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In this study, we consider the generalized function solutions to nonlinear 

wave equation with distribution initial data. J. F. Colombeau shows that the initial 

value problem 
un - A M = F(u) 

m(X,0) = UQ 

ut(x, 0) = Ml 

where the initial data Mo and Mi are generalized functions, has a unique generalized 

function solution u. Here we take a specific F and specific distributions Mo, U\ then 

inspect the generalized function representatives for the initial value problem solution 

to see if the generalized function solution is a distribution or is more singular. Using 

the numerical technics, we show for specfic F and specific distribution initial data 

Mo, Mi, there is no distribution solution. 
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CHAPTER 1 

INTRODUCTION AND TERMINOLOGY 

A theory of generalized functions more general than distributions has been 

developed by J. F. Colombeau ([1, 2, 5, 7, 8, 9, 20, 21]). Although considerably 

more general, these generalized functions have many of the properties of usual C°°-

functions. Let F be a slowly growing C°°-function from R into R. Now consider 

the following nonlinear wave initial value problem: 

utt - Au = F(u) 

w(:r,0) = Uq 

ut(ic,0) = m. 

J. F. Colombeau proves, for F obeying a growth restriction, that for generalized 

functions uQj ux, there is a unique generalized solution u. This raises the following 

question. Given distributions u0 and ux, could the solution to the initial value 

problem also be a distribution, or is it always a more singular generalized function? 

In order to explore this question, we take a specific F and specific distributions 

UQ and «i, then inspect the generalized function representative for the initial value 

problem solution to see if the generalized function solution is a distribution or is 

more singular. Here, we choose F(u) = - | u | p - 1 u , u0 = 0 and = S(x), that is 

utt — A u = —|m| p-1u 

u(:r,0) = 0 

w<(x,0) = £(a;) 

and we also examine the problem with UQ = S(x) and u\ = 0. 
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Before we present Colombeau's method, let us define the generalized func-

tions on R n . 

Notat ion 1.1: Let P ( R n ) be the space of all C°°-functions </>: R n —> C 

with compact support. For q = 1 ,2 ,3 , . . . we set 

Aq = <4> G P ( R " ) such that f cf>(X)dX = 1, f Xt(f>(X)dX = 0 for 1 < |i| < q 1 
I J R" J Rn J 

here A = (Ai, A2,.. •, An) G R n , i — (ii, 121 • • • 1 in) £ N n , |i| = i\ + ii + ••• + ?« and 

A' = (A1) i l(A2)^---(An) i". 

Notat ion 1.2: If e > 0, A E R" and 4> G X>(R") we set 4>e(X) — —<j>(—). 
en e 

Notat ion 1.3: Let £"[Rn] denote the set of all the functions 

R: Ai x R" —> C 

for which R(cf>, x) is a C°°-function in x for each fixed </>. 

Definition 1.4: We say an element R of £*[Rn] is moderate if for every 

compact subset K, of R" and every derivation operator 

D = —7 r -
dxx

l • • • dxn
n 

there is an N € N such that if (j> G An then there exist rj > 0, c > 0 such that 

\DR(<j>e,x)\ < 
cN e1 

for all x G /C and 0 < e < rj. We denote by £M[Rn] the set of all moderate elements 

of £[Rn}. 

Notat ion 1.5: We denote by T the set of all the increasing functions a from 

N into R + such that a(q) tends to +00 when q —¥ +00. 

Definition 1.6: We say that an element R of £[Rn] is null if for every 

compact subset K of R n and every derivation operator D, there are N G N, a G T 

such that if 4> G Aq, q > N, then there exist rj > 0, c > 0 such that 

\DR(<f>e,x)\ < cea(g)~N 



for all x E K and 0 < e < rj. We denote by JV"[Rn] the set of all the null elements 

of £[R n] . 

Def in i t ion 1.7: We define the generalized functions on R n as the quotient 

space 

£ ( R n ) -
y [ R » ] ' 

In other words we define an equivalence relation in £Af[Rn] by setting 

R! ~ R2 if and only if Ri — R2 E Af[Rn] 

and so a generalized function is an equivalence class. Since .A/"[Rn] is a linear 

subspace of £M[R™], £ ( R " ) is a linear space. Since _A/"[Rn] is an ideal of £M[R"], 

Q(Rn) is an algebra. If D is any x-derivation operator and if G £ £/(R"), then DG 

is defined as an element of £/(Rn) as follows. If R E £jvf[Rn] is a representative of 

G E £ ( R n ) then DG E <7(Rn) is defined as the class of DR (E £M[Rn]; that class 

does not depend on the choice of R in the class G. 

Def in i t ion 1.8: Restrictions of generalized functions. 

Given an arbitrary element u of <?(R4), we seek a natural concept defining 

the restriction w|t=o of u to R 3 = R 3 x {0} C R 4 . For this let E <S(R3) be given. 

We define sym-0 by 

(symtl>)(x1,x2,x3) = ^ ^ { x ^ x ^ x ^ ) 
crGzGs 

where G:i denotes the set of all 3! permutations of the set {1,2,3}. Then we define 

a function ^4 on R 4 by 

if>i(x,t) =i/>(x) / (sym^)(fi,£2,<)dfid&. 
Jr.2 

Now let u be an arbitrary element of Q (R 4) . Let 

R: ^4i(R4) x R 4 —> C 



be a representative of u. We define a map 

R':Ai{R3) x R 3 —> C 

by 

R'{$,x) = R{\j)4,(a;,0)) if G *4i(R3). 

We denote by 

u|,=o g £ (R 3 ) 

the class of R', and we call tt|t=o the restriction of u to R 3 . 

Notation 1.9: Let us assume / , uq and u\ are generalized functions with 

respective representatives 

Rf G £m[R4], G £m[R3]-

If '0 € v4i(R4), let tpz G ,4i(R3) be defined by 

i>z{x) = I ip(x,t)dt. 
JR 

R e m a r k : By (Definition 1.8) and (Notation 1.9), it is immediate that 

G P ( R 4 ) if ip G £>(R3) 

^4 G S(R 4 ) if if> G S(R 3 ) 

•04 G .4g(R4) if ip € Aq(R.3) for g = l , 2 , 3 . . . 

Furthermore, 

(^3)e = (V>«)3 for 0 < € < 1, 

because 
"°° 1 'x t 

(if>c)i{x) = J ^ 1 ) dt 

=L^&ut 

?(*.) ({ 
(03)e(®). 



