5.0 1.4571 16.7970 3.0 5 . 0 2.4755 17.2284 
1.5 5.5 1.4417 18.2406 3 . 0 5.5 2.4882 18.5252 
1.5 6 . 0 1.4139 19.5048 3.0 6 . 0 2.4758 19.6755 
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a Skew-
n e s s 

K u r t o -
s i s M a S k e w -

n e s s 
K u r t o -

s i s 

3 . 5 0 . 1 0 . 7 5 8 7 3 . 3 0 8 5 5 . 0 0 . 1 1 . 3 7 0 1 4 . 5 5 5 8 
3 . 5 0 . 5 0 . 8 2 3 8 3 . 5 8 2 7 5 . 0 0 . 5 1 . 4 1 1 9 4 . 7 7 8 3 
3 . 5 1 . 0 1 . 0 1 2 6 4 . 4 0 5 4 5 . 0 1 . 0 1 . 5 3 6 1 5 . 4 4 9 7 
3 . 5 1 . 5 1 . 2 8 3 9 5 . 6 7 0 3 5 . 0 1 . 5 1 . 7 2 3 7 6 . 4 9 3 8 
3 . 5 2 . 0 1 . 5 9 0 3 7 . 2 4 7 8 5 . 0 2 . 0 1 . 9 5 1 0 7 . 8 1 6 9 
3 . 5 2 . 5 1 . 8 8 9 7 9 . 0 0 2 2 5 . 0 2 . 5 2 . 1 9 3 4 9 . 3 1 6 7 
3 . 5 3 . 0 2 . 1 5 3 1 1 0 . 8 1 3 9 5 . 0 3 . 0 2 . 4 2 9 3 1 0 . 8 9 8 5 
3 . 5 3 . 5 2 . 3 6 5 9 1 2 . 5 9 2 2 5 . 0 3 . 5 2 . 6 4 3 2 1 2 . 4 8 4 9 
3 . 5 4 . 0 2 . 5 2 4 6 1 4 . 2 7 6 2 5 . 0 4 . 0 2 . 8 2 5 4 1 4 . 0 1 9 4 
3 . 5 4 . 5 2 . 6 3 2 6 1 5 . 8 3 1 4 5 . 0 4 . 5 2 . 9 7 2 0 1 5 . 4 6 5 2 
3 . 5 5 . 0 2 . 6 9 7 0 1 7 . 2 4 3 0 5 . 0 5 . 0 3 . 0 8 2 7 1 6 . 8 0 2 0 
3 . 5 5 . 5 2 . 7 2 5 9 1 8 . 5 0 9 1 5 . 0 5 . 5 3 . 1 5 9 9 1 8 . 0 2 1 4 
3 . 5 6 . 0 2 . 7 2 7 0 1 9 . 6 3 6 4 5 . 0 6 . 0 3 . 2 0 7 5 1 9 . 1 2 3 5 

4 . 0 0 . 1 0 . 9 8 8 0 3 . 7 3 3 6 5 . 5 0 . 1 1 . 5 2 3 6 4 . 9 2 0 1 
4 . 0 0 . 5 1 . 0 4 4 3 3 . 9 9 5 2 5 . 5 0 . 5 1 . 5 5 9 7 5 . 1 2 2 2 
4 . 0 1 . 0 1 . 2 0 9 0 4 . 7 8 0 2 5 . 5 1 . 0 1 . 6 6 7 9 5 . 7 3 3 9 
4 . 0 1 . 5 1 . 4 5 0 3 5 . 9 8 8 2 5 . 5 1 . 5 1 . 8 3 3 2 6 . 6 9 1 1 
4 . 0 2 . 0 1 . 7 3 0 3 7 . 4 9 7 4 5 . 5 2 . 0 2 . 0 3 7 0 7 . 9 1 4 4 
4 . 0 2 . 5 2 . 0 1 3 1 9 . 1 7 9 8 5 . 5 2 . 5 2 . 2 5 9 0 9 . 3 1 5 1 
4 . 0 3 . 0 2 . 2 7 1 6 1 0 . 9 2 3 2 5 . 5 3 . 0 2 . 4 8 0 8 1 0 . 8 0 8 5 
4 . 0 3 . 5 2 . 4 8 9 6 1 2 . 6 4 1 1 5 . 5 3 . 5 2 . 6 8 7 7 1 2 . 3 2 2 8 
4 . 0 4 . 0 2 . 6 6 0 6 1 4 . 2 7 5 0 5 . 5 4 . 0 2 . 8 7 0 1 1 3 . 8 0 3 3 
4 . 0 4 . 5 2 . 7 8 5 0 1 5 . 7 9 0 8 5 . 5 4 . 5 3 . 0 2 2 5 1 5 . 2 1 2 1 
4 . 0 5 . 0 2 . 8 6 7 0 1 7 . 1 7 2 8 5 . 5 5 . 0 3 . 1 4 3 3 1 6 . 5 2 6 4 
4 . 0 5 . 5 2 . 9 1 2 9 1 8 . 4 1 7 9 5 . 5 5 . 5 3 . 2 3 3 3 1 7 . 7 3 4 9 
4 . 0 6 . 0 2 . 9 2 9 3 1 9 . 5 3 0 9 5 . 5 6 . 0 3 . 2 9 4 9 1 8 . 8 3 4 8 

4 . 5 0 . 1 1 . 1 9 2 1 4 . 1 5 6 8 6 . 0 0 . 1 1 . 6 5 5 2 5 . 2 4 6 5 
4 . 5 0 . 5 1 . 2 4 0 6 4 . 3 9 9 9 6 . 0 0 . 5 1 . 6 8 6 7 5 . 4 2 9 3 
4 . 5 1 . 0 1 . 3 8 3 6 5 . 1 3 1 0 6 . 0 1 . 0 1 . 7 8 1 3 5 . 9 8 4 5 
4 . 5 1 . 5 1 . 5 9 6 7 6 . 2 6 1 3 6 . 0 1 . 5 1 . 9 2 7 4 6 . 8 5 8 5 
4 . 5 2 . 0 1 . 8 4 9 7 7 . 6 8 2 1 6 . 0 2 . 0 2 . 1 1 0 1 7 . 9 8 4 6 
4 . 5 2 . 5 2 . 1 1 2 7 9 . 2 7 7 6 6 . 0 2 . 5 2 . 3 1 2 8 9 . 2 8 6 8 
4 . 5 3 . 0 2 . 3 6 1 4 1 0 . 9 4 3 6 6 . 0 3 . 0 2 . 5 1 9 9 1 0 . 6 9 0 5 
4 . 5 3 . 5 2 . 5 7 9 3 1 2 . 5 9 8 0 6 . 0 3 . 5 2 . 7 1 8 1 1 2 . 1 2 9 8 
4 . 5 4 . 0 2 . 7 5 8 1 1 4 . 1 8 3 2 6 . 0 4 . 0 2 . 8 9 7 9 1 3 . 5 5 2 6 
4 . 5 4 . 5 2 . 8 9 5 3 1 5 . 6 6 3 9 6 . 0 4 . 5 3 . 0 5 3 2 1 4 . 9 2 1 0 
4 . 5 5 . 0 2 . 9 9 3 0 1 7 . 0 2 2 2 6 . 0 5 . 0 3 . 1 8 1 3 1 6 . 2 1 0 0 
4 . 5 5 . 5 3 . 0 5 5 4 1 8 . 2 5 2 8 6 . 0 5 . 5 3 . 2 8 1 6 1 7 . 4 0 5 8 
4 . 5 6 . 0 3 . 0 8 7 6 1 9 . 3 5 8 3 6 . 0 6 . 0 3 . 3 5 5 4 1 8 . 5 0 2 6 
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Table 54.--Values of Skewness and Kurtosis Measures for 
Various Settings of Mean (/*) and Standard Deviation (a) with 

