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This study uses simulation to examine differences 

between fixed sampling interval (FSI) and variable 

sampling interval (VSI) Shewhart X-bar control charts for 

processes that produce positively autocorrelated data. 

The influence of sample size (1 and 5), autocorrelation 

parameter, shift in process mean, and length of time 

between samples is investigated by comparing average time 

(ATS) and average number of samples (ANSS) to produce an out 

of control signal for FSI and VSI Shewhart X-bar charts. 

These comparisons are conducted in two ways: control chart 

limits pre-set at ±3ox /\/TI and limits computed from the 

sampling process. 



Proper interpretation of the Shewhart X-bar chart 

requires the assumption that observations are 

statistically independent; however, process data are often 

autocorrelated over time. Results of this study indicate 

that increasing the time between samples decreases the 

effect of positive autocorrelation between samples. Thus, 

with sufficient time between samples the assumption of 

independence is essentially not violated. Samples of size 

5 produce a faster signal than samples of size 1 with both 

the FSI and VSI Shewhart X-bar chart when positive 

autocorrelation is present. However, samples of size 5 

require the same time when the data are independent, 

indicating that this effect is a result of 

autocorrelation. 

This research determined that the VSI Shewhart X-bar 

chart signals increasingly faster than the corresponding 

FSI chart as the shift in the process mean increases. If the 

process is likely to exhibit a large shift in the mean, then 

the VSI technique is recommended. But the faster signaling 



time of the VSI chart is undesirable when the process is 

operating on target. However, if the control limits are 

estimated from process samples, results show that when the 

process is in control the ARL for the FSI and the ANSS for 

the VSI are approximately the same, and exceed the expected 

value when the limits are fixed. 
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CHAPTER I 

INTRODUCTION 

Natural variation is inherent in any process, no 

matter how well designed. When a manufacturing process 

operates with only random variation, explainable by random 

chance, then the process is said to be "in control." A 

manufacturing process that contains variability 

unexplained by random chance is said to be "out of control," 

and analysts hunt for a reason or "assignable cause" for the 

unexplained variation. 

An out of control process is expensive. Products 

manufactured while the process is out of control may not 

meet minimum requirements and thus must be designated as 

scrap or sold at a reduced rate. Additionally, the profit 

margin may be reduced if the out of control process causes 

an over consumption of raw materials. Ultimately, the end 

product of an out of control process is unacceptable. Prior 

to the development of statistical process control (SPC), 



the unacceptable product was not discovered until final 

inspection. This inspection process was the last procedure 

prior to marketing. The inferior product was sold at a 

discount if it was usable, re-worked if possible, or 

scrapped. Little attempt was made to discover the cause of 

the inferior product and improve the process itself. This 

type of quality control (the inspection of finished 

product) is being replaced by statistical process control 

where the manufacturing process itself is monitored to make 

corrections before a large quantity of the inferior product 

is produced (Wardell, Moskowitz, and Plante, 1991). 

The control chart is used in industry to differentiate 

between natural variation and variation with an assignable 

cause. It provides a dynamic record of the process and is 

used to detect changes in a critical process variable to 

avoid manufacture of an unacceptable product. Control 

limits for the chart are based on the probability that a 

large number of the statistics of interest would fall 

within these limits if the process were operating in 

control. Samples are taken from the process, the 



statistics of interest are computed, and then these 

statistics are plotted on the chart in time sequence. When 

a statistic falls beyond the control limits, the process is 

considered to be out of control. As a result, the production 

process is stopped, steps are taken to find the assignable 

cause, the necessary corrections are made, and the process 

is brought back into control. 

In spite of many new designs, the Shewhart X-bar 

control chart, designed in 1931, is still the most popular 

control chart for monitoring a process mean (Saniga and 

Shirland, 1977; Modarress, 1989; Wardell, Moskowitz and 

Plante, 1991) . This is primarily due to the ease with which 

its implementation can be explained and mastered by non-

technical personnel on the assembly floor. Also, the 

Shewhart X-bar chart is intuitively obvious in its analysis 

and thus easily explained in industry to those without 

training in statistics. The traditional Shewhart X-bar 

charts use samples taken from the process at evenly spaced 

or fixed sampling intervals (FSI), and the means of these 

samples are plotted to determine if the process remains 



within acceptable limits (in control). After each sample 

is taken, the decision is made to either continue the 

process for a fixed interval of time or to stop the process. 

The expected length of time for the process to operate 

without the control chart signaling that a problem exists 

is called the average run length (ARL) . If the process is in 

control, it would be desirable to set the control limits in 

order for the ARL to be long so that the number of false 

alarms is small. However, if the process is out of control, 

the ARL should be short so that less product will be manu-

factured before the problem is discovered and corrected. 

With a traditional Shewhart X-bar control chart, the 

statistic of interest from each sample is plotted, and if 

the plotted statistic is anywhere within the designated 

control limits, the decision is made to continue the 

process to the next sampling point. This type of sampling 

scheme, based on a pre-determined time interval, is the 

fixed sampling interval technique. In 1988, Reynolds, 

Arnold, Amin, and Nachlas proposed a new technique called a 

variable sampling interval (VSI) control scheme, in which 



the length of time before the next sample is taken depends 

on the location of the value of the current sample in the 

sequence. If the value of the sample mean indicates that 

the process is operating on target, it is reasonable to wait 

a longer time than usual before taking the next sample. If, 

however, the value of the sample mean indicates that the 

process is operating within control limits but close to the 

limits, it is reasonable to suggest an increase in the 

frequency of the sampling rate. This allows potential out 

of control situations to be detected and corrected more 

quickly than with the FSI techniques (Reynolds, Arnold, 

Amin, and Nachlas, 1988). 

These charts, whether using FSI or VSI techniques, are 

designed under the assumption that the process being 

plotted produces data that are independent and normally 

distributed (Shewhart, 1931). However, in actual 

industrial operations, it is frequently the case that the 

observations are autocorrelated (Box, Jenkins, and 

MacGregor, 1974; Vasilopouos and Stamboulis, 1978; 

Wardell, Moskowitz and Plante, 1991). Loosely defined. 



autocorrelation is present whenever data carry some 

dependency from the previous value. This autocorrelation 

can make the results obtained from traditional control 

chart analysis misleading: with positive autocorrelation 

the chart may indicate an out of control situation when in 

fact the process is operating within limits; with negative 

autocorrelation the chart may fail to signal when a 

significant deviation from the process mean occurs 

(Maragah, 1989). When the process data are independent, it 

is known that VSI techniques signal an out of control 

condition more quickly than FSI (Reynolds, Amin, Arnold, 

and Nachlas,1988). 

If a process is suspected of autocorrelation, 

specialized computer software will allow identification of 

the type and amount. The limits of the control chart can 

then be adjusted to compensate for the autocorrelation, and 

the control chart will operate with the same probabilities 

as if used with independent data (Wardell, Moskowitz, and 

Plante, 1991). However, a process is often assumed to 

produce independent data when, in fact, the data are 



actually autocorrelated. This undetected autocorrelation 

presents potentially expensive consequences. An 

illustrative hypothetical example of the importance of the 

appropriate use of the control chart and the role which 

autocorrelation might play in its use are presented below. 

For example, assume that at a rate of 40 per minute a 

certain facility manufactures cans of soup with chunky 

chicken and vegetable ingredients. The Shewhart X-bar 

control chart is employed to monitor the mean weight per 

can. Samples composed of 5 consecutive cans are taken from 

the line every 20 minutes, and the finished containers are 

weighed. These weights are averaged, and the mean (x-bar) 

is plotted on the control chart. If the plot indicates an 

out of control situation, then the process is making either 

heavier or lighter product than appropriate. Lighter 

product may yield a proportion of cans that is less than the 

guaranteed analysis on the label. As a result, this product 

cannot be sold except to company employees or others aware 

of the lighter weights, at less than the cost to 

manufacture. Heavier product, on the other hand, involves 



the cost of additional ingredients and may also incur an 

increased microbial risk because of the difficulty in 

uniform and adequate penetration in the heat sterilization 

process. 

The costs associated with changes from a target value 

(mean) make it desirable to use the control chart to detect 

changes as quickly as possible. If the fill process is 

producing independent and normally distributed mean 

weights for the cans, then one can expect an "assignable 

cause" or change in the mean fill weight of the cans 

whenever the process signals. If the fill weights are 

autocorrelated, then the out of control signal may occur 

because of the autocorrelation rather than a deviation in 

mean weight. This out of control signal institutes a search 

for the cause of the change in the fill process. Looking for 

a problem when one does not exist is time consuming and 

expensive, both in labor costs and down—time on the 

assembly line. Alternatively, failure to detect a problem 

when one does exist is potentially even more expensive; for 



example, customer dissatisfaction and/or discrepancies in 

labeling specifications can be extremely costly. 

Such a process as the above hypothetical soup 

manufacturing process is, in fact, likely to be 

autocorrelated because of the gravity-feed nature of the 

fill process. In spite of the mixing equipment, the 

ingredients are likely to be concentrated in the bottom of 

the batch's mixing container, therefore filling the cans 

with increasingly lighter mixture, or with less and less 

heavy material. The autocorrelation present in this 

process will cause the control chart to signal that a 

problem exists when the cans are actually being filled with 

an appropriate weight of soup. The economic impact of 

autocorrelation is the cost (in manpower time and 

production loss) of searching for this non-existent shift 

in the mean rather than working on the true process problem. 

While process data are frequently correlated, the FSI 

and the VSI operations previously described depend on the 

assumption of independent observations (Shewhart, 1931; 

Grant and Leavenworth, 1988; and Montgomery, 1985). The 
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assumption of data independence when it does not exist is 

error prone and costly (Goldsmith and Withefield, 1961; 

Johnson and Bagshaw,1974; Vasilopoulos and Stamboulis, 

1978). Therefore, the development of methodologies that 

allow for the assumption of correlated data makes a 

valuable contribution to statistical quality control. 

Purpose. Problem, and Significance 

This dissertation investigates the use of Shewhart X-

bar charts with fixed versus variable sampling interval 

techniques when the critical variable in the process 

produces positively autocorrelated data. Specifically, 

this dissertation seeks to determine if the use of the newer 

variable sampling interval (VSI) techniques will reduce 

the time required for a Shewhart X-bar control chart to 

detect a deviation in the target mean when monitoring a 

process producing positively autocorrelated data. The VSI 

technique is considered superior to the FSI if it will yield 

an out of control signal faster when the process mean has 

shifted from the target and a slower out of control signal 
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in the absence of a shift. With increasing economic constr-

aints, it is important that process control be accurately 

monitored to decrease the number of defectives and scrap. 

Faster detection of an out of control status shuts down 

production to allow for a process correction that results 

in a cost savings (Saccucci, Amin, and Lucas, 1991) . 

If autocorrelation is suspected, several methods are 

available to determine its type and strength (Box and 

Jenkins, 1976). After the characteristics of the 

autocorrelation are determined, Alwan and Roberts (1988) 

and Montgomery and Friedman (1988) propose methods for 

adjusting for autocorrelation using time series models. 

Alwan and Roberts (1988) suggest two new charts: first, the 

common cause chart that uses fitted values for detection of 

specific corrective action rather than simply a signal that 

some action is needed, and second, the special cause chart 

that uses residuals from a time series model to form the 

chart. Ermer (1980) proposed a Dynamic Data System 

approach to overcome problems of autocorrelation by using a 

stochastic time series approach to modify the Shewhart X-
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bar control chart in order to make it appropriate for use in 

the continuous production processes used extensively in 

metal and chemical industries. Baik, Reynolds, and Arnold 

(1991) determined that the control limits of the Shewhart 

X-bar control chart could be adjusted in order to allow for 

autocorrelation, but only after the specific 

characteristics of the autocorrelation are known. 

This dissertation assumes that positive 

autocorrelation is unknowingly present and that the 

Shewhart X-bar chart, due to its popularity, is being used 

to monitor deviation in the process mean. In this case, the 

presence of autocorrelation can make the interpretation of 

the chart erroneous because the assumption of independence 

is violated with autocorrelated data; thus the Shewhart X-

bar chart does not signal accurately (Alwan and Roberts, 

1988; Ermer, 1980; Haragah, 1989). It is the intent of this 

work to make recommendations for the use of the Shewhart X-

bar chart in practice, to evaluate the impact of current 

research streams in literature to practice, and to extend 

the research on interpretation and understanding of the 
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Shewhart X-bar control chart in the presence of positively 

autocorrelated data, including both the traditional FSI 

and the newer VSI sampling techniques. 



CHAPTER II 

PRIOR RESEARCH 

Essential to the reader's appreciation of this work is 

an understanding of the traditional Shewhart X-bar control 

chart, the newer variable sampling interval (VSI) 

techniques when used with the Shewhart X-bar chart, 

applicability of the Shewhart X-bar control chart when data 

is autocorrelated, and finally, the use of VSI techniques 

with autocorrelated data. Below is a literature review of 

these areas as they are applicable to this work. 

Shewhart X-bar Control Chart 

The control chart is a statistical device used to 

distinguish between natural variation in a process and 

variation due to a specific cause or problem. The Shewhart 

X-bar chart (1931) was designed to detect changes in the 

process mean and is one of the most widely used control 

charts in industry (Amin, 1987; Saniga and Shirland, 1977; 

14 
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Modarress, 1989). The chart is designed with a central line 

representing the target mean jio and two control lines 

usually located at ± 3ox (see Appendix B, Figure 1) . The 

location of these control limits is based on the 

probability that a sample mean would, by chance, be so large 

or so small as to fall outside these limits with a known 

frequency when the process mean is in fact equal to n0 (in 

control) . The use of what are referred to as 3-sigma limits 

is built on the manufacturer's acceptance of a risk of .0027 

of having the sample mean fall beyond the limits, assuming 

the process is in control. The computed sample means are 

plotted independently across time at fixed sampling 

intervals (FSI), and if one of these means falls outside the 

control lines, the process is considered to be out of con-

trol and a signal is given. Shewhart X—bar charts are 

simple to use and give quick indication of a large shift in 

the process mean (Baik, Reynolds, and Arnold, 1991; Champ 

and Woodall, 1987). For small shifts, however, additional 

warning lines (Page, 1955) and/or runs rules (Weiler, 1953 
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and Moore, 1958) can be added to make the chart more 

sensitive. 

Variable Sampling Intervals 

The concept of variable sampling intervals (see 

Appendix Br Figure 2) is an extension of the continuous 

sampling plans for product inspection. Dodge (1943) 

introduced a plan (CSP-1) which alternated between 100% 

inspection and inspection of only a fraction of the 

products selected at random intervals. Modifications 

(CPS-2 and CPS-3) were made by Dodge and Torrey (1951) which 

allowed the random inspection process to continue rather 

than reverting to 100% inspection whenever a defective item 

was found. Lieberman and Solomon (1955) introduced multi-

level inspection plans that decreased the problems 

involved with jumping from one inspection level to another. 

Their plan allowed for many levels of inspection; 100% 

inspection when the product quality was poor, and decreased 

inspection when quality was good. 
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This concept in acceptance sampling, determining the 

time between samples according to the results of the 

current sample, was carried over into statistical process 

control by Arnold (1970). Arnold utilized variable 

sampling intervals (VSI) in a study monitoring water 

quality in streams by taking more samples when the quality 

was poor and fewer samples when the quality was good. 

Crigler (1973) formulated an economically optimal sampling 

plan using the Markovian technique developed by Arnold 

(1970). Crigler and Arnold (1979, 1986) and Smeach and 

Jernigan (1977) extended the work with variable sampling 

intervals between samples, but not until Hui (1980) was 

this concept specifically applied to control charts. 

Reynolds, Amin, Arnold, and Nachlas (1988) found that, 

when used with independent data, adding the VSI technique 

improved the signaling time of the Shewhart X-bar chart. 

Then, Reynolds, Amin, and Arnold (1990a) extended the work 

and found that adding VSI consistently improved the 

performance of the Cumulative Sum (CUSUM) chart under the 

same assumptions. All of their work is based on samples of 
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size 1 and the assumption that individual samples are 

independent. They defined the average time to signal (ATS) 

and average number of samples to signal (ANSS) to replace 

the average run length (ARL) which is used with FS1 

techniques as a measure of performance. 

Control Charts Used with Correlated Data 

In traditional, statistical quality control, the state 

of statistical control is identified with a process 

generating independent and identically distributed random 

variables (Shewhart, 1931; Grant and Leavenworth, 1988; 

and Montgomery, 1985) . Much work, is being devoted to the 

effects produced when this assumption fails to be true. 

Goldsmith and Withefield (1961) studied the effect of 

correlated data on the CUSUM chart. Johnson and Bagshaw 

(1974) and Bagshaw and Johnson (1975) studied the effects 

of serial correlation on the CUSUM chart using first order 

autoregressive and first order moving average models. They 

concluded that the CUSUM chart fails to signal 

appropriately when used with data which are not 
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independent. Vasilopoulos and Stamboulis (1978) utilized 

a time series approach with a second order autoregressive 

process to incorporate dependent data into standard 

control chart methodology. They confirmed that if 

correlated data were present but not recognized, the false 

alarm rate of the Shewhart X-bar control chart was 

increased. Abraham and Kartha (1978, 1979) connected the 

Geometric Moving Average (GMA) chart and time series 

forecasting whereas Kartha and Abraham (1979) examined by 

simulation the effect of serial correlation on the ARL of 

CUSOM charts. Alwan and Roberts (1988) illustrated the use 

of statistical modeling of time series effects using auto-

regressive integrated moving average (AR1MA) models and 

the application of standard control chart procedures to the 

residuals from these models. The study of the residuals 

makes it possible to isolate the common causes creating the 

departures from control because after the process is 

modeled, the residuals will be independent even though the 

individual data were not. Wardell, Moskowitz, and Plante 

(1991) compared the ARL performance of the Shewhart chart 
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and the Exponentially Weighted Moving Average (EWMA) chart 

to the Common-Cause Control chart (CCC) and the Special-

Cause Control chart (SCC) proposed by Alwan and Roberts 

(1988) using the ARMA( 1, 1) model. Wardell, Moskowitz, and 

Plante (1991) did not consider VSI in their work. They 

found the standard deviation of the process based upon a 

prior knowledge of the correlation (using formulas from Box 

and Jenkins, 1976), and used this analytically derived 

value to set the control limits. Their results showed that 

the CUSUM chart was robust in the presence of data 

correlation whereas the Shewhart chart rarely performed as 

well as the other charts with correlated data. 

Maragah (1989) studied the effect of autocorrelation 

on two charts, both of which incorporated fixed sampling 

intervals: the Shewhart X-bar chart and the EWMA chart. He 

set the control limits retrospectively using the first 25 

data points, but he did not attempt to calculate the time to 

signal or run lengths. Using only the first order 

autoregressive model AR(1), he determined that 

autocorrelation can cause control charts to signal more 
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frequently if the autocorrelation is positive and less 

frequently given negative autocorrelation. If positive 

autocorrelation causes the chart to signal, then the chart 

is indicating some change in the process when indeed none 

exists; if negative autocorrelation is retarding the 

signaling process, then the process may be unknowingly 

operating out of control. 

VSI Techniques with Correlated Data 

Baik, Reynolds, and Arnold (1991) used a Markov chain 

representation to determine how to design control charts in 

the presence of autocorrelation when the distribution of 

observations of sample size 1 is normal. They determined 

that a two sampling interval control chart tends to perform 

similarly to a three or more sampling interval control 

chart and that asymmetric control charts do not always seem 

to have shorter detection time. Therefore, they recommend 

a symmetric two sampling interval control chart. They 

employed both fixed and variable sampling interval 

techniques with an autoregressive model of order 1. 
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Summary 

Although considerable research was conducted on the 

Shewhart X-bar chart, on variable sampling interval 

techniques, and on correlated data, work integrating these 

three areas is not easily found. Baik, Reynolds, and Arnold 

(1991) integrate all three areas, but their work was still 

unpublished at the time of this dissertation. Baik, et al. 

altered their control limits in order that the in control 

values of the ATS and ANSS were close to the theoretical ARL 

of 370.4. However, in practice the control limits are 

usually set by estimating the process parameters based on 

calculations obtained using the first 25 samples 

(Montgomery, 1985; Grant and Leavenworth, 1988). In order 

to determine the usefulness of the new VSI techniques with 

the Shewhart X-bar control chart in practice, the effect, 

if any, of calculating the control limits needs to be 

determined. The Shewhart X-bar chart is still the most 

popular chart for monitoring the process mean (Saniga and 

Shirland, 1977; Modarress, 1989; Wardell, Moskowitz and 

Plante, 1991), even though research has shown the CUSUM 
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chart to be more efficient in detecting small shifts 

(Lucas, 1976) and in handling autocorrelated data 

(Wardell, Moskowitz, and Plante, 1991). The CtJSUM chart is 

more mathematically complex and thus more difficult to 

explain and implement. Therefore, this dissertation 

investigates the effects of the VSI technique using 

Shewhart X-bar chart on positively autocorrelated data 

because of its continuing popularity in practice. 