Also, 

(^4)3 = V', 

because 

0 M M ) ) 3 = (^(x) j^sym^{t,\,i2,t)d£xd£^j 

= J (${x) sym^dx, &, <)<f&d&^J dt 

= i/>(x) t ( L 

= t/>(x). 

J. F. Colombeau's method for finding generalized function solutions to dif-

ferential equations. 

We consider the nonlinear wave equation. 

utt — A u = F(u) 

in <?(R4), where F: R 1 —>• R 1 is a C°°-smooth function, such that F(0) = 0 and 

suP®eR ID pF(x)\ < 00, for all positive integer p. 

Theorem 1.1: The initial value problem 

« ( ( - A« = F(m) (1.1) 

u(0,z) = «0(») (1.2) 

ut(0,x) = m(x) (1.3) 

has real valued generalized function solutions u €E (?(R4) for every pair of real valued 

generalized functions u0, U] £ (?(R3). 

(Proof) Suppose first that u 0 ,u i G C°°(R3). The problem (1.1) ~ (1.3) is 

equivalent to solving the nonlinear integral equation 

u(t,x) = v(t,x) + f (t-s)M(F(u),s,x,t-s)ds (1.1)' 
Jo 



where 

M ( f , s,x,p) = ^~ [ f(s, x + p£)d£ 
47r JteiL*,\\t\\=i 

for 

/ : R 4 —+ R 1 

sufficiently regular, while v is the solution of the following classical, homogenous 

initial value problem 

vtt - Av = 0 (1.4) 

v(0, x) = u0(x) (1.5) 

v(0,x) = ui(x). (1.6) 

Given t}ie classical solution v £ C°°(R4 ) of (1.4) (1.5), the solution u £ C°°(R4) 

of (1.1)1 is obtained by iteration. We start with ui = v and continue according to 

«M-i(<,0) = u(i,0) + f (t — x)M (F(u„),x,s,t — s) ds (1.7) 
Jo 

for v 6 N + . Using estimates of the right hand term in (1.7), we obtain the unique 

solutionj u *= C°°(R4) of (1.1)', as a limit of uv, when v —y oo, with the convergence 

being uniform on compact sets in R 4 . 

Now we consider the case where uo and u\ are arbitrary generalized functions 

in ^(R3!). We are looking for a generalized solution u 6 £(R 4 ) which will be well 

defined bs soon as we obtain for it a representative 

u = f + AT[R4} e £ ( R 4 ) where jf £ ^^^R, j. (1.8) 

Let / 0 and f i be representatives of u0 and «i, that is, 

ui = fi+Af[ R 3] 

where ft £ £m[R3] for i £ {0,1}. Let us take an arbitrary 

<j> e -4 i (R 4 ) . 



It follows that 

M M , / , ( ^ , - ) € C ~ ( R s ) . 

Let us consider the classical C°°-smooth case (1.1) ~ (1*3) with the initial 

values given by 

«o = /o(^3,-)» « l = / l ( ^ 3 , ' ) -

Then according to the classical existence and uniquness result, we obtain a C°°-

smooth solution which we denote by 

/ (* , . ) €C°° (R 4 ) . (1.9) 

In this way, we only have to show two things; first, that / in (1.9) satisfies / £ 

£m[R4], and second, that the corresponding 

U = f + M[ R4] 

will satisfy (1.2) and (1.3). The mentioned estimates of the right hand term in (1.7) 

used in the classical C°°-smooth proof directly yield the estimates needed in order 

to obtain / £ £jvf[R4]- In this way we obtain u in (1.8) which satisfies (1.1) in 

C/(R4). Finally, we have to show that (1.2), (1.3) are satisfied. 

In view of (1.8), we have 

u | , = 0 = ^ + jV"[R 3 ]ea(R 3 ) 

with g(ifi,x) = / (^4 , (ar,0)), tp £ .4i(R3) , x £ R 3 , according to Definition 1.8. 

Since is the solution of (1.1) ~ (1.3) with the initial values 

UQ = fo((tp4:h, •) and ux = /i((^>4)3, •) we have 

3 # > * ) = f i t 4,(«,0)) 

= /o((04)3,®) 

= fo(i/f,x) 



where the last equality follows from (^4)3 = V'- That is, g = /o. That is, i/|t=o = UQ. 

Similarly, ut\t-o = h + ^ [ R 3 ] G <7(R3) where h(x^,x) = ^ ( ^ 4 , (x, 0)), ac-
Cft 

cording to Definition 1.8. Since / (^4,(x , t ) ) is the solution of (1.1) ~ (1.3) with 

initial values u0 = /o((^4)3, *) and u\ = /i((^4)3, •), we have 

h(4>,x) = ^ (^4 , (® ,0 ) ) 

= /1 ((^4)3,2) 

= 

That is, h — f\. That is, Ut\t=o = u\. 

R e m a r k : In fact, the conclutions of Theorem 1.1 also hold when the non-

linearity F has unbounded derivatives but satisfies a growth condition. See ([8]). 

In particular, a nonlinearity of the form F(u) = — \u\p~lu with 1 < p < 5 (in 

three spatial dimensions) satisfies the growth condition. So for these pure power 

nonlinearities the initial value problem has generalized function solutions. 

Distributions considered as generalized functions. 

Distributions in X>'(Rn) may be considered to be generalized functions as 

follows. If Q £ D'(R n ) , then for 'IP £ «4i, we define 

R Q { $ , X ) = (V> * Q ) { x ) = Q $ X ] 

where i>x(y) = ij>(x - y). Because V> € X>(R"), 0 * Q is in C°°(Rn). Thus RQ(•) 

is C°°, so RQ G £[Rn]. In fact, RQ is moderate, which we can see as follows. Let 
d\k\ 

Q k2 • ^ be a compact subset of R" . Because Q £ D'(R r t), we 

know that for all <f> £ C§°(K), 

W ] = J Hy) ( f l J V ) (y)Ty 



for some continuous slowly growing function h : R n —Y C and some fixed multiin-

dex I. Therefore, 

flW(iJg(V(,x))=Z)W ((0, „ « ( * ) ) 

= D^Q [(&). 