Contaminating Fraction (e) = 0.15 

M i J 
Skew-
ness 

Kurto-
sis 1 <1 1 7 

Skew-
ness 

Kurto-
sis 

0.5 0 .1 -0.2146 3 .3130 2 .0 0 .1 -0.0273 2.3169 
0.5 0 .5 -0.1501 3.1380 2 .0 0 .5 0.0849 2.5331 
0.5 1 .0 0.0106 3.0018 2 .0 1 .0 0.3848 3.2103 
0.5 1 .5 0.1858 3.5158 2 .0 1 .5 0.7552 4.3030 
0.5 2 .0 0.3242 4.7514 2 .0 2 .0 1.0966 5.6936 
0.5 2 .5 0.4137 6.3979 2 .0 2 .5 1.3583 7.2185 
0.5 3 .0 0.4622 8.1298 2 .0 3 .0 1.5319 8.7319 
0.5 3 .5 0 .4823 9.7503 2 .0 3 .5 1.6301 10.1388 
0.5 4 .0 0.4844 11.1770 2 .0 4 .0 1.6718 11.3941 
0.5 4 .5 0.4759 12.3949 2 .0 4 .5 1.6743 12.4867 
0.5 5 .0 0.4616 13.4191 2 .0 5 .0 1.6512 13 .4246 
0.5 5 .5 0 .4443 14.2759 2 .0 5 .5 1.6122 14 .2243 
0.5 6 .0 0.4259 14.9926 2 .0 6 .0 1.5640 14 . 9046 

1.0 0 .1 -0.2988 2.8693 2 .5 0 .1 0.2116 2.3493 
1.0 0 .5 -0.1933 2.8481 2 .5 0 .5 0.3098 2.6036 
1.0 1 .0 0.0745 3.0236 2 .5 1 .0 0.5790 3 .3625 
1.0 1 .5 0.3763 3.7500 2 .5 1 .5 0.9265 4.5114 
1.0 2 .0 0.6242 5.0410 2 .5 2 .0 1.2658 5.9026 
1.0 2 .5 0.7914 6.6496 2 .5 2 .5 1.5440 7.3845 
1.0 3 .0 0.8869 8.3152 2 .5 3 .0 1.7433 8.8372 
1.0 3 .5 0.9300 9.8732 2 .5 3 .5 1.8684 10.1851 
1.0 4 .0 0.9387 11.2511 2 .5 4 .0 1.9332 11.3919 
1.0 4 .5 0.9263 12 .4340 2 .5 4 .5 1.9532 12.4488 
1.0 5 .0 0.9018 13.4344 2 .5 5 .0 1.9417 13.3623 
1.0 5 .5 0.8707 14 .2755 2 .5 5 .5 1.9093 14 .1466 
1.0 6 .0 0.8368 14.9819 2 .5 6 .0 1.8637 14.8182 

1.5 0 .1 -0.2197 2.4859 3 .0 0 .1 0.4507 2.5071 
1.5 0 .5 -0.1014 2.6108 3 . 0 0 .5 0.5336 2.7652 
1.5 1 .0 0.2063 3.0916 3 .0 1 .0 0.7657 3.5263 
1.5 1 .5 0.5689 4.0376 3 .0 1 .5 1.0774 4.6597 
1.5 2 .0 0.8835 5.3896 3 .0 2 .0 1.3979 6.0129 
1.5 2 .5 1.1090 6.9553 3 .0 2 .5 1.6774 7.4429 
1.5 3 . 0 1.2472 8.5413 3 .0 3 .0 1.8923 8.8419 
1.5 3 .5 1.3170 10.0213 3 .0 3 .5 2.0398 10.1432 
1.5 4 .0 1.3391 11.3367 3 . 0 4 .0 2.1278 11.3143 
1.5 4 .5 1.3303 12.4738 3 .0 4 .5 2.1685 12.3464 
1.5 5 .0 1.3025 13.4427 3 . 0 5 .0 2.1736 13 .2445 
1.5 5 .5 1.2639 14.2628 3 .0 5 .5 2.1534 14.0206 
1.5 6 .0 1.2196 14.9559 3 .0 6 .0 2.1159 14.6893 
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V- a Skew-
ness 

K u r t o -
s i s 

0 
Skew-
n e s s 

K u r t o -
s i s 

3 . 5 0 . 1 0 . 6 6 7 1 2 . 7 2 1 3 5 . 0 0 . 1 1 . 1 4 1 1 3 . 3 5 8 5 
3 . 5 0 . 5 0 . 7 3 6 3 2 . 9 6 5 2 5 . 0 0 . 5 1 . 1 8 1 8 3 . 5 3 6 0 
3 . 5 1 . 0 0 . 9 3 3 2 3 . 6 8 5 1 5 . 0 1 . 0 1 . 3 0 1 9 4 . 0 6 7 9 
3 . 5 1 . 5 1 . 2 0 6 5 4 . 7 5 8 7 5 . 0 1 . 5 1 . 4 8 0 4 4 . 8 8 3 9 
3 . 5 2 . 0 1 . 5 0 0 4 6 . 0 4 4 6 5 . 0 2 . 0 1 . 6 9 1 6 5 . 8 9 8 3 
3 . 5 2 . 5 1 . 7 7 0 9 7 . 4 1 0 5 5 . 0 2 . 5 1 . 9 1 0 2 7 . 0 2 2 3 
3 . 5 3 . 0 1 . 9 9 2 3 8 . 7 5 5 9 5 . 0 3 . 0 2 . 1 1 5 7 8 . 1 7 8 5 
3 . 5 3 . 5 2 . 1 5 6 2 1 0 . 0 1 6 9 5 . 0 3 . 5 2 . 2 9 4 4 9 . 3 0 8 6 
3 . 5 4 . 0 2 . 2 6 5 0 1 1 . 1 6 0 8 5 . 0 4 . 0 2 . 4 3 9 4 1 0 . 3 7 4 3 
3 . 5 4 . 5 2 . 3 2 6 7 1 2 . 1 7 6 9 5 . 0 4 . 5 2 . 5 4 9 2 1 1 . 3 5 4 2 
3 . 5 5 . 0 2 . 3 5 0 8 1 3 . 0 6 7 6 5 . 0 5 . 0 2 . 6 2 5 5 1 2 . 2 3 9 8 
3 . 5 5 . 5 2 . 3 4 6 4 1 3 . 8 4 2 5 5 . 0 5 . 5 2 . 6 7 2 1 1 3 . 0 3 0 7 
3 . 5 6 . 0 2 . 3 2 1 3 1 4 . 5 1 4 1 5 . 0 6 . 0 2 . 6 9 3 6 13 . 7 3 1 9 

4 . 0 0 . 1 0 . 8 5 3 7 2 . 9 4 7 7 5 . 5 0 . 1 1 . 2 4 9 6 3 . 5 3 0 3 
4 . 0 0 . 5 0 . 9 1 1 3 3 . 1 7 0 3 5 . 5 0 . 5 1 . 2 8 4 2 3 . 6 8 7 9 
4 . 0 1 . 0 1 . 0 7 7 7 3 . 8 3 0 0 5 . 5 1 . 0 1 . 3 8 7 3 4 . 1 6 2 3 
4 . 0 1 . 5 1 . 3 1 5 0 4 . 8 2 1 9 5 . 5 1 . 5 1 . 5 4 2 8 4 . 8 9 6 7 
4 . 0 2 . 0 1 . 5 8 0 1 6 . 0 2 2 7 5 . 5 2 . 0 1 . 7 3 0 9 5 . 8 2 1 3 
4 . 0 2 . 5 1 . 8 3 5 5 7 . 3 1 3 7 5 . 5 2 . 5 1 . 9 3 0 9 6 . 8 6 0 9 
4 . 0 3 . 0 2 . 0 5 6 2 8 . 6 0 1 1 5 . 5 3 . 0 2 . 1 2 5 2 7 . 9 4 7 1 
4 . 0 3 . 5 2 . 2 3 0 2 9 . 8 2 2 2 5 . 5 3 . 5 2 . 3 0 0 6 9 . 0 2 5 5 
4 . 0 4 . 0 2 . 3 5 5 7 1 0 . 9 4 2 1 5 . 5 4 . 0 2 . 4 4 9 3 1 0 . 0 5 7 6 
4 . 0 4 . 5 2 . 4 3 6 7 1 1 . 9 4 6 7 5 . 5 4 . 5 2 . 5 6 8 1 1 1 . 0 1 9 7 
4 . 0 5 . 0 2 . 4 7 9 9 1 2 . 8 3 5 0 5 . 5 5 . 0 2 . 6 5 6 8 1 1 . 8 9 9 9 
4 . 0 5 . 5 2 . 4 9 3 0 1 3 . 6 1 3 8 5 . 5 5 . 5 2 . 7 1 7 6 1 2 . 6 9 4 6 
4 . 0 6 . 0 2 . 4 8 2 8 1 4 . 2 9 3 2 5 . 5 6 . 0 2 . 7 5 3 7 13 . 4 0 5 8 