The autoregressive model of order one was chosen 

because of its applicability in manufacturing (Baik, 

Reynolds, and Arnold, 1991). Metal manufacturing, such as 

steel making operations, and certain chemical processes 

have autoregressive properties due to their continuous 

production schemes (Ermer, 1980; Alwan and Roberts, 1988). 

As automatic measurement of process items in time sequence 

makes the taking of measurements easier, measurements are 

taken more frequently. One result of this improved data 

collection is that autocorrelation, if it exists within the 

process, becomes more obvious (Baik, Reynolds, and Arnold, 

1991). Thus the concept of autocorrelation is of 
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increasing interest to industry. The term 

"autoregressive," loosely defined, implies that each data 

item carries some dependency from the previous item. If 

this dependency can be isolated and removed from the 

process, then the Shewhart X-bar control chart will yield 

accurate results. If dependency cannot be removed from the 

process, then a model incorporating this dependency must be 

utilized in order to prevent the Shewhart chart from 

indicating an out of control situation when the process is 

still on target or from neglecting to signal when the 

process mean has drifted. 

It is the intent of this dissertation to determine if 

results from prior research on VSI techniques could/should 

be used in industrial practice. This interest motivated 

research questions in several areas where industrial 

practice differs from the methodology of the prior 

research. No published work was found incorporating 

samples of size 5, yet this sample size is the industry 

standard (Montgomery, 1985; Grant and Leavenworth, 1988). 

Another area lacking previous investigation is the use 
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of intervals (or times) between samples. In the production 

process, each manufactured item is seldom inspected. 

Samples are taken at times determined by the manufacturer 

(FSI) or by the process (VSI) . Prior research assumed that 

each item was sampled because only the interval length of 1 

is examined. The influence of increasing interval length 

(increasing the amount of time between sampling) is not 

addressed in the literature. This dissertation 

investigates the influence of increasing interval lengths 

on the Shewhart X-bar control chart by using both fixed and 

variable sampling techniques. Prior research is available 

on autocorrelated data using FSI methods because many 

industrial processes produce this type of data, but the 

studies are limited to samples of size 1 and control limits 

that are set from theoretical parameters. It is of interest 

to see if some pattern is evident when FSI and VSI 

techniques are used on autocorrelated data with samples of 

size 5, control limits calculated from the process samples, 

and interval lengths greater than 1 between samples. 

Increasing the interval length when autocorrelation is 
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present in the process motivates the question of whether 

increasing interval length creates the effect of 

decreasing the autocorrelation present in the sampled 

data. A detailed theoretical discussion addressing the 

above questions is available in the next chapter. 

It is of primary economic concern to a manufacturer to 

obtain a signal as quickly as possible if the manufacturing 

process is out of control. The out of control situation 

occurs when the process mean has shifted from its desired or 

target value and is reflected in a signal by the Shewhart X-

bar chart. Thus, prior research on the effectiveness of the 

VSI technique has compared the behavior of the VSI 

technique under the influence of various shifts in the 

target mean of the process to that of the FSI. The VSI 

technique is considered superior to the FSI in practice if 

it has a slower average time to signal when the process is in 

control and a faster ATS when the process is out of control. 

Prior research, using data that are assumed independent, 

determined the ATS to be faster for the VSI techniques. It 

would not be an advantage to receive the faster out of 
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control signal if the process is, in fact, operating in 

control, and the signal is caused by autocorrelation in the 

process data rather than by a deviation of the process mean. 

Because prior research indicates that the Shewhart X-bar 

variable sampling interval control chart is faster to 

signal than the corresponding fixed sampling interval 

chart when samples of size 1 are independent over time, 

(Reynolds, Amin, Nachlas, and Arnold, 1988) this 

dissertation seeks to discover, by simulation, if the 

behavior pattern of the ATS is similar when the process 

under consideration produces positively autocorrelated 

data. 



CHAPTER III 

THEORETICAL FRAMEWORK 

Industrial applications of statistical process 

control frequently utilize the Shewhart X-bar control 

chart (Amin, 1987; Saniga and Shirland, 1977; Modarress, 

1989) . The usefulness of the chart depends on its ability 

to signal quickly and accurately when the process drifts 

from the target mean. VSI techniques improve the time to 

signal for independent data (Reynolds, Amin, Arnold, and 

Nachlas, 1988). Baik, Reynolds, and Arnold (1991) showed 

that VSI improved the time to signal for some AR(1) data, 

but the control limits were set based on standard normal 

data, and every data point was considered a sample of 

size 1. 

In actual industrial processes, the production is 

sampled as it is manufactured (Montgomery, 1985; Grant and 

Leavenworth, 1988). Only a portion of the production is 

sampled, and these samples are taken at either fixed or 

28 
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variable intervals. Samples of sizes larger than 1 are 

frequently utilized to obtain more accurate 

representations by reducing variation through averaging. 

This work explores samples of size 1 because prior work 

examining FSI and VSI techniques with and without 

autocorrelation used this size, and of size 5 because it is 

the industry standard (Grant and Leavenworth,1988 ; 

Montgomery, 1985). 

At the beginning of the production process, the con-

trol limits for the Shewhart X-bar chart are established. 

The usual procedure for estimating these limits is to use 

approximately the first 25 samples, measuring both the mean 

and the range of each sample, to find x-double bar as an 

estimate for the process mean and r-bar as the statistic 

used in calculating the estimate of the process standard 

deviation. X-double bar is defined as the average of all of 

the x-bars which are the calculated mean averages of each 

sample, and R-bar is defined as the average of all of the 

ranges of each sample. (More detailed definitions are 

available in the following chapter.) These estimates are 
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used to set the control limits, assuming that the process is 

in control at this time. 

The use of samples of size 1 and pre—set control limits 

by Baik, Reynolds, and Arnold (1991) and Wardell, 

Moskowitz, and Plante (1991) restricts the application of 

their work due to the deviations from actual practice 

(Maragah, 1989; Grant and Leavenworth,198 8; Montgomery, 

1985). Therefore this dissertation investigates the 

effect of FSI versus VSI techniques on the performance of 

the Shewhart X-bar control chart when statistics from 

samples of size 1 and size 5 are used to calculate estimates 

for the mean and standard deviation of a process. These 

estimates are then used to set the control limits as in 

industrial applications. Values of the ARL/ANSS and the 

ATS obtained from these charts with calculated control 

limits are compared to the results using the Shewhart X-bar 

charts with control limits set before sampling at ±3o /Vn. 
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Research Question #1: Autocorrelation 

The autoregressive model is denoted by the 

abbreviation AR followed by a number within parentheses 

which gives the degree of the autoregressive component. 

Thus, the first order autoregressive model is denoted by 

AR(1). The general nonseasonal Box and Jenkins 

autoregressive model of order one is 

Xt = 5 + + at (3.1) 

where 6 = p,< 1 —<t>) , Xt = observation at time t, <t> = the auto-

regressive parameter between consecutive terms, \i = the 

mean of the process, and at represents the noise or error 

term. These noise terms are independent, normally 

distributed, random variables with mean 0, and standard 

deviation oa. For the AR(1) process, the autocorrelation 

between the terms Xt and Xt_j is (J)
3 for j£l. Without loss of 

generality, n is considered here to be zero which gives a 

general model. 
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Xt = + at (3.2) 

Note that the commonly assumed independent case occurs when 

4> = 0. The level of <J> must be in the interval (—1,1) 

exclusive in order for the autoregressive process to meet 

the constraints of stationarity (Box and Jenkins, 1976). 

All parameters of the generated data are assumed known. 

The standard deviation of the autocorrelated process 

depends on the particular autocorrelation structure and is 

described by 

o v = 

N 
' o (3-3) 

1 - 4>2 * 

where oa is the standard deviation of the error terms. 

Formula (3.3) is used in prior research to determine the 

standard deviation of the process, but in order to do so the 

autocorrelation parameters must be known at the time of 

sampling. In this dissertation, knowledge of the presence 

or amount of autocorrelation is not assumed. The standard 

deviation is estimated in this work based on the average 
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range of the sampled observations. In equation (3.3), it is 

observed that as the absolute value of the autocorrelation 

parameter (|) increases, the standard deviation (or 

variance) of the observations increases. The variance of 

the model increases without bound as <f> approaches a value of 

1. This increasing variance motivates one of the questions 

of this dissertation because if the variance of the process 

increases as the autocorrelation parameter increases, then 

the observations from such a process would go out of control 

more quickly due to their increased variance. This leads to 

a faster signal from the control chart. If the process is 

truly out of control, this faster signal is advantageous. 

But if the signal is caused or aided by the autocorrelation, 

the faster signal is actually a false indication of a shift 

in the mean when, in fact, one does not exist. Thus, 

research question #1 is formulated: Does the ATS on the 

Shewhart X-bar control chart decrease as the 

autocorrelation in the process increases? 
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Research Question »2: Length of the Sampling Interval 

In prior work, the length of time between samples was 

taken as 1 (Reynolds, Arnold, Amin, and Nachlas, 1988; 

Baik, Reynolds, and Arnold, 1991; Alwan and Roberts, 1988). 

That is, every observation or manufactured item was 

sampled. This is not the case in practice because sampling 

is expensive, both in time required for employees to take 

the samples and in production units for destructive 

sampling techniques. This dissertation seeks to explore, 

by the surrogate of skipping 10 to 50 items between samples, 

the more likely process of sampling over time. Larger 

intervals were originally planned but required such 

excessive CPU time that they were non-feasible. These time 

intervals are still small for some production models but 

reflect possible numbers for large item manufacture. For 

example, if 480 items are manufactured within an 8 hour 

shift, then 10 items are manufactured every 10 minutes. As 

a result of the economic impact of an out of control 

process, the manufacturers might decide that 10 minutes is 

the longest length of time that they are willing to let the 
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process continue without knowledge of its accuracy. The 10 

minute time-frame is then chosen as the Fixed Sampling 

Interval (FSI). An illustration of the FSI technique can be 

seen in Appendix B, Figure 1. Items are taken from the 

production line in sequential order after each 10 minutes 

according to the desired sample size. 

The correlation of Xt and was identified in the 

previous section as being (J)3 for j£l. Thus, as the time 

between observations increases, the correlation between 

the observations in question decreases. For example, if 

the autocorrelation parameter <f> = 0.9, then for consecutive 

samples of size 1 (n=l, L=l) the autocorrelation is (0.9)1. 

If the interval length is increased to L=10 and the sample 

size remains at n=l, then the autocorrelation between 

consecutive samples will be (0.9)10 = 0.3487. The 

autocorrelation between samples of size 1 will continue to 

decrease as the interval length increases. Maragah (1989) 

found that the number of control chart signals within a 

given number of observations increases as the positive 

autocorrelation increases. This implies that the ATS is 
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slower for a given autocorrelation value as the time 

between samples increases. Prior work was done with 

samples of size 1 taken consecutively (Reynolds, Arnold, 

Amin, and Nachlas, 1988; Baik, Reynolds, and Arnold, 1991; 

Maragah, 1991) because this scenario is tractable. The 

research being conducted here uses samples of both size 1 

and size 5. Although the exact autocorrelation between 

consecutive samples of size 5 is not known, it is possible 

to surmise relationships. For example, if the samples with 

n=5 and L=1 are composed of observations 1,2,3,4,5 and 

observations 6,7,8,9,10, then the autocorrelation between 

various members of these two different samples (inter-

sample) can be computed. The highest inter-sample 

autocorrelation lies between observations 5 6 6. All other 

inter-sample autocorrelations will be less. The 

autocorrelation between observations 1 6 6 , 2 6 7 , 3 6 8 , 46 

9, and 5 6 10 is <|)5 whereas the autocorrelation between 

observations 1 6 7 , 2 6 8 , 3 6 9 , 46 10 is <|>6, and so on, until 

the smallest autocorrelation value at the farthest pair, 

observations 1 6 10, is computed to be <J)9. If <j> = 0.6, then 
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the autocorrelation values in the example range from ( .6) 

to (.6)9 = 0.0101. Given these autocorrelations, it is 

intuitively seen that the autocorrelation between the 

sample means should be in between the maximum 

autocorrelation value of 0.6 and the minimum value of 

0.0101. If, however, the interval length between samples 

is L = 10, then the observations might be 1,2,3,4,5 and 

16,17,18,19,20. Assuming the same autocorrelation value 

of <j>=0.6 , the autocorrelation between individual members 

of the samples now ranges from a maximum of ( . 6)10 = 0.0060 to 

a minimum of ( .6)19 = 0.0001. 

Although the exact values are unknown, the increasing 

interval length can be expected to decrease the 

autocorrelation between samples regardless of sample size. 

Thus, research question #2 is defined: Does the ARL/ANSS on 

a Shewhart X-bar control chart increase as the length of the 

interval between samples increases when positive 

autocorrelation is present? 
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Research Question #3: Sample Size 

Shewhart (1931) originally recommended samples of 

size 4 for his chart, but size 5 has become more frequently 

used. While it is difficult to argue if this change to size 

5 is due to statistical properties or ease of hand 

calculation, it is a documented industry standard (Grant 

and Leavenworth, 1988; Montgomery, 1985). In spite of 

this, prior theoretical investigation has been conducted 

on samples of size 1 because of the mathematical 

intractability of larger sample size (Reynolds, Arnold, 

Amin, and Nachlas, 1988; Baik, Reynolds, and Arnold, 1991; 

Maragah, 1991; Wardell, Moskowitz, and Plante, 1991). To 

avoid these complications, the investigations of this 

dissertation are conducted through simulation. Therefore, 

the more commonly used samples of size 5 can be utilized to 

determine the impact of the larger sample size on the VSI 

technique when used with the Shewhart X-bar control chart. 

Samples of size 1 are also used to allow a comparison to 

prior work and to avoid confounding with research questions 

about interval length. 



39 

Again, the correlation of Xt and Xt_j was identified in 

the previous section as being (J)3 for j£l, and it is 

established that the autocorrelation between samples of 

size 1 is <j>. The exact autocorrelation between the means of 

samples of size 5 is unknown, although enough information 

is available from which a general idea of the behavior can 

be surmised. As an example, if observations 1,2,3,4,and 5 

comprise the first sample, then the autocorrelation <j) 

between any two observations within the sample (intra-

sample) can be computed. There are four elements of the 

sample with correlation (j)1 (observations 1 6 2 , 2 ( 3, 3 6 4 , 

4 6 5), three elements of the sample with correlation (j)2 

(observations 1 6 3 , 2 6 4 , 365), two elements of the sample 

with correlation <j>3 (observations 1 6 4 , 2 6 5 ) , and one 

element of the sample with correlation <j)4 (observations 1 6 

5) . The identical relationship is present in every other 

sample of five consecutive observations within this 

process. It is possible that when the intra—sample 

observations are averaged, the autocorrelation of the mean 

of a sample of size 5 may be greater than or equal to the 
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original autocorrelation <|> and thus greater than or equal 

to the autocorrelation present in a sample of size 1. If 

this relationship exists, then the samples of size 5 might 

cause the Shewhart X-bar control chart to signal more 

quickly. This rationale motivated research question #3: 

Does the use of samples of size 5 instead of samples of size 

1 increase the effect of positive autocorrelation on the 

Shewhart X-bar control chart? 

Research question ^4 * Shift in the Process Mean 

As a product is manufactured, the Shewhart X-bar chart 

is used to monitor any changes in some chosen mean statistic 

such as weight, diameter, or length. The desired value is 

designated the target mean, and any deviation from this 

target mean is referred to as a shift in the process mean. 

The effect on the ATS and the ARL/ANSS of specific shifts in 

the process mean is known when the process produces 

independent observations (Reynolds, Arnold, Amin, and 

Nachlas, 1988). 
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This dissertation investigates the effect on the ATS 

and the ARL/ANSS of the Shewhart X-bar control chart of a 

shift in the process mean of 6 = 0.0, 1.0, 2.0, and 3.0 

standard deviations from the original target when the 

process produces autocorrelated data. Shifts between 0.0 

and 4.0 were utilized with independent observations in 

several of the previously cited works (Reynolds, Amin, 

Arnold, and Nachlas, 1988; Saccucci, Amin, and Lucas, 

1991), but a shift as large as 4.0 standard deviations 

seemed excessive for the investigations because the 

ARL/ANSS is 2.0 at a shift of 3.0 and ARL/ANSS values lower 

than 2.0 seem of questionable value in establishing a 

pattern of behavior for the ARL/ANSS. It was anticipated 

that the same effect would be found with autocorrelated 

data — that is, the greater the shift of the process mean 

from the target value, the faster the Shewhart X-bar 

control chart will indicate an out of control signal with 

either the FSI or the VSI technique. Thus, research 

question #4 is the following: Do increasing shifts in the 

process mean cause a lower ATS for the Shewhart X-bar 
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control chart when the process data is positively 

autocorrelated? 

Research question #5: The VSI Technique 

For the VSI technique (see Appendix B, Figure 2) , two 

sampling intervals were shown to be just as effective and 

much simpler than additional intervals (Saccucci, Amin, 

and Lucas, 1990). Work by Reynolds, Arnold, Amin, and 

Nachlas (1988) showed that with independent data, choosing 

the two sampling intervals between zero times the fixed 

interval and twice the fixed interval yields the lowest 

average time to signal for all shifts in the target mean. 

Their work was done using the short sampling interval as 

.1*L, and the long sampling interval as 1.9*L, where L = the 

fixed interval length. It is known that two sampling 

intervals as far apart as possible are optimal for the AR(1) 

model (Baik, Reynolds, and Arnold, 1991). The minimum 

interval might be the limiting value to the time required to 

actually take the required sample or to manufacture an 

item. At time zero, the shorter interval is automatically 
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selected. This is not unreasonable because "start-up" 

processes frequently require more monitoring than "on-

going" processes. The maximum value might be the amount of 

time personnel are willing to let the process run without 

sampling even when the process is in control. Every 

statistic of process manufacture cannot be monitored on a 

control chart, and personal intervention or inspection at 

times to be determined within an individual process is 

certainly valuable. 

In this dissertation, intervals are established so 

that the probability of an observation falling in the 

interval designated Ix equals the probability that the 

observation falls in interval I, 
' r 

P(I2) = P(IX) (3.4) 

when the process is on target ( p, = p.0) . The intervals are 

defined as follows: 

*1 = (Ho+3o« » Ho+*a*) U (hT*°x » Ho-30 J 
(3.5) 

h = (h>+*a* » 
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where k is determined to be 0.6766 in the following manner. 

Pflong] = P[ short] when p, = p,0 

P[-k < Z < k ] =P[-3<Z<-k or k<Z<3 ] (3.6) 

P[0<Z<k ] = P[k<Z<3 ] 

2P[0<Z<k] = .5 - P[Z>3] 

P[0<Z<k] = 0.2493 

therefore, k = 0.6766. 

This value of k allows a long sampling interval with 

approximately the same freguency as the short sampling 

intervals. 

Reynolds, Arnold, Amin, and Nachlas (1988) showed that 

the ATS for the VSI chart is lowest when the two sampling 

intervals are chosen as 0.1 and 1.9 times the sampling 

interval used in the FSI case. A chart with greater than 1.9 

times the FSI implies that the probability of the longer 

sampling interval is less than the probability of the 

shorter interval when the process is in control. Thus, the 

sampling intervals for this work were chosen as dx = 0.1*L 
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and d 2= 1.9*L observations where L = length of the fixed 

sampling interval. 

The variable sampling interval technique was used on 

the Shewhart X-bar control chart both for processes that 

produce independent observations and for those which 

produce autocorrelated data. In each different research 

effort, however, only samples of size 1, sampling intervals 

of length 1, and control limits set by theoretical 

parameters were used. Results showed that the VSI 

technique made the chart give an out of control signal 

faster in all cases; that is, the ATS was lower, regardless 

of the ARL/ANSS. Yet each of the prior studies employed at 

least one technique not available in most industrial 

settings. This dissertation seeks to determine if the VSI 

technique should be used in practice. Therefore, research 

question #5 asks the following: Do VSI techniques produce a 

lower ATS than FSI techniques on the Shewhart X-bar control 

chart with positively autocorrelated data when control 

limits are calculated from process observations? 
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Limitations and Key Assumptions 

Simulation is used in this work due to the analytical 

intractability when using samples of size 5 and interval 

lengths, in the presence of autocorrelation, between 

samples greater than 1 (Reynolds, Arnold, Amin, and 

Nachlas, 1988; Baik, Reynolds, and Arnold, 1991; Maragah, 

1991; Wardell, Moskowitz, andPlante, 1991). 

Representative values are used in any simulation, and this 

implies that assumptions are made in establishing a 

pattern. Only positive autocorrelation is studied in this 

dissertation because negative autocorrelation is seldom 

seen in industrial manufacturing processes (Baik, 

Reynolds, and Arnold, 1991) . It was necessary to limit the 

autocorrelation parameter to several values in order to 

keep the total number of simulations manageable. The 

values chosen (<J)=0 . 0 , <|>=0.3, <J>=0.6, <|>=0 . 9 ) are those of 

Baik, Reynolds, and Arnold (1991) to allow comparisons. 