= flW/~ h(y)Df \(<j,<)x(v) 
J R" L 

= £><*> f %)£><<> [</><(* ~ «)] 
J Rn 

= £>?> f h(v)Df 
J R™ 

dny 

DNY 

(-1)"1 

Thus, 

Dlk\RQ(i,„x)) < 
c 

en+\l\+\k\ 

where C is a constant and for x in K, that is, RQ is moderate. The generalized 

function associated with the distribution Q is the equivalence class of RQ in <?[Rn] 

where RQ{^>,X) = * QX^)-

Suppose we know R : A\ x R n —> R is associated with a distribution. 

We can recover the distribution from the generalized function representative R 

as follows. Suppose we are given a test function <f> 6 £>(R"). If R is indeed a 

representative of a distribution Q G X>'(Rn) then we have R(xf>, x) = (ip*Q)(x) +Af, 

so that 

/jrae_K) I R(i>e,x)4>(x)dnx = lime-t0 I (tpe * Q)(x)<j){x)dnx 
J R" JR™ 

= Q[4>\ 

because is a 5-sequence. Therefore, if R. is a generalized function representative 

of the distribution Q G £>'(R"), then Q is recovered from R by 

Q[4>] = lime^o I R(tl>e,x)(j>(x)d
nx. 

J R" 
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We now consider the initial value problem 

u t t - Au = f ( u ) 

u(x, 0) = UQ 

u t { x , 0) = ui 

where u0 and uj are distributions in 2>'(R3). Each distribution has an associated 

generalized function, with representative RUo and RUl given by 

R U o ( i p , x ) = ( i p * u 0 ) ( x ) 

R U l ( i p , x ) =? (tj> * « i ) ( f ) . 

J. F. Colombeau's generalized function solution to the initial value problem ( with 

uq and ui regarded as generalized functions ) has representative Ru G £[R3 + 1]. For 

<f> 6 Ax, satisfies 

utt - Au = f ( u ) 

u ( x , 0 ) = RUo((f>3,x) = (<f>3 * u 0 ) ( x ) 

U t ( x , 0 ) = RUl{<j>3,x) = (<f>3 * U l ) ( x ) . 

where 4>z(x) = <j>(x,t)dt. 

Suppose it happened that the generalized function solution u was associated 

with a distribution Q £ P ' (R 3 + 1 ) . Then for fixed ^ e ,4i(R3 + 1) , 

Q{4>\ = lime^o f R u ( i > e , x ) ( f ) ( x ) d z + 1 i 

JR3+1 
X 

'R3+1 

for all <j> (E 2>(R3+1). Therefore, we consider the initial value problem satisfied by 

(x, t) — R ' U ^ I® 

( U e ) t t ~ A u e = f ( u e ) 

ue(cc,0) = ((^,t)3 * ^o) (®) 

(«eM®,O) = ( (0 e ) 3 *u 1 ) (x) . 
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Because (ipe)3 = ('03 )c, the initial value problem becomes 

Mtt - Am = /(ue) 

Ue(£,0) = ((^3)e * «o) (z) 

(u f) t(x, 0) = ((^3)e *«l)(®). 

Therefore, to look for distribution solutions to the nonlinear initial value problem 

utt - Au = f(u) 

u(x, 0) = UQ 

ut(x, 0) = Ui 

where uo and u\ are in X>'(R3), we solve the initial value problem 

(u€)n - Au€ = f(ue) 

ue(x, 0) = (Be * Mo)(aO 

(« e ) t (® ,0 ) = (0e *Ul)(x) 

where 0 G P ( R 3 ) . If it happens that the generalized function solution is associated 

with a distribution Q, then Q is obtained from 

Q[<f>] = lime->0 I u€(x,t)(f>(x,t)d3xdt. 
J R3+1 

We can summarize J. F. Colombeau's method in the case when the initial 

data are ordinary distributions. To find generalized function solutions to (1.1) ~ 

(1.3), we regularize uo and u\ by convolving them with families of D-functions that 

approximate the Dirac delta function. We then solve the initial value problem with 

the regularized (C°°) initial data, to obtain a classical solution for each D-function. 

We then take those classical solutions to be representatives of a generalized function, 

which we regard as the generalized function solution. We apply this techique to 

specific examples in the following. 



CHAPTER 2 

INITIAL VALUE PROBLEMS 

and 

We consider the two initial value problems. 

utt — A u = f(u) 

u ( a r , 0 ) = S ( x ) 

Uf(®,0) = 0 (2.1) 

utt - Au — f(u) 

u(x, 0) = 0 

u«(s,0) = £(:r) (2.2) 

where A is the Laplacian in x and the solution u:Rn+1 —> C is complex valued 

function. Since V(Rn), considered as a subspace of £>'(Rn), is dense in X>'(R"), 

given tp £ 2?(R ), with f ifc(x)dx = 1, the sequence ipe defined by i/>e(x) = — ^(—) 

converges to 5 in V(Rn). To use J. F. Colombeau's method, we replace 5 by 

%f)€ * S = -0€. 

(Case 1) We consider the following initial value problem. 

(ue)tt - Aue = f(Ue) 

we(a;,0) = rj>€{x) = 
en e 

(ue)t(x,0) = 0. (2.3) 

This problem has a solution u£(x, i) which is a representative of a generalized 

12 
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function because u( is a C°°-function. Then there arises the following question. 

Does ue ever generate a distribution? That is, are there nonlinearities / for which 

lirrif-^o I ue(x,t)cf>(x,t)d
n xdt exists for all <j> 6 2?(R n + 1 )? (2-4) 

J R » + ! 