4 . 5 0 . 1 1 . 0 1 0 5 3 . 1 6 3 4 6 . 0 0 . 1 1 . 3 3 9 7 3 . 6 7 9 5 
4 . 5 0 . 5 1 . 0 5 8 8 3 . 3 6 3 0 6 . 0 0 . 5 1 . 3 6 9 5 3 . 8 1 9 5 
4 . 5 1 . 0 1 . 1 9 9 7 3 . 9 5 7 7 6 . 0 1 . 0 1 . 4 5 8 6 4 . 2 4 2 7 
4 . 5 1 . 5 1 . 4 0 5 3 4 . 8 6 0 8 6 . 0 1 . 5 1 . 5 9 4 8 4 . 9 0 3 2 
4 . 5 2 . 0 1 . 6 4 2 4 5 . 9 6 8 8 6 . 0 2 . 0 1 . 7 6 2 5 5 . 7 4 4 1 
4 . 5 2 . 5 1 . 8 7 9 9 7 . 1 7 7 8 6 . 0 2 . 5 1 . 9 4 5 1 6 . 7 0 2 3 
4 . 5 3 . 0 2 . 0 9 4 6 8 . 4 0 1 7 6 . 0 3 . 0 2 . 1 2 7 3 7 . 7 1 8 4 
4 . 5 3 . 5 2 . 2 7 3 2 9 . 5 7 9 6 6 . 0 3 . 5 2 . 2 9 7 1 8 . 7 4 2 2 
4 . 5 4 . 0 2 . 4 1 0 7 1 0 . 6 7 4 3 6 . 0 4 . 0 2 . 4 4 6 4 9 . 7 3 6 5 
4 . 5 4 . 5 2 . 5 0 7 9 1 1 . 6 6 7 8 6 . 0 4 . 5 2 . 5 7 0 8 1 0 . 6 7 6 2 
4 . 5 5 . 0 2 . 5 6 8 9 1 2 . 5 5 5 4 6 . 0 5 . 0 2 . 6 6 9 0 1 1 . 5 4 6 7 
4 . 5 5 . 5 2 . 5 9 9 4 13 . 3 4 0 3 6 . 0 5 . 5 2 . 7 4 1 7 1 2 . 3 4 1 6 
4 . 5 6 . 0 2 . 6 0 5 1 1 4 . 0 3 0 3 6 . 0 6 . 0 2 . 7 9 0 8 13 . 0 6 0 1 
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Table 55.--Values of Skewness and Kurtosis Measures for 
Various Settings of Mean (/x) and Standard Deviation (a) with 

Contaminating Fraction (e) =0.20 

a Skew-
ness 

Kurto-
sis 

a Skew-
ness 

Kurto-
sis 

0.5 0 .1 -0.2920 3 .4631 2 .0 0 .1 -0.1053 2.1785 
0.5 0 .5 -0.2001 3.2050 2 .0 0 .5 0.0264 2.3894 
0.5 1 .0 0.0113 3.0004 2 .0 1 .0 0.3657 3 .0381 
0.5 1 .5 0.2129 3.5591 2 .0 1 .5 0.7574 4 . 0449 
0.5 2 .0 0.3485 4.7670 2 .0 2 .0 1.0881 5.2589 
0.5 2 .5 0.4210 6.2019 2 .0 2 .5 1.3164 6.5141 
0.5 3 .0 0.4504 7.5731 2 .0 3 .0 1.4486 7.6920 
0.5 3 .5 0.4545 8.7622 2 .0 3 .5 1.5078 8.7343 
0.5 4 .0 0.4448 9.7494 2 .0 4 .0 1.5176 9.6263 
0.5 4 .5 0.4284 10.5544 2 .0 4 .5 1.4963 10.3764 
0.5 5 .0 0.4090 11.2079 2 .0 5 .0 1.4568 11.0022 
0.5 5 .5 0.3888 11.7395 2 .0 5 .5 1.4073 11.5234 
0.5 6 .0 0.3690 12.1743 2 .0 6 .0 1.3533 11.9584 

1.0 0 .1 -0.4019 2.8991 2 .5 0 .1 0.1290 2.1243 
1.0 0 .5 -0.2601 2.8475 2 .5 0 .5 0.2384 2.3630 
1.0 1 .0 0.0768 3.0048 2 .5 1 .0 0.5303 3.0625 
1.0 1 .5 0.4157 3.7426 2 .5 1 .5 0.8889 4.0864 
1.0 2 .0 0.6578 4.9545 2 .5 2 .0 1.2165 5.2737 
1.0 2 .5 0.7962 6.3293 2 .5 2 .5 1.4643 6.4808 
1.0 3 .0 0.8584 7.6385 2 .5 3 .0 1.6251 7.6119 
1.0 3 .5 0.8728 8.7822 2 .5 3 .5 1.7120 8.6194 
1.0 4 .0 0.8599 9.7404 2 .5 4 .0 1.7441 9.4900 
1.0 4 .5 0.8325 10.5284 2 .5 4 .5 1.7386 10.2297 
1.0 5 .0 0.7983 11.1728 2 .5 5 .0 1.7088 10.8532 
1.0 5 .5 0.7616 11.7001 2 .5 5 .5 1.6641 11.3771 
1.0 6 .0 0.7249 12.1336 2 .5 6 .0 1.6111 11.8179 

1.5 0 .1 -0.3104 2.4222 3 .0 0 .1 0.3475 2.1757 
1.5 0 .5 -0.1623 2.5427 3 .0 0 .5 0.4363 2.4089 
1.5 1 .0 0.2043 3.0175 3 .0 1 .0 0.6801 3.0871 
1.5 1 .5 0.5992 3.9268 3 .0 1 .5 0.9955 4.0708 
1.5 2 .0 0.9052 5.1450 3 .0 2 .0 1.3040 5.2064 
1.5 2 .5 1.0969 6.4549 3 .0 2 .5 1.5571 6.3632 
1.5 3 .0 1.1947 7.6933 3 .0 3 . 0 1.7379 7.4549 
1.5 3 .5 1.2282 8.7828 3 .0 3 .5 1.8502 8.4368 
1.5 4 . 0 1.2219 9.7057 3 .0 4 . 0 1.9067 9.2946 
1.5 4 .5 1.1927 10.4731 3 .0 4 .5 1.9215 10.0311 
1.5 5 .0 1.1514 11.1068 3 .0 5 .0 1.9071 10.6580 
1.5 5 .5 1.1046 11.6298 3 . 0 5 .5 1.8732 11.1896 
1.5 6 .0 1.0559 12.0628 3 .0 6 .0 1.8271 11.6402 
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M a Skew-
n e s s 