The four autocorrelation parameter values give sufficient 

information to establish a pattern for the results. 
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The shifts in the process mean are incremented in jumps 

of 1.0 from the target value. This increment is large, and 

it does not allow information about specific behavior (only 

the pattern of behavior) for small shifts. The choice of 

the Shewhart X-bar control chart limits information about 

small shifts in the process mean because it is known to be 

insensitive to small shifts. 

The sample sizes are limited to 1 and 5, and while it 

would be interesting to know the effect of different sample 

sizes, prior research is dominated by samples of size 1, and 

the industrial standard is a sample of size 5. 

In this work, the interval length is the number of 

observations between selected samples and is a surrogate 

for time between samples. Whereas lengths of 1, 10, 20, and 

50 are considered, numerous other possibilities exist. The 

assumption is made that the patterns established with the 

increasing interval length will continue as the interval 

length continues to increase. 

Several other assumptions are germane to this work. An 

IMSL subroutine (a published collection of mathematical 
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and statistical computer procedures) was used to generate 

autocorrelated data sets of great length (2.5 million in 

several simulations). While the statistics of the 

generated data were checked for shorter runs, the 

continuation of the correct parameters must be assumed. 

The capabilities of the random number generator were 

presumed adequate for the simulation requirements. The 

AR(1) model was assumed to have noise or error terms which 

were random and normally distributed. Every effort was 

made to check these assumptions, but their existence must 

be recognized. 

Research Questions 

The above section contains a discussion of the 

motivation for the research questions in this 

dissertation. For clarity, the five research questions 

proposed in this study are restated below: 
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(1) Does the ATS on the Shewhart X-bar control chart 

decrease as the autocorrelation in the process 

increases? 

(2) Does the ARL/ANSS on a Shewhart X-bar control 

chart increase as the length of the interval 

between samples increases when positive auto-

correlation is present? 

(3) Does the use of samples of size 5 instead of 

samples of size 1 increase the effect of positive 

autocorrelation on the Shewhart X-bar control 

chart? 

(4) Do increasing shifts in the process mean cause a 

lower ATS for the Shewhart X-bar control chart 

when the process data are positively 

autocorrelated? 

(5) Do VSI techniques produce a lower ATS than FSI 

techniques on the Shewhart X-bar control chart 

with positively autocorrelated data when control 

limits are calculated from process observations? 
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An important distinction for the interpretation of the 

results of this dissertation is the difference between the 

Average Time to Signal (ATS) and the Average Run Length 

(ARL) or Average Number of Samples to Signal (ANSS). The 

ARL and ANSS refer to the number of samples taken from the 

process before one of the sample statistics triggers an out 

of control signal from the control chart. ATS refers to the 

number of items that are manufactured before the control 

chart puts a stop to the manufacturing process by signaling 

an out of control situation. Thus it is possible, and in 

fact does occur, that the ATS is quicker for the VSI 

technique when the ANSS is larger than the ARL for the FSI 

technique. For example, if the fixed sampling interval is 

chosen as every 10 items, then if the FSI charts signal on 

the average with a run length of 4, the ARL is 4 and the 

number of manufactured items (ATS) is 40. The VSI technique 

may take 5 samples on the average before signaling (ANSS = 

5) , but if 2 long sampling intervals are used (20 items 

manufactured) and 3 short intervals (1 item each), then 
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only 23 Items have been manufactured when the VSI chart 

signals; thus, its average time to signal (ATS) is 23. 



CHAPTER IV 

METHODOLOGY 

Simulation of Observations 

For the simulation, data points were generated using 

the IMSL, Inc. subroutine RNARM which allows pre-

determined correlation. The RNARM subroutine uses 

randomly generated input data that is normally distributed 

with mean ji=0 and a2= 1. The data generated by this method 

were plotted /fitted using four Shewhart X-bar control 

charts: two fixed sampling interval charts (one with 

control limits fixed and the other with limits calculated 

from estimates obtained from the process observations) and 

two variable sampling interval charts (one with control 

limits fixed and the other with calculated limits). The 

shift in the process mean was introduced after the control 

limits were calculated from data with a mean set at the 

target value (if fixed control limits were used, the data 

comprising the first 25 samples were ignored). The 
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introduced shifts were examined in increments of 1.0 from 

the target mean of (j. = 0.0 to determine the change in the ATS 

and ANSS when a shift in the process occurred. Shifts 

between 0.0 and 4.0 were utilized in several works, but most 

prior work considers shifts between 0.0 and 3.0. The time 

required for the data to produce an out of control signal 

was measured for both FSI and VSI charts and these times 

compared for the same data. The FSI and VSI comparisons 

were replicated a large number of times and at different 

levels of correlation with different changes in the mean 

and different sampling interval lengths. Both fixed 

control limit charts and calculated control limit charts 

were subjected to this process. 

Shewhart X-bar chart with Fixed Sampling Intervals 

For the FSI chart, the sampling interval (L) was set at 

lengths of 10, 20, and 50. These values were chosen because 

the short sampling interval of the VSI technique must be 

one-tenth of each fixed interval length, and the VSI long 

interval must be 1.9 times the fixed interval length, and 
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fractional values are not possible in practice. Of course, 

other choices were possible but a longer interval increases 

the number of observations beyond the capability of the 

simulation. The fixed interval, regardless of its length, 

was chosen so that a comparison could be made with the VSI 

chart whenever possible. For the charts with the fixed 

control limits, the first data points (observations) were 

ignored and control limits were fixed using ±3a/\/n. Where 

applicable, the first data points were used to calculate 

the control limits for both the FSI and VSI chart. The exact 

number of points required to determine the control limits 

was set by the sample size times interval length for the 

particular replication. As the data points were generated, 

samples of size n=l or size n=5 were taken every L points. 

The sample average was computed for each replication. 

As an example, if the sample size n = 1 , and interval 

length L = 10, then 
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250 

= E * . _ , 3 . 7 ) 
X = , for t = 10,20,30...250 where x=xt 

25 

where X-double bar is the mean average of all the 

individual 25 sample means, and the average range, R-bar, 

(which was calculated as a moving range only for sample size 

of one) of the process is 

250 

- J&Rt ( 3 - 8 ) 

R = 24 > where Rr l^r-Viol for t = 20,30,...,250. 

For samples of size 5, the range R is the difference between 

the maximum and minimum value within the sample, and R-bar 

was calculated using 

_ 2SL 
R

t where R, = maxisample)-m\nisample) (3.9) 
f=i 
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The usual Shewhart control chart limits were computed 

usxng 

UCL = X + 3 R 

d2\fn 
(3.10) 

LCL = X - 3 
dfjn 

(3.11) 

and 

n=l n=2 n=5 

d2=l.128 d2=l .128 d2=2 .326 

where d2 is a subgroup size factor (Grant and Leavenworth, 

1988; Montgomery,1985). Note that because of the moving 

range utilized with subgroups of size 1, the d2 factor was 

computed on the two terms within the moving range. 

After the control limits were set, the remaining data 

were plotted/fitted using the Shewhart chart FSI 

techniques. A Fortran program was used to recognize an out 

of control condition and to determine the following: first. 
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the time to signal, TS, (the length of time from the start of 

the process to the time where the chart signals) ; and 

second, the number of samples to signal, NSS, (the number of 

samples taken from the start of the process until the chart 

signals). The time required will equal the number of 

samples to signal since this chart used the FSI that was 

defined to be one time unit. Repetitions of this procedure 

generated an average time to signal, ATS, and average 

number of samples to signal, ANSS. 

The parameter (<j>) of the AR(1) model was set at levels 

of <t>=0.0, <|>=0.3, <|>=0.6, and <j>=0.9 degrees of correlation. 

Negative correlation between successive observations is 

considered rare in practical situations and was omitted in 

this work (Baik, Reynolds, and Arnold, 1991). On the 

Shewhart X-bar chart, the control limits were chosen as 

±3ox/\/n because of their use in prior work (Wardell, 

Moskowitz, and Plante, 1991; Baik, Reynolds, and Arnold, 

1991; and Reynolds, Amin, and Arnold, 1988). An 

observation generated by the IMSL subroutine with a 

correlation of <J> = 0.0 has a probability of .0027 of 
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plotting beyond the control limits of ±3, that is, beyond 3 

standard deviations from the mean. The expected value of 

the length of time elapsed before an observation falls 

beyond 3 standard deviations is the reciprocal of the 

probability that this event will occur. 

E[ARL] = 1/p (3.12) 

E[ARL] = 1/.0027 

= 370.37 - 370.4 

For each different AR(1) model, the mean was incremented in 

units of 1.0 to simulate a shift in the process mean from the 

target value of 0.0 to a value of 3.0. The ATS was measured 

for each different model, and this ATS determined which 

chart signaled faster at which level of correlation for 

different interval lengths and sample sizes. The entire 

procedure, starting with newly computed control limits, 

was replicated for each parameter change. 
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Shewhart X-bar chart with Variable Sampling Intervals 

The control limits were both fixed and calculated, as 

applicable, for the VSI charts using the FSI techniques 

described above. Using this methodology, the limits were 

identically the same for both FSI and VSI charts. After the 

limits were set by sampling the appropriate number of data 

points, the variable interval approach was immediately 

employed for the remaining data points. The shorter 

sampling interval was always used to calculate the first 

x-bar from the first sample after the control limits were 

set. If the first x-bar fell in Ix the shorter sampling 

interval was used, and another sample was taken after the 

next fixed sampling length. If x-bar fell in I2 the longer 

sampling interval was used next, and the process was 

allowed to continue an extended time. A modification of the 

Fortran program designed for the FSI was used to recognize 

an out of control condition and to determine: first, the 

time to signal, TS, (the length of time from the start of the 

process to the time where the chart signals), and second, 

the number of samples to signal, NSS, (the number of samples 
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taken from the start of the process until the chart 

signals). Repetitions of this procedure generated an 

average time to signal, ATS, and an average number of 

samples to signal, ANSS. The entire procedure, starting 

with newly computed control limits, was replicated for each 

parameter change. 

The number of replications for all of the simulations 

was originally chosen to be 10,000. This number is much 

larger than used in prior work, but preliminary results 

(see Appendix B, Figure 3) indicated that the variation in 

ARL was large with less than 5,000, and 10,000 was chosen 

for additional accuracy. Because of the unexpected 

excessive computer time required for the large number of 

observations necessary for the chart to determine an out of 

control signal, some of the simulations were limited to 

5,000 replications. The results (indicated in Appendix B, 

Figure 3) show that at 5,000 replications the ARL begins to 

show decreased variability. 



CHAPTER V 

SIMULATION RESULTS 

Two distinct approaches for computation of the control 

limits were used in this dissertation. The first involved 

both FSI and VSI techniques with the control limits pre-set 

at ±3ax /Vn. The second group used control limits that were 

calculated from estimates obtained from the first 25 

samples of the data. Comparisons of the results, for 

varying interval lengths, correlation coefficients, 

sample sizes, and shifts in the process mean are presented 

below. Note that in many instances where values were too 

widespread for graphic clarity using a linear scale, the 

logarithmic scale is also presented. 

Influence of Interval Length 

FSI with Fixed Control Limits 

For data points generated with zero correlation (<J> = 

0.0) , interval length has no effect on the ARL for the 
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sampling process for either samples of size 1 or 5 (see 

Appendix A,Tables 1 and 5 and Appendix B, Figures 20a-h). 

This is expected because the data are independent and 

normally distributed with a mean of 0 and a standard 

deviation of 1. At the autocorrelation level of <j) = 0.3, the 

ARL values begin to show a slight downward trend (see 

Appendix A, Table 2 and Appendix B, Figures 20a-h) 

indicating that for samples of size 1 the ARL is decreasing 

with an increase in length from 1 to 10 between samples. 

After the interval length of 10, no further changes are 

noted as a result of increasing interval length at this 

level of correlation. For samples of size 5 (see Appendix 

A, Table 6 and Appendix B, Figures 24a-h) , increasing the 

interval length from 1 to 10 shows less decrease than that 

noted for samples of size 1. The results at <J)= 0.6 for 

samples of both size 1 and 5 (see Appendix A, Tables 3 and 7) 

indicate a larger decrease in ARL between L=1 and L=10 

particularly for shifts of 0.0 and 1.0 but no discernable 

difference when interval length is increased to L=20 or 

L=5 0. 
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At a correlation of <j) = 0.9, the difference between 

interval lengths of L=1 and L=10 is more definitive for 

samples of size 1 than for samples of size 5 (see Appendix Ar 

Tables 4 and 8, and Appendix B, Figures 20b-h) with a lesser 

decreasing trend evident for interval lengths greater than 

10. For samples of size 5, this trend is less pronounced 

(see Appendix A, Table 8, and Appendix B, Figures 24e-h) . 

When the sample size is 1, the ARL decreases because 

consecutive observations have the highest autocorrelation 

(based on the autocorrelation formula d)3 between Xt and X,. . 
T t t-3 

for j^l). Thus, as the interval length increases, the 

probability of finding a value as highly autocorrelated to 

Xt as Xt_:j decreases, and after the interval length is in 

excess of L=10, the probabilities are not changing and the 

variability in the ARL decreases. With a sample size of 5, 

the data are smoothed by averaging, and therefore less 

variability is noted between L=1 and L=10, and none is found 

with increasing interval length after the L=10. 
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VST with Fixed Control Limits 

For data points generated with zero correlation 

(<|>=0.0, normally distributed, n=0 , o=l) , increasing the 

interval length from 10 to 50 does not change the ANSS 

(average number of samples to signal) for samples of size 1 

or 5 (see Appendix A, Tables 9 and 13,and Appendix B, 

Figures 22a-h and Figures 26a-h). The first cluster on each 

graph indicates the lack of movement in ANSS with changing 

interval length for correlation of <j)=0.0. The other 

clusters refer to other correlations. For samples of size 1 

and correlations of <j>=0 .3 and <|>=0 . 6 (see Appendix A, Tables 

10 and 11), the increasing interval length produces an 

increase in the ANSS for no shift and, of lesser degree, for 

a shift of 1. This trend reverses, and the ANSS exhibits a 

decrease for the larger shifts in the process mean. For 

samples of size 5 with correlation of <j>=0.3 or <|>=0.6 (see 

Appendix A, Tables 14 and 15, and Appendix B, Figures 26a-

h) , neither of the results indicated above for samples of 

size 1 are present. The values for the ANSS change very 

little until the interval length of L=50, at which time a 
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slight decrease in ANSS is indicated for all shifts except 

6=3.0. At a correlation level of <j>=0. 9 (see Appendix A, 

Tables 12 and 16, and Appendix B, Figures 22g,h and 26g,h) , 

the ANSS decreases for all shifts when the interval length 

increases, but the rate of change decreases for samples of 

size 5. 

FSI with Calculated Control Limits 

For a small portion of the simulations (18/5000), the 

number of observations required for the chart to produce an 

out of control signal exceeded 2 million for samples of size 

1 when the control limits were calculated from the process 

samples and the correlation <j>=0.0 with an interval length 

of 10 and a shift 6=0.0. Thus, the results are listed as 

greater than 2754.1 (see Appendix A, Table 17 and Appendix 

B, Figures 21a-h) with the number of replications in which 

the 2 million data points were exceeded without an out of 

control signal being generated given in Appendix A, Table 

65. For a correlation of <J)=0.0 , interval length has little 

or no effect regardless of the shift in the target mean, as 
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is expected for the independent data. However, when the 

correlation increases to <(>=0.3, increasing the interval 

length from L=1 to L=10 causes the ARL to increase 

dramatically for all shifts, from an ARL = 182.9 to an 

ARL > 2385.5 for no shift. When the interval length 

increases from L=10 to L=20 or 50, the increase in the ARL 

continues but is less pronounced, particularly for shifts 

of 6=2.0 and 6=3.0 (see Appendix A, Tables 18 and Appendix 

B, Figures 21a-h) . This trend continues for 

autocorrelations of <|>=0.6 and <|>=0.9 (see Appendix A, Tables 

19 and 20) . It appears that, for positively autocorrelated 

data, as the interval length between samples increases, the 

effect of the autocorrelation is decreasing, and the ARL is 

approaching that for independent data. 

When the sample size is increased to 5, the number of 

observations required to cause the control chart to signal 

decreases to approximately 300,000, allowing exact values 

for the ANSS to be obtained. Changes in the interval length 

have no effect (see Appendix A,Tables 21-22 and Appendix B, 

Figures 25a-h) on the ANSS until the correlation reaches 
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approximately <J) ̂  0. 6 (see Appendix A, Tables 23 and 24), at 

which time the ANSS decreases very slightly from L=1 to L=10 

and then displays noticeably decreased variability. The 

dramatic effect of increasing interval length is not seen 

when samples of size 5 are used due to the smoothing effect 

of the averaging. 

VSI with Calculated Control Limits 

The number of observations required for the VSI chart 

to produce an out of control signal for samples of size 1 

exceeded 800,000 for 61 of the 5000 replications when the 

correlation <j)=0.0 with an interval length of L=10 and shift 

of 6=0.0. The results are listed as greater than 2152.4 

(see Appendix A, Table 25), with the number of replications 

that exceeded the data set displayed in Appendix A, Table 

65. The large numbers required to generate an ANSS limited 

the results for longer interval lengths, particularly for 

the shifts of 0.0 and 1.0 (see Appendix A, Tables 25, 26,27, 

and 28), but the results obtained were sufficient to show 

the comparison to those obtained with FSI with calculated 
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limits. For samples of size 1, the increase in interval 

length from L=10 to L=20 causes an increase in ANSS but to a 

lesser degree than the comparable FSI (see Appendix B, 

Figures 23a-h). For samples of size 5, the interval length 

has little influence over the ARL (see Appendix A, Tables 

29-32 and Appendix B, Figures 27a-h) until the interval 

length reaches L=50 at which time a slight decrease in the 

ANSS can be seen. 

There is some indication that the increasing interval 

length is causing a decrease in the autocorrelation effect 

for the VSI technique but less evidence is available due to 

the excessive computer time required for the longer 

interval lengths. 

Influence of Correlation Parameter on ARL/ANSS and ATS 

The ARL/ANSS is comparable for the FSI and VSI for 

samples of size 1 and 5 for all shifts in the process mean 

for the correlation coefficient (J) £ 0.6 (see Appendix A, 

Tables 1, 2, 3, 5r 6, 7, 9, 10, 11, 13, 14, 15, 17, 18, 19, 21, 

22, 23, 25, 26, 27, 29, 20, 31 and Appendix B, Figures 8a-d, 
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9a-d, lOa-d, lla-d). When the correlation becomes 

approximately <J) = 0.9, the ANSS for the VSI technique 

generally exceeds the ARL for the FSI technique with the 

exception of the interval lengths of 50 (see Appendix A, 

Tables 4, 8 ,12, 16, 20, 24, 28, and 32) . 

The ATS (average time to signal) allows a better 

comparison for FSI and VSI techniques. The time required 

for the VSI technique to signal, that is, to indicate that a 

shift in the mean has occurred, is for every comparison of 

correlation, shift, interval length, and sample size less 

than the time required for the FSI technique to signal (see 

Appendix A, Tables 33-64 and Appendix B, Figures 12a-d, 

13a-d, 14a-d, 15a-d, 16a-d). 

Influence of Sample Size on ARL/ANSS and ATS 

FSI and VSI with Fixed Control Limits 

With samples of size 1, the ARL/ANSS of the FSI and VSI 

techniques with pre-set control limits are fairly 

consistent and similar although a slight decrease in run 

length was noted with increasing interval length (see 
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Appendix A, Tables 1-4, 9-12 and Appendix B, Figures 28a-

e) . For some treatment combinations with samples of size lr 

the results are expressed as inequalities because the run 

length exceeded the number of points in a small percentage 

of the cases and was not determined exactly. However, when 

the sample size is increased to 5, the time required for the 

chart to signal is greatly reduced. The ARL/ANSS for both 

techniques indicate noticeably decreased variability with 

increasing interval length for sample sizes of 5 (see 

Appendix A, Tables 5-8, 13-16 and Appendix B, Figures 28a-

e) . The ATS for the VSI is shorter than for FSI in all cases 

for the interval length of 10 (see Appendix B, Figures 30a-

e) . But the advantage of the VSI over the FSI in ATS is 

increasingly evident as the correlation increases. The ATS 

using FSI with samples of size 5 is longer than the ATS using 

the same FSI technique but with samples of size 1 when <|)=0.0 

with no shift (see Appendix B, Figures 30a-b) because the 

ARL/ANSS remains the same and when samples of size 5 are 

used, the actual number of manufactured items is increased 

by a factor of 5. However, when correlation increases to 
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<j>=0.3 with no shift, the charts signal so much faster that 

the size 5 samples have an ATS which is less than that for 

samples of size 1. 