1 X t 

We rewrite by introducing ve(x,t) such that ue(x,t) = — ve( —, -j) where I is to be 

determined, then ve(x,t) = enu€(ex,e
lt). Next we find the initial value problem 

1 X 

satisfied by ve. The initial condition in (2.3), ue(ar,0) = implies 

•ye(x,0) = (2.5) 

(M€)f(a;,0) = 0 implies 

(v e) t(s,0) = 0 (2.6) 

and from the equation (ue)tt — Au e = f(ue) we get 
1 1 ,x t . 1 1 . . w x t . „ / 1 ,xt.\ 

? ) - — ? ) = / ( - » . ( 7 , ? ) ) • (2.7) 

From (2.5), (2.6) and (2.7) ve satisfies the following initial value problem 

cnT57("<)« -

ve(x,0) = tp(x) 

(v«)t(a;,0) = 0. (2.8) 

Now, to get the simplest possible situation, choose I — 1 and take f(w) = — 

then (2.8) becomes 

A 
(ve)tt - ( A u e ) 

ue(ar,0) = 4>(x) 

(ue)f(ar,0) = 0. (2.9) 
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2 
We notice that for the special value p = 1 H—, the initial value problem for v€ is 

n 

independent of e. Then ve satisfies the following initial value problem 

2 
n 

(v€)tt - Ave = - | u e | p 1v€ with p = 1 + 

ue(s,0) = 

(« e) t(x,0) = 0. (2.10) 

Since the solution of the initial value problem 

vtt — Au = — \v\p~lv 

v(x, 0) = ip(x) 

u«(a:,0) = 0 (2.11) 

is unique, the solution vf of (2.10) actually does not depend on e. That is, vf(y, 5) = 

v(y, s) for all e where v(y} s) is the solution of (2.11). As a consequence the solution 
1 X "t 

of uf of (2.3) is given by ue(x,t) = — v ( —, - ) . Then our question (2.4) becomes: 

Does 

l i m [ —v( —,-)<$>( x,t)dnxdt 
e->0 JRn+1 en e e ' 

exist or not for all <f> £ X>(Rn+1)? where v is the solution of (2.11). 

(Case 2) As in (case 1), we consider the following equation 

( u f ) t t - Aue = - | u £ | p _ 1 « e 

u f ( x , 0) = 0 

(ue)t(x, 0) = i ^ ) (2.12) 

where if; G X>(Rn). Define v t ( x , t ) = en~1ue(ex: et). Then 

(V£)tt - Avf = ^ Z ^ ( - \ V e \ P ~ 1 ) v 

ve(x,0) = 0 

(««)<(», 0) = i>(x). 
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2 
We notice that for the special value p = 1 H , the initial value problem for 

n — 1 
1 X t 

ve is independent of e. Thus uf (x, t) = n l v( — , - ) where v satisfies the following 

initial value problem 

2 
Vtt — Av = — \v\p xv with p = 1 + 

n — 1 

v(x, 0) = 0 

u*(cc,0) = i?{x). (2.13) 

As a consequence our question for Case 2 becomes: Does 

lime-+o f ue(x,t)(f>(x,t)dnxdt = lim£->o [ —\-rv (4>(x,t)dnxdt 
jRn+i J-R.n+1 en \ e e j 

(2.14) 
exist or not for all <f> 6 D(R , t + 1)? 

Remark: It is useful to consider the analog of our formulation in the linear 
1 X t 

case. Let uoe(x,t) = — uo(~, ~) satisfy the following initial value problem 

(uo e)tt — Auoe = 0 

(uOe)(a:,0) = ^ ( | ) 

(«Oe)f(»,0) = 0. 

1 / X \ 

Because — ip J converges to S(x) in £>'(Rn) as e —Y 0, this solution approaches 

the distribution solution to 

(uo )tt — Auo = 0 

uo(x, 0) = S(x) 

(uo)t(x, 0) = 0. 

That is, we know 

lim I uoe(x,t)<f>(x,t)dnxdt = ua[(f)\ 
e~^°J R»+i 
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for all <j> € 2?(Rn+1). This is equivalent to 

lim [ -—wo (~I ~ ) 4>(x,t)dxdt ;= UQIS. 
^ o y R „ + 1

e " \ e eJ 

Thus, in the linear case, the analog to our question (2.4) has a positive answer. 

Methods of Investigation 

In this dissertation, we choose n > 1-dimension because there is no power 
2 

p that makes ve independent of e in Case 2 when n = I owing to p = 1 H . 
n — 1 

Furthermore, when n = 1, the initial value problem for v in (case 1) is 

vtt ~ vxx = -\v\2v 

u(a;,0) = tp(x) 

vt(x,0) = 0. 

The solutions to this equation have no dispersion and are oscillatory and not well 

suited to numerical computation. 

When n = 2, there is no nice reduction of vtt — Ay = —\v\p~lv to a one-

space dimension equation. But, for n = 3 we can reduce vu — Av = —\v\p~lv 

for spherically symmetric initial data to a one- space dimension equation that is 

numerically well behaved. So we choose n = 3. We consider the solutions to the 

problems (2.11) and (2.13) in n = 3 spatial dimensions, and investigate the limits 

(2.4) and (2.14) for <f> <E X>(R3+1). 

The specific values of the exponent p in our problems are those at the bor-

derline of the theory of scattering for u t t — Au = —\u\p~1u, and estimates of the 

asymptotic behavior of u for large times have not yet been obtained for these values 

of p ([3, 4, 6, 11, 12, 13, 14, 16, 17, 19, 22, 23, 24, 25, 26]). Here we will numerically 

solve the initial value problems (2.11) and (2.13) and we will investigate the l imi t s 

(2.4) and (2.14) based on the numerical solutions. 



CHAPTER 3 

GENERAL PROPERTIES OF SOLUTIONS 

We consider 

utt — A = — \u\p~ lu. (3.1) 

We can find a conserved quantity for this equation by applying Noether's Theorem 

to the time translation invariance of the equation. Let 

L[u) = f ( ' I | ^ | 2 _ I | v « | 2 - F ( « ) N ) d n ^ 
JR1+1 \Z 2 J 

where F(u) is the primitive of — |u | p _ 1 u. Then the solutions of (3.1) are extrema of 

the functional L. Let Teu(x,t) = u(x,t — e); then 

L(Teu) = [ ~(ut(x, t — e ) ) 2 — ~(Vu(x,t — e ) ) 2 — F(u(x,t — e)) dnxdt = L(u). 
J R n + 1 I 2 

So L is invariant under the 1-parameter family of linear transformations Te. The 

generator of the family is 

ml c? . 
T0

 = ^^e|e=0? 

which we may compute as follows 

$ d Q 
Teu(x,t) = —u(x,t — e) = --z~u(x,t — e) 

so 
d d 

Tou(x,t) = -7^Tt\e=0u(x,t) = ~—u(x,t) 

d $ 
hence we get the generator TQ = — —. Now we multiply — — in (3.1). 

( / L \Jv 

17 
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We have 

("" ~ A " + i"1" -1") ( ~ ^ ) = - ( j s ' " 1 ' 2 ~ A " ' "* + 

+ V • (u tVu) - (V« t)(Vu) 

= ~ ! ( } ( t " ) 2 + 5 l ^ l 2 - ^ ) ) 

That is, 

where 

(•Utt — Au -f f(u)) ut = —e[u] -f- V • p[u] 

e M ~ 2^Uf^2 ~~ 

p[«] = - M ( Vu. 