K u r t o -
s i s 

a S k e w -
n e s s 

K u r t o -
s i s 

3 . 5 0 . 1 0 . 5 3 4 4 2 . 2 7 1 9 5 . 0 0 . 1 0 . 9 1 4 6 2 . 5 7 5 6 
3 . 5 0 . 5 0 . 6 0 6 3 2 . 4 8 5 6 5 . 0 0 . 5 0 . 9 5 5 0 2 . 7 2 2 4 
3 . 5 1 . 0 0 . 8 0 8 2 3 . 1 0 9 6 5 . 0 1 . 0 1 . 0 7 3 3 3 . 1 6 0 0 
3 . 5 1 . 5 1 . 0 8 0 8 4 . 0 2 2 0 5 . 0 1 . 5 1 . 2 4 7 0 3 . 8 2 5 4 
3 . 5 2 . 0 1 . 3 6 3 1 5 . 0 8 6 9 5 . 0 2 . 0 1 . 4 4 8 8 4 . 6 4 2 9 
3 . 5 2 . 5 1 . 6 1 1 0 6 . 1 8 6 2 5 . 0 2 . 5 1 . 6 5 3 1 5 . 5 3 6 2 
3 . 5 3 . 0 1 . 8 0 2 9 7 . 2 3 8 2 5 . 0 3 . 0 1 . 8 4 0 1 6 . 4 4 1 7 
3 . 5 3 . 5 1 . 9 3 5 4 8 . 1 9 7 8 5 . 0 3 . 5 1 . 9 9 7 8 7 . 3 1 3 9 
3 . 5 4 . 0 2 . 0 1 4 8 9 . 0 4 7 0 5 . 0 4 . 0 2 . 1 2 1 3 8 . 1 2 5 0 
3 . 5 4 . 5 2 . 0 5 1 4 9 . 7 8 4 9 5 . 0 4 . 5 2 . 2 1 0 6 8 . 8 6 1 3 
3 . 5 5 . 0 2 . 0 5 5 6 1 0 . 4 1 9 5 5 . 0 5 . 0 2 . 2 6 8 7 9 . 5 1 9 0 
3 . 5 5 . 5 2 . 0 3 6 6 1 0 . 9 6 2 5 5 . 0 5 . 5 2 . 3 0 0 0 1 0 . 1 0 0 3 
3 . 5 6 . 0 2 . 0 0 1 6 1 1 . 4 2 6 5 5 . 0 6 . 0 2 . 3 0 9 4 1 0 . 6 1 1 1 

4 . 0 0 . 1 0 . 6 8 8 3 2 . 3 7 9 4 5 . 5 0 . 1 0 . 9 9 6 8 2 . 6 5 6 9 
4 . 0 0 . 5 0 . 7 4 7 0 2 . 5 6 9 7 5 . 5 0 . 5 1 . 0 3 0 9 2 . 7 8 5 6 
4 . 0 1 . 0 0 . 9 1 4 7 3 . 1 2 9 3 5 . 5 1 . 0 1 . 1 3 1 7 3 . 1 7 1 7 
4 . 0 1 . 5 1 . 1 4 8 9 3 . 9 5 8 1 5 . 5 1 . 5 1 . 2 8 2 3 3 . 7 6 5 4 
4 . 0 2 . 0 1 . 4 0 3 0 4 . 9 4 1 9 5 . 5 2 . 0 1 . 4 6 1 9 4 . 5 0 5 7 
4 . 0 2 . 5 1 . 6 3 9 1 5 . 9 7 6 3 5 . 5 2 . 5 1 . 6 4 9 5 5 . 3 2 9 0 
4 . 0 3 . 0 1 . 8 3 4 6 6 . 9 8 4 4 5 . 5 3 . 0 1 . 8 2 7 8 6 . 1 7 9 0 
4 . 0 3 . 5 1 . 9 8 1 1 7 . 9 1 9 7 5 . 5 3 . 5 1 . 9 8 4 8 7 . 0 1 2 7 
4 . 0 4 . 0 2 . 0 7 9 8 8 . 7 6 0 1 5 . 5 4 . 0 2 . 1 1 4 4 7 . 8 0 1 5 
4 . 0 4 . 5 2 . 1 3 6 9 9 . 5 0 0 3 5 . 5 4 . 5 2 . 2 1 4 3 8 . 5 2 8 9 
4 . 0 5 . 0 2 . 1 6 0 5 1 0 . 1 4 4 2 5 . 5 5 . 0 2 . 2 8 5 8 9 . 1 8 7 7 
4 . 0 5 . 5 2 . 1 5 8 4 1 0 . 7 0 0 6 5 . 5 5 . 5 2 . 3 3 1 6 9 . 7 7 7 4 
4 . 0 6 . 0 2 . 1 3 7 3 1 1 . 1 8 0 2 5 . 5 6 . 0 2 . 3 5 5 4 1 0 . 3 0 1 1 

4 . 5 0 . 1 0 . 8 1 3 4 2 . 4 8 2 6 6 . 0 0 . 1 1 . 0 6 4 0 2 . 7 2 6 8 
4 . 5 0 . 5 0 . 8 6 1 8 2 . 6 5 0 1 6 . 0 0 . 5 1 . 0 9 3 1 2 . 8 4 0 1 
4 . 5 1 . 0 1 . 0 0 2 0 3 . 1 4 6 0 6 . 0 1 . 0 1 . 1 7 9 8 3 . 1 8 1 5 
4 . 5 1 . 5 1 . 2 0 3 3 3 . 8 9 0 6 6 . 0 1 . 5 1 . 3 1 1 2 3 . 7 1 1 5 
4 . 5 2 . 0 1 . 4 3 0 1 4 . 7 9 0 2 6 . 0 2 . 0 1 . 4 7 1 2 4 . 3 8 1 3 
4 . 5 2 . 5 1 . 6 5 1 0 5 . 7 5 4 8 6 . 0 2 . 5 1 . 6 4 2 8 5 . 1 3 7 7 
4 . 5 3 . 0 1 . 8 4 4 3 6 . 7 1 3 7 6 . 0 3 . 0 1 . 8 1 1 0 5 . 9 3 1 8 
4 . 5 3 . 5 1 . 9 9 8 8 7 . 6 2 0 0 6 . 0 3 . 5 1 . 9 6 4 7 6 . 7 2 4 1 
4 . 5 4 . 0 2 . 1 1 2 2 8 . 4 4 8 3 6 . 0 4 . 0 2 . 0 9 6 9 7 . 4 8 6 1 
4 . 5 4 . 5 2 . 1 8 7 2 9 . 1 8 8 5 6 . 0 4 . 5 2 . 2 0 4 2 8 . 1 9 9 6 
4 . 5 5 . 0 2 . 2 2 9 1 9 . 8 4 0 8 6 . 0 5 . 0 2 . 2 8 6 2 8 . 8 5 5 1 
4 . 5 5 . 5 2 . 2 4 4 2 10 . 4 1 0 7 6 . 0 5 . 5 2 . 3 4 4 3 9 . 4 4 9 1 
4 . 5 6 . 0 2 . 2 3 8 3 1 0 . 9 0 6 3 6 . 0 6 . 0 2 . 3 8 1 1 9 . 9 8 2 5 
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Table 56.--Values of Skewness and Kurtosis Measures for 
Various Settings of Mean (jx) and Standard Deviation (a) with 

Contaminating Fraction (e) = 0.30 

M a Skew-
ness 

Kurto-
sis 

a Skew-
ness 

Kurto-
sis 

0.5 0.1 -0.4589 3.8573 2.0 0.1 -0.3002 2.0541 
0.5 0.5 -0.2999 3.3745 2.0 0.5 -0.1330 2.2212 
0.5 1.0 0.0097 2.9969 2.0 1.0 0.2692 2.7420 
0.5 1.5 0.2370 3.5587 2.0 1.5 0.6816 3.5362 
0.5 2.0 0.3502 4.5856 2.0 2.0 0.9816 4.4445 
0.5 2.5 0.3908 5.6105 2.0 2.5 1.1547 5.3216 
0.5 3.0 0.3945 6.4669 2.0 3.0 1.2315 6.0913 
0.5 3.5 0.3815 7.1396 2.0 3.5 1.2467 6.7336 
0.5 4 . 0 0.3619 7.6589 2.0 4.0 1.2260 7.2571 
0.5 4.5 0.3405 8.0601 2.0 4.5 1.1862 7.6801 
0.5 5.0 0.3193 8.3727 2.0 5.0 1.1373 8.0218 
0.5 5.5 0.2994 8.6190 2.0 5.5 1.0851 8.2991 
0.5 6.0 0.2810 8.8156 2.0 6.0 1.0328 8.5257 

