Temporal Connectionist Expert Systems Using a Temporal Backpropagation Algorithm

PDF Version Also Available for Download.

Description

Representing time has been considered a general problem for artificial intelligence research for many years. More recently, the question of representing time has become increasingly important in representing human decision making process through connectionist expert systems. Because most human behaviors unfold over time, any attempt to represent expert performance, without considering its temporal nature, can often lead to incorrect results. A temporal feedforward neural network model that can be applied to a number of neural network application areas, including connectionist expert systems, has been introduced. The neural network model has a multi-layer structure, i.e. the number of layers is not ... continued below

Physical Description

v, 87 leaves : ill.

Creation Information

Civelek, Ferda N. (Ferda Nur) December 1993.

Context

This dissertation is part of the collection entitled: UNT Theses and Dissertations and was provided by UNT Libraries to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 81 times , with 4 in the last month . More information about this dissertation can be viewed below.

Who

People and organizations associated with either the creation of this dissertation or its content.

Publisher

Rights Holder

For guidance see Citations, Rights, Re-Use.

  • Civelek, Ferda N. (Ferda Nur)

Provided By

UNT Libraries

With locations on the Denton campus of the University of North Texas and one in Dallas, UNT Libraries serves the school and the community by providing access to physical and online collections; The Portal to Texas History and UNT Digital Libraries; academic research, and much, much more.

Contact Us

What

Descriptive information to help identify this dissertation. Follow the links below to find similar items on the Digital Library.

Degree Information

Description

Representing time has been considered a general problem for artificial intelligence research for many years. More recently, the question of representing time has become increasingly important in representing human decision making process through connectionist expert systems. Because most human behaviors unfold over time, any attempt to represent expert performance, without considering its temporal nature, can often lead to incorrect results. A temporal feedforward neural network model that can be applied to a number of neural network application areas, including connectionist expert systems, has been introduced. The neural network model has a multi-layer structure, i.e. the number of layers is not limited. Also, the model has the flexibility of defining output nodes in any layer. This is especially important for connectionist expert system applications. A temporal backpropagation algorithm which supports the model has been developed. The model along with the temporal backpropagation algorithm makes it extremely practical to define any artificial neural network application. Also, an approach that can be followed to decrease the memory space used by weight matrix has been introduced. The algorithm was tested using a medical connectionist expert system to show how best we describe not only the disease but also the entire course of the disease. The system, first, was trained using a pattern that was encoded from the expert system knowledge base rules. Following then, series of experiments were carried out using the temporal model and the temporal backpropagation algorithm. The first series of experiments was done to determine if the training process worked as predicted. In the second series of experiments, the weight matrix in the trained system was defined as a function of time intervals before presenting the system with the learned patterns. The result of the two experiments indicate that both approaches produce correct results. The only difference between the two results was that compressing the weight matrix required more training epochs to produce correct results. To get a measure of the correctness of the results, an error measure which is the value of the error squared was summed over all patterns to get a total sum of squares.

Physical Description

v, 87 leaves : ill.

Language

Identifier

Unique identifying numbers for this dissertation in the Digital Library or other systems.

Collections

This dissertation is part of the following collection of related materials.

UNT Theses and Dissertations

Theses and dissertations represent a wealth of scholarly and artistic content created by masters and doctoral students in the degree-seeking process. Some ETDs in this collection are restricted to use by the UNT community.

What responsibilities do I have when using this dissertation?

When

Dates and time periods associated with this dissertation.

Creation Date

  • December 1993

Added to The UNT Digital Library

  • March 26, 2014, 9:30 a.m.

Description Last Updated

  • Jan. 16, 2015, 8:46 a.m.

Usage Statistics

When was this dissertation last used?

Yesterday: 0
Past 30 days: 4
Total Uses: 81

Interact With This Dissertation

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Civelek, Ferda N. (Ferda Nur). Temporal Connectionist Expert Systems Using a Temporal Backpropagation Algorithm, dissertation, December 1993; Denton, Texas. (digital.library.unt.edu/ark:/67531/metadc278824/: accessed April 21, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; .