Thus, if it is a solution of (3.1), then 

d 
-e[u] + V-p(u) = 0. 

So, 

if limĵ i—•oo.pf̂ K ,̂ <£) — 0. 

Thus, for all u falling off fast enough at oo, 

~E[u](x,t) = 0 

where 

E[u](t) = j |„ t |
2 + i | y M | 2 - ir(u)^ ^ 

so, E[u](t) is independent of t. 
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Note that 

m(t) = lh,ml + h\^ml + ^ r f WM)IP+V*. 

L I P+ i yR3 

Because E(U) is time independent, we have 

ll^f(^)II2 + l|Vtx(i)||5 H - [ | « (x , t ) | p + 1 d3x = 2£!(u)(0) = constant. 
P + 1

 J R3 

Furthermore, each of the terms on the left side is nonnegative. Therefore, if the 

initial data have i?(it)(0) finite, then each of the terms is bounded by 2E(U)(0). 

This means that finite energy solutions are regular in the sense that all of the 

norms ||«t||2, | | V ? i | | 2 , and ||w||p+1 remain bounded for all times t. 

We also note that if the initial data for (3.1) have compact support in {x € 

R 3 | |®| < L} then the solution u has support in {{x,t) £ R 3 + 1 I I®| < L + |<|} . 

T h e o r e m 3.1: Suppose u is a classical solution of 

utt — A u = F'(u) 

where F(u) < 0 for all u. Suppose that support of the initial data for u is contained 

in the ball BL = {x G R n | \x\ < L}, that is, supp u(x, 0) C BL and supp 

ut(x, 0) C Bl. Then the spatial support of u(x,t) is contained in 

BL+ [t| = {X e R n | \x\ < L + |TF|}. 

( P r o o f ) Let e[u] = \{ut)2 + j |Vw|2 — F{u) and p[u] = - « j V u . We already know 

d 
dt 

e[u\ + V • p[u] = 0 (3.2) 
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Integrating (3.2) over the interior of some truncated light cone V, we obtain 

0 = / f l i e M + d n + l x 
f y \ dt J 

= f D-Pdn+1x 
Jv 

•L P • rids 

+ I P - fids 
'K 

= J e[u]ds — J e[u]ds + J -^= (e[u] + x • p[u]) ds 

where 
e[«] 

Mul. 

and the boundary of the truncated light cone V, that is dV, is composed of three 

parts, the top and bottom discs and the conical surface, T, B and K respectively, ds 

is the element of surface on dV, and third equality comes from divergence theorem. 

Therefore, 

I e[u)ds — I e[u]ds + ~^= [ (e[u] - utur)ds = 0. 
JT JB V2 JK 

Next write 

1 1 
e[u] - utur = ~(ut - ur)

2 + - (|Vu|2 - u2
r) - F(u). 

Therefore, the quantity e[u) — utur > 0 because F(u) < 0. 

So, 

/ e[u\ds= / e[u]ds f (e[u] - utur) ds. 
JT JB V2 JK 

Now, apply this equality to a portion of a light cone with base B at time t = 0, 

with B D BL empty. Because the initial data vanish outside BL, E[U] = 0 on the 

base B. Therefore, 

I e[u]ds = j= j (e[«] — utur) ds. 
JT V2 JK 
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Therefore, because e[u] = utur is nonnegative 

J e[u]ds = 0 = — -^= j (e[u] — utur) ds. 

Since e[u] > 0 and fT e[u]ds = 0, we have e[u] = 0 on T. So ut = 0 and 

Vw = 0 and F(u) = 0 on T. This implies that u = 0 on T. Repeating for any cone 

outside the stated support of solution, we get the support of u is as stated. See 

([22]). 

Reduction of 3-dimension space problem to 1-dimension problem. 

We consider the initial value problem 

Uft — A u = — 

u(x, 0) = f(\x\) 

M x ^ ) = 9 ( W \ ) (3.3) 

where x G R3. 

In (3.3), the initial data depend only on the radial variable |if| = r. Then 

it follows that the solution u(x,t) to (3.3) depends only on \x\ = r and t, that is, 

u(x,t) = u(r,t). Using the spherical coordinates, (3.3) is reduced to 

2 utt — (Urr H «r) = —kluF^U 
r 

u(r, 0) = f(r) 

»t(r,0) = g(r). (3.4) 

2 
Multiply by r in (3.4) and note that (ru) r r = r(urr + -ur) so (3.4) becomes 

(ru)tt - (ru)rr = -k\u\p~lu 

(r«)(r, 0) = rf(r) 

(ru)t(r, 0) = rg(r). (3.5) 
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Now, let w(r,t) = ru(r,t). Then (3.5) becomes 

wtt ~ wrr — —k 

w(r, 0) = r / ( r ) 

wt(r, 0) = rg(r), 

P-I 

w 

We compute solutions to this reduced problem. 



CHAPTER 4 

NUMERICAL TECHNIQUE 

We consider the reduced initial value problem for w = ru 

P - 1 
w Wft H)rf — k 

w(r, 0) = r / ( r ) 

to«(r,0) = rg(r) (4.1) 

where k is a constant and r > 0, t > 0. We will take one of / or g to be zero and 

spatial boundary condition to(0, t) — 0 for all t because w(r, t) = ru(r, t) implies that 

w(Q,t) = 0u(0, t) = 0. We will encode this boundary condition in our algorithm. 

Remark: Note that this is equivalent to solving the problem 

wtt - wxx = -k 
w 

x 

w(x, 0) = xf(\x\) 

v-1 
w 

«?t(x,0) = xg(\x\) 

and then restricting to x > 0. This results in a solution w(x,t) that is an odd 

function in x. 

We use a centered-time and centered-space difference algorithm. For fixed 

Ar and At, we define 

wj = w(j Ar, nAt). 

Then 
dftw 1 
— (jAr, nAt) = (wj+1 - 2 w j + wj-1) + O ((At)2) 

23 
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d2 

— ( j A r , n A t ) = — « + 1 - 2 < + «,?_,) + O ( ( A r ) 2 ) 

For simplity, we take At = Ar. We substitute into 

Wff l(} c }• — k 
p-1 

w 

and solve for w j + 1 : 

w]+1 = - w j ' 1 ' ~n + w^+i + wJ—i ~l~ ^ ((^^)4) "I" (At)2 | - fc 
w„ 

3 Ar 

p-i 

for n = 1,2,3, . . 