FSI and VSI with Calculated Control Limits 

With samples of size 1, the ARL/ANSS of the FSI and VSI 

techniques were difficult to obtain due to the excessive 

number of observations required for the chart to find an out 

of control value (see Appendix A, Tables 17-20r 25-28) . The 

ARL/ANSS were steady when the interval length was increased 

for all shifts at zero correlation but increased quickly 

when the interval length was increased at correlations 

greater than zero (see Appendix B, Figures 29a-f). The 

samples of size 5 possess the unchanging values over 

increasing interval lengths not evidenced in samples of 

size 1 for both the FSI and the VSI techniques (see Appendix 

A, Tables 21-24, 29-32 and Appendix B, Figures 29a-f). With 

calculated limits, the ATS for the size 5 samples is much 

less than for size 1 samples even with zero correlation and 

zero shift (see Appendix B, Figures 31a—h). 
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Influence of the Shift in the Process Mean 

The ARL is a function of both the correlation <|> and the 

shift 6. When the sample size is 1 for FSI with pre-set 

limits (see Appendix B, Figures 4a-b, 5a-b, 6a-b, 7a-b), 

the spread of the ARL values, when the shift 6=0.0, is over 

300 units (from 371.5 at <J>=0 .0 to 14.4 at <(>=0 . 9 ) . When the 

shift is increased to 1.0, the ARL spread decreases to 

approximately 30 (from 43.7 at <j>=0 . 0 to 12.8 at <J>=0 . 9 ) and 

continues to decrease for shifts of 2.0 and 3.0. The 

reduction in the spread of the ARL values as the shift 

increases is more drastic when the sample size is 5 (see 

Appendix B, Figures 4c-d, 5c-d, 6c-d, 7c-d). 

The ARL for the FSI technique with pre-set limits, n=l, 

L=l, (see Appendix B, Figures 4a-b, 5a-b) has a similar 

spread in its values when compared to the ANSS for the VSI 

techniques. The spread in ARL values when the sample size 

is 5 (see Appendix B, Figures 4c-d, 5c-d) is comparable to 

the ARL's generated by samples of size 1. 

Important information is gained in this work about the 

interaction between the autocorrelation <(> present in the 
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process and the degree of shift 6 in the process mean. The 

ARL was graphed with both linear and logarithmic scale to 

aid in visually interpreting the interaction. However, the 

exact value where the lines cross is not available, and care 

must be exercised in judgement. For samples of size 1 (see 

Appendix B, Figures 4b, 5b), when using the FSI with pre-set 

limits, the equilibrium point (where all correlations have 

approximately the same ARL) occurs at approximately 6=1.8, 

but for the VSI with pre—set limits, the equilibrium point 

is approximately 6=2.4 . When the control limits are 

calculated from sample data, the interaction point is more 

complex, and no equilibrium point for all four correlation 

values exists. FSI simulations (see Appendix B, Figure 6b) 

with correlations of <|>=0 . 0 and <|>=0 . 9 do not reach an 

equilibrium point until the shift is almost 3.0, but 

correlations of <J>=0.6 and <J>=0.9 cross at approximately 6 = 

2.0. For VSI with calculated control limits (see Figure 

7b), the complexity of the interaction increases, but 

equilibrium points between pairs of correlations (<j)=0 . 0 
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and <j)=0 . 9 , <j)=0 . 0 and <j)=0 . 3 ) occur at smaller shift values 

than for the FSI graphs. 

For samples of size 5, interactions between the shift 6 

and the correlation <j> are seen in Figures 4dr 5d, 6d, and 7d 

of Appendix B. When FSI with pre-set limits are used, 

correlations of <j)=0-0, <J)=0.6r and <j>=0.9 have an equilibrium 

point at approximately 6= 1.6, but processes with 

autocorrelation coefficients of <j)=0.3 interact with other 

correlations at various shift values. The equilibrium 

point for the VSI techniques is at approximately 6 = 1.6 for 

all correlations studied. 

Fixed versus Calculated Limits 

The ARL/ANSS using fixed control limits (pre-set at 

±3ox /\/n) for both the FSI and VSI were easily simulated by 

generating data sets of up to 100,000 observations at 

interval length L=10 and 500,000 observations for L=50. For 

samples of size 1, the ARL/ANSS for the FSI and VSI 

techniques required large numbers of observations using 

control limits calculated by finding estimates from the 
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ranges and means of the first 25 samples. When using these 

calculated limits, the ARL/ANSS requires over 800,000 

points for approximately 1% of the replications, and over 2 

million in 0.36%. These excessively long run lengths made 

the computer time required to find the exact ARL/ANSS for 

the longer interval lengths non-feasible. 

The differences in the behavior of both FSI and VSI 

charts for fixed versus calculated control limits is 

profound. Using limits of ±3ox /\/n (pre-set), the 

autocorrelation causes both FSI and VSI charts to signal 

faster (for all correlation values) with shifts of 6=0 or 

6=1 (see Appendix A, Tables 1-4, 9-12). The FSI chart 

signals slower with 6=2 or 6=3 when the interval length is 

L=1 and faster than with a zero correlation when L > 1. 

However, this is not true when the treatment is <|> = 0.9 with 

6=3. The VSI continues to signal faster for all interval 

lengths with the exception of a slight decrease in 

signaling time for (j) = 0.9, 6 = 3, L = 1. 

If the control limits are calculated, the FSI and VSI 

interactions are very similar. Neither of the techniques 
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has an equilibrium point involving all four correlations, 

but for correlations greater than zero the equilibrium 

point occurs approximately at 6=1.6 for both FSI and VSI 

when the limits are calculated from the sample data. 

Correlations of 0.0 < <|)< 0.3 

The findings of this work indicated that the value at 

which autocorrelation becomes a significant factor might 

occur at a correlation of less than those originally 

planned in the study. Table 66 (Appendix A) gives values 

for the additional work which was pursued in an attempt to 

pin-point the exact value at which autocorrelation becomes 

influential. The small simulation study indicates that 

autocorrelation influences the ARL/ANSS at levels as low as 

d>=0.01. 

Correlations of0.6<<|><0.9 

During the analysis of the data of this dissertation, 

it was noticed that the decreasing trend of the ARL/ANSS, 

with increasing autocorrelation in both techniques. 
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reverses in the vicinity of <J)=0.9 with the shift in the 

process mean between 6=1.0 and 6=2.0. However, it is 

important to note that this reversal is not present in the 

ATS. A small number of additional computer runs were made 

in order to more closely determine the autocorrelation 

value at which this reversal occurs. These results can be 

seen in Appendix A, Tables 67 and 68 , and show that the first 

indication of a reversal occurs between <|>=0 . 6 and <J)=0 . 7 

when a shift in the target mean is less than 6=1.0. This 

additional study emphasizes the increasing advantage of 

the VSI technique in terms of the amount of time, as opposed 

to ARL/ANSS, required to indicate that a shift has 

occurred. 



CHAPTER VI 

CONCLUSIONS 

This dissertation investigated differences between 

the fixed sampling interval and the variable sampling 

interval Shewhart X-bar control chart in the presence of 

autocorrelated data. Specifically, the investigation 

sought to determine if the newer VSI technique would result 

in a superior ATS (average time to signal) when the Shewhart 

X-bar chart is used on a process that produces 

autocorrelated data. The VSI technique is considered 

superior to the FSI if it will yield an out of control signal 

faster when the process mean has shifted from the target and 

a slower out of control signal in the absence of a shift. 

This work assumed that autocorrelation was 

unknowingly present in the process and that the Shewhart X-

bar chart, due to its popularity, was being used to monitor 

deviations in the process mean. In this case, the presence 

of autocorrelation can make the interpretation of the chart 

78 
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erroneous because the assumption of independence is 

violated with autocorrelated data; thus the Shewhart X-bar 

chart does not signal accurately (Alwan and Roberts, 1988; 

Ermer, 1980; Maragah, 1989). Positive autocorrelation 

causes the chart to signal that an out of control situation 

exists when one does not, and negative autocorrelation 

retards the signaling process (Maragah, 1989). This 

dissertation investigated the effects of various levels of 

positive autocorrelation because negative autocorrelation 

is seldom seen in industrial processes (Baik, Reynolds, and 

Arnold, 1991). The economic impact of positive auto-

correlation is the cost in manpower, production time, and 

production loss of searching for a non-existent shift in 

the mean rather than working on true process problems. 

This dissertation is a simulation study using the 

autoregressive model of order 1, AR(1) to describe the 

autocorrelated data because data that can be described by 

this model are frequently found in industrial processes 

(Baik, Reynolds, and Arnold, 1991). The control limits 

were both pre-set at ±3ax/Vn and determined by estimates 
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obtained by sampling the process data. These two different 

methods of obtaining control limits, the first consistent 

with previous research methodology in order to allow 

confirmation of the results of this dissertation, and the 

second, consistent with industrial practice, are used with 

all control chart variations. A Fortran program was 

created to recognize an out of control condition and to 

determine the following: first, the time to signal, TS, 

(the length of time from the start of the process to the time 

where the chart signals) ; and second, the number of samples 

to signal, NSS, (the number of samples taken from the start 

of the process until the chart signals) . Repetitions of 

this procedure generated an average time to signal, ATS, 

and an average run length (ARL) for the FSI or average 

number of samples to signal (ANSS) for the VSI. The 

implications of these simulations on the research 

questions posed in this dissertation are discussed 

individually in the following sections. 
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Research question #1: 

Does the ATS on the Shewhart X-bar control chart 

decrease as the autocorrelation in the process 

increases? 

The AR(1) model was used in this study, and the 

autocorrelation within this model was increased from ({>=0.0 

to <|)=0.9 in increments of 0.3. These values were chosen to 

allow comparison with the work: of Baikr Reynolds, and 

Arnold (1991) . These comparisons were limited to samples 

of size 1 and interval length of 10. It is known (see 

Chapter III) that the variation within the AR(1) model is 

described by 

1 - <j>: 2 
a (3.3) 
4 

where ax is the standard deviation of the error terms. Thus, 

it is known that the variance (standard deviation is the 

square root of the variance) of the process will increase as 

the autocorrelation parameter increases. With increased 

variance, a process should more quickly produce a data 
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value that is beyond the control limits of a particular 

control chart. This means that with increasing 

autocorrelation, the ATS for the Shewhart X-bar control 

chart could be expected to decrease. If the limits for the 

control chart are pre-set at ±3ox, where crx = 1 because of the 

assumption of normally distributed data, then the 

increased variance of the data (which is unknowingly 

autocorrelated by the assumptions of this dissertation), 

is not incorporated into the control limits. Thus, a much 

faster ATS is expected (the control limits do not change but 

the variance of the process increases) and found. If, 

however, the control limits are set using estimates from 

the range and x-double bar, then the increased variance of 

the autocorrelated data is incorporated into the control 

limits, and the limits exhibit increased variability. 

Because the control limits and the process data both have 

increased variability, the ATS, although still decreasing 

with increasing autocorrelation, is greater than for the 

corresponding control chart with fixed limits. 
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For a chart with calculated control limits, the ATS for 

zero correlation (<J)=0 . 0 ) , zero shift (6=0.0), and samples 

of size five (n=5) was 6475.5 for the FSI chart (see Table 

53) and 6093.5 for the VSI chart (see Table 61) . This means 

that the production is stopped 382 items sooner if VSI 

techniques are used with the given parameters. If the 

correlation is increased to <j)=0.3 , the ATS is reduced to 

489.0 (see Table 54) for the FSI chart and 378.0 (see Table 

62) for the VSI chart. Thus, a small amount of 

autocorrelation will cause the Shewhart X-bar control 

chart to signal out of control (when, because of the 

simulation procedure, it is known that the process is in 

control) 5986.5 items sooner for the FSI and 5715.5 items 

sooner if VSI techniques are used. By the definition of 

"superior performance" given earlier, the VSI technique is 

not superior to the FSI in this case because the process 

mean is on target and it would be undesirable to stop a 

process more quickly when it is operating in control. If 

autocorrelation is considered a primary problem in the 

production process, this disadvantage of the VSI 
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technique, of stopping an in control process more quickly , 

might be overlooked. However, if for a specific 

manufacturing process, stopping the production process is 

more costly than the autocorrelation between manufactured 

units, then this shorter time to signal is not 

advantageous. The specific evaluation of these problems is 

the emphasis of current research in economic control chart 

analysis and is unique to each different manufacturing 

situation. 

This work confirms the findings of prior works that 

autocorrelation can be a decisive factor in the 

interpretation of the Shewhart X-bar control chart. 

However, the findings of this dissertation do not agree 

with those of Reynolds, Arnold, Amin, and Nachlas (1988) 

for an autocorrelation parameter of <|)=0.9 . They found that 

the ATS increased for correlations of <(>=0.9 whereas this 

study found a continuing pattern of decreasing ATS with 

increasing autocorrelation. Maragah (1989) found that the 

number of out of control signals in 200 observations 

continued to increase for an increasing autocorrelation 
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parameter. The findings of this study are consistent with 

the findings in Maragah's (1989) research in that a faster 

time to signal supports his increased number of out of 

control signals for increased autocorrelation but extends 

the ability to apply these results because Maragah did not 

consider the influence of shifts from the target mean. 

Research question #2: 

Does the ARL/ANSS on a Shewhart X-bar control chart 

increase as the length of the interval between samples 

increases when positive autocorrelation is present? 

Interval lengths between samples of more than one unit were 

not found in the literature search and thus were considered 

important for investigation. Industry seldom samples each 

item as it is manufactured because sampling is expensive, 

both in the time required for employees to take the samples 

and in the possible destructive sampling techniques. 

Usually an interval is allowed between samples based on the 

unique requirements of the specific manufacturing process. 

This dissertation sought to explore the more practical 
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process of sampling over time by the surrogate of skipping 

10 to 50 items between samples. 

The autocorrelation between observations X«. and . 
t t-3 

was identified as (J)3 for j^l. Thus, the autocorrelation 

between observations decreases as the time between 

observations increases. This implies that if the ARL/ANSS 

on the Shewhart X-bar control chart increases as the auto-

correlation in the process increases, the ARL/ANSS will be 

longer for a given autocorrelation value as the time 

between samples of size 1 increases. However, one emphasis 

in this dissertation was on samples of size 5, and it was 

established earlier that the exact autocorrelation 

relationship between these larger samples is unknown. 

The results of this study indicated that increasing 

the interval length, all other parameters held constant, 

causes the ARL/ANSS to increase. One interpretation of 

this result is that the effect of the autocorrelation 

decreases as the time between samples increases. This 

interpretation is reasonable because it is consistent with 

the known theoretical relationships between single 
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autocorrelated observations discussed earlier in this 

dissertation. Although excessively long data sets made the 

memory storage requirements and the CPU time demands for a 

study of interval lengths greater than 50 non-feasible, a 

pattern of increasing ARL/ANSS is established. The 

decreasing influence of autocorrelation in the process 

with increasing time between samples indicates that, given 

sufficient time between samples, the assumption of 

independence upon which the accurate interpretation of the 

Shewhart X-bar chart depends is essentially not violated. 

Therefore, manufacturers would determine at what interval 

length any autocorrelation in their process becomes 

insignificant; if that sampling interval meets the 

economic constraints of their production process, 

manufacturers would proceed to use the Shewhart X-bar chart 

with the assurance that it is operating with its stated 

probabilities. 
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Research question #3: 

Does the Shewhart X-bar control chart signal faster 

with samples of size 5 than with samples of size 1 when 

positive autocorrelation is present? 

Samples of size 5 are the industry standard (Grant and 

Leavenworth, 1988; Montgomery, 1985), yet prior research 

was conducted using samples of size 1 (Reynolds, Arnold, 

Amin, and Nachlas, 1988; Baik, Reynolds, and Arnold, 1991; 

Maragah, 1991; Wardell, Moskowitz, andPlante, 1991). It 

was proposed (see pages 39-40) in this dissertation that 

the intra-sample autocorrelation should be stronger for 

samples of size 5 than for samples of size 1. If this is 

true, then it was expected that using samples of size 5 

rather than samples of size 1 would cause the corresponding 

Shewhart X-bar control charts to have a lower average time 

to signal. 

For small or medium autocorrelation parameters (below 

the vicinity of <j)=0.9) , this dissertation shows that when 

using the Shewhart X—bar chart, samples of size 5 should be 

utilized whenever economically feasible because a much 
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faster ATS is obtained with the larger samples size. The 

faster ATS is obtained regardless of whether the control 

limits are pre-fixed according to theoretical parameters 

or established through estimates based on the process 

observations. 

The ARLs were extremely long for samples of size 1 when 

using control limits calculated from the simulated process 

observations. These long ARLs occur because of the use of 

the moving range estimator (although theoretically a poor 

estimator, it is the only choice available) in the size 1 

samples. The small but finite possibility of obtaining a 

large range is greater when utilizing samples of size 5 than 

for samples of size 1, but this possibility is compensated 

for by the increasing value of both d2 and n. The effect can 

be seen in 

R 
oj = — (6.1) 

dz\Jn 

where both d2 and n increase simultaneously (d2 increases 

from a value of 1.128 to 2.326, and n from 1 to 5) when sample 
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size is changed from 1 to 5. The results of the simulation 

showed that in 10,000 trials the differences in the values 

obtained for the range when samples of size 1 were used were 

of large magnitude. Therefore, single item sampling, due 

to the control limits that are calculated from estimates 

based on single units, can be misleading in industrial 

applications because the control limits may be influenced 

by one or two single observations which are the extremes of 

the process. These extremes will cause the control limits 

to be so wide that observations which actually deviate more 

than desired from the target will fail to cause the chart to 

signal, or so narrow that observations that are actually 

within acceptable bounds will cause the chart to signal. In 

contrast, when samples of size 5 were used, smaller values 

for R-bar and values of x-double bar more indicative of the 

true parameters were obtained. These smaller values 

resulted in narrower control limits, and out of control 

observations were more quickly found, yielding smaller 

ARLs. 
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The economic impact of larger sample sizes must be 

considered by the manufacturer, both in the possible 

additional time required to obtain and in the additional 

expense of possible product damage. If destructive 

sampling is necessary, then the faster time to signal with 

samples of size 5 needs careful weighing against the 

increased expense. 

Research question #4; 

Do increasing shifts in the process mean cause a lower 

ATS for the Shewhart X-bar control chart for process 

data that are positively autocorrelated? 

Shewhart X-bar control charts are used to monitor changes 

in the calculation of an arithmetic mean such as weight or 

diameter or length. The desired value is called the target 

mean, and any deviation from this value is referred to as a 

shift. This dissertation investigated shifts from the 

target mean, assumed to be 0.0, to a value of 3.0 in 

increments of 1.0. 
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The ARL/ANSS, and thus the ATS, are a function of both 

the shift 6 and the autocorrelation <|). Shift and 

autocorrelation are confounding variables, and it is not 

prudent to separate their effects when drawing 

conclusions. The ARL, as a function of both shift and 

autocorrelation, was graphed using both linear and 

logarithmic scales in an attempt to visually pin-point the 

relationship between shift and autocorrelation (see 

Appendix B, Figures 4-7, all parts). The lines cross, 

indicating an equilibrium point, and although it is not 

possible to determine the exact crossing points, it is 

possible to determine that shift plays a strong role in 

reducing the ARL/ANSS and ATS. It is possible to state that 

for zero correlation, the ARL/ANSS and ATS are reduced by an 

increasing shift, but the effect of shift is confounded by 

the presence of autocorrelation. 
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Research question #5; 

Do VSI techniques produce a lower ATS than FSI 

techniques on the Shewhart X—bar control chart with 

positively autocorrelated data when control limits 

are calculated from process observations? 

Average time to signal refers to the number of items that 

are manufactured before the control chart puts a stop to the 

manufacturing process by signaling an out of control 

situation. Because the ATS can be quicker for the VSI 

technique even when the ANSS is larger than the ARL for the 

FSI technique (for a specific example, see page 50), it is 

necessary to consider ATS as an issue separate from 

ARL/ANSS. The ATS is less for the VSI Shewhart X-bar chart 

than for the corresponding FSI chart (see Appendix A, 

Tables 33-64, and 66-68; Appendix B, Figures 12-19, all 

parts) for each fixed shift, autocorrelation parameter, 

sample size, and interval length. In each group of graphs, 

the linear scale is used to show the large difference 

between the ATS at <j>=0.0 and <|)>0.0. However, the 

logarithmic scale is necessary for comparison of all values 
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for <}»0 . 0 . These figures show that the VSI technique 

becomes progressively faster than the FSI to signal as the 

shift in the process mean increases for any given level of 

autocorrelation. For example, in Figure 13b as the shift 

increases (the horizontal axis), the difference between 

the two bar graph heights becomes greater. This implies 

that the VSI technique shows its greatest advantage and 

should be employed for any process where a large shift in 

the mean is expected to occur. That is, if the process is 

operating on target, no shift in the mean has occurred; then 

the quicker time to signal for the VSI technique is actually 

a disadvantage, and the FSI technique will allow a larger 

number of items to be manufactured before stopping the 

process. Within both FSI and VSI charts, various patterns 

are evident for the ATS but are different for each 

technique. This is an indication that the recent work 

establishing specialized control charts for specific 

situations, such as the Common Cause Chart and the Special 

Cause Chart, is valuable (see, for example, Wardell, 

Moskowitz, and Plante, 1991 or Alwan and Roberts, 1988). 
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Which control chart is better is an economic issue. 

However, in many cases the VSI chart is preferable because 

its disadvantage at zero autocorrelation (when the process 

is producing independent data) is small versus a large 

advantage at autocorrelation value greater than zero (when 

the process is producing autocorrelated data). This 

advantage is a numerical advantage based on absolute 

numbers rather than on the cost of errors. 