1.0 0.1 -0.6187 3.0767 2.5 0.1 -0.0862 1.8593 
1.0 0.5 -0.3974 2.9194 2.5 0.5 0.0435 2.0497 
1.0 1.0 0.0631 2.9627 2.5 1.0 0.3732 2.6012 
1.0 1.5 0.4367 3.6209 2.5 1.5 0.7448 3.3862 
1.0 2.0 0.6441 4.6009 2.5 2.0 1.0486 4.2584 
1.0 2.5 0.7297 5.5729 2.5 2.5 1.2500 5.1021 
1. 0 3 . 0 0.7470 6.3991 2.5 3.0 1.3600 5.8543 
1.0 3.5 0.7305 7.0600 2.5 3.5 1.4031 6.4945 
1. 0 4.0 0.6987 7.5778 2.5 4.0 1.4025 7.0264 
1. 0 4.5 0.6615 7.9826 2.5 4.5 1.3753 7.4637 
1.0 5.0 0.6234 8.3009 2.5 5.0 1.3331 7.8222 
1.0 5.5 0.5867 8.5536 2.5 5.5 1.2834 8.1167 
1.0 6.0 0.5524 8.7564 2.5 6.0 1.2306 8.3598 

1.5 0.1 -0.5116 2.4344 3.0 0.1 0.0951 1.7662 
1.5 0.5 -0.3052 2.5036 3.0 0.5 0.1955 1.9482 
1.5 1.0 0.1587 2.8725 3.0 1.0 0.4616 2.4705 
1.5 1.5 0.5833 3.6227 3 . 0 1.5 0.7849 3.2094 
1.5 2.0 0.8534 4.5626 3 . 0 2.0 1.0759 4.0342 
1.5 2.5 0.9858 5.4810 3.0 2.5 1.2921 4 .8437 
1.5 3.0 1.0293 6.2752 3.0 3.0 1.4291 5.5795 
1.5 3.5 1.0227 6.9244 3.0 3.5 1.5005 6.2189 
1.5 4 . 0 0.9906 7.4430 3.0 4.0 1.5241 6.7605 
1.5 4.5 0.9469 7.8549 3.0 4.5 1.5153 7.2134 
1.5 5.0 0.8991 8.1829 3.0 5.0 1.4860 7.5902 
1.5 5.5 0.8513 8.4461 3.0 5.5 1.4445 7.9037 
1.5 6 . 0 0.8052 8.6590 3.0 6.0 1.3964 8.1652 
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a Skew-
n e s s 

K u r t o -
s i s M a Skew-

n e s s 
K u r t o -

s i s 

3 . 5 0 . 1 0 . 2 3 9 3 1 . 7 2 4 2 5 . 0 0 . 1 0 . 5 0 8 2 1 . 7 0 2 5 
3 . 5 0 . 5 0 . 3 1 8 0 1 . 8 8 7 2 5 . 0 0 . 5 0 . 5 5 0 2 1 . 8 0 9 4 
3 . 5 1 . 0 0 . 5 3 3 4 2 . 3 5 8 0 5 . 0 1 . 0 0 . 6 7 2 0 2 . 1 2 6 4 
3 . 5 1 . 5 0 . 8 1 0 6 3 . 0 3 2 6 5 . 0 1 . 5 0 . 8 4 6 7 2 . 6 0 3 8 
3 . 5 2 . 0 1 . 0 8 0 1 3 . 7 9 9 8 5 . 0 2 . 0 1 . 0 4 3 5 3 . 1 8 2 8 
3 . 5 2 . 5 1 . 2 9 9 6 4 . 5 6 9 4 5 . 0 2 . 5 1 . 2 3 5 2 3 . 8 0 6 6 
3 . 5 3 . 0 1 . 4 5 5 3 5 . 2 8 5 3 5 . 0 3 . 0 1 . 4 0 3 3 4 . 4 3 0 0 
3 . 5 3 . 5 1 . 5 5 1 3 5 . 9 2 1 2 5 . 0 3 . 5 1 . 5 3 8 4 5 . 0 2 2 4 
3 . 5 4 . 0 1 . 5 9 9 1 6 . 4 7 0 7 5 . 0 4 . 0 1 . 6 3 8 5 5 . 5 6 6 8 
3 . 5 4 . 5 1 . 6 1 1 3 6 . 9 3 8 3 5 . 0 4 . 5 1 . 7 0 6 0 6 . 0 5 5 9 
3 . 5 5 . 0 1 . 5 9 8 6 7 . 3 3 3 3 5 . 0 5 . 0 1 . 7 4 5 5 6 . 4 8 8 9 
3 . 5 5 . 5 1 . 5 6 9 5 7 . 6 6 6 1 5 . 0 5 . 5 1 . 7 6 2 3 6 . 8 6 9 0 
3 . 5 6 . 0 1 . 5 3 0 1 7 . 9 4 6 8 5 . 0 6 . 0 1 . 7 6 1 4 7 . 2 0 0 9 

4 . 0 0 . 1 0 . 3 5 1 8 1 . 7 0 7 1 5 . 5 0 . 1 0 . 5 6 2 7 1 . 7 0 5 5 
4 . 0 0 . 5 0 . 4 1 4 6 1 . 8 4 9 5 5 . 5 0 . 5 0 . 5 9 7 9 1 . 7 9 8 4 
4 . 0 1 . 0 0 . 5 9 0 5 2 . 2 6 4 7 5 . 5 1 . 0 0 . 7 0 1 0 2 . 0 7 5 8 
4 . 0 1 . 5 0 . 8 2 7 5 2 . 8 7 0 1 5 . 5 1 . 5 0 . 8 5 2 2 2 . 4 9 8 9 
4 . 0 2 . 0 1 . 0 7 2 3 3 . 5 7 4 1 5 . 5 2 . 0 1 . 0 2 8 0 3 . 0 2 1 2 
4 . 0 2 . 5 1 . 2 8 6 8 4 . 2 9 8 0 5 . 5 2 . 5 1 . 2 0 5 9 3 . 5 9 5 3 
4 . 0 3 . 0 1 . 4 5 2 9 4 . 9 8 8 2 5 . 5 3 . 0 1 . 3 6 9 0 4 . 1 8 1 0 
4 . 0 3 . 5 1 . 5 6 7 7 5 . 6 1 5 3 5 . 5 3 . 5 1 . 5 0 7 2 4 . 7 4 9 1 
4 . 0 4 . 0 1 . 6 3 7 2 6 . 1 6 8 6 5 . 5 4 . 0 1 . 6 1 6 2 5 . 2 8 1 3 
4 . 0 4 . 5 1 . 6 7 0 1 6 . 6 4 7 9 5 . 5 4 . 5 1 . 6 9 6 2 5 . 7 6 7 8 
4 . 0 5 . 0 1 . 6 7 5 6 7 . 0 5 9 1 5 . 5 5 . 0 1 . 7 4 9 7 6 . 2 0 5 4 
4 . 0 5 . 5 1 . 6 6 1 3 7 . 4 1 0 3 5 . 5 5 . 5 1 . 7 8 0 7 6 . 5 9 4 8 
4 . 0 6 . 0 1 . 6 3 3 6 7 . 7 0 9 8 5 . 5 6 . 0 1 . 7 9 3 0 6 . 9 3 9 0 