Define 

and j = 1 ,2 ,3 , . . . We take boundary condition: Wq = 0 for all n. 

f j = ( j A r ) f ( j A r ) a n d gj = ( j A r ) g ( j A r ) . 

Then one initial condition is Wj = f j for j = 0 , 1 , 2 , . . . To find the discrete version 

of the initial condition wt(x, 0) = a;g(|;E|), we consider the Taylor series 

w ) = w ( j A r , At) 

= w ( j A r , 0 ) + w t ( j A r , 0 ) A t + w t t ( j A r , 0 ) 

+ w t t t ( j A r , 0 ) ^ ^ + O ( ( A t ) 4 ) . 

(A t f 

Since wa = wrr — k 
p-i 

w, we have wttt = (Wf)rr — kp 
p- i 

wt. Therefore 

wtt(r,0) = ( r f ( r ) ) " - k 
r f ( r ) p~ 1 

r / ( r ) 

and 

wttt(r, 0) = (rg(r))" - kp 

Using the centered space derivatives 

r f ( r ) 
p-1 

rg(r). 
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( r / ( r ) ) " = (Kry{fi+' " V i + f i ~ l ) + 0 ( ( A r ) 2 ) 

and 

we find 

( r 9( r ) )" 
(Ar)' 

~(dj+1 — %9j + fl'j-i) + ^ ((^r)2) 

w* = f j + 9j(At) 

+ ^(Ar) 2 ^ + 1 ~~ 2"^ + ^7~1^ + ^ ( ^ r ^ ) ~ ^ 

(̂A<)3 ~ 2gJ + + 0 ((Ar)2) ~ kP 

fi P~1 

i (Ar) 

P-l 

fi 1 + 

/ i 
j Ar 0* 

+ o «A()4) . 

We use no right hand boundary condition since we take initial data with compact 

support in an interval [0, L], so that at each time t > 0, the support of the solution is 

in [0, L + t}. Therefore, for each fixed t-value, we need only compute the solution at 

a finite number of j-values. That is, if the support of the initial data is in [0, j Ar], 

then the spatial support of w at time nAt will be in 0, ( j + n^-)Ar . 

Remark: If we use this scheme to integrate the linear equation with (k = 0), 

the result is in fact exact (up to machine precision) because the solution of the wave 

equation obeys 

<+i 

exactly. We get this from D'Alembert's formula for the solution in the linear case: 

pr+t 
2w(r,t) = w(r - t,0) + w(r + t,0) + / wt(y,0)dy. 

Jr-t 



CHAPTER 5 

NUMERICAL RESULTS 

We apply the numerical technique of Chapter 4 to numerically solve problem 

(4.1) in the cases of interest outlined in Chapter 2: 

(Case 1) 

(Case 2) 

p = l + - = l + ^ = ^ and g(r) = 0 n do 

2 1 p = 1 H = 1 + - = 2 and f(r) = 0 r n - 1 1 J w 

For the nonvanishing initial data, Colombeau's formalism calls for a function in 

A\. Since the smoothness of the initial data beyond C 2 will not affect numerical 

solutions, we take the initial data to be a C2-function ip with support in the unit 

ball, integral equal to 1, and first moment equal to zero. Such a function on R 3 is 

^ ) = W x i ) = { ^ - m 3 ;f j (5.i) 

where the constant c is determined by the condition 

f tp(x)d3x = 1 : 
J R s 

1 = 4ir I c( 1 — r2)3r2dr =>• c = 
Jo 

We note J R 3 xip(x)d3x = 0 because ip depends only on \x\, so the integral is odd. 

Thus we numerically solve the following equations. 

26 
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(Case 1) 

mt - Wrr = - k 

w(r, 0) = n/>(r) 

Wf(r,0) = 0 

to(0,i) = 0 

w 

(5.2) 

(Case 2) 

Wtt — Wrr — - k 

w ( r , 0) = 0 

Wt{r, 0 ) = r i p ( r ) 

w(0,t) = 0 

w 

(5.3) 

for r > 0, t > 0. 

1 
Since the support of is in [0,1], we begin by taking Ar = —. We solve 

the problems both with k = 0 and k = 1 to allow us check our numerical solutions 

in the linear case. Once we have computed a solution to a large t-value ( t on 

the order of 100 ), we investigate the limits (2.4) and (2.14) as follows: We have 

v(x,t) = — - r z r , — s o 

(Case 1) 

x 1 f x t \ 1 € f \ x \ t" 
(5.4) 

(Case 2) 

, 1 f % t \ l e f \ x \ t 
u e ( x , t ) = - „ ( - _ ) = — w — -

e \ e eJ ez \x\ \ e e 

For <f> € X>(R3+1), define <f>s £ T>(R1+1) by 

(5.5) 

(r, s ) = f <£(r, x , t ) ( f 

JSi( o) 
X 
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where x = rx are polar coordinates for x and the integration is over the unit 

sphere. Since ue(x,t) is spherically symmetric in x for all times t, we have 

(Case 1) 

f 1 f°° f°° 1 fr /\ 

I u€(x,t)4>(x,t)d
3xdt=— dt r2dr-w l-,-\ (j>a(r,t) ( 5 . 6 ) 

J R3+1 e J—oo Jo r \e e / 

(Case 2) 

[ ue(x,t)(f>(x,t)d
3xdt = - [ dt [ r2dr-w 4>Jr,t) (5.7) 

JR8+1 e J-oo Jo r \e e/ 

T t 

Making the change of variables r' = — and t' — - and dropping the primes, we are 

led to consider the limits as e —> 0 of 

(Case 1) 
p poo poo 

I ue(x,t)<t>(x,t)d
3xdt = e I dt I rdrw(r,t)<fis(eret) ( 5 - 8 ) 

*/R3+1 J — oo Jo 

(Case 2) 

r poo poo 

/ ue(x,t)^(x,t)d
sxdt = e2 dt rdrw(r,t)<f>s(er,et) ( 5 . 9 ) 

J R8+1
 J-oo Jo 

To get indication of whether or not these quantities converges as e —> 0, we choose 

a specific test function <j)s and approximate the integrals by sums. Although <j> and 