Calculated ControJ 

Prior published research was conducted with pre-set 

control limits and a sample size of 1 because this approach 

is theoretically tractable. These past studies, while 

valuable, do not reflect the more common industrial 

practice where control limits are calculated from sample 

data. It was originally planned to limit this dissertation 

to calculated control limits only, but the huge discrepancy 

in the results obtained in this simulation as compared to 

prior work with pre-set limits made it necessary to include 

a study of fixed limits in order to validate the simulation 
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results. In these simulations, the control limits were 

calculated using the typical industrial practice of using 

estimates obtained from the first 25 samples. The results 

show that when the process is in control, the theoretical 

value of 370.4 for the ARL using fixed limits is far 

exceeded for both FSI and VSI when the limits are calculated 

(ARL >2406) . If the process is in control, we do not want 

the production stopped; therefore, this result, using 

estimates from process observations to calculate the 

control limits, is advantageous. Although calculating the 

limits with samples of size 5 allows the process to continue 

longer when there is no shift in the mean, the chart with 

calculated limits (zero autocorrelation) stops the process 

(ARL/ANSS ~ 5) when there has been a shift almost as quickly 

as the pre-set limit charts (ARL/ANSS » 4.5) . There is very 

little difference in the ARL/ANSS as the autocorrelation 

increases between the FSIversus VSI charts with calculated 

limits. The Tables of Appendix B contain the specific 

numbers. As an example, Table 22 compared to Table 30 shows 

that for autocorrelation <(>=0.3, the ATS for no shift is 32.6 
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compared to the ANSS of 32.4 while for shifts of 1.0, both 

techniques yield an ARL/ANSS of 3.5. 

In practical applications, the additional complexity 

of the VSI technique is an important consideration, and it 

is questionable whether the VSI technique is warranted when 

the process produces independent observations and the mean 

is on target. This is because the VSI signals faster than 

the FSI that the (in control) process is out of control. If 

the entire control chart sampling process is automated, 

thus requiring no hand calculations, then this complexity 

is not a consideration, and the VSI is superior to the FSI 

when a shift exists in the mean, particularly a large shift. 

If the process is suspected of positive autocorrelation or 

of a potentially large shift in the process mean, then any 

additional problems of the VSI technique are outweighed by 

its faster signaling time. 

Results from this study indicated that the effect of 

autocorrelation causes the Shewhart X-bar control chart to 

signal much faster even though no change in the mean occurs 

in the general region between 0.0 £ <J> £ 0.3. As a result of 
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this finding, an investigation of the influence of 

correlation between <|)=0 . 0 and <f>=0 . 3 was performed. Results 

from this extended investigation indicate that the effect 

of autocorrelation is present at correlation levels as low 

as <J)=0.01 (see Appendix A, Table 66). This would indicate 

that the VSI technique should always be considered in 

practice since autocorrelation levels this small may exist 

in many applications. 

In spite of the findings in this dissertation and by 

prior researchers, industry does not commonly use the VSI 

technique. While it is not within the scope of this work to 

investigate why industry has not adopted this technique, it 

is appropriate to speculate about this lack of adoption 

because it is pertinent in making recommendations for 

industry. The cost involved in implementing the newer VSI 

charts includes the cost of training employees and may also 

include the capital cost of new automated monitoring 

equipment. Therefore, it is necessary to balance the 

improvement in process control against the added 

complexity and expense. It is possible that VSI charts are 
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not commonly used because these costs are poorly understood 

by academia and well understood by the industries that must 

incur the expense. Alternatively, the understanding of 

the application, limitations, and advantages of the VSI 

techniques is a current research topic, and industry may 

not posses full knowledge of its advantages. 

While this dissertation provides further information 

on the advantages of VSI charts, it also indicates that the 

process of investigating its use in practical applications 

is incomplete. Further research is needed in the use of 

control charts in practice (calculated limits), both with 

independent data and with correlated data. Prior research 

has not explored this area due to the difficulties of 

obtaining analytical proof. Even using simulations, 

research in this area is limited because of its computer 

intensive nature. The required size of the data set, the 

large number of replications needed, and the large number 

of treatment combinations make huge demands on computer CPU 

time and memory resources. However such work is important 
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to establish criteria for the application of theory to 

practice. 
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FIXED SAMPLING INTERVALS WITH FIXED LIMITS :ARL 
<t> = Correlation Sample size = 1 6 = Shift in mean L = Interval length 

TABLE 1: <f> = 0.0 

6 L 1 10 20 50 

0.0 371.5 376.2 367.4 369.8 

1.0 43.7 43.3 43.6 44.0 

2.0 6.4 6.3 6.3 6.3 

3.0 2.0 2.0 2.0 2.0 

TABLE 2: <j> = 0.3 

6 L 1 10 20 50 

0.0 241.2 239.7 236.2 237.2 

1.0 38.9 35.5 35.2 35.4 

2.0 6.9 5.9 5.9 5.8 

3.0 2.3 2.0 2.0 2.0 

TABLE 3: 4> = 0.6 

6 L 1 10 20 50 

0.0 75.0 60.6 60.8 60.9 

1.0 26.9 18.0 17.7 17.5 

2.0 7.6 4.8 4.8 4.7 

3.0 2.9 2.0 2.0 2.0 

TABLE 4: <f> = 0.9 

6 L 1 10 20 50 

0.0 14.4 5.6 5.3 5.2 

1.0 12.8 4.8 4.4 4.3 

2.0 9.1 3.4 3.0 2.9 

3.0 5.6 2.3 2.1 2.0 
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FIXED SAMPLING INTERVALS WITH FIXED LIMITS:ARL 
<t> = Correlation Sample size = 5 6= Shift in mean L=Interval length 

TABLE 5: <j> = 0.0 

6 L 1 10 20 50 

0.0 369.1 371.9 370.5 370.2 

1.0 4.5 4.5 4.5 4.6 

2.0 1.1 1.1 1.1 1.1 

3.0 1,0 1.0 1.0 1.0 

TABLE 6: <j> = 0.3 

6 L 1 10 20 50 

0.0 41.9 41.7 41.1 41.6 

1.0 3.6 3.5 3.5 3.6 

2.0 1.3 1.2 1.2 1.2 

3.0 1.0 1.0 1.0 1.0 

TABLE 7: 4> = 0.6 

6 L 1 10 20 50 

0.0 7.6 7.2 7.2 7.1 

1.0 3.1 2.8 2.8 2.8 

2.0 1.3 1.3 1.3 1.3 

3.0 1.0 1,0 1.0 1.0 

TABLE 8: <|> = 0.9 

6 L 1 10 20 50 

0.0 2.2 1.9 1.9 1.9 

1.0 2.0 1.8 1.8 1.8 

2.0 1.7 1.6 1.5 1.5 

3.0 1.4 1.3 13 1.2 
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VARIABLE SAMPLING INTERVALS WITH FIXED LIMITS:ANSS 
<|> = Corrleation Sample size = 1 6 = Shift in mean L = Interval length 

TABLE 9: <f> = 0.0 

6 L 10 20 50 

0.0 372.4 366.0 369.3 
1.0 44.2 43.5 43.3 

2.0 6.3 6.3 6.2 

3.0 2.0 2.0 1.0 

TABLE 10: <|) = 0.3 

6 L 10 20 50 

0.0 201.8 232.1 238.6 
1.0 31.5 34.1 35.7 

2.0 6.4 6.0 5.9 

3.0 2.2 2.1 1.0 

TABLE 11: <J> = 0.6 

6 L 10 20 50 

0.0 49.7 55.5 60.9 
1.0 17.0 16.8 17.9 

2.0 5.8 5.2 1.0 

3.0 2.6 2.2 1.0 

TABLE 12: <j> = 0.9 

6 L 10 20 50 

0.0 7.5 6.5 5.8 
1.0 6.5 5.5 1.0 

2.0 4.7 4.0 1.0 

3.0 3.2 1.0 1.0 
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VARIABLE SAMPLING INTERVALS WITH FIXED LIMITS:ANSS 
<t> = Correlation Sample size = 5 6 = Shift in mean L = Interval length 

TABLE 13: 4> = 0.0 

6 L 10 20 50 

0.0 363.8 370.3 368.4 

1.0 4.6 4.5 4.5 

2.0 1.1 1.1 1.1 

3.0 1.0 1.0 1.0 

TABLE 14: <|> = 0.3 

6 L 10 20 50 

0.0 41.3 41.6 40.8 

1.0 3.6 3.6 3.5 

2.0 1.2 1.2 1.2 

3.0 1.0 1.0 1,0 

TABLE 15: <|> = 0.6 

6 L 10 20 50 

0.0 7.4 7.3 7.3 

1.0 2.9 2.9 2.2 

2.0 1.3 1.3 1.1 

3.0 1.0 1.0 1.0 

TABLE 16: <j) = 0.9 

6 L 10 20 50 

0.0 2.1 2.0 1.9 

1.0 1.9 1.9 1.7 

2.0 1.7 1.6 1.4 

3.0 1.3 1.3 1.2 
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CALCULATED LIMITS FIXED SAMPLING INTERVALS :ARL 
<t> = Correlation Sample size = 1 6 = Shift in Mean L = Interval length 

(See Table 65 for superscripted values) 

TABLE 17: <j> = 0.0 

6 L 1 10 20 50 

0.0 >2406.0(1) >2754.1® 

1.0 260.8 242.7 241.1 

2.0 14.1 14.2 14.4 14.3 

3.0 2.7 2.6 2.6 2.7 

TABLE 18: <f> = 0.3 

6 L 1 10 20 50 

0.0 182.9 >2385.5(3) 

1.0 39.1 269.0 >272.5(4) >280.3(s) 

2.0 5.9 18.6 17.0 19.0 

3.0 2.0 3.1 3.1 3.2 

TABLE 19: <1> = 0.6 

6 L 1 10 20 50 

0.0 24.6 >1830.9(6) 

1.0 14.1 361.4 >451.2™ >553.6(8) 

2.0 4.8 34.3 46.5 38.4 

3.0 2.0 6.0 6.3 6.2 

TABLE 20: <|> = 0.9 

6 L 1 10 20 50 

0.0 6.7 114.7 
1.0 6.1 89.6 >480.3(9) 

2.0 4.6 35.2 >131.8(10) >258.1(n) 

3.0 3.1 14.7 39.9 >68.3(12) 
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CALCULATED LIMITS FIXED SAMPLING INTERVALS :ARL 
<t> = Correlation Sample size = 5 6 = Shift in Mean L = Interval length 

TABLE 21: <t> = 0.0 

6 L 1 10 20 50 

0.0 432.8 431.7 433.2 431.6 

1.0 5.0 5.1 5.1 5.1 

2.0 1.1 1.1 1.1 1.1 

3.0 1.0 1.0 1.0 1.0 

TABLE 22: <|> = 0.3 

6 L 1 10 20 50 

0.0 32.4 32.6 33.3 33.3 

1.0 3.5 3.5 3.4 3.4 

2.0 1.1 1.2 1.1 1.1 

3.0 1.0 1.0 1.0 1,0 

TABLE 23: <j> = 0.6 

6 L 1 10 20 50 

0.0 6.4 6.0 6.3 6.1 

1.0 2.9 2.7 2.7 2.7 

2.0 1.3 1.3 1.3 1.3 

3.0 1.0 1.0 1.0 1,0 

TABLE 24: $ = 0.9 

6 L 1 10 20 50 

0.0 2.0 1.8 1.8 1.8 
1.0 1.9 1.8 1.7 1.7 

2.0 1.7 1.5 1.4 1.5 

3.0 1.4 1.3 1.3 1.2 
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CALCULATED LIMITS VARIABLE SAMPLING INTERVALS :ANSS 
$ = Correlation Sample size = 1 5 = Shift in Mean L = Interval length 

(See Table 65 for superscripted values) 
TABLE 25: <t> = 0.0 

6 L 10 20 50 

0.0 >2152.4(13) 

1.0 221.5 

2.0 14.3 14.6 

3.0 2.7 2,6 

TABLE 26: <|> = 0.3 

TABLE 27: <|> = 0.6 

6 L 10 20 50 

0.0 1142.8(14) 

1.0 177.4 249.9 

2.0 15.7 17.3 15.8 

3.0 3,6 3.3 3.1 

6 L 10 20 50 

0.0 911.6(1S) 

1.0 204.5 253.1 

2.0 28.8 28.8 28.9 

3.0 8.3 7.1 6.2 

TABLE 28: <j> = 0.9 

6 L 10 20 50 

0.0 89.4 

1.0 66.7 171.1 

2.0 41.2 79.1 85.4 

3.0 21.0 38.6 43.2 
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CALCULATED LIMITS VARIABLE SAMPLING INTERVALS :ANSS 
Correlation = 4> Sample size = 5 8 = Shift in Mean L = Interval length 

TABLE 29: <|> = 0.0 

6 L 10 20 50 

0.0 425.7 420.4 

1.0 5.1 5.2 2.6 

2.0 1.1 1.1 1.0 

3.0 1.0 1.0 1.0 

TABLE 30: <|> = 0.3 

8 L 10 20 50 

0.0 32.4 32.6 32.8 

1.0 3.5 3.5 2.2 

2.0 1.1 1.0 1.0 

3.0 1.0 1.0 1.0 

TABLE 31: <t> = 0.6 

6 L 10 20 50 

0.0 6.0 6.1 6.1 

1.0 2.9 2.8 2.1 

2.0 1.3 1.1 1.1 

3.0 1.0 1.0 1.0 

TABLE 32: <|> = 0.9 

6 L 10 20 50 

0.0 1.9 1.9 1.8 
1.0 1.9 1.8 1.7 

2.0 1.6 1.6 1.4 

3.0 1.3 1.3 1.2 
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FIXED SAMPLING INTERVALS WITH FIXED LIMITS: ATS 
$ = Correlation Sample size = 1 6 = Shift in Mean L = Interval length 

TABLE 33: $ = 0.0 

6 L 1 10 20 50 

0.0 371.5 4138.2 7715.4 18859.8 

1.0 43.7 476.3 915.6 2244 

2.0 6.4 69.3 132.2 321.3 

3.0 2.0 22 42 102 

TABLE 34: <& = 0.3 

6 L 1 10 20 50 

0.0 241.2 2636.7 4960.2 12097.2 

1.0 38.9 390.5 739.2 1805.4 

2.0 6.9 64.9 123.9 295.8 

3.0 2.3 22 42 102 

TABLE 35: $ = 0.6 

6 L 1 10 20 50 

0.0 75.0 666.6 1276.8 3105.9 

1.0 26.9 198.0 371.7 892.5 

2.0 7.6 52.8 100.8 239.7 

3.0 2.9 22 42 102 

TABLE 36: $ = 0.9 

6 L 1 10 20 50 

0.0 14.4 61.6 111.3 265.2 

1.0 12.8 52.8 92.4 219.3 

2.0 9.1 37.4 63.0 147.9 

3.0 5.6 25.3 44.1 102 
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FIXED SAMPLING INTERVALS WITH FIXED LIMITS: ATS 
$ = Correlation Sample size = 5 6 = Shift in Mean L = Interval length 

TABLE 37: $ = 0.0 

6 L 1 10 20 50 

0.0 1845.5 5578.5 9262.5 20361.0 

1.0 22.5 67.5 112.5 253 

2.0 5.5 16.5 27.5 60.5 

3.0 5.0 15 25 55 

TABLE 38: $ = 0.3 

6 L 1 10 20 50 

0.0 210.5 625.5 1027.5 2288.0 

1.0 18.0 52.5 87.5 198.0 

2.0 6.0 18 30 66.0 

3.0 5.0 15 25 55 

TABLE 39: $ = 0.6 

6 L 1 10 20 50 

0.0 38.0 108 180.0 390.5 
1.0 15.5 42 70.0 154.0 

2.0 6.5 19.5 32.5 71.5 

3.0 5.0 15 25 55 

TABLE 40: $ = 0.9 

6 L 1 10 20 50 

0.0 11.0 28.5 47.5 104.5 
1.0 10.0 27 45.0 99.0 

2.0 8.5 24 37.5 82.5 

3.0 7.0 19.5 32.5 66.0 
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VARIABLE SAMPLING INTERVALS WITH FIXED LIMITS: ATS 
$ = Correlation Sample size = 1 6 = Shift in Mean L = Interval length 

TABLE 41: $ = 0.0 

6 L 10 20 50 

0.0 3734.7 7156.0 16619.3 

1.0 304.4 571.0 1377.9 

2.0 16.2 28.2 62.7 

3.0 2.3 3.7 5.0 

TABLE 42: $ = 0.3 

6 L 10 20 50 

0.0 1918.8 4356.3 11043.0 

1.0 203.1 436.5 1129.8 

2.0 17.7 29.1 64.0 

3.0 2,9 4.2 5.0 

TABLE 43: $ = 0.6 

6 L 10 20 50 

0.0 389.5 886.2 2407.6 

1.0 99.7 200.9 533.4 

2.0 18.9 31.5 5.0 

3.0 4.6 6.5 5.0 

TABLE 44: $ = 0.9 

6 L 10 20 50 

0.0 35.8 63.4 139.7 
1.0 30.1 51.5 5.0 

2.0 19.1 31.6 5.0 

3.0 10.6 2.0 5.0 
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VARIABLE SAMPLING INTERVALS WITH FIXED LIMITS: ATS 
$ = Correlation Sample size = 5 5 = Shift in Mean L = Interval length 

TABLE 45: $ = 0.0 

6 L 10 20 50 

0.0 5097.3 8715.1 16438.2 

1.0 23.8 29.1 47.1 

2.0 1.4 2.4 5.4 

3.0 1.0 2.0 5.0 

TABLE 46: $ = 0.3 

6 L 10 20 50 

0.0 491.7 803.3 1693.8 

1.0 21.1 29.4 52.8 

2.0 1.8 2.9 6.1 

3.0 1.0 1.0 5.0 

TABLE 47: & = 0.6 

6 L 10 20 50 

0.0 67.8 104.4 214.8 

1.0 18.8 27.3 32.5 

2.0 3.5 5.1 6.4 

3.0 1.2 2.2 5.0 

TABLE 48: $ = 0.9 

6 L 10 20 50 

0.0 11.4 16.7 31.3 

1.0 9.9 14.3 24.7 

2.0 7.1 9.9 15.6 

3.0 4.2 6.4 9.3 
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CALCULATED LIMITS FIXED SAMPLING INTERVALS:ATS 
$ = Correlation Sample size = 1 6 = Shift in Mean L = Interval length 

TABLE 49: <J> = 0.0 

6 L 1 10 20 50 

0.0 >2406.0 >30295.1 

1.0 260.8 2669.7 

2.0 14.1 156.2 302.4 729.3 

3.0 2.7 28.6 54.6 137.7 

TABLE 50: $ = 0.3 

6 L 1 10 20 50 

0.0 182.9 >26240.5 

1.0 39.1 2959.0 5722.5 

2.0 5.9 204.6 357.0 969.0 

3.0 2.0 34.1 42.0 163.2 

TABLE 51: $ = 0.6 

6 L 1 10 20 50 

0.0 24.6 >20139.9 

1.0 14.1 3975.4 9475.2 

2.0 4..8 378.4 976.5 1943.1 

3.0 2.0 66.0 42.0 316.2 

TABLE 52: $ = 0.9 

6 L 1 10 20 50 

0.0 6.7 1261.7 

1.0 6.1 985.6 >10086.3 

2.0 4.6 387.2 >2767.8 

3.0 3.1 161.7 >823.2 3432.3 
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CALCULATED LIMITS FIXED SAMPLING INTERVALS:ATS 
$ = Correlation Sample size = 5 6 = Shift of Mean L = Interval length 

TABLE 53: $ = 0.0 

5 L 1 10 20 50 

0.0 2164.0 6475.5 10805.0 23738.0 

1.0 25.0 76.5 127.5 280.5 

2.0 5.5 16.5 27.5 60.5 

3.0 5.0 15.0 25.0 55.0 

TABLE 54: $ = 0.3 

& L 1 10 20 50 

0.0 162.0 489.0 832.5 1831.5 

1.0 17.5 52.5 85.0 187.0 

2.0 5.5 18.0 27.5 60.5 

3.0 5.0 15.0 25.0 55.0 

TABLE 55: $ = 0.6 

6 L 1 10 20 50 

0.0 32.0 90.0 157.5 335.5 

1.0 14.5 40.5 67.5 148.5 

2.0 6.5 19.5 32.5 71.5 

3.0 5.0 15.0 25.0 55.0 

TABLE 56: $ = 0.9 

6 L 1 10 20 50 

0.0 10.0 27.0 45.0 99.0 

1.0 9.5 27.0 42.5 93.5 

2.0 8.5 22.5 35.0 82.5 

3.0 7.0 19.5 32.5 66.0 
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CALCULATED LIMITS VARIABLE SAMPLING INTERVALS :ATS 
$ = Correlation Sample size = 1 6 = Shift in Mean L = Interval length 