4 . 5 0 . 1 0 . 4 3 9 5 1 . 7 0 2 0 6 . 0 0 . 1 0 . 6 0 6 3 1 . 7 0 9 6 
4 . 5 0 . 5 0 . 4 9 0 4 1 . 8 2 5 4 6 . 0 0 . 5 0 . 6 3 6 2 1 . 7 9 0 7 
4 . 5 1 . 0 0 . 6 3 5 9 2 . 1 8 8 5 6 . 0 1 . 0 0 . 7 2 4 5 2 . 0 3 4 3 
4 . 5 1 . 5 0 . 8 3 8 8 2 . 7 2 6 9 6 . 0 1 . 5 0 . 8 5 6 3 2 . 4 1 0 1 
4 . 5 2 . 0 1 . 0 5 8 9 3 . 3 6 7 2 6 . 0 2 . 0 1 . 0 1 3 3 2 . 8 8 0 9 
4 . 5 2 . 5 1 . 2 6 3 4 4 . 0 4 1 7 6 . 0 2 . 5 1 . 1 7 7 4 3 . 4 0 7 5 
4 . 5 3 . 0 1 . 4 3 3 0 4 . 7 0 0 4 6 . 0 3 . 0 1 . 3 3 3 5 3 . 9 5 5 0 
4 . 5 3 . 5 1 . 5 6 0 6 5 . 3 1 3 0 6 . 0 3 . 5 1 . 4 7 1 4 4 . 4 9 6 0 
4 . 5 4 . 0 1 . 6 4 7 6 5 . 8 6 4 5 6 . 0 4 . 0 1 . 5 8 5 8 5 . 0 1 1 9 
4 . 5 4 . 5 1 . 6 9 9 3 6 . 3 5 1 2 6 . 0 4 . 5 1 . 6 7 5 0 5 . 4 9 1 4 
4 . 5 5 . 0 1 . 7 2 2 6 6 . 7 7 5 4 6 . 0 5 . 0 1 . 7 4 0 0 5 . 9 2 9 3 
4 . 5 5 . 5 1 . 7 2 4 1 7 . 1 4 2 6 6 . 0 5 . 5 1 . 7 8 3 3 6 . 3 2 4 3 
4 . 5 6 . 0 1 . 7 0 9 5 7 . 4 5 9 4 6 . 0 6 . 0 1 . 8 0 8 0 6 . 6 7 7 6 
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Table 57.--Values of Skewness and Kurtosis Measures for 
Various Settings of Mean (/*) and Standard Deviation (a) with 

Contaminating Fraction (e) = 0.40 

a Skew-
ness 

Kurto-
sis V- 0 Skew-

ness 
Kurto-
sis 

0.5 0.1 -0.6476 4.4239 2.0 0.1 -0.5325 2.1315 
0.5 0.5 -0.3985 3.5963 2.0 0.5 -0.3254 2.2203 
0.5 1.0 0.0055 2.9941 2.0 1.0 0.1399 2.5602 
0.5 1.5 0.2340 3.4965 2.0 1.5 0.5660 3 .1447 
0.5 2.0 0.3196 4.3097 2.0 2.0 0.8374 3.8258 
0.5 2.5 0.3375 5.0246 2.0 2.5 0.9711 4.4683 
0.5 3.0 0.3282 5.5706 2.0 3.0 1.0156 5.0133 
0.5 3.5 0.3094 5.9737 2.0 3.5 1.0100 5.4537 
0.5 4.0 0.2882 6.2717 2.0 4.0 0.9789 5.8028 
0.5 4.5 0.2675 6.4948 2.0 4.5 0.9361 6.0787 
0.5 5.0 0.2484 6.6647 2.0 5.0 0.8891 6.2977 
0.5 5.5 0.2312 6.7963 2.0 5.5 0.8419 6.4728 
0.5 6.0 0.2157 6.8999 2.0 6.0 0.7965 6.6143 

1.0 0.1 -0.8574 3 .4421 2.5 0.1 -0.3382 1.8250 
1.0 0.5 -0.5399 3.0944 2.5 0.5 -0.1839 1.9525 
1.0 1.0 0.0348 2.9313 2.5 1.0 0.1897 2.3400 
1.0 1.5 0.4130 3.4556 2.5 1.5 0.5774 2.9167 
1.0 2.0 0.5793 4.2158 2.5 2.0 0.8641 3.5665 
1.0 2.5 0.6271 4.9050 2.5 2.5 1.0339 4.1895 
1.0 3.0 0.6208 5.4490 2.5 3.0 1.1133 4.7345 
1.0 3.5 0.5925 5.8609 2.5 3.5 1.1339 5.1888 
1.0 4.0 0.5569 6.1710 2.5 4.0 1.1198 5.5588 
1.0 4.5 0.5203 6.4063 2.5 4.5 1.0867 5.8578 
1.0 5.0 0.4855 6.5873 2.5 5.0 1.0442 6.0995 
1.0 5.5 0.4535 6.7286 2.5 5.5 0.9979 6.2956 
1.0 6.0 0.4244 6.8405 2.5 6.0 0.9512 6.4559 

1.5 0.1 -0.7414 2.6405 3.0 0.1 -0.1833 1.6369 
1.5 0.5 -0.4693 2.5996 3.0 0.5 -0.0670 1.7661 
1.5 1.0 0.0848 2.7746 3.0 1.0 0.2307 2.1434 
1.5 1.5 0.5189 3.3365 3.0 1.5 0.5707 2.6873 
1.5 2.0 0.7501 4.0509 3.0 2.0 0.8541 3.3000 
1.5 2.5 0.8398 4.7142 3.0 2.5 1.0474 3.8999 
1.5 3.0 0.8529 5.2579 3.0 3.0 1.1582 4.4404 
1.5 3.5 0.8294 5.6830 3.0 3 . 5 1.2073 4.9042 
1.5 4 . 0 0.7903 6.0111 3 . 0 4 . 0 1.2154 5.2922 
1.5 4.5 0.7460 6.2648 3.0 4.5 1.1980 5.6128 
1.5 5.0 0.7015 6.4628 3.0 5.0 1.1658 5.8767 
1.5 5.5 0.6591 6.6191 3.0 5.5 1.1256 6.0942 
1.5 6.0 0.6197 6.7440 3 . 0 6.0 1.0818 6.2743 
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M a Skew-
n e s s 

K u r t o -
s i s M a Skew-

n e s s 
K u r t o -

s i s 

3 . 5 0 . 1 - 0 . 0 6 5 5 1 . 5 1 6 4 5 . 0 0 . 1 0 . 1 4 3 5 1 . 3 3 9 4 
3 . 5 0 . 5 0 . 0 2 4 2 1 . 6 3 4 9 5 . 0 0 . 5 0 . 1 9 0 3 1 . 4 1 8 5 
3 . 5 1 . 0 0 . 2 6 3 1 1 . 9 7 9 2 5 . 0 1 . 0 0 . 3 2 4 0 1 . 6 5 3 1 
3 . 5 1 . 5 0 . 5 5 6 7 2 . 4 7 6 9 5 . 0 1 . 5 0 . 5 1 1 2 2 . 0 0 6 7 
3 . 5 2 . 0 0 . 8 2 5 4 3 . 0 4 6 1 5 . 0 2 . 0 0 . 7 1 5 5 2 . 4 3 6 0 
3 . 5 2 . 5 1 . 0 2 9 9 3 . 6 1 7 3 5 . 0 2 . 5 0 . 9 0 7 1 2 . 8 9 9 1 
3 . 5 3 . 0 1 . 1 6 4 5 4 . 1 4 6 7 5 . 0 3 . 0 1 . 0 6 8 3 3 . 3 6 2 2 
3 . 5 3 . 5 1 . 2 4 0 1 4 . 6 1 4 0 5 . 0 3 . 5 1 . 1 9 2 4 3 . 8 0 2 5 
3 . 5 4 . 0 1 . 2 7 1 9 5 . 0 1 4 8 5 . 0 4 . 0 1 . 2 8 0 1 4 . 2 0 7 1 
3 . 5 4 . 5 1 . 2 7 3 3 5 . 3 5 3 5 5 . 0 4 . 5 1 . 3 3 6 0 4 . 5 7 0 7 
3 . 5 5 . 0 1 . 2 5 5 2 5 . 6 3 7 5 5 . 0 5 . 0 1 . 3 6 6 2 4 . 8 9 2 6 
3 . 5 5 . 5 1 . 2 2 5 0 5 . 8 7 5 4 5 . 0 5 . 5 1 . 3 7 6 4 5 . 1 7 5 1 
3 . 5 6 . 0 1 . 1 8 7 8 6 . 0 7 4 9 5 . 0 6 . 0 1 . 3 7 1 7 5 . 4 2 1 8 