4>s are in C°°, the numerical results will not depend on the smoothness of <f> beyond 

continuity. So we take functions 4>s of the form 

4>s{r, s) = x ( « » r , t)P(c; r, t) (5.10) 

where x{ a M '>') is the characteristic function of the rectangle [0,a] x [0,6], that is 

x M r , t ) if Q ^ r < a 0 <t <b 

10 otherwise 

and where P(c; r, t) is a homogeneous polynomial of degree c in r and t. In particular, 

we have 

<f>s(er, et) = x(«, 6; er, et)P(c; er, et) = X ( j , r, ̂  ecP(c; r, t) 
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so, we consider 

(Case 1) 

f ue(x,t)<f>(x,t)d3xdt = ec + 1 f dt f rdrw(r,t)P(c;r,t) (5.11) 
J R3+x Jo Jo 

(Case 2) 

JR3+i
 Me^' = e°+2 J d t rdrw(r, t)P(c; r, <) (5.12) 

For convenience, we choose a = 1 and 6 = 1 . Since we compute the values of w(r, t) 

on a grid {(jAx,nAt) \ j = 0 ,1 ,2 , . . . and n = 0 ,1 ,2 , . . .} we may approximate 

these integrals by sums: 

fl f7 M L 

J dt j rdrw(r,t)P(r,t) « (At)(Ax)2 EE; wjP(j Ax, nAt) 
^ ® n=0 j=0 

w h e r e £ = f e ) s a n d i = w T i ( j ) ( £ ) « ] • 

Convergence of the sums 

(Case 1) 

Ai(M) = ( — t k + J Y,iw?pdAx'nAt) (S-1^) 

(Case 2) 

V (A*)c J M c+! 
v ' / n=0j=0 

„ - fbc+2(Ax)2\ 1 AA. 
2 \ (At)c+! ) Mc+2 ^ ^2jwjPtiAx->nAt) (5-14) 

v ' ' n—0j=0 

as M —• oo is equivalent to convergence of (2.4) and (2.14), respectively. 

We have computed numerical solutions to the initial value problems (5.2) 

and (5.3) with initial conditions given by (5.1) both in the linear case k = 0 and the 

nonlinear case k = 1. We find that the solutions to the nonlinear problems are very 

similar in general features to solutions of the corresponding linear problems. The 
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major difference between linear and nonlinear results occurs for small values of r, 
w P ~ 1 

— w is not negligible. In particular, the solutions 
r 

to the linear problems vanish in the region {(r,t)\t > 1 + r}, but the solutions to 

where the nonlinear term 

the nonlinear problems are nonzero in that region. This difference is responsible 

for the convergence properties of the sums (5.13) and (5.14) in the nonlinear versus 

linear cases. 

Choice of test functions. 

(Case 1) 

For t > 1, the solution to linear problem (5.2) with k = 0 consists of a 

translated copy of the function rij>{r). Specifically, w(r, t) = (r — t)tjj(r — t) for t > 

1. Because rij){r) > 0 for 0 < r < 1 and r^(r) < 0 for — 1 < r < 0, the 

solution w to the linear Problem (5.2) will be positive in the strip r — 1 < t < r and 

will be negative in the strip r < t < r + 1 for t > 1. We have found that solutions to 

the nonlinear problem (5.2) with k = 1 are similar to those of the linear problem. 

We choose a test function <f> to avoid accidental cancellations in the integral ue[<j>\. 

We take the polynomial p(r,t) = r — t in (5.10) in Case 1 so that <f> has the same 

sign as the solution to the linear problem (5.2). 

(Case 2) 

The solution to the linear problem (5.3) with k = 0 is everywhere positive. 

In this case, we take the polynomial p(r,t) = t in (5.10) (We choose degree 1 for 

similarity to Case 1). Again, <f> has the same sign as the solution to the linear 

problem (5.3). 

Summary of results. 

Figure 1 shows the sum A\ (M) for the linear problem for 1 < M < 800. 

This quantity is apparently asymtotically constant at approximate value 4 x 10"4. 
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Our computed values show monotonia increase, with value Aj (800) ~ 3.96 x 10~4. 

To check the accuracy of our computations, we have substituted the explicit 

solution formula 

w(r,t) = i ((r - t)ip(r — t) + (r + t)^(r + <)). 

for the linear problem (5.2) into (5.6). With our choice 

<l>s(r, s) = x(Aar, At; ri 5 ) ( r - *), 

we can evaluate the integral explicitly. 

Taking the limit e —> 0 with Ax = At = we find 

^r » 3-979 x 10-4 
80U7r 

which gives excellent agreement with our computed values of Ai(- ) . This asymp-

totic value is the value of lim€-^0ue[(f)] = u[<f>] where u is the distribution solution 

to the linear problem (2.1) with f(u) = 0. 

Figure 2 shows the sum A1 (M) for the nonlinear problem, as a function of 

M for 1 < M < 800. There is no numerical evidence to suggest that in the nonlinear 

case Ai (M) converges as M tends to infinity. 

Figure 3 shows the sum A2(M) for the linear problem (5.3), as a function 

of M for 1 < M < 800. This quantity is apparently asymptotically constant, with 

value approximate 2.6 x 10~5. Because A2(M) approximates «( we expect in 

the linear case that A2(M) approaches the constant value 

limt-^0ut[4>] = u[4>\ 

where u is the distribution solution to the linear problem (2.2) with f(u) = 0. Our 

numerical results confirm these expectations. 



32 

Figure 4 shows the sum A2(M) for the nonlinear problem, as a function of 

M for 1 < M < 800. There is no numerical evidence to suggest that in the nonlinear 

case A2(M) converges as M tends to infinity. We next investigate our computed 

solutions in more detail, to illustrate the mechanisms for the divergence of A\(M) 

and A2(M) in the nonlinear problems. 

Figure 5 shows the solution w(r,t) to problem (5.2) in the linear case (k=0). 

The plotted quantity is wj = w(jAx,nAt) for 0 < j < 30 and 0 < n < 20. This 

computed solution is exact, up to machine precision, as mentioned earlier. This 

solution vanishes on the lines t = r — l,t = r and t = r + 1. 

Figure 6 shows snapshots of the solution w(r, t) to the linear problem in Case 

1. Shown are wJ = w(jAx,nAt) as functions of j(0 < j < 30) for the times with 

n = 0 ,1 ,2 , . . . , 14. 