TABLE 57: $ = 0.0 

6 L 10 20 50 

0.0 >26568.5 

1.0 2069.2 

2.0 54.1 118.4 180.7 

3.0 3.5 4.9 

TABLE 58: $ = 0.3 

6 L 10 20 50 

0.0 >13330.6 

1.0 1579.0 4709.0 

2.0 57.2 128.8 260.4 

3.0 5.5 7.7 13.8 

TABLE 59: $ = 0.6 

6 L 10 20 50 

0.0 >9851.5 

1.0 1722.0 4705.8 

2.0 115.9 252.3 664.7 

3.0 16.7 24.6 52.2 

TABLE 60: $ = 0.9 

5 L 10 20 50 

0.0 483.2 

1.0 334.9 2347.2 

2.0 201.7 813.0 2838.8 

3.0 63.6 265.9 986.6 
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CALCULATED LIMITS VARIABLE SAMPLING INTERVALS :ATS 
$ = Correlation Sample size = 5 5 = Shift in Mean L = Interval length 

TABLE 61: $ = 0.0 

6 L 10 20 50 

0.0 6093.5 10163.8 

1.0 28.1 36.7 19.2 

2.0 1.5 2.4 5.0 

3.0 1.0 2.0 5.0 

TABLE 62: $ = 0.3 

6 L 10 20 50 

0.0 378.0 619.0 1328.7 

1.0 20.9 29.1 23.7 

2.0 2.8 2.2 5.2 

3.0 2.0 2.0 5.0 

TABLE 63: $ = 0.6 

6 L 10 20 50 

0.0 52.4 82.5 172.6 

1.0 18.3 26.9 32.0 

2.0 3.3 2.9 6.6 

3.0 1.2 2.2 5.0 

TABLE 64: $ = 0.9 

6 L 10 20 50 

0.0 9.7 15.0 27.2 

1.0 8.9 13.2 23.7 

2.0 6.6 9.5 15.1 

3.0 4.0 6.3 9.2 
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Table 65 

Number of data points Number of times exceeded 

(1) 800,000 42 out of 5000 replications 
(2) 2,000,000 18 out of 5000 replications 
(3) 800,000 45 out of 5000 replications 
(4) 800,000 7 out of 5000 replications 
(5) 800,000 61 out of 5000 replications 
(6) 500,000 47 out of 10000 replications 
(7) 700,000 11 out of 5000 replications 
(8) 2,500,000 142 out of 5000 replications 
(9) 500,000 12 out of 10000 replications 
(10) 200,000 15 out of 10000 replications 
(11) 600,000 22 out of 5000 replications 
(12) 100,000 10 out of 5000 replications 
(13) 200,000 15 out of 10000 replications 
(14) 200,000 89 out of 10000 replications 
(15) 300,000 62 out of 5000 replications 



Table 66: 0.0 < <|> < 0.3 Interval length L=10 Sample size n=5 
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FSI FSI VSI VSI 

ARL ATS ANSS ATS 

$=.001 436.8 6552.0 433.7 6448.1 

$=.005 419.2 6288.0 428.8 6146.6 

$=0.01 378.3 5674.5 390.0 5551.3 

$=0.1 163.0 2445.0 158.6 2136.5 

Table 67: Correlation <J> = 0.7 Interval length L=10 Sample size n=5 

FSI FSI VSI VSI 

ARL ATS ANSS ATS 

6=0.0 3.9 58.5 4.0 31.3 

6=1.0 2.5 37.5 2.6 15.9 

6=2.0 1.4 21.0 1.4 4.4 

6=3.0 1.1 16.5 1.1 2.9 

Table 68: Correlation $ = 0.8 Interval length L=10 Sample size n=5 

FSI FSI VSI VSI 

ARL ATS ANSS ATS 

6=0.0 2.7 40.5 2.8 18.3 

6=1.0 2.2 33.0 2.2 12.9 

6=2.0 1.5 22.5 1.5 5.8 

6=3.0 1.2 18.0 1.2 3.0 
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FIGURE 1: Shewhart X-bar Control Chart with FSI 
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FIGURE 2: Shewhart X-bar Control Chart with VSI 
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Number of Replications v. ARL 
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Figure 3: Number of replications v. ARL 
used to determine the minimum number of replications 
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ARL for FSI Shewhart X-bar Chart 
with Fixed Control Limits 

All Correlations (including shifts) 
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Figure 4a: A comparison of ARLs of FSI with control limits pre-set 
Sample size: n = 1 Interval length: I = 1 

y axis: linear scale 
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ARL for FSI Shewhart X-bar Chart 
with Fixed Control Limits 

All Correlations (including shifts) 
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Figure 4b: A comparison of ARLs of FSI with control limits pre-set 
Sample size: n=1 Interval length: I = 1 

y axis: logarithmic scale 
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ARL for FSI Shewhart X-bar Chart 
with Fixed Control Limits 

All Correlations (including shifts) 
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Figure 4c: A comparison of ARLs of FSI with control limits pre-set 
Sample size: n = 5 Interval length: I = 1 

y axis: linear scale 
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ARL for FSI Shewhart X-bar Chart 
with Fixed Control Limits 

All Correlations (including shifts) 
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Figure 4d: A comparison of ARLs of FSI with control limits pre-set 
Sample size: n = 5 Interval length: I = 1 

y axis: logarithmic scale 
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ANSS for VS1 Shewhart X-bar Chart 
with Fixed Control Limits 

All Correlations (including shifts) 
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Figure 5a: A comparison of ANSS of VSI with control limits pre-set 
Sample size: n = 1 Interval length: 1 = 10 

y axis: linear scale 
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ANSS for VSI Shewhart X-bar Chart 
with Fixed Control Limits 

All Correlations (including shifts) 
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Figure 5b: A comparison of ANSS of VSI with control limits pre-set 
Sample size: n = 1 Interval length: L = 10 

y axis: logarithmic scale 
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ANSS for VSI Shewhart X-bar Chart 
with Fixed Control Limits 

All Correlations (including shifts) 
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Figure 5c: A comparison of ANSS of VSI with control limits pre-set 
Sample size: n = 5 Interval length: 1 = 10 

y axis: linear scale 
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ANSS for VSI Shewhart X-bar Chart 
with Fixed Control Limits 

All Correlations (including shifts) 
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Figure 5d: A comparison of ANSS of VSI with control limits pre-set 
Sample size: n = 5 Interval length: I = 10 

y axis: logarithmic scale 



132 

ARL for FSI Shewhart X-bar Chart 
with Calculated Control Limits 

All Correlations (including shifts) 
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Figure 6a: A comparison of ARLs of FSI with control limits calculated from sample data 
Sample size: n = 1 Interval length: I = 1 

y axis: linear scale 
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ARL for FSI Shewhart X-bar Chart 
with Calculated Control Limits 

All Correlations (including shifts) 
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Figure 6b: A comparison of ARLs of FSI with control limits calculated from sample data 
Sample size: n = 1 Interval length: I = 1 

y axis: logarithmic scale 
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ARL for FSI Shewhart X-bar Chart 
with Calculated Control Limits 

All Correlations (including shifts) 
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Figure 6c: A comparison of ARLs of FSI with control limits calculated from sample data 
Sample size: n = 5 Interval length: I = 1 

y axis: linear scale 
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ARL for FSI Shewhart X-bar Chart 
with Calculated Control Limits 

All Correlations (including shifts) 
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Figure 6d: A comparison of ARLs of FSI with control limits calculated from sample data 
Sample size: n = 5 Interval length: I = 1 

y axis: logarithmic scale 
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ANSS for VSI Shewhart X-bar Chart 
with Calculated Control Limits 

All Correlations (including shifts) 
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Figure 7a: A comparison of ANSS of VSI with control limits calculated from sample data 
Sample size: n = 1 Interval length: 1 = 10 

y axis: linear scale 
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ANSS for VSI Shewhart X-bar Chart 
with Calculated Control Limits 

All Correlations (including shifts) 
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Figure 7b: A comparison of ANSS of VSI with control limits calculated from sample data 
Sample size: n = 1 Interval length: 1 = 10 

y axis: logarithmic scale 
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ANSS for VSI Shewhart X-bar Chart 
with Calculated Control Limits 

All Correlations (including shifts) 
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Figure 7c: A comparison of ANSS of VSI with control limits calculated from sample data 
Sample size: n = 5 Interval length: I = 10 

y axis: linear scale 
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ANSS for VSI Shewhart X-bar Chart 
with Calculated Control Limits 

All Correlations (including shifts) 
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Figure 7d: A comparison of ANSS of VSI with control limits calculated from sample data 
Sample size: n = 5 Interval length: I = 10 

y axis: logarithmic scale 
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ARL for FIXED SAMPLING INTERVALS 
with FIXED CONTROL LIMITS 
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Figure 8a: A comparison of FSI with control limits pre-set 
Sample size: n = 1 Interval length: I = 1 

y axis: linear scale 
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ARL for FSI Shewhart X-bar Charts 
with Fixed Control Limits 
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Figure 8b: A comparison of average run length for samples of size 1 taken 
consecutively from observations generated with indicated correlation 

Sample size: n=1 Interval length L=1 y axis: logarithmic scale 



ARL for FSI 
with Fixed Control Limits 
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Figure 8c: ARLs with control limits pre-set 
Sample size; n = 5 Interval length: L 

y axis : linear scale 
= 1 
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ARL for FSI 
with Fixed Control Limits 
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Figure 8d: A comparison of average run length for samples of size 5 taken 

consecutively from observations generated with indicated correlation 
Sample size: n = 5 Interval length: L = 1 y axis: logarithmic scale 
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ANSS for VARIABLE SAMPLING INTERVALS 
with FIXED CONTROL LIMITS 
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Figure 9a: A comparison of VSI with control limits pre-set 
Sample size: n = 1 Interval length: 1 = 10 

y axis: linear scale 
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ANSS for VARIABLE SAMPLING INTERVALS 
with FIXED CONTROL LIMITS 
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Figure 9b: A comparison of VSI with control limits pre-set 
Sample size: n = 1 Interval length: 1 = 10 

y axis: logarithmic scale 



ANSS for VSI 
with Fixed Control Limits 
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Figure 9c: ANSS with control limits pre-set 
Sample size: n = 5 Interval length: 1 = 10 

y axis : linear scale 



ANSS for VSI 
with Fixed Control Limits 
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Figure 9d: ANSS with control limits pre-set 
Sample size: n = 5 Interval length: I 

y axis : logarithmic scale 
= 10 
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ARL for FIXED SAMPLING INTERVALS 
with CALCULATED CONTROL LIMITS 
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Figure 10a: A comparison of FSI with control limits calculated from sample data 
Sample size: n = 1 Interval length: I = 1 

y axis: linear scale 
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ARL for FIXED SAMPLING INTERVALS 
with CALCULATED CONTROL LIMITS 
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Figure 10b: A comparison of FSI with control limits calculated from sample data 
Sample size: n = 1 Interval length: I = 1 

y axis: logarithmic scale 



ARL for FSI 
with Calculated Control Limits 
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Figure 10c: ARLs with control limits calculated from sample data 
Sample size: n = 5 Interval length: L = 1 

y axis : linear scale 



ARL for FSI 
with Calculated Control Limits 
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Figure 10d: ARLs with control limits calculated from sample data 
Sample size: n = 5 Interval length: L = 1 

y axis : logarithmic scale 
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ANSS for VARIABLE SAMPLING INTERVALS 
with Calculated Control Limits 
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Figure 11a: A comparison of VSI with control limits calculated from sample data 
Sample size: n = 1 Interval length: 1 = 10 

y axis: linear scale 
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ANSS for VARIABLE SAMPLING INTERVALS 
with Calculated Control Limits 
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Figure 11b: A comparison of VSI with control limits calculated from sample data 
Sample size: n = 1 Interval length: I = 10 

y axis: logarithmic scale 
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ANSS for VARIABLE SAMPLING INTERVALS 
with Calculated Control Limits 
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Figure 11c: A comparison of VSI with control limits calculated from sample data 
Sample size: n = 5 Interval length: 1 = 10 

y axis: linear scale 
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ANSS for VARIABLE SAMPLING INTERVALS 
with Calculated Control Limits 
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Figure 11 d: A comparison of VSI with control limits calculated from sample data 
Sample size: n = 5 Interval length: 1 = 10 

y axis: logarithmic scale 
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FSI v. VSI with Fixed Control Limits 
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Figure 12a: A comparison of FSI v. VSI with pre-set control limits 
Sample size: n = 1 Interval length: 1 = 10 

y axis: linear scale 
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FSI v. VSI with Fixed Control Limits 
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Figure 12b: A comparison of FSI v. VSI with pre-set control limits 
Sample size: n = 1 Interval length: 1 = 10 

y axis: logarithmic scale 
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ATS 
FSI v. VSI with Calculated Control Limits 
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Figure 12c: A comparison of FSI v. VSI with control limits calculated from sample data 
Sample size: n = 1 Interval length: 1 = 10 

y axis: linear scale 
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ATS 
FSI v. VSI with Calculated Control Limits 
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Figure 12d: A comparison of FSI v. VSI with control limits calculated from sample data 
Sample size: n = 1 Interval length: I = 10 

y axis: logarithmic scale 
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ATS 
FSI v. VSI with Fixed Control Limits 
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Figure 13a: A comparison of ATS for FSI v. VSI with pre-set control limits 
Sample size: n = 1 Interval length: 1 = 10 

y axis: linear scale 
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ATS 
FSI v. VSI with Fixed Control Limits 
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Figure 13b: A comparison of ATS for FSI v. VSI with pre-set control limits 
Sample size: n = 1 Interval length: 1 = 10 

y axis: logarithmic scale 
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ATS 
FSI v. VSI with Calculated Control Limits 
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Figure 13c: A comparison of FSI v. VSI with control limits calculated from sample data 
Sample size: n = 1 Interval length: I = 10 

y axis: linear scale 
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ATS 
FSI v. VSI with Calculated Control Limits 

Correlation Coefficient = 0.3 

100,000 

1 0 , 0 0 0 

1,000 

1 0 0 

10 

Sampling Technique 

0.0 1.0 2.0 3.0 

Shift 

Figure 13d: A comparison of FSI v. VSI with control limits calculated from sample data 
Sample size: n = 1 Interval length: I = 10 

y axis: logarithmic scale 
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ATS 
FSI v. VSI with Fixed Control Limits 
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Figure 14a: ATS for FSI v. VSI with pre-set control limits 
Sample size: n = 1 Interval length: 1 = 10 

y axis: linear scale 
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Figure 14b: ATS for FSI v. VSI with pre-set control limits 
Sample size: n = 1 Interval length: 1 = 10 

y axis: logarithmic scale 
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ATS 
FSi v. VSI with Calculated Control Limits 
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Figure 14c: ATS for FSI v. VSI with control limits calculated from sample data 
Sample size: n = 1 Interval length: 1 = 10 

y axis: linear scale 
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ATS 
FSI v. VSI with Calculated Control Limits 
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Figure 14d: ATS for FSI v. VSI with control limits calculated from sample data 
Sample size: n = 1 Interval length: 1=10 

y axis: logarithmic scale 
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ATS 
FSI v. VSI with Fixed Control Limits 
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Figure 15a: ARL for FSI v. VSI with pre-set control limits 
Sample size: n = 1 Interval length: 1 = 10 

y axis: linear scale 
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Figure 15b: ARL for FSI v. VSI with pre-set control limits 
Sample size: n = 1 Interval length: 1 = 10 

y axis: logarithmic scale 
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ATS 
FSI v. VSI with Calculated Control Limits 
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Figure 15c: ARL for FSI v. VSI with control limits calculated from sample data 
Sample size: n = 1 Interval length: 1 = 10 

y axis: linear scale 
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ATS 
FSI v. VSI with Calculated Control Limits 
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Figure 15d: ARL for FSI v. VSI with control limits calculated from sample data 
Sample size: n = 1 Interval length: 1 = 10 

y axis: logarithmic scale 
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Figure 16a: ATS for FSI v. VSI with pre-set control limits 
Sample size: n = 5 Interval length: 1 = 10 

y axis: linear scale 
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FSI v. VSI with Fixed Control Limits 
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Figure 16b: ATS for FSI v. VSI with pre-set control limits 
Sample size: n = 5 Interval length: 1 = 10 

y axis: logarithmic scale 
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Figure 16c: ATS for FSI v. VSI with control limits calculated from sample data 
Sample size: n = 5 Interval length: 1=10 

y axis: linear scale 
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ATS 
FSI v. VSI with Calculated Control Limits 
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Figure 16d: ATS for FSI v. VSI with control limits calculated from sample data 
Sample size: n = 5 Interval length: I = 10 

y axis: logarithmic scale 
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ATS 
FSI v. VSI with Fixed Control Limits 
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Figure 17a: ATS for FSI v. VSI with pre-set control limits 
Sample size: n = 5 Interval length: 1 = 10 

y axis: linear scale 
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FSI v. VSI with Fixed Control Limits 
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Figure 17b: ATS for FSI v. VSI with pre-set control limits 
Sample size: n = 5 Interval length: 1 = 10 

y axis: logarithmic scale 
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FSI v. VSI with Calculated Control Limits 
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Figure 17c: ATS for FSI v. VSI with control limits calculated from sample size 
Sample size: n = 5 Interval length: 1 = 10 

y axis: linear scale 
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Figure 17d: ATS for FSI v. VSI with control limits calculated from sample size 
Sample size: n = 5 Interval length: 1 = 10 

y axis: logarithmic scale 
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ATS 
FSI v. VSI with Fixed Control Limits 
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Figure 18a: ATS for FSI v. FSI with pre-set control limits 
Sample size: n = 5 Interval length: 1 = 10 

y axis: linear scale 
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Figure 18b: ATS for FSI v. FSI with pre-set control limits 
Sample size: n = 5 Interval length: 1 = 10 

y axis: logarithmic scale 
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Figure 18c: ATS for FSI v. FSI with control limits calculated from sample data 
Sample size: n = 5 Interval length: I = 10 

y axis: linear scale 
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Figure 18d: ATS for FSI v. FSI with control limits calculated from sample data 
Sample size: n = 5 Interval length: I = 10 

y axis: logarithmic scale 



184 

ATS 
FSI v. VSI with Fixed Control Limits 
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Figure 19a: ATS for FSI v. VSI with pre-set control limits 
Sample size: n = 5 Interval length: 1 = 10 

y axis: linear scale 
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Figure 19b: ATS for FSI v. VSI with pre-set control limits 
Sample size: n = 5 Interval length: 1 = 10 

y axis: logarithmic scale 



186 

ATS 
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Figure 19c: ATS for FSI v. VSI with control limits calculated from sample data 
Sample size: n = 5 Interval length: 1 = 10 

y axis: linear scale 
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Figure 19d: ATS for FSI v. VSI with control limits calculated from sample data 
Sample size: n = 5 Interval length: 1 = 10 

y axis: logarithmic scale 
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INTERVAL LENGTH v. ARL 
FSI with Fixed Limits 
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Figure 20a: Effect of Interval length on ARL for FSI with pre-set limits 
Sample size = 1 Shift = 0.0 

y axis: linear scale 
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INTERVAL LENGTH v. ARL 
FSI with Fixed Limits 
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Figure 20b: Effect of Interval length on ARL for FSI with pre-set limits 
Sample size = 1 Shift = 0.0 

y axis: logarithmic scale 
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INTERVAL LENGTH v. ARL 
FSI with Fixed Limits 

Shift in Target Mean = 1.0 
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Figure 20c: Effect of Interval length on ARL 
Sample size = 1 Shift = 1.0 

y axis: linear scale 
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INTERVAL LENGTH v. ARL 
FSI with Fixed Limits 
Shift in Target Mean = 1.0 
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Figure 20d: Effect of Interval length on ARL 
Sample size = 1 Shift = 1.0 

y axis: logarithmic scale 



192 

INTERVAL LENGTH v. ARL 
FSI with Fixed Limits 
Shift in Target Mean = 2.0 
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Figure 20e: Effect of interval length on ARL for FSI with pre-set control limits 
Sample size = 1 Shift = 2.0 

y axis: linear scale 
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INTERVAL LENGTH v. ARL 
FSI with Fixed Limits 

Shift in Target Mean = 2.0 
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Figure 20f: Effect of interval length on ARL for FSI with pre-set control limits 
Sample size = 1 Shift = 2.0 

y axis: logarithmic scale 
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INTERVAL LENGTH v. ARL 
FSI with Fixed Limits 