4 . 0 0 . 1 0 . 0 2 3 6 1 . 4 3 5 9 5 . 5 0 . 1 0 . 1 8 4 4 1 . 3 0 9 4 
4 . 0 0 . 5 0 . 0 9 4 3 1 . 5 4 0 4 5 . 5 0 . 5 0 . 2 2 3 4 1 . 3 7 8 2 
4 . 0 1 . 0 0 . 2 8 8 5 1 . 8 4 6 0 5 . 5 1 . 0 0 . 3 3 6 4 1 . 5 8 3 7 
4 . 0 1 . 5 0 . 5 4 0 7 2 . 2 9 3 4 5 . 5 1 . 5 0 . 4 9 8 9 1 . 8 9 7 3 
4 . 0 2 . 0 0 . 7 8 9 0 2 . 8 1 5 5 5 . 5 2 . 0 0 . 6 8 2 8 2 . 2 8 4 7 
4 . 0 2 . 5 0 . 9 9 5 0 3 . 3 5 3 0 5 . 5 2 . 5 0 . 8 6 3 0 2 . 7 1 0 7 
4 . 0 3 . 0 1 . 1 4 5 4 3 . 8 6 4 9 5 . 5 3 . 0 1 . 0 2 2 4 3 . 1 4 5 8 
4 . 0 3 . 5 1 . 2 4 2 7 4 . 3 2 8 9 5 . 5 3 . 5 1 . 1 5 2 6 3 . 5 6 8 1 
4 . 0 4 . 0 1 . 2 9 6 5 4 . 7 3 6 8 5 . 5 4 . 0 1 . 2 5 1 4 3 . 9 6 4 1 
4 . 0 4 . 5 1 . 3 1 7 6 5 . 0 8 8 9 5 . 5 4 . 5 1 . 3 2 0 8 4 . 3 2 6 5 
4 . 0 5 . 0 1 . 3 1 5 6 5 . 3 8 9 7 5 . 5 5 . 0 1 . 3 6 5 0 4 . 6 5 2 7 
4 . 0 5 . 5 1 . 2 9 8 0 5 . 6 4 5 6 5 . 5 5 . 5 1 . 3 8 8 5 4 . 9 4 3 3 
4 . 0 6 . 0 1 . 2 7 0 2 5 . 8 6 3 1 5 . 5 6 . 0 1 . 3 9 5 7 5 . 2 0 0 3 

4 . 5 0 . 1 0 . 0 9 1 3 1 . 3 7 9 8 6 . 0 0 . 1 0 . 2 1 6 7 1 . 2 8 6 6 
4 . 5 0 . 5 0 . 1 4 8 3 1 . 4 7 0 8 6 . 0 0 . 5 0 . 2 4 9 7 1 . 3 4 6 7 
4 . 5 1 . 0 0 . 3 0 8 3 1 . 7 3 9 0 6 . 0 1 . 0 0 . 3 4 6 4 1 . 5 2 7 3 
4 . 5 1 . 5 0 . 5 2 5 2 2 . 1 3 7 5 6 . 0 1 . 5 0 . 4 8 8 3 1 . 8 0 5 9 
4 . 5 2 . 0 0 . 7 5 1 3 2 . 6 1 2 3 6 . 0 2 . 0 0 . 6 5 3 6 2 . 1 5 5 2 
4 . 5 2 . 5 0 . 9 5 2 2 3 . 1 1 3 0 6 . 0 2 . 5 0 . 8 2 1 6 2 . 5 4 6 0 
4 . 5 3 . 0 1 . 1 1 0 9 3 . 6 0 2 2 6 . 0 3 . 0 0 . 9 7 6 5 2 . 9 5 2 5 
4 . 5 3 . 5 1 . 2 2 4 3 4 . 0 5 6 9 6 . 0 3 . 5 1 . 1 0 9 0 3 . 3 5 4 6 
4 . 5 4 . 0 1 . 2 9 7 0 4 . 4 6 5 8 6 . 0 4 . 0 1 . 2 1 5 3 3 . 7 3 8 6 
4 . 5 4 . 5 1 . 3 3 6 7 4 . 8 2 6 1 6 . 0 4 . 5 1 . 2 9 5 3 4 . 0 9 6 0 
4 . 5 5 . 0 1 . 3 5 1 2 5 . 1 3 9 6 6 . 0 5 . 0 1 . 3 5 1 4 4 . 4 2 2 8 
4 . 5 5 . 5 1 . 3 4 7 3 5 . 4 1 0 5 6 . 0 5 . 5 1 . 3 8 7 0 4 . 7 1 8 1 
4 . 5 6 . 0 1 . 3 3 0 7 5 . 6 4 3 9 6 . 0 6 . 0 1 . 4 0 5 7 4 . 9 8 2 7 
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Table 58.--Values of Skewness and Kurtosis Measures for 
Various Settings of Mean (/i) and Standard Deviation (a) with 

Contaminating Fraction (e) = 0.50 

M a Skew-
ness 

Kurto-
sis M a Skew-

ness 
Kurto-
sis 

0.5 0.1 -0.8684 5.2582 2.0 0.1 -0.8043 2.4415 
0.5 0.5 -0.4934 3.8760 2.0 0.5 -0.5431 2.4024 
0.5 1.0 0.0000 2.9931 2.0 1.0 0.0000 2.5000 
0.5 1.5 0.2138 3.4088 2.0 1.5 0.4409 2.8798 
0.5 2.0 0.2743 4.0268 2.0 2.0 0.6872 3.3878 
0.5 2.5 0.2780 4.5197 2.0 2.5 0.7917 3.8729 
0.5 3.0 0.2634 4.8726 2.0 3.0 0.8165 4.2778 
0.5 3.5 0.2439 5.1223 2 . 0 3.5 0.8015 4.5982 
0.5 4.0 0.2245 5.3016 2.0 4 . 0 0.7684 4.8476 
0.5 4.5 0.2066 5.4331 2.0 4.5 0.7285 5.0417 
0.5 5.0 0.1906 5.5318 2.0 5.0 0.6872 5.1939 
0.5 5.5 0.1765 5.6074 2.0 5.5 0.6473 5.3144 
0.5 6.0 0.1641 5.6664 2.0 6.0 0.6097 5.4109 

1.0 0.1 -1.1318 4.0703 2.5 0.1 -0.6244 2.0297 
1.0 0.5 -0.6872 3.3878 2.5 0.5 -0.4347 2.0678 
1.0 1.0 0.0000 2.9200 2.5 1.0 0.0000 2.2564 
1.0 1.5 0.3651 3.2978 2.5 1.5 0.4118 2.6348 
1.0 2.0 0.4934 3.8760 2.5 2.0 0.6870 3.1131 
1.0 2.5 0.5162 4.3684 2.5 2.5 0.8332 3.5867 
1.0 3.0 0.4988 4.7370 2.5 3.0 0.8923 4.0012 
1.0 3.5 0 .4681 5.0056 2.5 3.5 0.9004 4.3432 
1.0 4 . 0 0 .4347 5.2024 2.5 4.0 0.8811 4.6184 
1.0 4.5 0.4026 5.3489 2.5 4.5 0.8483 4.8382 
1.0 5.0 0.3732 5.4600 2.5 5.0 0.8098 5.0141 
1.0 5.5 0.3468 5.5457 2.5 5.5 0.7697 5.1556 
1.0 6.0 0.3233 5.6130 2.5 6.0 0.7303 5.2705 

1.5 0.1 -1.0098 3.0897 3.0 0.1 -0.4871 1.7629 
1.5 0.5 -0.6520 2.8504 3.0 0.5 -0.3462 1.8261 
1.5 1.0 0.0000 2.7408 3.0 1.0 0.0000 2.0414 
1.5 1.5 0.4347 3.1127 3.0 1.5 0.3687 2.4037 
1.5 2.0 0.6297 3.6522 3.0 2.0 0.6520 2.8504 
1.5 2.5 0.6893 4.1428 3.0 2.5 0.8295 3.3056 
1.5 3.0 0.6860 4.5309 3.0 3.0 0.9221 3.7206 
1.5 3.5 0.6568 4.8252 3.0 3.5 0.9574 4.0766 
1.5 4.0 0.6185 5.0470 3.0 4 . 0 0.9575 4 .3726 
1.5 4.5 0.5787 5.2155 3.0 4.5 0.9375 4.6155 
1.5 5.0 0.5406 5.3451 3.0 5.0 0.9068 4.8140 
1.5 5.5 0.5053 5.4464 3 . 0 5.5 0.8708 4.9766 
1.5 6.0 0.4731 5.5266 3.0 6.0 0.8332 5.1103 
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M a Skew-
n e s s 