Figure 7 shows the solution w(r,t) to problem (5.2) in the nonlinear case 

(k=l). The plotted quantity is wJ = w(jAx, nAt) for 0 < j < 30 and 0 < n < 

20. This computed solution is very close to the solution to the linear problem. 

We can see a slight difference between the linear and nonlinear cases by 

comparing Figure 6 and Figure 8. Figure 8 shows w1* as a function of j for the time 

steps n — 0,1,2, . . . 14 in the nonlinear case. Note that the traveling wave shape 

is slightly different, and that there is a small nonzero part of the solution in the 

region t > r + 1 seen in Figure 8 that is absent in Figure 6. 

To see the difference between the linear and nonlinear prblems in Case 1 

more clearly, we plot the negative part of r(r - t)w(r,t) for the solution w to the 

nonlinear problem (5.2). The quantity j(n — j)wj appears in the summand of 

Ai(M) and is responsible for the fact that AX{M) is not asymptotically constant as 

M tends to infinity in the nonlinear problem. The negative part of r(r - t)w(r, t) 

is identically zero for the solution w to the linear problem (5.2). 

Figure 9 shows the negative part of r(r - t)w(r, t) for 0 < t < 200At and 
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0 < r < 211Ar in the nonlinear problem. The integral of this quantity is responsible 

for the difference between the values of A\ (200) in the linear and nonlinear cases. 

We next consider the Case 2 problem (5.3). 

Figure 10 shows the solution to the linear problem (5.3) (k=0). 

Figure 11 shows the solution to the nonlinear problem (5.3) (k=l) . Again, 

the solution are similar in structure. 

Figure 12 shows snapshots of the solution to the linear problem in Case 2. 

Shown are wj as functions of j (0 < j < 30) for the times n = 0 , 1 , 2 , . . . , 14 

Figure 13 shows snapshots of the solution to the nonlinear problem in Case 

2, for the same j and n values as Figure 12. Note the small negative part of wj 

that develops as n increases. This part of wj is responsible for the divergence of 

ue[4>] that we observe in Case 2. 

Figure 14 and Figure 15 show the negative part of w(r,t) for the solution to 

the Case 2 nonlinear problem. This quantity is identically zero for the solution to 

the linear problem. 

Figure 16 shows the solution w(r,t) for large t and large r. Note that the 

solution is negative in the region r < t — 1. The solution to the linear problem is 

zero in that region. 

Conclusions from numerical studies. 

The divergence as e — 0 the action on test functions of generalized function 

solution representatives is due to a very slight difference between solutions to the 

nonlinear and linear problems, over the large spacetime region. This divergence 

comes from solution values in the region |*| > |r| + 1, where the linear solution is 

zero. The divergence appears to grow as a power of as e tends to 0. 

In summary, we have shown that for a test function <j>, the quanties ut[(p\ 

apparently diverge as e — • 0, in both Case 1 and Case 2. This implies that even our 
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mildly singular problems have generalized function solutions that axe more singular 

than distributions. Because we chose these problems as among the most likely 

to have (ordinary) distribution solutions to nonlinear partial differential equations 

with singular initial data will never have distribution actions, but will be more 

singular, and correspondingly more complicated, than distributions. This implies 

that generalized function solutions to nonlinear partial differential equations with 

singular initial data cannot be expected to have any interpretation as conventional 

solutions. The fact that we must view generalized function solutions as equivalence 

classes of divergent representatives greatly limits the practical utility of generalized 

functions for solving nonlinear partial differential equations. 
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100 200 300 400 500 600 700 800 

(Figure 1) 

This shows the action of ue on <f> for the linear problem (k=0) in (Case 1), 

ue[4>] where e = 1 < M < 800 and <f> = (t-x) on [ 0 , l ] x [ 0 , l ] 
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1000 2000 3000 4000 5000 6000 7000 

(Figure 2) 

This shows the action of u€ on <j> for the nonlinear problem in (Case 1), 

where A t = - L JL, JL, JL m d e = J 7 r 7 , 1 < M < 
MAt'' At 
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200 300 400 500 600 700 800 

(Figure 3) 

This shows the action of ue on <f> for the linear problem (k=0) in (Case 2), 

10 
ue[<f>) where e = —, 1 < M < 800 and <f> = t on [0,1] x [0,1] 
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(Figure 4) 

This shows the action of u€ on 4> for the nonlinear problem in (Case 2), 

r j l i 1 1 1 1 , 1 80 
«,[*] where A i = - , - and £ = — , J < M < -
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0 0 

(Figure 5) 

This shows to(r, t) in the linear problem (k=0) in (Case 1), 

wj = w(jAx,nAt) for 0 < j < 30, 0 < n < 20 
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(Figure 6) 

Snapshots of the solution w(r,t) to the linear problem (k=0) in (Case 1) 
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0 0 

(Figure 7) 

This shows w(r,t) in the nonlinear problem in (Case 1), 

wj = w(jAx, nAt) for 0 < j < 30, 0 < n < 20 
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(Figure 8) 

Snapshots of the solution w(r,t) to the nonlinear problem in (Case 1) for 

0 < t < 14A t 
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(Figure 9) 

This shows the negative part of nonlinear (Case 1). 

Explicity, this is a picture of | [ j ( n — j)w™ — \j(n — jwj |] for 0 < n < 200, 

0 < j < 211 
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0 0 

(Figure 10) 

This shows w(r,t) in the linear problem in (Case 2), 

wj = w(jAx, nAt) for 0 < j < 20, 0 < n < 20 
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0 0 

(Figure 11) 

This shows w(r,t) in the nonlinear problem (k=l) in (Case 2), 

w" = w(jAx,nAt) for 0 < j < 30, 0 < n < 30 
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(Figure 12) 

Snapshots of the solution w(r,t) to the linear problem (k=0) in (Case 2) 

0 < t < 14Af 
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(Figure 13) 

Snapshots of the solution w(r, t) to. the nonlinear problem in (Case 2) 

0 < t < UAt 
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(Figure 14) 

This shows the negative part of nonlinear problem (Case 2). 
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0 0 

(Figure 16) 

This shows the solution w(r,t) in the nonlinear problem (k=l) in (Case 2) for 

70 < t < 80 and 69 < r < 81. 
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