Shift in Target Mean = 3.0 
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Figure 20g: Effect of Interval Length on ARL for FSI with pre-set control limits 
Sample size = 1 Shift = 3.0 

y axis: linear scale 
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INTERVAL LENGTH v. ARL 
FSI with Fixed Limits 
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Figure 20h: Effect of Interval Length on ARL for FSI with pre-set control limits 
Sample size = 1 Shift = 3.0 

y axis: logarithmic scale 
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INTERVAL LENGTH v. ARL 
FSI with Calculated Limits 
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Figure 21a: Effect of Interval length on ARL for FSI with limits calculated from sample data 
Sample size = 1 Shift = 0.0 

y axis: linear scale 
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INTERVAL LENGTH v. ARL 
FSI with Calculated Limits 
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Figure 21b: Effect of Interval length on ARL for FSI with limits calculated from sample data 
Sample size = 1 Shift = 0.0 

y axis: logarithmic scale 
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INTERVAL LENGTH v. ARL 
FSI with Calculated Limits 
Shift = 1.0 Sample size = 1 
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Figure 21c: Effect of Interval length on ARL for FSI with limits calculated from sample data 
Sample size = 1 Shift = 1.0 

y axis: linear scale 
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INTERVAL LENGTH v. ARL 
FSI with Calculated Limits 
Shift = 1.0 Sample size = 1 
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Figure 21d: Effect of Interval length on ARL for FSI with limits calculated from sample data 
Sample size = 1 Shift = 1.0 

y axis: logarithmic scale 
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INTERVAL LENGTH v. ARL 
FSI with Calculated Limits 

Shift = 2.0 Sample size = 1 
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Figure 21 e: Effect of Interval length on ARL for FSI with limits calculated from sample data 
Sample size = 1 Shift = 2.0 

y axis: linear scale 
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INTERVAL LENGTH v. ARL 
FSI with Calculated Limits 
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Figure 21f: Effect of Interval length on ARL for FSI with limits calculated from sample data 
Sample size = 1 Shift = 2.0 

y axis: logarithmic scale 
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INTERVAL LENGTH v. ARL 
FSI with Calculated Limits 
Shift = 3.0 Sample size = 1 
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Figure 21 g: Effect of Interval length on ARL for FSI with limits calculated from sample data 
Sample size = 1 Shift = 3.0 

y axis: linear scale 
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INTERVAL LENGTH v. ARL 
FSI with Calculated Limits 
Shift = 3.0 Sample size = 1 
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Figure 21 h: Effect of Interval length on ARL for FSI with limits calculated from sample data 
Sample size = 1 Shift = 3.0 

y axis: logarithmic scale 
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INTERVAL LENGTH v. ANSS 
VSÎ with Fixed Limits 

Shift = 0.0 Sample size = 1 

ARL 

400 ( Z 

300 

200 

100 

0.0 0.3 0.6 0.9 

Correlation Coefficient 

Interval length 

Length=10 E D Length=20 E 3 Length=50 

Figure 22a: Effect of Interval length on ARL for VSI with pre-set limits 
Sample size = 1 Shift = 0.0 

y axis: linear scale 
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INTERVAL LENGTH v. ANSS 
VSI with Fixed Limits 
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Figure 22b: Effect of Interval length on ARL for VSI with pre-set limits 
Sample size = 1 Shift = 0.0 

y axis: logarithmic scale 
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INTERVAL LENGTH v. ANSS 
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Figure 22c: Effect of Interval length on ARL for VSI with pre-set limits 
Sample size = 1 Shift = 1.0 

y axis: linear scale 
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INTERVAL LENGTH v. ANSS 
VSI with Fixed Limits 
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Figure 22d: Effect of Interval length on ARL for VSI with pre-set limits 
Sample size = 1 Shift = 1.0 

y axis: logarithmic scale 
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INTERVAL LENGTH v. ANSS 
VSI with Fixed Limits 
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Figure 22e: Effect of Interval length on ARL for VSI with pre-set limits 
Sample size = 1 Shift = 2.0 

y axis: linear scale 



209 

INTERVAL LENGTH v. ANSS 
VSI with Fixed Limits 
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Figure 22f: Effect of Interval length on ARL for VSI with pre-set limits 
Sample size = 1 Shift = 2.0 

y axis: logarithmic scale 
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INTERVAL LENGTH v. ANSS 
VSI with Fixed Limits 
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Figure 22g: Effect of Interval length on ARL for VSI with pre-set limits 
Sample size = 1 Shift = 3.0 

y axis: linear scale 
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INTERVAL LENGTH v. ANSS 
VSI with Fixed Limits 
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ARL 

0.0 0.3 0.6 0.9 

Correlation Coefficient 

Interval length 

2 Length=10 E D Length=20 S Length=50 

Figure 22h: Effect of Interval length on ARL for VSI with pre-set limits 
Sample size = 1 Shift = 3.0 

y axis: logarithmic scale 
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INTERVAL LENGTH v. ANSS 
VSI with Calculated Limits 

Shift = 0.0 Sample size = 1 
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Figure 23a: Effect of Interval length on ARL for VSI with limits calculated from sample data 
Sample size = 1 Shift = 0.0 

y axis: linear scale 
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INTERVAL LENGTH v. ANSS 
VSI with Calculated Limits 

Shift = 0.0 Sample size = 1 
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Figure 23b: Effect of Interval length on ARL for VSI with limits calculated from sample data 
Sample size = 1 Shift = 0.0 

y axis: logarithmic scale 
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INTERVAL LENGTH v. ANSS 
VSI with Calculated Limits 
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Figure 23c: Effect of Interval length on ARL for VSI with limits calculated from sample data 
Sample size = 1 Shift = 1.0 

y axis: linear scale 
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INTERVAL LENGTH v. ANSS 
VSI with Calculated Limits 
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Figure 23d: Effect of Interval length on ARL for VSI with limits calculated from sample data 
Sample size = 1 Shift = 1.0 

y axis: logarithmic scale 
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INTERVAL LENGTH v. ANSS 
VSI with Calculated Limits 

Shift = 2.0 Sample size = 1 
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Figure 23e: Effect of Interval length on ARL for VSI with limits calculated from sample data 
Sample size = 1 Shift = 2.0 

y axis: linear scale 
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INTERVAL LENGTH v. ANSS 
VSI with Calculated Limits 

Shift = 2.0 Sample size = 1 

ARL 

0.0 0.3 0.6 0.9 

Correlation Coefficient 

Interval length 

Length=10 EH3 Length=20 fSlLength=50 

Figure 23f: Effect of Interval length on ARL for VSI with limits calculated from sample data 
Sample size = 1 Shift = 2.0 

y axis: logarithmic scale 
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INTERVAL LENGTH v. ANSS 
VSI with Calculated Limits 
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Figure 23g: Effect of Interval length on ARL for VSI with limits calculated from sample data 
Sample size = 1 Shift = 3.0 

y axis: linear scale 
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INTERVAL LENGTH v. ANSS 
VSI with Calculated Limits 
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Figure 23h: Effect of Interval length on ARL for VSI with limits calculated from sample data 
Sample size = 1 Shift = 3.0 

y axis: logarithmic scale 
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INTERVAL LENGTH v. ARL 
FSI with Fixed Limits 
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Figure 24a: Effect of Interval length on ARL for FSI with pre-set limits 
Sample size = 5 Shift = 0.0 

y axis: linear scale 
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INTERVAL LENGTH v. ARL 
FSI with Fixed Limits 
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Figure 24b: Effect of Interval length on ARL for FSI with pre-set limits 
Sample size = 5 Shift = 0,0 

y axis: logarithmic scale 
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INTERVAL LENGTH v. ARL 
FSI with Fixed Limits 
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Figure 24c: Effect of Interval length on ARL for FSI with pre-set limits 
Sample size = 5 Shift = 1.0 

y axis: linear scale 
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INTERVAL LENGTH v. ARL 
FSI with Fixed Limits 
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Figure 24d: Effect of Interval length on ARL for FSI with pre-set limits 
Sample size = 5 Shift = 1.0 

y axis: logarithmic scale 
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INTERVAL LENGTH v. ARL 
FSI with Fixed Limits 
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Figure 24e: Effect of Interval length on ARL for FSI with pre-set limits 
Sample size = 5 Shift = 2.0 

y axis: linear scale 
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INTERVAL LENGTH v. ARL 
FSI with Fixed Limits 
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Figure 24f: Effect of Interval length on ARL for FSI with pre-set limits 
Sample size = 5 Shift = 2.0 

y axis: logarithmic scale 
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INTERVAL LENGTH v. ARL 
FSI with Fixed Limits 
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Figure 24g: Effect of Interval length on ARL for FSI with pre-set limits 
Sample size = 5 Shift = 3.0 

y axis: linear scale 
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INTERVAL LENGTH v. ARL 
FSI with Fixed Limits 
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Figure 24h: Effect of Interval length on ARL for FSI with pre-set limits 
Sample size = 5 Shift = 3.0 

y axis: logarithmic scale 
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INTERVAL LENGTH v. ARL 
FSI with Calculated Limits 
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Figure 25a: Effect of Interval length on ARL for FSI with limits calculated from sample data 
Sample size = 5 Shift = 0.0 

y axis: linear scale 
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INTERVAL LENGTH v. ARL 
FSI with Calculated Limits 
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Figure 25b: Effect of Interval length on ARL for FSI with limits calculated from sample data 
Sample size = 5 Shift = 0.0 

y axis: logarithmic scale 
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INTERVAL LENGTH v. ARL 
FSI with Calculated Limits 
Shift = 1.0 Sample size = 5 
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Figure 25c: Effect of Interval length on ARL for FSI with limits calculated from sample data 
Sample size = 5 Shift = 1.0 

y axis: linear scale 
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INTERVAL LENGTH v. ARL 
FSI with Calculated Limits 
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Figure 25d: Effect of Interval length on ARL for FSI with limits calculated from sample data 
Sample size = 5 Shift = 1.0 

y axis: logarithmic scale 
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INTERVAL LENGTH v. ARL 
FSI with Calculated Limits 
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Figure 25e: Effect of Interval length on ARL for FSI with limits calculated from sample data 
Sample size = 5 Shift = 2.0 

y axis: linear scale 
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INTERVAL LENGTH v. ARL 
FSI with Calculated Limits 

Shift = 2.0 Sample size = 5 

ARL 

0.0 0.3 0.6 0.9 

Correlation Coefficient 

Interval length 

I Length=5 0 Length=10 

E 3 Length=20 S Length=50 

Figure 25f: Effect of Interval length on ARL for FSI with limits calculated from sample data 
Sample size = 5 Shift = 3.0 

y axis: logarithmic scale 
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INTERVAL LENGTH v. ARL 
FSI with Calculated Limits 
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Figure 25g: Effect of Interval length on ARL for FSI with limits calculated from sample data 
Sample size = 5 Shift = 3.0 

y axis: linear scale 
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INTERVAL LENGTH v. ARL 
FSI with Calculated Limits 

Shift = 3.0 Sample size = 5 

ARL 

10 

0.0 0.3 0.6 

Correlation Coefficient 

0.9 

Interval length 

Blength=5 0Length=1O 

03 Length=20 S Length=50 

Figure 25h: Effect of Interval length on ARL for FSI with limits calculated from sample data 
Sample size = 5 Shift = 3.0 

y axis: logarithmic scale 
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INTERVAL LENGTH v. ANSS 
VSI with Fixed Limits 
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Figure 26a: Effect of Interval length on ARL for VSI with pre-set limits 
Sample size = 5 Shift = 0.0 

y axis: linear scale 
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INTERVAL LENGTH v. ANSS 
VSI with Fixed Limits 
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Figure 26b: Effect of Interval length on ARL for VSI with pre-set limits 
Sample size = 5 Shift = 0.0 

y axis: logarithmic scale 
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INTERVAL LENGTH v. ANSS 
VSI with Fixed Limits 
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Figure 26c: Effect of Interval length on ARL for VSI with pre-set limits 
Sample size = 5 Shift = 1.0 

y axis: linear scale 
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INTERVAL LENGTH v. ANSS 
VSI with Fixed Limits 
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Figure 26d: Effect of Interval length on ARL for VSI with pre-set limits 
Sample size = 5 Shift = 1.0 

y axis: logarithmic scale 
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INTERVAL LENGTH v. ANSS 
VSI with Fixed Limits 
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Figure 26e: Effect of Interval length on ARL for VSI with pre-set limits 
Sample size = 5 Shift = 2.0 

y axis: linear scale 
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INTERVAL LENGTH v. ANSS 
VSI with Fixed Limits 

Shift = 2.0 Sample size = 5 
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Figure 26f: Effect of Interval length on ARL for VSI with pre-set limits 
Sample size = 5 Shift = 2.0 

y axis: logarithmic scale 
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INTERVAL LENGTH v. ANSS 
VSI with Calculated Limits 
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Figure 26g: Effect of Interval length on ARL for VSI with limits calculated from sample data 
Sample size = 5 Shift = 3.0 

y axis: linear scale 
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INTERVAL LENGTH v. ANSS 
VSI with Calculated Limits 
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Figure 26h: Effect of Interval length on ARL for VSI with limits calculated from sample data 
Sample size = 5 Shift = 3.0 

y axis: logarithmic scale 
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INTERVAL LENGTH v. ANSS 
VSI with Calculated Limits 
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Figure 27a: Effect of Interval length on ARL for VSI with limits calculated from sample data 
Sample size = 5 Shift = 0.0 

y axis: linear scale 
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INTERVAL LENGTH v. ANSS 
VSI with Calculated Limits 
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Figure 27b: Effect of Interval length on ARL for VSI with limits calculated from sample data 
Sample size = 5 Shift = 0.0 

y axis: logarithmic scale 
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INTERVAL LENGTH v. ANSS 
VSI with Calculated Limits 
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Figure 27c: Effect of Interval length on ARL for VSI with limits calculated from sample data 
Sample size = 5 Shift = 1.0 

y axis: linear scale 
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INTERVAL LENGTH v. ANSS 
VSI with Calculated Limits 
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Figure 27d: Effect of Interval length on ARL for VSI with limits calculated from sample data 
Sample size = 5 Shift = 1.0 

y axis: logarithmic scale 
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INTERVAL LENGTH v. ANSS 
VSI with Calculated Limits 
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Figure 27e: Effect of Interval length on ARL for VSI with limits calculated from sample data 
Sample size = 5 Shift = 2.0 

y axis: linear scale 
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INTERVAL LENGTH v. ANSS 
VSI with Calculated Limits 
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Figure 27f: Effect of Interval length on ARL for VSI with limits calculated from sample data 
Sample size = 5 Shift = 2.0 

y axis: logarithmic scale 
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INTERVAL LENGTH v. ANSS 
VSI with Calculated Limits 
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Figure 27g: Effect of Interval length on ARL for VSI with limits calculated from sample data 
Sample size = 5 Shift = 3.0 

y axis: linear scale 



251 

INTERVAL LENGTH v. ANSS 
VSI with Calculated Limits 
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Figure 27h: Effect of Interval length on ARL for VSI with limits calculated from sample data 
Sample size = 5 Shift = 3.0 

y axis: logarithmic scale 
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EFFECT OF SAMPLE SIZE ON ARL/ANSS 
FSI v. VSI PRE-SET LIMITS 
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Figure 28a: FSI and VSI have fixed control limits and sample sizes of 1 and 5 
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EFFECT OF SAMPLE SIZE ON ARL/ANSS 
FSI v. VSI PRE-SET LIMITS 
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Figure 28b: FSI and VSI have fixed control limits and sample sizes of 1 and 5 
y axis: logarithmic scale 
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EFFECT OF SAMPLE SIZE ON ARL/ANSS 
FSIv.VSI PRE-SET LIMITS 

Shift = 1.0 Interval length = 10 
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Figure 28C: FSI and VSI have fixed control limits 
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EFFECT OF SAMPLE SIZE ON ARL/ANSS 
FSIv.VSI PRE-SET LIMITS 

Shift = 2.0 Interval length = 10 
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Figure 28D: FSI and VSI have fixed control limits 
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EFFECT OF SAMPLE SIZE ON ARL/ANSS 
FSI V. VSI PRE-SET LLIMITS 

Shift = 3.0 Interval length = 10 
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Figure 28e: FSI and VSI have fixed control limits 
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EFFECT OF SAMPLE SIZE ON ARL/ANSS 
FSI v. VSI CALCULATED LIMITS 

Shift = 0.0 Interval length = 10 
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Figure 29a: FSI and VSI have control limits calculated from sample data and sample sizes of 1 and 5 
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EFFECT OF SAMPLE SIZE ON ARL/ANSS 
FSI v. VSI CALCULATED LIMITS 

Shift = 0.0 Interval length = 10 
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Figure 29b: FSI and VSI have control limits calculated from sample data and sample sizes of 1 and 5 
y axis: logarithmic scale 
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EFFECT OF SAMPLE SIZE ON ARL/ANSS 
FSI v. VSI CALCULATED LIMITS 

Shift = 1.0 Interval length = 10 
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Figure 29c: FSI and VSI have control limits calculated from sample data and sample sizes of 1 and 5 
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EFFECT OF SAMPLE SIZE ON ARL/ANSS 
FSI v. VSI CALCULATED LIMITS 

Shift = 1.0 Interval length = 10 
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Figure 29d: FSI and VSI have control limits calculated from sample data and sample sizes of 1 and 5 
y axis: logarithmic scale 
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EFFECT OF SAMPLE SIZE ON ARL/ANSS 
FSI v. VSI CALCULATED LIMITS 

Shift = 2.0 Interval length = 10 
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Figure 29e: FSI and VSI have control limits calculated from sample data and sample sizes of 1 and 5 
y axis: linear scale 
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EFFECT OF SAMPLE SIZE ON ARL/ANSS 
FSI v. VSI CALCULATED LIMITS 

Shift = 3.0 Interval length = 10 
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Figure 29f: FSI and VSI have control limits calculated from sample data and sample sizes of 1 and 5 
y axis: linear scale 
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EFFECT OF SAMPLE SIZE ON ATS 
FSIv.VSI PRE-SET LIMITS 
Shift = 0.0 Interval length = 10 
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Figure 30a: FSI and VSI have fixed control limits and sample sizes of 1 and 5 
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EFFECT OF SAMPLE SIZE ON ATS 
FSIv.VSI PRE-SET LIMITS 
Shift = 0.0 Interval length = 10 
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Figure 30b: FSI and VSI have fixed control limits and sample sizes of 1 and 5 
y axis: logarithmic scale 
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EFFECT OF SAMPLE SIZE ON ATS 
FSIv.VSI PRE-SET LIMITS 
Shift = 1.0 Interval length = 10 
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Figure 30c: FSI and VSI have fixed control limits and sample sizes of 1 and 5 



266 

EFFECT OF SAMPLE SIZE ON ATS 
FSIv.VSI PRE-SET LIMITS 
Shift = 2.0 Interval length = 10 
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Figure 30d: FSI and VSI have fixed control limits and sample sizes of 1 and 5 
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EFFECT OF SAMPLE SIZE ON ATS 
FSIv.VSI PRE-SET LIMITS 
Shift = 3.0 Interval length = 10 
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Figure 30e: FSI and VSI have fixed control limits and sample sizes of 1 and 5 
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EFFECT OF SAMPLE SIZE ON ATS 
FSI v. VSI CALCULATED LIMITS 

Shift = 0.0 Interval length = 10 
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Figure 31a: FSI and VSI have calculated control limits and sample sizes of 1 and 5 
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EFFECT OF SAMPLE SIZE ON ATS 
FSI v. VSI CALCULATED LIMITS 

Shift = 0.0 Interval length = 10 
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Figure 31b: FSI and VSI have calculated control limits and sample sizes of 1 and 5 
y axis: logarithmic scale 
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EFFECT OF SAMPLE SIZE ON ATS 
FSI v. VSI CALCULATED LIMITS 

Shift = 1.0 Interval length = 10 
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Figure 31c: FSI and VSI have calculated control limits and sample sizes of 1 and 5 
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EFFECT OF SAMPLE SIZE ON ATS 
FSI v. VSI CALCULATED LIMITS 

Shift = 1.0 Interval length = 10 
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Figure 31 d: FSI and VSI have calculated control limits and sample sizes of 1 and 5 
y axis: logarithmic scale 
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EFFECT OF SAMPLE SIZE ON ATS 
FSI v. VSI CALCULATED LIMITS 

Shift = 2.0 Interval length = 10 
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Figure 31 e: FSI and VSI have calculated control limits and sample sizes of 1 and 5 
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EFFECT OF SAMPLE SIZE ON ATS 
FSI v. VSI CALCULATED LIMITS 
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Figure 31 f: FSI and VSI have calculated control limits and sample sizes of 1 and 5 
y axis: logarithmic scale 
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EFFECT OF SAMPLE SIZE ON ATS 
FSI v. VSI CALCULATED LIMITS 
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Figure 31 g: FSI and VSI have calculated control limits and sample sizes of 1 and 5 
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EFFECT OF SAMPLE SIZE ON ATS 
FSI v. VSI CALCULATED LIMITS 
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Figure 31 h: FSI and VSI have calculated control limits and sample sizes of 1 and 5 
y axis: logarithmic scale 
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FORTRAN PROGRAM: FSI-3 