K u r t o -
s i s 

a S k e w -
n e s s 

K u r t o -
s i s 

3 . 5 0 . 1 - 0 . 3 8 5 7 1 . 5 8 3 9 5 . 0 0 . 1 - 0 . 2 1 1 5 1 . 3 0 4 0 
3 . 5 0 . 5 - 0 . 2 7 8 0 1 . 6 5 1 5 5 . 0 0 . 5 - 0 . 1 5 6 0 1 . 3 5 6 0 
3 . 5 1 . 0 0 . 0 0 0 0 1 . 8 6 3 4 5 . 0 1 . 0 0 . 0 0 0 0 1 . 5 1 3 7 
3 . 5 1 . 5 0 . 3 2 3 3 2 . 1 9 9 6 5 . 0 1 . 5 0 . 2 1 2 1 1 . 7 5 9 1 
3 . 5 2 . 0 0 . 6 0 0 3 2 . 6 1 1 9 5 . 0 2 . 0 0 . 4 3 4 7 2 . 0 6 7 8 
3 . 5 2 . 5 0 . 7 9 6 9 3 . 0 4 2 8 5 . 0 2 . 5 0 . 6 3 4 4 2 . 4 1 0 8 
3 . 5 3 . 0 0 . 9 1 7 3 3 . 4 4 9 9 5 . 0 3 . 0 0 . 7 9 5 0 2 . 7 6 2 0 
3 . 5 3 . 5 0 . 9 7 9 4 3 . 8 1 1 6 5 . 0 3 . 5 0 . 9 1 3 2 3 . 1 0 1 3 
3 . 5 4 . 0 1 . 0 0 1 5 4 . 1 2 1 9 5 . 0 4 . 0 0 . 9 9 3 0 3 . 4 1 6 5 
3 . 5 4 . 5 0 . 9 9 7 9 4 . 3 8 3 3 5 . 0 4 . 5 1 . 0 4 1 3 3 . 7 0 1 6 
3 . 5 5 . 0 0 . 9 7 8 6 4 . 6 0 1 7 5 . 0 5 . 0 1 . 0 6 5 6 3 . 9 5 5 0 
3 . 5 5 . 5 0 . 9 5 0 4 4 . 7 8 3 7 5 . 0 5 . 5 1 . 0 7 2 1 4 . 1 7 7 7 
3 . 5 6 . 0 0 . 9 1 7 6 4 . 9 3 5 7 5 . 0 6 . 0 1 . 0 6 5 9 4 . 3 7 2 3 

4 . 0 0 . 1 - 0 . 3 1 0 6 1 . 4 5 9 5 5 . 5 0 . 1 - 0 . 1 7 8 2 1 . 2 5 3 8 
4 . 0 0 . 5 - 0 . 2 2 6 2 1 . 5 2 3 7 5 . 5 0 . 5 - 0 . 1 3 2 1 1 . 3 0 0 0 
4 . 0 1 . 0 0 . 0 0 0 0 1 . 7 2 0 0 5 . 5 1 . 0 0 . 0 0 0 0 1 . 4 3 9 9 
4 . 0 1 . 5 0 . 2 8 1 1 2 . 0 2 5 7 5 . 5 1 . 5 0 . 1 8 5 2 1 . 6 5 8 8 
4 . 0 2 . 0 0 . 5 4 3 1 2 . 4 0 2 4 5 . 5 2 . 0 0 . 3 8 7 7 1 . 9 3 7 0 
4 . 0 2 . 5 0 . 7 4 8 0 2 . 8 0 5 2 5 . 5 2 . 5 0 . 5 7 8 7 2 . 2 5 1 3 
4 . 0 3 . 0 0 . 8 8 8 9 3 . 1 9 7 5 5 . 5 3 . 0 0 . 7 4 1 1 2 . 5 7 9 4 
4 . 0 3 . 5 0 . 9 7 4 5 3 . 5 5 7 4 5 . 5 3 . 5 0 . 8 6 8 4 2 . 9 0 3 3 
4 . 0 4 . 0 1 . 0 1 8 2 3 . 8 7 5 2 5 . 5 4 . 0 0 . 9 6 1 2 3 . 2 1 0 7 
4 . 0 4 . 5 1 . 0 3 2 5 4 . 1 4 9 8 5 . 5 4 . 5 1 . 0 2 3 8 3 . 4 9 4 4 
4 . 0 5 . 0 1 . 0 2 7 2 4 . 3 8 4 1 5 . 5 5 . 0 1 . 0 6 1 7 3 . 7 5 1 2 
4 . 0 5 . 5 1 . 0 0 9 3 4 . 5 8 3 0 5 . 5 5 . 5 1 . 0 8 0 6 3 . 9 8 0 7 
4 . 0 6 . 0 0 . 9 8 3 8 4 . 7 5 1 6 5 . 5 6 . 0 1 . 0 8 5 1 4 . 1 8 4 2 

4 . 5 0 . 1 - 0 . 2 5 4 3 1 . 3 7 0 1 6 . 0 0 . 1 - 0 . 1 5 2 0 1 . 2 1 5 0 
4 . 5 0 . 5 - 0 . 1 8 6 6 1 . 4 2 8 5 6 . 0 0 . 5 - 0 . 1 1 3 0 1 . 2 5 5 9 
4 . 5 1 . 0 0 . 0 0 0 0 1 . 6 0 5 4 6 . 0 1 . 0 0 . 0 0 0 0 1 . 3 8 0 0 
4 . 5 1 . 5 0 . 2 4 3 9 1 . 8 8 0 1 6 . 0 1 . 5 0 . 1 6 2 4 1 . 5 7 5 4 
4 . 5 2 . 0 0 . 4 8 6 9 2 . 2 2 1 8 6 . 0 2 . 0 0 . 3 4 6 2 1 . 8 2 6 1 
4 . 5 2 . 5 0 . 6 9 2 0 2 . 5 9 4 7 6 . 0 2 . 5 0 . 5 2 6 7 2 . 1 1 3 3 
4 . 5 3 . 0 0 . 8 4 5 9 2 . 9 6 7 8 6 . 0 3 . 0 0 . 6 8 7 2 2 . 4 1 8 4 
4 . 5 3 . 5 0 . 9 5 0 3 3 . 3 1 9 7 6 . 0 3 . 5 0 . 8 1 9 7 2 . 7 2 5 2 
4 . 5 4 . 0 1 . 0 1 3 6 3 . 6 3 8 7 6 . 0 4 . 0 0 . 9 2 2 0 3 . 0 2 2 0 
4 . 5 4 . 5 1 . 0 4 5 6 3 . 9 2 1 0 6 . 0 4 . 5 0 . 9 9 6 4 3 . 3 0 1 0 
4 . 5 5 . 0 1 . 0 5 5 2 4 . 1 6 7 0 6 . 0 5 . 0 1 . 0 4 6 6 3 . 5 5 7 9 
4 . 5 5 . 5 1 . 0 4 9 2 4 . 3 7 9 6 6 . 0 5 . 5 1 . 0 7 7 1 3 . 7 9 1 0 
4 . 5 6 . 0 1 . 0 3 2 8 4 . 5 6 2 5 6 . 0 6 . 0 1 . 0 9 2 1 4 . 0 0 0 7 
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no yes 

yes yes 

X sr'-Ej-1 \ 
is 

diagonal matrix 

yes no 

QDF LDF 

MSD4 
MIP4 
HYB4 

MSD2 
MIP2 
HYB2 

MSD5 
MIP5 
HYB5 

Er'-E; -1 

is 
diagonal matrix 

Fig. 23. Guideline for Alternative Mathematical Programming 
Models. 
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