FIXED SAMPLING INTERVALS WITH PRE-SET LIMITS 

integer npar, npma, nw, ini, m, n, comb, numels, replic 

parameter (npar=l, comb=l, numels =1, replic = 10000) 

integer i,j,k,p,q,r,s, iadist, iseed, lagar(npar), 

+lagma(l), t, rl(comb), dummy 

parameter (npma=0, nw=2000, ini=25) 

real a(nw), avar, const, par(npar),w(nw),wi(l), 

+ pma(l), xbar(nw),shift, 

+ ucl, lcl, meanrl(comb) 

logical contrl 
c * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ******************** 

c initialize variables 
c * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *********** 

open(unit=2,file='shift') 

lagar(1) = 1 

par(1) =0.0 

iadist = 0 

const =0.0 

avar =1.0 

wi(l) = 0 

pma(1) =2.0 

c although there is no ma component, the imsl routine 

c requires some value in the next statement 

lagma (1) = 5 

iseed = 923457 

call rnset (iseed) 

do 10 k=l , comb 

meanrl(k) =0.0 

10 continue 

do 200 r=l, replic 

call rnarm(nw, const, npar, par, lagar, npma,pma,lagma, 

+ iadist, avar, a, wi, w) 

c write (unit=2,fmt=570) (w(i), i=l,nw) 

n = 5 

1 = 5 
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shift =1.0 

dummy =999 

p = 1 

q = 1 
c * **************************************************** * 

c The following comment statements are used in calculating 

c the control limits 
******************************************* ****** 

c do 150 p=l,comb 

c n = n + 1 

c 1 = 0 

c do 120 q=l,numels 

c 1 = 1 + 1 

c do 20 i=l,ini 

c xbar(i) =0.0 

c20 continue 

c do 30 i=l,ini 

c m = 1*(i-1) 

c j = m + 1 

c do 25, k=j, j + (n-1) 

c xbar(i) =xbar(i) +w(k) 

c temp(k-m) =w(k) 

c25 continue 

c xbar(i) =xbar(i)/real (n) 

c if (n .eq. 1) then 

c rng(i) =abs(w(i) -w(i+l)) 

c else 

c maxr = temp(1) 

c minr = temp(l) 

c do 27 k=2,ini 

c if (temp(k) .gt. maxr) then 

c maxr = temp(k) 

c endif 

c if (temp(k) .It. minr) then 

c minr = temp(k) 

c endif 

c rng(i) = maxr - minr 

c27 continue 

c endif 
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c30 continue 

c xdbarl = 0.0 

c rbar =0.0 

c do 35 i=l, ini 

c xdbarl = xdbarl + xbar(i) 

c rbar = rbar + rng(i) 

c35 continue 

c xdbarl =xdbarl/real(ini) 

c rbar = rbar/real(ini) 

c this part calculates the control limits 

c if (n .le. 2) then 

c d2 = 1.128 

c elseif (n .eq. 3) then 

c d2 = 1.693 

c elseif (n .eq. 4) then 

c d2 =2.059 

c elseif (n .eq. 5) then 

c d2 =2.326 

c endif 

c ucl = xdbarl + 3 * rbar/(d2 * sqrt(real(n))) 

c lcl = xdbarl - 3 * rbar/(d2 *sqrt(real(n))) 

c write(unit=2,fmt=550) xdbarl,rbar,ucl,lcl 

ucl = 3/sqrt(real(n)) 
lcl =-3/sqrt(real(n)) 

^****************************************************** 

c the fixed sampling interval (FSI) part begins here 

c need x-bars for the given n and 1 starting at sample 26 
Q * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 

t = nw/1 

contrl = .true. 

do 40 i = ini+1, t 

xbar(i) =0.0 

40 continue 

do 80 i = ini+1, t 

m = 1 * ( i-1) 

j = m + 1 
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do 60 k = j,j+ (n-1) 

w(k) = w (k) + shift 

xbar ( i ) = xbar (i) + w(k) 

60 continue 

xbar(i) = xbar(i)/real(n) 

80 continue 
£» * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 

c now subject x-bars to control limits 
******************************* * * * * * * * * * * * * * 

s = (numels*(p-1))+q 

rl(s) = 1 

do 100 i = ini+1, t 

if ((xbar(i) . ge. ucl) .or. (xbar(i) . le. lcl)) then 

contrl = .false. 

goto 120 

else 

rl(s) = rl(s) +1 

endif 

100 continue 

if (contrl) then 

write(unit=2,fmt=580) dummy 

endif 

120 continue 

150 continue 

do 180 i=l, comb 

meanrl(i) = meanrl(i) +rl(i) 

180 continue 

200 continue 

do 220 i=l,comb 

meanrl(i) = meanrl(i)/real(replic) 

220 continue 

write(unit = 2, fmt = 500) (meanrl(k),k=l,comb) 
500 format (8fl0.1) 

550 format (f7.4) 

570 format (10f7.3) 
58 0 format (17) 

close(unit=2,status='keep') 
stop 
end 
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FORTRAN PROGRAM: FSI-CAL 

FIXED SAMPLING INTERVALS WITH CALCULATED CONTROL LIMITS 

integer npar, npma, nw, ini, 1, m,c,n, comb, numels, 

+ replic 

parameter (npar=l, comb=l, numels =1, replic =5000) 

integer i,j,k,p,q,r,s, iadist, iseed, lagar(npar), 

+ lagma(l), t, rl(comb),dummy 

parameter (npma-0, nw=10000, ini=25) 

real a(nw), avar, const, par(npar),w(nw),wi(1), 

+ pma(l), rng(ini), xbar(nw), xdbarl, rbar, temp(ini), 

+ maxr, minr, d2, ucl, lcl, meanrl(comb) 

logical contrl 

c initialize variables 

open(unit=2,file='output') 

lagar(l) - 1 

par(1) =0.0 

Iadist = 0 

const =0.0 

avar =1.0 

wi (1) = 0 

pma (1) =2.0 

c although there is no ma component, the imsl routine 

c requires some value in the next statement 

lagma (1) = 5 

iseed = 923457 

call rnset (iseed) 

do 10 k=l, comb 

meanrl(k) =0.0 

10 continue 

do 200 r=l, replic 

call rnarm( nw, const, npar, par, lagar, 

+ npma,pma,lagma, iadist, avar, a, wi, w) 

c write (unit=2,fmt=570) (w(i), i=l,nw) 

shift =1.0 

c = 1 

dummy =999 
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do 150 p=l,comb 

n = 5 

do 120 q=l,numels 

1 = 20 

do 20 i=l,ini 

xbar(i) =0.0 

20 continue 

do 30 i=l , ini 

m = 1*(i-1) 

j = m + 1 

do 25, k=j, j + (n-1) 

xbar(i) =xbar(i) +w(k) 

temp(k-m) = w (k) 

25 continue 

xbar(i) = xbar(i)/real(n) 

if (n .eq. 1) then 

rng(i) =abs(w(c) -w(c+l)) 

c = c + 1 

c write(unit=2, fmt=570) rng(i) 

else 

maxr = temp(1) 

minr = temp(1) 

do 27 k=2 , n 

if (temp(k) .gt. maxr) then 

maxr = temp(k) 

endif 

if (temp(k) .It. minr) then 

minr = temp(k) 

endif 

27 continue 

rng(i) = maxr - minr 

endif 

c write(unit=2,fmt=570) rng(i) 

30 continue 

xdbar1 =0.0 

rbar =0.0 

do 35 i=l, ini 

xdbarl = xdbarl + xbar(i) 

rbar = rbar + rng(i) 
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35 continue 

xdbarl = xdbarl/real(ini) 

rbar =rbar/real(ini) 

c this part calculates the control limits 

if (n .le. 2) then 

d2 =1.128 

elseif (n .eq. 3) then 

d2 =1.693 

elseif (n .eq. 4) then 

d2 = 2.059 

elseif (n .eq. 5) then 

d2 = 2.326 

endif 

ucl = xdbarl + 3 * rbar/(d2 * sqrt(real(n))) 

lcl = xdbarl - 3 * rbar/(d2 *sqrt(real(n))) 

c write(unit=2,fmt=550) xdbarl,rbar,ucl,lcl 

Q * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 

c the fixed sampling interval (FSI) part begins here 

Q * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 

c need x-bars for the given n and 1 starting at sample 26 

Q * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 

t = nw/1 

contrl = .true. 

do 40 i = ini+1, t 

xbar(i) =0.0 

40 continue 

do 80 i = ini+1, t 

m = 1 * (i-1) 

j = m + 1 

do 60 k = j, j+ (n-1) 

w(k) = w( k) + shift 

xbar(i) =xbar(i) +w(k) 

60 continue 

xbar(i) = xbar(i)/real(n) 

80 continue 

c write(unit=2,fmt=570) (xbar(i), i=ini+l,t) 
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it******:**********:*****************:************:****:**:** 

c now compare xbars to control limits 

c * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 

s = (numels*(p-1))+q 

rl(s ) = 1 

do 100 i = ini+1, t 

if ( ( xbar ( i ) .ge. ucl) .or. (xbar(i) . le. lcl)) then 

contrl = .false. 

goto 120 

else 

rl (s ) = rl(s) +1 

endif 

100 continue 

if (contrl) then 

write (unit=2r fmt=580) dummy 

c print *r 'data set exceeded' 

endif 

120 continue 

150 continue 

do 180 i=l , comb 

meanrl(i) = meanrl(i) + rl(i) 

180 continue 

200 continue 

do 220 i=l, comb 

meanrl(i) = meanrl(i)/real(replic) 

220 continue 

write (unit =2, fmt = 500) (meanrl (k) ,k=l, comb) 

c print *, 'meanrl = ' f meanrl 

500 format (8fl0.1) 

550 format (f7.4) 

570 format (10f7.3) 

580 format (17) 

close(unit=2,status='keep') 

stop 

end 
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FORTRAN PROGRAM: VSI-3 

VARIABLE SAMPLING INTERVALS WITH PRE-SET CONTROL LIMITS 

integer npar, npma, nw, ini, 1, m, nr replic 

parameter (npar=l, replic =10000) 

integer i,j,k,r,iadist, iseed, lagar(npar), lagma(l), 

+ t, dummy, nshort, nlong, nss(replic), ats(replic) 

parameter (npma=0, nw=10000, ini=25) 

real a(nw), avar, const, par(npar),w(nw),wi(l)r 

+ pma(l), rng(ini), xbar(nw), xdbarl, rbar, temp(ini), 

+ maxr, minr, d2, ucl, lcl, uvcl, lvcl, short, 

+ long, ntrvl, meanss, mats, shift 

logical contrl 
£.****************************************************** 

c initialize variables 
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 

open(unit=2,file= 'shift') 

lagar(1) = 1 

par (1) =0.3 

Iadist = 0 

const =0.0 

avar =1.0 

wi(l) = 0 

pma (1) =3.0 

c although there is no ma component, the imsl routine 

c requires some value in the next statement 

lagma(1) = 5 

iseed = 923457 

call rnset (iseed) 

dummy = 999 

n = 5 

1 = 10 

shift =0.0 

short = 0.1*1 

long = 1.9*1 

do 5 k=l,replic 

nss(k) = 0 

5 continue 

do 100 r=l, replic 
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call rnarm( nw, const, npar, par, lagar, 

+npma,pma,lagma, 

+ iadist, avar, a, wi, w) 

c write (unit=2,fmt=570 ) (w(i), i=l,nw) 

nshort = 1 

nlong = 0 

do 10 i = 1, ini 

xbar(i) =0.0 

10 continue 

do 30 i=l , ini 

m = 1*(i-1) 

j = m + 1 

do 20, k=j, j + (n-1) 

xbar(i) =xbar(i) + w(k) 

temp(k-m) = w (k) 

20 continue 

xbar(i) = xbar(i)/real(n) 

if (n .eq. 1) then 

rng(i) =abs(w(i) -w(i+l)) 

else 

maxr =temp(1) 

minr = temp(1) 

do 25 k=2 , ini 

if (temp(k) .gt. maxr) then 

maxr = temp(k) 

endif 

if (temp(k) .It. minr) then 

minr = temp(k) 

endif 

rng ( i) = maxr - minr 

25 continue 

endif 

30 continue 

xdbarl =0.0 

rbar =0.0 

do 35 i-1 r ini 

xdbarl = xdbarl + xbar(i) 

rbar = rbar + rng(i) 

35 continue 
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xdbarl = xdbarl/real(ini) 

rbar = rbar/real(ini) 
Q * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 

c this part calculates the control limits 
£****************************************************** 

if (n .le. 2) then 

d2 = 1.128 

elseif (n .eq. 3) then 

d2 =1.693 

elseif (n .eq. 4) then 

d2 =2.059 

elseif (n .eq. 5) then 

d2 = 2.326 

endif 

c ucl = xdbarl + 3 * rbar/(d2 * sqrt(real(n))) 

c lcl = xdbarl - 3 * rbar/(d2 *sqrt(real(n))) 

ucl = 3.0/sqrt(real(n)) 

lcl =-3.0/sqrt(real(n)) 

c uvcl = xdbarl + .6766 * rbar/(d2 * sqrt(real(n))) 

c lvcl = xdbarl - .6766 * rbar/(d2 * sqrt(real(n))) 

uvcl = 0.6766/sqrt(real(n)) 

lvcl =-0.6766/sqrt(real(n)) 

c write (unit=2,fmt =550) xdbarlrrbar,ucl,uvcl,lvcl,lcl 
c****************************************************** 

c the variable samplinq interval (VSI) part begins here 
c ***************************************************** 

c control limits remain the same as for FSI 
c****************************************************** 

t = nw/short 

contrl = .true. 

do 40 i = (ini*l)+l, t 

xbar(i) =0.0 

40 continue 

ntrvl = short 

i = ini * 1 + ntrvl 

50 if (contrl) then 

do 60 k = i,i + (n-1) 

if (k .ge. nw) then 

print *, 'ran out of data points in VSI' 
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write (unit = 2, fmt = 150) dummy 

goto 80 

else 

w(k) =w(k) + shift 

xbar(i) =xbar(i) + w(k) 

endif 

60 continue 

xbar(i) = xbar(i)/real(n) 

c print *, xbar(i) 

c write(unit=2rfmt=570) xbar(i) 

if (xbar(i) .ge. ucl .or. xbar(i) .le. lcl) then 

contrl = .false. 

elseif (uvcl .le. xbar(i) .and. xbar(i) .It. ucl 

+ .or. 

+ lcl .It. xbar(i) .and. xbar(i) .le. lvcl) then 

nshort = nshort + 1 

ntrvl == short 

elseif (lvcl .It. xbar(i).and. xbar(i) .It. uvcl) then 

nlong = nlong + 1 

ntrvl =long 

endif 

i = i +(n-l) + ntrvl 

goto 50 

endif 

c write(unit=2,fmt=570) (xbar(i), i=(ini*l)+1,350) 

80 nss(r) = nshort + nlong 

c write(unit=2,fmt=200) nshort,nlong 

ats(r) = ((nshort- l)*n+short) + (nlong *(long+n-l)) 

c write(unit=2rfmt=200) ats 

100 continue 

meanss =0.0 

mats =0.0 

do 120 r=l,replic 

meanss = meanss + nss(r) 

mats = mats + ats(r) 

120 continue 

c write(unit=2,fmt=200) (nss(i), i=l,replic) 

meanss =meanss/real(replic) 

mats = mats/real(replic) 
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write(unit=2,fmt=175) meanss 

write(unit=2,fmt =250) mats 

150 format ('ran out of data points', 17) 

175 format ('average number samples to signal =' ,f7.1) 

200 format (1016) 

250 format ('average time to signal = ' rf7.1) 

550 format (f7.4) 

570 format (10f7.3) 

580 format ( 'value of i is = ', 17) 

590 format ( 'value of k is =' , 17) 

close(unit=2,status='keep') 

stop 

end 
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FORTRAN PROGRAM: VSI-CAL 

VARIABLE SAMPLING INTERVALS WITH CALCULATED LIMITS 

integer npar, npma, nw, ini, 1, m, nr c, replic, b,p 

parameter (npar=l, replic = 5000) 

integer i,j,k,r,iadist, iseed, lagar(npar), lagma(l), 

+ t, dummy, nshort, nlong, nss(replic), ats(replic) 

parameter (npma=0, nw=600000, ini=25) 

real a(nw), avar, const, par(npar),w(nw),wi(1), 

+ pma(l), rng(ini), xbar(nw), xdbarl, rbar, temp(ini), 

+ maxr, minr, d2 , ucl, lcl, uvcl, lvcl, short, 

+ long, ntrvl, meanss, mats, shift 

logical contrl 
C**************************************************** 

c initialize variables 

open(unit=2 rfile=
 9output2') 

lagar(1) = 1 

par(1) =0.0 

Iadist = 0 

const =0.0 

avar =1.0 

wi(1) = 0 

pma (1) =2.0 

c although there is no ma component, the imsl routine 

c reguires some value in the next statement 

lagma (1) = 5 

iseed = 923457 

call rnset (iseed) 

dummy =999 

c c = 1 

n = 5 

1 = 20 

shift =0.0 

short = 0.1*1 

long =1.9*1 

do 5 b=l,replic 

nss(b) = 0 

5 continue 

do 100 r=l, replic 
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call rnarm( nw, const, npar, par, lagar, 

+ npma,pma,lagma, 

+ iadist, avar, a, wi, w) 

c write (unit=2,fmt=570) (w(i), i=l,nw) 

c = 1 

nshort = 1 

nlong = 0 

do 10 i = 1, ini 

xbar(i) =0.0 

10 continue 

do 30 i=l, ini 

m=l*(i-l) 

j = m + 1 

do 20, k=j, j + (n-1) 

xbar(i) = xbar(i) + w(k) 

temp(k-m) = w (k) 

20 continue 

xbar(i) = xbar(i)/real(n) 

if (n . eq. 1) then 

rng(i) = abs (w ( c) -w(c+l)) 

c = c + 1 

c write(unit=2, fiat = 570) rng(i) 

else 

maxr = temp(1) 

minr = temp(l) 

do 25 p=2,n 

if (temp(p) .gt. maxr) then 

maxr = temp(p) 

endif 

if (temp(p) .It. minr) then 

minr = temp(p) 

endif 

25 continue 

rng(i) =maxr - minr 

endif 

c write(unit=2,fmt=570) rng(i) 

30 continue 

xdbarl =0.0 

rbar =0.0 
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do 35 i=l, ini 

xdbarl = xdbarl + xbar(i) 

rbar = rbar + rng(i) 

35 continue 

xdbarl = xdbarl/real(ini) 

rbar = rbar/real(ini) 

c this part calculates the control limits 

if (n .le. 2) then 

d2 =1.128 

elseif (n .eq. 3) then 

d2 = 1.693 

elseif (n .eq. 4) then 

d2 = 2.059 

elseif (n .eq. 5) then 

d2 =2.326 

endif 

ucl = xdbarl + 3 * rbar/(d2 * sqrt(real(n))) 

lcl = xdbarl - 3 * rbar/(d2 *sqrt(real(n))) 

uvcl = xdbarl + .6766 * rbar/(d2 * sqrt(real(n) ) ) 

lvcl = xdbarl - .6766 * rbar/(d2 * sqrt(real(n))) 

c write (unit=2,fmt =570) xdbarl,rbar,ucl,uvcl,lvcl,lcl 

c the variable sampling interval (VSI) part begins here 

c control limits remain the same as for FSI 

t = nw/short 

contrl = .true. 

do 40 i = (ini*l)+l, t 

xbar(i) =0.0 

40 continue 

ntrvl = short 

i = ini * 1 + ntrvl 

50 if (contrl) then 

do 60 k = i,i + (n-1) 

write (unit = 2, fmt = 150) dummy 

goto 80 
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else 

w(k) =w(k) + shift 

xbar(i) = xbar ( i ) +w(k) 

endif 

c write(unit=2, fmt * 150) u, v 

60 continue 

xbar(i) = xbar(i)/real(n) 

c print *, xbar(i) 

c write(unit=2rfmt=570) xbar(i) 

if (xbar(i) .ge. ucl .or. xbar(i) .le. lcl) then 

contrl = .false. 

elseif (uvcl .le. xbar(i) .and. xbar(i) .It. ucl 

+ . or. 

+ lcl .It. xbar(i) .and. xbar(i) .le. lvcl) then 

nshort = nshort + 1 

ntrvl = short 

elseif (lvcl .It. xbar(i).and. xbar(i) .It. uvcl) then 

nlong = nlong + 1 

ntrvl =long 

endif 

i = i +(n-l) + ntrvl 

goto 50 

endif 

c write(unit=2,fmt=570) (xbar(i), i=(ini*l)+1,350 ) 

80 nss(r) = nshort + nlong 

c write(unit=2,fmt=200) nshort,nlong 

ats(r) = ((nshort- l)*n+ short) + (nlong *(long+n-l)) 

c write(unit=2,fmt=200) ats 

100 continue 

meanss =0.0 

mats =0.0 

do 120 r=l,replic 

meanss = meanss + nss(r) 

mats = mats + ats(r) 

120 continue 

c write(unit=2rfmt=200) (nss(i), i=l,replic) 

meanss = meanss/real(replic) 

mats = mats/real(replic) 

write(unit=2,fmt=175) meanss 
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write(unit=2,fmt =250) mats 

150 format ('ran out of data points', 17) 

175 format ('average number samples to signal =' ,f7.1) 

200 format (1016) 

250 format ('average time to signal = r,f7.1) 

550 format (f7.4) 

570 format (10f7.3) 

c 580 format ( 'value of i is =', 17) 

c 590 format ( 'value of k is =' , 17) 

close(unit=2,status='keep') 

stop 

end 
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